RAPID COMMUNICATIONS

New derivation of a third post-Newtonian equation of motion for relativistic
compact binaries without ambiguity

PHYSICAL REVIEW D 68, 121501R) (2003

Yousuke Itof
Max-Planck-Institut fu Gravitationsphysik, Albert-Einstein-Institut, Am kenberg 1, Golm 14476, Germany

Toshifumi Futamase
Astronomical Institute, Graduate School of Science, Tohoku University, Sendai, 980-8578, Japan
(Received 4 July 2003; published 1 December 2003

A third post-Newtonian(3PN) equation of motion for an inspiraling binary consisting of two spherical
compact stars with strong internal gravity is derived under the harmonic coordinate condition using the strong
field point particle limit. The equation of motion is complete in the sense that it is Lorentz invariant in the
post-Newtonian perturbative sense, admits the conserved energy of the orbital motion, and is unambiguous,
that is, with no undetermined coefficient. In this paper, we show explicit expressions of the 3PN equation of
motion and an energy of the binary orbital motion in the case of a circular(@dxtecting the 2.5PN radiation
reaction effegtand in the center of mass frame. It is argued that the 3PN equation of motion we obtained is
physically unambiguous. Full details will be reported elsewhere.
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Renewed attention has been paid to a high order posevolution equation and luminosityl0] unfortunately have
Newtonian equation of motion governing inspiraling com- four undetermined coefficients, one of whichnis _
pact binaries in the context of the efforts for direct detection Theoretically, the use of Dirac delta distributions and in-

ability of the gravitational waves emitted by the binaries and! "€ Perfect(physica) agreements among the results ob-
ained by various authors with various meth¢tis—13 give

the quality of the measurements of astrophysical mforma}tlori‘ direct theoretical confirmation of the 2.5PN result first de-
(e.g., massegsdepend on the accuracy of the theoretical

rived by Damour and Deruell¢14]. It is important to
knowledge of the waveformEl], and hence partly of the , pieve 3PN iteration without introducing singular sources to

dynamics of the binaries. o derive an unambiguous result and support the previous 3PN
The third post-Newtoniai3PN) approximation has been \orks which have used Dirac delta distributions.

a subject of much discussion because of its ambiguity re- Based on our previous papdrk2,15, we derive a 3PN
ported originally by Jaranowski and Séba[3]. In fact, the  equation of motion for two spherical compact stars in the
3PN Arnowitt-Deser-Misner(ADM) Hamiltonian in the harmonic gauge without introducing singular sources. In-
ADM-type gauge obtained ifi3] has two undetermined co- stead, we apply the strong field point particle lirfif] to
efficients @yineic aNd wsgid and the 3PN equation of mo- deal with strong internal gravity of the stars. Our derivation
tion in the harmonic gauge derived by Blanchet and Fiaje 'S satisfactory in a sense that the equation admits conserved

has one coefficient undetermined within their framework, ©Neray: is Lorentz invariant, and is unambiguous. In this pa-

. o ; er we shall show both the 3PN equation of motion and an
Both groups have used Dirac deita distributions, which Causgssociated 3PN energy of the orbit?;ll motion in the center of

divergences in general relativity, to express the point parihe mass frame and in the case of a circular orbit.

ticles and inevitably they have resorted to mathematical pejow, we shall explain briefly yet another derivation of a
regularizations. Damotgt al. [5] pointed out that the unde- 3PN equation of motion. Since this method is different from
termined coefficients may arise due to the unsatisfactory feasthers, we mention some details specific to our method at the
tures of the regularizations they have used3m]. Indeed, 3PN order. After deriving an invariant energy of the binary
using dimensional regularization, R¢&] has succeeded in orbital motion, we shall compare it with that derived by
determining both of the coefficients, namelggi—=0, Blanchet and Faye and fix the parameter. A full explana-
which means\ = —1987/3080 via a relationship established tion of our method, including computational details, will be
in [6]. (wyinetic is related to the Lorentz invariance and wasreported in[17]. See alsd12,15|.

fixed in [5,7]. Blanchet and Faye have developed a Lorentz We write explicitly the post-Newtonian expansion param-
invariant Hadamard patie finie regularizatip®,9] and do eter, e, which represents the smallness of the orbital veloci-
not have any ambiguities other than) ties of the stars. The mass scales efsfrom the post-

In gravitational wave data analysis, the reduction of preiNewtonian scaling. Then th&rong field point particle limit
dictability of the equation of motion due to the undetermined[16] is achieved by setting the radius of the star to scale at
coefficient can become a problem. In fact, the 3.5PN phasthe same rate as its mass$, The scalings of the mass and

the radius enable us to incorporate in the post-Newtonian

limit (e—0) the limit of a regular point particle whose in-
*Email address: yousuke@aei.mpg.de ternal gravity, approximately the mass over the radius, is
"Email address: tof@astr.tohoku.ac.jp strong irrelevantly tce.
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We derive an equation of motion via surface integrals of (i) ol o .
the gravitational energy momentum flux going through a Sl =€ SUAVA ﬁB dSYAYAYXKA "+ O(€*)
sphere surrounding the star. For this method, we prepare two A
spheresBa(7)={XX||X—za(7)|<€Ra} (A labels the two
starg on ther=const surface, whereis the time coordinate
in the near zoneB,, called the body zone, is centered at the o _ _ _
star A’s representative poinziA(r) and has a radiugR, In our formalism, it is possible to derive the 3PN field for an
where R, is an arbitrary constant and is smaller than the'Selated staiby taking a limit where the mass of the com-

) : . i (i) i
orbital separation but larger than the radii of the stars. wé@nion star is zeno 51"’ is a necessary term to obtain the
make the body zone radius shrink proportionallyeta the ct:)rrecr: exrf)ressmln_ Ofl the 3PN f'egj ;‘_or SUCh a syst(_elgrlw. Al-
near zone coordinater(x') to ensure that the field on the though other multipole moments defined oy possibly

body zone boundary due to the star is obtained by multipol ide purely monapole terms, only the quadrupole moment is
expansion when the zero limit is taken ound to be relevant up to the 3PN order. Clean extraction of

. monopole terms from the multipole moments defined in our
) The.lth m_ult|pole moments of _the staiA denote_d by previous works is a problem at the 3PN order specific to our
Ia(7), including its mass, are defined as volume integralgsrmalism. Blanchet and Faye, on the other hand, elaborate
overBy of A= —g(T+t[)+x™™** 5 whereg, T*” and  their generalized Hadamard partie finie regularizaf®in a
t{” are the determinants of the metgg,, the matter stress Lorentz invariant mannel9], and have properly taken into
energy tensor and the Landau-Lifshitz pseudo tensomccount special relativistic kinematic effects, including the
x“””‘ﬁ,aﬁ arises since we use the wave operator of the flatorentz contraction.
spacetime instead of that of the curved spacetime when we Now, let us briefly explain our derivation of the equation
solve the harmonically relaxed Einstein equation, of motion. The local conservation law of the total energy
gives an evolution equation for four-momentum of the star
and relationships among the multipole moments, namely,
L s L momentlzjm-yelocity relation. 2The last reads Rg=P v
la=e jBA(T)d apATag, (1) +Qj+e’dDj/dr whereP,=€2[g d*asA™ andP}, are the
three-momentum and the energy of the star Q,
=e *fg dS(A™—viA™)y, arises since the(pseudo)
where we introduced the body zone coordinatgt e x stress energy momentum of the field extends outside of the
—ziA(T)] and multi-indices notatioh.=i,---i; (1=0: inte- star[12]. Q}, can be evaluated explicitly and do contribute to
gen. ak:all. . a". The massma=lim__oP% with P; the 3PN velocity momentum relation. We can define the rep-

A A’ . - i - .
=19 so defined would be the ADM mass if the companionresemaﬂve pomzA(T)icitPe starAiby specifying thg dipole
moment of the staD =1, [e.g.,z,(7) corresponding to a

star were absent and the body zone radius is taken to be ditionD’. =0 b led th ter of fthe st
infinite in the body zone coordinate. condiioni, =5 May be caled Me Center o7 mass of e star

In deriving a 3PN equation of maotion, it is important in A from an analogy of the Newtonian dynamjc3he rela-

our formalism to notice that the body zoBg is a sphere in gg?;ﬂf q bbetV\i/r?;n rgl]tien er}ﬁ;?:?ti/?) r?g:ld t{;}i ?\?jﬁ?ﬁ) ncaen ubstion
the frame where the sté orbits, butB, is not a sphere in y 9 9 y q

the generalized Fermi franj@0] where the staA is at rest of Py, which i§ .expressed as surface inFegraIs and can be
and the effect of the gravitational field due to the companio (ivalualtidoexpz)hcnly up to the 3PN order, in the formfag
star is removedas much as possiblexcept for, namely, the Mal (e9].

tidal effect. We define stars to be spherical in the generalizefj pombmmg the mass energy. relation, t_he momentum ve-
Fermi frame. Now, we define the “intrinsic” multipole mo- ocity relation, and the evolution equation for the four-

AL A 2 i ) ~momentum, we obtain the general form of the equation of
mentsl 4(7) on ther= const surface in the generalized Fermi motion[12],

coordinate ¢,X) as a volume integral over a sphere

4 o
=— ezg mivngvL O(eh). (2)

Ba(7) centered at the same world event and with the mAdLIA=—e‘4fﬁ dS(Aki+E—4v/|§3g dSA™
same radiuseR, as Bp(7). For example, the difference dr B 9B

between the symmetric tracefree quadrupole moments is

defined as e251y)/=e®1{)) — %)= [ (,,d°yaA7yly) +64viA( jg dsKAkT—v';\ﬂg d&A”)
—J éA(;)d?’)A/AA;;%{)A/Q where (---) denotes a symmetric _ o _ ﬁBA_

tracefree operation on the indices between the brackets. For dQy ,d’Dj _dup
“spherically symmetric” compact stars, the “intrinsic” trace- T ar € d2 +(ma— PA)F' )

free quadrupole momenf!’ vanishes. Up to the 3PN itera-

tion of the gravitational fieldgl <A”> arise mainly due to the Note thatA””z(—g)t’L‘L”JrX/”“BﬂB on dB,, sincedB, is
Lorentz contraction and can be evaluated as a surface intevell outside the star by construction of the body zone. The
gral overdBa, acceleration in the right hand side of E8) should be un-
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derstood to be lower order acceleration than in the left hanevhereVi=v! — v}, is the relative velocity ang s p\A' is the

side. The terms in the right hand side of H8) are com- relative acceleration at the 2.5PN ordéne radiation reac-
pletely expressed as surface integrals over the body zongn term. The 3PN orbital angular frequendy,, is (for

boundary except fob}, to be specified. The surface integral comparison, we adopt similar notations ag4)

approach enables us to derive an equation of motion irrel-

evant to the internal structure of the st@ffects of the star’s ) 41
internal structure on the orbital motion such as tidally in- M=% 1+ €2 y(=3+v)+€'y?| 6+ ZVJFVZ
duced multipole moments appear through the field and hence )
the integrand\**.) The scaling of the body zone radiaR, " Eey3( 10+ — E‘_’+ ﬁ 109 In( r_12) ]
ensures that we have an equation of motion for compact 24 64 Ro
stars.

The field equation coupled to the matter equations men- n £3V2+ u3) +0(€”) 6)
tioned above is the integrated relaxed Einstein equation un- 2 '

der harmonic gauge[h*’=n*"—\—gg** where 7" )
—diag(— €2,1,1,1). The harmonic condition is them” , ~ Where m=m;+m,, v=mm,/m*, y=m/r;,, and InRy
=0] ’ =[my In(eRy)+m, In(eRy) /m. In Eq. (5) with (6), the repre-
sentative point of the stah, Zn(7), is defined by setting
D= €*8po= — 86 'mzyan/9, whereyay, is the Newtonian
acceleration. This choice makes the three-momengjm
(4) parallel to the velocity ', . We note that there is no arbitrary
parameter other than the body zone raci, in the 3PN
. relative acceleration. We here note that it is not allowed to fix
We split the flat light cone&C(7,x') into four parts: two body the \ parameter by comparing E¢) with the correspond-
zonesB,, a near zone outside the body zoh8 surround- ing result of Blanchet and Fayd], since the harmonic con-
ing the binary and the far zone outside the near zoneBlzor dition both groups have used does not fix the gauge com-
andN/B contributions to the fieldh“”(7,x'), we expand the pletely [17] and the expression of the 3PN orbital angular
retarded field about the near zone time Then multipole frequency in terms of the coordinate distamak ,,, Eq.(6),
expansion of the star is used to evaluate the two body zonis gauge dependert-or the same reason, we cannot Xix
contributions. TheN/B contribution is basically evaluated using Eq.(13).]
with the help of superpotentiala superpotential here means  We can remove awayR, dependence from the 3PN rela-
a particular solution valid itN/B of a Poisson equation with tive acceleration, Eq(5), physically by a suitable redefini-
a noncompact support sourceNiiB). Unfortunately, it was tion of the representative points of the stars. In fact, by set-
not possible to find all the necessary superpotentials expliding
itly at the 3PN order. For integrands in E¢4) such that we
could not find superpotentials in closed forms, after making
the retarded expansion we leave the Poisson integrals un-
evaluated and substitute tfeot-integrategifield into A#” in
Eg. (3). Then we perform the surface integrals in E§)  we obtain the 3PN relative acceleration free from any arbi-
[with respect to the spatial variablé in Eq. (4)] first and  trary parameter
next perform the remaining volume integrigith respect to _
the spatial variablg' in Eq. (4)]. In other words, we extract d_V'
the parts of the field necessary to derive the equation of dr
motion by interchanging the order of the integrations in Eq.
(3) and Eq.(4). As a check, we applied this method on the with m2Q2=m?2Qf —22e%y%v In(r1,/Ry). This observation,
integrands for which the necessary superpotentials can g fact, is the case in general cases., in general orbitgot
derived in closed forms, and found that both methods given the center of mass franiehe 3PN equation of motion in
the same result. Finally, we have dealt with the integratiorgeneral cases we have derived is physically free from any
over the far zone using the direct integration of the relaxecambiguity.
Einstein equations methdd3,18 and found that it does not Areason why we are concerned withdR, dependence is
contribute to the 3PN equation of motiph3,19. the following. Blanchet and Faye have introduced four arbi-
Using the method mentioned above, we obtain a 3PNrary parameters in their regularization procedure, two of
equation of motion for a two-spherical compact stars binarywhich appear in the regularization of the field having two
We here present the 3PN relative acceleration in the case sfngular points, and the others appear in the regularization of
the circular orbit and in the center of mass frame, which is arequations of motion for those two points. They showed that
appropriate equation to inspiraling binaries, the two of those parameters can be gauged away, while the
other two were consumed to make their equations of motion
i conservativémodulo the radiation reaction effecand they
d_V:_eri LS5 i (5) found there remained one and only one paramateal-
dr inf12F €25 though the relationship between energy conservation and

& AR (T elx—y|.,y*;e)

hMV(T,xi)=4f

c(rd) x=yl

[ _ 4 4 3 i
DaNew™ € 5AQ—e gmANaAIn

M2 ) )

<R,

= — Q%+ 5 mA, 8
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regularization parameters associated with a point particle de- . 22 .
scription is not clear. Our redefinition of the representative j d3y A”Y'=€4§ 2 m/sta'Am
points (7) corresponds to their gauge transformation. Then, N/B A=L2

their observation makes us check if it is physically allowed
to remove the I&R, dependence in our 3PN equation of
motion, since we introduced only two arbitrary parameters; o that the near zone dipole moment can be freely deter-
eR, and we have no freedom to make our equation mOtio%ined say,DL =0, since we can define the origin of the
conservative by adjusting these two parameters if we remove . z,one f,regly ir,1 generf21]. By taking temporal deriva-
them away. Thus, we have two problems to be solved in Ou{iyes of D}, twice, we see thab, gives the definition of

method: removal of kR, and an energy conservation. For _ . . . R
lack of space, here we show some facts which support natL}-A(T) in terms of which the 3PN equation of motion is in-
rality of Eq. (7). The energy conservation problem will be dePendent okR,. _
addressed ifi17]; there we shall show our equation of mo- _ Finally, we show the 3PN conserved eneiggglecting
tion and an associated conserved energy of the binary orbitil€ 2-5PN radiation reaction forcef the circular orbital
motion in general cases. motion in the center of mass frame. Using ES), we have

Let us consider the harmonic condition

EP)
e
GRA)

(12

]

where terms denoted by-“-” are independent oR,. No-

mvy 2
T i i Eln('}’):_ 2 1+E y
O0=h"™ :464 2 iﬂ.}.r_A pPr i+62&_p'
o A=12|Ta dr ri AUA dr A

d o
+ > 3@ : (AT =0 A™)+ - -
A=12 14

= ; ©) 285 27 , 5
Bp [X— 6.3 _ —_ 4 — .2, — .3
A XYl + €%y o1 P32 T ea?
. 1 dP), ds 10141 12372 22 [ryq,
0=hi* =|¢&* ——+ % — +vi—r———+ =5 In| = )+O .
” {E Azzl,grA dr a5tz S, [x—y| "I's76 64 3R, (€)
(13)
X(AT—ph A+ |, (10) " , _
In terms ofx=(m,,)”~ we obtain the 3PN energy in an
invariant form
where “.-.” are irrelevant terms. These equations are a
manifestation of the fact that the harmonic condition is con- _ o 3 1
sistent with the evolution equation &7, the momentum- En(X)=———|1+€| = 7= 157/X

velocity relation, and the equation of motigand relations
among higher multipole moments, hidden in-“"). Thus,
if logarithmic dependence @R, arises from the equation of
motion [essentially the second term of EQ0)], P,, must
have the same logarithmic dependefti®es minus sighto T _
ensure harmonicity. This and the momentum velocity rela- 64 576 96
tion in turn meanP;, v,=dz,/d7 or D}, have correspond- 155 35

ing logarithmic dependence. We foufiti7] that P, have no — 2 3

logarithm up to the 3PN order. Therefozk or D', should 96 5184
have logarithms. This is consistent with the fact that a choic

i ; i i ; R
of D, determinesz,. z, depends on logarithms if the old +(11/3)ePmu2y* In(r1,/Ry). Here we note that the differ-

choice is taken, while it does not if our new choice is taken. . =
The second fact that supports our interpretation is as folSNce betweekt(y) andE(y) is merely due to the redefini-

lows. We find that the near zone dipole momen defined tion of the dipole momentgor equivalently, a coordinate
) oy transformation under the harmonic coordinate condjtion
by a volume integral oA ""y' becomes

The invariant energ¥(x) is the same ag,(x) but with x
=(mQ,,)?" replaced withx=(mQ)?2. This third fact, that
GZDL‘EE*“J By ATy = D Pizy+ € > IN the energy has the same form for both definitions of the
N A=12 A=12 representative points of the stars when we write the energy in
terms of the orbital angular frequency, which is an observ-

s 675 {34445 205772]
+e€ v

x3|+0(€"). (14)

%imilarly, using Eq. (8, we have E(y)=E;(v)

4+t diy A7y (11) able, supports that the apparent body zone radii dependence
N/B of the 3PN relative acceleration has no physical effect on the
_ orbital motion.
Then if we take the old choice d}, the volume integral We have thus derived a 3PN equation of motion which
becomes takes account of strong internal gravity of the stars and
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avoids any ambiguity. Comparing our result, Efj4), with Blanchetet al.[22] have recently obtained the same value of
the corresponding result {#], we determine the coefficient X\, and computed a 3PN equation of motion in the harmonic
undetermined in the Blanchet and Faye 3PN equation ofauge using dimensional regularization.

motion as\A=—1987/3080. This value ok is consistent
with the result of Damour, Jaranowski, and ena5]. Y.l. was partly supported by the JSPS. The authors would

Thus, our resultindirectly) validates their use of the dimen- like to acknowledge H. Asada for fruitful discussion and
sional regularization in the ADM Hamiltonian approach in comments. Extensive use has been made of the software

the ADM transverse traceless gauge. Finally, we note thafATHEMATICA and MATHTENSOR.
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