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Einstein spaces in warped geometries in five dimensions
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We investigate five-dimensional Einstein spaces in warped geometries from the point of view of the four-
dimensional physically relevant Robertson-Walker-Friedman cosmological metric and the Schwarzschild met-
ric. We show that a four-dimensional cosmology with a closed spacelike section and a cosmological constant
can be embedded into five-dimensional flat space-time.
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The general theory of relativity is an experimentally well- (4)GW+ 0,,A4=0, 1,v=0123, ©)
tested theory. Among these tests, the Schwarzschild solution
has played. a c'entr'al rolg. F.or cosmological squhong hoW\'/vhereA5= —6k? andA ,=0. The full Einstein tensor of the
ever, the situation is beginning to become clarified with th -dimensional space-time of the metfld is given by
accumulation of relevant astrophysical data. On the oné
hand, a simple, consistent, logical cosmology requires a spa-
tially maximally symmetric Robertson-Walker-Friedman CIGyn=— nunAs— 6K} 557, 0(W). (4)
cosmology with closed spacelike sections=(1). Recent
observational evidence shows that we live in an expandingotivated by these considerations, in this work we will cal-
closed universe with a positive cosmological consfdijt  ¢yjate five-dimensional Einstein equations of the meftic

The maximally symmetric Einstein—de Sitter solutions arefr arpitraryb(w) in terms of the four-dimensional quantities
good protptypes of such space-times since they include th@riginating from the four-dimensional metric
cosmological constant. However, the existence of the cosmo-

logical constant is one of the deep mysteries in cosmology.
Since the Kaluza-Klein idef2], there have been many dsz)ngdef‘@dx”, ®)
theories suggesting that the Universe may have more than
four dimensions. Nowadays, the idea that our Universe magnd b(w). As in the Randall-Sundrum scenario we do not
be a three-brane embedded in five-dimensional universe igish any matter sources to survive on five-dimensional
very popular{3-5]. For a recent review sgé]. space-time except a possible five-dimensional cosmological
The recent interest in the Randall-Sundr{#yb] and re-  constant. Our most important conclusion will be that a four-
lated scenarios has brought into consideration warped georngimensional cosmological constant can be induced even
etries such that the four-dimensional spacetime metric isvhen the five-dimensional cosmological constant is zero. We
multiplied by a warp factor which only depends on the co-require that only gravity can propagate in extra dimensions.

ordinate of the extra dimension: namely, Thus the five-dimensional space-time is an Einstein space
where the original Randall-Sundrum metric will be one of
dssy=dwa dw+b?(w) 7, dx“®dx”, (1)  the cases of our solutions. Then, as in the Randall-Sundrum

scenario we impose reflectior{) symmetry on the extra
whereb(w)=e X" is the warp factork is a constant and dimensionw. This symmetry will make the derivatives of the
n.,=diag(—1,1,1,1). In their second scenarib], where  metric discontinuous with respect t at the point of sym-
the range of the extra dimensiomsis —<w<+%, we  metry and we know from the thin shell formalism of general
live on a four-dimensional infinitely thin shefthree-brang  relativity [7] that this discontinuity will give rise to a surface
Notice that the five-dimensional Einstein tensor outside theéayer (thin shell — brang The resulting five-dimensional
brane satisfies the Einstein equation with a cosmologicaEinstein tensor will be of the forr4). Since in our solutions
constant: four-dimensional part of the metric is same for everythe

brane tensiofithe term proportional té(w)] is caused only

(S)GMN+gMNA5:O! M,N=0,1,2,3,5 (2) by the Jump Ofb,(W) on the brane.

After calculating the five-dimensional metric in terms of
and onw=const hypersurfaces 4-dimensional Einstein tenthe four-dimensional metric, we first consider the four-
sor of this metric satisfies dimensional cosmological solutions of Einstein equations

where the four-dimensional space-time is an Einstein space
and the four-dimensional hypersurface is devoid of matter
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TABLE I. b(w),a(t),c(y) and other quantities for 5D Einstein space when 4D part is of the t6fm

k c(x) a(t) b(w) RS R® As RMD R® A, R®
1 0 0 0 0
1 0 0
ebov -b} —20b} —6b} 0
0 X apw 0 0 0 a(Z) 0
a,
%' b—" sinh(bgw) —b3 —2063 | —6b3 a2 1242 3a2
0
Z—Osin(bow) b2 2002 6b2 e
0
agw 0 0 0 a(z)
1 o ao . 42 _ 2 32 2 2 2 2
1 — sin(cox) — cosh(ay) — sinh(byw) bg 20by 6bg ag 124, 3ag 6cg
o a by
;ﬂsin(bow) b3 20b 6b3 a3
0
1 0 0 0 0
Cof 0 0
ebov -b} —20b} —6b3 0
_ 1. 2 2
1 = sinh(cgx) agw 0 0 0 ag 6¢;
0
Co . do . 2 2 2 2 2 2
a_ Slnh(aof) b_ Slnh(bow) - bo - 20b0 - 6b0 ag 12a0 3 ag
0 0
?sin(bow) b2 20h3 6b3 al
0
Co . do g2 ann2 2 _ 2 15,2 2.2
Py sin(d) b cosh(bow) by 20Dy 6bp ) 12a, 3ap
0 0
five-dimensional metric is an Einstein space and collect them ds(24): 9i dx ®@dx = ﬂijei Qel. (8)
in Table Il. Then we will also make some comments on these
solutions.

- . . . . . The orthonormal basis one forms are chosen as
Our five-dimensional metric ansatz can be written in an

orthonormal basis as E=b(w)e', E‘=ibe‘=ibdt, ES5=dw. 9)
= 2 p “ v

ds(25) dwadw+b(w)"x{g,(x")dx“@dx"},  (6) Note that for the sake of computational simplicity, we chose

the timelike one form imaginary so that we can takg; as

= 7asE @ E®, (7)  5ag andn;; as ;. The indices run a&\,B, ...=1,2,3,4,5
andi,j=1,2,3,4.
where the four-dimensional metric is also written in an or- Employing Cartan structure equations, we find the non-
thonormal basis: zero components of the Riemann tensor as follows:
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TABLE II. b(w) for different signs ofb,. e={e*a(t)e?}, e*=idt,
A, b(w) RO A R e?={dy, c(x)d6, c(x)sined¢}, ab...=1,23.
) 0 0 For Eqg. (10) the nonzero components of the four-
0 0 dimensional Riemann tensor are found as
ebo —20b5 —6b} (R, 42 4
Cc
w 0 0 PR 2 ﬁgd? “Ru=g 19
dO . 2 2 2 and
3dy ™ sinh(byw) —20bg —6bg 12d;
- 12 13 c 23 1-¢?
) (R12 — (RIS — — o (9RZ — (17)
2 sin(bow) 206} 6b2
0 For the Ricci curvature scalatl), we have
do (3) A ~2 e _x2
~3dy | plooshibwn) | 206 | -5 | —12; wpe OR 6[ a, a_] R
a2 a a2 c c?
(18)
B (4)R|] N b!2 ) b/r i i . ) .
GRI — K sl (AR5 _ — (10 The Einstein tensor for this metrid4) is
kI = b2 kI b2’ 5=
_ o @ Gab 2a a2
where the’ on the functions denote derivatives of the func- Gav= 5 ~%an) 7 T [ (19
tions with respect to their arguments, afifj is generalized a a
Kronecker delta. The Ricci curvature scalar is found as @ o2
R a
oo @R b b7 HCu= o 20
RZF—SF—].ZF, (11)
where
Using these one can easily calculate the nonzero components
of the Einstein tensoB) of the metric(6) as s2_q v
@G, ° @G — G 21)
(4)G " 12 1 CZ ’ 22 33 c’
<5>Gi,-=—2”+5”[33+3—2], (12)
b b Let us combine all these, thd@G 5 becomes
R(4) 6b,2 2 A A2 " 12
OGge=——5+—. 13 GG, | S L (2, &)1 307 3b7
2b b 11 a2¢2 a a2/ |p2 b b2’
We have calculated the nonzero components of the five- (22
dimensional Einstein tensor for the metii§) in terms of 5
b(w) and the four-dimensional Einstein tensor of the metric c a a2\|1 3p” 3b’2
. . . K . (5)G N o oy
(8). Since we want to first investigate the cosmological solu- 22 a 22/[p2" b b2
tions we chose four-dimensional metric ansatz as follows: a
=g 23
ds,y=—dt?+a(t)?ds3, (14) 2 23
where 2¢ -1 _a?|1 3b" 3b2
OCu=| 5t =585t T
dsgy=dx?+c(x)%dQ3, dQ3=de*+sirfed$> a‘c a% a“)b b
(15) (24
Here we will .find admissible_values df(w),a(t),c(x) ot 2.1 2 a2\l1 ep?
when the Einstein equations satisfy E(®.and(3). We can B)Gge=| — + el Dy
read off the orthonormal basis one formisfrom Egs.(14) a’c  a?c? a a?/|p? b2
and (15): (25

123503-3



ARIK et al.

As we said before, we want to solve these &oandb
from®)Gog+ SagAs=0. Fot9G, ;= ®)G,, we get the fol-
lowing differential equation:

c -1 26
T (26)
whose set of solutions is
1 1
c(X)=1 X, o Sin(Cox), —sinf(Cox) 1, (27)
0 0

which correspond respectively to the cages0,1,—1.
For k=0,5g,=0,, gives the following differential
equation:

| ©:
N

a
= 2’ (28
whose set of solutions is
a(t)={1;e%}. (29

For thea=1 case,®)G;,= ®)G; gives the equation
b” B b2
b p2’
whose set of solutions is
b(w)={1;ePo"}.
Finally, for thea=e%! case, we have
b’ b'?—aj
b
whose set of solutions is

Ao

b(w)=1{ayw; by

. Qo .
smr(bow);b—sm(bow) .
0

In the same way, we can easily find the solutions Kor
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first of these is very interesting since in this case the five-
dimensional Riemann tensor and the five-dimensional cos-
mological constant are zero.

To have ak=1 solution with ®R"S4=0 for this geom-
etry, it is necessary to have nonzekq. So, flat and empty
five-dimensional Minkowski universe in warped geometry
(6) can give rise to a four-dimensional closed expanding uni-
verse with positive cosmological constant. Imposiigym-
metry, the metric for this case becomes

2
c
OISfS):dWZJ“(f:‘o|W|)2‘ —dt?+ a—gcosﬁ(aot)
0

1
x[d)(2+ — Sirf(Cox)dQ5 | |, (31)
Co
with
5 _ ’
®)G,,=-6b'/bs,,5(w),
(5)G55= (5)G5u:0' (4)G;w: _A45;w' (32

For this case the matter content of the four-dimensional uni-
verse is only the four-dimensional cosmological constant. In
fact, observations show that, the cosmological constant
dominates the matter content of the Universe. According to
the recent revievy8], the composition of the content of the
Universe is as follows:

0p=~(0.01-0.2), Qr~2X10°,

Qpu=~0.3, Q,~0.7, (33)

where()g is the density parameter of the visible, nonrelativ-
istic, baryonic matter()y is the density parameter of the
radiation;Qpy is the density parameter of the pressureless
nonbaryonic dark matter; arfd, is the density parameter of
the cosmological constant. According to the observations
which use several independent techniques, the density pa-

=¥ 1. All solutions are shown in Table I. As in the Randall- rameter of the nonrelativistic matter &yz=(Qg+ 2 pu))
Sundrum case, to have a brane embedded in five dimensions(0.2—0.4). This raises the possibility whether with just a

for these solutions we have to impaggsymmetry orb(w).

four-dimensional cosmological constant the five-dimensional

Then our four-dimensional universe will be an infinitely thin Space-time is flat except on the brane. Other kinds of matter
shell atw=0 and the total five-dimensional Einstein tensorin four dimensions require the five-dimensional space-time

will have of the form:

!

b
(3)Gas=®Gap+ 65 o(w)

:_A55AB_0-5A5525§5(W)' (30)

to fluctuate from flat. Thus the presence of five dimensions
differentiates between “dark energy” satisfying equation of
state p=—p and other forms of matter-energy. Although
four-dimensional de Sitter space with positive cosmological
constant is consistent with five-dimensional flat space-time,
other types of matter-energy in four dimensions require the
five-dimensional space-time to fluctuate from flatness.

The k=1 case corresponds to closed expanding universe Now we turn to discuss the four-dimensional Schwarzs-
with positive cosmological constant, which is in accordancechild solution from the five-dimensional point of view. Let us
with recent observatiorid]. For this case, Table | shows that chooseds(24) as Schwarzschild—de Sitter metric which satis-

b(w) can take three different valueSw;sinhw;sinw}. The

fies EqQ.(3) and is given by
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2m
dS%4)= —{1— T—dorz dt?+

2m -1
1- T—dorz] dr?
+r2dQ3. (34)
We find b(w) for dy<0,dy>0,do=0 when the metrid6)

satisfies EQq(2) and presented in the Table Il. Note that for
m=0 and fordy,>0, the Schwarzschild—de Sitter metric be-

comes a maximally symmetric metric and this metric can bere

written in a form where spacelike sections are closed. Th
metric (34) can be transformed into

dsgyy=—dt’?+cost(t'){dx*+sixdQ3} (35
with the following transformation:
r=cosht’)sin(x),

sinh(t") + cosht’)cog x)
n .
{1—cosk(t")sir?(x)}?

(36)

For this Schwarzschild—de Sitter case, bfw)~w and
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stant but involves terms proportional ti/r3. If m=0, the
solution reduces to Eq31). Thus, if we impose&Z, symme-

try, there will be a brane at=0. Having matter sources on
the brane will change the five-dimensional metric from flat to
curved. Five-dimensional Ricci flat but curved metric in
warped geometry can give rise to a four-dimensional uni-
verse with positive cosmological constant and matter. This is
a special case of space-time mattrinduced mattertheo-

m[9] which states that the matter content of the universe is
fhduced from higher-dimensional geometry. The relevance of
this theorem has been emphasized from the RS point of view
by Wesson and Seahfa0].

In conclusion, we have shown that if in a Randall-
Sundrum like scenario one imposes the condition ¢#hatl)-
dimensional space-time is flat, the or(§+1)-dimensional
brane which admits a closed spacelike section cosmology
requires a four-dimensional cosmological constant. It is clear
from Table | that in fact all flat five-dimensional space-time
manifolds in warped geometrig®) imply a nonzero and
positive cosmological constant for the four-dimensional cos-
mology. This fact may be important as far as the measured

m=0, five-dimensional Riemann tensor is not zero or con{1] cosmological constant is positive.
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