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Effective potential and vacuum stability within universal extra dimensions

Patrizia Bucci* and Bohdan Grzadkowski†

Institute of Theoretical Physics, Warsaw University, Hoz˙a 69, PL-00-681 Warsaw, Poland
~Received 29 May 2003; published 1 December 2003!

The one-loop effective potential calculated for a generic model that originates from 5-dimensional theory
reduced down to 4 dimensions is considered. The cutoff and dimensional regularization schemes are discussed
and compared. It is demonstrated that the prescriptions are consistent with each other and lead to the same
physical consequences. The stability of the ground state is discussed for a U~1! model that is supposed to
mimic the standard model extended to 5 dimensions. It has been shown that fermionic Kaluza-Klein modes can
dramatically influence the shape of the effective potential shifting the instability scale even by several orders
of magnitude.
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I. INTRODUCTION

For some time there has been increased interest in
possible extensions of the standard model~SM! that allow
for fields living in extra dimensions. One possible scena
referred to as the universal extra dimensions~UED! model
@1# assumes that all the SM degrees of freedom propaga
compactified extra dimension of the size ofR; TeV21.1 It
has been shown that in factR21 as low as;0.3 TeV is
allowed by the precision electroweak observables@1#. Con-
straints from flavor changing processes have been care
analyzed in Refs.@3,4# while the anomalous magnetic mo
ment has been studied in Ref.@5#. All the analysis concludes
that evenR21;0.3 TeV is consistent with the existing ex
perimental data. The main reason for the suppression of e
contributions to the above observables is the momen
conservation in the fifth dimension. In the equivalent 4
theory this implies that an emission of a single non-z
Kaluza-Klein~KK ! mode is forbidden. Consequently there
no tree-level contribution to the electroweak observab
and therefore KK effects are suppressed. However, the l
size ofR could lead to exciting phenomenology at the ne
generation of colliders@6#.

Constraints from the precision electroweak observab
on the Higgs physics have been analyzed in Refs.@1# and@7#.
In particular Ref.@7# shows the allowed region for the Higgs
boson massmh and the compactification radiusR in the 5D
UED compactified onS1/Z2. It turns out that for mh
;0.9 TeV evenR21;0.25 TeV is allowed. Since effects o
KK modes appear at the 1-loop therefore one could exp
their relevance for processes that emerge at the 1-loop l
in the SM, an illustration of that reasoning could be found
Refs.@3,4# and@5#. Here we will consider influence of extr
dimensional physics on the stability of the ground state. I
well known that within the SM model@8# and variety of its
extensions@9# contributions from fermionic degrees of free
dom could lead to an effective potential that is unbound

*Email address: patrizia.bucci@fuw.edu.pl
†Email address: bohdan.grzadkowski@fuw.edu.pl
1The first studies of possible effects of SM fields living in Te

scale extra dimensions were performed by Antoniadis@2#.
0556-2821/2003/68~12!/124002~12!/$20.00 68 1240
he

,

in

lly

tra
m

o

s,
ge
t

s

ct
el

s

d

from below, provided the Higgs boson mass is small enou
@10#. That implies a lower bound onmh as a function of the
cutoff scale below which the theory is supposed to be sta
Since the compactification of the 5D theory leads to ex
tence of an infinite tower of 4D fermions, therefore it
natural to expect that the SM picture of the effective pote
tial will be modified.2 Indeed, as we have found the influen
of fermionic KK modes on the scale of stability is dramat
the scale could be shifted by many orders of magnitude

The paper is organized as follows. In Sec. II, we discu
generic properties of the effective potential both in the cut
and the dimensional regularization. Section III presents
tails of the 5D model considered here and also analyt
results for the effective potential. In Sec. IV, we discuss n
merical results. Concluding remarks are given in Sec. V.

II. THE GENERIC EFFECTIVE POTENTIAL

Here we will present results for a contribution to the on
loop effective potential coming from an infinite tower of vi
tual KK modes~numbered by an integern). The following
generic formula is applicable both for fermions and boso
circulating3 in loops:

V~w!5
1

2E d4p

~2p!4 (
n52`

`

ln@ l 2E21~n1v!2p2#, ~1!

wherev is a constant shift,E2[p21m2(w), m2(w) is the
background field dependent mass squared of virtual
modes, the momentump is defined in the Euclidean spac
„p25p0

21(pW )2
…, the field independent factorl[pR was in-

troduced for dimensional reasons and all unnecessary
stant terms have been dropped.

A. Divergences

There are two sources of possible divergences appea
in the effective potential~1!: ~i! the momentum integration

2For earlier discussion of the instability within extra dimension
theories, see Ref.@11#.

3For vector bosons the Landau gauge should be adopted, whil
fermions extra minus sign must be added.
©2003 The American Physical Society02-1
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and ~ii ! the infinite sum over KK modes. The integral cou
be regularized either by the dimensional method or by
cutoff, while for the sum one can, for instance, use
method adopted by Delgado, Pomarol and Quiro´s ~DPQ! in
Ref. @12#, the z regularization~see e.g.@13#! or just trunca-
tion of the series~for the discussion see Refs.@14,15#!.

There is a comment here in order. Since both the integ
tion and the summation are not convergent therefore the
terchange of their ordering seems to be a nontrivial iss
This question was already addressed in Ref.@13# in the
framework of 5D SUSY model compactified on the orbifo
S1/(Z23Z28). The authors computed the effective potent
performing first the integration with dimensional regulariz
tion and then adopting thez regularization for the KK sum.
It has been shown that when dimensional regularization
adopted4 then both orderings lead to the same ultravio
finite result separately for scalars and fermions. So, the ‘‘
regularization’’ used both in Ref.@12# and in Ref.@13# leads
to the same result. However this regularization seems to
fer from certain drawbacks.

Since the 5D theory is nonrenormalizable therefore th
must exist certain physical cutoffL5, related to the scale o
more fundamental high-energy physics, e.g., string the
Therefore performing loop expansion in 5D it would be na
ral to cut all loop integralsd5p at the scaleL5. From the 4D
perspective the summation over KK modes correspond
the integration over the fifth momentum component, so
seems to be appropriate to limit the sum ton&L5R, what
would roughly guarantee that we sum all modes that
lighter than the cutoff. In contrast to this strategy the K
regularization requires summation over all the modes, th
fore its physical meaning seems to be rather unclear.5

Reference@13# shows that for the KK regularization th
resulting effective potential in the limitR→0 is different
when we decompactify (R→0) before the regularization~as-
suming that all nonzero KK modes decouple in this case
recovers the 4D effective potential generated just by the z
mode! and after the regularization~the KK-regularized effec-
tive potential diverges in this limit!.

In this paper we are going to discuss vacuum stability,
for a given mass of the Higgs boson zero mode we w
determine the scale below which the model makes sense~the
vacuum is stable!. Therefore it seems to be meaningful
restrict the mass spectrum of the KK modes to those wh
are lighter than the cutoff, so in the following we will als
consider truncation of series over KK modes to thosen
,nmax[L5R. From the 5D perspective, this will correspon
to a cutoff for the integration over the fifth momentum com

4The effective potential found in Ref.@12# was ultraviolet diver-
gent, however note that the cutoff regularization was adopted th
It is easy to see that for the dimensional regularization the re
would be finite.

5An interesting observation has been made in Refs.@14,15#, where
the authors showed that the vanishing of quadratic divergences
happens separately for bosons and fermions is a consequen
cancellation between contributions of states of mass larger than
cutoff L5 and light states laying below the cutoff.
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ponent. Then, of course, the sum is finite and therefore qu
tion of ordering for the summation and integration becom
meaningless. Concerning the regularization of thed4p inte-
gral the analogous approach would be to adopt a cutoff re
lator. We will illustrate this strategy below.

Even though the cutoff regularization seems to be
most natural one, there exist also arguments against it.
standard objections are the following.

Because of the compactification on the circle, the sh
along the extra direction,y→y12pR, should leave the
theory unchanged. Therefore the fifth component of mom
tum is quantized to be elements ofZ/R. A consequence of
that is the ‘‘integer shift’’ symmetry, i.e. a symmetry und
an integer shift of KK modes. Obviously, cutting the seri
breaks the symmetry, as there would be no modes to go

Another drawback of the regularization through a limit
number of modes is the fact that 5D gauge invariance
broken in that case. Namely, limiting the number of K
modes we impose a condition on the 5D gauge transfor
tion parameteru(x,y) that has the following general expan
sion:

u~x,y!5
1

A2pR
Fu0~x!1A2(

n51

`

un~x!cos~mny!G . ~2!

Therefore, if we had summed up tonmax, then obviously, the
series would not be able to reproduce all possible 5D ga
parameter functionsu(x,y).

So, it is essential to look for a regularization prescripti
that would be consistent with all the symmetries that
present. The dimensional regularization is the standard
tion that satisfy the requirement. An interesting and natu
generalization of dimensional regularization for sums o
KK modes was developed in Refs.@16,17#. The strategy is in
its spirit similar to the method adopted earlier by DPQ
Ref. @12#, namely the sum could be traded for a on
dimensional contour integral that one can regularize by a
lytic continuation in the number of dimensions. The gre
advantage of this approach is that both the gauge and als
‘‘integer shift’’ symmetries are preserved.

Therefore for completeness and comparison we will c
sider in the following sections the effective potential fou
adopting both the cutoff regularization with limited KK sum
mation and the KK regularization@12# proposed by DPQ.6

B. Limited KK summation and cutoff regularization

In this section we will discuss an effective potenti
within a 5D theory of a scalar field assuming that only a ze
mode~in KK expansion! of the scalar can acquire a vacuu
expectation value. Because of later applications we will
strict ourself to the sum over non-negativen andv50 in the
effective potential~1!. Then for a limited number of KK
modes with the 4D cutoff (L) regularization the effective
potential reads

re.
lt

at
of

he

6As it will be discussed shortly the KK regularization leads to t
same result as the dimensional regularization of the sum over
modes and of the integral along the line proposed in Refs.@16,17#.
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Ve f f bare
1-loop 5

1

32p2 (
n50

nmax H L2m2~w!1
1

2
@m2~w!1mn

2#2

3F lnS m2~w!1mn
2

L2 D 2
1

2G J , ~3!

wherew is the external classical field~the zero mode!, mn
2

[(n/R)2 andnmax[L5R for L5 being the 5D cutoff of the
dp5 integration. Therefore imposing such a limit on the nu
ber of modes is roughly equivalent to 5D cutoff regulariz
tion of dp5 integration. The terms that are divergent in t
limit L→` are the following:

Ve f f
1-loopudiv5

~nmax11!

32p2 H m2~w!FL22
nmax

3R2

3~112nmax!ln~RL!G2m4~w!ln~RL!J .

~4!

There is a comment here in order. In a case of mixing
tween virtual degrees of freedom, nondiagonal mass matr
may appear and the eigenvalues are in general nonpol
mial functions ofw @see, for example, the (A5 n ,xn) system
for the model discussed in Sec. III#. At first sight this seems
to jeopardize the process of renormalization since onlyw2

and w4 counter-terms are at our disposal~within a f4

theory!, while the divergent contributions appear to be no
polynomial functions ofw. However, for a general mass m
trix we should replacem2(w) and m4(w) that appear in
Ve f f

1-loopudiv by Tr@m2(w)# and Tr@m4(w)#, respectively.
Since Tr@•••# is invariant under diagonalization, one ma
use the nondiagonal basis here, then, because all eleme
the initial nondiagonal mass matrix squared are in gen
quadratic inw, therefore the counterterms at hand turn out
be sufficient to remove all the divergences.

Let us now specify the theory as a realf4 theory in 5D
defined by the following potential:

Vtree5
1

2
m2f21

1

4
l5f4. ~5!

Note that l5 is dimensionful andf has dimension of
mass3/2. After reducing to 4D the tree level bare potential f
the classical fieldw is the following:

Vtree5
1

2
m2w21

1

4
lw4 ~6!

where nowl is dimensionless andw has dimension of mass
In order to remove the divergent contributions one has
adopt appropriate counterterms. The renormalization co
tions that we will choose are the following:

d2Ve f f

dw2 U
w50

5m r
2 ,

d4Ve f f

dw4 U
w50

53!l r ~7!
12400
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for the 4D tree-level potential shown in Eq.~5!. The bare
parametersm2 and l are related to the renormalized on
and to the counterterms through

m25m r
21dm2, l5l r1dl. ~8!

In the case of the potential~5! we have the following form of
m2(w):

m2~w!5
1

2

d2m2~w!

dw2 U
w50

w21m2~0!. ~9!

It is straightforward to prove that the conditions~7! lead to
the following counterterms:

dm252
d2Ve f f

1-loop

dw2 U
w50

52
1

32p2 (
n50

nmax d2m2~w!

dw2 U
w50

3FL21„m2~0!1mn
2
…lnS m2~0!1mn

2

L2 D G , ~10!

dl52
1

3!

d4Ve f f
1-loop

dw4 U
w50

52
1

64p2 (
n50

nmax S d2m2~w!

dw2 D U
w50

2

3F11 lnS m2~0!1mn
2

L2 D G . ~11!

It could be easily verified that the above counterterms
cancel the divergences inVe f f

1-loopudiv ; note that the form of
m2(w) given in Eq. ~9! is essential for the cancellation
Eventually, the renormalized 1-loop contribution to the effe
tive potential reads

Ve f f ren I
1-loop L5

1

32p2 (
n50

nmax H 1

2
~m2~w!1mn

2!2lnS m2~w!1mn
2

m2~0!1mn
2 D

2
3

4
m4~w!1m2~w!Fm2~0!2

1

2
mn

2G J . ~12!

As it was already mentioned for general nondiagonal m
matrices the condition~9! does not hold. Nevertheless, as w
have already discussed above the renormalization proce
could be successfully performed. Then it would be con
nient to split the coun|terterms into divergent and finite pa
Since the divergent contributions to the effective poten
are linear functions ofm2(w) and m4(w) only, they can
therefore be replaced by Tr@m2(w)# and Tr@m4(w)#, respec-
tively and for them~in the nondiagonal basis! the form ~9!
holds. However, for finite parts the renormalization con
2-3
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tions ~7! turn out to be very inconvenient as they lead
quite complicated expressions for the renormalized effec
potential; therefore one can modify the above renormal
tion prescription such that one will only keep the diverge
parts of dm2 and dl. However, we will not discuss this
renormalization prescription hereafter.

C. Dimensional regularization

It will be useful to repeat the derivation of the effectiv
potential proposed by DPQ@12# and compare with the di
mensional regularization of the KK sum adopted in R
@16#. In order to findV(w) defined in Eq.~1! we first define

W5
1

2 (
n52`

`

ln@~ lE !21~n1v!2p2#. ~13!

Instead ofW we calculate

]W

]E
5 l 2E (

n52`

`
1

~ lE !21~n1v!2p2
~14!

that is already convergent. By that procedure, an infinite,
constant (E-independent! term was dropped. This is, o
course, legal, since the constant isw independent and there
fore its elimination corresponds to the renormalization of
cosmological constant. Then replacing the infinite sum in
~14! by an integral in the complex plane and applying t
residues theorem to perform the integral leads to the follo
ing result:

W5 lE1
1

2
$ ln~12re22lE!1 ln~12r 21e22lE!%, ~15!

wherer[e22ivp. The first term in Eq.~15!, that is the limit
of the full W whenR→`, leads to the effective potential fo
the uncompactified 5D:

V(`)5 l E d4p

~2p!4
Ap21m2~w!. ~16!

The integral overd4p is obviously divergent; let us adop
regularization by a cutoff~as it was done in Ref.@12#! and
for comparison also the dimensional regularization:

V(`)5
R

60p H m5~w!1
1

2
AL21m2~w!

3@3L41L2m2~w!22m4~w!# cutoff,

m5~w! dim.
~17!

It is seen thatV(`) is finite when the dimensional regulariza
tion is adopted.

As we have already mentioned there are two source
divergences: the sum and thed4p integral. In Ref.@12# the
sum was regularized-renormalized through the differen
tion and then integration with respect toE, while for the
divergent integral the result is shown in Eq.~17! as the cutoff
12400
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option. It turns out that the dimensional regularization
both the sum and the integral proposed in Ref.@16# leads to
the same result as the one presented above provided th
tegral is dimensionally regularized. It will be instructive
compare both methods in order to understand the puzz
agreement. In Ref.@16# the sum is regularized by the follow
ing replacement@see Eq.~11! of Ref. @16##:

I 5E d4p4(
n>0

f S p4 ,
n

RD
→ 1

2p i E dD4p4E
*

dD5p5P 1~p5! f ~p4 ,p5!, ~18!

where the notation of Ref.@16# was adopted. Then the autho
concludes that in fact it would be enough to regularize
integral since the divergent part appears to be a function
D41D5 only. At first sight this statement looks confusin
since we might have started with a divergent sum on
left-hand side~LHS! of Eq. ~18!. The sum is replaced by th
integral overdD5p5 and it looks as if this regularization o
the sum is needed. The solution of this illusive puzzle see
to be the following. Note that for the effective potential ca
culation, the functionf (p4 ,n/R) depends on the backgroun
field dependent massm(w) only throughp4

21m2(w). There-
fore a constant that isp4 independent on the LHS of Eq.~18!
does not depend onm(w) as well. Since the divergence o
the sum was dropped in the DPQ approach by the differ
tiation and then integration with respect toE therefore we
know that it wasp4

21m2(w)-independent constant. Let u
now locate this divergence in the dimensional approach
turns out that it is hidden~and then erased! in Eq. ~18!,
namely the dimensional regularization of the integral ove
d4p4 at the same time regularizes the integral and also
moves the constant(p4-independent) contribution to the
sum. This happens because of the following peculiar pro
erty of the dimensional regularization:

E dD4p4~const!50. ~19!

Therefore, no wonder that in fact it is not necessary to re
larize the sum if the dimensional regularization is adop
for the d4p4. The dimensional regularization takes care
both the divergent integral and the divergent constant con
bution to the sum. So, it is clear now why both the meth
adopted by DPQ@12# and the one developed in Ref.@16#
lead to the same result.7

In the remaining part of this paper we will apply metho
developed in this section to the 5D U~1! model of universal
extra dimensions. Then, expressions for the effective po
tial will either contain sums that start at a zero mo

7At most they may differ bym(w)-independent constant. We hav
confirmed that by explicit calculation. The results are identi
separately for boson and fermion contributions to the effect
potential.
2-4
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(n50) or atn51.8 Therefore the final result~for v50) for
both cases in dimensional regularization of thed4p integral
is the following:

V~m2!5
1

2
~V(`)~m2!1V(R)~m2!6V0~m2!!, ~20!

where 1 or 2 corresponds to the zero mode included
excluded in the sum, respectively. The contributions to
effective potential read

V(`)~m2!5
R

60p
m5~w!,

V0~m2!5
1

64p2
m4~w!H 2CUV1 lnS m2~w!

k2 D 2
3

2J ,

V(R)~m2!52
1

64p6

1

R4
$x2Li 3~e2x!

13xLi4~e2x!13Li5~e2x!%, ~21!

where x[2pRAm2(w), CUV52/(42n)2gE1 ln(4p) (gE
50.5772 . . . is the Euler-Mascheroni constant!, k is the
regularization scale andV(`) corresponds to the decompa
tification limit (R→`), V(R) is the contribution from all the
KK modes ~summed from2` to 1`) and V0 is the zero
mode effective potential. The polylogarithm Lin(x) is de-
fined by

Lin~x!5(
s51

`
xs

sn
. ~22!

Note thatV(`), V0 andV(R) contributions correspond to th
three terms separated in Ref.@16# and denoted byI 5 D , I 4 D
and I f inite , respectively. It is amazing that the divergen
from the zero mode is still there, while in the DPQ approa
with dimensional regularization it was gone~note that there
the KK summation started atn52`). This means that the
singular contribution from the zero mode must be cance
by the sum overnÞ0 in the DPQ method. The explanatio
of this is the presence of the zero mode in the above con
eration.

In order to get rid of the singularities present inV0 we
will adopt theMS renormalization, then the 1-loop contribu
tion to the effective potential reads

Ve f f ren
1-loop MS5

1

2
~V(`)~m2!1V(R)~m2!6V0 f inite~m2!!,

~23!

whereV0 f inite is V0 with the term}CUV subtracted.

8Note that in Ref.@12# the summation is performed fromn
52` to n51`, while here we have considered separately
zero-mode contribution and the remaining KK modes fromn51 to
n51`; that explains the factor 1/2 in Eq.~20!.
12400
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D. Decoupling of heavy KK modes

In Sec. II B we have discussed the one-loop effective
tential for 5Dw4 theory described by the tree-level potent
specified in Eq.~5!. Using the cutoff regularization of the 4D
integral and adopting the on-shell renormalization conditio
~7! we have found in Eq.~12! the renormalized effective
potential that originates from the firstnmax KK modes that
can be written as

Ve f f ren I
1-loop L5 (

n50

nmax

Vn~w! ~24!

for

Vn~w!5
1

32p2 H 1

2
~m2~w!1mn

2!2lnS m2~w!1mn
2

m2~0!1mn
2 D

2
3

4
m4~w!1m2~w!Fm2~0!2

1

2
mn

2G J , ~25!

wherem2(w) was defined in Eq.~9!. In order to investigate
the decoupling of heavy KK modes~corresponding to large
n) in the model it is useful to expandVn(w) in the limit of
n→` and then sum overn:

Ve f f ren I
1-loop L5

1

32p2 (
n50

nmax F2
1

2
m2~0!mn

21
1

4
m4~0!1OS 1

n2D G .

~26!

As it is seen, only leading (;mn
2) and subleading

(mn-independent! terms are divergent when the summati
over n is performed in the limitnmax→`. The key observa-
tion is that those terms aref independent. Even though th
above sum is divergent, the divergence is a const
w-independent contribution to the effective potential a
therefore will be irrelevant. That happens because there i

e

5 10 15 20 25 30 35

1.01

1.02

1.03

1.04

r

[TeV]φ

n
max

1
R  = 0.7

n

n

max

max

max
n

= 500

= 50

= 20
= 10

λ = 0.1µ = 0.08 TeV

FIG. 1. The ratio defined by Eq.~27! for the w4 theory for k
5nmax/(2R), R51/0.7, m50.08 TeV, l50.1, and the shift pa-
rameterV050.01 TeV4. The curves from the left to the right cor
respond to increasing cutoffs:nmax510,20,50 and 500.
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couplings that could grow withn.9 Of course, the remaining
finite part of the effective potential@denoted in Eq.~26! by
O(1/n2)] depends onw and leads to the genuine effectiv
potential.10 In other words, the decoupling of heavy K
modes takes place as a consequence of renormalizatio
the cosmological constant.

In order to discuss the decoupling more quantitatively
is worth comparing the effective potential obtained with
the cutoff regularization~12! with the one for the minimal
subtraction~23!. One could wish to plot the simple ratio
Ve f f ren I

1-loop L(w)/Ve f f ren
1-loop MS(w). However, it turns out that in the

vicinity of w.0 theMS-renormalized 1-loop contribution t
the effective potential has a zero and the plot of the ratio
very unstable. Fortunately, the value of 1-loop contribut
both to Ve f f ren I

1-loop L(w) and Ve f f ren
1-loop MS(w) is in this region by

far negligible comparing to the tree level contributio
Therefore we will modify the naive ratio as follows:

Since the tree-level potential is the reference point
1-loop corrections therefore we will addVtree(w) both in the
denominator and the numerator.

To eliminate the unwanted irrelevant consta
contributions11 to the effective potentials we will subtrac
Ve f f(0) contributions both in the denominator and the n
merator.

The effective potentials obtained according to the ab
prescription have zeros in the vicinityw.0 that are slightly
misplaced in the denominator and the numerator, there
we introduce a constant shiftV0 in order to screen the insta
bility caused by the zero of the denominator.

So, we will adopt the following ratio to compare the cu
off and dimensional regularization:

r ~k,nmax;w!

[
Vtree~w!1@Ve f f ren I

1-loop L~w!2Ve f f ren I
1-loop L~0!#1V0

Vtree~w!1@Ve f f ren
1-loop MS~w!2Ve f f ren

1-loop MS~0!#1V0

.

~27!

The ratio r 5r (k,nmax;w) is, of course, a function of the
cutoff (L55nmax/R) and the regularization scale (k). In

9In the next section we will discuss in detail the 5D model bas
on U~1! gauge symmetry. We will observe there that mass ma
for the (A5 n ,xn) system is nondiagonal and in fact the off-diagon
entries are of the formnw/R, suggesting that there exist couplin
constants growing withn. However as it will be seen, the determ
nant and the trace of the mass matrix grows asn4/R4 and n2/R2;
therefore even in that case in the limit of largen we shall anticipate
decoupling of heavy modes. The explicit calculations confirm t
expectation.

10The corresponding analogous phenomena could also be fou
the method of DPQ@12#; as it was discussed earlier, an infini
w-independent term was dropped there through differentiation
subsequent integration overE.

11It is especially important in light of the proceeding discussion
the decoupling in the case of the cutoff regularization.
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Fig. 1 we plot r 5r „nmax/(2R),nmax;w… for nmax
510,20,50 and 500, which corresponds to the choice12 of the
regularization scalek5L/2. For a givennmax, the ratior
5r „nmax/(2R),nmax;w… is plotted againstw varying from 0
up to the appropriate cutoffL5nmax/R. Note, however, that
the cutoff corresponding tonmax5500, L5350 TeV, is not
shown for the sake of clarity of the figure. However, it h
been checked that even in this caser remains within the 5%
distance from 1. For the purpose of Fig. 1, we have used
mass parameterm50.08 TeV, the quartic coupling constan
l50.1, and the shiftV050.01 TeV4.13 It has been checked
that for 0<V0<1 TeV4 the ratio r remains below 1.05 for
w*1 TeV even though the shape in the region 1&w
&5 TeV is influenced by the choice ofV0. However, it
should be emphasized that forw*5 TeV ~for the stability we
will discuss the effective potential for field strengthw
@1 TeV) the curves are almost insensitive toV0.

As it is seen from the plot, even though for smallw,
r (k,nmax;w) is a monotonically rising function ofnmax
~moving from the bottom to the top of the figure the subs
quent curves correspond to increasingnmax), nevertheless,
eventually for largerw, r approaches 1 closer for curve
corresponding to largernmax. In fact, this is what we should
expect if the effective potential calculated in the cutoff a
MS schemes were close.

Conclusion that can be drawn from this picture is that
cutoff and the minimal subtraction schemes are consis
and the dependence on the cutoff is very weak. One sho
however remember that we have adopted two different ren
malization schemes and therefore the agreement is neve
pected to be perfect.

III. U „1… MODEL

In this section we will construct a simple 5D model th
could successfully mimic the SM as far as the shape of
effective potential is concerned. For a gauge group
choose U~1!. In order to break spontaneously the symmet
we will introduce a complex scalarf. To have a zero-mode
massive fermion~the analog of the top quark! we will have
to introduce two 5D fermions:c and l. The model is de-
fined by the Lagrangian density

L~x,y!52
1

4
FMNFMN1~DMf!!~DMf!

2V(5)~f!1L GF
(5)1L f

(5) , ~28!

where

FMN~x,y![]MAN~x,y!2]NAM~x,y!

DM[]M1 ie5AM~x,y!,

d
x
l

s

in

d

f

12Other possible choices ofk, e.g.k5w, do not change results
for r substantially. Note that here we have decided to adopt
same cutoff for 4D and 5D:L55L.

13If we plotted r for w*1 TeV ~that is large enough to pass th
zero of the denominator! we would not need to introduceV0.
2-6
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V(5)~f![m2ufu21l5ufu4,

f~x,y!5
1

A2
@h~x,y!1 ix~x,y!#,

y[x4,

whereAM is a gauge field andDM is a covariant derivative
We will assume that the tree-level potential is stable, sol5
.0.

Hereafter we will adopt the following form of the gaug
fixing Lagrangian:14

L GF
(5)52

1

2j F ]mAm2jS ]5A51e5

vx

A2pR
D G 2

, ~29!

wherev5^h0& is the vacuum expectation value of the ze
mode of the scalarh(x,y).

In order to generate massive zero modes for fermions
will introduce here two fermion fields, one charged@c(x,y)#
and one neutral@l(x,y)# under U~1!:

L f
(5)5c̄~x,y!gM@ i ]M1e5AM#c~x,y!1l̄~x,y!gMi ]M

3l~x,y!2@g5c̄~x,y!f~x,y!l~x,y!1H.c.#. ~30!

The action of the U~1! local symmetry is defined by

f~x,y!→e2 ie5u(x,y)f~x,y!

c~x,y!→e2 ie5u(x,y)c~x,y!

l~x,y!→l~x,y!

AM~x,y!→AM~x,y!1]Mu~x,y!. ~31!

The compactification of the extra dimension is specified
the following S1/Z2 orbifold conditions.

All the fields and the gauge functionu(x,y) remain un-
changed under a shifty→y12pR,

Am~x,y!5Am~x,2y!, A5~x,y!52A5~x,2y!,

f~x,y!5f~x,2y!,

cR~x,y!5cR~x,2y!, cL~x,y!52cL~x,2y!,

lL~x,y!5lL~x,2y!, lR~x,y!52lR~x,2y!,

u~x,y!5u~x,2y!. ~32!

KK expansions read

14For discussion of the Lorentz noncovariantRj gauges, see Refs
@19,20#.
12400
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Am~x,y!5
1

A2pR
FA0

m~x!1A2(
n51

`

An
m~x!cos~mny!G ,

A5~x,y!5
1

ApR
(
n50

`

An
5~x!sin~mny!,

f~x,y!5
1

ApR
(
n50

`

fn~x!cos~mny!, ~33!

c~x,y!5
1

A2pR
H cR 0~x!1A2(

n51

`

@cRn~x!cos~mny!

1cLn~x!sin~mny!#J ,

l~x,y!5
1

A2pR
H lL 0~x!1A2(

n51

`

@lLn~x!cos~mny!

1lRn~x!sin~mny!#J ,

u~x,y!5
1

ApR
(
n50

`

un~x!cos~mny!,

wheremn[n/R, subscriptsR andL are referring to 4D chi-
ral fields and it is assumed thatA5 050. In the following we
will adopt the following notation for the real and imagina
parts offn(x):

f05
1

2
~h01 ix0!, fnÞ05

1

A2
~hn1 ixn!. ~34!

It is worth noticing that after compactification the 4D La
grangian expressed in terms of KK modes is still gauge
variant and theU(1) transformations of the gauge fields re

Anm~x!→H A0m~x!1A2]mu0~x! for n50,

Anm~x!1]mun~x! for nÞ0,
~35!

An5~x!→An5~x!2
n

R
un~x!. ~36!

The corresponding infinitesimal transformation forfn(x) is
the following:

f0~x!→f0~x!2
ie

A2
X2u0~x!f0~x!1 (

m51

`

um~x!fm~x!C,
fn~x!→fn~x!2

ie

A2
(

m,l 50

`

Anmlum~x!f l~x!, ~37!

whereAnml is defined in Appendix A ande[e5 /A2pR.
The goal of this paper is to investigate stability of th

ground state of the model. Therefore first we have to de
2-7
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mine the tree level potential; the next step will be to calcul
the effective potential at the 1-loop level. Expanding in K
modes and integrating overy yields the following 4D poten-
tial:

V(4)5 (
n50

`

@mn
21m2#fn

!fn1m2f0
!f0

1
l

2 (
n,m,k,l 50

`

Bnmklfn
!fmfk

!f l

1
e2

2 (
n,m,k,l 50

`

DnmklA5 nA5 mfk
!f l

2
ie

A2
(

n,m,k50

`

CnmkmnA5 m~fn
!fk2fk

!fn!

1
j

2 (
n50

`

~mnA5 n1vexn!2, ~38!

wherel[l5 /(2pR) and the coefficientsBnmkl ,Dnmkl and
Cnmk are defined in Appendix A.

In spite of the fact that the potential looks complicated
is easy to see that forl5.0 the potential is positive definite
in the limit of ufnu2→` and therefore the ground state
stable. The 4D potential emerges from the 5D potential,
Higgs-boson kinetic term and the gauge fixing term:

V(4)5E
o

2pR

dyFV5~x,y!1~D5f!!~D5f!

1
j

2 S ]5A51e5

vx

A2pR
D 2G , ~39!

whereD5f is the fifth component of the covariant derivativ
of the Higgs field and the last term emerges from the ga
fixing term. So, it is clear that the 4D potential must
positive definite as it is an integral over a positive functio
In the following we will investigate 1-loop corrections to th
effective potential.

We will consider the casem2,0; then it is easy to see
that if 2m2<1/R2 only the zero modeh0(x) can develop a
nonzero vacuum expectation value, and at the tree leve
get

^h0~x!&[v5A2m2

l
. ~40!

We will calculate the effective potential in the direction
the tree level vacuum:x05hn5xn5A5n50 andh0Þ0. The
Landau gauge defined here byj50 will be adopted hereaf
ter.

We will expand the 4D Lagrangian aroundx05hn5xn
5A5n50 andh0→h01w, wherew is the classical constan
~in 4D! external background field for the calculation of on
12400
e

t

e

e
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e

loop Green’s functions that are necessary for the effec
potential. Then in the Landau gauge the following ma
terms are obtained:

mh0

2 [
]2V

]h0
2
5m213lw2,

mx0

2 [
]2V

]x0
2
5m21lw2,

mhnhm

2 [
]2V

]hn]hm
5~mn

21m213lw2!dnm[mhn

2 dnm ,

F ]2V

]A5 n]A5 m

]2V

]A5 n]xm

]2V

]A5 m]xn

]2V

]xn]xm

G
5F e2w2 2emnw

2emnw ~mn
21m21lw2!Gdnm .

In the following part of this section we will show separa
contributions to the effective potential calculated in theMS
scheme in dimensional regularization.

Let us start with the (A5n ,xm) system. The mixing in the
mass matrix forA5n andxm causes some technical difficu
ties that are described in Appendix B. The final result for t
(A5n ,xm) system is the following:

Ve f f
(A5 ,x)

5
1

2
~Vmix

(`) 1Vmix
(R) 2V0 f inite

(A0)
2V0 f inite

(x0)
!, ~41!

whereVmix
(`) andVmix

(R) are the analogs of the ‘‘divergent’’ an
finite contributions to the effective potential~21! in the case
of mixing:

Vmix
(`) 52

y1/2~y221!x5

212A2p5R4
FS 2

1

4
,
7

4
;2;12

1

y2D , ~42!

Vmix
(R) 52

y3/2~11y!1/4x7/2

29p5ApR4
Li 3/2~e2xA11y!, ~43!

where F(a,b;c;z) is the hypergeometric function,

x[2pRAa and y[
2Ab

a
~44!

for a andb defined in Eq.~B7!. V0 f inite
(A0) andV0 f inite

(x0) are the
finite parts of scalar contributions@see Eq.~21!# to the effec-
tive potential calculated for the zero mode vector boson m
(mA0

2 5e2w2) and Goldstone boson (mx0

2 5m21lw2), re-

spectively.
All neutral scalar modes contribute to the effective pote

tial as follows:
2-8
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Ve f f
(s) ~w!5

1

2
@V(`)~mh0

2 !1V(R)~mh0

2 !1V0 f inite~mh0

2 !#

1V0 f inite~mx0

2 !1Ve f f
(A5 ,x)

~w!. ~45!

For the vector boson contribution we get

Ve f f
(v)~w!5

3

2
@V(`)~mA0

2 !1V(R)~mA0

2 !1V0 f inite
v ~mA0

2 !#,

~46!

where the zero-mode vector contribution reads

V0
v~m2!5

1

64p2
m4~w!H 2CUV1 lnS m2~w!

k2 D 2
5

6J ,

~47!

andmAn

2 5mn
21e2w2.

After KK expansion and integration overy the 4D fermi-
onic Lagrangian reads~see Ref.@18# for a similar construc-
tion!

L f
(4)5 f 0̄~ igm]m2mf 0! f 01 (

n51

`

@j n̄igm]mjn2j n̄Mnjn#,

~48!

wheremf 0
5gw/A2, g[g5 /A2pR, mn5n/R and

f 05cR 01lL 0 , jn5S cRn1cLn

lRn1lLn
D ,

Mn5S 2mn mf 0

mf 0 1mn
D . ~49!

After diagonalization the fermionic mass matrix reads

M5S 2~mn
21mf 0

2 !1/2 0

0 ~mn
21mf 0

2 !1/2D . ~50!

So, we have two fermions degenerate in masses~the minus
in front of the upper component mass can be remo
through a chiral rotation!.

Fermions~no color degrees of freedom included! contrib-
ute to the effective potential as follows:

Ve f f
( f ) ~w!524V0 f inite~mf 0

2 !2
8

2
@V(`)~mf 0

2 !

1V(R)~mf 0

2 !2V0 f inite~mf 0

2 !#, ~51!

for mf n

2 5mn
21mf 0

2 .

Eventually, the total 1-loop effective potential is given b
the following formula:

Ve f f
1-loop5Vtree1Ve f f

(s) 1Ve f f
(v)1Ve f f

( f ) , ~52!

where
12400
d

Vtree~w!5
m2

2
w21

l

4
w4. ~53!

IV. RESULTS

In order to mimic the SM we have adopted the followin
parameters for the plots:e5A4p/137, v50.246 TeV, the
fermion zero-mode massmf 050.150 TeV and the renormal
ization scalek50.1 TeV. We will adopt the asymptotic for
mula for Vmix

(R) given in Eq.~B13!, however it should be em
phasized that it provides an excellent approximation in
whole parameter range that is of interest here.

It is seen from the plots that effects of nonzero KK mod
are very dramatic~see Figs. 2,3 and 4,5!. For instance, for
mh0

50.10 TeV andR2150.3 TeV the instability scale is

shifted down from 4.83105 TeV to 3.6 TeV. The model is
much less stable as a consequence of the presence of th
modes. Closer inspection shows that the result is triggere
the fermionic contribution to the 4D effective potential an
the leading contribution emerges fromV(`). Note that since
we wished to construct a model that would posses a z
mode massive fermion therefore it was necessary to in
duce the extra 5D fermion. As a consequence the model c

1. · 10 5 2. · 10 5 3. · 10 5 4. · 10 5 5. · 10 5

2·10 18

4·10 18

6·10 18

8·10 18

V

SM  m

eff

h0

[TeV

φ[

4
]

TeV]

= 0.10 TeV

FIG. 2. The zero-mode~SM-like! 1-loop effective potential for
mh0

50.10 TeV in the dimensional regularization.

2 4 6 8 10

2

4

6

8

10

φ[ TeV]

V
eff

5D       m
h0

R

R

R

1

1

1

][TeV
4

= 0.7 TeV

= 0.5 TeV

= 0.3 TeV

  = 0.10 TeV

FIG. 3. The full 1-loop effective potential in the dimension
regularization for mh0

50.10 TeV. The compactification radiu
R2150.3,0.5,0.7 TeV was adopted~higher curves correspond t
smallerR). All other parameters are specified in the text.
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tains after reduction to 4D doubly degenerated Di
fermions for each KK mode that enhances the fermionic c
tributions and is the source of the extra factor of 2 in front
the second term in Eq.~51!. If the factor 2 is removed~just to
test the effect of fermion doubling! the result changes and fo
instance formh0

50.10 TeV andR2150.3 TeV the instabil-

ity appears at 6.5 TeV instead of 3.6 TeV, obviously t
model would be more stable. It turns out that for our mo
~with full spectrum of fermions! the fermionic KK contribu-
tion is by a factor of 2.5–5 larger~for w.0.5–3.5 TeV at
mh0

50.10 TeV andR2150.3 TeV) than the zero-mode con
tribution. As a consequence the tree level potential be
down more rapidly for much lower field strengths than f
the zero mode only.

V. CONCLUSIONS

We have discussed the effective potential
4-dimensional models that originate from 5-dimensio
ones reduced down to 4 dimensions. The cutoff and the
mensional regularization schemes were discussed and
pared. It was shown that the prescriptions are consistent
each other and lead to the same physical consequences~see
Fig. 1!. It turned out that when the number of KK mode
included (nmax) varies between 10 and 500, the effecti
potential calculated within the cutoff regularization acco
panied by the on-shell renormalization is never farther th
5% away from the potential found in the dimensional reg
larization withMS.

In order to take into account nondiagonal mass matri
we have generalized the standard technique for the calc
tion of KK contributions to the effective potential develope
by Delgado, Pomarol and Quiro´s in Ref.@12#. We have con-
structed a simple U~1! 5-dimensional model containin
gauge boson, a complex scalar and two fermions. The m
parameters were adjusted, so that the model should m
5-dimensional extension of the standard model. The one-l
effective potential for the model was calculated adopting
dimensional regularization with theMS renormalization. As
in the standard model the effective potential turned out to
unbounded from below as a consequence of fermionic c
tributions. It has been found that the presence of the towe

2·10 9 4·10 9 6·10 9 8·10 9 1·10 101.2·10 10

5·10 35

1·10 36

1.5·10 36

2·10 36

2.5·10 36

V

SM  m

eff

h0

[TeV

φ[

4
]

TeV]

                = 0.12 TeV

FIG. 4. The zero-mode~SM-like! 1-loop effective potential for
mh0

50.12 TeV in the dimensional regularization.
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fermionic KK modes leads to a major modification of th
effective potential and in particular could substantially low
the scale of instability. For instance, formh0

50.10 TeV and

R2150.3 TeV the instability scale is shifted down from th
standard model value 4.83105 TeV to 3.6 TeV. The model
is much less stable as a consequence of the presence o
KK modes. The same qualitative behavior of the effect
potential is expected for the true 5-dimensional extension
the standard model. The order of magnitude for the insta
ity scale should not differ very much from the results pr
sented here, however for a definite prediction for the ins
bility scale as a function of the Higgs-boson mass
dedicated study is necessary@21#.
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APPENDIX A

The integrals used in the text:

E
0

2pR

cos~mny!dy5~2pR!dn,0 ,

E
0

2pR

sin~mny!dy50,

E
0

2pR

cos~mny!cos~mmy!dy5H ~pR!dn,m for n,mÞ0,

2pR for n,m50,

2 4 6 8 10 12 14

20

40

60

80

100

φ[ TeV]

V
eff

5D       m
h0

R
1

][TeV
4

R

R
1

1

  = 0.12 TeV

= 0.7 TeV

= 0.5 TeV

= 0.3 TeV

FIG. 5. The full 1-loop effective potential in the dimension
regularization for mh0

50.12 TeV. The compactification radiu
R2150.3,0.5,0.7 TeV was adopted~higher curves correspond t
smallerR). All other parameters are specified in the text.
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E
0

2pR

sin~mny!sin~mmy!dy5H ~pR!dn,m for n,mÞ0,

0 for n,m50,

E
0

2pR

sin~mny!cos~mmy!dy50,

E
0

2pR

cos~mny!cos~mmy!cos~mly!dy5
pR

2
Anml ,

E
0

2pR

sin~mny!sin~mmy!cos~mly!dy5
pR

2
Cnml ,

E
0

2pR

cos~mny!cos~mmy!sin~mly!dy50,

E
0

2pR

cos~mny!cos~mmy!cos~mky!cos~mly!dy5
pR

4
Bnmkl ,

E
0

2pR

sin~mny!sin~mmy!cos~mky!cos~mly!dy5
pR

4
Dnmkl ,

~A1!

where

Anml[d l ,n1m1d l ,n2m1d l ,2n1m1d l ,2n2m ,

Cnml[2d l ,n1m1d l ,n2m1d l ,2n1m2d l ,2n2m ,

Bnmkl[d l ,2n2m1k1d l ,n1m2k1d l ,2n1m1k

1d l ,n2m2k1d l ,n2m1k1d l ,2n1m2k

1d l ,n1m1k1d l ,2n2m2k ,

Dnmkl[d l ,2n1m2k1d l ,2n1m1k1d l ,n2m1k

1d l ,n2m2k2d l ,n1m2k2d l ,n1m1k

2d l ,2n2m1k2d l ,2n2m2k . ~A2!

APPENDIX B

Since in the case of mixing between KK modes the st
dard technique developed in Ref.@12# for a calculation of the
effective potential cannot be applied directly, we present h
some details of the derivation that leads to the result sho
in Eq. ~41!. In a case of nondiagonal mass matrixM2 we
have to consider the following form of the effective potent
in Euclidean space:

V~w!5
1

2
TrH E d4p

~2p!4 (
n52`

`

ln@ l 2~p21M2!#J ,

~B1!

where M is in general a nondiagonal mass matrix for K
modes and we have restricted ourselves to the no-shift c
v50. For the (A5 n ,xn) system we have
12400
-

re
n

l

se:

M25S e2w2 2ewmn

2ewmn m21lw21mn
2D . ~B2!

Going to the diagonal form ofM2 it is easy to see that

Tr$ ln@ l 2~p21M2!#%5 ln@ l 4~p41p2Tr M21DetM2!#.
~B3!

Since

Tr M25e2w21m21lw21mn
2

and

DetM25e2w2~m21lw2! ~B4!

we obtain eventually

Tr$ ln@ l 2~p21M2!#%5 ln@ l 2E21n2p2#, ~B5!

where irrelevant constant terms have been dropped and

E25p21a1
b

p2
, ~B6!

with

a5e2w21m21lw2 and b5e2w2~m21lw2!.
~B7!

Following the method adopted for diagonal mass matric
one needs to differentiateW[ 1

2 (n52`
` ln@(lE)21n2p2# with

respect toE, then trade the summation for a contour integ
and eventually integrate overE. The result is

W5 lE1 ln~12e22lE!1const. ~B8!

The term that is ultraviolet divergent for a cutoff regulariz
tion emerges from the integral of the first term in Eq.~B8!:

Vmix
(`) 5 l E d4p

~2p!4
Ap21a1

b

p2
. ~B9!

The compactification radius dependent contribution cons
of the integral of the second term in Eq.~B8!:

Vmix
(R) 5E d4p

~2p!4
ln~12e22lE!. ~B10!

The following formula will be adopted:

E
0

` xa21dx

~ax212bx1c!r
5a2a/2ca/22rB~a,2r2a!

3FS a

2
,r2

a

2
;r1

1

2
;12

b2

acD ,

~B11!
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where B(x,y) and F(a,b;c;z) are the Euler beta function
and hypergeometric function, respectively. Using the ab
result one can show that for the dimensional regulariza
the integral in Eq.~B9! is finite in the limit n→4 and the
corresponding potential reads15

Vmix
(`) 52

y1/2~y221!x5

212A2p5R4
FS 2

1

4
,
7

4
;2;12

1

y2D , ~B12!

wherex andy are defined in the main text, see Eq.~44!.
The integral Vmix

(R) 5*@d4p/(2p)4# ln(12e22lE) is more
difficult to perform, so we will adopt an asymptotic expa

15It could be verified that the following result reproduces the f
mula ~17! in the limit b→0.
. D

B

z,

,

12400
e
n

sion in the limit 2pRw→` that is an excellent approxima
tion in the region of our interest.16 The result reads

Vmix
(R) .2

y3/2~11y!1/4x7/2

29p5ApR4
Li 3/2~e2xA11y!. ~B13!

Eventually, the contribution to the effective potential fro
the (A5 n ,xn) system is the following:

Ve f f
(A5 ,x)

5
1

2
~Vmix

(`) 1Vmix
(R) 2V0 f inite

(A0)
2V0 f inite

(x0)
!, ~B14!

whereV0 f inite
(A0) andV0 f inite

(x0) are the finite parts of scalar con
tributions @see Eq.~21!# to the effective potential calculate
for the zero mode vector boson mass (mA0

2 5e2w2) and

Goldstone boson (mx0

2 5m21lw2), respectively.

-

16Since we are interested in the stability of the vacuum, it is the
fore enough to know the shape of the effective potential forw;few
TeV, which turns out to be sufficient for the application of th
asymptotic expansion of the integral.
.
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