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Effective potential and vacuum stability within universal extra dimensions
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The one-loop effective potential calculated for a generic model that originates from 5-dimensional theory
reduced down to 4 dimensions is considered. The cutoff and dimensional regularization schemes are discussed
and compared. It is demonstrated that the prescriptions are consistent with each other and lead to the same
physical consequences. The stability of the ground state is discussed fd) anbdel that is supposed to
mimic the standard model extended to 5 dimensions. It has been shown that fermionic Kaluza-Klein modes can
dramatically influence the shape of the effective potential shifting the instability scale even by several orders
of magnitude.
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[. INTRODUCTION from below, provided the Higgs boson mass is small enough
[10]. That implies a lower bound om;, as a function of the
For some time there has been increased interest in theutoff scale below which the theory is supposed to be stable.
possible extensions of the standard mo@&\l) that allow  Since the compactification of the 5D theory leads to exis-
for fields living in extra dimensions. One possible scenariofence of an infinite tower of 4D fermions, therefore it is
referred to as the universal extra dimensigo&D) model  natural to expect that the SM picture of the effective poten-
[1] assumes that all the SM degrees of freedom propagate gl will be modified? Indeed, as we have found the influence
compactified extra dimension of the sizeRf Tev .1 It of fermionic KK modes on the scale of stability is dramatic,
has been shown that in fa® ! as low as~0.3 TeV is the scale could be shifted by many orders of magnitude
allowed by the precision electroweak observaljlEls Con- The paper is organized as follows. In Sec. Il, we discuss
straints from flavor changing processes have been carefullgeneric properties of the effective potential both in the cutoff
analyzed in Refs[3,4] while the anomalous magnetic mo- and the dimensional regularization. Section Il presents de-
ment has been studied in RE5]. All the analysis concludes tails of the 5D model considered here and also analytical
that evenR 1~0.3 TeV is consistent with the existing ex- results for the effective potential. In Sec. IV, we discuss nu-
perimental data. The main reason for the suppression of extf@erical results. Concluding remarks are given in Sec. V.
contributions to the above observables is the momentum
conservation in the fifth dimension. In the equivalent 4D Il. THE GENERIC EFFECTIVE POTENTIAL
waelﬁrzya-tzzir:r(nKp;?%:ﬂjaet i2?;&3ZZ'r?nC%fn:‘e;LngrﬁyQﬁgirso Here we will present results for a contribution to the one-
o : loop effective potential coming from an infinite tower of vir-
no tree-level contribution to the electroweak observables

tual KK modes(numbered by an integer). The following
and therefore KK effects are suppressed. However, the Iarggeneric formula is applicable both for fermions and bosons

size ofR could Iegd to exciting phenomenology at the ne)acirculatin@ in loops:
generation of collider$6].

Constraints from the precision electroweak observables 1 dp
on the Higgs physics have been analyzed in Réfsand[7]. V(g)= _f . S In[I2E2+ (n+w)27?], (1)
In particular Ref[7] shows the allowed region for the Higgs- 2} (2m)* ===

boson massn;, and the compactification radidin the 5D
UED compactified onSYZ,. It turns out that form,
~0.9 TeV everR 1~0.25 TeV is allowed. Since effects of

wherew is a constant shiftE?=p?+ m?(¢), m?(¢) is the
background field dependent mass squared of virtual KK

rpodes, the momentum is defined in the Euclidean space
KK modes appear at the 1-loop therefore one could expect ,~ 5 = =~ o A
their relevance for processes that emerge at the 1-loop lev&P”=Po+ (P)?), the field independent factér= 7R was in-

in the SM, an illustration of that reasoning could be found introduced for dimensional reasons and all unnecessary con-
Refs.[3,4] and[5]. Here we will consider influence of extra Stant terms have been dropped.

dimensional physics on the stability of the ground state. It is
well known that within the SM mod€B] and variety of its
extensiong 9] contributions from fermionic degrees of free-  There are two sources of possible divergences appearing
dom could lead to an effective potential that is unboundedn the effective potentia{l): (i) the momentum integration,

A. Divergences

*Email address: patrizia.bucci@fuw.edu.pl 2For earlier discussion of the instability within extra dimensional

TEmail address: bohdan.grzadkowski@fuw.edu.pl theories, see Ref11].

The first studies of possible effects of SM fields living in TeV-  3For vector bosons the Landau gauge should be adopted, while for
scale extra dimensions were performed by Antonig#l]s fermions extra minus sign must be added.
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and (i) the infinite sum over KK modes. The integral could ponent. Then, of course, the sum is finite and therefore ques-
be regularized either by the dimensional method or by thdion of ordering for the summation and integration becomes
cutoff, while for the sum one can, for instance, use themeaningless. Concerning the regularization of dfip inte-
method adopted by Delgado, Pomarol and QaiiidPQ) in gral the analogous approach would be to adopt a cutoff regu-
Ref.[12], the ¢ regularization(see e.g[13]) or just trunca- lator. We will illustrate this strategy below.
tion of the seriegfor the discussion see Refd4,15). Even though the cutoff regularization seems to be the
There is a comment here in order. Since both the integral0st natural one, there exist also arguments against it. The
tion and the summation are not convergent therefore the irstandard objections are the following. _ _
terchange of their ordering seems to be a nontrivial issue. B&cause of the compactification on the circle, the shift
This question was already addressed in Hef] in the along the extra dlrect|onyey+2.7-rR, should leave the
framework of 5D SUSY model compactified on the orbifold theofy uncha_nged. Therefore the fifth component of momen-
SY(Z,x z}). The authors computed the effective potentialtum is quantized to be elements B8fR. A consequence of

2l ; . . . .__ that is the “integer shift” symmetry, i.e. a symmetry under
performing first the integration with dimensional regulariza- _ " . ; : .
tion and then adopting thé regularization for the KK sum. an integer shift of KK modes. Obviously, cutting the series

.breaks the symmetry, as there would be no modes to go.

It has been shown that when dimensional regularization is A -9
adooted then both orderinas lead to the same ultraviolet Another drawback of the regularization through a limited
b 9 number of modes is the fact that 5D gauge invariance is

finite result separately for scalars and fermions. So, the KKbroken in that case. Namely, limiting the number of KK

regularization” used both in Ref12] and in Ref[13] leads odes we impose a condition on the 5D gauge transforma-

to the same result. However this regularization seems to su fon parametel(x,y) that has the following general expan-
fer from certain drawbacks. P Y 99 P

Since the 5D theory is nonrenormalizable therefore theré'o™

must exist certain physical cutoffs, related to the scale of
more fundamental high-energy physics, e.g., string theory.  g(x,y)= ——
Therefore performing loop expansion in 5D it would be natu- V27R

; 5
ral to cut all loop integralsl®p at the scale\s. From the 4D gherefore, if we had summed upig,..., then obviously, the

perspective the summation over KK modes corresponds to :
the integration over the fifth momentum component, so jSeries would not be able to reproduce all possible 5D gauge

seems to be appropriate to limit the sumrs AsR, what paggn?g?sr feusr?sciet:wotir;\si(t)(()dlg(.)k for a regularization prescription
would roughly guarantee that we sum all modes that are ’ 9 P P

lighter than the cutoff. In contrast to this strategy the KK at would be consistent with all the symmetries that are

regularization requires summation over all the modes, theregcr)?]s?ﬁ;'t -srzteisf(i/lTﬁgsrg)njlrcerrerlg(]ali]l?rzr?t:gtr]eistt?r? S;igdr?;?ufg
fore its physical meaning seems to be rather unclear. d ’ 9

o lization of dimensional regularization for sums over
Referencg 13] shows that for the KK regularization the genera : o
resulting effective potential in the limiR—0 is different KK modes was developed in Refd6,17. The strategy is in

e v Its spirit similar to the method adopted earlier by DPQ in
when we decompactifyR— 0) before the regularizatiofas Ref. [12], namely the sum could be traded for a one-

suming that all nonzero KK modes decouple in this case on imensional contour integral that one can regularize by ana-
recovers the 4D effective potential generated just by the zeré . : NS 9 . -9 y
ytic continuation in the number of dimensions. The great

mode and after the regularizatioithe KK-regularized effec- . .
tive potential diverges in this limit f";l_dvantage _of"thls apprqach is that both the gauge and also the
; . : o integer shift” symmetries are preserved.
In this paper we are going to discuss vacuum stability, so . ,

. ; - Therefore for completeness and comparison we will con-
for a given mass of the Higgs boson zero mode we WIIIsider in the following sections the effective potential found
determine the scale below which the model makes séhse . 9 o tve pe

adopting both the cutoff regularization with limited KK sum-

vacuum is stable Therefore it seems to be meaningful to ; A
restrict the mass spectrum of the KK modes to those Whicrrlnatlon and the KK regularizatiofi2] proposed by DPQ.

are lighter than the cutoff, so in the following we will also
consider truncation of series over KK modes to those _ _ o _ _
<Npma=AsR. From the 5D perspective, this will correspond In this section we will discuss an effective potential

to a cutoff for the integration over the fifth momentum com- Within a 5D theory of a scalar field assuming that only a zero
mode(in KK expansion of the scalar can acquire a vacuum

expectation value. Because of later applications we will re-
“The effective potential found in Ref12] was ultraviolet diver-  Strict ourself to the sum over non-negativandw =0 in the

gent, however note that the cutoff regularization was adopted ther&ffective potential(1). Then for a limited number of KK
It is easy to see that for the dimensional regularization the resulnodes with the 4D cutoff ) regularization the effective
would be finite. potential reads

SAn interesting observation has been made in Hé#,15, where
the authors showed that the vanishing of quadratic divergences that
happens separately for bosons and fermions is a consequence dfAs it will be discussed shortly the KK regularization leads to the
cancellation between contributions of states of mass larger than treame result as the dimensional regularization of the sum over KK
cutoff Ag and light states laying below the cutoff. modes and of the integral along the line proposed in R&&17).

eo<x>+ﬁn§1 ga(x)cogmyy) |. (2)

B. Limited KK summation and cutoff regularization
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Nmax 1 for the 4D tree-level potential shown in E). The bare
Loop = 5 > 1AM (@) + E[m2(¢)+mﬁ]2 parametersu? and A are related to the renormalized ones
327" n=0 and to the counterterms through
m’(@)+ma| 1 w?=pl+6u?, N=\;+ 6\, 8
X|In T —E s (3)

In the case of the potentiéh) we have the following form of

20 y-
where ¢ is the external classical fieltthe zero modg mﬁ m“(¢):
=(n/R)? andnp,,=AsR for A5 being the 5D cutoff of the 2 o

: : i oy 1 d’m?(g)
dps integration. Therefore imposing such a limit on the num- m2(¢)= = ———
ber of modes is roughly equivalent to 5D cutoff regulariza- 2 de?
tion of dps integration. The terms that are divergent in the
limit A—oo are the following: It is straightforward to prove that the conditiofi® lead to

the following counterterms:

@?+m?(0). (€)

¢=0

(nmax+ 1)
3272

M 2y/1-loop

3R? , AV

Op'=—————
de

Vl-loop

etf ldiv= AZ—

[ m*(e)

¢=0

X (14 2Nma)IN(RA) [ —m*(@)In(RA)

. 1 Nmax dzmz((p)‘

(4) 327200 dg¢? ‘go:o
There is a comment here in order. In a case of mixing be-

tween virtual degrees of freedom, nondiagonal mass matrices X
may appear and the eigenvalues are in general nonpolyno-
mial functions ofe [see, for example, the’g ,,x,) System

for the model discussed in Sec.]llAt first sight this seems

2 0 2
A2+(m2(0)+mﬁ)|n(w”, (10)

1-
1 i

to jeopardize the process of renormalization since asfy oN= 31 de*

and ¢* counter-terms are at our disposakithin a ¢* ¢=0

theory), while the divergent contributions appear to be non- 1 e [ §2m2( ) 2

polynomial functions ofp. However, for a general mass ma- =— > 5

trix we should replacem?(¢) and m*(¢) that appear in 64w n=0 | de 0=0

Veit®lai, by Tm*(¢)] and TEm*(¢)], respectively. S

Since Tf---] is invariant under diagonalization, one may %! 1+1n m~(0) +my (11)
use the nondiagonal basis here, then, because all elements of A2

the initial nondiagonal mass matrix squared are in general
quadratic ine, therefore the counterterms at hand turn out tolt could be easily verified that the above counterterms do

be sufficient to remove all the divergences. cancel the divergences M:;°°"|4;, ; note that the form of
Let us now specify the theory as a regf theory in 5D m?(¢) given in Eq. (9) is essential for the cancellation.
defined by the following potential: Eventually, the renormalized 1-loop contribution to the effec-
1 . tive potential reads
=2 4242+ = 4
Vtree 2 M (;b 4 )\5¢ (5) y R 1 Nmax ) mz(QD) + mﬁ
tfren'1 = 2 {5 (mX(@)+mi)%n| ————
) ) ) ) ) effren| 32 2402 n m2(0)+m2
Note that A5 is dimensionful and¢ has dimension of T n
mass$/2. After reducing to 4D the tree level bare potential for 3 1
the classical fieldp is the following: —_ Tt 2 200)— —m?2
— 2. 2 4
Vtree_E/-L et Z’“P ®)  As it was already mentioned for general nondiagonal mass

matrices the conditiof®) does not hold. Nevertheless, as we
where nowi is dimensionless and has dimension of mass. have already discussed above the renormalization procedure
In order to remove the divergent contributions one has teould be successfully performed. Then it would be conve-
adopt appropriate counterterms. The renormalization condiient to split the coun|terterms into divergent and finite parts.
tions that we will choose are the following: Since the divergent contributions to the effective potential
are linear functions oim?(¢) and m*(¢) only, they can

A2V, , A%V therefore be replaced by [?(¢)] and Tfm*(¢)], respec-
4?2 =My do =3I\, (7)  tively and for them(in the nondiagonal basishe form (9)
¢ le=0 ¢ le=0 holds. However, for finite parts the renormalization condi-

124002-3



P. BUCCI AND B. GRZADKOWSKI PHYSICAL REVIEW D68, 124002 (2003

tions (7) turn out to be very inconvenient as they lead tooption. It turns out that the dimensional regularization of
guite complicated expressions for the renormalized effectivéoth the sum and the integral proposed in R&6] leads to
potential; therefore one can modify the above renormalizathe same result as the one presented above provided the in-
tion prescription such that one will only keep the divergenttegral is dimensionally regularized. It will be instructive to
parts of sSm? and \. However, we will not discuss this compare both methods in order to understand the puzzling
renormalization prescription hereafter. agreement. In Ref16] the sum is regularized by the follow-
ing replacemengsee Eq.(11) of Ref.[16]]:
C. Dimensional regularization

It will be useful to repeat the derivation of the effective |:f d*p, > f( p4,2)
potential proposed by DP@L2] and compare with the di- n=0 R
mensional regularization of the KK sum adopted in Ref. 1
[16]. In order to findV(¢) defined in Eq(1) we first define _,ﬁf dD4p4f9dD5P577+(ps)f(p4,ps), (18)
— 2 2,2
W=3 n;_w In[(IE)"+(n+ w)"m7]. (13 \here the notation of Ref16] was adopted. Then the author
concludes that in fact it would be enough to regularize the
Instead ofW we calculate integral since the divergent part appears to be a function of
D,+Dg only. At first sight this statement looks confusing
W § 1 since we might have started with a divergent sum on the
—=I“E 14 - i [
E "2 ()2t (nt o)2n? (14)  left-hand sidgLHS) of Eq. (18). The sum is replaced by the

integral overd®spg and it looks as if this regularization of

that is already convergent. By that procedure, an infinite, bu&he sum is needed. The solution of this lllusive puzzle seems

: i to be the following. Note that for the effective potential cal-
constant E-independent term was dropped. This is, of . :
course, legal, since the constanigisndependent and there- Eg:gtg)g’égﬁgﬁ?ﬁggﬂ((p‘l)’zlnll?) ti?gj nﬁszinnzg(e k)Ja(_:rkr?er:)eu_nd
fore its elimination corresponds to the renormalization of the P AN y 9hpy ¢
cosmological constant. Then replacing the infinite sum in EqfOre & constant that is, independent on the LHS of EGL8)
(14) by an integral in the complex plane and applying thedoes not depend om(¢) as well. Since the divergence of

residues theorem to perform the integral leads to the follow!& Sum was dropped in the DPQ approach by the differen-

ing result: tiation and then integration with respect Eotherefore we
know that it waspfﬁ— m?(¢)-independent constant. Let us
1 now locate this divergence in the dimensional approach. It
W=IE+{in(1-re ) +In(1-r e ®%)}, (15  tums out that it is hidderand then erasedn Eq. (18),
namely the dimensional regularization of the integral over
wherer=e~2“7_The first term in Eq(15), that is the limit d*p, at the same time regularizes the integral and also re-
of the full WwhenR— o, leads to the effective potential for moves the constantp,-independent) contribution to the
the uncompactified 5D: sum This happens because of the following peculiar prop-
erty of the dimensional regularization:

4
V(x)zlf d’p Vp2+m?( o). (16)

(2m)* j dP4p,(consy=0. (19

The integral overd®p is obviously divergent; let us adopt _ o
regularization by a cutoffas it was done in Ref12]) and  Therefore, no wonder that in fact it is not necessary to regu-
for Comparison also the dimensional regu|arization: larize the sum if the dimensional regularization is adopted

for the d*p,. The dimensional regularization takes care of

1 both the divergent integral and the divergent constant contri-
R m>(e) + 5\//\2+ m*(e) bution to the sum. So, it is clear now why both the method
Ve = 4 oo . adopted by DPQ12] and the one developed in Rgfl6]
60w X[3A"+A“m(p)—2m*(¢)] cutoff, lead to the same result.
m°( @) dim. In the remaining part of this paper we will apply methods

(170  developed in this section to the 50(1) model of universal
extra dimensions. Then, expressions for the effective poten-

It is seen thav/(*) is finite when the dimensional regulariza- tial will either contain sums that start at a zero mode
tion is adopted.

As we have already mentioned there are two sources of ———
divergences: the sum and tdép integral. In Ref[12] the At most they may differ byn(¢)-independent constant. We have
sum was regularized-renormalized through the differentiaconfirmed that by explicit calculation. The results are identical
tion and then integration with respect B while for the  separately for boson and fermion contributions to the effective
divergent integral the result is shown in Ed7) as the cutoff  potential.
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(n=0) or atn= 1.8 Therefore the final resuffor w=0) for
both cases in dimensional regularization of tifg integral
is the following:

V(M) = 5 (V) + V() = Vo), (20

where + or — corresponds to the zero mode included or

excluded in the sum, respectively. The contributions to the

effective potential read

VO (m?) = 55— . oM (@),
. . m’(¢)| 3
VO(m)_64772m (@)} =Cyy+In R
1
VR(m?) = — —— —{xPLis(e™)

647° R
+3xLi,(e7*)+3Lis(e™ %)},

where x=27RVm?(¢), Cyy=2/(4—n)—ye+In(dm) (ye
=0.5772 ... is the Euler-Mascheroni constantx is the
regularization scale and*) corresponds to the decompac-
tification limit (R— o), V(® is the contribution from all the
KK modes(summed from—« to +) andV, is the zero
mode effective potential. The polylogarithm (k) is de-
fined by

(21)

Lin(x)= Z X—n (22)
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1
R

=07

u=0.08 TeV A=01

=500

max

n
1.04

1.03

1.02

1.01

35
@[TeV]

2530

FIG. 1. The ratio defined by Eq27) for the ¢* theory for x
=Npax/ (2R), R=1/0.7, ©=0.08 TeV,A=0.1, and the shift pa-
rameterV,=0.01 Te\*. The curves from the left to the right cor-
respond to increasing cutoffa;,,,=10,20,50 and 500.

D. Decoupling of heavy KK modes

In Sec. Il B we have discussed the one-loop effective po-
tential for 5D ¢* theory described by the tree-level potential
specified in Eq(5). Using the cutoff regularization of the 4D
integral and adopting the on-shell renormalization conditions

7) we have found in Eq(12) the renormalized effective
potential that originates from the first,,x KK modes that
can be written as

I for
Note thatV(™), Vv, and V(R contributions correspond to the

three terms separated in REE6] and denoted bys 5, 14 p
and lshite, respectively. It is amazing that the divergence

from the zero mode is still there, while in the DPQ approach

with dimensional regularization it was gofeote that there
the KK summation started at= —o0). This means that the

singular contribution from the zero mode must be canceled

by the sum oven#0 in the DPQ method. The explanation

;fll?cr)gn/} 2 V(o) (24)

V(o) 32772{2(”1 (@) +mp) In(m2(0)+mﬁ
2 () + ()| m2(0) 3 25
M (e @)|mA0)=zmq |, (29

of this is the presence of the zero mode in the above considwherem?(¢) was defined in Eq(9). In order to investigate

eration.

In order to get rid of the singularities present\fy we
will adopt theMS renormalization, then the 1-loop contribu-
tion to the effective potential reads

14oop
effren

— 1
\ MSZE(V(m)(mz)ﬁLV(R)(mZ)iVo finite(M?)),

(23

whereVy finite 1S Vo With the termoeCyy, subtracted.

8Note that in Ref.[12] the summation is performed from

zero-mode contribution and the remaining KK modes froml to
n= +o; that explains the factor 1/2 in E¢O).

the decoupling of heavy KK modédsorresponding to large
n) in the model it is useful to expand,(¢) in the limit of
n—oo and then sum oven:

n
max 1 1 1
1-oop A _ T2 2, 74 —
Veff ren |_3277-2 nzo 2m (O)mn+4m (0)+0 n2>
(26)
As it is seen, only leading %mﬁ) and subleading

(m,-independentterms are divergent when the summation
overn is performed in the limin.,,,—©. The key observa-
tion is that those terms arg independent. Even though the

—o to n=+0, while here we have considered separately theabove sum is divergent, the divergence is a constant,

¢-independent contribution to the effective potential and
therefore will be irrelevant. That happens because there is no
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couplings that could grow with.? Of course, the remaining, Fig. 1 we plot r=r(Nma/(2R),Nmax;®) fOr Nmax
finite part of the effective potentiddenoted in Eq(26) by =10,20,50 and 500, which corresponds to the cHdiokthe
O(1/n?)] depends ony and leads to the genuine effective regularization scalec=A/2. For a givenn,., the ratior
potential’® In other words, the decoupling of heavy KK =r(nyax/(2R),Nmax; ¢) is plotted againse varying from 0
modes takes place as a consequence of renormalization opf to the appropriate cutoff =n,,,,/R. Note, however, that
the cosmological constant. the cutoff corresponding to,,,,=500, A =350 TeV, is not

In order to discuss the decoupling more quantitatively, itshown for the sake of clarity of the figure. However, it has
is worth comparing the effective potential obtained within been checked that even in this casemains within the 5%
the cutoff regularizatior(12) with the one for the minimal distance from 1. For the purpose of Fig. 1, we have used the
subtraction(23). One could wish to plot the simple ratio: mass parametgu=0.08 TeV, the quartic coupling constant
v1100P A 0)/v1199P MS( 1) However, it turns out that in the A =0.1, and the shify,=0.01 Te\*.2 It has been checked

effren | effren

vicinity of ¢=0 theMS-renormalized 1-loop contribution to that for 0<V,<1 TeV* the ratior remains below 1.05 for
the effective potential has a zero and the plot of the ratio isp=1 TeV even though the shape in the regiors @
very unstable. Fortunately, the value of 1-loop contribution<5 TeV is influenced by the choice dof,. However, it
both toV1{°%P A() and Vi/°°P MS( ) is in this region by should be emphasized that fp=5 TeV (for the stability we
far negligible comparing to the tree level contribution. will discuss the effective potential for field strength
Therefore we will modify the naive ratio as follows: >1 TeV) the curves are almost insensitive\g.

Since the tree-level potential is the reference point for As it is seen from the plot, even though for smal
1-loop corrections therefore we will add,.o(¢) both inthe  r(x,Nnax;¢) IS @ monotonically rising function ofp, sy
denominator and the numerator. (moving from the bottom to the top of the figure the subse-

To eliminate the unwanted irrelevant constantquent curves correspond to increasimg,,), nevertheless,
contributiond? to the effective potentials we will subtract eventually for largere, r approaches 1 closer for curves
Ve#(0) contributions both in the denominator and the nu-corresponding to larger,,,,. In fact, this is what we should

merator. expect if the effective potential calculated in the cutoff and
The effective potentials obtained according to the aboveyS schemes were close.
prescription have zeros in the vicinity=0 that are slightly Conclusion that can be drawn from this picture is that the

misplaced in the denominator and the numerator, thereforeutoff and the minimal subtraction schemes are consistent
we introduce a constant shifty in order to screen the insta- and the dependence on the cutoff is very weak. One should

bility causeq by the zero of thg deno_minator. however remember that we have adopted two different renor-
So, we will adopt the following ratio to compare the cut- malization schemes and therefore the agreement is never ex-
off and dimensional regularization: pected to be perfect.
Ill. U (1) MODEL
M(K,Nmax; @)
Li0op A L1o0p A In this section we will construct a simple 5D model that
_ Vel @) +[Veitren1(¢) ~ Vettren 1(0)]+ Vo could successfully mimic the SM as far as the shape of the
Viree( @)+ [VL190P WS( ) —\/HI00p WS )] 1 v/ effective potential is concerned. For a gauge group we

choose W1). In order to break spontaneously the symmetry,
(270 we will introduce a complex scalas. To have a zero-mode
massive fermior{the analog of the top quarkve will have
to introduce two 5D fermionsy and A. The model is de-

The ratior=r(«,Nyax; ¢) IS, of course, a function of the fined by the Lagrangian density

cutoff (As=nna/R) and the regularization scalec). In

1
L(Xy)=— ZFMNFMN+(DM¢)*(DM¢)
%In the next section we will discuss in detail the 5D model based
on U(1) gauge symmetry. We will observe there that mass matrix —VO(p)+ LB+ L, (28)
for the (As ,, xn) System is nondiagonal and in fact the off-diagonal
entries are of the fornme/R, suggesting that there exist coupling where
constants growing witlm. However as it will be seen, the determi-

nant and the trace of the mass matrix grows&R* and n?/R?; Fun(X,Y)=dnAn(X,Y) = InAW(X,Y)
therefore even in that case in the limit of langeve shall anticipate

decoupling of heavy modes. The explicit calculations confirm this Dy=dutiesAu(x,y),
expectation.

The corresponding analogous phenomena could also be found in
the method of DPQJ12]; as it was discussed earlier, an infinite  *Other possible choices of, e.g.«= ¢, do not change results
¢-independent term was dropped there through differentiation anébr r substantially. Note that here we have decided to adopt the

subsequent integration over same cutoff for 4D and 5DAs=A.
Ht is especially important in light of the proceeding discussion of 3If we plottedr for ¢=1 TeV (that is large enough to pass the
the decoupling in the case of the cutoff regularization. zero of the denominatpme would not need to introducé,.
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VO(p)=u? B>+ 5| B, v L[ . ﬁi A
X,Y)= X x)cogm,y) |,
. ( Y) \/ﬁ O( =4 n( S ny)
d(xy)=—=[h(x,y) +ix(x,y)], -
2 AS(x,y)= —— 2 ALC0sin(myy)
) = n n ’
y=x*,
whereA,, is a gauge field an®, is a covariant derivative. d(X,y)=— 2 dn(x)cogmyy), (33
We will assume that the tree-level potential is stablehgo VTR n=
>0.
Hereafter we will adopt the following form of the gauge 1
fixing Lagrangian]:4 P(x,y)= \/— R o(X)+ V2 \/—2 [l/an(X)COE(mny)
L= 5| o= e dshstes=—]| . (29 i (sinmyy)]
2¢ V27R " g B
wherev =(hg) is the vacuum expectation value of the zero 1 -
mode of the scalan(x,y). N(X,y)= B olX) + ﬁngl [ALn(X)cogm,y)
In order to generate massive zero modes for fermions we m
will introduce here two fermion fields, one chardefx,y) ]
and one neutrdI\(x,y)] under U1): +Agn(X)Sin(myy) ],

L= y(x,y) Y oy + esAn 18X, y) + N (X, y) YMidy

1 o]
U X,y = = 0n ny)s
X (%,Y)~[Gs¥(x.y) $(X.Y)N(x,y) +H.c]. (30) (y)= == 2 n(x)cosgmyy)

The action of the (1) local symmetry is defined by wherem,=n/R, subscriptsR andL are referring to 4D chi-
ral fields and it is assumed that ,=0. In the following we
d(x,y)—e 1800 h(x y) will adopt the following notation for the real and imaginary

parts of ¢, (x):
P(x,y)—e 1% Yy (x,y)

1 1
e h +. y n o — hn+- n . 34
AX,Y)—N(X,Y) bo=7(hotixo), dnzo ﬁ( ixXn) (34)

It is worth noticing that after compactification the 4D La-
(3D ! . L )
grangian expressed in terms of KK modes is still gauge in-

The compactification of the extra dimension is specified byvarlant and th&J(1) transformations of the gauge fields read

the following S*/Z, orbifold conditions.

An(XY) = An(Xy) +dnb(X.y).

A ++24,0 for n=0,
All the fields and the gauge functiof(x,y) remain un- An,L(X)—>[ 0u(X) +20,,00(X) @5
changed under a shift—y+27R, Anu(X)+3,0,(x) for n#0,
AT =AY AY) = = A=Y, A (X)— AnglX) ~ 1 6r(X). (36

d(X,y)=d(X,—Y),

The corresponding infinitesimal transformation #g(x) is

RO =R -Y), Iy = —px,my), e Telewng
MG =ML =Y), AR(6Y) == Ag(X,=Y), o(X) = do(X) = \/—(Zao(x)¢o(x)+2 Ora(X) Srn(X) |
0(x,y)=6(x,~y). (32 o

KK expansions read D)= 0= 5 2 Anmln(X) 10, (37

whereA, ., is defined in Appendix A ané=e5/\/27R.
For discussion of the Lorentz noncovari@jtgauges, see Refs. The goal of this paper is to investigate stability of the
[19,20. ground state of the model. Therefore first we have to deter-
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mine the tree level potential; the next step will be to calculatdoop Green’s functions that are necessary for the effective
the effective potential at the 1-loop level. Expanding in KK potential. Then in the Landau gauge the following mass
modes and integrating ovgtryields the following 4D poten- terms are obtained:

tial:
2 672V 2 2
oc ho— ngﬂ +3h 7,
V=3 [mi+ w1 dndnt ?bio
(?2
. 2 _ 2 2
A e M= o= M T Aes,
t5 2, Bmkdndmdidy Xo
‘ *V
2 ® 2 _ _ 2 2 2 2
e . mi = ———=(Mg+p"+3N@) Syn=M}; Snm,
+? 2 nmk|A5 nA5 m¢k¢| nm 19hno7hm " nm n M
n,mKk,l=
. » 9V 9V
e
B 2k ComiMnAs m( b dx— by bn) IAs 1IAs m A5 ndXm
PV PPV
” As 0 Axnd
+§n0 (MnAs o+ 06X (38) o moXn - CAnSAm

e’¢? —eme
whereA=\g/(27R) and the coefficient8,x,Dnmk and _ 2, 2 2y |68,
Chmk are defined in Appendix A. eMmhe (Mot u™+he)
In spite of the fact that the potential looks complicated, it
is easy to see that fors>0 the potential is positive definite  In the following part of this section we will show separate
in the limit of |¢,|2>—% and therefore the ground state is contributions to the effective potential calculated in &
stable. The 4D potential emerges from the 5D potential, thecheme in dimensional regularization.
Higgs-boson kinetic term and the gauge fixing term: Let us start with the &s,,, xn) system. The mixing in the
mass matrix forAg, and y,, causes some technical difficul-
2R ties that are described in Appendix B. The final result for the
v® = f d
o]
v

Y| V5(X,y¥)+(D5p)*(Dsd) (Asn,xm) System is the following:
X
2 V27R

whereDg¢ is the fifth component of the covariant derivative
of the Higgs field and the last term emerges from the gauge
fixing term. So, it is clear that the 4D potential must be

1
2 (As.x) _ () (R) (Ag) (xo0)
(39) Vef? 2 (leX+leX VO ?lnlte VO ?lnlte) (41)

whereV(*) andV(® are the analogs of the “divergent” and
finite contributions to the effective potentig?l) in the case
of mixing:

> S > . s . yY2(y?—1)x5 17 1
positive definite as it is an integral over a positive function. Vi) = —|: - —2:1-=, (42
In the following we will investigate 1-loop corrections to the 2122 7°R* 4’4 y?
effective potential.

We will consider the cas@?<0; then it is easy to see & yI(1+y) VT2 —

that if — u2<1/R? only the zero modéd,(x) can develop a VRe= - 5 [aR e = Lise ), (43
nonzero vacuum expectation value, and at the tree level we 2 m 7R
get

where F@,b;c;z) is the hypergeometric function,

(ho(x))= v—\/_)fL (40) x=2wRya and y= 2\/— (44)

; ; (Ao) (x0)
We will calculate the effective potential in the direction of for @ andb defined in Eq(B7). Vy'g; andVgig,, . are the
the tree level vacuumyy=h,= x,=As,=0 andhy#0. The finite parts of scalar contributiorisee Eq(21)] to the effec-
Landau gauge defined here By-0 will be adopted hereaf- tive potential calculated for the zero mode vector boson mass
ter. (m3,=€°¢%) and Goldstone bosomn(, =pu®+X\¢?), re-
We will expand the 4D Lagrangian aroung=h,= x, spectively.

=A;,=0 andhy—hy+ ¢, wheree is the classical constant All neutral scalar modes contribute to the effective poten-
(in 4D) external background field for the calculation of one-tial as follows:
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i VlTev ]
V&)= 5[V M) +VOME )+ Vo finiee(mi )] ap s
+Vo finite(M2 ) + V59 () (45)
0 finite Xo eff . 610 18
For the vector boson contribution we get St m-odoTey
3 410"
VeR(@)= S IVEAmE) + VM) VG rinie(mi )], .
(46) 2:10
where the zero-mode vector contribution reads
110 5 210 ° 3.-10 ° 4.-10 5 5.110 5 ¢{TeV]
- . m’(¢)| 5 . . .
o(m?)= >M (@)} —Cyy+In| —— ~5l FIG. 2. The zero-modéSM-like) 1-loop effective potential for
A K th:0.10 TeV in the dimensional regularization.
(47)
2 2, .22 % A
and mAn: m,+e“e”. Vireel @)= 7(PZ+ Z‘P4- (53

After KK expansion and integration ovgrthe 4D fermi-
onic Lagrangian readsee Ref[18] for a similar construc-
tion) IV. RESULTS

o ° L In order to mimic the SM we have adopted the following
LM=1o(iy*d,—mg ) fot 2 [0 149 ,én— EMnénl, parameters for the plote=\4m/137, v=0.246 TeV, the
n=1 fermion zero-mode masg; (=0.150 TeV and the renormal-

(48) ization scalex=0.1 TeV. We will adopt the asymptotic for-
R

(R given i i
wherem, =go/+2, g=0s/\27R, m.=n/R and mula for V,}, given in Eq.(B13), however it should be em-
fo~ 9¢ V2, 9=0s/ V27 " phasized that it provides an excellent approximation in the

whole parameter range that is of interest here.

It is seen from the plots that effects of nonzero KK modes
are very dramatid¢see Figs. 2,3 and 4),5For instance, for
My, =0.10 TeV andR™1=0.3 TeV the instability scale is

0 shifted down from 4.& 10° TeV to 3.6 TeV. The model is
. (49
mp,  + mn) much less stab!e as a consequence of the presence of the KK
modes. Closer inspection shows that the result is triggered by
After diagonalization the fermionic mass matrix reads the fermionic contribution to the 4D effective potential and
the leading contribution emerges fromi™). Note that since
we wished to construct a model that would posses a zero-
) i (50) mode massive fermion therefore it was necessary to intro-
duce the extra 5D fermion. As a consequence the model con-

lﬂRn"' ‘an

f: —+ =
o=¥rotAL o, én N

_mn mf
M,=

( —(m2+ m';lo)l’2 0
M:

2 2\1/2
0 (mn+mf0) !

So, we have two fermions degenerate in magtes minus
in front of the upper component mass can be removed
through a chiral rotation
Fermions(no color degrees of freedom includezbntrib-
ute to the effective potential as follows:

Ve [Tev
10

R =0.7 Tev

5D rﬂoz 0.10 TeV
() 208 ey 2
Vet @)=~ 4Vofinite(Mf ) — E[V (mg )

+V(R)(mf20) - VOfinite(mfzo)]- (51
for mf =mz+mg .

Eventually, the total 1-loop effective potential is given by 2 4 6 8 10 @[ TeV]
the following formula:

FIG. 3. The full 1-loop effective potential in the dimensional
Vé}lfoOpIVtree+V§f)f+Vg’f)f+ng)f, (52) regularization form, =0.10 TeV. The compactification radius
R 1=0.3,0.5,0.7 TeV was adoptethigher curves correspond to
where smallerR). All other parameters are specified in the text.
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VglTev v [Tev]
2510 * 100
R'=0.7Tev
210 % 80
SM m =0.12Tev _
1510 ®[° M ol 50 m=012Tev
36
1.10 40
10® R'=05TeV
5-10 20 e
i
210° 410° 610° 810° 110 1%.2.20 ¢l TeV] == s s o i dTev]
FIG. 4. The zero-modéSM-like) 1-loop effective potential for FIG. 5. The full 1-loop effective potential in the dimensional

mp,=0.12 TeV in the dimensional regularization. regularization form, =0.12 TeV. The compactification radius

. . ~ R1=0.3,0.5,0.7 TeV was adopteghigher curves correspond to
tains after reduction to 4D doubly degenerated DiraCsmallerR). All other parameters are specified in the text.
fermions for each KK mode that enhances the fermionic con-

tributions and is the source of the extra factor of 2 in front Offermionic KK modes leads to a major modification of the

the second term in E¢5Y). If the factor 2 is removedustto  gffective potential and in particular could substantially lower
test the effect of fermion doublinghe result changes and for ,a scale of instability. For instance, for, =0.10 TeV and
i , for, = 0.

. — _1: . . _
Instance formho 0.10 TeV andR 0.3 TeV the instabil R 1=0.3 TeV the instability scale is shifted down from the

ity appears at 6.5 TeV instead of 3.6 TeV, obviously thegiangard model value 48L0° TeV to 3.6 TeV. The model
model would be more stable. It turns out that for our modelis mch |ess stable as a consequence of the presence of the
(with full spectrum of fermionsthe fermionic KK contribu-

IR KK modes. The same qualitative behavior of the effective

tion is by a factor 0f12-5_5 largelfor ¢=0.5-3.5 TeV at  otential is expected for the true 5-dimensional extension of

mp,=0.10 TeV ancR™"=0.3 TeV) than the zero-mode con- the standard model. The order of magnitude for the instabil-

tribution. As a consequence the tree level potential bendBy scale should not differ very much from the results pre-

down more rapidly for much lower field strengths than for sented here, however for a definite prediction for the insta-

the zero mode only. bility scale as a function of the Higgs-boson mass a
dedicated study is necessd@d].

V. CONCLUSIONS

We have discussed the effective potential in ACKNOWLEDGMENTS
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panied by the on-shell renormalization is never farther tharpo (Poland.

5% away from the potential found in the dimensional regu-
larization withMS.

In order to take into account nondiagonal mass matrices
we have generalized the standard technique for the calcula- The integrals used in the text:
tion of KK contributions to the effective potential developed
by Delgado, Pomarol and Qusadn Ref.[12]. We have con- 27R
structed a simple (1) 5-dimensional model containing f cogmyy)dy=(27R) 8, 0,
gauge boson, a complex scalar and two fermions. The model 0
parameters were adjusted, so that the model should mimic
5-dimensional extension of the standard model. The one-loop 2mR B
effective potential for the model was calculated adopting the fo sin(myy)dy=0,
dimensional regularization with tHéS renormalization. As
in the standard model the effective potential turned out to be R
unbounded from below as a consequence of fermionic con—f cos(mny)cos(mmy)dyz[
tributions. It has been found that the presence of the tower of Jo

APPENDIX A

(mR)6y;m for n,m+0,
27R for n,m=0,
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(mR) 6y, for

2aR ' n,m+0,
fo sin(my,y)sin(myy)dy= 0

for n,m=0,

27R
fo sin(m,y)cog myy)dy=0,
27R 7R
fo cogmyy)cogmyy)cosmy)dy=—-Anm,
27R . . TR
fo sin(may)sin(mpy)cosmy)dy= —-Cpm,
27R )
fo cog mpy)cos myy)sin(myy)dy=0,
27R 7R
fo cogmyy)cogmyy)cogmyy)cosmy)dy=——Bnmu,

2mR _ 7R
Jo sin(myy)sin(mpy)cogmyy)cogmy)dy= ——Dnmu,

(A1)
where
AnmIE 5I,n+m+ 5I,nfm+ 5I,7n+m+ 5I,7nfma
CnmIE_ 5I,n+m+ 5I,nfm+ 5I,7n+m_ 5I,7nfma
BnmklE 5I,7nfm+k+ 5I,n+m7k+ 5I,7n+m+k
+ 5I,n—m—k+ 5I,n—m+k+ 5I,—n+m—k
+ 5I,n+m+k+ 5I,7n7m7k1
DnmklE 5I,7n+mfk+ 5I,7n+m+k+ 5I,nfm+k
+ 5I,nfmfk_ 5I,n+mfk_ 5I,n+m+k
_§I,—n—m+k_ 5I,—n—m—k- (A2)

APPENDIX B

PHYSICAL REVIEW D 68, 124002 (2003

e?p? —epm,
M?2= 5. (B2)
—eem, ul+NeZ+m?

Going to the diagonal form df1? it is easy to see that

Tre{In[12(p?2+ M?) ]} =In[1*(p*+ p?Tr M2+ DetM?)].

(B3)
Since
TrM?=e2¢%+ p?+ N2+ m?
and
DetM?=ep?(u?+ N ¢?) (B4)
we obtain eventually
Tr{In[12(p?+ M?) |} =In[1?E2+ n272], (B5)

where irrelevant constant terms have been dropped and
b
E’=p’+a+—, (B6)
p
with

and b=e??(u?+\¢?).
(B7)

a=e2p?+ u’+?

Following the method adopted for diagonal mass matrices,
one needs to differentiat&/=33"___In[(IE)?+n?7?] with
respect tcE, then trade the summation for a contour integral
and eventually integrate ové&. The result is

W=IE +In(1—e ?E)+const. (B8)

The term that is ultraviolet divergent for a cutoff regulariza-
tion emerges from the integral of the first term in EB8):

d*p b
V(”):IJ 2ra+ —. B9
mix (271_)4 p p2 (B9)

Since in the case of mixing between KK modes the stanThe compactification radius dependent contribution consists
dard technique developed in REf2] for a calculation of the of the integral of the second term in E@8):
effective potential cannot be applied directly, we present here

some details of the derivation that leads to the result shown R d* e
in Eq. (41). In a case of nondiagonal mass mathi¥ we Vmix:f 5 2In(1—e"77). (B10)
have to consider the following form of the effective potential (2m)
in Euclidean space: The following formula will be adopted:
L dp 2(n24 M2 * x¢~ldx
V(e) ZTV[f (2m) n;w In[1<(p=+M“)]¢, Jl) —(axz+2bx+c)p=a’“’zc“’2*pB(a,2p—a)
(B1)

@ @ 1 b2
whereM is in general a nondiagonal mass matrix for KK XF 5P~ E;p-ﬁ- 5;1— ac)
modes and we have restricted ourselves to the no-shift case:
w=0. For the @5 ,,xn) System we have (B1Y
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where B,y) and F@,b;c;z) are the Euler beta function sion in the limit 2rR¢— that is an excellent approxima-

and hypergeometric function, respectively. Using the abovéion in the region of our interesf. The result reads

result one can show that for the dimensional regularization 32 14,712
_ ; AP e y¥A1+y) "

the integral in Eq(B9) is finite in the limitn—4 and the VR ~ _

———Li (efXV‘lTy). (B13)
corresponding potential redds m 2955 7R 7

Eventually, the contribution to the effective potential from
the (As ,,xn) System is the following:

1/2\,2 5 1
—1)x 17 1 (As,X) _ o R (Ao) (xo)
V) = y iy 1) Fl ——,—:2;1— —2> , (B12 Vert V= E(me)xJFVEni)x_Vo Binite ™ Vo finite): (B14)
y

mix 212\/5775R4 4’4’

WhereV(()Af"i)nite ande)’(fOi)nite are the finite parts of scalar con-
tributions[see Eq.(21)] to the effective potential calculated
for the zero mode vector boson masmig=ez<p2) and

wherex andy are defined in the main text, see E44). Goldstone bosonn2 = 12+ X ¢?), respectively.

The integral VR = [[d*p/(27)*]In(1—e ?F) is more Xo
difficult to perform, so we will adopt an asymptotic expan-
18since we are interested in the stability of the vacuum, it is there-
fore enough to know the shape of the effective potentialfofew
19t could be verified that the following result reproduces the for- TeV, which turns out to be sufficient for the application of the
mula (17) in the limit b—0. asymptotic expansion of the integral.
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