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Einstein spaces in warped geometries in five dimensions
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We investigate five-dimensional Einstein spaces in warped geometries from the point of view of the four-
dimensional physically relevant Robertson-Walker-Friedman cosmological metric and the Schwarzschild met-
ric. We show that a four-dimensional cosmology with a closed spacelike section and a cosmological constant
can be embedded into five-dimensional flat space-time.
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The general theory of relativity is an experimentally we
tested theory. Among these tests, the Schwarzschild solu
has played a central role. For cosmological solutions, h
ever, the situation is beginning to become clarified with
accumulation of relevant astrophysical data. On the
hand, a simple, consistent, logical cosmology requires a
tially maximally symmetric Robertson-Walker-Friedma
cosmology with closed spacelike sections (k51). Recent
observational evidence shows that we live in an expand
closed universe with a positive cosmological constant@1#.
The maximally symmetric Einstein–de Sitter solutions a
good prototypes of such space-times since they include
cosmological constant. However, the existence of the cos
logical constant is one of the deep mysteries in cosmolo

Since the Kaluza-Klein idea@2#, there have been man
theories suggesting that the Universe may have more
four dimensions. Nowadays, the idea that our Universe m
be a three-brane embedded in five-dimensional univers
very popular@3–5#. For a recent review see@6#.

The recent interest in the Randall-Sundrum@4,5# and re-
lated scenarios has brought into consideration warped ge
etries such that the four-dimensional spacetime metric
multiplied by a warp factor which only depends on the c
ordinate of the extra dimension: namely,

ds(5)
2 5dw^ dw1b2~w!hmndxm

^ dxn, ~1!

whereb(w)5e2kuwu is the warp factor,k is a constant and
hmn5diag(21,1,1,1). In their second scenario@5#, where
the range of the extra dimensionsw is 2`,w,1`, we
live on a four-dimensional infinitely thin shell~three-brane!.
Notice that the five-dimensional Einstein tensor outside
brane satisfies the Einstein equation with a cosmolog
constant:

(5)GMN1gMNL550, M ,N50,1,2,3,5 ~2!

and onw5const hypersurfaces 4-dimensional Einstein t
sor of this metric satisfies
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(4)Gmn1gmnL450, m,n50,1,2,3, ~3!

whereL5526k2 andL450. The full Einstein tensor of the
5-dimensional space-time of the metric~1! is given by

(5)GMN52hMNL526kdM
m dN

n hmnd~w!. ~4!

Motivated by these considerations, in this work we will ca
culate five-dimensional Einstein equations of the metric~1!
for arbitraryb(w) in terms of the four-dimensional quantitie
originating from the four-dimensional metric

ds(4)
2 5gmndxm

^ dxn, ~5!

and b(w). As in the Randall-Sundrum scenario we do n
wish any matter sources to survive on five-dimensio
space-time except a possible five-dimensional cosmolog
constant. Our most important conclusion will be that a fo
dimensional cosmological constant can be induced e
when the five-dimensional cosmological constant is zero.
require that only gravity can propagate in extra dimensio
Thus the five-dimensional space-time is an Einstein sp
where the original Randall-Sundrum metric will be one
the cases of our solutions. Then, as in the Randall-Sund
scenario we impose reflection (Z2) symmetry on the extra
dimensionw. This symmetry will make the derivatives of th
metric discontinuous with respect tow at the point of sym-
metry and we know from the thin shell formalism of gene
relativity @7# that this discontinuity will give rise to a surfac
layer ~thin shell – brane!. The resulting five-dimensiona
Einstein tensor will be of the form~4!. Since in our solutions
four-dimensional part of the metric is same for everyw, the
brane tension@the term proportional tod(w)] is caused only
by the jump ofb8(w) on the brane.

After calculating the five-dimensional metric in terms
the four-dimensional metric, we first consider the fou
dimensional cosmological solutions of Einstein equatio
where the four-dimensional space-time is an Einstein sp
and the four-dimensional hypersurface is devoid of ma
except a four-dimensional cosmological constant. We ta
late all possible solutions we find in Table I.

We then consider the four-dimensional metric to be giv
by spherically symmetric static Schwarzschild solution. F
this metric we also find all possible solutionsb(w) when
©2003 The American Physical Society03-1
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TABLE I. b(w),a(t),c(x) and other quantities for 5D Einstein space when 4D part is of the form~6!.
e
es

a

or

se

n-
five-dimensional metric is an Einstein space and collect th
in Table II. Then we will also make some comments on th
solutions.

Our five-dimensional metric ansatz can be written in
orthonormal basis as

ds(5)
2 5dw^ dw1b~w!23$gmn~xr!dxm

^ dxn%, ~6!

5hABEA
^ EB, ~7!

where the four-dimensional metric is also written in an
thonormal basis:
12350
m
e

n

-

ds(4)
2 5gi j dxi

^ dxj5h i j e
i
^ ej . ~8!

The orthonormal basis one forms are chosen as

Ei5b~w!ei , E45 ibe45 ibdt, E55dw. ~9!

Note that for the sake of computational simplicity, we cho
the timelike one form imaginary so that we can takehAB as
dAB andh i j asd i j . The indices run asA,B, . . . 51,2,3,4,5
and i , j 51,2,3,4.

Employing Cartan structure equations, we find the no
zero components of the Riemann tensor as follows:
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(5)R kl
i j 5

(4)R kl
i j

b2
2dkl

i j b82

b2
, (4)R i5

i5 52
b9

b
, ~10!

where the8 on the functions denote derivatives of the fun
tions with respect to their arguments, anddkl

i j is generalized
Kronecker delta. The Ricci curvature scalar is found as

(5)R5
(4)R

b2
28

b9

b
212

b82

b2
, ~11!

Using these one can easily calculate the nonzero compon
of the Einstein tensorGAB

(5) of the metric~6! as

(5)Gi j 5
(4)Gi j

b2
1d i j H 3

b9

b
13

b82

b2 J , ~12!

(5)G5552
R(4)

2b2
1

6b82

b2
. ~13!

We have calculated the nonzero components of the fi
dimensional Einstein tensor for the metric~6! in terms of
b(w) and the four-dimensional Einstein tensor of the me
~8!. Since we want to first investigate the cosmological so
tions we chose four-dimensional metric ansatz as follows

ds(4)
2 52dt21a~ t !2ds3

2 , ~14!

where

ds(3)
2 5dx21c~x!2dV2

2 , dV2
25du21sin2udf2.

~15!

Here we will find admissible values ofb(w),a(t),c(x)
when the Einstein equations satisfy Eqs.~2! and~3!. We can
read off the orthonormal basis one formsei from Eqs.~14!
and ~15!:

TABLE II. b(w) for different signs ofb0.
12350
nts

e-

c
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ei5$e4,a~ t !ea%, e45 idt,

ea5$dx, c~x!du, c~x!sinudf%, a,b . . . 51,2,3.

For Eq. ~10! the nonzero components of the fou
dimensional Riemann tensor are found as

(4)R cd
ab 5

(3)R cd
ab

a2
1d cd

ab ȧ2

a2
, (4)R a4

a4 5
ä

a
, ~16!

and

(3)R 12
12 5 (3)R 13

13 52
č̌

c
, (3)R 23

23 5
12 č2

c
. ~17!

For the Ricci curvature scalar~11!, we have

(4)R5
(3)R

a2
16H ä

a
1

ȧ2

a2J , (3)R524
č̌

c
12

12 č2

c2
.

~18!

The Einstein tensor for this metric~14! is

(4)Gab5
(3)Gab

a2
2dabH 2ä

a
1

ȧ2

a2J , ~19!

(4)G4452
R(3)

2a2
23

ȧ2

a2
, ~20!

where

(3)G115
č221

c2
, (3)G225

(3)G335
č̌

c
. ~21!

Let us combine all these, then(5)GAB becomes

(5)G115H č221

a2c2
2S 2

ä

a
1

ȧ2

a2D J 1

b2
1

3b9

b
1

3b82

b2
,

~22!

(5)G225H č̌

a2c
2S 2

ä

a
1

ȧ2

a2D J 1

b2
1

3b9

b
1

3b82

b2

5 (5)G33, ~23!

(5)G445H 2č̌

a2c
1

č221

a2c2
23

ȧ2

a2J 1

b2
1

3b9

b
1

3b82

b2
,

~24!

(5)G555H 2č̌

a2c
1

č221

a2c2
23S ä

a
1

ȧ2

a2D J 1

b2
1

6b82

b2
.

~25!
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As we said before, we want to solve these fora and b
from(5)GAB1dABL550. For(5)G115

(5)G22 we get the fol-
lowing differential equation:

č̌

c
5

č221

c2
~26!

whose set of solutions is

c~x!5H x,
1

c0
sin~c0x!,

1

c0
sinh~c0x!J , ~27!

which correspond respectively to the casesk50,1,21.
For k50,(5)

Gii 5
(5)G44 gives the following differential

equation:

ä

a
5

ȧ2

a2
, ~28!

whose set of solutions is

a~ t !5$1;ea0t%. ~29!

For thea51 case,(5)Gii 5
(5)G55 gives the equation

b9

b
5

b82

b2
,

whose set of solutions is

b~w!5$1;eb0w%.

Finally, for thea5ea0t case, we have

b9

b
5

b822a0
2

b2
,

whose set of solutions is

b~w!5H a0w;
a0

b0
sinh~b0w!;

a0

b0
sin~b0w!J .

In the same way, we can easily find the solutions fok
571. All solutions are shown in Table I. As in the Randa
Sundrum case, to have a brane embedded in five dimens
for these solutions we have to imposeZ2 symmetry onb(w).
Then our four-dimensional universe will be an infinitely th
shell atw50 and the total five-dimensional Einstein tens
will have of the form:

(T)
(5)GAB5 (5)GAB16

b8

b
d~w!

52L5dAB2sdABdm
Adn

Bd~w!. ~30!

The k51 case corresponds to closed expanding unive
with positive cosmological constant, which is in accordan
with recent observations@1#. For this case, Table I shows th
b(w) can take three different values:$w;sinhw;sinw%. The
12350
ns

r

e
e

first of these is very interesting since in this case the fi
dimensional Riemann tensor and the five-dimensional c
mological constant are zero.

To have ak51 solution with (5)R PQ
MN 50 for this geom-

etry, it is necessary to have nonzeroL4. So, flat and empty
five-dimensional Minkowski universe in warped geome
~6! can give rise to a four-dimensional closed expanding u
verse with positive cosmological constant. ImposingZ2 sym-
metry, the metric for this case becomes

ds(5)
2 5dw21~a0uwu!2H 2dt21

c0
2

a0
2

cosh2~a0t !

3Hdx21
1

c0
2

sin2~c0x!dV2
2J J, ~31!

with

(5)Gmn526b8/bdmnd~w!,

(5)G555
(5)G5m50, (4)Gmn52L4dmn . ~32!

For this case the matter content of the four-dimensional u
verse is only the four-dimensional cosmological constant
fact, observations show that, the cosmological cons
dominates the matter content of the Universe. According
the recent review@8#, the composition of the content of th
Universe is as follows:

VB'~0.0120.2!, VR'231025,

VDM'0.3, VL'0.7, ~33!

whereVB is the density parameter of the visible, nonrelat
istic, baryonic matter;VR is the density parameter of th
radiation;VDM is the density parameter of the pressurele
nonbaryonic dark matter; andVL is the density parameter o
the cosmological constant. According to the observatio
which use several independent techniques, the density
rameter of the nonrelativistic matter isVNR5(VB1V (DM ))
'(0.2–0.4). This raises the possibility whether with just
four-dimensional cosmological constant the five-dimensio
space-time is flat except on the brane. Other kinds of ma
in four dimensions require the five-dimensional space-ti
to fluctuate from flat. Thus the presence of five dimensio
differentiates between ‘‘dark energy’’ satisfying equation
state p52r and other forms of matter-energy. Althoug
four-dimensional de Sitter space with positive cosmologi
constant is consistent with five-dimensional flat space-tim
other types of matter-energy in four dimensions require
five-dimensional space-time to fluctuate from flatness.

Now we turn to discuss the four-dimensional Schwar
child solution from the five-dimensional point of view. Let u
chooseds(4)

2 as Schwarzschild–de Sitter metric which sat
fies Eq.~3! and is given by
3-4
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ds(4)
2 52H 12

2m

r
2d0r 2J dt21H 12

2m

r
2d0r 2J 21

dr2

1r 2dV2
2 . ~34!

We find b(w) for d0,0,d0.0,d050 when the metric~6!
satisfies Eq.~2! and presented in the Table II. Note that f
m50 and ford0.0, the Schwarzschild–de Sitter metric b
comes a maximally symmetric metric and this metric can
written in a form where spacelike sections are closed. T
metric ~34! can be transformed into

ds(4)
2 52dt821cosh2~ t8!$dx21sin2xdV2

2% ~35!

with the following transformation:

r 5cosh~ t8!sin~x!,

t5 lnH sinh~ t8!1cosh~ t8!cos~x!

$12cosh2~ t8!sin2~x!%1/2J . ~36!

For this Schwarzschild–de Sitter case, forb(w);w and
mÞ0, five-dimensional Riemann tensor is not zero or co
K

B

12350
e
e

-

stant but involves terms proportional tom/r 3. If m50, the
solution reduces to Eq.~31!. Thus, if we imposeZ2 symme-
try, there will be a brane atw50. Having matter sources o
the brane will change the five-dimensional metric from flat
curved. Five-dimensional Ricci flat but curved metric
warped geometry can give rise to a four-dimensional u
verse with positive cosmological constant and matter. Thi
a special case of space-time matter~or induced matter! theo-
rem@9# which states that the matter content of the univers
induced from higher-dimensional geometry. The relevance
this theorem has been emphasized from the RS point of v
by Wesson and Seahra@10#.

In conclusion, we have shown that if in a Randa
Sundrum like scenario one imposes the condition that~411!-
dimensional space-time is flat, the only~311!-dimensional
brane which admits a closed spacelike section cosmol
requires a four-dimensional cosmological constant. It is cl
from Table I that in fact all flat five-dimensional space-tim
manifolds in warped geometries~6! imply a nonzero and
positive cosmological constant for the four-dimensional c
mology. This fact may be important as far as the measu
@1# cosmological constant is positive.
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