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Gauge problem in the gravitational self-force:
First post-Newtonian force in the Regge-Wheeler gauge
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We discuss the gravitational self-force on a particle in a black hole space-time. For a point particle, the full
~bare! self-force diverges. It is known that the metric perturbation induced by a particle can be divided into two
parts, the direct part~or theSpart! and the tail part~or theR part!, in the harmonic gauge, and the regularized
self-force is derived from theR part which is regular and satisfies the source-free perturbed Einstein equations.
In this paper, we consider a gauge transformation from the harmonic gauge to the Regge-Wheeler gauge in
which the full metric perturbation can be calculated, and present a method to derive the regularized self-force
for a particle in circular orbit around a Schwarzschild black hole in the Regge-Wheeler gauge. As a first
application of this method, we then calculate the self-force to first post-Newtonian order. We find the correction
to the total mass of the system due to the presence of the particle is correctly reproduced in the force at the
Newtonian order.
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I. INTRODUCTION

Thanks to recent advances in technology, an era of gr
tational wave astronomy has arrived. There are already
eral large-scale laser interferometric gravitational wave
tectors that are in operation in the world. Among them
the Laser Interferometric Gravitational Wave Observat
~LIGO! @1#, GEO-600@2# and TAMA300 @3#. VIRGO @4#
expected to start its operation soon. The primary targets
these ground-based detectors are inspiraling compact b
ries, and they are expected to be detected in the near fu

On the other hand, there is a future space-based interf
metric detector project the Laser Interferometer Space
tenna ~LISA! @5# that can detect gravitational waves fro
solar-mass compact objects orbiting supermassive b
holes. There is also a future plan called DECIGO@6#. To
extract out physical information of such binary systems fr
detected gravitational wave signals, it is essential to kn
the theoretical gravitational waveforms accurately. The bl
hole perturbation approach is most suited for this purpose
this approach, one considers gravitational waves emitted
point particle that represents a compact object orbitin
black hole, assuming the mass of the particle (m) is much
less than that of the black hole (M ); m!M .

In the lowest order in the mass ratio (m/M )0, the orbit of
the particle can be represented as a geodesic on the b
ground geometry of a black hole. Already in this lowest
der, by combining with the assumption of adiabatic orbi
evolution, this approach has been proved to be very powe
for evaluating general relativistic corrections to the gravi
tional waveforms, even for neutron-star–neutron-star~NS-
NS! binaries@7#.
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In the next order, the orbit deviates from the geodesic
the black hole background because the space-time is
turbed by the particle. We can interpret this deviation as
effect of the self-force on the particle itself. Since it is esse
tial to take account of this deviation to predict the orbi
evolution accurately, we have to derive the equation of m
tion that includes the self-force on the particle. The self-fo
is formally given by the tail part~or theR part by Detweiler
and Whiting@8#! of the metric perturbation which is regula
at the location of the particle.

The gravitational self-force is, however, not easily obta
able. There are two main reasons. First, the full~bare! metric
perturbation due to a point particle diverges at the location
the particle, hence so does the self-force. As mentio
above, one has to identify theR part of the metric perturba
tion to obtain a meaningful self-force. However, theR part
cannot be determined locally but depends on the whole
tory of the particle. Therefore, one usually identifies the
vergent part which can be evaluated locally~called theS
part! to a necessary order and subtract it from the full me
perturbation. This identification of theS part is sometimes
called the subtraction problem. Second, the regularized s
force is formally defined only in the harmonic gauge beca
the form of theS part is known only in the harmonic gauge
whereas the metric perturbation of a black hole geometry
be calculated only in the ingoing or outgoing radiation gau
in the Kerr background, or in the Regge-Wheeler gauge
the Schwarzschild background. Hence, one has to fin
gauge transformation to express the full metric perturbat
and the divergent part in the same gauge. This is called
gauge problem.

In this paper, as a first step toward a complete derivat
©2003 The American Physical Society03-1
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of the gravitational self-force, we consider a particle orbiti
a Schwarzschild black hole, and propose a method to ca
late the regularized self-force by solving the subtraction a
gauge problems simultaneously. Namely, we develop
method to regularize the self-force in the Regge-Whee
gauge. The regularization is done by the ‘‘mode decomp
tion regularization’’@9#, which is effectively the same in th
present case as the ‘‘mode-sum regularization’’ develope
@10–12#.

Recently, Barack and Ori@13# proposed what they call th
intermediate gauge approach to the gauge problem. Appl
this method, the gravitational self-force for an orbit plungi
straight into a Schwarzschild black hole was calculated
Barack and Lousto@14#. It is noted that, although their ap
proach is philosophically quite different from our prese
approach, practically both approaches turn out to give
same result as far as the Regge-Wheeler gauge calcula
are concerned.

As for the case of the Kerr background, the only know
gauge in which the metric perturbation can be evaluate
the radiation gauge formulated by Chrzanowski@15#. How-
ever, the Chrzanowski construction of the metric pertur
tion becomes ill-defined in the neighborhood of the partic
i.e., the Einstein equations are not satisfied there@13#. Some
progress was made by Ori@16# to obtain the correct, full
metric perturbation in the Kerr background. The regulari
tion parameters in the mode-sum regularization for the K
case are calculated by Barack and Ori@17#.

The paper is organized as follows. In Sec. II we brie
review the situation of the self-force problem and explain o
strategy. In Sec. III we give the regularization prescripti
under the Regge-Wheeler gauge condition. In Sec. IV
calculate the full metric perturbation and the full force in t
Regge-Wheeler gauge with the Regge-Wheeler-Zerilli f
malism. In Sec. V we evaluate the singular, divergent par
the harmonic gauge by local analysis at the particle loca
and expand it in the Fourier-harmonic form. In Sec. VI w
calculate theS part under the Regge-Wheeler gauge con
tion by using the gauge transformation. By subtracting thiS
part from the full force evaluated in Sec. IV, we obtain t
regularized gravitational self-force in Sec. VII. Finally, w
summarize our calculation and discuss the future work
Sec. VIII. Some details of the calculations as well as disc
sions on the,50 and 1 modes are given in Appendix
A–F.

II. GAUGE PROBLEM

We consider the linearized metric perturbation

hmn5g̃mn2gmn , ~2.1!

wheregmn andg̃mn is the background and the perturbed m
ric, respectively. Here we define the force due to the me
perturbation as the part that gives rise to a deviation from
background geodesic:

d2za

dt2
1Gmn

a dzm

dt

dzn

dt
5

1

m
Fa@h#, ~2.2!
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whereza(t) is an orbit of the particle parametrized by th
background proper time@i.e., gmn(dzm/dt)(dzn/dt)521].
From the geodesic equation ong̃mn , we obtain

Fa@h#52mPb
aS h̄bg;d2

1

2
gbgh̄e

e;d2
1

2
h̄gd;b

1
1

4
ggdh̄e

e;bDugud, ~2.3!

where Pa
b5da

b1uaub, h̄ab5hab2 1
2 gabhm

m and ua

5dza/dt.
In the case that the perturbation is produced by a po

particle, however, we face the problem thathmn diverges at
the location of the particle, and so does the force. Theref
we cannot naively apply the above calculation to obtain
self-force of the particle. Mino, Sasaki and Tanaka@18# and
Quinn and Wald@19# gave a formal answer to this problem
by considering the metric perturbation in the harmon
gauge. According to them, the metric perturbation in the
cinity of the orbit can be divided into two parts: the dire
part and the tail part. The direct part has support only on
past null cone of the field pointxm and diverges in the limit
xm→zm(t). The tail part has support inside the past n
cone and gives the physical self-force which is regular at
location of the particle. But it is almost impossible to calc
late the tail part of the metric perturbation directly, becaus
depends on the global structure of the space-time as we
on the history of the particle motion. In contrast, the dire
part can be evaluated locally in terms of geometrical qua
ties. Hence, instead of directly calculating the tail part,
consider the subtraction of the direct part from the full met
perturbation, where the latter can be calculated in princi
by the Regge-Wheeler-Zerilli or Teukolsky formalism fo
black hole perturbations@20–24#.

From the fact thatFa is a linear differential operator on
hmn ~with a suitable extension ofum off the particle trajec-
tory!, we can calculate the self-force by subtracting the dir
part from the full force under the harmonic gauge as

lim
x→z(t)

Fa@htail,H~x!#5 lim
x→z(t)

$Fa@hfull,H~x!#2Fa@hdir,H~x!#%,

~2.4!

where the superscript H stands for the harmonic gau
When we perform this subtraction, the full metric perturb
tion and the direct part must be evaluated in the harmo
gauge because this division is meaningful only in this gau

However, it is difficult to obtain the full metric perturba
tion directly in the harmonic gauge. In order to overcom
this difficulty, one possibility is to perform the gauge tran
formation to the harmonic gauge from the gauge in wh
the full metric perturbation is obtained. In our previous pap
@23#, we investigated this problem for the Schwarzsch
case, namely, we formulated a method to perform the ga
transformation from the Regge-Wheeler~RW! gauge to the
harmonic gauge. We expressed the gauge transforma
equations in the Fourier-harmonic expanded form and
3-2
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rived a set of decoupled equations for the coefficients of e
mode. Applications of this method are now under study.

Recently, Detweiler and Whiting found a slight but impo
tant modification of the above division of the metric pertu
bation @8#. The new direct part, called theS part, hmn

S,H, is
constructed to be an inhomogeneous solution of the lin
ized Einstein equations~in the harmonic gauge! as

h̄mn;a
full/S,H ;a12Rm

a
n

bh̄ab
full/S,H5216pTmn . ~2.5!

The new tail part, called theR part,hmn
R,H, is then a homoge-

neous solution. Since theSandR parts are both the solution
of the Einstein equations, we can define theS andR parts in
another gauge, which are also the solutions of the Eins
equations, by performing the gauge transformation of e
part. Therefore, we can consider the subtraction proced
under some other convenient gauge by transforming thS
part from the harmonic gauge to the desired gauge. T
another, perhaps more promising, possibility is to formul
a method to derive theSpart in the Regge-Wheeler or radia
tion gauge, where we have formalisms to evaluate the
metric perturbation, and to obtain the regularized self-fo
by subtracting theSpart in this gauge. In this paper we focu
on the Schwarzschild case and consider the subtraction in
Regge-Wheeler gauge.

To subtract theS part, we adopt the mode decompositio
regularization@9#. In this method, the subtraction procedu
~2.4! is done at each harmonic mode. The full force is o
tained in the form of the Fourier-harmonic expansion. T
Fourier~frequency! integral can be easily done in the case
circular orbits. On the other hand, theSpart is known only in
the vicinity of the particle. Hence, one has to extend it o
the sphere to obtain its harmonic coefficients. This proced
introduces some ambiguity in the harmonic expansion of
S part. In particular, each harmonic mode obtained by t
extension has no physical significance by itself. The phys
significance is recovered only after we sum over all
modes. Because of this ambiguity, we have to treat th,
50 and 1 modes with special care, as will be shown late

III. SELF-FORCE IN THE REGGE-WHEELER GAUGE

The Schwarzschild metric is given in the standa
Schwarzschild coordinates as

gmndxmdxn52 f ~r !dt21 f ~r !21dr21r 2~du2

1sin2udf2!, f ~r !512
2M

r
. ~3.1!

We denote the location of the particle at its proper timet
5t0 as

$z0
a%5$za~t0!%5$t0 ,r 0 ,u0 ,f0%. ~3.2!

Formally, the gravitational self-force acting on the partic
is given by the tail part in the harmonic gauge, as expres
in the left-hand side of Eq.~2.4!. Using the notions of theS
andR parts introduced by Detweiler and Whiting@8#, it may
be rewritten as
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Fa
H~t!5 lim

x→z(t)
Fa@hmn

R,H#~x!

5 lim
x→z(t)

Fa@hmn
full,H2hmn

S,H#~x!

5 lim
x→z(t)

$Fa@hmn
full,H#~x!2Fa@hmn

S,H#~x!%, ~3.3!

wherehmn
S,H andhmn

R,H denote theSandR parts, respectively, of
the metric perturbation in the harmonic gauge. TheSpart can
be calculated by the local coordinate expansion@9#.

Now, we consider the gauge transformation from the h
monic gauge to the RW gauge defined by

xm
H→xm

RW5xm
H1jm

H→RW, ~3.4!

hmn
H →hmn

RW5hmn
H 22¹~mjn)

H→RW,
~3.5!

wherejm
H→RW is the generator of the gauge transformatio

Then the self-force in the RW gauge is given by

Fa
RW~t!5 lim

x→z(t)
Fa@hR,RW#

5 lim
x→z(t)

Fa†h
R,H22¹jH→RW@hR,H#‡~x!

5 lim
x→z(t)

Fa†h
full,H2hS,H

22¹jH→RW@hfull,H2hS,H#‡~x!

5 lim
x→z(t)

Fa†h
full,H22¹jH→RW@hfull,H#2hS,H

12¹jH→RW@hS,H#‡~x!

5 lim
x→z(t)

$Fa@hfull,RW#~x!

2Fa†h
S,H22¹jH→RW@hS,H#‡~x!%, ~3.6!

where we have omitted the space-time indices ofhmn and
¹(mjn) for notational simplicity. The full metric perturbation
hmn

full,RW can be calculated by using the Regge-Wheeler-Ze
formalism, while theS part hmn

S,H can be obtained with suffi-
cient accuracy by the local analysis near the particle locat
Thus the remaining issue is if we can unambiguously de
mine the gauge transformation

ja
S,H→RW5ja

H→RW@hmn
S,H#. ~3.7!

Note that the self-force~3.6! is almost identical to the ex
pression obtained in the intermediate gauge approach@13#, if
we replace theS and R parts by the direct and tail parts
respectively. The only difference is that theSandR parts are
now solutions of the inhomogeneous and homogeneous
stein equations, respectively. Hence theS part in the RW
gauge is~at least formally! well-defined provided that the
gauge transformation of theS part, Eq.~3.7!, is unique. As
3-3



on
he
le
is
tim
n

g

ba
s

by
le

b
h

by

an

y

re

-

it

NAKANO, SAGO, AND SASAKI PHYSICAL REVIEW D 68, 124003 ~2003!
will be shown later in Eqs.~6.4!, this turns out to be indeed
the case. Therefore one may identify the self-force~3.6! to be
actually the one evaluated in the RW gauge@25#, not in some
intermediate gauge.

IV. FULL METRIC PERTURBATION AND ITS FORCE

In this section we consider the full metric perturbati
and its self-force in the case of a circular orbit. First, t
metric perturbation is calculated by the Regge-Whee
Zerilli formalism in which a Fourier-harmonic expansion
used because of the symmetry of the background space-
Next, we derive the self-force by acting force operators a
represent it in terms of, mode coefficients after summin
over v andm for the Fourier-harmonic series.

A. Regge-Wheeler-Zerilli formalism

On the Schwarzschild background, the metric pertur
tion hmn can be expanded in terms of tensor harmonics a

h5(
,m

F f ~r !H0,m~ t,r !a,m
(0)2 iA2H1,m~ t,r !a,m

(1)

1
1

f ~r !
H2,m~ t,r !a,m2

i

r
A2,~,11!h0,m

(e) ~ t,r !b,m
(0)

1
1

r
A2,~,11!h1,m

(e) ~ t,r !b,m

1A1

2
,~,11!~,21!~,12!G,m~ t,r !f,m

1S A2K,m~ t,r !2
,~,11!

A2
G,m~ t,r !D g,m

2
A2,~,11!

r
h0,m~ t,r !c,m

(0)1
iA2,~,11!

r
h1,m~ t,r !c,m

1
A2,~,11!~,21!~,12!

2r 2
h2,m~ t,r !d,mG , ~4.1!

wherea,m
(0) , a,m . . . are the tensor harmonics introduced

Zerilli @21#. The energy-momentum tensor of a point partic
takes the form

Tmn5mE
2`

1`

d (4)@x2z~t!#
dzm

dt

dzn

dt
dt

5m
1

ut umun
d@r 2r 0~ t !#

r 2 d (2)@V2V0~ t !#, ~4.2!

where the orbit has been expressed as

xm5zm~t!5$t0~t!,r 0~t!,u0~t!,f0~t!%, ~4.3!

with t being regarded as a function of time determined
t5T(t). The RW gauge is defined by the conditions on t
metric perturbation as
12400
r-

e.
d

-

y
e

h2
RW5h0

(e)RW5h1
(e)RW5GRW50. ~4.4!

The Regge-Wheeler and Zerilli equations are obtained
plugging the metric perturbation~4.1! in the linearized Ein-
stein equations and Fourier decomposing them.~Recently,
the Regge-Wheeler-Zerilli formalism is improved by Jhing
and Tanaka@24#.!

For odd parity waves that are defined by the parit
(21),11 under the transformation (u,f)→(p2u,f1p),
we introduce a new radial functionR,mv

(odd)(r ) in terms of
which the two radial functions of the metric perturbation a
expressed as

h1,mv
RW 5

r 2

~r 22M !
R,mv

(odd) ,

h0,mv
RW 5

i

v

d

dr*
~rR,mv

(odd)!

2
8pr ~r 22M !

vF1

2
,~,11!~,21!~,12!G1/2D,mv . ~4.5!

The new radial functionR,mv
(odd)(r ) satisfies the Regge

Wheeler equation,

d2

dr* 2
R,mv

(odd)1@v22V,~r !#R,mv
(odd)

5
8p i

F1

2
,~,11!~,21!~,12!G1/2

r 22M

r 2

3H 2r 2
d

dr F S 12
2M

r DD,mvG
1~r 22M !@~,21!~,12!#1/2Q,mvJ , ~4.6!

where r * 5r 12M log(r/2M21), and the potentialV, is
given by

V,~r !5S 12
2M

r D S ,~,11!

r 2
2

6M

r 3 D . ~4.7!

The source termQ,mv vanishes in the case of a circular orb
and

D,mv~r !5F1

2
,~,11!~,21!~,12!G21/2

3m
~uf!2

ut
d~r 2r 0!m]uY,m* ~u0 ,f0!, ~4.8!

where the orbit is given by
3-4
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za~t!5H utt,r 0 ,
p

2
,uftJ , ut5A r 0

r 023M
,

uf5
1

r 0
A M

r 023M
5Vut, ~4.9!

whereV5AM /r 0
3 is the orbital frequency. The orbit is as

sumed to be on the equatorial plane without loss of gene
ity.

For even parity waves with the parity (21),, we intro-
duce a new radial functionR,mv

(Z) (r ) in terms of which the
four radial functions of the metric perturbation are expres
as

K,mv
RW 5

l~l11!r 213lMr 16M2

r 2~lr 13M !
R,mv

(Z)

1
r 22M

r

d

dr
R,mv

(Z) 2
r ~r 22M !

lr 13M
C̃1,mv

1
i ~r 22M !2

r ~lr 13M !
C̃2,mv ,

H1,mv
RW 52 iv

lr 223lMr 23M2

~r 22M !~lr 13M !
R,mv

(Z) 2 ivr
d

dr
R,mv

(Z)

1
ivr 3

lr 13M
C̃1,mv1

vr ~r 22M !

r ~lr 13M !
C̃2,mv ,

H0,mv
RW 5

lr ~r 22M !2v2r 41M ~r 23M !

~r 22M !~lr 13M !
K,mv

RW

1
M ~l11!2v2r 3

ivr ~lr 13M !
H1,mv

RW 1B̃,mv ,

H2,mv
RW 5H0,mv

RW

216pr 2F1

2
,~,11!~,21!~,12!G21/2

F,mv ,

~4.10!

where

l5
1

2
~,21!~,12!, ~4.11!

and the source terms are given by

B̃,mv5
8pr 2~r 22M !

lr 13M H A,mv1F1

2
,~,11!G21/2

B,mvJ
2

4pA2

lr 13M

Mr

v
A,mv

(1) ,
12400
l-

d

C̃1,mv5
8p

A2v
A,mv

(1) 1
1

r
B̃,mv

216pr F1

2
,~,11!~,21!~,12!G21/2

F,mv ,

C̃2,mv52
8pr 2

iv

F1

2
l ~ l 11!G21/2

r 22M
B,mv

(0) 2
ir

r 22M
B̃,mv

1
16p ir 3

r 22M F1

2
,~,11!~,21!~,12!G21/2

F,mv .

~4.12!

Here the harmonic coefficients of the source termsA,mv ,
A,mv

(1) , andB,mv vanish in the circular case and

B,mv
(0) 5F,~,11!

2 G21/2

mufS 12
2M

r D 1

r

3d~r 2r 0!mY,m* ~u0 ,f0!,

F,mv5
1

2 F,~,11!~,21!~,12!

2 G21/2

m
~uf!2

ut

3d~r 2r 0!@,~,11!22m2#Y,m* ~u0 ,f0!.

~4.13!

The new radial functionR,mv
(Z) (r ) obeys the Zerilli equa-

tion,

d2

dr* 2
R,mv

(Z) 1@v22V,
(Z)~r !#R,mv

(Z) 5S,mv
(Z) , ~4.14!

where

V,
(Z)~r !5S 12

2M

r D
3

2l2~l11!r 316l2Mr 2118lM2r 118M3

r 3~lr 13M !2

~4.15!

and

S,mv
(Z) 52 i

r 22M

r

d

drF ~r 22M !2

r ~lr 13M !

3S ir 2

r 22M
C̃1,mv1C̃2,mvD G

1 i
~r 22M !2

r ~lr 13M !2 Fl~l11!r 213lMr 16M2

r 2 C̃2,mv

1 i
lr 223lMr 23M2

~r 22M !
C̃1,mvG . ~4.16!
3-5
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The Zerilli equation can be transformed to the Reg
Wheeler equation by the Chandrasekhar transformation if
sired, as shown in Appendix A. However, here, we treat
original Zerilli equation.

B. Full metric perturbation

The homogeneous solutions of the Regge-Wheeler e
tion are discussed in detail by Mano et al.@26# and in Ap-
pendix A. By constructing the retarded Green function fro
the homogeneous solutions with appropriate boundary c
ditions, namely, the two independent solutions with the
going and up-going wave boundary conditions, we can so
the Regge-Wheeler and Zerilli equations to obtain the
metric perturbation in the RW gauge. Here, we consider
radial functions up to the first post-Newtonian~1PN! order.

The radial function for the odd part of the metric pertu
bation is obtained as

R,mv
(odd)~r !

55
16ipmV2mr

~2,11!,~,11!~,12! S r

r 0
D ,

]uY,m* ~u0 ,f0!

for r ,r 0

2
16ipmV2mr0

~2,11!~,21!,~,11! S r 0

r D ,

]uY,m* ~u0 ,f0!

for r .r 0 ,

~4.17!

where V5uf/ut. For the even part, the radial function
obtained as

R,mv
(Z) 5

8Vmputm

~2,11!~,12!~,11!v

3F S 2
r 3

~2,13!r 0
1

~,22,14!r 0r

,~2,21!~,21! Dv212
r

r 0

12
~,222,21!Mr

~,21!r 0
2

2
2~,41,326,224,24!M

,~,21!~,12!r 0
G

3S r

r 0
D ,

Y,m* ~u0 ,f0! for r ,r 0 , ~4.18!

R,mv
(Z) 5

8Vmputm

~2,11!,~,21!v

3F S r 2

2,21
2

~,213,16!r 0
2

~,11!~2,13!~,12!
Dv212

22
~,214,12!M

~,12!r 0
1

2~,413,323,227,26!M

~,11!~,21!~,12!r G
3S r 0

r D ,

Y,m* ~u0 ,f0! for r .r 0 .
12400
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The metric perturbation in the RW gauge is obtained fro
Eqs.~4.5! and ~4.10!.

C. Full force

Formally, the force derived from the full metric perturb
tion is given by

F full,RW
m ~z!52

m

2
~gmn1umun!~2hna;b

full,RW2hab;n
full,RW!uaub.

~4.19!

If we decompose the above into harmonic modes, each m
becomes finite at the location of the particle though the s
over the modes diverges. We therefore apply the ‘‘mode
composition regularization’’ method, in which the force
decomposed into harmonic modes and subtract
harmonic-decomposedS part mode by mode before the co
incidence limitx→z(t) is taken.

Since the orbit under consideration is circular, the sou
term contains the factord(v2mV), and the frequency inte
gral can be trivially performed. Hence we can calculate
harmonic coefficients of the full metric perturbation in th
time domain. This is a great advantage of the circular o
case, since theS part can be given only in the time domain
We also note that theu component of the force vanishe
because of the symmetry, and Ff(z)5@(r 0

22M )/(r 0
3V)#Ft for a circular orbit.

The even and odd parity parts of the full self-force a
expressed in terms of the metric perturbation as

F (even)
t RW 5(

,m

immVr 0

2~r 023M !~r 022M !
@~r 022M !H0,m,mV

RW ~r 0!

1MK,m,mV
RW ~r 0!#Y,m~u0 ,f0!,

F (even)
r RW5(

,m

m~r 022M !

2r 0
2~r 023M !

S 2MH0,m,mV
RW ~r 0!

12MK,m,mV
RW ~r 0!1r 0~r 022M !

d

dr
H0,m,mV

RW ~r 0!

1r 0M
d

dr
K,m,mV

RW ~r 0! DY,m~u0 ,f0!,

F (odd)
t RW5(

,m

imMm

r 0~r 023M !~r 022M !
h0,m,mV

RW ~r 0!

3]uY,m~u0 ,f0!,

F (odd)
r RW5(

,m

m~r 022M !V

r 023M S d

dr
h0,m,mV

RW ~r 0! D
3]uY,m~u0 ,f0!. ~4.20!

It is understood that the derivatives appearing in the ab
expressions are taken before the coincidence limit. It may
noted that there is no contribution from the componentsH1

RW
3-6
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andH2
RW to the even force and no contribution fromh1

RW to
the odd force for a circular orbit.

Inserting the metric perturbation under the RW gauge
the above, and performing the summation overm, we find

F full,RW
t u,50,

F full,RW
r (1) u,52

~,11!m2

r 0
2

1
1

2

m2~12,3125,214,221!M

r 0
3~2,13!~2,21!

,

F full,RW
r (2) u,5

,m2

r 0
2

2
1

2

m2~12,3111,2210,112!M

~2,21!~2,13!r 0
3

,

F full,RW
u u,50,

F full,RW
f u,50. ~4.21!

We see that the only nonvanishing component is the ra
component as expected because there is no radiation rea
effect at 1PN order. In the above, the indices (1) and (2)
denote that the coincidence limit is taken from outsider
.r 0) of the orbit and inside (r ,r 0) of the orbit, respec-
tively, and the vertical bar suffixed with,,

•••u, ,

denotes the coefficient of the, mode in the coincidence
limit. The formulas for the summation overm are shown in
Appendix F.

We note that the above result is valid for,>2. Although
the ,50 and 1 modes do not contribute to the self-for
formally, because of our inability to know the exact form
the S part, it turns out that we do need to calculate the c
tributions from the,50 and 1 modes. These modes a
treated in Appendix E.

V. S PART OF THE METRIC PERTURBATION
AND FORCE

In this section we calculate theS part of the metric per-
turbation and its self-force (S force! by using the local coor-
dinate expansion. TheSpart of the metric perturbation in th
harmonic gauge is given covariantly as

h̄mn
S,H54mF ḡma~x,zret!ḡnb~x,zret!u

a~t ret!u
b~t ret!

s ;g~x,zret!u
g~t ret!

G
12m~tadv2t ret!ḡm

a~x,zret!ḡn
b~x,zret!Rgadb~zret!

3ug~t ret!u
d~t ret!1O~y2!, ~5.1!

wherezret5z(t ret), t ret is the retarded proper time defined b
the past light cone condition of the field pointx, tadv is the
advanced proper time defined by the future light cone c
dition of the field pointx, ḡma is the parallel displacemen
bi-vector, andy is the expansion parameter of the local e
pansion, which may be taken to be the difference of
coordinates betweenx and z0 , ym5xm2z0

m . Details of the
12400
o

al
tion

-

-

-
e

local expansion are given in@9#. The difference between th
S part and the direct part appears in the terms ofO(y), i.e.,
the second term on the right-hand side of Eq.~5.1!. In the
local coordinate expansion of theS part, it is convenient to
use the quantities

eª~r 0
21r 222r 0r cosQ cosF!1/2,

Tªt2t0 , Rªr 2r 0 ,

Qªu2
p

2
, Fªf2f0 . ~5.2!

A. S part of the metric perturbation

Using the variables defined in Eqs.~5.2!, it is straightfor-
ward to calculate theSpart to 1PN order. Here we note tha
in general, we have to evaluate theS part up through the
accuracy ofO(y), because the force is given by first deriv
tives of the metric components. The result takes the form

hmn
S,H5m (

m,n,p,q,r
cm,n,p,q,r

TmRnQpFq

e r
, ~5.3!

where m, n, p, q and r are positive integers. The explic
expressions for the components are shown in Appendix
Eqs.~D1!.

B. Tensor harmonics expansion of theS part

In the preceding section, we calculated theS part of the
metric perturbation in the local coordinates expansion.
order to use them in the mode decomposition regularizat
it is necessary to expand them in terms of tensor spher
harmonics, which involves an extension of the locally e
pandedSpart to a quantity defined over the sphere. Since
only requirement is to recover the local behavior near
orbit correctly, there exists much freedom in the way of e
tending the locally knownS part to a globally defined~but
only approximate! S part on the whole sphere. To guarant
the accuracy ofhmn

S,H up throughO(y) in the local expansion,
because the leading term diverges as 1/y, a spherical exten-
sion must be accurate enough to recover the behavio
O(y2) beyond the leading order. Below, using one of su
extensions as given in Appendix B, we derive the harmo
coefficients of theS part.

Once we fix the method of spherical extension, it is po
sible in principle to calculate the harmonic coefficients of t
extendedS part exactly. However, it is neither necessary n
quite meaningful because the extension is only approxim
In fact, corresponding to the fact that all the terms in posit
powers ofy vanish in the coincidence limit, it is known tha
all the terms ofO(1/L2) or higher, whereL5,11/2, vanish
when summed over, @9# in the harmonic gauge. It should b
noted, however, this result is obtained by expanding the fo
in the scalar spherical harmonics. In our present analysis
employ the tensor spherical harmonic expansion. So,
meaning of the index, is slightly different. Nevertheless, th
same is found to be true. Namely, by expanding theSpart of
3-7
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the metric perturbation in the tensor spherical harmonics,
S force in the harmonic gauge is found to have the form

FS,H
m(6)u,56AmL1Bm1D,

m, ~5.4!

whereAm andBm are independent of,, and the6 denotes
that the limit tor 0 is taken from the greater or smaller valu
of r, and

D,
m5

dm

L221
1

em

~L221!~L224!
1

f m

~L221!~L224!~L229!

1•••. ~5.5!

Then the summation ofD,
m over , ~from ,50 to `) van-

ishes. For convenience, let us call this the standard form
we shall see later, the standard form of theS force is found to
persist also in the RW gauge.

For the moment, let us assume the standard form of thS
force both in the harmonic gauge and the RW gauge. T
we may focus our discussion on the divergent terms. W
we calculate theS force in the RW gauge, we first transform
the metric perturbation from the harmonic gauge to the R
gauge, and then take appropriate linear combinations of t
first derivatives. We then find that the harmonic coefficie
h2,m

S,H , h0,m
(e)S,H and h1,m

(e)S,H are differentiated two times, an
G,m

S,H is differentiated three times, while the rest are differe
tiated once, to obtain theS force. So, it is necessary an
sufficient to perform the Taylor expansion of the harmo
coefficients up toO(X2) for h2,m

S,H , h0,m
(e)S,H and h1,m

(e)S,H, and
up to O(X3) for G,m

S,H, and the rest up toO(X), whereX
5T or R.

To the accuracy mentioned above, the harmonic coe
cients of theS part are found in the form
12400
e

s

n
n

ir
s

-

-

h0,m
S,H ~ t,r !5

2

L
pmF4iTmr0~L222!~uf!2

L (2)~L221!
1•••G

3]uY,m* ~u0 ,f0!,

h1,m
S,H ~ t,r !5

2

L
pmF22ir 0m~2r 01R!~uf!2

L (2)~L221!
G]uY,m* ~u0 ,f0!,

h2,m
S,H ~ t,r !5

2

L
pmF2

1

6

r 0m~72r 0RL4148r 0RL51••• !

L (4)~L221!~L224!

3~uf!2G]uY,m* ~u0 ,f0!, ~5.6!

etc., where we have defined

L (2)5,~,11!5S L22
1

4D ,

L (4)5,~,11!~,21!~,12!

5S L22
1

4D S L22
9

4D . ~5.7!

The explicit expressions for the coefficients are given in A
pendix D, Eqs.~D2!. Shown there are the coefficients in th
case when we approach the orbit from inside (r ,r 0). The
results in the case of approaching from outside (r .r 0) are
obtained in the same manner. For readers’ convenience, t
are placed at the web page: http://www2.yukawa.kyo
u.ac.jp/;misao/BHPC/.

Now we consider theS force in the harmonic gauge. It i
noted that thet, u andf components of theS force vanish
after summing overm modes. Ther component of theS
force is derived as
FS,H
r (2)u,5(

m

2pm2

L F S 2L21

2r 0
2 1

M ~10L3111L2210L217!

4r 0
3~L221!

2
M ~64L5128L42320L32695L21256L1442!m2

16r 0
3L (2)~L221!~L224!

2
M ~156L22179!m4

4r 0
3L (2)~L221!~L224!~L229!

D uY,m~u0 ,f0!u2

1S 13Mm2

r 0
3L (2)~L221!~L224!

2
M ~2L21!~2L212L21!

r 0
3L (2)~L221!

D u]uY,m~u0 ,f0!u2G . ~5.8!
The formulas for summation overm are summarized in Ap-
pendix F. For example, we have

(
m

2p

L
m2uY,m~p/2,0!u25

L (2)

2
,

(
m

2p

L
u]uY,m~p/2,0!u25

L (2)

2
. ~5.9!

Using these formulas, we obtain

FS,H
t u,50,
3-8
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FS,H
r (6)u,57

1

2

m2~2r 023M !

r 0
3

L2
1

8

m2~4r 027M !

r 0
3

1
m2M ~172L4214784L21299!

128r 0
3~L221!~L224!~L229!

57
1

2

m2~2r 023M !

r 0
3

L2
1

8

m2~4r 027M !

r 0
3

1OS 1

L2D ,

FS,H
u u,50,

FS,H
f u,50. ~5.10!

This is indeed of the standard form. In particular, the fac
L (2) which is present in the denominators before summ
over m turns out to be cancelled by the same factor t
arises from summation overm. If it were present in the fina
result, we would not be able to conclude that the summa
of D,

m over, vanishes. We note that, apart from the fact th
the denominator of theD,

m term takes the standard form, th
numerical coefficients appearing in the numerator should
be taken rigorously. This is because our calculation is ac
rate only toO(y0) of the S force, while the numerical coef
ficients depend on theO(y) behavior of it ~an example is
shown in Appendix C!. It is also noted that theO(1/L) terms
are absent in theS force, implying the absence of logarithm
divergence.

It is important to note that, in the above runs from 0 to
`. Although there are some tensor harmonics that do
exist for ,50 and/or,51, we note that the correspondin
harmonic coefficients contribute to theBm andD,

m terms of
theS force individually, withBm1D,

m50. That is, we set the
contributions toAm to zero and adjust theD,

m term in such a
way thatD,

m52Bm for these special coefficients while kee
ing the standard form forD,

m.

VI. S PART IN THE REGGE-WHEELER GAUGE

Now, we transform theS part of the metric perturbation
from the harmonic gauge to the RW gauge. The gauge tr
formation functions are given in the tensor-harmonic exp
sion form as

jm
(odd)5(

,m
L,m

S,H→RW~ t,r !

3H 0,0,
21

sinu
]fY,m~u,f!,sinu]uY,m~u,f!J ,

jm
(even)5(

,m
$M0,m

S,H→RW~ t,r !Y,m~u,f!,

M1,m
S,H→RW~ t,r !Y,m~u,f!,

M2,m
S,H→RW~ t,r !]uY,m~u,f!,

M2,m
S,H→RW~ t,r !]fY,m~u,f!%. ~6.1!
12400
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There is one degree of gauge freedom for the odd part
three degrees for the even part. To satisfy the RW ga
condition ~4.4!, we obtain the equations for the gauge fun
tions that are found to be rather simple:

h2,m
S,H ~ t,r !522iL,m

S,H→RW~ t,r !,

h0,m
(e)S,H~ t,r !52M0,m

S,H→RW~ t,r !2] tM2,m
S,H→RW~ t,r !,

h1,m
(e)S,H~ t,r !52M1,m

S,H→RW~ t,r !2r 2] rS M2,m
S,H→RW~ t,r !

r 2 D ,

G,m
S,H~ t,r !52

2

r 2 M2,m
S,H→RW~ t,r !. ~6.2!

We therefore find

L,m
S,H→RW~ t,r !5

i

2
h2,m

S,H ~ t,r !, ~6.3!

M2,m
S,H→RW~ t,r !52

r 2

2
G,m

S,H~ t,r !,

M0,m
S,H→RW~ t,r !52h0,m

(e)S,H~ t,r !2] tM2,m
S,H→RW~ t,r !,

M1,m
S,H→RW~ t,r !52h1,m

(e)S,H~ t,r !2r 2] rS M2,m
S,H→RW~ t,r !

r 2 D .

~6.4!

We note that it is not necessary to calculate any integra
with respect tot or r. It is also noted that the gauge function
are determined uniquely. This is because the RW gauge
gauge in which there is no residual gauge freedom~for ,
>2).

Then theS part of the metric perturbation in the RW
gauge is expressed in terms of those in the harmonic ga
as follows. The odd parity components are found as

h0,m
S,RW~ t,r !5h0,m

S,H ~ t,r !1] tL,m
S,H→RW~ t,r !,

h1,m
S,RW~ t,r !5h1,m

S,H ~ t,r !1r 2] rS L,m
S,H→RW~ t,r !

r 2 D , ~6.5!

and the even parity components are found as
3-9
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H0,m
S,RW~ t,r !5H0,m

S,H ~ t,r !1
2r

r 22M F] tM0,m
S,H→RW~ t,r !

2
M ~r 22M !

r 3 M1,m
S,H→RW~ t,r !G ,

H1,m
S,RW~ t,r !5H1,m

S,H ~ t,r !1F] tM1,m
S,H→RW~ t,r !

1] rM0,m
S,H→RW~ t,r !

2
2M

r ~r 22M !
M0,m

S,H→RW~ t,r !G ,

H2,m
S,RW~ t,r !5H2,m

S,H ~ t,r !1
2~r 22M !

r F] rM1,m
S,H→RW~ t,r !

1
M

r ~r 22M !
M1,m

S,H→RW~ t,r !G ,

K,m
S,RW~ t,r !5K,m

S,H~ t,r !1
2~r 22M !

r 2 M1,m
S,H→RW~ t,r !,

~6.6!

where the gauge functions are given by Eqs.~6.3! and~6.4!.

A. Gauge transformation and theS part in the RW gauge

Inserting the results obtained in the previous section
Eqs.~6.3! and~6.4!, we obtain the gauge functions that tran
form theS part from the harmonic gauge to the RW gaug
They are shown in Appendix D, Eqs.~D3!. It may be noted
that the gauge functions do not contribute to the metric at
Newtonian order. In other words, both the RW gauge and
harmonic gauge reduce to the same~Newtonian! gauge in the
Newtonian limit.

The S part of the metric perturbation in the RW gauge
now found in the form,

h0,m
S,RW~ t,r !5

2

L
pmF4iTmr0~L222!~uf!2

L (2)~L221!
1•••G

3]uY,m* ~u0 ,f0!,

h1,m
S,RW~ t,r !

5
2

L
pmF2

imr0

3

~260r 0L31174r 0L21••• !~uf!2

L (4)~L221!~L224!
G

3]uY,m* ~u0 ,f0!, ~6.7!

etc.
The explicit expressions are given in Appendix D, Eq

~D4!.
12400
o
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B. S force

Next we calculate theSpart of the self-force. Of course, i
diverges in the coincidence limit. However, as we noted s
eral times, in the mode decomposition regularization
which the regularization is done for each harmonic mode,
harmonic coefficients of theS part are finite.

The calculation is straightforward. Expanding the formu
for the self-force~2.3! in terms of the tensor harmonics, w
obtain

F (even)
t RW 5(

,m

mr 0

2~r 023M !2~r 022M !
$2r 0M @] tH0,m

RW ~ t0 ,r 0!#

12M2@] tH0,m
RW ~ t0 ,r 0!#1 imr0

2VH0,m
RW ~ t0 ,r 0!

26imMr0VH0,m
RW ~ t0 ,r 0!18imM2VH0,m

RW ~ t0 ,r 0!

2 imr0MVK,m
RW~ t0 ,r 0!12imM2VK,m

RW~ t0 ,r 0!

15M2@] tK,m
RW~ t0 ,r 0!#

22r 0M @] tK,m
RW~ t0 ,r 0!#%Y,m~u0 ,f0!,

F (even)
r RW5(

,m
2

m~r 022M !

2r 0
2~r 023M !

$2r 0
2@] tH1,m

RW ~ t0 ,r 0!#

22MH0,m
RW ~ t0 ,r 0!12imr0

2VH1,m
RW ~ t0 ,r 0!

22MK,m
RW~ t0 ,r 0!2r 0

2@] rH0,m
RW ~ t0 ,r 0!#

12r 0M @] rH0,m
RW ~ t0 ,r 0!#

2r 0M @] rK,m
RW~ t0 ,r 0!#%Y,m~u0 ,f0!,

F (odd)
t RW5(

,m

2 imVr 0
2

~r 023M !2~r 022M !
$VmMh0,m

RW ~ t0 ,r 0!

2 i ~r 022M !@] th0,m
RW ~ t0 ,r 0!#%]uY,m~u0 ,f0!,

F (odd)
r RW5(

,m

mV~r 022M !

r 023M
$@] rh0,m

RW ~ t0 ,r 0!#

2@] th1,m
RW ~ t0 ,r 0!#

2 iVmh1,m
RW ~ t0 ,r 0!%]uY,m~u0 ,f0!. ~6.8!

Substituting theS part of the metric components in the RW
gauge as shown in Eqs.~6.7!, given explicitly in Eqs.~D4!,
into the above, we find that thet, u andf components of the
S force vanish after summing overm. The r component of
the S force inside the particle trajectory is derived as
3-10
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FS,RW
r (2) u,5(

m

2pm2

L F S 2L21

2r 0
2 1

M ~10L3111L2210L217!

4r 0
3~L221!

2
M ~64L5128L42320L32695L21256L1442!m2

16r 0
3L (2)~L221!~L224!

2
M ~156L22179!m4

4r 0
3L (2)~L221!~L224!~L229!

D uY,m~u0 ,f0!u2

1S 13Mm2

r 0
3L (2)~L221!~L224!

2
M ~2L21!~2L212L21!

r 0
3L (2)~L221!

D u]uY,m~u0 ,f0!u2G . ~6.9!
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Summing the above overm, we obtain

FS,RW
t u,50,

FS,RW
r (6) u,57

1

2

m2~2r 023M !

r 0
3

L2
1

8

m2~4r 027M !

r 0
3

1
m2M ~172L4214784L21299!

128r 0
3~L221!~L224!~L229!

57
1

2

m2~2r 023M !

r 0
3

L2
1

8

m2~4r 027M !

r 0
3

1OS 1

L2D ,

FS,RW
u u,50,

FS,RW
f u,50. ~6.10!

We now see that theS force in the RW gauge also has th
standard form as in the case of the harmonic gauge and t
is no O(1/L) term. Note that, again with the same reason
we explained at the end of the preceding section, the fi
formula above should be regarded as valid for all, from 0 to
`.

VII. REGULARIZED GRAVITATIONAL SELF-FORCE

In the previous two sections we have calculated the
andS parts of the self-force in the RW gauge. Now we a
ready to evaluate the regularized self-force. But there is
more issue to be discussed, namely, the treatment of th,
50 and 1 modes.

The full metric perturbation and its self-force are deriv
by the Regge-Wheeler-Zerilli formalism. This means th
contain only the harmonic modes with,>2. If we could
know the exactS part, then the knowledge of the modes,
>2 would be sufficient to derive the regularR part of the
self-force, because theR part of the metric perturbation i
known to satisfy the homogeneous Einstein equations@8#,
and because there are no non-trivial homogeneous solu
in the,50 and 1 modes. To be more precise, apart from
gauge modes that are always present, the,50 homogeneous
solution corresponds to a shift of the black hole mass and
,51 odd parity by adding a small angular momentum to
black hole, both of which should be put to zero in the a
sence of an orbiting particle. As for the,51 even mode, it is
12400
ere
s
al

ll

e

y

ns
e

e
e
-

a pure gauge that corresponds to a dipolar shift of the co
dinates. In other words, apart from possible gauge mode c
tributions, the,50 and 1 modes of the full force should b
exactly cancelled by those of theS part. In reality, however,
what we have in hand is only an approximateS part. In
particular, its individual harmonic coefficients do not ha
physical meaning. Let us denote the harmonic coefficient
the approximateS force by F,

S,Ap, while the exactS force
and the full force byF,

S andF,
full , respectively. Then theR

force FR may be expressed as

FR5 (
,>2

~F,
full2F,

S!

5 (
,>0

~F,
full2F,

S!

5 (
,>0

~F,
full2F,

S,Ap!2 (
,>0

D,

5 (
,>2

~F,
full2F,

S,Ap!1 (
,50,1

~F,
full2F,

S,Ap!,

~7.1!

where D,5F,
S2F,

S,Ap, and the last line follows from the
fact thatF,

S,Ap are assumed to be obtained from a sufficien
accurate spherical extension of the local behavior of thS
part to guarantee(,>0D,50. Thus, it is necessary to evalu
ate the,50 and 1 modes of the full force to evaluate th
self-force correctly.

First, we consider the contributions of,>2 to the self-
force. As noted before, for the 1PN calculation, the onlyr
component of the full andSpart of the self-force is non-zero
The, mode coefficients corresponding to the first term in t
last line of Eq.~7.1! are derived as

FRW
r u,5F full,RW

r u,2FS,RW
r u,

52
45m2M

8~2,21!~2,13!r 0
3

. ~7.2!

Summing over, modes, we obtain
3-11
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FRW
r ~,>2!52

3m2M

4r 0
3 . ~7.3!

Next, we consider the,50 and 1 modes. Detailed analy
ses are given in Appendix E. It is noted that the,50 and
,51 odd modes, which describe the perturbation in the to
mass and angular momentum, respectively, of the system
to the presence of the particle, are determinable in the
monic gauge, with the retarded boundary condition. On
other hand, we were unable to solve for the,51 even mode
in the harmonic gauge. Since it is locally a gauge mo
describing a shift of the center of mass coordinates,
gives rise to an ambiguity in the final result of the self-forc
Nevertheless, we were able to resolve this ambiguity at N
tonian order, and hence to obtain an unambiguous inter
tation of the resulting self-force.

The correction to the regularized self-force that aris
from the ,50 and 1 modes, corresponding to the seco
term in the last line of Eq.~7.1!, is found as

dFRW
r ~,50,1!5

2m2

r 0
2 2

41m2M

4r 0
3 . ~7.4!

Finally, adding Eqs.~7.3! and ~7.4!, we obtain the regu-
larized gravitational self-force to the 1PN order as

FRW
r 5

2m2

r 0
2 2

11m2M

r 0
3 . ~7.5!

Since there will be no effect of the gravitational radiation
the 1PN order, i.e., thet and f components are zero, th
above force describes the correction to the radius of the o
that deviates from the geodesic on the unperturbed b
ground. It is noted that the first term proportional tom2 is
just the correction to the total mass of the system at
Newtonian order, wherer 0 is interpreted as the distance fro
the center of mass of the system to the particle.

VIII. CONCLUSION

In this paper we proposed a new method to derive
regularized gravitational self-force on a point particle in c
cular orbit around the Schwarzschild black hole, and, a
demonstration, we derived the regularized self-force ana
cally to the first post-Newtonian~1PN! order. The regulariza-
tion of the gravitational self-force may be divided into th
two problems, the subtraction problem and the gauge p
lem. To regularize and subtract the divergent part, we e
ployed the ‘‘mode decomposition regularization,’’ in whic
everything is expanded in the spherical harmonics and
regularization is performed at each, mode. As for the gauge
problem, utilizing the recent discovery by Detweiler a
Whiting that the regularized force may be derived from theR
part of the metric perturbation that satisfies the source-
Einstein equations, we considered the regularized force
the Regge-Wheeler gauge.

In the present paper actual calculations were done o
for circular orbit and to the 1PN order. However, there
mains a problem for the even parity,51 mode. In this met-
12400
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ric perturbation approach, there inevitably remains ambigu
of the gauge in the resulting self-force. To circumvent th
difficulty, the only way seems to be to regularize at the le
of the Weyl scalarc4 or the Hertz potentialC, which are
free from the,50 and 1 modes. As another problem,
make our method applicable to general cases, it is there
necessary to extend to general orbits and to higher PN
ders. Some progress in this direction, based on analy
methods, is under way@27#. It will also be necessary to in
corporate numerical techniques if we are to treat comple
general orbits. Some development is done by Fujita et
@28#.

Our final goal is to derive the self-force on the Kerr bac
ground. Recently, Mino@29# has proposed a new approach
the radiation reaction problem by using the radiative Gre
function. In his method, assuming the validity of the ad
batic approximation, the radiation reaction to the conser
quantities including the Carter constant can be calcula
from the radiative Green function, which is free from an
singular, divergent behavior. This is a great computatio
advantage. However, this method cannot treat the self-fo
for a completely general orbit because of the assumption
adiabaticity. It is therefore still necessary to derive the se
force in the general case. One possibility is to consider
regularization of the Weyl scalarC4 and construct theR part
of the metric perturbation in the radiation gauge by using
Chrzanowski method. Investigations in this direction are a
in progress@30#.
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APPENDIX A: ANALYSIS OF MANO ET AL.

In this appendix we summarize the analysis of Mano et
@26# which we use in order to derive the full metric pertu
bation for,>2 modes.

1. Homogeneous solutions

We investigate the analytic expression of the Reg
Wheeler functions, and generate these functions in an
3-12
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plicit manner up toO(v2) corrections relative to the leadin
order in the slow-motion expansion, i.e., first po
Newtonian order.~More detail analysis is given in@31#.!
Herev is a characteristic velocity of the particle. The Regg
Wheeler equation is

F d

dr S 12
2M

r D d

dr
1S 12

2M

r D 21

@v22V,~r !#GR,mv
(even/odd)~r !

5S 12
2M

r D 21

S,mv
(even/odd)~r !. ~A1!

The source termS,mv
(even) is expressed in terms of the sour

terms of the Zerilli equations@21# as

S,mv
(even)5S l~l11!1

9M2~r 22M !

r 2~lr 13M ! DS,mv
(Z)

23M S 12
2M

r D d

dr
S,mv

(Z) , ~A2!

and the Zerilli functionR,mv
(Z) is derived fromR,mv

(even) @32# as

R,mv
(Z) 5

1

l2~l11!219v2M2

3F S l~l11!1
9M2~r 22M !

r 2~lr 13M ! DR,mv
(even)

13M S 12
2M

r D d

dr
R,mv

(even)G . ~A3!

So, we may focus on the Regge-Wheeler function. T
Regge-Wheeler equation is rewritten as

d2

dz2 X~z!1F 1

z2e
2

1

zG d

dz
X~z!1F11

2e

z2e
1

e2

~z2e!2

2
,~,11!

z~z2e!
1

3e

z2~z2e!GX~z!5S 12
e

zD
22

S~z!.

~A4!

Herez5vr ande52Mv, and we use the symbolX(z) for
R,mv

(even/odd)(r ), S(z) for S,mv
(even/odd)(r ). In the post-Newtonian

expansion, bothz ande are assumed to be small, while on
e is considered to be small in the post-Minkowskian exp
sion. We note thatz;O(v) and e;O(v3) in the post-
Newtonian expansion.

First, we consider a homogeneous Regge-Wheeler fu
tion in the form of a series of the Coulomb wave function
XC

n @see Eqs.~3.4! and ~3.6! in Ref. @26##.
12400
-

e

-

c-
,

XC
n~z!5S 12

e

zD
2 i e

(
n52`

`

i n

3
G~n1n212 i e!G~n1n112 i e!

G~n1n111 i e!G~n1n131 i e!
an

nFn1n~z!,

Fn1n~z!5e2 iz~2z!n1nz
G~n1n111 i e!

G~2n12n12! 1

3F1~n1n111 i e;2n12n12;2iz!, ~A5!

where 1F1 is the confluent hypergeometric function, and t
expansion coefficientsan

n are determined by the three-ter
recurrence relation@see~2.5! and below in Ref.@26##

an
nan11

n1bn
nan

n1gn
nan21

n50,

an
n52 i e

~n1n211 i e!~n1n212 i e!~n1n112 i e!

~n1n11!~2n12n13!
,

bn
n5~n1n!~n1n11!2,~,11!12e2

1
e2~41e2!

~n1n!~n1n11!
,

gn
n5 i e

~n1n121 i e!~n1n122 i e!~n1n1 i e!

~n1n!~2n12n21!
, ~A6!

andn, which is called the renormalized angular momentu
is determined by requiring the convergence of the series
pansion inXC

n. Replacingn by 2n21, one obtains the
other independent solutionXC

n. It is important to note that
the renormalized angular momentum in the po
Minkowskian expansion becomes

n5,1O~e2!5,1O~v6!. ~A7!

Hencen5, to 1PN order.
The post-Minkowskian expansion of the coefficientsan

n

is also discussed in Ref.@26#. With the normalizationa0
n

51, they are found for,>2,

an
n;O~e unu! ~n>2,12!,

a2,11
n;O~e,11!,

a2,
n;O~e,12!,

a2,21
n;O~e,12!,

an
n;O~e unu11! ~2,22>n>22, !,

an
n;O~e unu21! ~22,21>n!. ~A8!

The post-Minkowskian expansion of the coefficientsan
2n21

can be obtained by using the symmetry,
3-13
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an
n5a2n

2n21. ~A9!

@See~2.13! in Ref. @26#.#
The leading terms in the Regge-Wheeler functions in

slow-motion expansion become

XC
n;O~z,11e0!,

XC
2n21;O~z2,e0!. ~A10!
io

12400
e

Then, for instance, if we consider 1PN order, it is sufficie
to take account of thea0

n anda21
n terms inXC

n andXC
2n21

(,>2).
In Ref. @26# the homogeneous Regge-Wheeler functio

with the in-going and up-going boundary conditions are d
rived in the form of linear combinations ofXC

n andXC
2n21.

The in-going boundary condition is that waves are pur
in-going at the black hole horizon, and the up-going boun
ary condition is that waves are purely out-going at infinity
Xin
n5KnXC

n1K2n21XC
2n21,

Kn52
p22ne2n21

G~n111 i e!G~n211 i e!G~n131 i e!sinp~n1 i e! (
n50

`
G~n1n211 i e!G~n12n11!

n!G~n1n132 i e!
an

n

3F (
n52`

0
G~n1n212 i e!G~n1n112 i e!

~2n!!G~n1n111 i e!G~n1n131 i e!G~n12n12!
an

nG21

, ~A11!

Xup
n5

1

e2ipn1
sinp~n1 i e!

sinp~n2 i e!

Fsinp~n1 i e!

sinp~n2 i e!
XC

n2 ieipnXC
2n21G . ~A12!
ion

N

The leading order ofKn andK2n21 for ,>2 becomes

Kn;O~e2,22!,

K2n21;O~e,22!. ~A13!

Then we find

K2n21XC
2n21

KnXC
n

;O~e2,z22,21!5O~v4,21!. ~A14!

Therefore, we may replaceXin
n by XC

n to 3PN order. As for
Xup

n, we find

sinp~n1 i e!

sinp~n2 i e!
XC

n

2 ieipnXC
2n21

;O~z2,11!5O~v2,11!. ~A15!

Thus, we may replaceXup
n by XC

2n21 to 2PN order.
For convenience, we define the homogeneous solut

X̃C
n and X̃C

2n21 normalized as

X̃C
n~z!5

G~n131 i e!G~2n12!

G~n212 i e!G~n112 i e!
XC

n

5z,11@11O~v !#, ~A16!
ns

X̃C
2n21~z!5

G~2n121 i e!G~22n!

G~2n222 i e!G~2n2 i e!
XC

2n21

5z2,@11O~v !#. ~A17!

These are expanded toO(v2) as

X̃C
n~z!5z~2z!nS 12

1

2

z2

312,

2
1

2

~,22!~,12!e

,z
1O~v3! D , ~A18!

X̃C
2n21~z!5z~2z!2n21S 11

1

2

z2

2,21

1
1

2

~,21!~,13!e

~,11!z
1O~v3! D , ~A19!

wheren5,1O(v6).
To summarize, for the in-going homogeneous solut

normalized as

X̃in
n~z!5X̃C

n1bnX̃C
2n21, ~A20!

all the coefficientsbn can be set to zero up through 3P
order, while, for the up-going solution normalized as

X̃up
n~z!5X̃C

2n211gnX̃C
n, ~A21!

we may putgn50 up through 2PN order.
3-14



rm

e to
ate
hod

m-

GAUGE PROBLEM IN THE GRAVITATIONAL SELF- . . . PHYSICAL REVIEW D 68, 124003 ~2003!
2. Retarded Green function

Using the Regge-Wheeler functionsXin
n and Xup

n, the
retarded Green function is constructed as

Gret
n~z,z8!5

1

W„Xin
n~z8!,Xup

n~z8!…
@Xin

n~z!Xup
n~z8!

3u~z82z!1Xup
n~z!Xin

n~z8!u~z2z8!#,

~A22!

whereW(X1 ,X2) is the Wronskian,

W„X1~z8!,X2~z8!…[2S 12
e

z8
D S X1~z8!

d

dz8
X2~z8!

2X2~z8!
d

dz8
X1~z8!D 5const.

~A23!

This Green function satisfies

H ]z
21F 1

z2e
2

1

zG]z1F11
2e

z2e
1

e2

~z2e!2 2
,~,11!

z~z2e!

1
3e

z2~z2e!G J Gret
n~z,z8!52S 12

e

zD
21

d~z2z8!.

~A24!
12400
Then the Regge-Wheeler function with the source te
S,mv

(even/odd)(r ) is given by

R,mv
(even/odd)~r !52E

2M

`

dr8Gret
n~r ,r 8!

1

v S 12
2M

r 8
D 21

3S,mv
(even/odd)~r 8!. ~A25!

Here we are only interested in the Green function accurat
1PN order. A numerical method to construct an accur
Green function based on this Mano-Suzuki-Takasugi met
is discussed in Ref.@28#.

APPENDIX B: SPHERICAL EXTENSION OF THE S PART

In this appendix we consider the tensor harmonic deco
position of theSpart. First, we give the decomposition ofen

where

e5~r 21r 0
222r 0r cosV•V0!1/2, ~B1!

and V0 is taken to be on the equatorial plane, (p/2,f0).
ExtendingV over the whole sphere, we have

ep5(
,m

4p

2,11
E,

(p)~r ,r 0!Y,m~V!Y,m* ~V0!, ~B2!

where the detail derivation as well as the coefficientsE,
(p) are

given in Appendix D of@9#.
In terms of the coefficientsE,

(p) , the formulas needed to
decompose theS part are derived as
1

e
5(

,m

4p

2,11
E,

(21)Y,m~V!Y,m* ~V0!,

F

e
5(

,m

4p

2,11

imE,
(1)

r 0r
Y,m~V!Y,m* ~V0!,

F2

e
5(

,m

4p

2,11 F2
E,

(1)

r 0
2

2
1

3

m2E,
(3)

r 0
4 GY,m~V!Y,m* ~V0!,

1

e3
5(

,m

4p

2,11
E,

(23)Y,m~V!Y,m* ~V0!,

F

e3
5(

,m

4p

2,11 F2
1

2

imE,
(1)

r 0
3r

2
1

2

im~2R212r 0
2!E,

(21)

r 0
3r

2
1

9

im3E,
(3)

r 0
5r

GY,m~V!Y,m* ~V0!,

F2

e3
5(

,m

4p

2,11 F 2

45

m4E,
(5)

r 0
7r

1
1

2

~2r 0
2r 12m2r 0

322R2m2r 2r 0
3!E,

(1)

r 0
5r 2

1
1

2

~22R2r 12r 0
2r 1R2r 0!E,

(21)

r 0
3r 2

1
m2E,

(3)

r 0
5r

G
3Y,m~V!Y,m* ~V0!,

F3

e3
5(

,m

4p

2,11 F3
imE,

(1)

r 0
4

1
1

3

im3E,
(3)

r 0
6 GY,m~V!Y,m* ~V0!,
3-15



NAKANO, SAGO, AND SASAKI PHYSICAL REVIEW D 68, 124003 ~2003!
F4

e3
5(

,m

4p

2,11 F2
1

15

m4E,
(5)

r 0
8

23
E,

(1)

r 0
4

22
m2E,

(3)

r 0
6 GY,m~V!Y,m* ~V0!,

1

e5
5(

,m

4p

2,11
E,

(25)Y,m~V!Y,m* ~V0!,

F2

e5
5(

,m

4p

2,11 F1

6

~23R2r 12Rr0r 24Rr0
212r 0

2r !E,
(23)

r 0
4r

2
1

3

m2E,
(1)

r 0
6

2

3
1

6

~2r 0
2r 224Rm2r 0

324R2m2r 212m2r 0
2r 2!E,

(21)

r 0
6r 2

2
2

27

m4E,
(3)

r 0
8 GY,m~V!Y,m* ~V0!,

F4

e5
5(

,m

4p

2,11 F2
m2E,

(1)

r 0
10

1
E,

(21)

r 0
4

1
1

9

m4E,
(3)

r 0
8 GY,m~V!Y,m* ~V0!,

Q

e
5(

,m

4p

2,11 F2
E,

(1)

r 0
2 GY,m~V!]uY,m* ~V0!,

Q

e3
5(

,m

4p

2,11 F2
1

2

E,
(1)

r 0
3r

1
1

6

~2R216r 0
2!E,

(21)

r 0
3r

2
1

9

m2E,
(3)

r 0
5r

GY,m~V!]uY,m* ~V0!,

QF

e3
5(

,m

4p

2,11

imE,
(1)

r 0
2r 2

Y,m~V!]uY,m* ~V0!,

QF2

e3
5(

,m

4p

2,11 F2
E,

(1)

r 0
4

2
1

3

m2E,
(3)

r 0
6 GY,m~V!]uY,m* ~V0!,

QF

e5
5(

,m

4p

2,11 F2
1

6

im~2r 0
213r 224r 0r !E,

(1)

r 0
4r 4

1
1

9

im~23r 0
312R2r !E,

(21)

r 0
5r 2

2
1

18

im3E,
(3)

r 0
6r 2 GY,m~V!]uY,m* ~V0!,

QF3

e5
5(

,m

4p

2,11 F imE,
(1)

r 0
3r 3

1
1

9

im3E,
(3)

r 0
4r 4 GY,m~V!]uY,m* ~V0!. ~B3!
th

ar

e

n
e

m
he

e
on

the
Note that these formulas are valid only in the sense of
spherical extension given by Eq.~B2!.

APPENDIX C: O„y2
… CORRECTION

In this appendix as an example to clarify how the stand
form is recovered and why it is necessary to include the,
50,1 modes even if some of the tensor harmonics are id
tically zero for these modes, we consider theS part of the
metric componentshtu andhtf and analyze the contributio
of their O(y2) terms to the self-force in the harmonic gaug

These metric components give rise to the coefficienth0,m
(e)

of the vector harmonic proportional to (]uY,m ,]fY,m).
Note that this vanishes identically for,50. Since the con-
tribution of theO(y2) terms to the self-force is zero, the su
of h0,m

(e) over, should vanish. We show that it indeed has t
12400
e

d

n-

.

standard form for general,. However, to guarantee that th
sum over, is zero, it is necessary to include the contributi
from ,50 as well. This impliesBm1D,

m50 for ,50 as
discussed at the end of Sec. V.

The local expansion of theS part of the metric compo-
nentshtu andhtf takes the form

(2)htu
S,H5FF2n12Q

e2n11
,
F2n11RQ

e2n11 G ,

(2)htf
S,H5FF2n13

e2n11
,
F2n12R

e2n11 G , ~C1!

where we have retained only terms that may contribute to
self-force, and the superscript~2! meansO(y2). The tensor
harmonic coefficientsh0,m

(e) are given by
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h0,m
(e)S,H~ t,r !5

21

,~,11!
E @htu]uY,m* ~u,f!

1htf]fY,m* ~u,f!#dV, ~C2!

where,Þ0. For theO(y2) terms of the form~C1!, we have

(2)h0,m
(e)S,H~ t,r !5

21

,~,11!
E FF2n12

e2n11
,
F2n11R

e2n11 G
3Y,m* ~u,f!dV. ~C3!

The force is given by

FS,H
r (6)@h0

(e)S,H#5(
,m

m~r 022M !

2r 0
3~r 023M !

3@22imV] rh0,m
(e)S,H~ t0 ,r 0!#Y,m~p/2,0!,

V5
uf

ut
. ~C4!

Here since the terms of interest are already ofO(y2), we
may use the leading order formulas for the spherical ex
sion of the local coordinate expansion@9#. We have

e2n21;(
,m

2p

L

kn

~L221!~L2222!•••~L22n2!

3S r ,

r .
D ,

Y,m~u,f!Y,m* ~p/2,0!, ~C5!

F

e
;]fe, ~C6!

where n>1, r .5max$r ,r 0%, r ,5min$r ,r 0%, L5,11/2
andkn is a constant independent ofL. Therefore, Eq.~C3! is
evaluated as

21

,~,11!
E F2n12

e2n11
Y,m* ~u,f!dV

;
1

L (2)E ]f
2n12e2n13Y,m* ~u,f!dV

;
2p

L

1

L (2)

m2n12

~L221!~L2222!•••@L22~n12!2#
S r ,

r .
D ,

3Y,m* ~p/2,0!,
12400
n-

21

,~,11!
E F2n11R

e2n11
Y,m* ~u,f!dV

;
1

L (2)E R]f
2n11e2n11Y,m* ~u,f!dV

;
2p

L

1

L (2)

m2n11~r 2r 0!

~L221!~L2222!•••@L22~n11!2#

3S r ,

r .
D ,

Y,m* ~p/2,0!, ~C7!

wheren>0 and

L (2)5,~,11!5S L22
1

4D . ~C8!

Using Eq.~C4!, and retaining only the terms that will remai
after summing overm, we have

FS,H
r (6)@h0

(e)S,H#;(
,m

2p

L

1

L (2)

3
m2n12

~L221!~L2222!•••@L22~n11!2#

3uY,m~p/2,0!u2. ~C9!

The m summation gives

(
m

2p

L

m2n12

L (2)
uY,m~p/2,0!u25 (

k50

n

akL
2k. ~C10!

Thus, theO(y2) terms contribute to theD,
m term in the form

of the standard form, and the sum over, vanishes provided
we include the,50 term in the summation. Since theO(y2)
terms do not contribute to the force anyway, it then follow
that we may adjust the numerators of theD,

m term so as to
give D0

m52Bm.

APPENDIX D: CALCULATION OF THE S PART

In this appendix we show theS part of the metric pertur-
bation and its gauge transformation. TheSpart of the metric
perturbation under the harmonic gauge are obtained in
local coordinate expansion as
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The harmonic coefficients of the aboveS part are calculated as

h0,m
S,H ~ t,r !5
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The gauge transformation from the harmonic gauge to the RW gauge is given by
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3m2132R3L11

224492R3L5152594R3L3133004R3L415426R3L72152R3L8227540R3m2235448R3m4148R3L10

230600R3L119980R3250019R3L225597R3L621104r 0
3L222544r 0

3L617488r 0
3L41192r 0

3L8

11920r 0
3m429504r 0

2R21728r 0
3!~uf!2/@L (4)~L221!~L224!~L229!#GY,m* ~u0 ,f0!,

L,m
S,H→RW~ t,r !5

2

L
pmF2

1

12
i ~48r 0RL52240r 0RL3172r 0RL42288r 0Rm214108R211056r 0

221488r 0R266R2L4

124R2L611392R2m221147R2L21192R2L184r 0RL21192r 0RL2456r 0
2L22240R2L3148R2L5

148r 0
2L41288r 0

2m2248R2m2L2!r 0m~uf!2/@L (4)~L221!~L224!#G]uY,m* ~u0 ,f0!. ~D3!

And then, the coefficients of theS part under the RW gauge are calculated as

h0,m
S,RW~ t,r !5

2

L
pmF4iTmr0~L222!~uf!2

L (2)~L221!
2~8r 026r 0m2218r 0L214r 0L424R116RL213Rm227RL2220RL312RL4

14RL5!uf/@L (2)~L221!~L224!#G]uY,m* ~u0 ,f0!,

h1,m
S,RW~ t,r !5

2

L
pmF2

1

3
i ~260r 0L31174r 0L2148Lr 02792r 016r 0L4112r 0L52216r 0m213380R2881RL2239RL4

224Rm2L21984Rm2112RL6!r 0m~uf!2/@L (4)~L221!~L224!#G]uY,m* ~u0 ,f0!,

H0,m
S,RW~ t,r !5

2

L
pmF 1

16
~2648r 011792Rm2L526272Rm2L314608Rm2L240RL8148r 0L8148RL911920r 0m4

2128Rm2L7256Rm2L62608Rm4L22112r 0m2L6113104r 0m22564r 0L612394r 0L221106Rm2L2

1550Rm2L41930r 0L4117457RL21902RL612520RL522316RL326691RL416228Rm219752Rm4

1432RL2684RL7210260R24876r 0m2L211388r 0m2L4!~uf!2/@L (2)~L221!~L224!~L229!#2
2imTuf

r 0

2
1

16

~262r 0156r 0L2133R28RL236RL2140RL3232RL5!M

r 0
3L (2)~L221!

1
~2r 02R12RL!

r 0
2 GY,m* ~u0 ,f0!,
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H1,m
S,RW~ t,r !5

2

L
pmF2T~3602742L2269L61375L4256m2L522m2L62404m2L214L8164m2L4290m2

216m4L22296m42144m2L1196m2L314m2L7!~uf!2/@L (2)~L221!~L224!~L229!#

2 im~4RL6221RL4119RL214R120Rm214r 0L522r 0L4220r 0L314r 0L2116Lr 0

116r 014r 0m2!uf/@r 0L (2)~L221!~L224!#1
4TL2M

r 0
3L (2) GY,m* ~u0 ,f0!,

H2,m
S,RW~ t,r !5

2

L
pmF 1

64
~2137592r 02224Rm2L8277056Rm2L51186496Rm2L329216Rm2L14960RL102448r 0m2L8

2512Rm2L9273728Lr 01192RL111192r 0L1011024Rm4L3141984Rm4L11664Rm4L412048m4L2r 0

262976RL823200r 0L815024RL91100352r 0L3228672r 0L51112128r 0m4110880Rm2L7123696Rm2L6

274048Rm4L216560r 0m2L612048r 0L7288128r 0m2119228r 0L61163590r 0L21857898Rm2L2

2286590Rm2L4270298r 0L42285729RL21151486RL61107832RL51643372RL31153079RL4

2312012Rm21663528Rm42676656RL279764RL7141364R1118908r 0m2L2234876r 0m2L4!~uf!2/

@L (4)~L221!~L224!~L229!#2
2imTuf

r 0
1

1

4

~2r 01R28RL18RL3!M

r 0
3~L221!

1
~2r 02R12RL!

r 0
2 GY,m* ~u0 ,f0!,

K,m
S,RW~ t,r !5

2

L
pmF 1

192
~299144r 021056Rm2L8261824Rm2L51112320Rm2L3262208Rm2L1288RL1021536r 0m2L7

2576r 0m2L82768Rm2L9125344Lr 01768r 0L91576RL111576r 0L1021152Rm4L4113056m4L2r 0

25184RL8275264r 0m2L3121504r 0m2L5155296m2Lr 029216r 0L829760RL9262144r 0L3147488r 0L5

131296r 0m4112480Rm2L7115504Rm2L6126304Rm4L219504r 0m2L6211456r 0L72414072r 0m2

146932r 0L61170154r 0L21114210Rm2L2268394Rm2L42113478r 0L41426969RL2137578RL6

2202456RL51406212RL32171543RL41138024Rm21296856Rm42253584RL159012RL72335988R

1296460r 0m2L2266708r 0m2L4!~uf!2/@L (4)~L221!~L224!~L229!#2
2imTuf

r 0

1
1

4

~2r 01R28RL18RL3!M

r 0
3~L221!

1
~2r 02R12RL!

r 0
2 GY,m* ~u0 ,f0!. ~D4!
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APPENDIX E: øÄ0 AND 1 MODES

In this appendix we derive the contributions to the se
force in the RW gauge from the,50 and 1 modes. As dis
cussed at the beginning of Sec. VII, and described in
~7.1!, although there is no physical contribution from the,
50 and,51 modes to the self-force in the rigorous sen
since we can calculate theS part only locally in the vicinity
of the particle, its spherical extension inevitably contam
nates each, mode with other, modes. Therefore, in particu
12400
-

q.

,

-

lar, we have to take account of the corrections from the,
50 and,51 modes to the self-force.

For the,50 and,51 odd modes, the RW gauge cond
tion is automatically satisfied, sinceh0

(e)5h1
(e)5G50 for ,

50 andh250 for ,51 odd modes. An appropriate choic
of gauge is then to consider the perturbation under the
tarded causal boundary condition in the harmonic gauge
fact, if we recall the gauge transformation equations from
harmonic gauge to the RW gauge given by Eq.~6.2!, we see
3-23
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that all the gauge transformation generators for,50 and,
51 odd modes vanish. Thus, no gauge transformation
needed for theS part of these modes, and our task is to fi
the exact solutions in the harmonic gauge with the retar
boundary condition and perform the subtraction of theSpart
under the harmonic gauge.

For the,51 even mode, the RW gauge condition is no
trivial and there is a gauge degree of freedom in the R
gauge, reflecting the fact that it is a pure gauge mode
describes a shift of the center of mass coordinates in
source-free case. On the other hand, the gauge transfo
tion of this mode from the harmonic gauge to the RW gau
is uniquely determined. Thus, to determine the self-force
ambiguously in the RW gauge, one first has to solve
perturbation equations in the harmonic gauge exactly~under
the retarded boundary condition!, transform the result to the
RW gauge, and perform the subtraction of theS part. How-
ever, unfortunately, we were unable to solve for the,51
even mode in the harmonic gauge due to a complica
structure of the perturbation equations~i.e., in the form of
coupled hyperbolic equations!. Thus, there remains a gaug
ambiguity in the final result. Nevertheless, in the Newt
limit when the coordinates can be defined globally, we c
resolve the gauge ambiguity and give a definite meaning
the resulting self-force.

To summarize, the regularized self-force in the RW gau
is expressed as

FR,RW5 (
,>2

~F,
full,RW2F,

S,RW,Ap!1dF,50,1
RW , ~E1!

where

dF,50,1
RW 5dF,50

RW 1dF,51(odd)
RW 1dF,51(even)

RW ~E2!

with

dF,50
RW 5F,50

full,H2F,50
S,H,Ap,

dF,51(odd)
RW 5F,51(odd)

full,H 2F,51(odd)
S,H,Ap ,

dF,51(even)
RW 5F,51(even)

full,RW 2F,51(even)
S,RW,Ap , ~E3!

where there remains a gauge ambiguity indF,51(even)
RW .

1. øÄ0 mode

First, we consider the,50 mode of the full metric per-
turbation. It is noted that the,50 mode consists of only the
even parity part and all the derivatives ofY00 vanish. As
noted above, this mode satisfies the RW gauge condi
h0

(e)5h1
(e)5G50 automatically. So, the appropriate choi

of gauge is the harmonic gauge under the retarded boun
condition. To find the exact solution in this gauge, we co
sider a gauge transformation of the exact solution found
Zerilli.

This mode represents the perturbation in the total mas
the system and was analyzed by Zerilli. For the,50 mode,
there are two gauge degrees of freedom. The choice mad
Zerilli is
12400
is

d

-

at
e
a-

e
-
e

d

n
to

e

n

ry
-
y

of

by

H1
full,Z~ t,r !5K full,Z~ t,r !50, ~E4!

which we call the Zerilli~Z! gauge and denote the quantitie
in it by the superscript Z. In the case of a circular orbit, t
,50 mode metric perturbation is solved to be

H2
full,Z~ t,r !5

a

r 22M
Q~r 2r 0!,

H0
full,Z~ t,r !5aF 1

r 022M
Q~r 02r !

1
1

r 22M
Q~r 2r 0!G . ~E5!

Here we imposed the boundary condition that the black h
mass is unperturbed and the perturbation satisfies
asymptotic flatness. Note that the Zerilli gauge is singula
the sense that the metric has a discontinuity atr 5r 0. The
constanta is given by

a52~4p!1/2mutS 12
2M

r 0
D . ~E6!

Note that the,50 mode is independent of time. So we ma
write H2

full,Z(t,r )5H2
full,Z(r ).

Now we consider the gauge transformation from t
above Z gauge to the harmonic gauge. The equations for
gauge transformation are formally written as

jm;n
n5h̄mn

Z ;n,

h̄mn5hmn2
1

2
gmnha

a. ~E7!

Detailed discussions on the gauge transformation to the
monic gauge are given in@23#.

We set the gauge transformation generatorjm as

$jm
Z→ H%5$M0~r !Y00~u,f!,M1~r !Y00~u,f!,0,0%. ~E8!

In the circular case, the,50 mode of Eq.~E7! is explicitly
written down as

F d2

dr2 1
2

r

d

drGM0~r !50, ~E9!

F r 22M

r

d2

dr2 1
2

r

d

dr
2

2~r 22M !

r 3 GM1~r !5S~r !, ~E10!

where

S~r !54p
r 3

~r 22M !2
A00

(0)~r !1
M

r ~r 22M !
H0

Z~r !

1
2r 23M

r ~r 22M !
H2

Z~r !
3-24
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5
a

2~r 022M !
d~r 02r !

1
aM

r ~r 22M !~r 022M !
Q~r 02r !

1
2a~r 2M !

r ~r 22M !2 Q~r 2r 0!. ~E11!

SinceM0 is independent of the source, we set it to zero
accordance with the retarded boundary condition. Thus
focus on the equation forM1.

We employ the Green function method to solve Eq.~E10!.
Two independent homogeneous solutions are easily obta
as

M1
(homo,1)5

1

r ~r 22M !
,

M1
(homo,2)5

r 2

r 22M
. ~E12!

Using the above homogeneous solutions, we construct
other two independent solutionsM1

in and M1
out which are

regular at the event horizon and infinity, respectively. W
find

M1
in528M3M1

(homo,1)1M1
(homo,2)5

r 212Mr 14M2

r
,

M1
out5M1

(homo,1)5
1

r ~r 22M !
. ~E13!

Then the Green function is derived as

G~r ,r 8!5
1

W
@M1

in~r !M1
out~r 8!Q~r 82r !

1M1
out~r !M1

in~r 8!Q~r 2r 8!#,

W5~r 22M !2@M1
in~r !] rM1

out~r !

2M1
out~r !] rM1

in~r !#523, ~E14!

andM1 is given by

M1~r !5E
2M

`

G~r ,r 8!r 8~r 822M !S~r 8!dr8. ~E15!

Although the integral can be performed without any appro
mation, we only show the result to 1PN order,

M1~r !5F2
5a

6

r

r 0
2

a

6

~13r 016r !M

r 0
2 GQ~r 02r !

1F2
a

6

6r 22r 0
2

r 2 2
a

6

~30r 229rr 022r 0
2!M

r 3 G
3Q~r 2r 0!. ~E16!
12400
e

ed

he

-

The metric perturbation transforms under the above ga
transformation as

H0
H~r !5H0

Z~r !1
2M

r 2 M1~r !,

H1
H~r !52

d

dr
M0~r !1

2M

r ~r 22M !
M0~r !,

H2
H~r !5H2

Z~r !22S 12
2M

r D
3S d

dr
M1~r !1

M

r ~r 22M !
M1~r ! D ,

KH~r !52
2~r 22M !

r 2 M1~r !. ~E17!

Note that we haveH150 becauseM050. ~It may be noted
that H1 does not contribute to the force for a circular orb
even if it is non-zero.! Then the metric perturbation in th
harmonic gauge is found as

H0
H5Fa

1

r 0
1

a

3

~6r 25r 0!M

rr 0
2 GQ~r 02r !

1Fa
1

r
1

a

3

r 0
2M

r 4 GQ~r 2r 0!,

H2
H5F5a

3

1

r 0
1

a

3

~6r 25r 0!M

rr 0
2 GQ~r 02r !

1Fa

3

3r 212r 0
2

r 3 2
a

3

~18r 2218rr 02r 0
2!M

r 4 GQ~r 2r 0!,

KH5F5a

3

1

r 0
1a

~r 012r !M

rr 0
2 GQ~r 02r !

1Fa

3

6r 22r 0
2

r 3 13a
~2r 2r 0!M

r 3 GQ~r 2r 0!, ~E18!

and the full force is calculated as

F full,H
r ~,50!5F7m2M

r 0
3 GQ~r 02r !

1F2
m2

r 0
2 1

9m2M

2r 0
3 GQ~r 2r 0!. ~E19!

Next, we consider theSpart of the metric perturbation. Its
harmonic coefficients are given in Eqs.~5.6!. Only the har-
monic coefficientsH0 , H2 andK remain for the,50 mode.
To 1PN order, we have
3-25
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H0
S,H~r !5A4pmH F3

M

r 0
2
1

2

r 0
GQ~r 02r !

1F ~25R13r 0!M

r 0
3

1
2~r 02R!

r 0
2 GQ~r 2r 0!J ,

H2
S,H~r !5A4pmH F2

M

r 0
2

1
2

r 0
GQ~r 02r !

1F2
~R1r 0!M

r 0
3

1
2~r 02R!

r 0
2 GQ~r 2r 0!J ,

KS,H~r !5A4pmH FM

r 0
2

1
2

r 0
GQ~r 02r !

1F ~23R1r 0!M

r 0
3

1
2~r 02R!

r 0
2 GQ~r 2r 0!J .

~E20!

The S force in the harmonic gauge is calculated as

FS,H
r ~,50!5F33m2M

8r 0
3 GQ~r 02r !

1F2
m2

r 0
2 1

13m2M

8r 0
3 GQ~r 2r 0!. ~E21!

From the above results, we obtain the contribution of
,50 force as

dFRW
r ~,50!5dFH

r ~,50!5F full,H
r ~,50!2FS,H

r ~,50!

5
23m2M

8r 0
3 . ~E22!

2. øÄ1 odd parity mode

The ,51 odd mode represents the angular moment
perturbation added to the system. It also satisfies the
parity RW gauge conditionh250 automatically. Therefore
as in the,50 case, we look for the exact solution in th
harmonic gauge with the retarded boundary condition.

The full metric perturbation consists of the two comp
nents,h0

full andh1
full . These were also solved by Zerilli. The

is one gauge degree of freedom, and we may puth150. The
appropriate boundary condition is that the black hole ang
momentum is unperturbed and the perturbation is well
haved at infinity. Then we find

h0
Z~ t,r !5S b

r 2

r 0
3 Q~r 02r !1b

1

r
Q~r 2r 0! D d0,m , ~E23!

whereb is given by

b52A4p

3
mufr 0

2 . ~E24!
12400
e

dd

r
-

Note that only them50 mode is non-zero, and it is tim
independent.

Next, we consider the gauge transformation to the h
monic gauge. We set

jm5Lm
Z→H~r !S 0,0,2

1

sinu
]fY1m~u,f!,sinu]uY1m~u,f! D .

~E25!

The equation forLm
Z→H becomes

F2S 12
2M

r D 21

] t
21] r S 12

2M

r D ] r2
2

r 2GLm
Z→H~r !50.

~E26!

This is a source-free hyperbolic equation. So, with the
tarded boundary condition, we findLm

Z→H50, that is, the
Zerilli gauge is equivalent to the harmonic gauge with t
retarded boundary condition. The full force is then calcula
as

F full,H
r (odd)~,51!5F2

4m2M

r 0
3 GQ~r 02r !1F2m2M

r 0
3 GQ~r 2r 0!.

~E27!

The harmonic coefficients of theS part are given as

h01m
S,H~r !52A4p

3
mH F2

8

9
~4R12r 0!ufGQ~r 02r !

1F2
8

9
~2r 022R!ufGQ~r 2r 0!J d0,m ,

h11m
S,H~r !50, ~E28!

and theS force is obtained as

FS,H
r (odd)~,51!5F2

4m2M

r 0
3 GQ~r 02r !1F2m2M

r 0
3 GQ~r 2r 0!.

~E29!

Subtracting theS part from the full force, we find

dFRW
r (odd)~,51!5dFH

r (odd)~,51!

5F full,H
r (odd)~,51!2FS,H

r (odd)~,51!50.
~E30!

Thus, our spherical extension turns out to be accurate eno
to reproduce the correct,51 odd mode up to 1PN order.

3. øÄ1 even parity mode

The,51 even mode represents essentially a gauge m
that describes a shift of the center of momentum of the s
tem. The coefficientG is absent from the beginning, whil
there is no loss in the gauge freedom. Hence there rem
one degree of gauge freedom in the RW gauge. As m
3-26
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tioned at the beginning of this appendix, to fix the gau
completely it is necessary to solve the perturbation equat
in the harmonic gauge with the retarded boundary condit
and to perform the gauge transformation to the RW gau
However, because the perturbation equations become c
plicated, coupled hyperbolic equations in the harmo
gauge, we were unable to solve for this mode. Here,
therefore give up fixing the gauge unambiguously, but so
the perturbation equations in the RW gauge, imposin
gauge condition by hand.

To look for an exact solution in the RW gauge, followin
Zerilli, we chooseK50 in addition toh0

(e)5h1
(e)50. Let us

also call it the Zerilli gauge. The harmonic coefficients f
the full metric perturbation in the Zerilli gauge are given

H21m
full,Z~ t,r !5

1

~r 22M !2 f m~ t !Q~r 2r 0!,

H11m
full,Z~ t,r !52

r

~r 22M !2 ] t f m~ t !Q~r 2r 0!,

H01m
full,Z~ t,r !5

1

3~r 22M !2S f m~ t !1
r 3

M
] t

2f m~ t ! DQ~r 2r 0!,

~E31!

where

f m~ t !58pmut
~r 022M !2

r 0
Y1m* „u0~ t !,f0~ t !…, ~E32!

and we have imposed the boundary condition that the pe
bation is regular at horizon. It may be noted that although
,51 even mode is locally a pure gauge, it is not so in
global sense because of the regularity at the horizon. N
that them50 components vanish because the orbit is on
equatorial plane. It is also noted thatH1

full,Z and H2
full,Z are

discontinuous atr 5r 0, while H0
full,Z is continuous becaus

] t
2f m52V2f m52(M /r 0

3) f m for m561, and the force de-
pends only onH0

full,Z . The full force in this gauge is derive
as

F full,Z
r (even)~,51!5F2

3m2

r 0
2 2

3m2M

2r 0
3 GQ~r 2r 0!. ~E33!

The coefficientH01m
full,Z in the above behaves as;r at in-

finity. Without violating the RW gauge condition, it is pos
sible to remove this singular behavior. Namely, we consi
a gauge transformation,
12400
e
ns
n,
e.
m-
c
e
e
a

r-
e
e
te
e

r

H01m
full,RW~ t,r !5H01m

full,Z~ t,r !1
2r

r 22M F] tM01m
full,Z→RW~ t,r !

2
M ~r 22M !

r 3 M11m
full,Z→RW~ t,r !G ,

H11m
full,RW~ t,r !5H11m

full,Z~ t,r !1F] tM11m
full,Z→RW~ t,r !

1] rM01m
full,Z→RW~ t,r !

2
2M

r ~r 22M !
M01m

full,Z→RW~ t,r !G ,
H21m

full,RW~ t,r !5H21m
full,Z~ t,r !

1
2~r 22M !

r F] rM11m
full,Z→RW~ t,r !

1
M

r ~r 22M !
M11m

full,Z→RW~ t,r !G ,

K1m
full,RW~ t,r !5

2

r 2 @2~r 22M !M11m
full,Z→RW~ t,r !

2M21m
full,Z→RW~ t,r !#,

h0 1m
(e)full,RW~ t,r !5052M01m

full,Z→RW~ t,r !2] tM21m
full,Z→RW~ t,r !,

h1 1m
(e)full,RW~ t,r !5052M11m

full,Z→RW~ t,r !

2r 2] rS M21m
full,Z→RW~ t,r !

r 2 D . ~E34!

As a solution of the above gauge equations that makes
metric perturbation regular at infinity, we choose

M01m
full,Z→RW~ t,r !5

ir

6mVr 0
3 f m~ t !,

M11m
full,Z→RW~ t,r !5

1

6m2V2r 0
3 f m~ t !,

M21m
full,Z→RW~ t,r !5

r

6m2V2r 0
3 f m~ t !. ~E35!

By the above gauge transformation, ther component of
the force changes by
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dF full,Z→RW
r (even) ~,51!5 (

m521

1

mS 2M ~r 022M !

r 0
4 M11m

full,Z→RW~ t0 ,r 0!1
2imMV

~r 023M !r 0
M01m

full,Z→RW~ t0 ,r 0!2
~r 022M !

~r 023M !

3] t
2M11m

full,Z→RW~ t0 ,r 0!1
2M

r 0~r 023M !
] tM01m

full,Z→RW~ t0 ,r 0!2
imV~r 022M !

~r 023M !
] rM01m

full,Z→RW~ t0 ,r 0!

2
M ~r 022M !2

~r 023M !r 0
3 ] rM11m

full,Z→RW~ t0 ,r 0!2
iVm~r 022M !

~r 023M !
] tM11m

full,Z→RW~ t0 ,r 0! DY1m~u0 ,f0!.

~E36!
is

the

ther
e-

the
in
er
So, to 1PN order, we find

dF full,Z→RW
r (even) ~,51!

5 (
m521

1

mF ~r 022M !2

2r 0
4~r 023M !

f m~ t !GY1m~u0 ,f0!

5
3m2

r 0
2 2

21m2M

2r 0
3 . ~E37!

Thus, the full force in this RW gauge is given by
12400
F full,RW
r (even)~,51!5F3m2

r 0
2 2

21m2M

2r 0
3 GQ~r 02r !

1F2
12m2M

r 0
3 GQ~r 2r 0!.

~E38!

It may be noted that, at Newtonian order, ther coordinate
of the Zerilli gauge, in which the metric inside the orbit
unperturbed, corresponds to placing the black hole atr 50,
while the gauge transformation that regularizes
asymptotic behavior at infinity makesr the radial coordinate
measured in the center of mass coordinate system. In o
words,r 0 in the Zerilli gauge gives the relative distance b
tween the black hole and the particle, whiler 0 after the trans-
formation gives the distance from the center of mass to
particle. This explains the Newtonian part of the change
the force, 3m2/r 0

2. In this sense, the gauge freedom is und
control at Newtonian order.

Now we turn to theS part. The harmonic coefficients in
the harmonic gauge are given by
H01m
S,H~ t,r !5

4

3
pmH F2r 012R

r 0
2

1
3MR

r 0
3

2
2iTmuf

r 0
1

2

9 S 2r 0m219R1Rm21
27

2
r 0D ~uf!2GQ~r 02r !

1F2r 024R

r 0
2

2
3MR

r 0
3

2
2iTmuf

r 0
1

2

9 S 2
63

2
R12r 0m21Rm21

27

2
r 0D ~uf!2GQ~r 2r 0!J Y1m* ~u0 ,f0!,

H11m
S,H~ t,r !5

4

3
pmH F4

TM

r 0
3

1
16

9
imuf2

16

9 S 3

2
2mD S 3

2
1mD ~uf!2TGQ~r 02r !

1F4
TM

r 0
3

1
16

9
imuf2

16

9 S 3

2
2mD S 3

2
1mD ~uf!2TGQ~r 2r 0!J Y1m* ~u0 ,f0!,

H21m
S,H~ t,r !5

4

3
pmH F2r 012R

r 0
2

1
3MR

r 0
3

2
2iTmuf

r 0
2

2

9 S 9R22r 0m22Rm21
9

2
r 0D ~uf!2GQ~r 02r !

1F2r 024R

r 0
2

2
3MR

r 0
3

2
2iTmuf

r 0
2

2

9 S 9

2
r 022r 0m22

9

2
R2Rm2D ~uf!2GQ~r 2r 0!J Y1m* ~u0 ,f0!,
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h01m
(e)S,H~ t,r !5

4

3
pmH F 8

9
imS 9

4
R214r 0R12r 0

2Duf

r 0
1

8

9
m2T~4R12r 0!~uf!2GQ~r 02r !

1F 8

9
imS 22r 0R1

9

4
R212r 0

2Duf

r 0
1

8

9
m2T~2r 022R!~uf!2GQ~r 2r 0!J Y1m* ~u0 ,f0!,

h11m
(e)S,H~ t,r !5

4

3
pmH F2

32

81
m2S 2

9

4
R212r 0

21r 0RD ~uf!2GQ~r 02r !

1F2
32

81
m2S 2

9

4
R212r 0

21r 0RD ~uf!2GQ~r 2r 0!J Y1m* ~u0 ,f0!,

K1m
S,H~ t,r !5

4

3
pmH F2r 012R

r 0
2

1
3MR

r 0
3

2
2iTmuf

r 0
1

2

9 S 2r 0m21
9

2
r 01Rm2D ~uf!2GQ~r 02r !

1F2r 024R

r 0
2

2
3MR

r 0
3

2
2iTmuf

r 0
1

2

9 S 2
27

2
R12r 0m21Rm21

9

2
r 0D ~uf!2GQ~r 2r 0!J Y1m* ~u0 ,f0!.

~E39!

We transform the above to the RW gauge, as discussed in Sec. V. SinceG is absent from the beginning, Eqs.~6.4!, which give
the gauge transformation from the harmonic gauge to the RW gauge, are simplified as

M21m
S,H→RW~ t,r !50, M01m

S,H→RW~ t,r !52h01m
(e)S,H~ t,r !, M11m

S,H→RW~ t,r !52h11m
(e)S,H~ t,r !. ~E40!

The resulting harmonic coefficients in the RW gauge are expressed as those given in Eqs.~6.6!, except for the gauge function
M0 andM1 that are now given by the above equations. From these, we find

H01m
S,RW~ t,r !5

4

3
pmH F2r 012R

r 0
2

1
3MR

r 0
3

2
2iTmuf

r 0
1

2

9 S 214r 0m219R231Rm21
27

2
r 0D ~uf!2GQ~r 02r !

1F2r 024R

r 0
2

2
3MR

r 0
3

2
2iTmuf

r 0
1

2

9 S 2
63

2
R214r 0m2117Rm21

27

2
r 0D ~uf!2GQ~r 2r 0!J Y1m* ~u0 ,f0!,

H11m
S,RW~ t,r !5

4

3
pmH F4

TM

r 0
3

2
8

9 S 2r 01
9

2
RD imuf2

8

9 S 9

2
12m2D ~uf!2TGQ~r 02r !

1F4
TM

r 0
3

1
8

9 S 4r 02
9

2
RD imuf2

8

9 S 9

2
24m2D ~uf!2TGQ~r 2r 0!J Y1m* ~u0 ,f0!,

H21m
S,RW~ t,r !5

4

3
pmH F2r 012R

r 0
2

1
3MR

r 0
3

2
2iTmuf

r 0
2

2

9 S 9R22r 0m2115Rm21
9

2
r 0D ~uf!2GQ~r 02r !

1F2r 024R

r 0
2

2
3MR

r 0
3

2
2iTmuf

r 0
2

2

9 S 9

2
r 022r 0m22

9

2
R115Rm2D ~uf!2GQ~r 2r 0!J Y1m* ~u0 ,f0!,

K1m
S,RW~ t,r !5

4

3
pmH F2r 012R

r 0
2

1
3MR

r 0
3

2
2iTmuf

r 0
1

2

9 S 2r 0m21
9

2
r 01Rm2D ~uf!2GQ~r 02r !

1F2r 024R

r 0
2

2
3MR

r 0
3

2
2iTmuf

r 0
1

2

9 S 2
27

2
R12r 0m21Rm21

9

2
r 0D ~uf!2GQ~r 2r 0!J Y1m* ~u0 ,f0!. ~E41!
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We note that onlyH1
S,RW is discontinuous atr 5r 0. However,

as mentioned before, the force depends only onH0
S,RW and

KS,RW which are continuous. We obtain theS force as

FS,RW
r (even)~,51!5Fm2

r 0
2 1

21m2M

8r 0
3 GQ~r 02r !

1F2
2m2

r 0
2 1

9m2M

8r 0
3 GQ~r 2r 0!. ~E42!

Subtracting the above from the full force~E38!, we find

dFRW
r (even)~,51!5F full,RW

r (even)~,51!2FS,RW
r (even)~,51!

5
2m2

r 0
2 2

105m2M

8r 0
3 . ~E43!

We note that the Newtonian term, 2m2/r 0
2, is precisely the

correction to the force atO(m2) whenr 0 is the distance from
the center of mass to the location of the particle.

If we recall the fact that bothH1
full,Z andH2

full,Z are discon-
tinuous atr 5r 0 and the gauge transformation from the Ze
illi gauge to a RW gauge given by Eq.~E35! does not change
the discontinuity, while onlyH1

S,RW is discontinuous for theS
part, we see that the RW gauge we adopted to obtain the
force is different from the RW gauge for theS part obtained
by the transformation from the harmonic gauge. Fortunat
however, because the force depends only onH0 ~andK) for
circular orbits, and its discontinuity structure atr 5r 0 hap-
pens to be the same in both gauges, the resulting force~E43!
turns out to contain no discontinuity. Furthermore, as d
cussed above, the correct Newtonian force is recovere
O(m2). It is not clear if this desirable property holds becau
the orbit is circular or because only the 1PN order correct
is considered. If this happens to be no longer the case
general orbits, it will be necessary to find a gauge trans
mation that remedies the discrepancy. In any case, excep
the correction at Newtonian order, the gauge ambiguity
mains in the final result, and its resolution is left for futu
work.

APPENDIX F: m-SUMMATION OF TENSOR HARMONICS

In this appendix we summarize the formulas for summ
over m modes of the tensor harmonics for arbitrary,. Spe-
cifically, them sum we need to evaluate takes the form

(
m52,

,mNuY,m~p/2,0!u2, ~F1!
12400
ull

y,

-
at

e
n
or
r-
for
-

g

whereN is a non-negative integer. To perform the summ
tion, we introduce the generating function

G,~z!5 (
m52,

,

emzuY,m~p/2,0!u2. ~F2!

Then the sum~F1! may be evaluated as limz→0]z
NG,(z). The

above function is calculated as

G,~z!5
2,11

4p
e,z

2F1S 1

2
,2,;1;12e22zD , ~F3!

where2F1 is the hypergeometric function. This can be eas
expanded to an arbitrary order ofz. For example, toO(z6),
we have

G,~z!5
2,11

4p H 11S ,~,11!

2 D 1

2
z2

1S ,~,11!~3,213,22!

8 D 1

4!
z4

1S ,~,11!~5,4110,325,2210,18!

16 D 1

6!
z6

1O~z8!J . ~F4!

In the cases of the vector and tensor harmonics, it is n
essary to evaluate them sum of the form

(
m52,

,

mNu]uY,m~p/2,0!u2. ~F5!

We introduce the generating function

D,~z!5 (
m52,

,

emzu]uY,m~p/2,0!u2. ~F6!

This is expressed in terms of a hypergeometric function

D,~z!5
2,11

4p2
e(,21)z

G~,11/2!G~3/2!

G~, !

3 2F1S 3

2
,2,11;2,1

1

2
;e22zD . ~F7!

The sum~F5! is evaluated by taking the derivatives of th
above generating function. Expanding in powers ofz, them
sum ~F5! is calculated as
D,~z!5
2,11

4p H S ,~,11!

2 D1S ,~,11!~,21!~,12!

8 D1

2
z21S ,~,11!~,21!~,12!~,21,24!

16 D 1

4!
z4

1S ,~,11!~,21!~,12!~5,4110,3245,2250,1136!

128 D 1

6!
z61O~z8!J . ~F8!
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