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Curvaton hypothesis and theh problem of quintessential inflation, with and without branes
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It is argued why, contrary to expectations, steep brane-inflation cannot really help in overcoming theh
problem of quintessential inflation model building. In contrast it is shown that the problem is substantially
ameliorated under the curvaton hypothesis. This is quantified by considering possible modular quintessential
inflationary models in the context of both standard and brane cosmology.
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I. INTRODUCTION

Recent high redshift supernova type Ia~SN-Ia! observa-
tions suggest that the Universe at present is undergoing
celerated expansion@1#. These findings are consistent wi
the latest precise observations of the anisotropy in the cos
microwave background radiation~CMBR! @2# and also with
the observations of the large scale structure~LSS! distribu-
tion of galactic clusters and superclusters@3#. Consequently,
modern cosmology seems to have reached a point of con
dance, which may be characterized by the following: W
seem to live on a spatially flat, homogeneous and isotro
universe which, at present, is comprised by about 1/3
pressureless matter~dark matter mostly! and 2/3 by some
other substance, with negative pressure, referred to as
energy. The nature of this dark energy, however, rema
elusive.

The above picture is in excellent agreement with the
flationary paradigm, which was initially introduced to solv
the horizon and flatness problems of the standard hot
bang~SHBB! ~and some other problems that were though
be important at the time, such as the monopole proble!
@4,5#. Inflation, in general, predicts a spatially flat univer
and also provides a superhorizon spectrum of curvature
turbations that result in adiabatic density perturbations wh
can successfully seed the formation of the observed LSS
the CMBR anisotropy. The spectrum of the curvature per
bations is predicted to be very near scale invariance, wh
agrees remarkably with the latest WMAP data. Hence,
inflationary paradigm is now considered by most cosmo
gists as the necessary extension of the SHBB, in orde
form the standard model of cosmology.

The successes of the inflationary paradigm have m
vated many authors to consider a similar type of solution
the dark energy problem at present@6#. Thus, it has been
suggested that the current accelerated expansion of the
verse is due to a late-time inflationary period driven by
potential density of a scalar fieldQ, called quintessence@the
fifth element, added to cold dark matter, hot dark ma
~neutrinos!, baryons and photons# @7#. The aim for introduc-
ing quintessence was to avoid resurrecting the embarras
issue of the cosmological constantL, which, if called upon
to account for the dark energy, would have to be fine-tun
to the incredible level ofL;102120M P

2 , whereM P is the
Planck mass, i.e. the natural scale for Einstein’sL. ~For a
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review on the cosmological constant issue see@8#. Also see
@9# on dark energy in general.!

However, it was soon realized that quintessence suffe
from its own fine-tuning problems@10#. Indeed, in fairly gen-
eral grounds it can be shown that at presentQ;M P ~if origi-
nally at zero! with a massmQ;10233 eV. Even though this
may be an effective mass associated with the local curva
of the potential and not with some fine-tuned parameter
that, at the classical level, there is no tuning problem, it is
still hard to understand in the context of supergravity the
ries, where we expect the flatness of the potential to be lif
on internal-space distances of the order ofM P because of the
action of non-renormalizable terms of the formVNR
;Q4(nln(Q/M P)n, with ln&1 andn.0 ~note, however,
that a similar problem exists for the flatness of the inflatio
ary potential itself@11#!.1 In addition, the introduction of yet
again another unobserved scalar field~on top of the inflaton
field which drives the early Universe inflationary perio!
seems unappealing. Finally, a rolling scalar field introdu
another tuning problem, namely that of its initial condition

A compelling way to overcome the difficulties of th
quintessence scenario is to link it with the rather succes
inflationary paradigm. This is quite natural since both infl
tion and quintessence are based on the same idea; tha
Universe undergoes accelerated expansion when domin
by the potential density of a scalar field, which rolls down
almost flat potential. This unified approach has been nam
quintessential inflation@12# and is attained by identifyingQ
with the inflaton fieldf. In quintessential inflation the scala
potential off is such that it causes two phases of accelera
expansion, one at early and the other at late times.

However, the task of formulating such a potential is n
easy and this is why not many successful attempts exis
the literature. Early such considerations include the pione
ing work of Ref.@6# and also@13# and@14,15#, whereas more
recent attempts are@12#, where the name quintessential in
flation was coined, and@16–21#. Successful quintessentia
inflation has to account not only for the requirements of b

1In order to avoid this problem one has to consider fields, w
potential whose flatness is protected by some symmetry, e.g. ps
Nambu-Goldstone bosons, or fields that correspond to direct
unperturbed by supergravity~Kähler! corrections, such as the
moduli fields of string theory.
©2003 The American Physical Society06-1
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inflation and quintessence@22# but also for a number of ad
ditional considerations. In particular, the minimum of t
potential~taken to be zero, otherwise there is no advant
over the cosmological constant alternative! must not have
been reached yet by the rolling scalar field, in order for
residual potential density not to be zero at present. This
quirement is typically satisfied by potentials, which ha
their minimum displaced at infinity,V(f→`)→0, a feature
referred to as ‘‘quintessential tail.’’ Thus, quintessential
flation is a non-oscillatory inflationary model@23#. Another
requirement is that of a ‘‘sterile’’ inflaton, whose coupling
to the standard model~SM! particles are strongly suppresse
This is necessary in order to ensure the survival of the in
ton until today, so that it can become quintessence. Thus
quintessential inflation the inflaton field does not decay at
end of the inflationary period into a thermal bath of S
particles. Instead, the reheating of the Universe is achie
through gravitational particle production during inflation,
process refereed to as gravitational reheating@15,24#. Be-
cause gravitational reheating can be rather inefficient,
Universe remainsf-dominated after the end of inflation, th
time by the kinetic energy density of the scalar field. Th
period, called kination@15# ~or deflation@14#!, soon comes to
an end and the Universe enters the radiation dominated
riod of the SHBB. Note here that a sterile inflaton avoids
danger of violation of the equivalence principle at prese
associated with coupled quintessence@25#, where the ultra-
light Q corresponds to a long-range force.

In the models@12,16,17# the plethora of constraints an
requirements which are to be satisfied by quintessentia
flation is managed through the introduction of a multi-bran
scalar potential, that is a potential that changes form w
the field moves from the inflationary to the quintessen
part of its evolution. This change is either fixed ‘‘by hand
~such as in the original model@12#! or it is due to a potentia
with different terms that dominate each at a time@16# or it is
an outcome of a phase transition, arranged through s
interaction of the inflaton with some other scalar fields@17#.
Clearly this requires the introduction of a number of ma
scales and couplings, which have to be tuned accordingl
achieve the desired results. Thus, in such models it is d
cult to dispense with the fine-tuning problems of quinte
sence. Attempts to design a single-branch potential in@18#,
which incorporates natural-sized mass scales and coupl
have provided existence proofs, but the class of poten
presented are rather complicated. This is due to the so-ca
h problem of quintessential inflation: Namely the fact tha
is almost impossible to formulate a successful quintesse
inflationary model with an inflationary scale high enough
satisfy the requirements of big bang nucleosynthesis~BBN!
but which neither results in strong deviations from scale
variance in the curvature perturbations spectrum, nor do
need to go over to super-Planckian inflationary scale to so
the horizon problem. Theh problem is due to the fact tha
between the inflationary plateau and the quintessential
there is a difference of over a hundred orders of magnitu
To prepare for such an abysmal ‘‘dive’’ the scalar poten
cannot help being strongly curved near the end of inflati
12350
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which destroys the scale invariance of the curvature per
bations.

It has been thought that this problem is alleviated wh
considering inflation in the context of brane-cosmology.
deed, brane-cosmology allows for overdamped steep in
tion @26#, which dispenses with the need for an inflationa
plateau and, therefore, a curved potential seems no lo
necessary. However, attempts to use this idea have still
countered difficulties~see for example@19,20#! and the most
promising results were achieved again with a multibran
potential~a sum of exponential terms! @21#. In this paper we
explain why. It seems that, despite the advantages of s
inflation, brane cosmology backreacts by creating proble
in the kination period. Indeed, we will show that the ove
damping effect due to the modified dynamics of the U
verse, inhibits the efficiency of kination in achieving a sm
late-time potential density.

Fortunately, there is another solution to theh problem of
quintessential inflation. Indeed, we show that theh problem
is substantially ameliorated when considering inflation in
context of the curvaton hypothesis@27#.2 As shown recently
in @29#, the curvaton hypothesis liberates inflationary mod
from the strains of the so-calledCOBE constraint, i.e. the
requirement that the amplification of the inflaton’s quantu
fluctuations during inflation should generate a curvature p
turbation spectrum with amplitude that matches the obse
tions of the Cosmic Background Explorer~COBE!. The cur-
vaton hypothesis attributes the generation of the curva
perturbations to another scalar field, called the curvat
changing, thus, theCOBE constraint into an upper bound. I
@29# it has been shown that this effect is rather beneficia
many models of inflation well motivated by particle physic
Here, we demonstrate that it may assist also quintesse
inflation in overcoming theh problem. This is because, i
the context of the curvaton hypothesis, a curved poten
does not necessarily destroy the scale invariance of the
vature perturbation spectrum. Moreover, it may allow f
significant reduction of the inflationary scale, which al
proves beneficial for quintessential inflation.

The paper is organized as follows. In Sec. II the dynam
of the Universe is briefly layed out both in the case of co
ventional and also brane cosmology. In Sec. III we look
more detail into the period of kination, which is crucial fo
quintessential inflation. In Sec. IV we discuss the motivatio
characteristics and merits of the exponential quintessen
tail, which we adopt throughout the paper. In Sec. V w
describe theh problem and demonstrate that brane cosm
ogy cannot overcome it because it inhibits kination. In ord
to show this we calculate the constraints imposed on qu
essential inflation by the BBN and coincidence requireme
We also study the constraints due to the possible overpro
tion of gravity waves. In Sec. VI we present the alternat
idea in order to overcome theh problem, namely the curva
ton hypothesis. In Sec. VII we demonstrate the curvaton
erating effects on a variant of modular inflation in the conte
of conventional cosmology. We calculate in detail the

2For early consideration of this idea see also@28#.
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lowed parameter space and show that all the relevant req
ments are met. In Sec. VIII we investigate the curvaton
eration effects in the case of brane cosmology, using
exponential potential. We find that successful quintessen
inflation is possible in a certain range of values for the bra
tension. We carefully calculate the allowed parameter sp
and show how all the requirements and constraints are s
fied. Finally, in Sec. IX we discuss our results and pres
our conclusions. Throughout the paper we use units such
c5\51 in which Newton’s gravitational constant isG
5M P

22 , whereM P51.2231019 GeV is the Planck mass.

II. DYNAMICS WITH AND WITHOUT BRANES

To set the stage for quintessential inflation let us brie
discuss the dynamics of the Universe in both conventio
and brane cosmology.

The content of the Universe is usually modeled as a c
lection of perfect fluids. The background fluid, with dens
rB[rg1rmis comprised of relativistic matter~or radiation!,
with densityrg and pressurepg5 1

3 rg , and non-relativistic
matter ~or just matter!, with density rm and pressurepm
50. In addition we will consider a homogeneous scalar fi
f, which can be treated as a perfect fluid with densityrf
[rkin1V and pressurepf[rkin2V, whereV5V(f) is the
potential density andrkin[

1
2 ḟ2 is the kinetic density off

respectively, with the dot denoting derivative with respect
the cosmic timet.

For every component of the Universe content one defi
the baryotropic parameter aswi[pi /r i . Energy momentum
conservation demands

d~a3r!52pd~a3! ~1!

which, for decoupled fluids with constantwi , gives3

r i}a23(11wi ) ~2!

where a is the scale factor of the Universe. To study t
dynamics of the Universe one also needs the equation
motion of the scalar field:

f̈13Hḟ1V850 ~3!

where H[ȧ/a is the Hubble parameter and the prime d
notes derivative with respect tof.

In standard cosmology the global geometry of the U
verse is described by the Friedmann-Robertson-Wa
~FRW! metric. The temporal component of the Einste
equations for this metric is the Friedmann equation:

3Here it should be mentioned that a rolling scalar field is char
terized, in general, by a varying baryotropic parameterwf . How-
ever, in the following we will encounter only the extreme cas
where the scalar field is either frozen or it is in free-fall roll. In bo
these caseswf is constant.
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3mP
2

~4!

where mP[M P /A8p is the reduced Planck mass and w
have considered a spatially flat Universe, according to ob
vations. Using Eqs.~1! and ~4! one obtains

H5
2t21

3~11w!
, a}t2/@3(11w)#, r5

4

3~11w!2 S mP

t D 2

~5!

wherew corresponds to the dominant component of the U
verse content and, in the above,wÞ21. In the case of cos-
mological constant dominationr5mP

2L5const so that Eq.
~2! gives w521. Then Eq.~4! becomesH25 1

3 L5const
and, therefore,a}exp(Ht), i.e. the Universe undergoes pu
de Sitter inflation.

The above dynamics is substantially modified if one co
siders a Universe with at least one large extra dimension
particular we will concern ourselves with the, so-called, s
ond Randall-Sundrum scenario, in which our Universe i
four-dimensional submanifold ~brane! of a higher-
dimensional space-time. Matter fields are confined on
brane but gravity can propagate also in the extra dimens
~bulk!. The simplest realization of this scenario consider
five-dimensional space-time, i.e. one large extra dimens
In this case standard cosmology can be recovered in
energies if one considers that the density and pressure o
brane are given byrb[r1l andpb[r2l respectively, i.e.
the brane is endowed with a constant tensionl @30#. The
brane tensionl is related to the fundamental~5-dimensional!
Planck massM5 by

l5
3

4p S M5
3

M P
D 2

. ~6!

Then the analog to the Friedmann equation is@31#

H25
1

3
L1

r

3mP
2 S 11

r

2l D1
E
a4

~7!

whereE is a constant of integration, related to bulk gravit
tional waves or black holes in the vicinity of the brane~dark
radiation!, which is usually inflated away during the first fe
e-foldings of brane inflation. The 4-dimensional cosmolog
cal constantL is due to both the brane tensionl and the
~negative! bulk cosmological constantL5 . L can be tuned to
zero by demandingl52L5mP

2 . Similarly to conventional
thinking this L tuning is considered to be due to some u
known symmetry. In view of the above we can recast Eq.~7!
as

H25
r

3mP
2 S 11

r

2l D ~8!

-

s
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KONSTANTINOS DIMOPOULOS PHYSICAL REVIEW D68, 123506 ~2003!
which reduces to the usual Friedmann equation~4! when r
!l, so that standard cosmology is recovered. However,
energiesr@l the above becomes

H5
r

A6lmP

. ~9!

As a result of the above, the dynamics of the Universe
modified for energy higher than the brane tension. Since
matter fields are confined on the brane, energy conserva
for matter and radiation on the brane is retained and Eq.~1!
is still valid. Then, in view of Eq.~9!, we obtain

H5
t21

3~11w!
, a}t1/@3(11w)#, r5

A6l

3~11w! S mP

t D .

~10!

From Eq.~8! we see that the effect of the extra dimensi
is to increase the rate of Hubble expansion for energy la
thanl. This will also affect the evolution of the scalar fie
f because Eq.~3! shows thatH generates a friction term fo
the roll-down of the field.

To complete our discussion for the Universe dynamics
need to mention that the temperature of the Universe is
any time, given by

rg5
p2

30
g~T!T4 ~11!

whereg(T) is the number of relativistic degrees of freedo
that corresponds to the thermal bath of temperatureT. At
high temperaturesg;1022, whereas at presentg053.36.

III. KINATION

Kination is a period of the Universe evolution, whenr is
dominated by the kinetic density of the scalar field@14,15#.
Kination is one of the essential ingredients of quintessen
inflation because it allows the field to rapidly roll down i
potential, reducing its potential density substantially, so t
the huge gap between the inflationary energy density and
density at present is possible to bridge. In order for kinat
to occur it is necessary that the reheating process is
prompt. Fortunately, this is exactly what we expect wh
considering a sterile inflaton.

A. After the end of inflation

1. Gravitational reheating

Since a sterile inflaton field does not decay at the end
inflation, after the inflationary period most of the energy de
sity of the Universe is still in the inflaton. The thermal ba
of the standard hot big bang~SHBB! is due to the gravita-
tional production of particles during inflation. This process
known as gravitational reheating@24#, and results in density
r reh;1022Hend

4 , where ‘‘end’’ denotes the end of inflation
The gravitationally produced particles soon thermalize
that, in view of Eq.~11!, we can define a reheating temper
ture Treh such that
12350
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30
grehTreh

4 ~12!

wheregreh;102 is the number of relativistic degrees of fre
dom at reheating. In the standard model~SM! greh
5106.75. However, in supersymmetric extensions of the
greh is at least twice as large~e.g. in the MSSMgreh
5228.75).

The gravitational reheating temperature is determined
the Gibbons-Hawking temperature in de Sitter space, wh
gives

Treh[aS Hend

2p D ~13!

wherea is the reheating efficiency. For purely gravitation
reheatinga;0.1. However, even tiny couplings of the infla
ton with another field may increasea dramatically@32# and
can even lead to parametric resonance effects~instant pre-
heating@23,33#!, which would result ina@1. The reheating
efficiency will prove crucial to our considerations, so we w
retain it as a free parameter, since it is, in principle, de
mined by the underlying physics of the quintessential infl
tionary model.

In the above we implicitly assumed that the thermaliz
tion of the gravitationally produced particles is instan
neous. This is not really so, which means that the ac
reheating temperature may be somewhat~about an order of
magnitude! smaller than the estimate of Eq.~13!. However,
this will not really affect our treatment because the scaling
rB.rg after the end of inflation does not have to do wi
whetherrg is thermalized or not.

2. The onset of the hot big bang

Gravitational reheating is typically a very inefficient pro
cess so thatrf

end@rB
end. However, because at the end of i

flation Vend.rkin
end, the inflaton soon becomes dominated

its kinetic densityrf.rkin@V, which means thatwf'1
and the Universe is characterized by a stiff equation of st
In this case Eq.~1! suggests thatr}a26. In contrast,rB
.rg}a24, which means that eventually the density of t
background thermal bath will come to dominate the U
verse. At this time the SHBB begins.

Note that, when it is kinetic density dominated, the sca
field becomes entirely oblivious of its potential density as
field equation~3! is dominated by the kinetic terms

f̈13Hḟ.0. ~14!

This means that the scalar field evolution engages int
free-fall behavior, which enables us below to study kinati
in a model independent way.

B. Brane kination

Let us first consider kination in the context of brane co
mology. We assume, therefore, that the inflationary den
scale is larger than the brane tension, i.e.Vend@l. In this
case the Friedmann equation is given by Eq.~9! and the
6-4
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Universe evolves according to Eq.~10!. Then the end of
inflation takes place whenr(tend)5Vend, which gives

tend5Al

6

mP

Vend
. ~15!

Using Eq. ~10! we find that, during kination,a}t1/6.
Therefore, because after inflationr5rkin}a26, we find ḟ
5A2tendVend t21/2, which results in

f~ t !5fend1
4

A6
S l

2Vend
D 1/2SA t

tend
21DmP ~16!

where, without loss of generality, we assumed thatḟ.0.
According to Eqs.~5! and~10! the switch-over to conven

tional cosmology occurs whenr5rl , where

rl5
1

2
l ~17!

which takes place at the time

tl5
2mP

A6l
. ~18!

At this time, Eq.~16! suggests that the field has rolled
the value

fl5fend1
4

A6
S 12A l

2Vend
DmP . ~19!

After tl the Universe evolves according to the stand
FRW cosmology. Thus, usingw51, we find from Eq.~5!

that a}t1/3. Therefore, r}a26 gives ḟ5(2/A6)mP /t.
Hence, fort.tl we find

f~ t !5fend1
2

A6
F2S 12A l

2Vend
D 1 lnS t

tl
D GmP . ~20!

The end of kination occurs whenrkin5rg5 1
2 r* ,where

r* [r(t* ). Using the scaling laws forrkin and for rg it is
easy to find thatt* 5Atendtl(Vend/r reh)

2/3, or, equivalently,
that

t* 5
1

A3

mPVend

r reh
3/2

. ~21!

Employing Eq.~12! we can recast the above as

t* 5
~24p!3

A3a6 S 30

greh
D 3/2l3mP

7

Vend
5

. ~22!

Inserting this into Eq.~20! we find that, by the end o
kination, the field has rolled to
12350
d

f* 5fend1
2

A6
F3 lnS 48p

a2
A 30

greh
D 12S 12A l

2Vend
D

2
7

2
lnS 2Vend

l D1
3

2
lnS mP

4

Vend
D GmP . ~23!

Using Eqs.~5! and~11! we find the temperature at the en
of kination

T* 5
a3

2~12p!2
Agreh

5 S greh

g*
D 1/4 Vend

5/2

l3/2mP
3

~24!

whereg* is the number of relativistic degrees of freedom
the end of kination. This is the temperature at the onset of
SHBB and therefore it has to be constrained by BBN co
siderations: T* .TBBN , where TBBN;1 MeV. However,
here it should be pointed out thatT* is overestimated above
because we have considered an instantaneous transitio
tween inflation and kination. In reality this transition tak
some time so thatt* is somewhat larger and, therefore,T*
turns out about an order of magnitude smaller that the e
mate of Eq.~24! @20#. This will be taken into account when
we apply the BBN constraint below. Note that, typically,T*
is hard to be much larger thanTBBN and, therefore,g*
510.75, which corresponds to the number of relativistic d
grees of freedom just before pair annihilation.

C. Conventional kination

Working in a similar manner we can study kination
conventional cosmology. This timetend is decided by Eq.~5!
and is found to be

tend5
mP

A3Vend

. ~25!

There is a subtlety here which is worth mentioning. T
time tend is not the actual cosmic time interval that corre
sponds to the duration of inflation. In fact,tend is the age the
Universe would have been at the end of inflationwere it
always kinetic density dominated. This means thattend is al-
ways ‘‘normalized’’ according to the evolution stage that t
Universe enters after the end of kination. Note, however, t
there is a difference here between the brane and convent
cases, namely the fact that, for the same cosmic timet and
the samew, the Hubble parameter in conventional cosm
ogy, as given by Eq.~5!, is double the size of the one i
brane cosmology, given by Eq.~10!. This fact reflects itself
in the ‘‘normalization’’ of tend as we will discuss below.

Using Eq.~25! and the scaling ofrkin we find that, during
kination

f~ t !5fend1
2

A6
lnS t

tend
D . ~26!

Let us now estimate the timet* when kination ends. It
turns out that Eq.~21! is still valid in the conventional kina-
tion case. Using this we obtain
6-5
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t* 5
~12p!3

A3a6 S 30

greh
D 3/2 mP

7

Vend
2

~27!

which suggests that

f* 5fend1
2

A6
F3 lnS 12p

a2
A 30

greh
D 1

3

2
lnS mP

4

Vend
D GmP .

~28!

Finally, the temperature at the end of kination is

T* 5
a3

~12p!2
A2greh

5 S greh

g*
D 1/4Vend

mP
3

. ~29!

From the above one can see that the conventional kina
results may be obtained by the brane kination ones if we t
rl→Vend ~i.e. l→2Vend) anda→2a. the latter is due to the
difference of the ‘‘normalization’’ oftend between the brane
and the conventional case, which has been discussed a

D. The hot big bang

After the end of kination the Universe becomes radiat
dominated, but the scalar field continues to be dominated
its kinetic density. Therefore,rf5rkin}a26, but now a
}t1/2 according to Eq.~2! for w5wg5 1

3 . Using Eq.~14! we
find

f~ t !5f* 1
4

A6
S 12At*

t DmP . ~30!

Thus, in about a Hubble time the kinetic density of t
scalar field is entirely depleted and the field freezes to
value

fF5f* 1
4

A6
mP . ~31!

Using Eqs.~23! and ~28! we obtainfF in the brane and
conventional cases respectively:

fF5fend1
2

A6
F413 lnS 48p

a2
A 30

greh
D 22A l

2Vend

2
7

2
lnS 2Vend

l D1
3

2
lnS mP

4

Vend
D GmP ~32!

and

fF5fend1
2

A6
F213 lnS 12p

a2
A 30

greh
D 1

3

2
lnS mP

4

Vend
D GmP .

~33!

IV. THE EXPONENTIAL QUINTESSENTIAL TAIL

It can be shown that a quintessential tail with a mild
than exponential slope results in eternal acceleration@18#.
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However, string theory disfavours eternal acceleration
cause it introduces future horizons which inhibit the determ
nation of theS matrix @34#. Moreover, mild quintessentia
tails, e.g. of the inverse power-law type@20#, make it hard to
satisfy coincidence. Furthermore, quintessential tails stee
than exponential have disastrous attractors@18#, which, not
only do they diminishrf faster thanrB , but are also reached
very soon after the end of inflation and, therefore, can
lead to late-time acceleration. According to the above,
best chance we have for achieving successful quintesse
inflation is by considering potentials with exponential quin
essential tails of the form:

V~f@fend!.V0exp~2bf/mP! ~34!

whereb is a positive constant whose value is crucial to t
behavior of the system.

With the use of Eq.~3! it can be shown that a potential o
the above form has an attractor solutionf(t)5fattr such that

fattr~ t !5
2

b
lnFAV0

2 S 11w

12wD bt

mP
GmP . ~35!

The field follows the attractor solution afterfattr(t)
5fF , when it unfreezes and begins rolling in accordance
Eq. ~35!. The attractor solution results inrkin

attr

52b22(mP /t)2 and

Vattr~ t !5
2

b2 S 12w

11wD S mP

t D 2

. ~36!

Thus, we see thatrf
attr5rkin

attr1Vattr scales in the same wa
asr(t) as given by Eq.~5!. Therefore, there are two possib
cases:

(i) Subdominant scalar. In this case w5wB and r
}a23(11wB), which means that

rf

rB
5

3

b2
~11wB!. ~37!

Sincerf,rB we see that

b2.3~11wB!. ~38!

(ii) Dominant scalar. In this case w5wf and r
}a23(11wf). This timer(t)5rf , which, in view of Eq.~5!,
gives

b253~11wf!. ~39!

Now, the acceleration of the Universe expansion is de
mined by the spatial component of the Einstein equatio
which, for the spatially flat FRW metric, is

ä

a
52

r13p

6mP
2

. ~40!

Therefore, the Universe engages into accelerated ex
sion if rf.rB and wf,2 1

3 . Thus, we can avoid eterna
6-6
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acceleration, even in the case of the dominant scalar ifb2

.2. Hence, dark energy domination without eternal acc
eration can be achieved ifb lies in the range

2,b2,3~11wB!. ~41!

However, it has been shown that even though eternal
celeration is avoided, the Universe does accelerate for a b
period when the attractor is reached and the field unfree
from fF to follow it. If the scalar field density become
dynamically important before it has begun following the
tractor it is still characterized by a baryotropic parame
wf'21 and, therefore it will cause some acceleration.
fact, numerical simulations have shown that this is poss
even in the subdominant scalar case if the attractor is not
far belowrB , i.e. if b is not too large. This is due to the fac
that the system, after unfreezing, oscillates briefly around
attractor path in phase space, before settling down to fol
it, as have been shown by numerical simulations@35#. This
behavior has been shown to enlarge the effective rangeb,
which may avoid eternal but achieve brief acceleration. A
cording to@36# brief acceleration may be achieved if

2,b2,24. ~42!

Therefore,in order to explain the observed accelerated e
pansion of the Universe, the scalar field has to unfreeze a
present, i.e. we requireVF[V(fF) to be

VF5Vfr0 ~43!

whereVf.0.7 is the observed fraction of the dark ener
density over the present critical densityr0. The above is
usually called the ‘‘coincidence’’ constraint. The scaling
rf andrB after the end of inflation is shown in Fig 1. As ca
be seen in the figure, since the field unfreezes at present
attractor, which mimics the background density, is never

rehρ

aln

ρφ

ρB

FV

Vend

RADIATIONKINATION MATTER

FIG. 1. The scaling ofrf ~solid line! andrB ~dotted line! after
the end of inflation. Initially,rf5Vend@r reh5rB and we have ki-
nation. However, becauserf5rkin}a26, whereasrB5rg}a24,
eventuallyrB dominatesrf and kination ends. Afterwardsrf con-
tinues to berkin-dominated until all the kinetic energy is deplete
and the field freezes at constant densityrf5VF . In the meantime
the radiation era continues andrB5rg}a24. Much later, though,
matter density takes over and the radiation era ends. In the m
era rB5rm}a23. The matter era continues until today whenrB

.VF.r0 and the scalar field becomes important again.
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tained throughout the history of the Universe. Instead, a
the end of kination, the field’s energy density is strong
subdominant to the background density and, therefore,
not have any effect on BBN~or any other process in the ho
big bang Universe!, as long as kination ends early enoug
(T* .TBBN). Thus, the reservations against exponential ta
which had to do with attractor evolution that~in order forrf
to be a significant fraction of the total density at prese!
could not avoid challenging BBN, are not applicable in o
case.

V. COINCIDENCE VERSUS BBN AND GRAVITATIONAL
WAVES

We now investigate the requirement of successful coin
dence in combination with the BBN constraint in both bra
and conventional cosmology. These two requirements are
most difficult to achieve in quintessential inflation. This
because, one the one hand the BBN constraint pushes
inflationary scale towards high energies, while on the ot
hand the coincidence constraint demands the late-time po
tial density of the scalar field to be extremely small. Th
huge difference of energy scales@of orderO(10100)!# is the
basis for theh problem of quintessential inflation.

A. The h problem of quintessential inflation

In conventional cosmology, in order for inflation to la
enoughe-foldings to account for the horizon problem with
out an initially super-PlanckianV1/4, it is necessary for the
potential to be rather flat during inflation. As a result,
prepare for the abysmal ‘‘dive’’ after the end of inflation~so
as to cover the huge difference of energy scales! the curva-
ture V9 of the potential near the end of inflation is substa
tial. Consequently the spectral indexns of the inflation-
generated density perturbation spectrum is too la
compared with the observational requirement:

uns21u,0.1. ~44!

This can be understood from the fact thatns is given by
@5#

ns5112~h23e! ~45!

where h and e are the so-called slow roll parameters
inflation, which, in conventional cosmology, are defined a

e[2
Ḣ

H2
.

mP
2

2 S V8

V D 2

and h[mP
2 V9

V
. ~46!

Therefore, a strongly curved potential results in unacce
ably largeuhu, which, in turn, because of Eq.~45!, causes
deviations from scale invariance that are incompatible w
observations. An illustration of theh problem can be seen in
Fig. 2.

The hope had been that brane cosmology, since it allo
overdamped steep inflation, would be able to avoid

ter
6-7
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strongly curved inflationary potential without introducin
super-Planckian densities. This is because, as evident by
~8!, for energies above the brane tensionl, the Hubble pa-

mP
4

Vend

VF

10100

FIG. 2. Graphic illustration of the source of theh problem of
quintessential inflation. In order to bridge the huge gap between
energy scales corresponding to the inflationary plateau and
quintessential tail the curvature of the potential near the end
inflation is too large to allow for an almost scale invariant spectr
of curvature perturbations. An attempt to steepen the inflation
plateau, however, would reduce the total number of inflation
e-foldings below the necessary amount required for the solution
the horizon problem, unless the inflationary scale was allowed
supersede the Planck scale.
12350
q.

rameter is larger than in the usual FRW case. This introdu
extra friction in the roll-down of the scalar field, as dete
mined by Eq. ~3!. Consequently, the roll becomes muc
slower and, even with sufficiently large number of inflatio
ary e-foldings to solve the horizon problem, the field rolls s
little that super-Planckian densities can be avoided. Mo
over, slow roll can be achieved even when dispensing w
the inflationary plateau, leading to the so-called steep in
tion @26#, which again assists in reducing the curvature of
potential during inflation.

B. Coincidence and BBN

However, as we show below, the above beneficial effe
of brane cosmology are counteracted by the consequenc
extra friction in the period of kination. Indeed, overdamp
kination is reduced in duration. As a result, the field is n
able to roll as much down its quintessential tail as it would
conventional cosmology, which intensifies the already str
gent constraints of coincidence and BBN. To demonstr
this in a quantified way, we study below these constra
considering an exponential quintessential tail of the form

V~f!5Vendexp~2bDf/mP! ~47!

where Df[f2fend. Using Eq. ~32! the coincidence re-
quirement~43! results in the constraint:

e
he
of

ry
y
f

to
uced. We
in
S 11A3

2
bD lnS mP

4

Vend
D 5lnS mP

4

r0
D 2 ln Vf2A3

2
bF8

3
12 lnS 48p

a2
A 30

greh
D 2

4

3
A l

2Vend
2

7

3
lnS 2Vend

l D G . ~48!

Similarly, the requirementT* .TBBN , in view of Eq. ~24!, becomes

lnS mP
4

Vend
D< lnF a3

~24p!2
Agreh

10 S greh

g*
D 1/4G1

3

2
lnS 2Vend

l D1 lnS mP

TBBN
D . ~49!

Combining the above one finds the bound:b>bmin , where

bmin[A2

3

lnS mP
4

r0
D 2 ln Vf2 lnF a3

~24p!2
Agreh

10
S greh

g*
D 1/4G2 lnS mP

TBBN
D 2

3

2
lnS 2Vend

l
D

lnF12

a
A 10

greh
S greh

g*
D 1/4G1

8

3
1 lnS mP

TBBN
D 2

4

3
A l

2Vend
2

5

6
lnS 2Vend

l
D

. ~50!

The above expression looks rather complicated but, in fact, it becomes quite simple once the numbers are introd
are going to useg* 510.75 andgreh5106.75c, wherec51 for the SM andc*2 for its supersymmetric extensions. Also,
order to compensate for the overestimate ofT* in Eq. ~24!, we will use TBBN.10 MeV. Finally, let us defineY
[ ln(2Vend/l). Then we find

bmin5A2

3

236.662
3

4
ln c23 lna2

3

2
Y

51.482
1

4
ln c2 ln a2

4

3
e2Y/22

5

6
Y

. ~51!
6-8
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Thus we see thatbmin grows withY, which means that the
more prominent the brane effect becomes the more the
rameter space forb shrinks. Indeed, remember that, from E
~42!, the maximum acceptable value ofb, in order for brief
acceleration to occur, isbmax52A6.

Thus, as far as kination and BBN are concerned, the c
of conventional cosmology is preferable. We can reco
conventional cosmology if we setY50 and a→2a. This
gives

bmin5A2

3

234.582
3

4
ln c23 lna

49.462
1

4
ln c2 ln a

. ~52!

The lowest value for the above corresponds toc51 and
a.0.1, for which we findbmin53.81. Note that, in both
conventional and brane cosmology,bmin.bmin(a→0)
5A6. According to@37#, whenb>A6 the attractor~35! is
unreachable. Instead, after unfreezing the field engages a
in free-fall evolution, whererf.rkin}a26, until it refreezes
at another valuefF85fF1†(11wB)/(12wB)‡A2VF tF ,
where tF is the time of unfreezing, as can be shown eas
through the use of Eq.~14!. Using Eq.~5! we find

fF85fF1
4

A6~12wB!
mP . ~53!

The process can be repeated again and again, leadin
many ‘‘glitches’’ of brief accelerated expansion. This effe
may enlarge the parameter space since it is expected to
l

on

-
,

12350
a-

se
r

ain

y

to
t
lax

the coincidence constraint because the final value ofV today
can be lower thanVF . This possibility certainly deserve
further investigation, which, however, we will not pursu
here. An illustration of this process is shown in Fig. 3.

C. Gravitational waves

Another important constraint related to the kination p
riod has to do with the spectrum of the gravitational wav
~GW! generated during inflation. Because of the stiffness
the equation of state of the Universe, the GW spectr
forms a spike at high frequencies, instead of being flat a
the case for the radiation era@38#. Indeed, it has been show
that the GW spectrum is of the form@38,39#

Vend

rehρ

aln

VF’

VF

ρ
B

ρφ

RADIATIONKINATION MATTER

FIG. 3. The evolution ofrf ~solid line! andrB ~dotted line! in
the multiple-unfreezings scenario. Forb>A6, after unfreezing
from VF the field engages again into free fall until its kinetic dens
is depleted once more, when it freezes again at a new position
potential densityVF8[V(fF8)!VF . The process may be repeate
many times. Each unfreezing stage causes a brief period of a
erated expansion for the Universe and also sendsf further down its
potential so that coincidence becomes easier to achieve.
VGW~k!55
«Vg~k0!hGW

2 S k

k*
D @ ln~k/kend!#

2, k* ,k<kend,

p

4
«Vg~k0!hGW

2 @ ln~k* /kend!#
2, keq,k<k* ,

p

16
«Vg~k0!hGW

2 S keq

k D 2

@ ln~k* /kend!#
2, k0,k<keq,

~54!
where VGW(k) is the density fraction of the gravitationa
waves withphysicalmomentumk, Vg(k0)52.631025h22

is the density fraction of radiation at present on horiz
scales (h50.71 is the Hubble constantH0 in units of 100
km/sec/Mpc! and the subscripts ‘‘*’’ and ‘‘eq’’ denote the
end of kination~onset of radiation era! and the end of radia
tion era ~onset of matter era! respectively. Moreover
«5aGW/2p;1022 with aGW;0.1 being the GW generation
efficiency during inflation and@39,40#

hGW[
1

p S Hend

mP
DF~r/l! ~55!

where@40#
6-9
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F~x![FA11x22x2lnS 1

x
1A11

1

x2D G21/2

⇒

F~r/l!.H 1, r!l,

A3

2 S r

l D , r@l.
~56!

The danger is that the generated GWs may destab
BBN. The relevant constraint onVGW(k) reads

I[h2E
kBBN

kend
VGW~k!d ln k<231026 ~57!

wherekBBN is the physical momentum that corresponds
the horizon at BBN. From Eq.~54! it is easy to find

I 5h2«Vg~k0!hGW
2 H 2S kend

k*
D2F lnS kend

k*
D11G2

1
p

4 F lnS kend

k*
D G2

lnS k*
kBBN

D J . ~58!

Sincekend@k* .kBBN the expression in brackets above
dominated by the first term. We also have

kend

k*
5

Hend

H*
S aend

a*
D5S Hend

H*
D 2/3S Hend

Hl
D 1/6

~59!

whereHl[H(tl) and the last factor reduces to unity whe
considering conventional kination. Putting all these toget
we find

I 52h2«Vg~k0!hGW
2 S Hend

H*
D 2/3S Hend

Hl
D 1/6

. ~60!

Inserting the above into Eq.~57! and after some algebr
we end up with the constraint

a4>
15

greh

lF 2~Vend/l!

~mPHend!
2 S 2Vend

l D 3/2

. ~61!

In the case of brane cosmology we haveF 2. 3
2 (Vend/l)

so that the bound becomes

a*S 270

greh
D 1/4S 2Vend

l D 1/8

~62!

whereas for conventional cosmologyF 2.1and the bound is

a*S 90

greh
D 1/4

. ~63!

Thus, we see that the brane effect sets a somewhat tig
lower bound on the reheating efficiency due to excess
GW generation. In both casesa*1 and, therefore, purely
gravitational reheating is only marginally compatible wi
the GW constraint.

Here, we should mention another, potentially more d
gerous relic, introduced by gravitational reheating, nam
12350
e

r

ter
e

-
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gravitinos. Gravitino overproduction is also possible to e
danger BBN. In fact they are rather stringently constrained
@41#

ng

s
<10214 ~64!

whereng is the number density of the gravitinos which
kept in constant ratio with the entropys of the Universe. The
above ratio is easy to compute@4#

ng

s
5

135z~3!

2p4greh
S ag

a D 3

~65!

wherez(3)51.20206 andag is the production efficiency of
gravitinos. The above provide the following lower bound
the reheating efficiency:

a>93103c21/3ag . ~66!

According to@41# gravitino production can be as efficient a
the gravitational production of any other particle, i.e.ag
;0.1, even thoughthe gravitinos are not generated durin
inflation but only afterwards~that is at the end of inflation!.
Indeed, the gravitino overproduction danger concerns
spin-12 gravitinos and not the usual spin-3

2 ones. The spin-12
gravitinos~longitudinal modes! are massive because they a
sorb the goldstino mode and this is why they cannot be g
eratedduring inflation. Still, to date there is no thoroug
calculation ofag in a stiff equation of state and also in th
case of brane–cosmology so, the gravitino bound~66! may
not be as reliable as the bounds due to GW generation.

In a similar way as described above, the stiff equation
state during kination may lead to efficient production of s
persymmetric dark matter, e.g. neutralinos@42#. Moreover,
the fluctuations of the inflaton field itself can be consider
as dark matter@43#. Finally, if the rolling scalar field is even
weakly coupled to SM fields it may lead to substantial le
togenesis or baryogenesis even though the Universe i
thermal equilibrium, which may explain the observed bary
asymmetry@44#. It has been shown that the back reaction
the latter effect does not affect the dynamics off and Eq.~3!
is still valid.

VI. THE CURVATON HYPOTHESIS

As we have shown in the previous section, even thou
brane cosmology may help with theh problem by allowing
overdamped steep inflation, it is this very effect of ove
damping that turns negative during kination by making
harder for the field to roll down enough so as to achie
successful coincidence. Is, then, all lost for quintessen
inflation?

Fortunately it is not. An alternative way to ameliorate t
h problem is through the so-called curvaton hypothesis@27#.
According to this hypothesis the curvature perturbation sp
trum, which seeds the formation of large scale structure
the observed anisotropy of the cosmic microwave ba
ground radiation~CMBR!, is due to the amplification of the
6-10
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CURVATON HYPOTHESIS AND THEh PROBLEM OF . . . PHYSICAL REVIEW D 68, 123506 ~2003!
quantum fluctuations of a scalar fieldother than the inflaton
during inflation.4 This fields, called curvaton, has to satisf
certain requirements to fulfill its role in generating the co
rect curvature perturbation spectrum. In order for its qu
tum fluctuations to get amplified during inflation the curv
ton s, much like the inflaton in conventional inflation, has
be an effectively massless scalar field, with massms

, 3
2 H inf , whereH inf is the Hubble parameter during infla

tion. Also, in order for the generated perturbations to
Gaussian, in accordance to observations, the curvaton sh
be significantly displaced from its vacuum expectation va
~VEV! during inflation, i.e.us2^s&u@H inf . However, the
curvaton’s contribution to the potential density during infl
tion is negligible and this is why inflationary dynamics
still governed by the inflaton field. One final requirement f
a successful curvaton field is that its couplings to the
heated thermal bath are small enough to prevent its ther
ization after the end of inflation~which would, otherwise,
wipe out its superhorizon perturbation spectrum!.

The curvaton, being subdominant and effectively mass
during inflation remains overdamped and, more or less,
zen. After the end of inflations remains frozen untilH(t)
;ms , when the field unfreezes and begins oscillati
around its VEV. Doing so its average energy density sca
as pressureless matter, i.e.rs}a23. This means that, if the
unfreezing of the curvaton occurs early enough~i.e. before
the matter era! the latter comes to dominate the Univers
causing a brief period of matter domination, until it deca
into a new thermal bath comprised by the curvaton’s de
products. This is expected to somewhat relax the GW
gravitino constraints because the additional entropy prod
tion by the decay of the curvaton will dilute the GW o
gravitino contribution to the overall density.5 Furthermore,
the entropy production by the curvaton decay may incre
the effective reheating efficiencya @45#. The curvature per-
turbation spectrum ofs is imposed onto the Universe, whe
the latter becomes curvaton dominated~or nearly domi-
nated!.

There are two important differences between the curva
hypothesis and conventional inflation. First, because the
vature perturbation spectrum is due to the curvaton the s
tral index is not given by Eq.~45! but by @27#

ns5112~hss2e! ~67!

wherehss is associated with the curvature ofV along the
direction ofs:

hss[
mP

2

V

]2V

]s2
. ~68!

4Early versions of this idea can be found in@28#, where, however,
it was considered more of a problem than a novelty.

5It is also possible for the curvaton to decay just before it do
nates the Universe, which allows a certain isocurvature compo
in the density perturbations.
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Now, since thes-dependent part ofV is not related to
inflation hss can be extremely small. This means that t
spectral index constraint~44! becomes

e,0.05 ~69!

which is possible to satisfy even for largeh and much easier
too. Thustheh problem for quintessential inflationary mode
building is ameliorated through the curvaton hypothesis b
cause one can keep an almost scale invariant spectrum
curvature perturbations even with a substantially curved s
lar potential.

The second effect of the curvaton hypothesis on inflati
ary model building is the fact that theCOBE observations
imposeonly an upper boundon the amplitude of the inflaton
generated curvature perturbations. If we want to allow fo
largeh then this bound should be

1

2p

df

f U
exit

<0.1S DT

T D
COBE

.531026 ~70!

which, for slow roll inflation, can be recast as

1

A3p

V3/2

mP
3 uV8u

<1025. ~71!

There are numerous candidates for successful curvat
especially in supersymmetric theories, where scalar fields
abundant. Of particular interest are pseudo-Goldstone bo
or axion-like string moduli, because their mass is protec
by symmetries and can be rather small during inflation@46#.
In @29# the liberation effect of the curvaton hypothesis
inflationary model building has been shown by demonst
ing how it can rescue a number of, otherwise unviable in
tionary models, which are well motivated by particle phy
ics.

In the following sections we will apply the curvaton hy
pothesis on quintessential inflation model building both
conventional and brane cosmology, demonstrating ther
the fact that theh problem is, indeed, substantially amelio
rated.

VII. THE CASE OF STANDARD COSMOLOGY

Let us first consider the case of conventional cosmolo
where kination is not inhibited by overdamping effects. W
focus on modular inflation which has the merit that the sca
field is a modulus, which corresponds to a flat direction p
tected from excessive supergravity corrections and may
frain from steepness even when the field travels distance
large asM P in field space, a problem which, in most mode
of quintessence, is unresolved@10#.

A. Modular inflation

Moduli fields correspond to flat directions in field spa
that are protected by symmetries against supergravity cor
tions. However, the values of string-inspired moduli are ty
cally related to observables, such as the gauge couplin
the case of the dilaton, and need to become stabilized. Th
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usually supposed to occur at inner-space distances of o
mP , where non-perturbative Ka¨hler corrections may gener
ate a minimum for the field. Thus, the expected VEV for
modulus is^f&;mP . Therefore, the scalar potential for
modulus near its origin would be

V~f!5V02
1

2
m2f21••• ~72!

where,V is expected to depart significantly fromV0 when
df;mP , so that

V0;~mPm!2. ~73!

The inflationary scale is usually taken to be the so-ca
intermediate energy scaleV0

1/4.531010 GeV corresponding
to gravity mediated supersymmetry breaking. Then, from
abovem;1 TeV. As a result we find

uhu5
~mPm!2

V0
;1 ~74!

which means that such a modulus field cannot be the infla
of conventional inflation because it would be impossible
attain a scale invariant spectrum of curvature perturbatio
Moreover, the inflationary energy scale is too low to gener
the necessary amplitude for the curvature perturbations.

In contrast, as shown in@29#, modular inflation works fine
in the context of the curvaton hypothesis. Indeed, from
~72!, it is easy to see that

e5
h2

2 S f

mP
D 2

~75!

which can become very small near the origin and easily
isfy the constraint~69!. The question is, of course, wh
shouldf, stand at the origin in the first place. This is natu
to occur if the origin is point of enhanced symmetry@47#,
where the modulus field has strong couplings with the fie
of some thermal bath preexisting inflation. Such strong c
plings introduce temperature corrections to Eq.~72! which
drive f to zero. The inflationary expansion, then, beg
with a period of thermal inflation, which inflates away th
primordial thermal bath and renders the origin a local ma
mum. Afterwards, quantum fluctuations send the field roll
down and away from the origin, in a period of fast-roll in
flation. This model, called thermal modular inflation, is d
cussed in@29#.6

It is possible to formulate a model of quintessential infl
tion based on modular inflation if one considers that the
pergravity corrections introduced into the potential atf
;mP may not generate a minimum for the potential but ju
give rise to a slope, with the minimum displaced at infini

6However, we do not need to presuppose so much. In fact one
use anthropic-style arguments and consider the fact that
patches of the Universe wheref is near the origin will inflate~the
nearer the more inflation! and, therefore, the likelihood to be livin
in one of them is greatly enlarged.
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After all, for the moduli one only expects thatdV(df
;mP);V. Thus, for example, the potential may look lik
this

V~f!.H V02
1

2
m2f2, 0,f!mP ,

V0exp~2bf/mP!, f@mP .

~76!

This form is rather plausible for moduli potentials. In
deed, theF-term scalar potential in supergravity is

V.eK/mP
2
uWu2F(

nm
S Kn

mP
2

1
Wn

W D Knm̄S Km̄

mP
2

1
W̄m̄

W̄
D 23mP

22G
~77!

where W is the superpotential,K is the Kähler potential,
Knm̄5(Knm̄)21, the overbar denotes charge conjugation a
the subindices represent derivatives with respect to the
ferent fields of the theory~the barred indices denote deriva
tion with respect to the conjugate fields!. In many string

models the dynamics of the above is dominated by theeK/mP
2

factor ~see for example@48#!. Now, the Kähler potential, at
the tree level, is logarithmic with respect to the moduliF i

such that K}2mP
2 ( i ln@(Fi1F̄i)/mP#, which means that

eK/mP
2
}1/) i@(F i1F̄ i)/mP#. Note that theF i moduli do not

have canonical kinetic terms. Instead the kinetic part of
relevant Lagrangian density is given by

Lkin5Ki j̄ ]mF i]
mF̄ j ~78!

which means that we can define the canonically normali
moduli asf i} ln@(Fi1F̄i)/mP#, in terms of which the scala
potential becomes an exponential, i.e.V}exp(2(ibifi /mP).
The values of the positivebi coefficients in the exponent
depend on the particular string model considered but, in g
eral they are of order unity~for example in@48# b52A2
whereas in@51# b54Ap). Obviously, the potential is even
tually dominated by the term with the smallestbi .

The potential can easily form a maximum at the origin
there exists a discrete symmetry of the formf i→2f i
~which corresponds to the well knownT duality: ef i

51/ef i). In this case the couplings of the moduli with matt
at the origin are maximized@50#, exactly as required by ther
mal modular inflation. In contrast, away from the origi
these couplings are strongly suppressed leading to an e
tively sterile inflaton, as required by quintessential inflatio

It is important to note that in the case described above
modulus is not stabilized by reaching its VEV, but it does
dynamically, when reachingf5fF where it freezes. Of
coursefF has to be at the correct value for phenomenolo
to work. This is especially true for the dilaton, which dete
mines the gauge coupling. Thus, it would be safer to cons
the so-called geometrical moduli (T-moduli! associated with
the volume of the extra dimensions. The dependence of
SM phenomenology on these is not manifest at the tree le
but arises only at one loop and beyond.
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The above are based on the implicit assumption that
superpotential has only a weak dependence on the mo

and, therefore,V is mostly determined by theeK/mP
2

factor.
However, it should be pointed out here that, according to
usual interpretation of~heterotic! string phenomenology, the
superpotential receives non-perturbative contributions fr
hidden sector gaugino condensates, which are of the f
W}exp(2(ibiFi /mP). Consequently, aT-modulus would
have a double exponential potential. As discussed in@18#,
such a potential, being steeper than the pure exponential
a disastrous attractor solution. Indeed, not only does this
tractor diminishrf much faster thanrB but it is also attained
very soon after the end of inflation and, therefore, rend
late-timef domination impossible. However, not all the po
sibilities for the moduli have been explored and there
more types of string theory than the usual, weakly coup
heterotic string. For example, one promising possibility
exploiting the fact that certain combinations of theT-moduli
may avoid the membrane instantons which introduce
above non-perturbative exponential behavior forW. Simi-
larly, it is evident that an exponential scalar potential~with
respect to the canonically normalizedf) can be obtained if
the superpotential is polynomial with respect to the mod
An example of such a case can be seen in@49#. Thus, we
believe that it is quite possible that a canonically normaliz
modulus may have a scalar potential with the desired p
exponential tail.

Below we will examine the behavior of a toy model th
bares the characteristics outlined above and investi
whether it is indeed possible to be a successful quintesse
inflationary model. We name this proposal modular quint
sential inflation.

B. Modular quintessential inflation

1. The toy model

Consider the potential:

V~f!5
M4

@cosh~f/m0!#q
~79!

whereq is a positive integer andM ,m0 are mass scales. Th
above becomes

V~f!.H M42
1

2
q~M2/m0!2f2, 0,f!mP ,

2qM4exp~2qf/m0!, f@mP ,

~80!

which can be identified with Eq.~76! if we define

m2[q
M4

m0
2

, V0[M4, b[q
mP

m0
. ~81!

The slow roll parameters for the above model are
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1

2
b2@ tanh~f/m0!#2, h52e2

b2

q
@cosh~f/m0!#22.

~82!

In order to have enoughe-foldings of inflation we need
h(f→0)>21, which demandsq>b2. Then it can be
shown that inflation ends at

fend.A 2

uhu
mP.

A2q

b
mP . ~83!

The number of fast-rolle-foldings before the end of infla
tion is related to the valuefN of the scalar field at that time
by @52#

N.
1

F
lnS fend

fN
D⇒fN5fendexp~2FN! ~84!

where

F[
3

2 SA11
4

3
uhu21D ~85!

which, for slow roll inflation, becomesF(uhu!1)'uhu.

2. Enforcing the constraints

Let us employ now theCOBE bound~71!. We find that the
bound translates into a lower bound onq such that q
>qmin , where

qmin[
b2Ndec

2m25 ln 101
1

2
ln~6p2/qmin!1 ln b

. ~86!

In the above we have definedm[ ln(mP /M) and alsoNdec
is the number of inflationarye-foldings that remain when the
scale, which reenters the horizon at decoupling~correspond-
ing to the time of emission of the CMBR!, exits the horizon
during inflation. This scale is related to the reheating e
ciency by@18#

Ndec5 ln~TCMBt0!1 ln~Hend/Treh!566.942 ln a ~87!

whereTCMB is the temperature of the CMBR at the prese
time t0.

Let us now enforce the coincidence constraint~48! in the
case of conventional cosmology (l52Vendand a→2a).
With a little algebra we find

b5A2

3

69.182m

1.832
1

4
ln c2 ln a1m

~88!

which diminishes withm and, therefore, we can defin
mmin[m(bmax), where, according to Eq.~42!, bmax52A6.
Thus, we obtain

mmin58.311
3

14
ln c1

6

7
ln a. ~89!
6-13



pe

th

-
t-

o
ge
fi-

te

t
fo

th

et
pl

-

nd

ire-
q.

of

iant

en

pe

ly

he

pace
m

for
to
al

KONSTANTINOS DIMOPOULOS PHYSICAL REVIEW D68, 123506 ~2003!
Finally, let us use the BBN constraint~49! to obtain the
upper bound onm. Similarly as above we find

mmax510.531
3

16
ln c1

3

4
ln a. ~90!

Both mmin and mmax increase witha, but with different
rates so that them range decreases. Thus there is an up
bound ona wheremmin5mmax. It is easy to see that

ln amax520.722
1

4
ln c⇒amax'109c21/4. ~91!

The lower bound on the reheating efficiency is set by
GW constraint~63!. Therefore, thea range is

1<a<109. ~92!

It can be checked thatamax is much smaller that the re
heating efficiencyapr , which corresponds to prompt rehea
ing: r reh(apr)5Vend. Note, however, that the gravitin
bound~66! can chop off the lowest part of the above ran
by about a couple of orders of magnitude if it is not ef
ciently diluted by the curvaton decay.

From Eqs.~89! and ~90! we find the following range for
the inflationary scale for a givena

6.531013c23/16a23/4GeV<M<6.031014c23/14a26/7GeV
~93!

which is shown in Fig. 4. We see that entirely uncorrela
physics ~BBN and coincidence requirements! conspires to
allow only a rather narrow range forM. The range ends up a
amax, which corresponds to the smallest possible value
M, which is

MMIN51.23107 GeV. ~94!

The fact that the curvaton hypothesis ameliorates
h-problem is related to the value ofqmin . In conventional
inflation the COBE bound is to be saturated andq5qmin .
However, the spectral index bound~44!, in view of Eq.~45!,
demands thatuhu<1/20, which, according to Eq.~82! re-
quires

q.20 b2 ~95!

which is impossible to satisfy withqmin in the given ranges
for b,m anda. In contrast, the spectral index constraint~69!
in the curvaton case is well satisfied in the allowed param
space. This difference will become apparent in the exam
below.

3. Examples

The modular case. In this case inflation is of the interme
diate energy scale which means thatM5531010 GeV.
Then, using Eq.~93! one can find the allowed range fora:

1.43104c21/4<a<5.73104c21/4 ~96!
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which is rather narrow but it is above the gravitino bou
~66!. Choosinga[33104c21/4, from Eq. ~88!, we find

b54.56. ~97!

Using the above Eq.~86! gives

qmin546 ~98!

which is quite large but cannot be compared to the requ
ments of conventional inflation, which, according to E
~95!, would demandq>416. Thus, we see thatmodular
quintessential inflation can be realized only in the context
the curvaton hypothesis. This is because, withq5qmin , uhu
is too large to achieve the required almost-scale invar
spectrum of curvature perturbation. Therefore,the curvaton
hypothesis is necessary to overcome theh problem of quint-
essential inflation in conventional cosmology.

Although, strictly speaking, the above results have be
obtained in the context of the toy model of Eq.~79!, we
believe that they are generally true for models of the ty
~76! because, as mentioned in Sec. III, the dynamics off are
oblivious to the potential during kination and, therefore, on
the limits of large or smallf, as depicted in Eq.~80!, are
important.

To obtain an estimate of all the quantities involved in t
problem let us chooseq548 andc'2. Then, from Eq.~81!
we find

m0510.5mP'2M P and m50.7 TeV ~99!

log α
20 4 6 8

8

6

10
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14

lo
g

 M
(G

e
V

)

FIG. 4. The shaded region depicts the allowed parameter s
for the inflationary scaleM. The parameter space is bounded fro
below by the requirements of BBN and from above by theCOBE

bound ~solid lines!. The bounds meet ata.1010, which corre-
sponds toMMIN.107 GeV. The lower bound ona is set by the
GW constraint which results ina>1 ~dotted line!. The dashed hori-
zontal line depicts the case of modular quintessential inflation,
which M5531010 GeV. The vertical dashed lines correspond
the a range for modular quintessential inflation. The vertic
dashed-dotted line corresponds to the gravitino lower bound ona,
if not diluted by the curvaton’s decay.
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which are both rather natural. Using these we also find

Treh523106 GeV and T* 5100 MeV. ~100!

As pointed out earlier, both these values are overestim
by about an order of magnitude because of the oversimpli
assumption of sudden transition from inflation to kinatio
Still, note that the gravitino constraint onTreh is well satis-
fied, as well as the BBN constraint onT* .

From Eq.~33! we also find

fF.~9.011Aq/16.2!M P ~101!

which, for q548, givesfF.9.44 M P . If modular quintes-
sential inflation is indeed based on a string model, then
correct phenomenology would determineq such thatfF is
appropriate. The above value corresponds to rather large
tra dimensions and, therefore, it is not clear whether it m
be accommodated in a realistic string theory.

Finally, in view of Eq.~84!, the total number of fast-rol
inflationarye-foldings is

Ntot.
1

F
lnS fend

f in
D ~102!

where f in.H inf/2p because the rolling phase begins af
the inflaton is ‘‘kicked’’ away from the origin by its quantum
fluctuations. Usinguhu.b2/q and Eq. ~83! we find Ntot
'100. This has to be compared to the number ofe-foldings
that correspond to the horizon at present, which, similarly
Eq. ~87!, is found to be@18#

NH569.152 ln a. ~103!

Thus, we findNH'59,Ntot and the horizon problem is
solved without danger of approaching super-Planckian d
sities during inflation.

The case of MMIN . As another example we consider th
case with the smallest possibleqmin . From Eq. ~86! it is
evident thatqmin decreases withm. Therefore, for the small-
est qmin we need to consider the smallest possible value
M, which is given by Eq.~94!. This value corresponds t
amax as given by Eq.~91! and also tobmax as given by Eq.
~42!. Putting all these together Eq.~86! gives

qMIN526. ~104!

This should be contrasted with the conventional inflation
quirement~95! which demandsq.480. Thus, again, we se
that the curvaton hypothesis is necessary to ameliorate thh
problem.

In order to obtain estimates for the quantities of the pr
lem let us chooseq528 andc'2. Then we find

m055.7mP'M P and m551 keV. ~105!

Using these we also find

Treh54 TeV and T* 510.3 MeV ~106!

which, again, are both overestimated by an order of ma
tude, but satisfy all the relevant constraints anyway. As
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fore, using Eq.~33!, we find fF.7.32 M P . Finally, in a
similar manner as above we findNtot'79, which is larger
thanNH'48 as required in order to solve the horizon pro
lem.

VIII. THE CASE OF BRANE COSMOLOGY

A. Brane inflation

We turn now our attention to the case of brane cosmolo
In this case the inflationary dynamics occurs on ene
scales higher than the brane tension~otherwise there would
be no difference with the conventional case!. Brane inflation
has been studied in@26,53#. Here we simply cite some of the
necessary tools to be used in our quintessential inflation
model building.

Above the brane tension scale the slow roll parameters
modified and read

e[
mP

2

2 S V8

V D 2 11V/l

~11V/2l!2
⇒e.2lmP

2 ~V8!2

V3

h[mP
2 S V9

V D 1

11V/2l
⇒h.2lmP

2 V9

V2
. ~107!

Similarly theCOBE constraint~71! becomes

1

A3p

V3/2

mP
3 uV8u

S 11
V

2l D 3/2

.
1

2A6p

V3

l3/2mP
3 uV8u

<1025.

~108!

Finally, the number of slow-rolle-foldings before the end
of inflation is related to the valuefN of the scalar field at
that time by

N5
1

mP
2EfN

fend V

uV8u
S 11

V

2l Ddf.
1

mP
2EfN

fend V2

2luV8u
df.

~109!

B. Exponential quintessential inflation

1. The model

It can be checked that for models of the form of Eq.~79!
or even steep models such asV(f)5M4@sinh(f/m0)#

2q the
inflationary period already lies in the exponential branch
the potential. Thus, it is reasonable to avoid complica
models and consider a pure exponential potential:

V~f!5M4exp~2bf/mP!. ~110!

The above is well motivated for string moduli due to th
considerations of Sec. VII A~but without the discrete sym
metry that forms the maximum forV). For other motivations
of exponential potentials from Kaluza-Klein, scalar tensor
higher-order gravity theories see, for example, Ref.@37# and
references therein.

For the model~110! the slow roll parameters are

h5e52A exp~bf/mP! ~111!
6-15
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whereA[b2(l/M4). Hence we obtain

fend5
1

b
ln~1/2A!mP ~112!

and also

Vend52AM452b2l. ~113!

Then, using Eq.~109! we find

fN52
1

b
ln@2A~N11!#mP ~114!

and

V~fN!5Vend~N11!. ~115!

2. The constraints

KeepingA a free parameter, we will attempt to constra
the brane tensionl. Let us begin with the coincidence con
straint ~48!. Defining z[ ln(mP /l1/4)and after some algebr
we find

z5

56.792bS 1.882
1

4
ln c2 ln a2

5

3
ln bD 1

1

A6
ln b

A2

3
1b

~116!

which diminishes with b. Thus, we can definezmin

5z(bmax). Usingbmax52A6 we find

zmin510.7131
3

14
ln c1

6

7
ln a. ~117!

Similarly to the previous section the BBN constraint~49!
can be used to provide an upper bound toz. Indeed, with a
bit of algebra we obtain

zmax510.7061
3

16
ln c1

5

4
ln b1

3

4
ln a. ~118!

From the above it is evident that, once more, uncorrela
physics results in a rather slim parameter space. This pa
eter space diminishes witha. Thus, we can findamax by
setting zmin5zmax @or equivalentlybmin5bmax in Eq. ~51!,
where nowY5 ln(2b2)]. We find

ln amax518.472
1

4
ln c⇒amax'108c21/4. ~119!

The lower bound ona is set by the GW constraint~62!,
which givesamin'1.5(b/c)1/4. Therefore, thea range is

1<a<108. ~120!

In view of the above the acceptable range for the br
tension, for a givena is
12350
d
m-

e

7.531012c23/16a23/4 GeV

<l1/4<5.431013c23/14a26/7 GeV ~121!

which is shown at Fig. 5. Note that this range does not dif
much from Eq.~93!. This is so because both are determin
by the BBN and coincidence constraints onVend, which see
only the exponential behavior of the potential. The differen
in the a range, however, is due to the modified dynamics
brane cosmology. The parameter space is somewhat red
in size because of the negative effect of overdamping du
kination.

The smallest possiblel corresponds toamax. Using Eq.
~119! we find

lMIN
1/4 57.23106 GeV ~122!

which, in view of Eq.~6!, corresponds toM5'1011 GeV.
Now, theCOBE bound, as given by Eq.~108!, becomes

z>5.081
3

2
ln b1 ln~Ndec11! ~123!

whereNdec is again given by Eq.~87!. It can be shown that
the above does not change drastically over thea range
~when increasinga the mild growth of thebmin is counter-
acted by the decrease ofNdec) and corresponds to an overa
bound

λ1
/4

lo
g

  
 (

G
e

V
)

log α

6

8

10

12

14

0 2 4 6 8

FIG. 5. The shaded region depicts the allowed parameter s
for the brane tensionl1/4 which is linked to the inflationary scale a
Vend

1/45Ab(2l)1/4. The parameter space is bounded from below
the requirements of BBN and from above by theCOBE bound~solid
lines!. The bounds meet ata.108, which corresponds tolMIN

1/4

.107 GeV. The lower bound ona is set by the GW constrain
which results ina>1 ~dotted line!. The dashed horizontal line de
picts the case where the brane tension is of the order of the in
mediate scale, for whichl1/45531010 GeV. The vertical dashed
lines correspond to thea range for this case. The vertical dashe
dotted line corresponds to the gravitino lower bound ona, if not
diluted by the curvaton’s decay.
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l1/4<2.631013 GeV ~124!

which is satisfied over all the range~121!. This bound is
challenged and may be saturated only fora'1, which, how-
ever, is in danger to violate the GW constraint@and will
certainly violate the gravitino constraint~66! if it is appli-
cable#. Thus, we see thatwithout the curvaton hypothesis on
can hardly secure any parameter space for successful qu
essential inflation. Moreover, note that, in the context of th
curvaton hypothesis, the GW and the gravitino constra
are somewhat relaxed by the entropy production due to
curvaton decay.

It can be checked that within the above parameter spa
number of other constraints that apply to the system are
satisfied. In particular, one does not violate the prompt
heating constraintr reh<Vend. Also there is an absolute uppe
bound onl coming froml1/4<M5, which, in view of Eq.
~6! is recast as

l1/4<
8p

A6
mP'2M P ~125!

which is obviously satisfied. Another relevant bound
V(f in),M5

4. Using Eqs.~115! and ~113! we see that this
bound corresponds to

Ntot,
M5

4

2b2l
21[Nmax. ~126!

Using Eqs.~6! and ~103! it can be shown thatNH!Nmax,
throughout all the above parameter space and, therefore
horizon problem is solved without problems.

As far as the spectral index is concerned it can be sho
that the observational requirement~44! is not challenged in
both conventional inflation and, of course, in the context
the curvaton hypothesis. Indeed, in conventional inflation
havens21524/(N11), which means that Eq.~44! sets the
bound Ndec>39. Using Eq.~87! this bound translates into
a<1012, which is true for all the parameter space of inter
@cf. Eq. ~120!#. Similarly, for the curvaton case and ignorin
hss we obtain the bounda<1021, which is well beyond
challenge. Thus, we see that, in the case of brane quintes
tial inflation the benefits of the curvaton hypothesis are
lated more to the possible reduction of the inflationary sc
~allowed from theCOBE bound! than to theh problem itself.
This is because steep inflation does help reducinguhu as long
as the inflationary scale can be lowered to counteract
effect of overdamping which reduces the duration of kin
tion. By relaxing theCOBE constraint into an upper bound
the curvaton hypothesis enables us to do just that.

Finally, it should be stressed thatM can be anything as
long asM<M5, which results in the constraint

A>S A6

8p D 4/3

b2S l1/4

mP
D 4/3

. ~127!
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3. Example

Let us consider again the intermediate scale,l1/455
31010 GeV. In this case Eq.~6! gives M55431013 GeV.
Then, from Eq.~121! we find the following range fora:

0.83103c21/4<a<3.53103c21/4 ~128!

which, again, is above the gravitino bound~66!. Let us
choosea523103c21/4. Then, using Eq.~116!, we obtain

b54.54. ~129!

Using this and takingc'2 we find

Treh5
ab2

A6p

Al

mP
⇒Treh583106 GeV ~130!

T* 5
2a3b5

~12p!2
A2greh

5 S greh

g*
D 1/4 l

mP
3

⇒T* 5110 MeV

~131!

which are, again, overestimated by an order of magnitu
but still satisfy all the constraints, such as the graviti
bound and the BBN constraint. Also, note thatTreh is well
below the so-called normalcy temperatureTc.l1/4 @54,55#,
above which Kaluza-Klein excitations on the brane may
diate energy into the bulk and possibly reinstate the d
radiation term in Eq.~7!.

Now, theA bound~127! reads

A>5.2310211 ~132!

which, when saturated, results inM5M5. Using Eq.~32! we
find fF5fend19.20 M P , which, in view of Eqs.~112! and
~132! givesfF<10.21M P . A preferred value offF may be
achieved by adjustingA, or, equivalentlyM. For example, for
M51 TeV we haveA51.331032andfF.5.92 M P .

IX. CONCLUSIONS

We have investigated theh problem of quintessential in
flation model building. In the context of a potential with a
exponential quintessential tail we have shown that brane
mology inhibits the period of kination due to the extra fri
tion on the roll-down of the scalar field. This counteracts t
beneficial effects of steep inflation towards overcoming
h problem. Hence, we pursued a different approach and c
sidered quintessential inflation in the context of the curva
hypothesis. We showed that the latter substantially ame
rates theh problem in both the cases of conventional a
brane cosmology. To demonstrate this we have studied a
model of what we called modular quintessential inflation
the case of conventional cosmology and the pure expone
potential in the case of brane cosmology. In both cases
have shown that the available parameter space for the in
tionary scale is not large and it is strongly correlated with
reheating efficiencya. Indeed, for a givenVend, we have
shown that there is only a small window fora, where suc-
cessful quintessential inflation is possible. This may se
6-17
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KONSTANTINOS DIMOPOULOS PHYSICAL REVIEW D68, 123506 ~2003!
like a fine-tuning problem. However, it simply reflects th
necessary tuning for successful coincidence. The requ
values fora are not unreasonable and we should point
that there is nothing special about the present time. A
value ofa would cause some brief acceleration period in
late Universe. We just happen to live in this period. The
tuning considerations are even more relaxed if one consi
the possibility of multiple unfreezings and refreezings of t
scalar field, as discussed at the end of Sec. V B.

In this paper we have considered the intriguing possibi
that the scalar field of quintessential inflation~called the
‘‘cosmon’’ by some authors! is a modulus field, possibly as
sociated with the volume of the extra dimensions, such as
geometricalT-moduli of weakly coupled heterotic strin
theory. The modulus is taken to roll down and away from
origin, where it could have been placed by temperature
rections to its potential during a period of thermalizati
preexisting inflation, if the origin is a point of enhanced sy
metry. In this scenario the inflationary expansion begins w
a period of thermal inflation followed by fast-roll inflation
as described in@29# for modular thermal inflation. In contras
to @29# though, we have supposed that the Ka¨hler corrections
introduce an exponential slope to the potential over distan
comparable tomP in field space. Thus, the VEV of th
modulus is displaced at infinity, while the modulus is sta
lized dynamically by being frozen during the later history
the Universe at a nonzero potential density, causing
present accelerated expansion. This way it may be natur
avoid the excessive supergravity corrections that would o
erwise increase the present mass of quintessence to unac
able values. However, it remains to be seen whether
scenario is possible in the context of a realistic string theo

Turning to brane cosmology we have focused in the m
tte
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investigated pure exponential potential, which may also
motivated by string theory considerations. In this case th
is no preferred starting point for the roll down of the field
long as the inflationary energy scale is kept below the f
damental scale of the theory. We have seen that the pa
eter space for successful quintessential inflation is somew
reduced by the negative overdamping effect of brane cosm
ogy on kination.

Finally, we have studied the effects of gravitational wa
generation on quintessential inflationary model building. W
have shown that gravitational waves will not destabili
BBN if the reheating efficiency isa.1, which may require
some tiny, but non-zero coupling of the inflaton with oth
fields. In the context of the curvaton hypothesis, howev
the gravitational wave constraint is ameliorated by the d
tion effect of the entropy production due to the curvato
decay. This may lower the bound ona belowa;0.1, which
will render gravitational reheating~and a truly sterile infla-
ton! acceptable. However, a largera may be necessary in
order to avoid gravitino overproduction:a*102. Note, here,
that tiny couplings between the inflaton and the SM fie
may have beneficiary side effects, such as baryogenesis@44#.

All in all we have shown that the liberating effect of th
curvaton hypothesis enables quintessential inflation to o
come itsh problem and enlarges the parameter space
successful model building. Appealing candidates for
quintessential inflaton~or cosmon! may be string-moduli
fields.
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