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It is argued why, contrary to expectations, steep brane-inflation cannot really help in overcoming the
problem of quintessential inflation model building. In contrast it is shown that the problem is substantially
ameliorated under the curvaton hypothesis. This is quantified by considering possible modular quintessential
inflationary models in the context of both standard and brane cosmology.
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[. INTRODUCTION review on the cosmological constant issue g&eAlso see
[9] on dark energy in general.
Recent high redshift supernova type (BN-la) observa- However, it was soon realized that quintessence suffered

tions suggest that the Universe at present is undergoing aérom its own fine-tuning problem<.0]. Indeed, in fairly gen-
celerated expansiofl]. These findings are consistent with eral grounds it can be shown that at pre<@rtM p (if origi-
the latest precise observations of the anisotropy in the cosmigally at zerg with a massmg~ 1032 eV. Even though this
microwave background radiatid€MBR) [2] and also with  may be an effective mass associated with the local curvature
the observations of the large scale structr8S) distribu-  of the potential and not with some fine-tuned parameter so
tion of galactic clusters and superclustf3s Consequently, that, at the classical level, there is no tuning probleitis
modern cosmology seems to have reached a point of concostill hard to understand in the context of supergravity theo-
dance, which may be characterized by the following: Weries, where we expect the flatness of the potential to be lifted
seem to live on a spatially flat, homogeneous and isotropign internal-space distances of the ordehgf because of the
universe which, at present, is comprised by about 1/3 ofction of non-renormalizable terms of the foriviyg
pressureless mattédark matter mostly and 2/3 by some ~Q*S M y(Q/Mp)", with \;=<1 andn>0 (note, however,
other substance, with negative pressure, referred to as dakat a similar problem exists for the flatness of the inflation-
energy. The nature of this dark energy, however, remaingry potential itself11]).! In addition, the introduction of yet
elusive. _ o . _again another unobserved scalar figdd top of the inflaton
The above picture is in excellent agreement with the in<ie|g which drives the early Universe inflationary petiod
flationary paradigm, which was initially introduced to solve seems unappealing. Finally, a rolling scalar field introduces
the horizon and flatness problems of the standard hot bignother tuning problem, namely that of its initial conditions.
bang(SHBB) (and some other problems that were thoughtto A compelling way to overcome the difficulties of the
be important at the time, such as the monopole problemgyintessence scenario is to link it with the rather successful
[4,5]. Inflation, in general, predicts a spatially flat universejnfiationary paradigm. This is quite natural since both infla-
and also provides a superhorizon spectrum of curvature pefron and quintessence are based on the same idea; that the
turbations that result in adiabatic density perturbations whichynjyerse undergoes accelerated expansion when dominated
can successfully seed the formation of the observed LSS ang, the potential density of a scalar field, which rolls down its
the CMBR anisotropy. The spectrum of the curvature perturaimost flat potential. This unified approach has been named
bations is predicted to be very near scale invariance, whiclyintessential inflatioi12] and is attained by identifyin@
agrees remarkably with the latest WMAP data. Hence, thgyith the inflaton fieldé. In quintessential inflation the scalar
inflationary paradigm is now considered by most cosmolopotential of is such that it causes two phases of accelerated
gists as the necessary extension of the SHBB, in order t@xpansion, one at early and the other at late times.
form the standard model of cosmology. _ ~ However, the task of formulating such a potential is not
The successes of the inflationary paradigm have motipasy and this is why not many successful attempts exist in
vated many authors to consider a similar type of solution tqne Jiterature. Early such considerations include the pioneer-
the dark energy problem at presdi®i. Thus, |t'has been ing work of Ref.[6] and alsd 13] and[14,15, whereas more
suggested that the current accelerated expansion of the Unjiscent attempts argL2], where the name quintessential in-
verse is due to a late-time inflationary period driven by thefjation was coined, an@i16—21). Successful quintessential

potential density of a scalar fiel@, called quintessendéhe  jxfiation has to account not only for the requirements of both
fifth element, added to cold dark matter, hot dark matter

(neutrinog, baryons and photof$7]. The aim for introduc-

ing quintessence was to avoid resurrecting the embarrassing;, order to avoid this problem one has to consider fields, with
issue of the cosmological constaht which, if called upon  yotential whose flatness is protected by some symmetry, e.g. pseudo
to account for the dark energy, would have to be fine-tuneqjambu-Goldstone bosons, or fields that correspond to directions
to the incredible level ofA~10 M3, whereMp is the  unperturbed by supergravitykahlen corrections, such as the
Planck mass, i.e. the natural scale for Einstei’s(For a  moduli fields of string theory.
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inflation and quintessend@2] but also for a number of ad- which destroys the scale invariance of the curvature pertur-
ditional considerations. In particular, the minimum of the bations.

potential (taken to be zero, otherwise there is no advantage It has been thought that this problem is alleviated when
over the cosmological constant alternajivaust not have considering inflation in the context of brane-cosmology. In-
been reached yet by the rolling scalar field, in order for thedeed, brane-cosmology allows for overdamped steep infla-
residual potential density not to be zero at present. This retion [26], which dispenses with the need for an inflationary
quirement is typically satisfied by potentials, which haveplateau and, therefore, a curved potential seems no longer
their minimum displaced at infinity/(¢—<)—0, a feature necessary. However, attempts to use this idea have still en-
referred to as “quintessential tail.” Thus, quintessential in-countered difficultiegsee for exampl¢19,20) and the most
flation is a non-oscillatory inflationary modE23]. Another ~ Promising results were achieved again with a multibranch
requirement is that of a “sterile” inflaton, whose couplings Potential(a sum of exponential term§21]. In this paper we

to the standard modéSM) particles are strongly suppressed. &Xplain why. It seems that, despite the advantages of steep
This is necessary in order to ensure the survival of the inflalnflation, brane cosmology backreacts by creating problems
ton until today, so that it can become quintessence. Thus, iff the kination period. Indeed, we will show that the over-
quintessential inflation the inflaton field does not decay at th amping gffect due to the moq|f|eq dynam|c_s Qf the Uni-
end of the inflationary period into a thermal bath of SM verse, inhibits the efﬁuency of kination in achieving a small
particles. Instead, the reheating of the Universe is achievelﬁ‘te'tlme potential density.

o . . S . Fortunately, there is another solution to theroblem of
through gravitational particle production during inflation, a uintessential inflation. Indeed, we show that theroblem
process refereed to as gravitational reheafib§,24. Be- q : ’ P

o . I is substantially ameliorated when considering inflation in the
cause gravitational reheating can be rather inefficient, th y 9

: ; . ) . M%ontext of the curvaton hypothegi7].2 As shown recently
Universe remaing-dominated after the end of inflation, this i, 129} the curvaton hypothesis liberates inflationary models
time by the kinetic energy density of the scalar field. Thisfom the strains of the so-calledose constraint, i.e. the

period, called kinatiof15] (or deflation[14]), soon comes to  requirement that the amplification of the inflaton’s quantum
an end and the Universe enters the radiation dominated p@uctuations during inflation should generate a curvature per-
riod of the SHBB. Note here that a sterile inflaton avoids theturbation spectrum with amplitude that matches the observa-
danger of violation of the equivalence principle at presenttions of the Cosmic Background Exploré&zoBg). The cur-
associated with coupled quintesseifi2g], where the ultra- vaton hypothesis attributes the generation of the curvature
light Q corresponds to a long-range force. perturbations to another scalar field, called the curvaton,
In the modelg12,16,17 the plethora of constraints and changing, thus, theoBE constraint into an upper bound. In
requirements which are to be satisfied by quintessential in-29] it has been shown that this effect is rather beneficial to
flation is managed through the introduction of a multi-branchmany models of inflation well motivated by particle physics.
scalar potential, that is a potential that changes form whilddere, we demonstrate that it may assist also quintessential
the field moves from the inflationary to the quintessentialinflation in overcoming they problem. This is because, in
part of its evolution. This change is either fixed “by hand” the context of the curvaton hypothesis, a curved potential
(such as in the original modgl2)) or it is due to a potential does not necessarily destroy the scale invariance of the cur-
with different terms that dominate each at a tifié] or itis ~ vature perturbation spectrum. Moreover, it may allow for
an outcome of a phase transition, arranged through sonsgnificant reduction of the inflationary scale, which also
interaction of the inflaton with some other scalar fidl@Z]. proves beneficial for quintessential inflation.
Clearly this requires the introduction of a number of mass The paper is organized as follows. In Sec. Il the dynamics
scales and couplings, which have to be tuned accordingly tof the Universe is briefly layed out both in the case of con-
achieve the desired results. Thus, in such models it is diffiventional and also brane cosmology. In Sec. Il we look in
cult to dispense with the fine-tuning problems of quintes-more detail into the period of kination, which is crucial for
sence. Attempts to design a single-branch potenti4ll8j, quintessential inflation. In Sec. IV we discuss the motivation,
which incorporates natural-sized mass scales and couplingsharacteristics and merits of the exponential quintessential
have provided existence proofs, but the class of potentialtil, which we adopt throughout the paper. In Sec. V we
presented are rather complicated. This is due to the so-calletescribe they problem and demonstrate that brane cosmol-
7 problem of quintessential inflation: Namely the fact that it ogy cannot overcome it because it inhibits kination. In order
is almost impossible to formulate a successful quintessentidab show this we calculate the constraints imposed on quint-
inflationary model with an inflationary scale high enough toessential inflation by the BBN and coincidence requirements.
satisfy the requirements of big bang nucleosynthéBBN)  We also study the constraints due to the possible overproduc-
but which neither results in strong deviations from scale intion of gravity waves. In Sec. VI we present the alternative
variance in the curvature perturbations spectrum, nor does itlea in order to overcome the problem, namely the curva-
need to go over to super-Planckian inflationary scale to solveon hypothesis. In Sec. VIl we demonstrate the curvaton lib-
the horizon problem. They problem is due to the fact that erating effects on a variant of modular inflation in the context
between the inflationary plateau and the quintessential taidf conventional cosmology. We calculate in detail the al-
there is a difference of over a hundred orders of magnitude.
To prepare for such an abysmal “dive” the scalar potential
cannot help being strongly curved near the end of inflation, 2For early consideration of this idea see 2126].

123506-2



CURVATON HYPOTHESIS AND THE7» PROBLEM CF . .. PHYSICAL REVIEW D 68, 123506 (2003

lowed parameter space and show that all the relevant require-

ments are met. In Sec. VIII we investigate the curvaton lib- szi2
eration effects in the case of brane cosmology, using an 3mp
exponential potential. We find that successful quintessential

inflation is possible in a certain range of values for the brangvhere mp=M/\/87 is the reduced Planck mass and we
tension. We carefully calculate the allowed parameter spackave considered a spatially flat Universe, according to obser-
and show how all the requirements and constraints are satigations. Using Eqs(1) and(4) one obtains

fied. Finally, in Sec. IX we discuss our results and present

4

our conclusions. Throughout the paper we use units such that ot-1 4 Mo 2
c=h=1 in which Newton’s gravitational constant & H= -, axtBEwWl 5= —<_P)
=My?, whereMp=1.22x 10" GeV is the Planck mass. 3(1+w) 3(1+w)?i t

®)

Il. DYNAMICS WITH AND WITHOUT BRANES wherew corresponds to the dominant component of the Uni-

To set the stage for quintessential inflation let us brieflyverse content and, in the abowes —1. In the case of cos-
discuss the dynamics of the Universe in both conventionamological constant dominatiop=m3A =const so that Eq.
and brane cosmology. (2) givesw=—1. Then Eq.(4) becomesH?= %A =const

The content of the Universe is usually modeled as a coland, thereforeasexpHt), i.e. the Universe undergoes pure
lection of perfect fluids. The background fluid, with density de Sitter inflation.
ps=p,+ pniS comprised of relativistic mattéor radiatior), The above dynamics is substantially modified if one con-
with densityp, and pressur@,=3p,, and non-relativistic ~ siders a Universe with at least one large extra dimension. In
matter (or just mattey, with density p,, and pressure,,  particular we will concern ourselves with the, so-called, sec-
=0. In addition we will consider a homogeneous scalar fieldond Randall-Sundrum scenario, in which our Universe is a
¢, which can be treated as a perfect fluid with dengiy ~ four-dimensional ~submanifold (brane of a higher-
=pxintV and pressur@ ;= pyin—V, whereV=V(¢) is the  dimensional space-time. Matter fields are confined on this
potential density ang,,=2¢? is the kinetic density o brane but gravity can propagate also in the extra dimensions
respectively, with the dot denoting derivative with respect to(PUlk)- The simplest realization of this scenario considers a
the cosmic timd. five-dimensional space-time, i.e. one large extra dimension.

For every component of the Universe content one definel this case standard cosmology can be recovered in low
the baryotropic parameter ag=p; /p; . Energy momentum €nergies if one considers that the density and pressure on the
conservation demands brane are given by,=p+\ andp,=p—\ respectively, i.e.

the brane is endowed with a constant tension30]. The
brane tension is related to the fundamentd-dimensional

3 N — 3
d(ap)=—pd(a’) @ Planck masdvis by
which, for decoupled fluids with constan , gives 3 [M3)2
A= —(—5> (6)
pica” 3w ) 47\ Me
where a is the scale factor of the Universe. To study theThen the analog to the Friedmann equatiofi]
dynamics of the Universe one also needs the equation of
motion of the scalar field: , 1 p p| €
H —3A+3m|23 1+2)\ +a4 (7)

d+3HP+V'=0 3)
where& is a constant of integration, related to bulk gravita-
tional waves or black holes in the vicinity of the bra(ukark

whereH=a/a is the Hubble parameter and the prime de-/onal o : , )
notes derivative with respect 0. radiatior), which is usually inflated away during the first few

In standard cosmology the global geometry of the uni-€foldings of brane inflation. The 4-dimensional cosmologi-
verse is described by the Friedmann-Robertson-Walkef@! constantA is due to both the brane tensianand the
(FRW) metric. The temporal component of the Einstein (N€gative bulk cosmological constants. A can be tuned to

equations for this metric is the Friedmann equation: zero by demanding. = — Asm; . Similarly to conventional
thinking this A tuning is considered to be due to some un-
known symmetry. In view of the above we can recast &j.

®Here it should be mentioned that a rolling scalar field is charac®S
terized, in general, by a varying baryotropic parametgr. How-

ever, in the following we will encounter only the extreme cases p p
where the scalar field is either frozen or it is in free-fall roll. In both H2=—2 1 IS (8)
these casew,, is constant. 3mp
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which reduces to the usual Friedmann equatihnwhen p 2 .
<\, so that standard cosmology is recovered. However, for Prehzs_ogrehTreh (12
energiesp>\ the above becomes

whereg,~ 107 is the number of relativistic degrees of free-
P ©) dom at reheating._ In the standa_rd mod(_EEBM) Oreh
Jeamp =106.75. However, in supersymmetric extensions of the SM
Oren IS at least twice as largée.g. in the MSSMQep
As a result of the above, the dynamics of the Universe is=228.75).
modified for energy higher than the brane tension. Since the The gravitational reheating temperature is determined by
matter fields are confined on the brane, energy conservatidghe Gibbons-Hawking temperature in de Sitter space, which
for matter and radiation on the brane is retained and(Eq. gives
is still valid. Then, in view of Eq(9), we obtain

1 o T o= He”") (13)
Hoo b guqsasw) [, _YOM [Me) o 2
3(1+w)’ C P 3IFw) | T

(10) where« is the reheating efficiency. For purely gravitational
reheatinge~0.1. However, even tiny couplings of the infla-
From Eq.(8) we see that the effect of the extra dimensionton with another field may increase dramatically[32] and
is to increase the rate of Hubble expansion for energy largetan even lead to parametric resonance effécistant pre-
than\. This will also affect the evolution of the scalar field heating[23,33]), which would result ine>1. The reheating
¢ because Eq.3) shows thaH generates a friction term for efficiency will prove crucial to our considerations, so we will
the roll-down of the field. retain it as a free parameter, since it is, in principle, deter-
To complete our discussion for the Universe dynamics wamined by the underlying physics of the quintessential infla-
need to mention that the temperature of the Universe is, dtonary model.
any time, given by In the above we implicitly assumed that the thermaliza-
tion of the gravitationally produced particles is instanta-
_ 4 neous. This is not really so, which means that the actual
py_%g(T)T (1D reheating temperature may be somew(aditout an order of
magnitude smaller than the estimate of E(L3). However,
whereg(T) is the number of relativistic degrees of freedom this will not really affect our treatment because the scaling of
that corresponds to the thermal bath of temperafurdt  pg=p, after the end of inflation does not have to do with
high temperatureg~ 102, whereas at presegt= 3.36. whetherp,, is thermalized or not.

2

1. KINATION 2. The onset of the hot big bang

Gravitational reheating is typically a very inefficient pro-

Kination is a period of the Universe evolution, whens .
b g cess so thap$'> pg'. However, because at the end of in-

dominated by the kinetic density of the scalar figld,15. : ond _ )

Kination is one of the essential ingredients of quintessentiall2ioN Vend=Piin » the inflaton soon becomes dominated by
inflation because it allows the field to rapidly roll down its itS Kinetic densityp,=p>V, which means that,~1
potential, reducing its potential density substantially, so tha@d the Universe is characterized by E‘GSt'ﬁ equation of state.
the huge gap between the inflationary energy density and th@ this case Eq(1) suggests thap<a™ . In contrast,pg
density at present is possible to bridge. In order for kinatiorr=P,>@ ", Which means that eventually the density of the
to occur it is necessary that the reheating process is nétdckground thermal bath will come to dominate the Uni-

prompt. Fortunately, this is exactly what we expect whenVerse. At this time the SHBB begins. _

considering a sterile inflaton. Note that, when it is kinetic density dominated, the scalar
field becomes entirely oblivious of its potential density as its
A After the end of inflation field equation(3) is dominated by the kinetic terms

1. Gravitational reheating é+3Hp=0. (14

_ Since a sterile .|nﬂat_on field dqes not decay at the end 0ﬁ'his means that the scalar field evolution engages into a
inflation, after the inflationary period most of the energy den-,

sity of the Universe is still in the inflaton. The thermal bath {:]ez_:ggdbeelr;s;gé\g:éﬂ: Vevr:;bles us below to study kination
of the standard hot big ban@HBB) is due to the gravita- '

tional production of particles during inflation. This process is
known as gravitational reheatirig4], and results in density
Pren™ 10‘2H§nd, where “end” denotes the end of inflation. Let us first consider kination in the context of brane cos-
The gravitationally produced particles soon thermalize sanology. We assume, therefore, that the inflationary density
that, in view of Eq.(11), we can define a reheating tempera-scale is larger than the brane tension, Vg, \. In this
ture T, such that case the Friedmann equation is given by E®). and the

B. Brane kination
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Universe evolves according to E¢L0). Then the end of
inflation takes place whep(tend = Veng, Which gives

A Mp

tend= BVory (15

Using Eq. (10) we find that, during kinationast'/®,

Therefore, because after inflatign= py,ca~°, we find ¢
= 2tendVenat 2 which results in

N\ 12 \/T
2Vend) ( t__ !

end

4
d(1) = dengt %( ) mp (16)

where, without loss of generality, we assumed t#at0.
According to Egs(5) and(10) the switch-over to conven-
tional cosmology occurs whem=p, , where

L N 1
PA—E (17)
which takes place at the time
=2 (18)
A \/a

At this time, Eq.(16) suggests that the field has rolled to

the value
¢)\_ ¢end+ \/6 1- 2Ven Mp.

(19

After t, the Universe evolves according to the standard

FRW cosmology. Thus, using=1, we find from Eq.(5)
that axt®. Therefore, pxa~® gives ¢=(2/\/6)mp/t.
Hence, fort>t, we find

2l 1 \/—)‘ inl
Nog "

2
(1) = denat G

The end of kination occurs whepy,=p,= 3P Where
p«=p(t,). Using the scaling laws fop,i, and forp, it is

easy to find that, = \tends(Vend pren . or, equivalently,
that

1 mpVenq
t,="F2 (21)
V3 pin
Employing Eqg.(12) we can recast the above as
(24m)% [ 30 32\°m},
= | —| —3 (22
\/§a Oreh Vend

Inserting this into Eq.(20) we find that, by the end of
kination, the field has rolled to

PHYSICAL REVIEW D 68, 123506 (2003

¢¢+23| 4877/30+21 /)\d)
ES— n [ —_— —
* end \/g az Oreh 2Ven
7 (2Vend 3 [ mp
—§|< )\ )"rim(m mp (23
Using Eqgs(5) and(11) we find the temperature at the end
of kination
ro_ @ [Gren g;eh> ¥ Vena (24)
*2012m2 Y 51 0x/ A¥md

whereg, is the number of relativistic degrees of freedom at
the end of kination. This is the temperature at the onset of the
SHBB and therefore it has to be constrained by BBN con-
siderations: T, >Tggy, Where Tggy~1 MeV. However,
here it should be pointed out th@i is overestimated above
because we have considered an instantaneous transition be-
tween inflation and kination. In reality this transition takes
some time so that, is somewhat larger and, therefoik,
turns out about an order of magnitude smaller that the esti-
mate of Eq.(24) [20]. This will be taken into account when
we apply the BBN constraint below. Note that, typically,

is hard to be much larger thahggy and, thereforeg,
=10.75, which corresponds to the number of relativistic de-
grees of freedom just before pair annihilation.

C. Conventional kination

Working in a similar manner we can study kination in
conventional cosmology. This tintg,qis decided by Eq(5)
and is found to be

o \ 3Vend.

There is a subtlety here which is worth mentioning. The
time tonq IS NoOt the actual cosmic time interval that corre-
sponds to the duration of inflation. In fatt,qis the age the
Universe would have been at the end of inflatiere it
always kinetic density dominate@his means thatt,,qis al-
ways “normalized” according to the evolution stage that the
Universe enters after the end of kination. Note, however, that
there is a difference here between the brane and conventional
cases, namely the fact that, for the same cosmic tirzed
the samew, the Hubble parameter in conventional cosmol-
ogy, as given by Eq(5), is double the size of the one in
brane cosmology, given by E¢L0). This fact reflects itself
in the “normalization” of to,q as we will discuss below.

Using Eq.(25) and the scaling of,;, we find that, during

tend:

Let us now estimate the timg, when kination ends. It
turns out that Eq(21) is still valid in the conventional kina-
tion case. Using this we obtain

te

(25

¢(t):¢end+ iln (26)
V6
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(127)3( 30372 m’ However, string theory disfavours eternal acceleration be-
t, = 5 (_) TP (27)  cause it introduces future horizons which inhibit the determi-
V3a® | Gren Vend nation of theS matrix [34]. Moreover, mild quintessential

, tails, e.g. of the inverse power-law typ20], make it hard to
which suggests that satisfy coincidence. Furthermore, quintessential tails steeper
4 than exponential have disastrous attrac{d], which, not
3 |n(12_77 /ﬂ) +§In( de) only do they diminishp 4 faster tharpg, but are also reached
a2 VOen 2 \Ven very soon after the end of inflation and, therefore, cannot
(28)  lead to late-time acceleration. According to the above, the
best chance we have for achieving successful quintessential
Finally, the temperature at the end of kination is inflation is by considering potentials with exponential quint-
essential tails of the form:
1/4
h( %1) Vend

o @ [20e 29
*(12m2 V 5 1./ md V(> dend =VoeXp —bep/mp) (34
From the above one can see that the conventional kinatio\é\’here.b is a positive constant whose value is crucial to the
ehavior of the system.

resEI{/s mzyebiibzt?/mzd;g/ dthit)zran?hlgqgfzgpigréise|I(;Nt(ra]éake With the use of Eq(3) it can be shown that a potential of
P Vend VL= en a—ea the above form has an attractor solutig(t) = ¢, such that

difference of the “normalization” oft.,4 between the brane
and the conventional case, which has been discussed above.
Vo [1+w bt} 35
N2\ Tow/) ma M-
D. The hot big bang 2 \1=w/ me

After the end of kination the Universe becomes radiation The field follows the attractor solution aftepu(t)
dominated, but the scalar field continues to be dominated by ¢, when it unfreezes and begins rolling in accordance to
its kinetic density. Thereforep,=pi,<a ° but nowa Eg. (35. The attractor solution results inpgy
«t2 according to Eq(2) for w=w,=3. Using Eq.(149 we ~ =2b~?*(mp/t)* and
find

2
by = bengt %

2
Danlt) = B'n

1-w 2

1+w

Mp

t

2

Va r(t):
1— \/%) Mp. (30) T p?

Thus, we see that} "= pjii+ V. scales in the same way
Thus, in about a Hubble time the kinetic density of theasp(t) as given by Eq(5). Therefore, there are two possible
scalar field is entirely depleted and the field freezes to theases:
value (i) Subdominant scalar In this casew=wg and p
«a 3(1*We) which means that

(36)

P(1) =g, + %

4
D=+ —=Mp. (31 3
ve %=E<1+ws). (37)

Using Egs.(23) and (28) we obtain¢g in the brane and
conventional cases respectively: Sincep,<pg We see that

487 |30 N b2>3(l+WB). (38
443 In| —\/—|—2
22 Vg 2V

reh end (i) Dominant scalar. In this case w=w, and p
7 (2Vend 3 [ m
_E'”( X +§In Ver

2
b= d’end"’ %

xa 3% This timep(t) = p,,, Which, in view of Eq.(5),
mp (32 gives

b2=3(1+w,). (39
and
Now, the acceleration of the Universe expansion is deter-

2 127 [30) 3 m‘F‘, mined by the spatial component of the Einstein equations,
PE= Pengt G 2+31In 2 Voo +5In Vo | ™ which, for the spatially flat FRW metric, is
(33) a p+3p (40)
T 1
IV. THE EXPONENTIAL QUINTESSENTIAL TAIL a 6mp

It can be shown that a quintessential tail with a milder Therefore, the Universe engages into accelerated expan-
than exponential slope results in eternal accelerai@).  sion if p,>pg and w¢,<—%. Thus, we can avoid eternal
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y tained throughout the history of the Universe. Instead, after

Vend | the end of kination, the field’s energy density is strongly
subdominant to the background density and, therefore, will
not have any effect on BBNor any other process in the hot

R big bang Universg as long as kination ends early enough

Pren | (T, >Tggen)- Thus, the reservations against exponential tails,

which had to do with attractor evolution th@h order forpy

to be a significant fraction of the total density at pregent

B could not avoid challenging BBN, are not applicable in our
case.
VE 1 ! :
|- KATION — RaIATION MATTER Ina V. COINCIDENCE VERSUS BBN AND GRAVITATIONAL

FIG. 1. The scaling op (solid ling) and pg (dotted ling after WAVES

the end of inflation. Initially,p 4 =Ven pren=pg and we have ki- We now investigate the requirement of successful coinci-
nation. However, becausg,=pyn=a °, whereasps=p,=a ", gance in combination with the BBN constraint in both brane
eventuallypg dominatesp; and kination ends. Afterwards, con- 504 conyentional cosmology. These two requirements are the
tinues to.bepk‘”'dom'nated until all the.k'net'c energy 1s depleted most difficult to achieve in quintessential inflation. This is
and the field freezes at constant densapijp. In the meantime because, one the one hand the BBN constraint pushes the
the radiation era continues apg=p,>a”*. Much later, though, . S - . .
matter density takes over and the radiation era ends. In the matt rrlailr{liél?{l]:lgoisncc{?(ljee;%gigjﬁs?rgi:te(jl%%lﬁg:s\;\f/]rglfat%ntitrrr]]i Sg;g;]
— -3 ; ; - -
erapg=pm*a °. The matter era continues until today whpg X . . .
—\ ~ - i ; tial density of the scalar field to be extremely small. This
=Vg=p, and the scalar field becomes important again. huge diffe)r/ence of energy scalfsf order 0(101036)!] ic the

acceleration, even in the case of the dominant scala? if 0asis for they problem of quintessential inflation.
>2. Hence, dark energy domination without eternal accel-
eration can be achieved liflies in the range A. The 7 problem of quintessential inflation

2<b2<3(1+wWg). (41 In conven;ional cosmology, in order _for inflation to I_ast
enoughe-foldings to account for the horizon problem with-
However, it has been shown that even though eternal agut an initially super-Planckiak*?, it is necessary for the
celeration is avoided, the Universe does accelerate for a brigfotential to be rather flat during inflation. As a result, to
period when the attractor is reached and the field unfreezeyepare for the abysmal “dive” after the end of inflati¢so
from ¢ to follow it. If the scalar field density becomes as to cover the huge difference of energy sgales curva-
dynamically important before it has begun following the at-ture V" of the potential near the end of inflation is substan-
tractor it is still characterized by a baryotropic parametertial. Consequently the spectral index of the inflation-
wy~—1 and, therefore it will cause some acceleration. Ingenerated density perturbation spectrum is too large
fact, numerical simulations have shown that this is possibl€ompared with the observational requirement:
even in the subdominant scalar case if the attractor is not too
far belowpg, i.e. if bis not too large. This is due to the fact
that the system, after unfreezing, oscillates briefly around the
attractor path in phase space, before settling down to follow This can be understood from the fact timgtis given by
it, as have been shown by numerical simulatigds]. This  [5]
behavior has been shown to enlarge the effective rangpe of
which may avoid eternal but achieve brief acceleration. Ac- ne=1+2(n—3¢) (45)
cording to[36] brief acceleration may be achieved if

Ing—1]|<0.1. (44)

where 7 and e are the so-called slow roll parameters of

2
2<b<24. (42) inflation, which, in conventional cosmology, are defined as

Therefore,in order to explain the observed accelerated ex-

pansion of the Universehe scalar field has to unfreeze at B H m,2, V'\? LV
presenti.e. we require/g=V(¢g) to be ST 2 \v and  7=mp. (46)
Ve=Qypo (43

Therefore, a strongly curved potential results in unaccept-
where () ,=0.7 is the observed fraction of the dark energyably large| 7|, which, in turn, because of E¢45), causes
density over the present critical densipty. The above is deviations from scale invariance that are incompatible with
usually called the “coincidence” constraint. The scaling of observations. An illustration of the problem can be seen in
p 4 andpg after the end of inflation is shown in Fig 1. As can Fig. 2.
be seen in the figure, since the field unfreezes at present, the The hope had been that brane cosmology, since it allows
attractor, which mimics the background density, is never atoverdamped steep inflation, would be able to avoid a
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rameter is larger than in the usual FRW case. This introduces

L mé extra friction in the roll-down of the scalar field, as deter-
mined by Eq.(3). Consequently, the roll becomes much
m\\ slower and, even with sufficiently large number of inflation-

- ary e-foldings to solve the horizon problem, the field rolls so
‘ little that super-Planckian densities can be avoided. More-

1690 over, slow roll can be achieved even when dispensing with

the inflationary plateau, leading to the so-called steep infla-
‘ \ tion [26], which again assists in reducing the curvature of the
Ve —_ potential during inflation.

B. Coincidence and BBN
FIG. 2. Graphic illustration of the source of thgproblem of

quintessential inflation. In order to bridge the huge gap between the However, as we show below, the above beneficial effects
energy scales corresponding to the inflationary plateau and th@f brane cosmology are counteracted by the consequences of
quintessential tail the curvature of the potential near the end ofXtra friction in the period of kination. Indeed, overdamped
inflation is too large to allow for an almost scale invariant spectrumKination is reduced in duration. As a result, the field is not
of curvature perturbations. An attempt to steepen the inflationar@ble to roll as much down its quintessential tail as it would in
plateau, however, would reduce the total number of inflationaryconventional cosmology, which intensifies the already strin-
e-foldings below the necessary amount required for the solution ofjent constraints of coincidence and BBN. To demonstrate
the horizon problem, unless the inflationary scale was allowed tdhis in a quantified way, we study below these constrains
supersede the Planck scale. considering an exponential quintessential tail of the form:

V(gp)=V —bA 4
strongly curved inflationary potential without introducing (#)=VenXp(—bA$/Mp) @7

super-Planckian densities. This is because, as evident by Egthere A = ¢ — dong. Using Eq.(32) the coincidence re-
(8), for energies above the brane tensionthe Hubble pa- quirement(43) results in the constraint:

1+\Fb)l (mgd) |(m€’> InQ \Fb 8+2| a8m /30 4\/ A 7| (ZVe”d) (48)
=b|In =In| —|-InQ,—\/zb| = nN—~-\—|—3 —=In .
2 Ven Po ¢ 2713 a? Oreh/ 3 V2Vey 3 A
Similarly, the requirement, >Tggy, In view of Eq.(24), becomes
4 3 1/4
m 3 [2V m
In( Pd)sm S \/gi‘“(%‘) +—In( e”d)+|n( P ) (49)
Ven (24m)? ¥V 101 g, 2 A Tgen
Combining the above one finds the boube b,,,,, where
mé’ a® Oren/ 9ren 4 Mp 3 2Veng
Inf —=InQy—Inj]——\/—=| — —In ——1n
2 Po (24m)%2 ¥ 101 g, Teen/ 2 A
bminE 5 (50)

8
+ — +In
3

In

12 [10 ( greh) va
a Oren\ 9«

The above expression looks rather complicated but, in fact, it becomes quite simple once the numbers are introduced. We
are going to usg, =10.75 andy,.y= 106.7%, wherec=1 for the SM ancc=2 for its supersymmetric extensions. Also, in

order to compensate for the overestimate Tof in Eq. (24), we will use Tggy=10 MeV. Finally, let us defineY
=In(2Veng/\). Then we find

me\ 4 [\ 5I 2Veng
—= ——In
3 V2Vy 6 )

TBBN

236.66— 3| 31 3Y
L \/E . Z nc— na—z .
min— § 1 4 5 . ( )
51.48- Zln c—Ina— §e*Y’2— 5Y
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Thus we see thdi,,;, grows withY, which means that the
more prominent the brane effect becomes the more the pavend|
rameter space fdy shrinks. Indeed, remember that, from Eq.
(42), the maximum acceptable value lofin order for brief
acceleration to occur, 8= 2/6. R

Thus, as far as kination and BBN are concerned, the cas@ren |
of conventional cosmology is preferable. We can recover

conventional cosmology if we sé&=0 and a—2«. This ! R
gives Ve | !
3 Ve | ! 3
5 234.58- Zln c—3Ina | KINATION +— RADIATION —}———— MATTER ———] Ina
Bmin= 3 1 (52) . - Lo
49 46- ~Inc—In FIG. 3. The evolution op,, (solid line) and pg (dotted ling in
' 4 @ the multiple-unfreezings scenario. Ftr=./6, after unfreezing

from V¢ the field engages again into free fall until its kinetic density
The lowest value for the above correspondstel and is depleted once more, when it freezes again at a new position with
a=0.1, for which we findb,,;,=3.81. Note that, in both potential densitW . =V(¢g/)<Ve. The process may be repeated
conventional and brane cosmologyy > bmin(a@—0) many times. Each unfreezing stage causes a brief period of accel-
— /6. According to[37], whenb= \/g the attractor(35) is erated expansion for the Universe and also sehflsther down its
unreachable. Instead, after unfreezing the field engages agdifte"ial o that coincidence becomes easier to achieve.

in free-fall evolution, wherg ;= pii,>a~°, until it refreezes  the coincidence constraint because the final valué widay

at another valuegr = ¢+ [(1+wg)/(1—wg) ]V2VE tg, can be lower tharVg. This possibility certainly deserves
wheretg is the time of unfreezing, as can be shown easilyfurther investigation, which, however, we will not pursue
through the use of Eq14). Using Eq.(5) we find here. An illustration of this process is shown in Fig. 3.

C. Gravitational waves

(53) ~ Another important constraint related to the kination pe-
riod has to do with the spectrum of the gravitational waves
(GW) generated during inflation. Because of the stiffness of
the equation of state of the Universe, the GW spectrum
The process can be repeated again and again, leading forms a spike at high frequencies, instead of being flat as is
many “glitches” of brief accelerated expansion. This effectthe case for the radiation efa8]. Indeed, it has been shown
may enlarge the parameter space since it is expected to relgéxat the GW spectrum is of the forf38,39

4
¢F’_¢F+mmP-

k
SQV(kO)héW(k_)[In(k/kend)]za k*<k$kendv
*

o
Qow(k)=1 7€, (ko)hgul In(k /kend 12, kegk=kKy , (54)

T Keg|
ngﬂy(ko)héw(%]) [|I’l(k* /kend)]z, k0<k$keq,

where Qg (k) is the density fraction of the gravitational &= agy/27~10 2 with agy~ 0.1 being the GW generation
waves withphysicalmomentumk, € ,(kq) =2.6X 10°°%h=2  efficiency during inflation andi39,40

is the density fraction of radiation at present on horizon

scales (=0.71 is the Hubble constamt, in units of 100 h =£
km/sec/Mp¢ and the subscripts “*” and “eq” denote the W™
end of kination(onset of radiation ejaand the end of radia-

tion era (onset of matter eparespectively. Moreover, where[40]

H end

. )f(p/?\) (59
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1 -1z gravitinos. Gravitino overproduction is also possible to en-
F(x)=| V1+x>—x3n| =+ 1+— = danger BBN. In fact they are rather stringently constrained as
X X [41]
1, p<N\, Ng
-9 — 14
Fp={ [3[p (56) s 10 (64
2\x) P

whereng is the number density of the gravitinos which is
The danger is that the generated GWs may destabilizkept in constant ratio with the entrogyof the Universe. The

BBN. The relevant constraint ol g,(k) reads above ratio is easy to compué]
Ken 3
|Eh2f "Qen(k)dInk=2x10"° (57) Ng _ 13¥(3) [ aq 65
keen S 2'77'4greh «

wherek is the physical momentum that corresponds to . . -
the horigzhrll at BBI\I?. l):lrom Eq54) it is easy to find P where{(3)=1.20206 and, is the production efficiency of

gravitinos. The above provide the following lower bound on

Kk Kk 2 the reheating efficiency:
I = hZSQy(kO)héW( 2(%1) —[In kend 1
* * a=9x10% Ray. (66)
T Kend 2 Ky . . . _
+Z In e In [ (58  According to[41] gravitino production can be as efficient as
* BBN

the gravitational production of any other particle, i,
~0.1, even thouglthe gravitinos are not generated during
inflation but only afterwardgthat is at the end of inflatign
Indeed, the gravitino overproduction danger concerns the
aernd [ Hang! 23/ Hong) 16 spin+4 gravitinos and not the usual spinenes. The spir:
=< H, ) ( H, ) (59 gravitinos(longitudinal modegare massive because they ab-

sorb the goldstino mode and this is why they cannot be gen-

whereH, =H(t,) and the last factor reduces to unity when eratedduring inflation. Still, to date there is no thorough
considering conventional kination. Putting all these togethegalculation ofag in a stiff equation of state and also in the
we find case of brane—cosmology so, the gravitino bo(®® may
not be as reliable as the bounds due to GW generation.
Hend| 2% Hend| ® In a similar way as described above, the stiff equation of
I H, ' state during kination may lead to efficient production of su-
persymmetric dark matter, e.g. neutralind®]. Moreover,
Inserting the above into Eq57) and after some algebra the fluctuations of the inflaton field itself can be considered

Sincekg,& K, >kggy the expression in brackets above is
dominated by the first term. We also have

kend _ H end
k* H *

Ay

| =2hszy(k0)héW( (60)

we end up with the constraint as dark mattef43]. Finally, if the rolling scalar field is even
weakly coupled to SM fields it may lead to substantial lep-
4 15 NF?(Vend/N) [ 2Vend| ¥ 61 togenesis or baryogenesis even though the Universe is in
@ = Oren (MpH g0 N ' (61) thermal equilibrium, which may explain the observed baryon

asymmetny44]. It has been shown that the back reaction of
In the case of brane cosmology we ha#é=2(V.,/A)  the latter effect does not affect the dynamicsfodnd Eq.(3)

so that the bound becomes is still valid.
1/4 1/8
az(@) <2Ve“d) 62) VI. THE CURVATON HYPOTHESIS
Jreh A

As we have shown in the previous section, even though
whereas for conventional cosmologi?=1and the bound is brane cosmology may help with thg problem by allowing
overdamped steep inflation, it is this very effect of over-
damping that turns negative during kination by making it
harder for the field to roll down enough so as to achieve
successful coincidence. Is, then, all lost for quintessential

Thus, we see that the brane effect sets a somewhat tighterflation?
lower bound on the reheating efficiency due to excessive Fortunately it is not. An alternative way to ameliorate the
GW generation. In both cases=1 and, therefore, purely # problem is through the so-called curvaton hypothE2i.
gravitational reheating is only marginally compatible with According to this hypothesis the curvature perturbation spec-
the GW constraint. trum, which seeds the formation of large scale structure and
Here, we should mention another, potentially more danthe observed anisotropy of the cosmic microwave back-
gerous relic, introduced by gravitational reheating, namelyground radiatiofCMBR), is due to the amplification of the

90 1/4
az(a) | (63
re
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guantum fluctuations of a scalar fiebther than the inflaton Now, since theo-dependent part o¥/ is not related to
during inflation? This field o, called curvaton, has to satisfy inflation 7,, can be extremely small. This means that the
certain requirements to fulfill its role in generating the cor-spectral index constrairi44) becomes

rect curvature perturbation spectrum. In order for its quan-

tum fluctuations to get amplified during inflation the curva- €<0.05 (69

ton o, much like the inflaton in conventional inflation, has to

be an effectively massless scalar field, with mas . P .
Y 5 too. Thusthe » problem for quintessential inflationary model

<3Hj,, whereH,y is the Hubble parameter during infla- | .- .= ; )
tion. Also, in order for the generated perturbations to IOebundlng is ameliorated through the curvaton hypothesis be-

. . - n n k n alm le invarian rum of
Gaussian, in accordance to observations, the curvaton shoui(glrjvs;u?ee ecr?urbaet(iac?n:evaen \(/)v?tthsafiuebstar?tigl t ;E’ﬁ/c;t duscao
be significantly displaced from its vacuum expectation valu P y

AL _ —u Sar potential
(VEV) dl,mng m_ﬂatl_on, lelo <U>|>.H'”f' H_owevgr, the The second effect of the curvaton hypothesis on inflation-
curvaton’s contribution to the potential density during infla- arv model building is the fact that theoBE observations
tion is negligible and this is why inflationary dynamics is imy oseonlv an u ger bounadn the amolitude of the inflaton
still governed by the inflaton field. One final requirement for P y PP P

a successful curvaton field is that its couplings to the regenerated curvature perturbations. If we want to allow for a

which is possible to satisfy even for largeand much easier

~5x106 (70)
COBE

wipe out its superhorizon perturbation spectjum pye ?

heated thermal bath are small enough to prevent its thermalf?rge 7 then this bound should be
J(AT
<0.1 —
The curvaton, being subdominant and effectively massless exit T
during inflation remains overdamped and, more or less, fro-

ization after the end of inflatiottwhich would, otherwise, 1 8¢
zen. After the end of inflatior remains frozen untiH(t) which, for slow roll inflation, can be recast as

~m,, when the field unfreezes and begins oscillating 1 312
around its VEV. Doing so its average energy density scales _— <1075, (72
as pressureless matter, i;g,oca‘3. This means that, if the \/§7r m?F’,|V’|

unfreezing of the curvaton occurs early enough. before
the matter erathe latter comes to dominate the Universe, There are numerous candidates for successful curvatons,
causing a brief period of matter domination, until it decaysespecially in supersymmetric theories, where scalar fields are
into a new thermal bath comprised by the curvaton’s deca@bundant. Of particular interest are pseudo-Goldstone bosons
products. This is expected to somewhat relax the GW an@" axion-like string moduli, because their mass is protected
gravitino constraints because the additional entropy produd?y Symmetries and can be rather small during inflafi8].
tion by the decay of the curvaton will dilute the GW or In [29] the liberation effect of the curvaton hypothesis on
gravitino contribution to the overall densityFurthermore, inflationary model building has been shown by demonstrat-
the entropy production by the curvaton decay may increas#d how it can rescue a number of, otherwise unviable infla-
the effective reheating efficienay [45]. The curvature per- fionary models, which are well motivated by particle phys-
turbation spectrum of is imposed onto the Universe, when ICS. . . .
the latter becomes curvaton dominatést nearly domi- In the following sections we will apply the curvaton hy-
nated. pothe5|s_ on quintessential inflation model bwldmg both in

There are two important differences between the curvatofonventional and brane cosmology, demonstrating thereby
hypothesis and conventional inflation. First, because the cuthe fact that ther problem is, indeed, substantially amelio-
vature perturbation spectrum is due to the curvaton the spe&ated.
tral index is not given by Eq45) but by [27]

VIl. THE CASE OF STANDARD COSMOLOGY

Ng=1+2(7,5—€) (67 Let us first consider the case of conventional cosmology,
where kination is not inhibited by overdamping effects. We
focus on modular inflation which has the merit that the scalar
field is a modulus, which corresponds to a flat direction pro-
tected from excessive supergravity corrections and may re-
frain from steepness even when the field travels distances as

where 7, is associated with the curvature ¥falong the
direction of o

mﬁ, 92V large asM; in field space, a problem which, in most models
Noo= —- (68  of quintessence, is unresolveto].
V' go?
A. Modular inflation
“Early versions of this idea can be found[28], where, however, Moduli fields correspond to flat directions in field space
it was considered more of a problem than a novelty. that are protected by symmetries against supergravity correc-

*It is also possible for the curvaton to decay just before it domi-tions. However, the values of string-inspired moduli are typi-
nates the Universe, which allows a certain isocurvature componer@tally related to observables, such as the gauge coupling in
in the density perturbations. the case of the dilaton, and need to become stabilized. This is
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usually supposed to occur at inner-space distances of ordéfter all, for the moduli one only expects thaiV(5¢
mp, where non-perturbative Kéer corrections may gener- ~mp)~V. Thus, for example, the potential may look like
ate a minimum for the field. Thus, the expected VEV for athis

modulus is(¢)~mp. Therefore, the scalar potential for a

modulus near its origin would be Vo Emzd’z- 0< p<mp,
vy L 22 7 V(g)= (76)
= ——m + ...
(¢) 0 2 ¢ VOeXF(_b(ﬁ/mp), ¢>mp
where,V is expected to depart significantly frowy, when This form is rather plausible for moduli potentials. In-
S¢p~mp, so that deed, the~-term scalar potential in supergravity is
Vo~ (mpm)?. (73 K, W —( K Wiy
V=eKime w2 Y | S g 0 gem| 20y g2
The inflationary scale is usually taken to be the so-called nm | Mp w mp
intermediate energy sca\é,*=5x 10'° GeV corresponding 77
to gravity mediated supersymmetry breaking. Then, from the
abovem~1 TeV. As a result we find where W is the superpotentialk is the Kéler potential,
(mpm)?2 K'"M= (K, !, the overbar denotes charge conjugation and
| 7= v ~1 (74)  the subindices represent derivatives with respect to the dif-
0

ferent fields of the theor{the barred indices denote deriva-

which means that such a modulus field cannot be the inflatoHon With respect to the conjugate fieJddn many string
of conventional inflation because it would be impossible tomodels the dynamics of the above is dominated byetH&r
attain a scale invariant spectrum of curvature perturbationgactor (see for exampl¢48]). Now, the Kaler potential, at
Moreover, the inflationary energy scale is too low to generatghe tree level, is logarithmic with respect to the modbli
the necessary amplitude for the curvature perturbations. sych that Km—mgzi|n[(¢i+cﬂ)/mp], which means that
. X : ) Ip-
1 i onash s shoun 29, o nfalon ke e 7[00, Note tat e, o o
' ' have canonical kinetic terms. Instead the kinetic part of the

(72), it is easy to see that relevant Lagrangian density is given by

2
r%) (79 Liin=Kjjd

€=

7
2

DD (79)

. - . which means that we can define the canonically normalized
which can become very small near the origin and easily sat-

isfy the constraint(69). The question is, of course, why Moduli asé;eIn[(®;+®;)/mp], in terms of which the scalar
shouldé, stand at the origin in the first place. This is naturalPotential becomes an exponential, Mxexp(—Zbi ¢ /mp).
to occur if the origin is point of enhanced symmef#7], The values of the .posmvbi. coefficients |n'the exponents
where the modulus field has strong couplings with the field&lePend on the particular string model considered but, in gen-
of some thermal bath preexisting inflation. Such strong cou€ral they are of order unityfor example in[48] b=22
plings introduce temperature corrections to Ef@) which ~ Whereas inf51] b=47). Obviously, the potential is even-
drive ¢ to zero. The inflationary expansion, then, beginstually dominated by the term with the smalldst
with a period of thermal inflation, which inflates away the  The potential can easily form a maximum at the origin if
primordial thermal bath and renders the origin a local maxithere exists a discrete symmetry of the forf— — ¢,
mum. Afterwards, quantum fluctuations send the field rolling(which corresponds to the well knowf duality: e”
down and away from the origin, in a period of fast-roll in- =1/e%). In this case the couplings of the moduli with matter
flation. This model, called thermal modular inflation, is dis- at the origin are maximizefb0], exactly as required by ther-
cussed if29].5 mal modular inflation. In contrast, away from the origin,
It is possible to formulate a model of quintessential infla-these couplings are strongly suppressed leading to an effec-
tion based on modular inflation if one considers that the sutively sterile inflaton, as required by quintessential inflation.
pergravity corrections introduced into the potential ¢t It is important to note that in the case described above the
~mp may not generate a minimum for the potentia| but justmOdulus is not stabilized by reaChing its VEV, but it does so

give rise to a slope, with the minimum displaced at infinity. dynamically, when reachingb=¢¢ where it freezes. Of
course¢r has to be at the correct value for phenomenology

to work. This is especially true for the dilaton, which deter-
SHowever, we do not need to presuppose so much. In fact one cdiines the gauge coupling. Thus, it would be safer to consider
use anthropic-style arguments and consider the fact that onljhe so-called geometrical modull {moduli) associated with
patches of the Universe whetkis near the origin will inflatgthe ~ the volume of the extra dimensions. The dependence of the
nearer the more inflatiorand, therefore, the likelihood to be living SM phenomenology on these is not manifest at the tree level
in one of them is greatly enlarged. but arises only at one loop and beyond.
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The above are based on the implicit assumption that the 1 b2
superpotential has only a weak dependence on the moduli €= Ebz[tanr{ PImo)1?,  n=2e- E[COSNd’/mo)]_Z-
2
and, thereforeY is mostly determined by the®/™s factor. (82

However, it should be pointed out here that, according to the
usual interpretation ofheterotig string phenomenology, the In order to have enougle-foldings of inflation we need
superpotential receives non-perturbative contributions fron7(¢—0)=—1, which demandsg=b*. Then it can be
hidden sector gaugino condensates, which are of the forfahown that inflation ends at
Woeexp(—Z;8P;/mp). Consequently, aT-modulus would
have a double exponential potential. As discussefl1B], bong= /i m z@m
such a potential, being steeper than the pure exponential, has e Ny P b P
a disastrous attractor solution. Indeed, not only does this at- . )
tractor diminishp , much faster thapg but it is also attained The number of fast-role-foldings before t_he end of m_fla-
very soon after the end of inflation and, therefore, renderd®n IS related to the valugy of the scalar field at that time
late-time¢ domination impossible. However, not all the pos- by [52]
sibilities for the moduli have been explored and there are 1
more t)_/pes _of string theory than the usugl_, weakly _C(_)_upl_ed N= E|n ):>¢N= DenXP(—FN) (84)
heterotic string. For example, one promising possibility is én
exploiting the fact that certain combinations of tRenoduli
4 . o where

may avoid the membrane instantons which introduce the
above non-perturbative exponential behavior ¥r Simi- 4
larly, it is evident that an exponential scalar potentiaith F \/1+ §| 7| —l) (85
respect to the canonically normalizé) can be obtained if
the superpotential is polynomial with respect to the mOdU”which, for slow roll inflation, becomeB (| 7|<1)~|7|.
An example of such a case can be seef4i®]. Thus, we
believe that it is quite possible that a canonically normalized 2. Enforcing the constraints
modulus may have a scalar potential with the desired pure
exponential tail.

Below we will examine the behavior of a toy model tha

(83

( d’end

2

Let us employ now theoBe bound(71). We find that the
¢ bound translates into a lower bound @nsuch thatq

bares the characteristics outlined above and investigatg dmins Where

whether it is indeed possible to be a successful quintessential b2N

inflationary model. We name this proposal modular quintes- Armin= dec (86)
i .

tial inflation. !
sential inflation 24510 10+ S IN(67/ Qi) +Inb

B. Modul int tial inflati .
odular quintessential infiation In the above we have defingd=In(mp/M) and alsoN gec

1. The toy model is the number of inflationarg-foldings that remain when the
scale, which reenters the horizon at decouplicgrrespond-
ing to the time of emission of the CMBRexits the horizon
during inflation. This scale is related to the reheating effi-
ciency by[18]

Consider the potential:

4
V(¢) (79)

[coshi¢/mg)]° Naec=IN(Temsto) + IN(Heng/ Trer) =66.94-In @ (87)

whereq is a positive integer anil,m, are mass scales. The whereT¢yg is the temperature of the CMBR at the present
above becomes time to.
Let us now enforce the coincidence constra#®) in the
case of conventional cosmology\ €2V.,and a—2a).

1
M*— §Q(M2/mo)2¢2, 0<p<mp, With a little algebra we find
V(g)= (80)
2 69.18-
29M%exp(—qépimgy),  ¢>mp, b=1/3 (89)

1
1.83 Zln c—Ina+pu
which can be identified with Eq76) if we define
which diminishes withx and, therefore, we can define

M4 Me tmin=(bmay), Where, according to Eq42), bpma=26.
m’=q—, Vo=M* b=q—. (81)  Thus, we obtain
mg Mo
=8.31+ 3 Inc+ 6| 89
The slow roll parameters for the above model are Fomin™ S+ e gna (89)

123506-13



KONSTANTINOS DIMOPOULOS

Finally, let us use the BBN constraifd9) to obtain the
upper bound oru. Similarly as above we find

3 3
Mmax=10.53+ —Inc+ Zln «a. (90

16

Both wmin @and umay increase withe, but with different

rates so that the. range decreases. Thus there is an upper

bound ona where pyin= ttmax- It IS easy to see that

-1/4

1
IN @tpa=20.72— 7 Inc= ama~10°c (91

The lower bound on the reheating efficiency is set by the

GW constraint(63). Therefore, thex range is

1<a<10. (92)

It can be checked that,,,, is much smaller that the re-

PHYSICAL REVIEW D68, 123506 (2003

log M(GeV)

FIG. 4. The shaded region depicts the allowed parameter space

heating efficiencyx,, which corresponds to prompt reheat- ¢, e inflationary scaléd. The parameter space is bounded from

iNg: prer(@p) =Veng- Note, however, that the gravitino pejow by the requirements of BBN and from above by tuse
bound(66) can chop off the lowest part of the above rangepound (solid lines. The bounds meet ai=10, which corre-

by about a couple of orders of magnitude if it is not effi- sponds toM,,=10" GeV. The lower bound o is set by the

ciently diluted by the curvaton decay.
From Eqgs.(89) and(90) we find the following range for
the inflationary scale for a givea

6.5X 1013C_3/16a_3/4GeV$ M <6.0X 10140_3/14a_6/7GeV
(93

GW constraint which results in=1 (dotted line. The dashed hori-
zontal line depicts the case of modular quintessential inflation, for
which M=5x10'"° GeV. The vertical dashed lines correspond to
the « range for modular quintessential inflation. The vertical
dashed-dotted line corresponds to the gravitino lower bound,on

if not diluted by the curvaton’s decay.

which is shown in Fig. 4. We see that entirely uncorrelatedwhich is rather narrow but it is above the gravitino bound

physics (BBN and coincidence requiremeptsonspires to

allow only a rather narrow range fof. The range ends up at
amax; Which corresponds to the smallest possible value for

M, which is

Mun=1.2<10" GeV. (94)

The fact that the curvaton hypothesis ameliorates the

n-problem is related to the value @f,,. In conventional
inflation the coBE bound is to be saturated arp= -
However, the spectral index boufdH), in view of Eq.(45),
demands that#|<1/20, which, according to Eq82) re-
quires

q>20b? (95
which is impossible to satisfy witly,,,;, in the given ranges
for b, anda. In contrast, the spectral index constrai®®)

in the curvaton case is well satisfied in the allowed paramet
space. This difference will become apparent in the exampl

below.

3. Examples

The modular casdn this case inflation is of the interme-

diate energy scale which means thslt=5x10% GeV.
Then, using Eq(93) one can find the allowed range fat

1.4x10%c < a<5.7x10%c 14 (96)

(66). Choosinga=3x10*c™ Y4 from Eq.(88), we find

b=4.56. (97)
Using the above E(86) gives
Omin=46 (99

which is quite large but cannot be compared to the require-
ments of conventional inflation, which, according to Eg.
(95), would demandq=416. Thus, we see thanhodular
quintessential inflation can be realized only in the context of
the curvaton hypothesiJhis is because, witq=qmi,, | 7]
is too large to achieve the required almost-scale invariant
spectrum of curvature perturbation. Therefdtee curvaton
hypothesis is necessary to overcome #heroblem of quint-
essential inflation in conventional cosmology

Although, strictly speaking, the above results have been
gbtained in the context of the toy model of E@9), we

eel:r)elieve that they are generally true for models of the type
(376) because, as mentioned in Sec. lll, the dynamicg afe

oblivious to the potential during kination and, therefore, only
the limits of large or smalkp, as depicted in Eq(80), are
important.

To obtain an estimate of all the quantities involved in the
problem let us choosg= 48 andc~2. Then, from Eq(81)
we find

Mp=10.5mp~2Mp and m=0.7 TeV (99
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which are both rather natural. Using these we also find  fore, using Eq.(33), we find ¢g=7.32Mp. Finally, in a
similar manner as above we find,,~79, which is larger

Tren=2x10° GeV  and T,=100 MeV. (100  thanN,~48 as required in order to solve the horizon prob-

As pointed out earlier, both these values are overestimatelg m.

by about an order of magnitude because of the oversimplified

assumption of sudden transition from inflation to kination. Vill. THE CASE OF BRANE COSMOLOGY
Still, note that the gravitino constraint of, is well satis- A. Brane inflation

fied, as well as the BBN constraint dr, .

From Eq.(33) we also find We turn now our attention to the case of brane cosmology.

In this case the inflationary dynamics occurs on energy

br=(9.01+ \/q/16.2Mp (101  scales higher than the brane tens{otherwise there would

be no difference with the conventional casBrane inflation

which, for q=48, gives¢r=9.44Mp. If modular quintes- has been studied {126,53. Here we simply cite some of the
sential inflation is indeed based on a string model, then th@ecessary tools to be used in our quintessential inflationary
correct phenomenology would determigesuch thatég is ~ model building.
appropriate. The above value corresponds to rather large ex- Above the brane tension scale the slow roll parameters are
tra dimensions and, therefore, it is not clear whether it maynodified and read
be accommodated in a realistic string theory.

Finally, in view of Eq.(84), the total number of fast-roll _ mZ(V'\2 1+VI\ o2 (V')?
inflationary e-foldings is B RRY (1+V/2)\)2:>6_ AMp——3
1 d’end
Nior= = In( (102 Vi "
F - =mi| —| ——— = e
bin 1=Me| | Trva 7 2>\mPV2. (107)

where ¢;,=H,,//27 because the rolling phase begins after o _
the inflaton is “kicked” away from the origin by its quantum  Similarly the COBE constraint(71) becomes
fluctuations. Using|7|=b%q and Eq.(83) we find N

~100. This has to be compared to the numbee-&sldings 1V 1+ v 3/2~ 1 % 105
that correspond to the horizon at present, which, similarly to /3. m|V’| 2N 26w N2m3| V| - '
Eq. (87), is found to bg 18] (108
Ny=69.15-Ina. (103 Finally, the number of slow-rok-foldings before the end
of inflation is related to the valuéy of the scalar field at

Thus, we findN=~59<N,, and the horizon problem is that time b
solved without danger of approaching super-Planckian den- Y
sities during inflation.

2
The case of N . As another example we consider the N= L %”dL( 1+ 1>d¢: L [fera _V de.
case with the smallest possibtg,,. From Eq.(86) it is maJen V'] 2\ maJon 20|V
evident thaiy,,,,, decreases withe. Therefore, for the small- (109
estqgmin We need to consider the smallest possible value of
M, which is given by Eq.94). This value corresponds to B. Exponential quintessential inflation
amax @S given by Eq(91) and also tdb,,.4 as given by Eq.
(42). Putting all these together E(B6) gives 1. The model
It can be checked that for models of the form of EZP)
Amin = 26. (104 or even steep models such 46¢) =M sinh(#/my)] 9 the

This should be contrasted with the conventional inflation re_lnflatlonary period already lies in the exponential branch of

quirement(95) which demands>480. Thus, again, we see the potential. Thgs, it is reasonable to avoid .cc?mpllcated
N X models and consider a pure exponential potential:
that the curvaton hypothesis is necessary to ameliorate the

problem. V() =M?*exp(—bo/mp). 110
In order to obtain estimates for the quantities of the prob- (#) R=blme) (110
lem let us choosg=28 andc~2. Then we find The above is well motivated for string moduli due to the

considerations of Sec. VII Abut without the discrete sym-
metry that forms the maximum f&f). For other motivations
of exponential potentials from Kaluza-Klein, scalar tensor or
higher-order gravity theories see, for example, R&¥] and

Ten=4 TeV and T,=10.3 MeV (106 references therein.

For the model110) the slow roll parameters are

which, again, are both overestimated by an order of magni-
tude, but satisfy all the relevant constraints anyway. As be- n=e=2Aexpb¢/mp) (119

My=5.7mp~Mp and m=51 keV. (105

Using these we also find
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whereA=b?(A\/M#*). Hence we obtain

1

¢end:B|n(1/2A) mp (112
and also

Veni=2AM*=2b2\. (113

Then, using Eq(109 we find
1

and

V(¢n) =Vend N+1). (119

2. The constraints

KeepingA a free parameter, we will attempt to constrain

PHYSICAL REVIEW D68, 123506 (2003

log &kV)

log a

FIG. 5. The shaded region depicts the allowed parameter space

the brane tensioi. Let us begin with the coincidence con- for the brane tensiokh™* which is linked to the inflationary scale as

straint (48). Defining z=In(mp/AY4and after some algebra V=

we find

1
—Inb

"

1 5
56.79- b( 1.88- Zln c—Ina— gln b

N
—+b
3

which diminishes with b. Thus, we can definezy,
=2(Dmay) . USINgbpa= 216 we find

(116)

3 6
Zmin=10.713+ ﬁln c+ 7In a. (117

Similarly to the previous section the BBN constra(Ag)
can be used to provide an upper boundzténdeed, with a
bit of algebra we obtain

3 5 3
Zmax— 10.706+ Eln ctg Inb+ 2 Inc. (118

YUa— Jo(2\)Y*. The parameter space is bounded from below by

the requirements of BBN and from above by t@se bound(solid
lines. The bounds meet at=10°, which corresponds ta it
=10’ GeV. The lower bound omr is set by the GW constraint
which results ina=1 (dotted ling. The dashed horizontal line de-
picts the case where the brane tension is of the order of the inter-
mediate scale, for which ¥4=5x 10'"° GeV. The vertical dashed
lines correspond to the range for this case. The vertical dashed-
dotted line corresponds to the gravitino lower boundagnif not
diluted by the curvaton’s decay.

7.5X 10'%c 316434 Gev

<\Y4<5.4x 10831497 GeVv (121
which is shown at Fig. 5. Note that this range does not differ
much from Eq.(93). This is so because both are determined
by the BBN and coincidence constraints \@g,q, Which see
only the exponential behavior of the potential. The difference
in the a range, however, is due to the modified dynamics of
brane cosmology. The parameter space is somewhat reduced
in size because of the negative effect of overdamping during
kination.

The smallest possible corresponds tay,,. Using Eq.

From the above it is evident that, once more, uncorrelated119 we find
physics results in a rather slim parameter space. This param-

eter space diminishes with. Thus, we can findx,,, by
setting Zmin= Zmax [Or equivalentlybi,=bmax in EQ. (51),
where nowY =In(2b?)]. We find

-1/4

1
I etmay=18.47— 7 INC= armar~ 1068 (119

The lower bound onx is set by the GW constrair{62),
which givesa,,,~1.5(b/c)¥% Therefore, ther range is

l<a<1C. (120

A =7.2x10° GeV (122
which, in view of Eq.(6), corresponds tdvls~10' GeV.
Now, the cOBE bound, as given by Eq108), becomes

3
z=5.08+ Eln b+IN(Ngect 1) (123

whereNy is again given by Eq(87). It can be shown that
the above does not change drastically over theaange
(when increasingr the mild growth of theb,,, is counter-

In view of the above the acceptable range for the branacted by the decrease Wf.) and corresponds to an overall

tension, for a giverw is

bound
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AY4<2.6x 108 GeV (124 3. Example

Let us consider again the intermediate scalé*=5
which is satisfied over all the rang@21). This bound is X 10 GeV. In this case Eq(6) gives Ms=4X 10" GeV.
challenged and may be saturated onlyde# 1, which, how-  Then, from Eq(121) we find the following range for:
ever, is in danger to violate the GW constrafaind will
certainly violate the gravitino constrai66) if it is appli-
cabld. Thus, we see thatithout the curvaton hypothesis one . o "
can hardly secure any parameter space for successful quin%(':—vr?(')%r;’e ""9"’;;‘5 1'83?2%\/?'_;2(3 ?J;ai‘r\]"t'? (Eifl;)m?/v% oLl:)?;i:S
essential inflationMoreover, note that, in the context of the “= : ’ 9 tda '

0.8x10°%¢c YM< ¢<3.5x 10Pc 14 (128

curvaton hypothesis, the GW and the gravitino constraints b=454 (129
are somewhat relaxed by the entropy production due to the T
curvaton decay. o Using this and taking~2 we find
It can be checked that within the above parameter space a
number of other constraints that apply to the system are well ab? \
satisfied. In particular, one does not violate the prompt re- Treh:—m— =T,en=8X10° GeV (130
heating constraing.,< Veng- Als0 there is an absolute upper Ve Mp
bound on\ coming fromAY4<Mg, which, in view of Eq.
(6) is recast as 2a%0° (20 e/ Gren) 4 N
Ty= — 1| —5=T«=110 MeV
(127r)2 V5 1 8x/) md
. 87 (13
A< —mp=~2Mp (125
3 which are, again, overestimated by an order of magnitude,

but still satisfy all the constraints, such as the gravitino

which is obviously satisfied. Another relevant bound isbound and the BBN constraint. Also, note thigty, is well

V(i) <M. Using Egs.(115 and (113 we see that this below the so-called normalcy temperatdfg=\"* [54,55,
bound corresponds to above which Kaluza-Klein excitations on the brane may ra-

diate energy into the bulk and possibly reinstate the dark
radiation term in Eq(7).

5 Now, the A bound(127) reads

Nt0t<2b_25)\ —1= Nmax- (126)
A=52x10 ! (132
Using Egs.(6) and (103 it can be shown thalNy<Npax. which, when saturated, resultslih=Ms. Using Eq.(32) we
throughout all the above parameter space and, therefore, thi@d ¢r= ¢pongt 9.20Mp, which, in view of Eqs(112 and
horizon problem is solved without problems. (132 gives p=<10.21Mp . A preferred value ofp may be
As far as the spectral index is concerned it can be showachieved by adjusting, or, equivalentlyM. For example, for

that the observational requireme@) is not challenged in - M=1 TeV we haveA=1.3x 10*%and ¢=5.92Mp.
both conventional inflation and, of course, in the context of
the curvaton hypothesis. Indeed, in conventional inflation we IX. CONCLUSIONS
haveng— 1= —4/(N+ 1), which means that E¢44) sets the
bound Ng4.=39. Using Eq.(87) this bound translates into We have investigated the problem of quintessential in-
a=<10%, which is true for all the parameter space of interestflation model building. In the context of a potential with an
[cf. Eq.(120]. Similarly, for the curvaton case and ignoring exponential quintessential tail we have shown that brane cos-
7., We obtain the boundr<10?!, which is well beyond mology inhibits the period of kination due to the extra fric-
challenge. Thus, we see that, in the case of brane quintesseien on the roll-down of the scalar field. This counteracts the
tial inflation the benefits of the curvaton hypothesis are rebeneficial effects of steep inflation towards overcoming the
lated more to the possible reduction of the inflationary scaley problem. Hence, we pursued a different approach and con-
(allowed from thecoBE bound than to they problem itself. ~ sidered quintessential inflation in the context of the curvaton
This is because steep inflation does help redukifigs long  hypothesis. We showed that the latter substantially amelio-
as the inflationary scale can be lowered to counteract theates the»n problem in both the cases of conventional and
effect of overdamping which reduces the duration of kina-brane cosmology. To demonstrate this we have studied a toy
tion. By relaxing thecoBe constraint into an upper bound, model of what we called modular quintessential inflation in

the curvaton hypothesis enables us to do just that. the case of conventional cosmology and the pure exponential
Finally, it should be stressed thit can be anything as potential in the case of brane cosmology. In both cases we
long asM <M, which results in the constraint have shown that the available parameter space for the infla-
tionary scale is not large and it is strongly correlated with the
\/E 413 [ 14 473 reheating efficiengw. Indeed, for a giverVg,g, We have
Az(—) bz(—) (127 shown that there is only a small window far, where suc-
8 mp cessful quintessential inflation is possible. This may seem
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like a fine-tuning problem. However, it simply reflects the investigated pure exponential potential, which may also be
necessary tuning for successful coincidence. The requireshotivated by string theory considerations. In this case there
values fora are not unreasonable and we should point ouis no preferred starting point for the roll down of the field as
that there is nothing special about the present time. Anyong as the inflationary energy scale is kept below the fun-
value of @ would cause some brief acceleration period in thedamental scale of the theory. We have seen that the param-
late Universe. We just happen to live in this period. Theseeter space for successful qumtessgnual inflation is somewhat
tuning considerations are even more relaxed if one considef§duced by the negative overdamping effect of brane cosmol-

the possibility of multiple unfreezings and refreezings of the®9Y ©n kination. _ .
scalar field, as discussed at the end of Sec. V B. Finally, we have studied the effects of gravitational wave

: . O .. generation on quintessential inflationary model building. We
In this paper we have considered the intriguing pOSSIbIIItyhave shown that gravitational waves will not destabilize

that the scalar field of quintessential inflatidoalled the BBN if the reheating efficiency ig> 1. which mav require
“cosmon” by some authopsis a modulus field, possibly as- " Ing etliciency | » Wi y requi
ome tiny, but non-zero coupling of the inflaton with other

sociated with the volume of the extra dimensions, such as th .
ields. In the context of the curvaton hypothesis, however,

geometrical T-moduli of weakly coupled heterotic string the aravitational way nstraint is ameliorated by the dilu-
theory. The modulus is taken to roll down and away from the € gravitational wave constraint IS ameliorated by the dilu

origin, where it could have been placed by temperature corf—jIon eff_er?]ti OInthel e\;tl’:)ﬁ]y Ft))rod:gtlor; ollu\?v towtgel C\:Jvla/iaLOHS
rections to its potential during a period of thermalization ecay. This may lower the bound anbelow a~71.1, ¢

preexisting inflation, if the origin is a point of enhanced Sym_WiII render gravitational reheatingand a truly sterile infla-

metry. In this scenario the inflationary expansion begins withtog) a;:ceptaEIe. Hg;yvever, a Iacrjgaft_mez fgz nNec$ss:ry n
a period of thermal inflation followed by fast-roll inflation, order 1o avoid gravitino overproduction= 107, Note, here,

as described if29] for modular thermal inflation. In contrast that t|i|ny cguplir;_g_s bet\_/\(/jeenﬁthe inflat(r)]n ar;)d the SM f_ields
to [29] though, we have supposed that thenkem corrections may have beneficiary side effects, such as baryogefesiis

introduce an exponential slope to the potential over distances All in all we hav_e shown that.the "be“'?‘“”.g effgct of the
comparable tome in field space. Thus, the VEV of the curvaton hypothesis enables quintessential inflation to over-
modulus is displaced at infinity, while the modulus is stabi-COMe its 7 problem and enlarges the parameter space for

lized dynamically by being frozen during the later history of sug:cessful _merI building. Appealing candujates for .the
the Universe at a nonzero potential density, causing th uintessential inflator(or cosmon may be string-moduli
present accelerated expansion. This way it may be natural 6elds.
avoid the excessive supergravity corrections that would oth-
erwise increase the present mass of quintessence to unaccept-
able values. However, it remains to be seen whether this | would like to thank D.H. Lyth and J.E. Lidsey for dis-
scenario is possible in the context of a realistic string theorycussions. This work was supported by the E.U. network pro-
Turning to brane cosmology we have focused in the muclyram: HPRN-CT00-00152.
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