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Gauge problem in the gravitational self-force:
First post-Newtonian force in the Regge-Wheeler gauge
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We discuss the gravitational self-force on a particle in a black hole space-time. For a point particle, the full
(bare self-force diverges. It is known that the metric perturbation induced by a particle can be divided into two
parts, the direct pafor theS part and the tail partor theR pard, in the harmonic gauge, and the regularized
self-force is derived from thR part which is regular and satisfies the source-free perturbed Einstein equations.
In this paper, we consider a gauge transformation from the harmonic gauge to the Regge-Wheeler gauge in
which the full metric perturbation can be calculated, and present a method to derive the regularized self-force
for a particle in circular orbit around a Schwarzschild black hole in the Regge-Wheeler gauge. As a first
application of this method, we then calculate the self-force to first post-Newtonian order. We find the correction
to the total mass of the system due to the presence of the particle is correctly reproduced in the force at the
Newtonian order.
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I. INTRODUCTION In the next order, the orbit deviates from the geodesic on
the black hole background because the space-time is per-
Thanks to recent advances in technology, an era of graviurbed by the particle. We can interpret this deviation as the
tational wave astronomy has arrived. There are already seeffect of the self-force on the particle itself. Since it is essen-
eral large-scale laser interferometric gravitational wave detial to take account of this deviation to predict the orbital
tectors that are in operation in the world. Among them areevolution accurately, we have to derive the equation of mo-
the Laser Interferometric Gravitational Wave Observatorytion that includes the self-force on the particle. The self-force
(LIGO) [1], GEO-600[2] and TAMA300[3]. VIRGO [4] is formally given by the tail partor theR part by Detweiler
expected to start its operation soon. The primary targets fosind Whiting[8]) of the metric perturbation which is regular
these ground-based detectors are inspiraling compact binat the location of the particle.
ries, and they are expected to be detected in the near future. The gravitational self-force is, however, not easily obtain-
On the other hand, there is a future space-based interferable. There are two main reasons. First, the (flodire metric
metric detector project the Laser Interferometer Space Anperturbation due to a point particle diverges at the location of
tenna(LISA) [5] that can detect gravitational waves from the particle, hence so does the self-force. As mentioned
solar-mass compact objects orbiting supermassive blackbove, one has to identify tHe part of the metric perturba-
holes. There is also a future plan called DECIGE). To  tion to obtain a meaningful self-force. However, tRepart
extract out physical information of such binary systems fromcannot be determined locally but depends on the whole his-
detected gravitational wave signals, it is essential to knowory of the particle. Therefore, one usually identifies the di-
the theoretical gravitational waveforms accurately. The blackergent part which can be evaluated localballed theS
hole perturbation approach is most suited for this purpose. Iparf) to a necessary order and subtract it from the full metric
this approach, one considers gravitational waves emitted by jgerturbation. This identification of th& part is sometimes
point particle that represents a compact object orbiting &alled the subtraction problem. Second, the regularized self-
black hole, assuming the mass of the particle (s much force is formally defined only in the harmonic gauge because
less than that of the black hol&(); w<<M. the form of theS part is known only in the harmonic gauge,
In the lowest order in the mass ratigM)°, the orbit of ~ whereas the metric perturbation of a black hole geometry can
the particle can be represented as a geodesic on the badbe calculated only in the ingoing or outgoing radiation gauge
ground geometry of a black hole. Already in this lowest or-in the Kerr background, or in the Regge-Wheeler gauge in
der, by combining with the assumption of adiabatic orbitalthe Schwarzschild background. Hence, one has to find a
evolution, this approach has been proved to be very powerfujauge transformation to express the full metric perturbation
for evaluating general relativistic corrections to the gravita-and the divergent part in the same gauge. This is called the
tional waveforms, even for neutron-star—neutron-¢M®-  gauge problem.
NS) binaries[7]. In this paper, as a first step toward a complete derivation
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of the gravitational self-force, we consider a particle orbitingwherez*(7) is an orbit of the particle parametrized by the
a Schwarzschild black hole, and propose a method to calcwackground proper timg.e., g,,(dz*/d7)(dz"/d7)=—1].
late the regularized self-force by solving the subtraction angtrom the geodesic equation ‘NJ'llw we obtain
gauge problems simultaneously. Namely, we develop a
method to regularize the self-force in the Regge-Wheeler
gauge. The regularization is done by the “mode decomposi- Fh]= —ﬂpg(
tion regularization[9], which is effectively the same in the
present case as the “mode-sum regularization” developed in 1 _
[10-12. +Zgy5hfé;ﬂ)u7u5, (2.3
Recently, Barack and OfiL3] proposed what they call the
intermediate gauge approach to the gauge problem. Applying .
this method, the gravitational self-force for an orbit plungingwhere P, *=68,f+u,u?, h,z=h,z—39,sh,* and u®
straight into a Schwarzschild black hole was calculated by=dz¥/dr.
Barack and Loust$14]. It is noted that, although their ap- In the case that the perturbation is produced by a point
proach is philosophically quite different from our presentparticle, however, we face the problem tigt, diverges at
approach, practically both approaches turn out to give thehe location of the particle, and so does the force. Therefore,
same result as far as the Regge-Wheeler gauge calculatiopg cannot naively apply the above calculation to obtain the
are concerned. self-force of the particle. Mino, Sasaki and Tan4k&] and
As for the case of the Kerr background, the only knownQuinn and Wald 19] gave a formal answer to this problem
gauge in which the metric perturbation can be evaluated iby considering the metric perturbation in the harmonic
the radiation gauge formulated by Chrzanowisl]. How-  gauge. According to them, the metric perturbation in the vi-
ever, the Chrzanowski construction of the metric perturbacinity of the orbit can be divided into two parts: the direct
tion becomes ill-defined in the neighborhood of the particle part and the tail part. The direct part has support only on the
i.e., the Einstein equations are not satisfied th&B. Some  past null cone of the field point* and diverges in the limit
progress was made by Ofi6] to obtain the correct, full x“—z#(7). The tail part has support inside the past null
metric perturbation in the Kerr background. The regulariza-cone and gives the physical self-force which is regular at the
tion parameters in the mode-sum regularization for the Kerfocation of the particle. But it is almost impossible to calcu-
case are calculated by Barack and {Ar7]. late the tail part of the metric perturbation directly, because it
The paper is organized as follows. In Sec. Il we brieflydepends on the global structure of the space-time as well as
review the situation of the self-force problem and explain ouron the history of the particle motion. In contrast, the direct
strategy. In Sec. Il we give the regularization prescriptionpart can be evaluated locally in terms of geometrical quanti-
under the Regge-Wheeler gauge condition. In Sec. IV waies. Hence, instead of directly calculating the tail part, we
calculate the full metric perturbation and the full force in the consider the subtraction of the direct part from the full metric
Regge-Wheeler gauge with the Regge-Wheeler-Zerilli forperturbation, where the latter can be calculated in principle
malism. In Sec. V we evaluate the singular, divergent part irby the Regge-Wheeler-Zerilli or Teukolsky formalism for
the harmonic gauge by local analysis at the particle locatiomlack hole perturbationg20—24.
and expand it in the Fourier-harmonic form. In Sec. VI we  From the fact thaF“ is a linear differential operator on
calculate theS part under the Regge-Wheeler gauge condi+ ,, (with a suitable extension af* off the particle trajec-

tion by using the gauge transformation. By subtracting $is tory), we can calculate the self-force by subtracting the direct
part from the full force evaluated in Sec. IV, we obtain the part from the full force under the harmonic gauge as
regularized gravitational self-force in Sec. VII. Finally, we
summarize our calculation and discuss the future work in | tail,H — full,H dir,H

: . ; lim F [h¥""(x)]= lim {F [h™"""(x)]—F [h"""(x)]},
Sec. VIII. Some details of the calculations as well as discuss_ ;) ol (x)] X_>Z(T){ el ()]~ Fal OOl
sions on the¢=0 and 1 modes are given in Appendixes (2.9
A-F.

— 1 — 1—
Ngys~ 598N 6™ SNyas

where the superscript H stands for the harmonic gauge.
Il. GAUGE PROBLEM When we perform this subtraction, the full metric perturba-
tion and the direct part must be evaluated in the harmonic
gauge because this division is meaningful only in this gauge.
2.1) However, it is difficult to obtain the full metric perturba-
' tion directly in the harmonic gauge. In order to overcome

~ this difficulty, one possibility is to perform the gauge trans-
whereg,,, andg,,, is the background and the perturbed met.'formation to the harmonic gauge from the gauge in which

ric, respectively. Here we define the force due to the metr|the full metric perturbation is obtained. In our previous paper

perturbation as the part that gives rise to a deviation from thf23] we investigated this problem for the Schwarzschild
background geodesic: case, namely, we formulated a method to perform the gauge

4272 dz* dz2’ 1 transformation from the Regge-Wheel@&W) gauge to the
z o 92 02 = ZFh], (2.20  harmonic gauge. We expressed the gauge transformation
2 equations in the Fourier-harmonic expanded form and de-

We consider the linearized metric perturbation

h,tLV: g,u,v_ g,LLV’

F—I— rrdr o dr

124003-2



GAUGE PROBLEM IN THE GRAVITATIONAL SELF ... PHYSICAL REVIEW D 68, 124003 (2003

rived a set of decoupled equations for the coefficients of each  FH(7)= |im Fa[hff’H](x)

14

mode. Applications of this method are now under study. x—2(7)
Recently, Detweiler and Whiting found a slight but impor-
tant modification of the above division of the metric pertur- = lim F[hMH—h3M(x)

bation[8]. The new direct part, called th® part, hS;", i

constructed to be an inhomogeneous solution of the linear-

S x—2(7)

ized Einstein equationén the harmonic gaugeas = lim {F [h}}"100—F [hSH(0}, (3.9
x—2z(7)
TS H o a GRS H_
hUISHiay oR o FHWSH= _167T . (2.5

whereh>* andh’;! denote theSandR parts, respectively, of
The new tail part, called thR part, h/RJH is then a homoge-  the metric perturbation in the harmonic gauge. Bpart can

neous solution. Since tH&andR parts are both the solutions P€ calculated by the local coordinate expang@h

of the Einstein equations, we can define $iendR parts in Now, we consider the gauge transformation from the har-
another gauge, which are also the solutions of the Einstei’oNic gauge to the RW gauge defined by

equations, by performing the gauge transformation of each XH_, RW_ (H | cH—RW (3.9
part. Therefore, we can consider the subtraction procedure w o Su ’ :
under some other convenient gauge by transformingShe HH L RRW_pH oy gH—RW

part from the harmonic gauge to the desired gauge. Thus, v Ny = My (név) g

another, perhaps more promising, possibility is to formulate 3.9

a method to derive th& part in the Regge-Wheeler or radia-
tion gauge, where we have formalisms to evaluate the ful
metric perturbation, and to obtain the regularized self-force
by subtracting thé& part in this gauge. In this paper we focus RW( )= Jim F,[hRRY]
on the Schwarzschild case and consider the subtraction inthe ~ ¢ “

here &~ is the generator of the gauge transformation.
hen the self-force in the RW gauge is given by

Regge-Wheeler gauge. o

To subtract theS part, we adopt the mode decomposition = lim F[hRH-2vEH=RY R (x)
regularization[9]. In this method, the subtraction procedure x—2(7)
(2.4) is done at each harmonic mode. The full force is ob- .
tained in the form of the Fourier-harmonic expansion. The = lim F[h"'"H—hSH
Fourier(frequency integral can be easily done in the case of x=2(1)
circul_ar qrbits. On the _other hand, tBeart is known only in — 2V gH-RW iUl _ hSH]](x)
the vicinity of the particle. Hence, one has to extend it over
fche sphere to obtain it; hgrmonic coefficie_nts. This procedure = lim Fa[hfuII,H_ZV gHHRW[hfuII,H]_ hSH
introduces some ambiguity in the harmonic expansion of the Xx—2(7)
S part. In particular, each harmonic mode obtained by this
extension has no physical significance by itself. The physical +2V RS M(x)
significance is recovered only after we sum over all the
modes. Because of this ambiguity, we have to treatfthe = lim {F[h""RY](x)
=0 and 1 modes with special care, as will be shown later. x=2(7)

—Fo[h>M=2V R RS0}, (3.6

Ill. SELF-FORCE IN THE REGGE-WHEELER GAUGE

where we have omitted the space-time indiceshpf and
Vugv\;vfor notational simplicity. The full metric perturbation
h;'y' can be calculated by using the Regge-Wheeler-Zerilli
g,.,dxdx’ = — F(r)dt2+ F(r) ~idr2+r2(de? formalism, while theS parth$* can be obtained with suffi-
cient accuracy by the local analysis near the particle location.
Thus the remaining issue is if we can unambiguously deter-
mine the gauge transformation

The Schwarzschild metric is given in the standard
Schwarzschild coordinates as

+sirfod¢?), f(r)=1-— @ (3.2

We denote the location of the particle at its proper time g RN= gHm RS, 3.7

=19 as

° Note that the self-forcé3.6) is almost identical to the ex-

{z5}={z%(70)}={t0.r 0. 60, b0} (3.2 pression obtained in the intermediate gauge apprpkghif
we replace theS and R parts by the direct and tail parts,

Formally, the gravitational self-force acting on the particlerespectively. The only difference is that tBeandR parts are
is given by the tail part in the harmonic gauge, as expressedow solutions of the inhomogeneous and homogeneous Ein-
in the left-hand side of Eq2.4). Using the notions of th&  stein equations, respectively. Hence tBeart in the RW
andR parts introduced by Detweiler and Whitifig], it may  gauge is(at least formally well-defined provided that the
be rewritten as gauge transformation of th® part, Eq.(3.7), is unique. As
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will be shown later in Eqs(6.4), this turns out to be indeed hW= hge)RW: h{®RW=GRW=, (4.4
the case. Therefore one may identify the self-fd:€) to be
actually the one evaluated in the RW galigé], notin some  The Regge-Wheeler and Zerilli equations are obtained by

intermediate gauge. plugging the metric perturbatiof#.1) in the linearized Ein-
stein equations and Fourier decomposing théRecently,
IV. FULL METRIC PERTURBATION AND ITS FORCE the Regge-Wheeler-Zerilli formalism is improved by Jhingan

and Tanakd24].)
For odd parity waves that are defined by the parity
(—1)“*! under the transformat|on0(¢)—>(7r 0,p+ ),

In this section we consider the full metric perturbation
and its self-force in the case of a circular orbit. First, the
metric perturbation is calculated by the Regge-Wheeler-
Zerilli formalism in which a Fourier-harmonic expansion is we introduce a new radial functlome(r) in terms of
used because of the symmetry of the background space- tm‘é’hwh the two radial functions of the metric perturbation are
Next, we derive the self-force by acting force operators andaxpressed as
represent it in terms of mode coefficients after summing 2

over  andm for the Fourier-harmonic series. R(odd)

h e = (r—2m) Remo

A. Regge-Wheeler-Zerilli formalism

. . i
On the Schwarzschild background, the metric perturba- hXV = — *(rR%‘,’Y‘]’f})
tion h,, can be expanded in terms of tensor harmonics as w dr
. 8mrr(r—2M
h=2, {f(r)Hogma,r)a%?%—lﬁHlemu,r)a%%% = al D, (45

w %e(m 1)(€—1)(£+2)
( )Hzm(t Fagm— —\/2€(€+1 @ (t,r)b®

The new radial functionR©®(r) satisfies the Regge-
1 Wheeler equation,
+— 2¢(€+1)h €m(t rbem
2

RO [ )2 —V,(r)]R{D

1 *2 {’mw
+ \/§€(€+l)(€—1)(€+2)G€m(t,r)f€m dr
1 8i r—2M
+ = 2~ 2
1
\/—Kfm(t ry— \/E —FGn(t, r))gfm {56(54— 1)(€—1)(£+2)
V2€(€+1) iv2€(€+1) d oM
—fhoem(t,r)cﬁ)ﬁfhlem(t,r)cem X —rz—[(l——)ng}
dr r @
V2€(€+1)(£—1)(£+2)
+ o2 haem(t.F) dem | (4. +(f_2M)[(€_1)(f+2)]l/2Qfme, 4.6
where ) , &m - .. arethe tensor harmonics introduced bywhere r* =r+2M log(r/2M — 1), and the potentiaV, is

Zerilli [21] The energy-momentum tensor of a point particlegiven by

takes the form

((€+1) 6M
2 (3

(4.7)

+oo dz# dz¥ V (r)=(1——>
MV — (4) — _— ¢
T Mf_wa [x—2(n]4- 4-d7 r r

The source term,,, vanishes in the case of a circular orbit

iuuuvw SA[Q—Qy(1)], (4.2) and

1 —1/2
where the orbit has been expressed as Dime(r)= [ L+ (£—-1)(£+2)
X#:Z#(T):{tO(T)!rO(T)!00(7-)14)0(7)}! (43) (u¢)2
X S(r—ro)mad,Y7. (0o, d0), 4.8
with 7 being regarded as a function of time determined by o ( oMY im( bo, o) 48
t=T(7). The RW gauge is defined by the conditions on the
metric perturbation as where the orbit is given by
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ut=1/ fo
' ro—3M’

T
Za(T)Z(UtT,I'O,E,Ud)T

4 l\/ M Qut 4.9
U—E YO—3M_ u-, ()

where() = \/M/rog is the orbital frequency. The orbit is as-
sumed to be on the equatorial plane without loss of general- C,,,,= —

ity.

For even parity waves with the parity-(1)¢, we intro-
duce a new radial functioR{? (r) in terms of which the
four radial functions of the metric perturbation are expressed

as

2 2
aw  NAFDIPE3Mr+6M2

fmo rZ()\r+3M) )
r—-2M d r(r—2M).

—p@ > "
rdr ‘Mme  \r+3Mm Ciemo
i(r—2M)%._

T3 Came

Ar2—3\Mr —3M?
(r=2M)(Nr+3M)

d
H =~ Rifs—ior $-RD

wr(r—ZM)é
r(Ar+3M) ~2¢me:

ir? &
T Xram ime

2.4
HRW :)\r(r—ZM)— r*+M(r—3M)
0fme (r—=2M)(Ar+3M) tme

_ 2.3
M\ +1)— or HRY LR
for(Nr+3M) =~ Léme " 2imo:

H2€mw_ H0€mw

1 -1/2
— 16717 (€+1)(€ 1)(€+2) Fme s
(4.10
where
1
A= 5((—1)(€+2), (4.1
and the source terms are given by
- 8mr?(r—2M) 1 —12
Bimo= 7 13am | Ame |36+ Bemo
4my2 Mr

(1)
CN+3M @ | tme?
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- 8w (1) ~
Umew = \/EwA€mo)+FB€mw
1 —-1/2
—1677r[§€(€+1)(€—1)(€+2) Femo s
1 —1/2
8wr2[§|(|+1) o &
o r—2M {’mw_r_ZM {Mmow
16mir 3 1 o
—om 2 (UFDE-D(E+2) ] Fem, .
(4.12

Here the harmonic coefficients of the source terws,, ,
A®) " andB,n, vanish in the circular case and

0(0+1)]712 2M\ 1

2

(0) —
{mo r r

X 8(r—ro)mY;m(6o,%0),

1[€(6+1)(6—1)(€+2)
Ffmwzi 2

-1/2 (uqﬁ)Z
m

t

u

X S(r—ro)[€(€+1)—2m?]Y} (6o, bo)-

(4.13
The new radial functiorR%zw(r) obeys the Zerilli equa-
tion,
2
Sz Rime e VIOOIRG, =SSR, (414
where
2M
V%Z)(r):<1—7
2>\2(>\+1) 3+ 6N°Mr2+18\M?r +18M3
r3(Ar+3M)?
(4.195
and
_ _ 2
) __r 2M d (r—2M)
tmo ™ r rir(nr+3M)
ir> _ -
X| T Caemo + Catmo
L (r—2Mm)>2 )\()\+1)r2+3)\Mr+6M2;
(N r+3M)2 r? 2tme
,)\rz—SAMr—SMzF i1
+1 (I’—ZM) ~1lmoe |- ( . @
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The Zerilli equation can be transformed to the Regge-The metric perturbation in the RW gauge is obtained from
Wheeler equation by the Chandrasekhar transformation if de=gs. (4.5 and(4.10.
sired, as shown in Appendix A. However, here, we treat the

original Zerilli equation. C. Full force
Formally, the force derived from the full metric perturba-
B. Full metric perturbation tion is given by
The homogeneous solutions of the Regge-Wheeler equa-
tion are discussed in detail by Mano et 6] and in Ap- Flirn(2)=— ﬁ(gmr uAu?)(2nfULRW _ pfullRW) a8,
. L . ull,RW 2 va; B aB;v
pendix A. By constructing the retarded Green function from
the homogeneous solutions with appropriate boundary con- (4.19

ditions, namely, the two independent solutions with the in—f q he ab into h . d h mod
going and up-going wave boundary conditions, we can solve' W€ ecompose the above into harmonic modes, each mode
the Regge-Wheeler and Zerilli equations to obtain the full ecomes finite at the location of the particle though the sum
metric perturbation in the RW gauge. Here, we consider th&@V€" the modes diverges. We therefore apply the *mode de-
radial functions up to the first post-Newtoni&tPN) order. composition regularization” method, in which the force is

The radial function for the odd part of the metric pertur- decomp_osed into _harmonic  modes and subtract the
bation is obtained as harmonic-decompose8 part mode by mode before the co-

incidence limitx—z(7) is taken.
Rg?gg>( r) Since the orbit under consideration is circular, the source
term contains the facta¥(w—m(), and the frequency inte-

( 160 mpQ°mr r * gral can be trivially performed. Hence we can calculate the
(2¢+1)€(€+1)(£+2) G 99Yem( 00, Po) harmonic coefficients of the full metric perturbation in the
for r<r time domain. This is a great advantage of the circular orbit
— 0 case, since th& part can be given only in the time domain.
16i mQ’mry ¢ We also note that th@ component of the force vanishes
26+ (6-1)e¢+1) 99Yim( b0, bo) because of the symmetry, and F%(2)=[(rq
for r>rq, —2M)/(r3Q)]F for a circular orbit.

The even and odd parity parts of the full self-force are
(4.17  expressed in terms of the metric perturbation as

where Q=u?/u'. For the even part, the radial function is t rw iumrg

obtained as Fleven™ 24 5010 aM)(ro—2M - 10 2M)Hgtmma(Fo)
t +MKEY 10 (ro) 1Y em( 0o, o),

RO 8Ommuu

{mo
2+ D((+2)((+ Do iy T2

FroRwW_
rs (€2—€+4)ror) o AT Ve &R 2r2(ry—3M)

T 203, tee-ne-1)“ T,

(ZMHofm mQ(rO)
X

+2MK€m ma(ro) +To(ro— ZM)d HO€m ma(ro)

+2(€2—2€—1)Mr 2044+ €3—60%2— 40— 4)M

(-1r2 L= 1)(E+2)rg d
, 0 +roMmK§nW1,m9(ro) Y em( 6o, %0),
Yin(60,00) forr<rg, (4.18
t RW_ iuMm RW
F(odd) = ~ ro(ro—SM)(rO—ZM)ho‘fmvm‘)(rO)
REZ 8Ommu'y
€mw (2€+1)€(€_1)w X00Y€m(001¢0)y
2 2
r2 - (£°+3€+6)rg W22 Er RW:E u(ro—2M)Q (ro)
20—1 (£+1)(2€+3)(£+2) (odd) " £ ro—3M dr bimmo(To
(£%2+4€+2)M R 2(€4+3¢3-3¢2-7¢—6)M X oY (6o, Bo)- (4.20
(t+2)r,, L+ +2)r

It is understood that the derivatives appearing in the above
expressions are taken before the coincidence limit. It may be
noted that there is no contribution from the componeétf¥

4
Y?m( 00,¢0) for r>ry.
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andHR" to the even force and no contribution framf"’ to ~ local expansion are given {i9]. The difference between the

the odd force for a circular orbit. Spart and the direct part appears in the term©¢y), i.e.,
Inserting the metric perturbation under the RW gauge tdhe second term on the right-hand side of E51). In the
the above, and performing the summation onemwe find local coordinate expansion of ti&part, it is convenient to

use the quantities

Flirwle=0
fullLRWI € ' 2 5 12
€:=(rg+r<—2rqr cos® cosd)==,

(€+1)u? . 1 p?(1203+ 2502+ 4¢—21)M

Froe) | o—— T:=t—ty, R:=r—rg,
fulRwi e 22 r¥2e+3)(20-1) ° °
ar
() 4‘5#2_1 w?(1203+116%—10¢ + 12)M O:=0-5, P:=¢—do. (5.2

F =—F
MW 220 (20-1)(20+3)r3
A. S part of the metric perturbation

F i rwle =0, : ) - o
furwl Using the variables defined in Eq&.2), it is straightfor-

Fé =0 4.21) ward to calculate th& part to 1PN order. Here we note that,
full RWI €™ ' in general, we have to evaluate tBepart up through the

We see that the only nonvanishing component is the radigiccuracy 00(y), because the force is given by first deriva-
component as expected because there is no radiation reactiB$ies ©f the metric components. The result takes the form,
effect at 1PN order. In the above, the indicess)(and (—) TMRY@® PP
denote that the coincidence limit is taken from outside ( = > ¢ (5.3
>r,) of the orbit and insider(<r,) of the orbit, respec- re A Par € ’
tively, and the vertical bar suffixed with,
wherem, n, p, g and r are positive integers. The explicit
e, expressions for the components are shown in Appendix D,
Egs.(D1).
denotes the coefficient of thé mode in the coincidence
limit. The formulas for the summation oven are shown in
Appendix F.
We note that the above result is valid f6= 2. Although In the preceding section, we calculated ®@art of the
the ¢=0 and 1 modes do not contribute to the self-forcemetric perturbation in the local coordinates expansion. In
formally, because of our inability to know the exact form of order to use them in the mode decomposition regularization,
the Spart, it turns out that we do need to calculate the conit is necessary to expand them in terms of tensor spherical
tributions from the¢=0 and 1 modes. These modes areharmonics, which involves an extension of the locally ex-

B. Tensor harmonics expansion of theS part

treated in Appendix E. pandedS part to a quantity defined over the sphere. Since the
only requirement is to recover the local behavior near the
V. S PART OF THE METRIC PERTURBATION orbit correctly, there exists much freedom in the way of ex-

AND EORCE tending the locally knowrS part to a globally definedbut

only approximatg S part on the whole sphere. To guarantee
In this section we calculate the part of the metric per- the accuracy ohi’VH up throughO(y) in the local expansion,

turbation and its self-forceSforce) by using the local coor-  because the leading term diverges as H spherical exten-
dinate expansion. Th&part of the metric perturbation in the sion must be accurate enough to recover the behavior at

harmonic gauge is given covariantly as O(y?) beyond the leading order. Below, using one of such
_ _ extensions as given in Appendix B, we derive the harmonic
FSH_ 0% Zred 9, 5(X, Zred U ( Tre) UP( Trey) coefficients of theS part.
uy T y Once we fix the method of spherical extension, it is pos-
0';y(xvzret)u (Tred) . . L . ..

sible in principle to calculate the harmonic coefficients of the

+2u( Tagy— Tre t)aﬂa(x,zre t)ayﬁ(x,zret)Rw 38(Zre) extendeds part exactly. However, it is neither necessary nor
quite meaningful because the extension is only approximate.

XUY(Tre)U’( e + O(Y?), (5.)  Infact, corresponding to the fact that all the terms in positive

) . ] powers ofy vanish in the coincidence limit, it is known that
wherez,e=2(7rey), TretiS the retarded proper time defined by )| the terms 0fO(1/L2) or higher, wherd = ¢+ 1/2, vanish
the past light cone condition of the field poixt 7,4, is the  \yhen summed ovet [9] in the harmonic gauge. It should be
advanced proper time defined by the future light cone conpoted, however, this result is obtained by expanding the force
dition of the field pointx, g,, is the parallel displacement in the scalar spherical harmonics. In our present analysis, we
bi-vector, andy is the expansion parameter of the local ex-employ the tensor spherical harmonic expansion. So, the
pansion, which may be taken to be the difference of themeaning of the indeX is slightly different. Nevertheless, the
coordinates betweer andz,, y*=x*—zf . Details of the same is found to be true. Namely, by expandingSipart of
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the metric perturbation in the tensor spherical harmonics, the 2 _4iTmr0(L2—2)(u¢)2
Sforce in the harmonic gauge is found to have the form hgfr'n(t,r): — T +...
- L £3(L2-1)
FLU)|, = = AL+ B#+D¥, (5.9
She X Y im( 00,0,
where A* andB* are independent of, and thex denotes 2 —2ir gm(2rg+ R)(u®)2
that the limit tor , is taken from the greater or smaller value h3/} (t,r)=—mu Ym0, bo),
f d ' L L£@(L2-1)
of r, an
2 [ 1rom(72r RLA+48 RS+ --)
u d~ et @ h3im(t,r) = L™ "6 @1 2 2
Di=——+— 5 +— 5 5 I LM(L=1)(L —4)
L°=1 (L°—=1)(L*—4) (L“=21)(L —4)(L*—9)
LI (5.9 X(U?)?|9oY il 60, o), (5.6

Then the summation db/ over ¢ (from {=0 to ©) van-  etc., where we have defined
ishes. For convenience, let us call this the standard form. As
we shall see later, the standard form of 8f®rce is found to
persist also in the RW gauge.

For the moment, let us assume the standard form ofthe

1
£(2)=€(€+1)=(L2—Z

force both in the harmonic gauge and the RW gauge. Then LO=£(+1)(£-1)(£+2)

we may focus our discussion on the divergent terms. When 1 9

we calculate th& force in the RW gauge, we first transform = ( L2— _) ( L2— _>_ (5.7
the metric perturbation from the harmonic gauge to the RW 4 4

gauge, and then take appropriate linear combinations of theif,o eypjicit expressions for the coefficients are given in Ap-
first derivatives. We then find that the harmonic coeﬁ|C|entspendiX D, Egs(D2). Shown there are the coefficients in the
h3im: hGim" and higo" are differentiated two times, and case when we approach the orbit from inside<¢,). The
Gy is differentiated three times, while the rest are differen-resyits in the case of approaching from outside-{) are
tiated once, to obtain th& force. So, it is necessary and optained in the same manner. For readers’ convenience, these
sufficient to perform the Taylor expansion of the harmonicgre placed at the web page: http://www2.yukawa.kyoto-
coefficients up toO(X?) for h3jt, i andh{9s", and  y.ac.jp/~misao/BHPCI.
up to O(X3) for G, and the rest up t®(X), whereX Now we consider th& force in the harmonic gauge. It is
=TorR noted that the, # and ¢ components of thé& force vanish

To the accuracy mentioned above, the harmonic coeffiafter summing ovem modes. Ther component of theS
cients of theS part are found in the form force is derived as

277,1/42[

Frs(,me:Em: L {

2L—1 M(10L3+11L2—-10L—17) M(64L5+28L%—320L3— 699 2+ 256L + 442)m?
2rg 4r3(L?-1) 163 @(L2—1)(L2—4)

M(156.%2—179m?*
ar3L@(L2-1)(L2-4)(L?-9)

)|Y€m(901¢0)|2

13Mm? M(2L—1)(2L%+2L—1)
rac@(L?—1)(L%-4) reL@(L?-1)

|(79Yem(001¢o)|21- (5.9

The formulas for summation oven are summarized in Ap- 2 , £?)
pendix F. For example, we have % T|59Yem(77/2,0)| =5 (5.9
Using these formulas, we obtain
2 ’ ) £®
Em: — MY em(7/2,0)[*= —-, FL =0,
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There is one degree of gauge freedom for the odd part and
three degrees for the even part. To satisfy the RW gauge
condition (4.4), we obtain the equations for the gauge func-
tions that are found to be rather simple:

+
1283(L2—1)(L%2—4)(L2—9)
h3H(t,r)=—2i AZH"”W(t,r),
1 p?(2ro—3M 1 p*(4rg—7M 1
ZIE’M(O—B‘)L_ §M0—3)+O(P>’
o o hEs At r == MEE Rt ) —aMSH ™),

Fg,H|€: O!

MS,H—»RW(t,r)
F&u=0. (510 h@®3Htr) f[,L"RW(t,r)—rzar<mr—2 ,
This is indeed of the standard form. In particular, the factor
£ @) which is present in the denominators before summing
over m turns out to be cancelled by the same factor that SHiw o\ M S H-RW
arises from summation oven. If it were present in the final Gm(t,r) ==z Mgy (L) 6.2
result, we would not be able to conclude that the summation
of Df over¢ vanishes. We note that, apart from the fact that
the denominator of thB term takes the standard form, the We therefore find
numerical coefficients appearing in the numerator should not
be taken rigorously. This is because our calculation is accu-
rate only toO(y®) of the Sforce, while the numerical coef- AS H—>RW(t r= H(t,r), 6.3
ficients depend on th®(y) behavior of it(an example is 2““ '
shown in Appendix ¢ It is also noted that th®(1/L) terms
are absent in th8force, implying the absence of logarithmic
divergence. S HoRW

It is important to note tha€ in the above runs from 0to ~ M2im (L) =~ —G (1),
o, Although there are some tensor harmonics that do not
exist for {=0 and/or€ =1, we note that the corresponding
harmonic coefficients contribute to tf&#* andD{ terms of MRty = —hESHt r) — g M3HRY(tr),
the Sforce individually, withB#+D%=0. That is, we set the
contributions toA* to zero and adjust thB/ term in such a
way thatD/ = — B* for these special coefficients while keep- MgéHHRW(t,r)
ing the standard form fob%. M Yt = —h{ORH ) —r?g, mr—z
(6.4

VI. SPART IN THE REGGE-WHEELER GAUGE

Now, we transform thesS part of the metric perturbation
from the harmonic gauge to the RW gauge. The gauge tran
formation functions are given in the tensor-harmonic expan;
sion form as

£:0= 2 Agn (e

1
00—

X b
siné

94Y ¢m(0,6),SIN0,Y o(0,0) 1,

gIELeven): ;n {M gé';'n—’RW(t,r)ng( 0,9),

M3 RN Y (6, ¢),
M3 R, 3pY ol 6, ),

M3i R0 94 Y om0, )} 6.1)

We note that it is not necessary to calculate any integration

With respect td orr. It is also noted that the gauge functions

are determined uniquely. This is because the RW gauge is a
gauge in which there is no residual gauge freeddon ¢
=2).

Then theS part of the metric perturbation in the RW
gauge is expressed in terms of those in the harmonic gauge
as follows. The odd parity components are found as

hoim (t,r) = hgim(t,r) + g AT R,

S, H—»RW(t r)

—2) 6.5

h3Wt,r)= hlem(t,r)+r28r( r

and the even parity components are found as
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B. Sf
SR S,H-RW oree
Hoim (t.r)=H5/(t, r)+ oM IMoim ()

M(r=2M) <. o diverges in the coincidence limit. However, as we noted sev-
3 Mim (L), eral times, in the mode decomposition regularization in
which the regularization is done for each harmonic mode, the
harmonic coefficients of th& part are finite.
The calculation is straightforward. Expanding the formula
HEm () =HIm(t ) +| M T () for the self-force(2.3) in terms of the tensor harmonics, we
obtain
+ o, MG Rt r)
2M S,H—=RW r
T r(r—2m) o “’”}’ Fleven™ 2 = {~1oMIaHG/m(to.r0)]

T 2(ro—3M)%(ro—2M)

2(r—2M)
H3M(tr) = HE r>+f[arMiﬂ?RW<t,r>

M SH-—RW —imroM QK (to,r) +2imM2QKFl(to,ro)
T ror=amy Mim (L

+5MZ[ 0K (tg,r )]

<oy 20-2M) < o —2r oML 3K (to,1 o) 1}Y em( 8o, o),
(t,r)= Kgm(t r)-+ r—leém (t,r),

(6.6
. . rRW K (o
where the gauge functions are given by E@s3) and(6.4).  Flevom= > — —{2 oLaH (0.1 0)]
tm  2r3(ro—3M)

A. Gauge transformation and the S part in the RW gauge —2M Hofm(to,ro) + 2imr§QH?}"r’n(to,r0)

Inserting the results ob.talned in the previous section to —2M Km(to,fo) [{9 HO{m(tO ro)]
Egs.(6.3) and(6.4), we obtain the gauge functions that trans-
form the S part from the harmonic gauge to the RW gauge. +2r ML HE (o, 0) ]
They are shown in Appendix D, EgeD3). It may be noted o
that the gauge functions do not contribute to the metric at the — oM, Ky (to,ro)1}Y em( 0o, ¢0),

Newtonian order. In other words, both the RW gauge and the
harmonic gauge reduce to the safiNewtonian gauge in the
Newtonian limit.

TheSpart of the metric perturbation in the RW gauge is FLRI_S —iuQrg MEEY (o)

now found in the form, (odd) ~ & (fo —3M)2(ro 2M) ¢mtloilo

2 2 —i(rg—2M)[ 9:h tg,r oY om0y, ,

hSRY ¢ )= 277# 4iTmry(L 2)(u¢) (ro )[thGem(to,T0) 1} 96Y em( b0, o)
0fm L E(Z)(Lz 1)

X 39Y{m( 60, o), Q
1Q(ro—2M)
F(odd) 2 —{[(9 hGtm(to.ro)]

SRW
hrem (1) —[ah®. (10,1 0)]

: 3 2 2
= EWM _ Imro {Z80rL 4 174l %+ - 2 — i1 QM (to,r0)}d6Y em( b0, Bo).-
L 3 L®(L2-1)(L2-4)
X d9Y{m( 00, bo), (6.7) Substituting theS part of the metric components in the RW
gauge as shown in Egé5.7), given explicitly in Eqs.(D4),
etc. into the above, we find that the and ¢ components of the
The explicit expressions are given in Appendix D, Egs.S force vanish after summing oven. Ther component of

(D4). the S force inside the particle trajectory is derived as
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277,1/42[

(=) 2L—1 M(10L3+11L2—-10L—17) M(64L5+28L%—320L3— 699 2+ 256 + 442)m?
FS,R 62% L { -

+
2rg 4r3(L?-1) 163 @(L2—1)(L2—4)

M(156.%2—179m?*
4rgL@(L2—1)(L?~4)(L?~9)

)|Y€m(001¢0)|2

13Mm? M(2L—1)(2L%+2L—1) 1900 o B0, b 6.9
rsLA(L2-1)(L2-4) rsLA(L2-1) prm T | '
|
Summing the above oven, we obtain a pure gauge that corresponds to a dipolar shift of the coor-
. dinates. In other words, apart from possible gauge mode con-
Fsre=0, tributions, the¢ =0 and 1 modes of the full force should be
exactly cancelled by those of tt&part. In reality, however,
ey 1 w?(2ro—3M) 1 u?(4rg—7M) what we have in hand is only an approximaepart. In
Fs,ﬁvJF ) r—gL_ F r—g particular, its individual harmonic coefficients do not have
0 0 physical meaning. Let us denote the harmonic coefficients of
M (172L4— 147842+ 299 the approximateS force by F3*P, while the exactS force
+ 12837 1)(L2_4)(L7-9) and the full force byF? andF™", respectively. Then th&

force F™ may be expressed as
1/J,2 2ro—3M 1“2 4ro—7M 1
(2rg ) (4rg ) O( )’

2T 8 3 L2 FR=2, (FI"=FD
Fg,R\/J«:O'
=2, (FP"=F)
FE el =0. (6.10 =
We now see that th& force in the RW gauge also has the Wl CSA
standard form as in the case of the harmonic gauge and there =(ZO (F¢"—F7 p)—go D¢

is noO(1/L) term. Note that, again with the same reason as
we explained at the end of the preceding section, the final
Zi)rmula above should be regarded as valid foXdilom 0 to :;2 (Ff(ull _ F?,A% T €ZO . (Fguu _ F?,Ap),
(7.1

VIl. REGULARIZED GRAVITATIONAL SELF-FORCE
where D,=F;—F$"?, and the last line follows from the
kact thatF 3P are assumed to be obtained from a sufficiently
accurate spherical extension of the local behavior ofShe
Bart to guarante&,-,D,=0. Thus, it is necessary to evalu-
ate the¢=0 and 1 modes of the full force to evaluate the
self-force correctly.

First, we consider the contributions é&2 to the self-
orce. As noted before, for the 1PN calculation, the only
component of the full an& part of the self-force is non-zero.
The ¢ mode coefficients corresponding to the first term in the
last line of Eq.(7.1) are derived as

In the previous two sections we have calculated the ful
and S parts of the self-force in the RW gauge. Now we are
ready to evaluate the regularized self-force. But there is on
more issue to be discussed, namely, the treatment of the
=0 and 1 modes.

The full metric perturbation and its self-force are derived
by the Regge-Wheeler-Zerilli formalism. This means theyf
contain only the harmonic modes with=2. If we could
know the exactS part, then the knowledge of the modés
=2 would be sufficient to derive the regul® part of the
self-force, because thR part of the metric perturbation is
known to satisfy the homogeneous Einstein equati@js

r r r
and because there are no non-trivial homogeneous solutions Frwle= Ffu||,Rw|€—Fs,RvJ€
in the =0 and 1 modes. To be more precise, apart from the
gauge modes that are always presentfth® homogeneous 454°M
solution corresponds to a shift of the black hole mass and the =— . (7.2
¢=1 odd parity by adding a small angular momentum to the 8(2¢—1)(2¢+3)r}

black hole, both of which should be put to zero in the ab-
sence of an orbiting particle. As for tHe=1 even mode, itis Summing ove® modes, we obtain
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3u’M ric perturbation approach, there inevitably remains ambiguity
Frn({=2)=— UTERE (7.3 of the gauge in the resulting self-force. To circumvent this
0

difficulty, the only way seems to be to regularize at the level

Next, we consider thé=0 and 1 modes. Detailed analy- Of the Weyl scalarj, or the Heriz potentiall’, which are
ses are given in Appendix E. It is noted that the 0 and free from the¢=0 and 1 modes. As another problem, to

¢=1 odd modes, which describe the perturbation in the totaj@ke our method applicable to general cases, it is therefore
mass and angular momentum, respectively, of the system diecessary to extend to general orbits and to higher PN or-
to the presence of the particle, are determinable in the haf€rs. Some progress in this direction, based on analytical

monic gauge, with the retarded boundary condition. On thd"€thods, is under waj27]. 1t will also be necessary to in-
other hand. we were unable to solve for the 1 even mode Corporate numerical techniques if we are to treat completely

in the harmonic gauge. Since it is locally a gauge mod eneral orbits. Some development is done by Fujita et al.

describing a shift of the center of mass coordinates, thi 28, _ . )
gives rise to an ambiguity in the final result of the self-force.  OUr final goal is to derive the self-force on the Kerr back-

Nevertheless, we were able to resolve this ambiguity at Newdround. Recently, Ming29] has proposed a new approach to
tonian order, and hence to obtain an unambiguous interpré€ radiation reaction problem by using the radiative Green
tation of the resulting self-force. function. In his method, assuming the validity of the adia-

The correction to the regularized self-force that arisedatic approximation, the radiation reaction to the conserved

from the =0 and 1 modes, corresponding to the secondiuantities including the Carter constant can be calculated
term in the last line of Eq(?.l') is found as from the radiative Green function, which is free from any

singular, divergent behavior. This is a great computational

2u?  A1u’M advantage. However, this method cannot treat the self-force
SFpw(€=0,1)= I et (7.4 for a completely general orbit because of the assumption of
0 0

adiabaticity. It is therefore still necessary to derive the self-
force in the general case. One possibility is to consider the
regularization of the Weyl scala¥ , and construct th& part

of the metric perturbation in the radiation gauge by using the

Finally, adding Eqs(7.3) and (7.4), we obtain the regu-
larized gravitational self-force to the 1PN order as

2u?  11uM Chrzanowski method. Investigations in this direction are also
Fer:Tr -3 (7.5  in progresg30].
0 0
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Whiting that the regularized force may be derived from@he 156 \hich we use in order to derive the full metric pertur-
part of the metric perturbation that satisfies the source-freg (i for¢=2 modes.

Einstein equations, we considered the regularized force in
the Regge-Wheeler gauge.

In the present paper actual calculations were done only
for circular orbit and to the 1PN order. However, there re- We investigate the analytic expression of the Regge-
mains a problem for the even parify=1 mode. In this met- Wheeler functions, and generate these functions in an ex-

1. Homogeneous solutions
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order in the slow-motion expansion, i.e., first post- Xc”(z)= E in

Newtonian order(More detail analysis is given if31].) n=-=

Herew is a characteristic velocity of the particle. The Regge- ) )

Wheeler equation is Xr(n+ v=1—ie)l'(n+v+ 1—|€)a
'n+v+1+ie)['(n+v+3+ie) "

[d (1 2M

dr r

plicit manner up tdO(v?) corrections relative to the leading ( e\ e *
1__)
z

VFv+n(Z)!

d 2M\ 1
g1 Tevion gz

e LV LY
Myt D)= 22 e Ty
2(1_7) evenioan ) (A1)

XFi(n+v+1+ie2n+2v+2;2iz), (A5)

where ;F; is the confluent hypergeometric function, and the
expansion coefficienta,” are determined by the three-term
recurrence relatiofsee(2.5) and below in Ref[26]]

The source tern8ioe" is expressed in terms of the source

terms of the Zerilli equationg21] as

sleven_ [\ (\+1)+ 9M2(r—2|\/|) @) ap’an. 1"+ Bray’+ yp"an~1"=0,
(Mo ( ) rz()\r+3l\/|) Cmaw B . L B
(n+v—1+ie)(n+v—1—ie)(n+v+1—ie)
'=—je
2M) d o (N+v+1)(2n+2v+3) '
—3M 1—7)5 o (A2)

Br'=(n+v)(n+v+1)—€(£+1)+2€°
€%(4+€?)
(n+v)(n+tv+1)’

and the Zerilli functionR{?_ is derived fromR{€*V[32] as

1 C(n+v+2+ie)(n+v+2—ie)(n+v+ie)
R, =2 2 N2 Yn'=le — ,  (AB)
me - N4(N+1)°+9wM (n+7v)(2n+2v—1)
IM%(r—2M) (even) andv, which is called the renormalized angular momentum,
X[[AA+1)+ —5———|R{ . : o )
re(Ar+3M) ) tme is determined by requiring the convergence of the series ex-
pansion inXc". Replacingv by —v—1, one obtains the
_ 2M\ d (even) other independent solutiod:”. It is important to note that
+3M|1-—| =R (A3) . .
dr the renormalized angular momentum in the post-
Minkowskian expansion becomes
So, we may focus on the Regge-Wheeler function. The v=L€+0(e?)=¢+0(v®). (A7)

Regge-Wheeler equation is rewritten as
Hencev=¢{ to 1PN order.

The post-Minkowskian expansion of the coefficieats

d? d 2e €2 is also discussed in Ref26]. With the normalizationa,”
G2 D F o S| gk It (z—e? =1, they are found fof=2,
0(€+1) 3e e\ 2 a,"~0(e") (n=-¢+2),
" 2(z—e) * Z’(z—e€) X(@)=|1-7] S@.

v _ +1
(A4) a—€+l O(E )!

a_€v~o(€(+2),

Herez=wr ande=2Mw, and we use the symb¥l(z) for

Reven/oddiy - g(z) for S{EveModdry |n the post-Newtonian a_-1"~0(e""?),

expansion, botlz and e are assumed to be small, while only

e is considered to be small in the post-Minkowskian expan- a,"~0(e*t)  (—¢—-2=n=-2¢),

sion. We note thaz~O(v) and e~O(v3) in the post-

Newtonian expansion. a,"~0(e""1Y) (—2¢—1=n). (A8)

First, we consider a homogeneous Regge-Wheeler func-
tion in the form of a series of the Coulomb wave functions, The post-Minkowskian expansion of the coefficieats !
Xc” [see Eqgs(3.4) and(3.6) in Ref.[26]]. can be obtained by using the symmetry,
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a,’=a_, "L (A9)

[See(2.13 in Ref.[26].]

The leading terms in the Regge-Wheeler functions in the

slow-motion expansion become

XCV"’O(Z€+1EO),

X " ~0(z 9. (A10)

xinV: KVXCV+ K*u*GC7V711

772_V€_V_1
K,=—

PHYSICAL REVIEW D 68, 124003 (2003

Then, for instance, if we consider 1PN order, it is sufficient
to take account of thay anda” ; terms inXc” and X~ ¥~ 1
(£=2).

In Ref. [26] the homogeneous Regge-Wheeler functions
with the in-going and up-going boundary conditions are de-
rived in the form of linear combinations &f-” andX ™" L.

The in-going boundary condition is that waves are purely
in-going at the black hole horizon, and the up-going bound-
ary condition is that waves are purely out-going at infinity

©

>

I'(n+tv—1+ie)l'(n+2v+1)

v IF'(v+1+ie)l'(v—1+ie)'(v+3+ie)sinm(v+ie) =6

NN+ v+3—ie) an

0 F(n+v—1—ie)l(n+v+1—ie) -t
> T : . a)’| (A11)
N2 ! v+1+ie)['(n+v+3+ie)['(n+2v+2)
Y 1 [Sinﬂ'(v-l-ie)x v igimry -1 A12
u oimy, SINT(VEi€) |sinm(v—ie) "¢ —1e e ’ (A12)
sinmr(v—ie)
|
The leading order oK, andK_,_; for =2 becomes o F(—v+2+ie)l'(-2v) __
Xe D= 5 T (— e C
K,~O(e 72,
=z [1+0(v)]. (A17)
. -2
K-y-1~0(e). (AL3) These are expanded @(v?) as
Then we find S = z220 1 1 7
c'(@) =222 175 3550
K—V—]_XEV_:L
~0(2z7 2" Y =0(p¥ ). (A14) _£(€—2)(€+2)e 3
K, Xc" R = a— +0(v®)|, (Al8)
Therefore, we may replace,,” by X" to 3PN order. As for S oyl Y 1 7
Xyp', we find Xc (2)=2(22) 1+ 220-1
sinm(v+ie) EW‘FO(UB)), (A19)
sinm(v—ie) ¢ 2 (6+1)z
- 0 2¢+1 =0 2¢+1 . A15
—iel™xcr ! (Z77)=0@=™).  (ALS) wherev={+0(v®).

Thus, we may replack,,” by X "~ 1 to 2PN order.

For convenience, we define the homogeneous solutions

X" andXc "~ ! normalized as

F'(v+3+ie)l'(2v+2)

X D= F 0, TS gT (v r i) ©

=z"1+0(v)], (A16)

To summarize, for the in-going homogeneous solution
normalized as
Xin"(2)=Xc"+B,Xc "1, (A20)

all the coefficientsB, can be set to zero up through 3PN
order, while, for the up-going solution normalized as

X (D) =X " 1+ y,Xc, (A21)

we may puty,=0 up through 2PN order.
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2. Retarded Green function

Using the Regge-Wheeler function§,” and X", the
retarded Green function is constructed as

1
Grel(2,2')= Xin(2)Xp"(2")
‘ W<xm”(z'>,xup”<z'>)[ P

X 0(Z'—2)+ X' (2)Xin"(2') 0(z—2")],
(A22)
whereW(X,X,) is the Wronskian,

d
Xq1(Z' )_Xz(z )

W(Xq(z2'),Xx(2’ ))--(1—2—

d
—Xy(2Z") —Xl(z’)> =const.
dz

(A23)

This Green function satisfies

PHYSICAL REVIEW D 68, 124003 (2003

Then the Regge-Wheeler function with the source term

s{evenoddyry js given by

-1
1 2M
R%‘;‘;’g""’dd(r)=—fz dr' Gf(r,r )—(1——

r !

X Sfgreroddir ), (A25)

Here we are only interested in the Green function accurate to
1PN order. A numerical method to construct an accurate
Green function based on this Mano-Suzuki-Takasugi method
is discussed in Ref28].

APPENDIX B: SPHERICAL EXTENSION OF THE S PART

In this appendix we consider the tensor harmonic decom-
position of theS part. First, we give the decomposition &t
where

e=(r2+r3—2rqr cosQ- Q)2 (B1)

and Q is taken to be on the equatorial planer/2,¢.).
Extending{ over the whole sphere, we have

2¢ € (€+1 P— (p)
0754_ ————|9,+|1+ + 5 — ( ) € ;n 2€+1E£’ (r, rO)Y{’m(Q)Y(m(QO) (B2)
z— Z—€ (z—e) Z2(z—¢€)
3e el 1 where the detail derivation as well as the coefficie{f8 are
+ m”Gmty(Z,Z'): - ( 1- E) 8z—2"). given in Appendix D off9].
€ In terms of the coefficient&(P, the formulas needed to
(A24) decompose th& part are derived as
|
fp— (-1)
= S B Y (@) Yin(20),
) 47 imEM o o
:_ e~ 2€+1 ror Y{’m( )Yé’m( 0)
®? o 4m | EM  1mEP PRUPRHIN
€ _(m 2¢+1 r2 3 4 €m( ) {(m( 0),
. ES Y m(Q)YE(Q0)
& 2€+1 (miEE T emiERon
47 [ 1imE®D  1im(-R*+2rd)ECY  1imPER v (O
E_ém 2€+1-_§ rgr _E rgr _§ rgr €m( ) {’m( 0)1
q.j: A '3 m4E(€5)+ 1 (2r3r +2m?r3—2R?m?r — 3)E%1)+1(—2R2r+2r§r+R2ro)E%_”+ m2E(®
e Tm20+145 (fy 2 ror? 2 rar? ror
XY em(2)Yim(Q0),
3 s 4 lmE(l) 1ime® OO
? =~ 20+1 rg + § rg Y{’m( )Y€m( O):
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@ A 1 miER 955}) zsz%s) Y em(Q2) Y7 n(20)
& fm20+1] 15 r8 - ré 8 ¢m em($20),
= =3 (o),

@2 S Az 1( 3R’r+2Rror —4Rr3+2r2r)E(® 1 mE(
5 m2t+1 rgr 3 rg
1 (—r2r’?—4Rnfri—4rR?m?r2+2m?r2r2)E(D 2 m*E(® o
6 ror? 27 g8 | emEYam( SRo):

P4 47 [ mE® ECY 1 miER

i N 1 .

& 201”10 s 9 3 Y em(2)Yim(L2o),

0 4 | E{H Vo (D)3 (O

e = 20+1 _g em(€2)35Ym(€20),

© dw [ 1ED A (CRrErHECY amER| L

. e A 1

e m Zf'f'l_ 2 I‘gl’ 6 rgr 9 I’gl’ eml )‘90 €m( 0)1

O 47 imEY )Y ot (0

8 G2e+1 22 em(€2)d4Y ¢m( o),
O P2 47 [ EP 1mEP v (o

63 _€m 2€+1__E_§ rO Y{/m( )(90 (m( 0)-

0P 4 __Eim(2r5+3r2_4r0r)E%1)+}im(—3r8+2R2r)E%‘1)_iim3E$53) P

e tm 2€+1_ 6 I’SI’4 9 rgrz 18 r8r2 ¢m 0V em\ 220/,
©° ar [ime( 1imER] L B3
& h2e+1 r3rs *9 rar Y em(2)35Y ¢m(20)- (B3)

Note that these formulas are valid only in the sense of thatandard form for generdl. However, to guarantee that the
spherical extension given by E@2). sum overt is zero, it is necessary to include the contribution
from €=0 as well. This impliesB#+D%=0 for £=0 as
discussed at the end of Sec. V.
APPENDIX C: O(y?) CORRECTION The local expansion of th& part of the metric compo-

In this appendix as an example to clarify how the standar(ﬁ]entSh“’ andh,, takes the form
form is recovered and why it is necessary to include ¢he on+2 n+1
. ) . D (G RO
=0,1 modes even if some of the tensor harmonics are iden- (2)htSéH: ,
tically zero for these modes, we consider ®@art of the et o gntt
metric components;, andh;, and analyze the contribution
of their O(y?) terms to the self-force in the harmonic gauge. (DS H
. A . hS:H=
These metric components give rise to the coeffickéfi,
of the vector harmonic proportional todfY m,d4Y ¢m)-
Note that this vanishes identically fér=0. Since the con- where we have retained only terms that may contribute to the
tribution of theO(y?) terms to the self-force is zero, the sum self-force, and the superscn(ﬂ) meansO(y?). The tensor
of h{®),, over¢ should vanish. We show that it indeed has theharmonic coefficients(),. are given by

(I)2n+3 q)2n+2R
_
€2n+1 62n+l

, (CY
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RN = prrg | (oY in(0.6)

+hiydgYim(0,¢)]1dQ, (e%)
where{ #0. For theO(y?) terms of the form(C1), we have

q)2n+2 (D2n+1R

1
62n+1

-1
U O e 1)f

Yin(0,6)d02.

€2n+l

(C3

The force is given by

+ M(rO_ZM)
FlErp@sH S 20 <T
S[hg?>") {,Zm 2r3(ro—3M)

X[ 2imQah§n 0.1 0) 1Y m(7/2,0),

(C4

Here since the terms of interest are alread¢y?), we

PHYSICAL REVIEW D 68, 124003 (2003

-1 q)2n+1R .
€(€+1) 62n+1 €m(07¢)dﬂ
2n+1 . 2n+1
T @) R Yin(6,6)dQ
27 1 m2n+l(l’—r0)
L@ (L2=1)(L?=2% - [L2=(n+1)?]
4
r<\’ .
>
wheren=0 and
1
/:(2):{7({+1):(|_2_ Z)' 8

Using Eq.(C4), and retaining only the terms that will remain
after summing ovem, we have

27 1
L 5(2)

r( )[h(e)S Fﬂ 2
{m

may use the leading order formulas for the spherical exten-

sion of the local coordinate expansif@]. We have

2w K
2n—1__ n
R T TS ™

¢
—| Yem(0,0)Yin(m/2,0), (CH

P

:"’ (9¢€, (C6)

where n=1, r-=maxr,ro}, r-=min{r,ro}, L=€+1/2
andk, is a constant independent lof Therefore, Eq(CJ) is
evaluated as

-1 ¢2n+2
*
€(€+1) e2n+1 tm(0,¢)dQ
1 2n+2 2n+3
@) Yin(6,)dQ
27 1 m2n+2

ro\¢
L L@ (122 1)(12-29). . [L2—(n+2)?] (C)

Yim(712,0),

m2n+2

><(L2—1)(|_2—22)---[L2

—(n+1)%]

XY om(7/2,0)|2. (C9)

The m summation gives

2n+2 n

7T
% T o Y el 7/2,0)|2= 2 oL (C10

Thus, theO(y?) terms contribute to thB# term in the form

of the standard form, and the sum ovewranishes provided
we include thef =0 term in the summation. Since tKy?)
terms do not contribute to the force anyway, it then follows
that we may adjust the numerators of th¢ term so as to
give Dy=—B*.

APPENDIX D: CALCULATION OF THE S PART

In this appendix we show th® part of the metric pertur-
bation and its gauge transformation. Theart of the metric
perturbation under the harmonic gauge are obtained in the
local coordinate expansion as

124003-17



NAKANO, SAGO, AND SASAKI

PHYSICAL REVIEW D 68, 124003 (2003
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TMO  rid0 rg®2TeO
hSH=h3"=u| — +4-2 442 (uh2|+0(y?),
€rg € el
' RZ R 12 T
SH_ SH_ ol 40 A0 e
he, =hgi = (26 2‘E 4 - 4€)u 2€roM
2 2 2 3 4 443
ro®T rgdTR ro®TR  rg®T 4 ry®@°T
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hey'=hg"=0(y?),
2 3
roc®PR  ryd

h?¢”=h;§'r”=u(4 4| (uh)?+o(y?),

L 2r§ roR 2R2 radT  ra®dTR?  r3®dTR 2 rid@%T  rddT ,
n=p| 2—+4—+2—+| — + = +
6‘9#646 € €3 €3 3 8 e3 u

5R’T2 1 T2 R* roR? RT? 3R3 7€ 3R? M
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552 45H2p27T2 45212 41H2p2
ro®°R ro®-RT ro®-T ro®
- 1 -3 7 (u®)?+0(y?),
63 65 63 63 : y
4
ro®0O
W= hGs'=—4u———(u?)+O(y),
2 282 2 41,3 2 2 2 3 4
r ro® rrR R 8ro®°T rg®T rg®PTR®  ry®TR  rg®T
SH_ 0 0 0 0 0 0 0 0 &
=u| —2e+2—+ +4—+4—+| = -3 9 + +
hgs=mn| —2€ 26 2 4 p 46 33 p 3 3 2 3 )u
. 2r0q>2R2 5 R2T2+ 1T? . R* roR? RT? R® 7 €, 7 R? "
e 2 €ro 2 erg Uesro € & T8 21y 2erg
4 242 3 2p2 412 5582 45 2p2T2 452712 45H2p2
r r roR rgRe rgT rg®-°R ro®“R°T ro®<T ro®“R
| a2r L arZerg 18— 240 ° ° 8-
€ € € € e e € e e

ro®?T?R  rod T?
2 g5

Vs
65

red?12 rid? 5rid4

65 63 3

rgdbz_zrngTz

63

2rgRT2
63

4
(e}

J

5

€ 3

€ €

o

+0(y?). (D1)

The harmonic coefficients of the abo$part are calculated as

2
hGim(t.r) = 7

—7R

2
hyim(t.r) = 7u

S,H

4iTmro(L?—2)(u?)?
£®(L2-1)

(8rg—6rom?—18roL2+4r L*— 4R+ 16RL— 13Rn?

L2—20RL3+2RLA+4RLS UL D(L2—1)(L2—4)]|95YFm( 00, b)),

[ —2ir gm(2r o+ R)(u®)2
L£®(L2-1)

Ym0, bo),

2 -

1 4 5 3 2 2 2 3
— 5 om(72rRL*+ 48 gRL®— 240 (R L*— 288 RIP + 4108R7 + 1056 § ~ 240R°L°~ 1488 oR

+139R2m?+ 24R%L6— 1147R?L %+ 192R?L — 66R°L*+ 48R?L 5+ 84r R L2+ 192 (R L— 4561 3L 2— 48R?m?L 2

+483

S,H
HOé’m

. 2
( ,r)—E'ﬂ',U«

L4+ 2885m?) (u®)?/[ L (L2 = 1)(L2=4)]|94Y (00, bo),

1
(504 0+ 144 gm?+ 12r gL8+ 614r L2 — 62RNPL2+ 2RNnPL*— 170r jL*— 529R L%~ 10R LS

—168RL°+588R L3+ 143R L4+ 396R P+ 40R N — 43R L+ 12R L'+ 468R— 52r ym?L 2

2imTu? . 1 (2ry+R—8RL+8RL%M

+4rm2LY) (U H[(L2—1)(L2—-4)(L2-9)]- 7 32-1)
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Hlfm(t I’)

2€m(t r=

2
hé2m t, N=pmm

hOSHt,r) =

K%r'r'f(t,r)—

G (tr)—

~_T(—108+ 1111 %2+ 2L.8—29L 4+ 44m?L?— 2m?L*— 234m?— 20m*)(u®)?
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The gauge transformation from the harmonic gauge to the RW gauge is given by

S,H-RW,
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—414R P — 61R N+ 612R+ 344 ;om?L2— 100r ym?L*) (u®)?/[ 2L P(L2—1)(L?—4)(L?—9)]
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R ) = E77;,,{9—6(—21504%3 L5+ 75264 (RL3— 72312 jRL*— 69984 ;Rn?+ 1393R>— 21600

— 36096 (RMPL*+ 107136 (RnPL2—96L%r2— 107568 ;R+ 50850R?L * + 58845R?L 6 — 120528R?m?
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+1536m*L2r,R— 28896n°L °R?+ 69936n°L °R?+ 1536 (L 'R—27882."R?+ 8064n*r3+ 192 3L.°
+1488. °R?>— 3360 °r jR+ 192 1% ;R+ 144684 ;R L?+ 6336 5L — 55296 (R L+ 25944 3| 2

+4080m°L 'R?+ 384m*L*R?— 192R?’m?L °+ 96R?L 11— 96R?m?L 8 — 384r (RNPL8+ 244086213
+36444R21.5+1872.1°R?— 23880 °R?+ 1752 3L.°— 10608 5L *+ 11872 3L 5— 15536 3L 3— 103680 3m?
—12096 3m?L*— 18816 3m2L 3+ 13824 2m°L + 73728 3m?L 2+ 84096 (Rt + 972(R?’m?L ®

+5376 3m?L5+ 33782&R2m?L 2 — 11575R?*m?L4— 27168&R°m’*L %+ 24868&R>m* — 2864 3L

+576 5m2L%— 384 2m?L7+ 2304m*r3L.2) (u®)2/[ L (L2 —1)(L?—4)(L?=9)]|YE (0o, bo),

2 1
Ser RVt r) = [7H ~ 9—6(112083R L2—476R°*m2L5+ 4416 3m2L*— 8064 3m2L2— 384 3m?L %+ 7296 ZRL*

— 42120 ,R?*— 2864 3RL’— 3528 2RL®— 15536 3R L+ 20544 3Rt — 12960 jRm? + 192 3R L°
+288 2RLE+ 11872 3R L5+ 6336 SR L+ 9318 oR?L S+ 68994 (R?L 2+ 96r R?L 1°— 6336 5RnPL?
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+75792 ,R?m*+ 192r R?L°+ 52488 (R’m?— 1584 ,R?L8— 2096 ,R?L 7 — 384 SRnPL’— 576 3RPLE
— 32688 ,R?L*+ 22096 (R?L 3+ 1120 jR?L5— 656R°L °+ 6048 2RnPL*— 18816 SRNPL— 21312 ,R?L
+13824 5RnPL + 537@ ZRNPLS+ 432 jR2m?L2— 192r ;R?m?L 8+ 2832 (R?m?L 6+ 5376 ;R?m?L°

— 1536 2Rnf'L2+ 13824 (R?m?L — 7488 (R?m*L2— 10632 (R’m?L*— 64R°*m?L °+ 104R°m?L’
+768R3mM*L 4+ 48R3m?L 3+ 4752(R°m?L — 716 R*m*L 3 — 624R3m*L.2— 1186R>m?L*+ 7571 R3m*L
— 384 (R?m?L7 + 1850R3m?L %+ 199 R°m?L - 18816 (R?m?L°— 96R*m?L8— 5184 3m?+ 32R3L 1

— 2449 R3 %+ 5259R3L 3+ 33004R3L 4+ 542@R3L " — 152R3L 8- 2754R3*m? — 3544&R3m* + 48R3 10
—3060@R°L + 1998(R°— 5001R°L?— 5597R3L 6 — 1104 3.2 — 2544 3L+ 7488 3L 4+ 192 3L 8

+1920 3m*— 9504 3R— 1728 3)(u)2/[ LD(L2—1)(L2—4)(L2—9)] | Y ..(60, bo),

2 1
ARVt ry = [TH| 151 (48R L5— 240 jRL3+ 72rjRL*— 28& (R? + 4108R?+ 1056 53— 1488 ;R— 66R?L*
+24R?LS+ 139R?m?— 1147TR?L%+ 192R?L + 84r jR L2+ 192r R L— 456 3L.2— 240R?L. 3+ 48R?L°

+48r3L4+ 288 2m? — 48R2m2L2)r gm(u?)2/[ L (L2 — 1) (L2—4)]]d4YE (60, do) . (D3)
And then, the coefficients of th& part under the RW gauge are calculated as

2

4iTmro(L?—2)(u?)?
hoim (t,1)= LM

L£P(L%-1)

(8ro—6rom?—18ryL2+4r,L*— 4R+ 16RL— 13RNM?— 7RL?— 20R L3+ 2RL*

+4RLIULBNLZ=1)(L? = 4)]|94Ym( 60, bo),

SRW(t r)_

1
T w{ —3i= 60r L3+ 174 oL2+48Lry— 792 o+ 6r L%+ 12r )L°— 216r;m?+ 338(R— 881RL2— 39R L*

I_Il\.)

—24RNPL2+ 984R NP+ 12RLE) rom(u®)2/[ L M(L2—1)(L2—4)]|dY (60, do),

2 1
HSRMt,r)= [ TH| 756480 +179R LS — 627 Rn?PL3+ 460RnPL — 40R L8+ 48r L8+ 48RL°+ 1920 ym*

—128RnPL7—56RNPLE— 608R M L2 —112r ;m?L 6+ 13104 ym?— 564 L+ 2394 ;L 2— 1106Rn¥L 2
+550RNMPLA+ 930 L%+ 1745R L%+ 902R L8+ 252(RL°— 231&RL3— 669IRL*+ 622&Rn?+ 975 Rt

2imTu?
+432RL—684RL7— 1026(R— 4876 ;m?L2+ 1388 ;m?L*) (u®)?/[ £ P(L?—1)(L?3—4)(L?—9)]—

1 (—62ry+56r,L2+33R—8RL—36RL2+40RL3— 32RL5)M (2ro—R+2RL)
16 3[;(2)(|_2 1) rg

?m( 60 ’ d)O) ’
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2
HSRMt,r)= [ k| —T(360- 742.2—69L%+ 3754~ 56m?L5— 2m?L®— 404m?L 2+ 4L8+ 64m?L*— 90m?

—16m*L%—296m*—144m?L + 196m°L3+4m?L7) (u®)?/[ £ P(L2—1)(L?—4)(L?>-9)]
—im(4RL®—21IRL*+ 19RL2+ 4R+ 20R NP+ 4r L°— 2r )L*— 20r )L+ 4r L2+ 16Lr,

4TL2M
+16r o+ 4rom?)u®/roL A(L2—1)(L2—4)]+ oy Yim( 00, 0),
o

2 1
H3™t,r)= [ TH| gz~ 1375920~ 224R mPL8— 7705Rn?PL>+ 186496 nPL3— 9216RnPL + 496(R L 10— 44& ;m?L®

—51RNPLY— 73728 ry+ 192R L1+ 192 oL 19+ 102ARnf'L 3+ 4198 Rnf'L + 166ARnfL4+2048n*L%r
—6297R 18— 3200 L8+ 5024R L%+ 100352 (L3— 28672 (L°+ 112128 ym*+ 1088R L’ + 2369R nPL°®
—7404R L2+ 6560 ;m?L°+ 2048 (L' — 88128 ;m?+ 19228 (L. ®+ 163590 ,L >+ 85789R n?L2
—28659Rn?L4— 70298 (L*— 28572R 2+ 15148@R L5+ 10783 R L5+ 64337R L3+ 15307R L*
—31201Rn?+ 66352R nt — 676656R L— 7976 R L’ + 41364R+ 118908 ;m?L2— 34876 ym>L*)(u®)?/

2|mTu¢’+1(2ro+R 8RL+8RL3)M (2ro—R+2RL)
Mo 4 ro(L?—1) ra

[£O(L2=1)(L2=4)(L*-9)]- im(00,0),

2
KRt r)=— 99144 ,— 105RNPLE—6182ARnPL5+ 11232RnPL3— 6220RnrL + 288R L10— 1536 ;m2L’

1
TH 12~
—576r m?L8— 768RNPLO+ 25344 r o+ 768 oL+ 576R L+ 576 (L 10— 115Rnf'L*+ 13056n*L%r
—518R 18— 75264 ;m2L3+ 21504 ;m?L°+55296n°Lr,— 9216 (L8 — 976(RL°— 62144 (L3+ 47488 ,L°
+31296 om*+ 1248Rn?PL’+ 1550R L6+ 2630R L2+ 9504 ;m?L8— 11456 ;L '— 414072 ym?
+46932,L°+ 170154 L2+ 11421QRnPL2— 6839RN?PL*— 113478 L4+ 42696R >+ 3757R L

— 202456 L%+ 40621 R L3 —17154R L*+ 13802R P+ 29685@R nf* — 25358 R L+ 5901 R L — 33598R

2imTu?
+296460 ;m>L2— 66708 qm2L*) (u®)?/[ £ M (L2—1)(L?>—4)(L?—9)]— .
0
1 1 (2ry+R— 8RL+8RL3)M (2ro— R+2RL) s (0 o) -
4 r3(L?-1) rs 070
|
APPENDIX E: €=0 AND 1 MODES lar, we have to take account of the corrections from the

In this appendix we derive the contributions to the self-~ 0 and¢=1 modes to the self-force. _
force in the RW gauge from thé=0 and 1 modes. As dis- _ For the¢=0 and¢=1 odd modes, the RW gauge condi-
cussed at the beginning of Sec. VII, and described in Eqtion is automatically satisfied, sindg?=h{"=G=0 for ¢
(7.1), although there is no physical contribution from the =0 andh,=0 for {=1 odd modes. An appropriate choice
=0 andf=1 modes to the self-force in the rigorous sense0f gauge is then to consider the perturbation under the re-
since we can calculate ti&part only locally in the vicinity tarded causal boundary condition in the harmonic gauge. In
of the particle, its spherical extension inevitably contami-fact, if we recall the gauge transformation equations from the
nates eacli mode with othe modes. Therefore, in particu- harmonic gauge to the RW gauge given by Ej2), we see
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that all the gauge transformation generatorsfferO and¢
=1 odd modes vanish. Thus, no gauge transformation is

needed for theS part of these modes, and our task is to findwhich we call the Zerilli(Z) gauge and denote the quantities
the exact solutions in the harmonic gauge with the retardeh it by the superscript Z. In the case of a circular orbit, the

boundary condition and perform the subtraction of 8art ~ ¢=0 mode metric perturbation is solved to be
under the harmonic gauge.

For thef =1 even mode, the RW gauge condition is non- iz a
trivial and there is a gauge degree of freedom in the RW Hz ™o (t,r) = F— oM
gauge, reflecting the fact that it is a pure gauge mode that
describes a shift of the center of mass coordinates in the
source-free case. On the other hand, the gauge transforma-
tion of this mode from the harmonic gauge to the RW gauge
is uniquely determined. Thus, to determine the self-force un-
ambiguously in the RW gauge, one first has to solve the +
perturbation equations in the harmonic gauge exdcihger
the retarded boundary conditipriransform the result to the
RW gauge, and perform the subtraction of Bpart. How-
ever, unfortunately, we were unable to solve for the 1l
even mode in the harmonic gauge due to a complicate
structure of the perturbation equatiofi®., in the form of
coupled hyperbolic equationsThus, there remains a gauge
ambiguity in the final result. Nevertheless, in the Newton
limit when the coordinates can be defined globally, we can
resolve the gauge ambiguity and give a definite meaning to
the resulting self-force.

Hg_u”'z(t,r):Kfu”'Z(t'r)ZO’ (E4)

O(r—ro),

HYZ(t,r)=a

O(ro—r)

ro—2M

O(r—rg)|. (E5)

r—2M

Here we imposed the boundary condition that the black hole
mass is unperturbed and the perturbation satisfies the
ﬁ]symptotic flatness. Note that the Zerilli gauge is singular in

e sense that the metric has a discontinuity |atr,. The
constanta is given by

2M
a=2(47-r)1’2,uut( 1- r—) (E6)
0

To summarize, the regularized self-force in the RW gaug

is expressed as
FRAV S, (FRIAW_SRNA0 1 5FRY,,,  (ED

where
SF Yy 1= oF Yo+ 8F{B\£/1(odd)+ EF{Bivl(even) (E2)
with

RW _ ~fullH__ =S,HAp
5F€:O_F€:O F€:0 '

RW  _ fullH SHA
SF 21 (oddy= F (=1 (odey~ F 721 (odc)

RW _ cfullRW S,RWA
5F€=1(even)_ F€u=l(even)_ F€=l(evean)a (E3)

where there remains a gauge ambiguitysBi™; oyen)-

dNote that thef =0 mode is independent of time. So we may

write HY2(t,r)=H&"Z(r),

Now we consider the gauge transformation from the
above Z gauge to the harmonic gauge. The equations for the
gauge transformation are formally written as

_RhZ ;
g#? VV_ h,uV V’

h,,=h

v

1
uv Egﬂvhaa' (E7)

Detailed discussions on the gauge transformation to the har-
monic gauge are given if23].
We set the gauge transformation generdtpas

{£7 M ={Mo(r)Yod 0,¢),M1(r)Yoo(6,6),0,0}.  (ES

In the circular case, thé=0 mode of Eq(E7) is explicitly

written down as

1. €=0 mode 2 2 d
First, we consider thé =0 mode of the full metric per- [WJF Fa}Mo(f)ZO, (E9
turbation. It is noted that thé=0 mode consists of only the
even parity part and all the derivatives ¥, vanish. As r—2M d® 2.d  2(r—2M)
noted above, this mode satisfies the RW gauge condition | —— — + — —— —3}M1(r):8(r), (E10
h{®=h{®=G=0 automatically. So, the appropriate choice dr® - rdr r

of gauge is the harmonic gauge under the retarded bounda\where
condition. To find the exact solution in this gauge, we con-

sider a gauge transformation of the exact solution found by 3 M

zerill o SN =4m———— A1)+ ———H3(1)
This mode represents the perturbation in the total mass of (r—2M)2 r(r—2™m)

the system and was analyzed by Zerilli. For the 0 mode,

there are two gauge degrees of freedom. The choice made by 2r—3m HZ(r)

Zerilli is r(r—2M) 2
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B a
= 3(rg=2m) 2o~ ")
aM
= aM(rg—2m) 20"
2a(r—M)
+ m(r—ro).

(E1D

PHYSICAL REVIEW D 68, 124003 (2003

The metric perturbation transforms under the above gauge
transformation as

2M
HE(r) = HE(r) + —7 My(r),

W d 2M
Hl(f)——aMo(r)erMo(r),

SinceMy is independent of the source, we set it to zero in

accordance with the retarded boundary condition. Thus we

focus on the equation fdvl,.

Hg(r)zHg(r)—z(l—ﬁ)

We employ the Green function method to solve EfLO).

Two independent homogeneous solutions are easily obtained

as
M (homo,1)__ 1
! r(r—2m)’
r2
M (homo,2)__
! r—2M°

(E12

d M )
X aMl(meMﬂr) ,

2(r—2M)

M),

KH(r)=—-—

(E17)

Note that we havéd ;=0 becausévi;=0. (It may be noted
that H, does not contribute to the force for a circular orbit

Using the above homogeneous solutions, we construct theven if it is non-zerg. Then the metric perturbation in the

other two independent solutiond? and MS" which are

harmonic gauge is found as

regular at the event horizon and infinity, respectively. We

find HH— al +a(6r—5r0)M Oro—1)
o— |4 T Lo 2 0
in 3p 4 (homo,1) (homo,?2) I‘2+2MI’+4M2 o ° o
MT=—8M3M{Pomedy M{romede —————— ,
1 argM
1 + aF+§r—4 (r—ro),
out__ p 4 (homo,1)_
MU= M RTSCTVIE (E13
y 5@ 1 a(6r—>5rg)M

Then the Green function is derived as

5=

?E'f‘g—”r}(ro_r)

1 )
G(r,r") = wIMI(NM(r)O(r'—r) a3r?+2r2 a (182-18ro—r)m
ti3 3 a 7 O(r—ro),
ou in/ ./ ’ 3 r 3 r
+MEOMT(r)er—r],
i 5a 1 rot2r)yM
W= (1 —2M)AME(1) M 1) i %}@(ro—r)
_ ro g
~M$(r)a,MT(r)]= -3, (E14
< i a6ri-rj 2r—ro)M
andM; is given by 53— 0, 34 r3°) }@(r—ro), (E19
Ml(r)zLMG(r,r’)r’(r’—ZM)S(r’)dr’. (E15  and the full force is calculated as
Although the integral can be performed without any approxi- ; 7u*M
mation, we only show the result to 1PN order, Frun(€=0)= 2 O(ro—r)
5ar a(1l3ry+6r)M 2 9u2M
My(r)=| - = ——= ———2——|0(ro—1) = T Der-ry). (E19
6r, 6 rs o 2rg

a6r’—r3 a (30r2—9rry—2r3)M
6 2 6 r3

XO(r—rp).

(E16)

Next, we consider th& part of the metric perturbation. Its
harmonic coefficients are given in Eq%.6). Only the har-
monic coefficientdHy, H, andK remain for thef =0 mode.
To 1PN order, we have
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Note that only them=0 mode is non-zero, and it is time
O(rg—r) independent.
Next, we consider the gauge transformation to the har-
monic gauge. We set

3+—

H3H(r)= \/_,u{

—5R+3rg)M  2(rg—R
L . oM <(;2 >®(r_r0)], 1
° ° §,L=Aﬁr“<r>(o ~ G0 Y im(0:0),SiN005Y 11n( 6, ¢))
(E29
HEM(r) = V4 ,U«{ @(ro—r>
6 The equation forA %" becomes

2
o o

_(RergM 2(r0—R)]®(r_ro)]

2M 2
1- T) oy — r—z}AﬁfH(r)=0.
(E26)

2m\
- 1-— i+
r

M
KS'H(r)=\/47r,u{ —+
o

_0 O(ro—r) This is a source-free hyperbolic equation. So, with the re-
tarded boundary condition, we find%~""=0, that is, the

(=3R+1o)M  2(ry—R) Zerilli gauge is equivalent to the harmonic gauge with the
+ + > O(r—rg) . retarded boundary condition. The full force is then calculated
(E20 ey )
The Sforce in the harmonic gauge is calculated as Fhibh (€=1)= [ 3 }@)(fo—r)Jr }@(r—ro).
r
(£=0)= —r}@)(r -
S 8ro ° The harmonic coefficients of th& part are given as
2 2
Mm 13,u M
+| —— — 41 8
2" gy |00 (E2Y h§in(r) ==\ 5#| | — 5 (4R+2r0)u?|O(rp—7)

From the above results, we obtain the contribution of the
€=0 force as

8
+| - 5(2r0—2R)u‘/’ @(r—ro)] Som

SF (€= 0)= 8F (€ =0)=Fiy y(£=0)—Fg (£=0)

him(r)=0, (E29)
23u°M
- “erd (E22 and theS force is obtained as
_ 4u°M M
2. ¢=1 odd parity mode FEoide=1)=| - O(rg—r)+ }(r_ro)_

The ¢=1 odd mode represents the angular momentum 0 0 (E29
perturbation added to the system. It also satisfies the odd
parity RW gauge conditiom,=0 automatically. Therefore,  Subtracting theS part from the full force, we find
as in thef¢=0 case, we look for the exact solution in the
harmonic gauge with the retarded boundary condition. 5|:rR(\;\)/dd)(g: 1)= 5|:|f_|(0dd)(€: 1)

The full metric perturbation consists of the two compo-
nentsh" andh™" . These were also solved by Zerilli. There — Fr(000) ¢ — 1) _ FLO30) 0 — 1)~ 0
is one gauge degree of freedom, and we mayhpet0. The fullH SH .(ESO)

appropriate boundary condition is that the black hole angular
momentum is unperturbed and the perturbation is well bethys our spherical extension turns out to be accurate enough

haved at infinity. Then we find to reproduce the correé¢t=1 odd mode up to 1PN order.
r2 1
hg(t,r)= br—3(ro—r)+br®(r—ro)) dom, (E23 3. ¢=1 even parity mode
0
o The ¢ =1 even mode represents essentially a gauge mode
whereb is given by that describes a shift of the center of momentum of the sys-
tem. The coefficienG is absent from the beginning, while
b=2 /4_77 u%r2 (E24) there is no loss in the gauge freedom. Hence there remains
3 ¥ o one degree of gauge freedom in the RW gauge. As men-
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tioned at the beginning of this appendix, to fix the gauge

completely it is necessary to solve the perturbation equations Hfu" RW(t,r) =

in the harmonic gauge with the retarded boundary condition,

and to perform the gauge transformation to the RW gauge.
However, because the perturbation equations become com- T3

plicated, coupled hyperbolic equations in the harmonic
gauge, we were unable to solve for this mode. Here, we
therefore give up fixing the gauge unambiguously, but solve
the perturbation equations in the RW gauge, imposing a
gauge condition by hand.

To look for an exact solution in the RW gauge, following
Zerilli, we chooseK =0 in addition toh{?) =h{®=0. Let us
also call it the Zerilli gauge. The harmonic coefficients for
the full metric perturbation in the Zerilli gauge are given by

HYRE(t,r) = > Tm(DO(r—r0),

1
(r—2M)

full,z r —
H (t r) ( _2M)2ﬁtfm(t)®(r rO)r

1 3
HIuZ ¢ r)_m () + — &t fm(t) |O(r—=ro),
(E3D)

where

_ (rg=2M)*
f(t) =87 ptl ———— im(6o(1), do(1)), (E32

and we have imposed the boundary condition that the pertur-

bation is regular at horizon. It may be noted that although the
€=1 even mode is locally a pure gauge, it is not so in the

global sense because of the regularity at the horizon. Not&s a solution of the above gauge equations that makes the

PHYSICAL REVIEW D 68, 124003 (2003

Hom (t.1)+

TV [ﬁthU"ZHRW(t r)

M(r —2M)

M;U]L!],’]ZHRW(t r):|,

ng]{:hRW(t,r):Hg-U”,Z(t r)+ athU||Z—>RW(t r)

+9 Mfu||Z~>RW(t r)

2M

- fuIIZHRW
r(r—ZM) (t, r)}

Hfzujl_:hRW(t r)_ Hfu”Z(t,l’)

+ M{ fulIZ—»RW(t r)

* r(r—2Mm) MflullﬁhZﬂRW(t’r)}’

fU"RW(t r)_ 2[2 r_ZM)MfU||Z~>RW(t r)

— M;ujl_:ﬁZHRW(t,r)],

PR (£, r)=0=—MIZ=RW(t,r) — g MU= RN 1),

hg-e){Lrl]!:,RW(t’r)zoz fU||Z~>RW(t r)

29, 5 (E39

r

fuII ZHRW(t r))

that them=0 components vanish because the orbit is on thénetric perturbation regular at infinity, we choose

ull,z Hfull z

equatorial plane. It is also noted thid and are
discontinuous at =r,, while HM" is continuous because
02f = —Q%f ;= — (M/rd)f,,, for m=+1, and the force de-
pends only orH™"?  The full force in this gauge is derived
as

3u? 3u’M

FFSE’,VZE“)(€=1)={——“2)— Ty}@(r—ro) (E33

The coefficientH{}-* in the above behaves asr at in-
finity. Without V|olat|ng the RW gauge condition, it is pos-
sible to remove this singular behavior. Namely, we consider
a gauge transformation,

ir
fUllZHRW(t r)_ & QrS m( )

1
Mfu||,Z~>RW(t,r): f (t),
1lm 6m292ro§ m

(E39

r
Mfu||Z~>RW(t r): f (t)
6m202rd ™

By the above gauge transformation, theomponent of

the force changes by
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2M(rg—2M) 2imMQ (ro—2M)
r(even) — fU”,ZHRW + full,LZ—RW, _
OF iz r(€=1)= ; —ro 11m (to,ro) (To—3M)rg Mo Moim (to,ro) (To—3M)
2M imQ(ro—2M)
full,Z—RW fuII Z—RW _ fuII Z—RW
X aEM (to,ro)"‘—ro(ro_sM)ﬁtM (to.ro) —(rO—BM) Mg (to.ro)
M(ro—2M)? - iQm(ro—2M) -
- (r0—3M)r3 &erluﬁhz RW(to’ro)_—(r0_3M) thu"Z RW(thro) Y1m( 6o, o).
0
(E36)

So, to 1PN order, we find

5F;£IEI3,\261)RW(€ =1)

1

(ro—2M)?
= 3 o e

m(t) [Y1m( 0o, do)

w1 M 2r8(ro—3M)
3u?  21u’M
- - E3
rs 2r3 (E379

Thus, the full force in this RW gauge is given by

2r0+2R+ 3MR 2iTmu® 2

4
Hc?if'n(t,r)=§7w|

27
(Zrom +9R+ RN+ —ro)(uq’)

3u?  21u’M

Fiivele=1)= R }@(ro—r)
0

[ 12,u2M

0

O(r—ry).
(E39

It may be noted that, at Newtonian order, theoordinate
of the Zerilli gauge, in which the metric inside the orbit is
unperturbed, corresponds to placing the black hole=a,
while the gauge transformation that regularizes the
asymptotic behavior at infinity makeshe radial coordinate
measured in the center of mass coordinate system. In other
words,r in the Zerilli gauge gives the relative distance be-
tween the black hole and the particle, whilgafter the trans-
formation gives the distance from the center of mass to the
particle. This explains the Newtonian part of the change in
the force, 3L2/r(2). In this sense, the gauge freedom is under
control at Newtonian order.

Now we turn to theS part. The harmonic coefficients in
the harmonic gauge are given by

O(ro—r)

I’O I'O ro 9
2r,—4R 3MR 2iTmu® 2( 63 , 27 b2 .
+ 2 - 3 +§ —?R+2r0m +Rn'12+ ?ro (U ) @(r_ro) 1m(60!¢0)!
o o o
4 ™ 16 16/ 3 3
Hiin(t =57 { 4r—+3|mu¢—§<§_m 5+ m|(u?)*T|O(ro—r)

2rg+2R  3MR 2iTmu® 2
* o 9

4
Hgma,r):gm{

ro ro

. 2ro—4R  3MR 2iTmu? 2(9

2 3
rO ro ) 9\2

™ 16 16/3 )3 21
H+9|mu—92—m §+m(u)

(QR 2rom?—RnP+ —ro>(u¢’)

—fo— 2rom—2R Rmz)(u‘f’)

®(r_r0)] Y’Im(601¢0)1

O(ro—r)

2

(r—fo)] Tm( 60, ®0),

124003-28



GAUGE PROBLEM IN THE GRAVITATIONAL SELF ... PHYSICAL REVIEW D 68, 124003 (2003

8 (9

§im(ZR2+4roR+2rg u?

h{&SHt, r)— . +§m2T(4R+2rO)(u¢’)2 O(ro—r)
0

8 9
§im( —2rgR+ ZR2+ 2r§) u®
+ - +§m2T(2r0—2R)(u¢)2 O(r—ro) | Yin(6o,b0),
0

(u)?|O(ro—r)
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h{QSHt,r) = §77,u”— 3™ ( - ZR2+2rS+ roR

32
— —=m?

9
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®(r_r0)]YIm( 001¢O)1

2ro+2R+3MR 2iTmu? 2

ra re ro "9

O(ro—r)
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2 r(3) ro 9

9
— —R+2rom*+ R+ Ero)(u"’)2
I'o

2r,—4R 3MR 2iTmu? 2( 27
* 2

®(r_r0)]YIm(601¢O)-

(E39

We transform the above to the RW gauge, as discussed in Sec. V.Gisabsent from the beginning, Ed$§.4), which give
the gauge transformation from the harmonic gauge to the RW gauge, are simplified as

MRt =0, MGH"RY(t,r)=—hESHtr), MRt =—-h{3t,r). (E40)

The resulting harmonic coefficients in the RW gauge are expressed as those given(th@osxcept for the gauge functions
My and M, that are now given by the above equations. From these, we find
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We note that onlyH$™"is discontinuous at=r,. However, ~whereN is a non-negative integer. To perform the summa-
as mentioned before, the force depends onlyHgiT" and  tion, we introduce the generating function

KSRW which are continuous. We obtain tiSforce as ¢
2 » To(2)= > e™Y m(7/2,0)% (F2)
Fr(even 21,“ M me_y¢
Fsrw )(€ 1= 2 gr3 O(ro—r)
0 0 Then the sunfF1) may be evaluated as limyd5T ((z). The
) 22 . 9u?M o o above function is calculated as
2 erd (r=ro). (E42 20+1

1
I'(2)= thl( —¢;1;1-e 22), (F3
Subtracting the above from the full for¢e38), we find

where;F is the hypergeometric function. This can be easily
expanded to an arbitrary order nf For example, ta(z°),

SFREEM ¢ =1)=F{{tvel ¢=1)— FE&eN ¢ =1) we have
21“ 105M2M
_cnt DM E43
T a3 (E43 20+1

((€+1
(2= ( )

2 |2°
C(€+1)(3¢°+30-2)\ 1 ,
+ —Z
8 41
€(€+1)(5¢%+1063—5¢2—10¢ + 8)
* 16

We note that the Newtonian term,ué/ré, is precisely the
correction to the force a@d(u?) whenr g is the distance from
the center of mass to the location of the particle.

If we recall the fact that bothi™"* andH ¥ are discon-
tinuous atr =r, and the gauge transformation from the Zer-
illi gauge to a RW gauge given by E@=35 does not change
the discontinuity, while onl)l'-l1 is discontinuous for th&
part, we see that the RW gauge we adopted to obtain the full 8
force is different from the RW gauge for tt&part obtained +0(2%) . (F4)
by the transformation from the harmonic gauge. Fortunately,
however, because the force depends onlHgnandK) for In the cases of the vector and tensor harmonics, it is nec-
circular orbits, and its discontinuity structure ratry hap-  essary to evaluate tha sum of the form
pens to be the same in both gauges, the resulting f&48 p
turns out to contain no discontinuity. Furthermore, as dis- 2
cussed above, the correct Newtonian force is recovered at <,
O(u?). Itis not clear if this desirable property holds because
the orbit is circular or because only the 1PN order correctioiWe introduce the generating function
is considered. If this happens to be no longer the case for ¢
general orbits, it will be necessary to find a gauge transfor- _ mz 2
mation that remedies the discrepancy. In any case, except for d2) m;e &™ 195 em(m/2,0)|% (F6)
the correction at Newtonian order, the gauge ambiguity re-
mains in the final result, and its resolution is left for future This is expressed in terms of a hypergeometric function as
work. gy 2L TR0
APPENDIX F: m-SUMMATION OF TENSOR HARMONICS ‘ 4m? I'(€)

6

z

6!

MmN, m(/2,0)|2. (F5)

In this appendix we summarize the formulas for summing ) o
over m modes of the tensor harmonics for arbitrdry Spe- X ok 2 BARE Tk hs 5 : (F7)

cifically, them sum we need to evaluate takes the form ) ) o
The sum(F5) is evaluated by taking the derivatives of the

D emN|Y (712,002, (F1) above ge.neratmg function. Expanding in powerg,ahem
= sum(F5) is calculated as

20+1[(€(C+1)) [CE+D(L—1)(€+2)\1 , [LE+D(E—1)(+2)(2+(-4)| 1 ,
Ad)=—0 2 8 2% 16 Tk
_ 4 3_ 2_
+(€(€+1)(€ 1)(“2)(5612;106 45¢ 50€+136))$z6+0(28)]. -
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