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Self-energy-part resummed quark and gluon propagators in a spin-polarized quark matter
and generalized Boltzmann equations
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We construct perturbative frameworks for studying nonequilibrium spin-polarized quark matter. We employ
the closed-time-path formalism and use the gradient approximation in derivative expansion. After constructing
self-energy-part resummed quark and gluon propagators, we formulate two kinds of mutually equivalent
perturbative frameworks: The first one is formulated on the basis of the initial-particle distribution function,
and the second one is formulated on the basis of a “physical” particle distribution function. In the course of the
construction of the second framework, the generalized Boltzmann equations and their relis¢iotygcome
out, which describe the evolution of the system. The frameworks are relevant to the study of a magnetic
character of quark matter, e.g., possible quark stars.
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I. INTRODUCTION structed in terms of the “bare” number-density functi@nd
its relative, and the other, which we call physiddlscheme,
The possible recent discovery of a quark dthf2] has is constructed in terms of the “renormalized” number-
renewed our interest in the study of quark matter. The posdensity function(and its relative The latter scheme accom-
sibility of the existence of a quark liquid in a ferro-magnetic panies the generalized Boltzmann equation for the renormal-
phase has been pointed d@i. For analyzing the magnetic ized number-density function and its relatives. The form for
property of quark matter in a consistent manper6], itis  the leading part of the SEPR gluon propagator in a covariant
necessary to construct self-energy-part resummed quark agguge is given in Appendix D.
gluon propagators in spin-polarized quark matter, and
thereby frame a perturbation theory. Il. QUARK PROPAGATOR
The spin-polarized quark matter is, in general, out of A. Preliminaries
equilibrium. For dealing with such systems, we employ the

closed-time-path formalisrf¥,5]. In this formalism, propa- 1. Spin-polarization vector

gators, vertices, and self-energy parts enjoy @) -matrix We define a spin-polarization vect@(P) as follows.
forms, denoted *".” Let G(x,y) be a generic two-point For a timelike @2=p2—p?>0) mode, we chooseS*
function. Fourier transforming with respectxe-y (Wigner  — (g 7y (=¢#) [#2=1] in the rest frame, whereP*

tl’ansforma:[iom we haVeé(P,x) Wlth X:(X+y)/2 We as- :(f(po) \/EZ, 6) S|m||ar|y, for a Space"ke R2< 0) mode’
sume thatG(P,X) depends weakly oiX. Then, as usual, \ye chooseS*=(0,) in the “p,=0 frame,” where P*

employing a derivative expansigibEX), we use the gradi- = (0 \/—_PZE) (Ewgﬂ) [52:1 5 f= 0. S(P) in any

ent approximation > !
frame, whereP#=(pg,p), is obtained through a Lorentz

G(P:X)=G(P;Y)+(X—=Y)*ay.G(P;Y). transformation:

p- [P+ e(po) VP* n*] W]

VPP VP?+[po|]
part (term). Throughout this paper, we assume that the den- - = - o =3
sity matrix is a color singlet, so that the quark and gluon +6(—P?){ — p-{[P*+e(p- &) —+|:>Q ¢ +oH
propagators are diagonal in color space and independent of V=P J=P?+|p- €[] '
the color index. Then, we drop the color index throughout. 2.1)
The plan of the paper is as follows. In Sec. Il, the leading ’
term in the DEX of the self-energy-part resumm&EPR S-P=0, S§2=—1, (2.2
quark propagator is constructed. In Sec. Ill, we construct the
leading term of the SEPR gluon propagator in a Coulomb  pr=(1,0).
gauge. In Secs. Il and lll, the argumeit is dropped
throughout. In Sec. IV, we present the gradient terms of the When a magnetic field is applied along thedirection,
quark and gluon propagators. Then, we frame two mutuallyp,>0 modes with positivénegativé charge go to the state
equivalent perturbative frameworks. One framework is conS#(P) [-S*(P)], while their “antiparticle” counterparts
(Pp<0 modes$ go to the state-S#(P) [S#(P)]. In what
follows, the concrete form{2.1) is not used, but only the
*Electronic address: niegawa@sci.osaka-cu.ac.jp properties(2.2) will be used.

We refer to the first term on the right-hand si@RHS) as the  S#(P)= 0(P2)‘
leading part(term) and to the second term as the gradient
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The projection operatorB..(P) onto the states of definite 8f(p)=— ;lyo“s( P)y°7,, GI(P)=— ”leofé( P)y%7,
polarization () read ’ (2.’7)

1+ pe(po) vs&(P) which results from the Hermiticity of the density matrix.
2 ' Here, 7, is the first Pauli matrix, T acts on Dirac gamma
matrix function, e.g., AP)'=A*P~y!  and'S(P) denotes
the transpose of the (22)-matrix functionS(P), etc.
The bare propagatoS(P) is an inverse ofS™(P)
=(P—m)73. A general solution t& 15=55"1=1 is

P,(P)=

2. Orthogonal basis in Minkowski space and the standard form

As an orthogonal basis in Minkowski space, we choose

P#, S*,
o S(P)=8(P)+Sc(P)M.,., 2.8
N“=n”“—P—2P"+SOS” (N2=83-p/P?),
SOP)= 2 PUSRAP)~ T, (Se=SIML], (29
el=ie"”P NS, (e2=—PN?). e
A generic (4<4)-matrix functionA(P,N,S,e,) in a Dirac-
matrix space is written in the form, Sc(P)=— E C,—,(P)[AR(P)=AA(P)]
p==
— /+ ’ + ! + ! + ! + ! + ! + !
+AgysS+ AL yse, +ALPN+ALPE+ALPE
978 10755 T 2 i where the suffix K” stands for the “Keldish component”
+ALMNE+AMNE +A B8, . (23 and
We decompos@ into four parts, Sk 0
P
SaP=lg o gl
A= X PAP,= > PAP,, (2.4)
p,o=% p,o=% ~ 1 +1
ey
and write A?? in the form =1 1
APP=APP+ ADPP + ALPIN+ ALPPIN, S (P4 A (P) P+m
= m =, . 2.1
—p— P=P L APP p—p p=p e R PZ—m?=ipy0* 211
APTP=y [ A]TPHAST PP+ AT PN+ AL PPIN].
(2.9
It is a straightforward task to obtain f,(P)=08(po)N,(Ipol,p)+ 8(— Po)[1—N,(Ipol, —P)1.
ALP=A{+ pe(Po)AG, AL=AL~pe(pg)N?Als, (212
N / _ At / Here S is the retarded(advancedl propagator, and
A=A+ pe(po)P?Als, AP=A11+ pe(Po)As, RO 2 - .
N,(Ipol.p) [N,(IPcl,~P)] (p=7+) is the bare number-
AL P=AL—pe(Po)AL, AL P=Al+ pe(po)Al, density function of a quarkane antiquark with polarization
pS(P), energy |po] (=vp?+m?), and momentum
AS P =Agtpe(Po)ALs, AL P=A1s—pe(Po)Ajp. p [—p]. S in Eq. (2.10 connects opposite polarization
(2.6 states. From Eqg2.7), (2.8), and(2.10, we have

We refer to Eq.(2.5 as the standard fortSF) and A?” or
AP? as a SF element . It is to be understood that tiibare
and self-energy-part resummegropagators and the self- The derivative expansion is an efficient device for dealing
energy part, which appear in the following, are to be writtenwith quasiuniform systems near equilibrium or nonequilib-
in the SF. rium quasistationary systems. For such syste®sis small

when compared t&©.

(Ci-(P)*=C_.(P).

B. Bare propagator

First of all, we note that the bare propagator maé(?)

and the self-energy-part resummed propagator m&tiv)
enjoy the symmetry property,

C. Dyson equation

The self—energy—partf() resummed propagatcﬁs obeys

the Dyson equation
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G(P)=3(P)[1+3(P)&(P)]=[1+G(P)S(P)]3(P). S=59+s5 M., (2.17
(2.13
. §0=8ral~f(Sr—SwM..
We write G andy, in SF’s,

S«=[Sk(P)—Sa(P)]ysNC(P), (2.18
G= X PGP, 3= 2 P PP, 0 C..(P
" " “P=lc.m o

It is worth mentioning that, for the system that enjoys an
azimuthal symmetry around tiedirection, S, and then also
G, are independent oE/", provided that we choosé= p 31t B0t 3o+ 3,0=0. (2.19
x Z[|px Z|. Then, from Eqgs(2.3—(2.6), we have

Among the components & is a relation

Then,i is written as
3477=0 (p=),

S=3O_3,M_, (2.20
SIP=377 (j=234. ] 3 0
b 2<°>=< i )—(ERf—f SOM_
. - —3Ipt3p — 34
Same relations hold foB'’s. (2.21)
Substituting the SF’s foB, 3, andG in Eq. (2.13, we
obtain coupled equations Sr=31+ 2= — 2= 2, (2.22
épa:§)<r+(éié)pozépa+(éi"s)po‘ (p,o=%), 2:'A=2'11+221=_222_212: (2.23
(2.19 S=F 2= f+Hf 2o+ 2(1—1). (2.249

where §3G)r7 =3 0= L &PESEGL, etc. The relation that

From Eq.(2.16) with 3?7 for G??, we obtain the symmetr
involves (---)P7 is to be understood to hold when sand- d.2.16 J J y y

: relations
wiched between projection operatofy - --P,. We write
Eq. (2.14), with obvious notation, as CEI(P)* =at S 20(P),
6=5+536=5+G3§ (2.15 CRIP)* = — oS Z(P).
where boldface letters denote X2) matrix in a “polariza- Among the components @ is a relation
tion space.”
From Eq.(2.7), we obtain the symmetry relations for the G11+G2=G1p+ Gy (2.29

SF elements 067 [cf. Egs.(2.4) and (2.5)], .
[ as. (2.4 25 Then,G is written as

(GP‘T(P))*=—U”‘T tG‘T”(P)Tl, (2.16

G=GO+GM,, (2.26)
where G
~ R N
+ for (po.j) = (pp,1).(pp.2).(pp.3), R A A
P — (p—p,2),(p—p,3), Gr=G11— G1p= — Goot Gyy, (2.29
: (p=p.4)
~ for (pou) = (pp.4).(p—p.L). Ga=Cu~Ga=~Ct Grz @29
GK:Gllf_fG11+f621+G12(l_f). (23@

Similar relations hold foéf”’s.
Let us introduce (X 2)-matrix functionf in the polariza- |t is worth mentioning that, for equilibrium system,

tion space, =Gk=0. From Eq.(2.16 follow the symmetry relations
f=diag(f, ,f_). (GRj(P))* =0a}"GY(P),
ThenS is written as (GEF(P)* == aGKi(P). (23D
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Substitution of Eqgs(2.17), (2.20, and (2.26 into Eq.
(2.19 yields

GO = &0 4 OGO = &0) 1 GOFF0)

(2.32
GK:S<+SR2RGK+S<2AGA_SR2KGA
:S(+GRERS(+ GKEASA—GREKSA . (233
From Eq.(2.32, we obtain
Gray=[P—m—3gn] 1, (2.34

where use has been made &% 1)P7= 5*7(P—m) 75. We
get from Eq.(2.34), after some manipulation,

GY=[P- m_EEP_Ea—pG(Rpfe)—p—Pzapp]—ll

(2.35
Gy P= G&pfe)PPEE—pGgp—p: G%PE%‘PG%pre)_P_P '
(2.36
where
G =[P—m-3Sf] % (2.37

As has been remarked above after Efj14), Eq.(2.37) is to
be understood to mean
P,GE P [P—m—3]P,

=P [P—m-3¥IGLPPP =P 1P =P,. (2.39
Such an understanding also applies to Ej35. Concrete
form for Gg(a) Will be given in the next section.

As for G¢, Eq.(2.33, we show in Appendix A that
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uniform systems near equilibrium or nonequilibrium quasis-
tationary systemsz{?) andG{) are much smaller tha@{> .
The SF forG{" will be given in the next section. The stan-
dard forms forH, in Eq. (2.41) and ysNC(P) in Eq. (2.42

are also given in the next section. The SF's f6{?
and G{) are obtained by repeatedly using the formulas in
Appendix B.

D. Self-energy-part resummed propagatorAG
It is convenient to introduce
1
Gﬁp G(K )pp N
0 - GhRf ’

po po
o o5

o -sp)

We observe that Eq2.35 andG{?? in Eq. (2.40 are uni-
fied to a matrix equation

épp: [(P— m)}s_§pp_ip*pé(pre)*p*pifpp]*l’
(2.43

where

2 e G&pre)pp G(Kpre)pp e
Glprewe = =[(P—m)7s— 3] L.

(2.44)

-G '&Dre)pp

1. Forms for G{8?* and GP'@**

The SF for @ —m)7— 3 reads
(P—m) 73— 3P(P) = —[m75+ 30°(P) ]+ [ 75— 34°(P)]P
_Se(P)N-SL/(P)PN. (2.4

One obtains the expressions for the SF elem@i*r”

(T=R,A,K and j=1-4) through straightforward but te-

G.=GM+c@4+c® (2.39 dious manipulation of Eq2.44), which includes Eq(2.38).
KoK TR Writing 3 ;=3¢ for short, we have
(H— _
GK GREKGA ) (240) G(Rpjre)pp: o-fp(GS-\pjre)pp)* (J — 1_4)’
G(KZ):GR[ ¥sNC(P)Xp— 2rysNC(P)]GaA=GgH|Ga,
(2.41 GPredr — m+3, GPreyp — 1-2,
T
G =GrysNC(P)— ysMC(P)Gp. (2.42
py
“1" of H, in Eq. (2.41) stands for the “leading part” of the Glrere— =L (1=3.4),
DEX. As mentioned above at the end of Sec. II B, for quasi- Dire
|
4
> NPxg
(preyop — _ (j=1-4),

S Im{[(m+ 32 N2(35)2][(S5 — 1) N3(3%)2]}
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where N=2iF pdmF 3, N§=—[E(3)F 24— ESFual,
DEe=[(1-3,)=N?(24)?]P?— (m+3 1)+ N*(23)? with
(2.46
EG)=Im+3 22 N2[3g)%, ESY=11-3,22N7[3,[%
and
_ _ 2__ N2 2
NP =—[EG P+ ES)F 1), NP=—-2F 1 ReF(L, F24:Im(l 35)%=N3(3,) |
PP
pre

N=2N’ReF13H 4+ F4H 1],
(M+31)?—N?(35)?
PP !

pre

NV=2iN?F mF 3, Fiz=Im

N =—2F,ReF (3, NP =—[ESF 15+ EGF,, .
24! 1234 2 13 13 " 24 F(1§3)4=(m+21)(1—2’2‘)iN2232*,

NE=2N?F,ReF (1),
Fladm (m+3 3] +(1-3,)33,
N(24)=2iN2|m[F13H24+ F24H13],
His=(m+31)%3, Hy=(1-3,)2].
N{P=—2RdF13H4—FH 13,

2. Form for G&%,, and G’?”, Egs. (2.35) and (2.40)

2)_ - . . : .
NP=—2F  ReF{ ), Using the definition(B1) in Appendix B, one can write
N(S)— —[E(+)F24 ECOF ] N§4)=2iF13ImF(1§3),4 the quantity in the square brackets in E2.43 as
N~ -2 imEL, (P—m)73— 3P —[[SeGPIe3]r. (2.4

e SF for this is obtained by the repeated use of the formu-

2)— The SF for this is obtained by th d fthe f

Ni'=2iIm[ = F13H 24+ FogH 3], las in Appendix B:

Eq. (2.47= —[Mrs+ 3004+ A0 PS PP P2AL~PS PP N2AR™PS S0P PINZARPS ; PP] 4 [ 5= S0P — AL PSS PP

+A;22*p§l*pp_ NZAg*pizpp_ NZAT"E;’JP]P— [§§p+Ag*pigpp_ PZA‘{’JEZPP—A?”EIPP

_ pZAZ*pigpp]N_[§Zp+Ag*pizpp_,&gfpigpp+Ag*pigpp_,_,&ﬁ*p'il*pp]PN, (2.48
|
where We observe that Eq2.48 with Eq. (2.49 is obtained from
Eqg. (2.495 through the following substitutionsT(stands for
Arl)*pzifl)*pé(lpre)*p*p_l_ p2§§*p’é(zpre)*p*p R, A, orK):

S0P 3L THR 4+ P2TH0 + N2T55,
— P2N2T 40 — P TH5,+ TH0,— N2T54,+ N2T5,]
— N[ T8+ P2TH0+ T40 5~ P2T454]

— PN T4+ T55,— T45,+ T4A4,

2 2
15— 205+ Thhy+ PET55,+ NTES,

— P2N2T 0, T8, T0,+ N2T44, — N2T45,

Ap—p_Sp—pR(pre)-p—p o S (pre)-
AR R S N[ TH 4 PPTHE A~ P2THS)
—SLTPGPE Py Sp PGP e, (2.49 + N0+ Th0— TOR+ T22,

116007-5
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=385+ The st PPT50s+ N?T4S,
— P?NT45— PP T15,+ T50,— N?T44,+ N°T45
~[T{84+ P2Tg5r T~ P2TE2)
— PP Tt T58,= T8+ T4,
P SR T PPTIS o N2T,
— PANP T~ [TE8st o NPT+ N2T234
+[ T8+ P?T545+ T4, P2T45
[ Thar+ Th8,— Tahy+ Tl (2.50
Here forT=R andA,

ROP=Ski G " "Zgf?

and

AR =327 PGP
respectively, and, fol =K,
KPP = Egi—p[Ggajfe)—p—pzlzlpp_ G(Kpjfe)—p—nglpp]

ijl
- re)—p—ps —
+2ﬁi pg(F} )—p rS lpp.

Then, the expressions f@g, G2, andG{)** (j=1-4)
are obtained from those of their counterparts, in respective
order,GE*?, G{**, andG{#"* with the above substi-

tutions.

3. The forms for H'” in G@*7, Eq. (2.41), and for
ysMCP?(P) in GY, Eq. (2.42)
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IIl. GLUON PROPAGATOR
A. Preliminary

We adopt a Coulomb gauge. The result for a covariant
gauge is summarized in Appendix D.
As an orthogonal basis in Minkowski space, we choose

Pr=PL—pon#=(0p), T#=(0{—(Z-p)p/P?,
n*=(1,0), Ef=e*"""P,Z,n,. (3.0

These vectors are orthogonal with each other and their norms
are

PZ=—p? T?=-1+(l-p)/p?,
n?=1, E2=p?2
Incidentally, e**P {,,, €***"P,n,, and e*"*“{,n, are
not independent but are constructed out of the above four

vectors, e.g.¢“"""P,{,= (E“n"—n*EY), etc.
We define the projection operators

PR 11 PP

P (P)=g""— T R (3.2
~nY

PL(P)=—, 33
n
Bups

PE(P)= 5. (3.4

Although,n?=1, we have writtem? explicitly for later con-

The form for Hf” is obtained by using the formulas in venience. In the above definitions,T;” “ L,” and “G”

Appendix B:
HPP=—=C, ,(N?Z,fP = N?Z \fPP + 3, PN -3 . 2P PIN)
+(N?Z B3 = NZ2L, PP~ 38 PN+ 38, PPN)C_
HP™ 7= ys[C)— p(N?Z R P— NS, 07 7P
+3 0T PN=3 287 PPN) + (NZS 2L — N23 &)
—SEIN+ZEPN)C, 1. (2.5)
The form for ysNC*?(P) is given by Eq.(2.51) with
2p1— 0%, XR(—0 (j=2-4),
SR—0 (j=1-4).

4. The form for G*—°

Having obtained the expression f&?, we can get the
expression foiG?~* from Egs.(2.36), (2.39—(2.42) by re-

peatedly using the formulas in Appendix B.

stand, in respective order, for transverse, longitudinal, and
gauge fixing.[Following tradition, we calln“n”/n? in Eq.
(3.3 the “longitudinal projection operator]’ From Egs.
(3.1)—(3.4), one can show that

PP =PYP,=ucP”,

n, PG =P{n,=dy.n",

7, PE =P L,=ourl",
(ED)PE"=PY(EL) = urET . (3.9
Let A be a generic second-rank tensor in Minkowski

space, whosey(v) component is A)*"=A*". A*” is de-
composed as

AR (PY= > PE(AW) 0P
u,v ,L,G

(Py-Auv-Pu)*", (3.6
LG
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A=A TPH AT~ AT TR + AT TEHT,
ALl =ATPLY,
ALG=ASCPY’,
AR=AT "+ AJEEN?,
AtF=AIn" "= AT E],
AkL=ATCELPY+AICHPY,
AL =ASTPLEY — ASTPHZY,
APL=ACnrPY,
Akl =—AS"PHn". 3.7

From Eg. (3.5 follows (Py-Ayy-Py)*’'=Aly (UV

=T,L,G). We call Egs.(3.6) and (3.7) the SF's and refer
Ay (UV=T,.L,G) or AYY (UV=T,T'L,G) to as a SF
element of A*”, It is to be understood that th@pare and

self-energy-part resummeggropagators and the self-energy
part, which appear in the following, are to be written in

the SF.

B. Bare propagators

1. Bare gluon propagator

First of all, we note that the bare propagator mabiP)
and the self-energy-part resummed propagator m&iir)
enjoy the “symmetry” property,

O#"(P)*=—1'D"(P)my,
(G (PY* =—7'G"™(P)my,
D#(P)='D"*(~P),

GHY(P)='G"*(—P). (3.9

PHYSICAL REVIEW B8, 116007 (2003

. Dy 0
DRA:(DR— Dy —DA)’ 242
DE’=(Dy)t=~CHTAR(P) ~Au(P)], (3.13

Crr=C3T(P)¢¥ ¢ —CiT (PYE*EY +CY T(P)ELTY,
(3.19

where
F(P)=6(po)N(|Pol,P) — 8(—Ppo)[ 1+ N(|pol, — )],

1 P
DR"=(DE")* = —AsPH"— ;| LA | Pt

A M Po PUAY L LDV
_EPG _)\E(P n"+n*pP”).

(3.19

Here N is the number density of the transverse gluon and
ARp) is as in Eq.(2.11). From Egs(3.9), (3.10, and(3.13),
we have

(cih*=cl’, (ci")*=-cT. (3818

Note that, for the quasiuniform systems near equilibrium,
c3T, cI™, andCl'T are small when compared fo

2. Bare ghost propagator

A bare Fadeev-PopolFP) ghost propagatof) is
(3.1

C. Dyson equation

1. Gluon sector

The self-energy-partlf) resummed propagat@ obeys

G(P)=D(P)—D(P)II(P)G(P). (3.18

The first two equations result from the Hermiticity of the From Eq.(3.8), we obtain the symmetry relations, for the SF

density matrix.
D#*(P) is an inverse of

. 1. .
(D™H(P)"=—| P2gH' =P P+ PP |73 (3.9

with X a gauge parameter. A general solution B ¢D)*”
=g*” is written as
D=DO+DM, , (3.10

DO =D+ T(Dr—DAM ;. , (3.1

elements 0f3’”,
(GIUV( P))*=— O'J'UV;'ltéJyU( P);’l,

GV(P)='G/Y(-P) (U V=TT L,G),

(3.19
whereo}V= oY with of¥=+ (U=T,L,G) and
+ for (UV,j)=(TL,1),(TG,1)
o-JUV: - fOI‘ (UV,J):(TT,|3)!(TL12)!
(TG,2),(LG,1).
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Similar relations hold forflj)uv’s.
Components ofl follow the same relation as E¢2.19
and thenll is written as

M=19-1,M_, (3.20
o= "™ %) s mam

= + - -
“Mg+T1, —TI, (I A) )

(3.21)

g=1I;;+1I;;, (3.22

HA:H11+H21, (323)

= (1+ 1)~ fIL,,. (3.24

From Eq.(3.19 with ﬁj for éj, we obtain the symmetry

relations J,V,=T,T’,L,G)

(IR (P)* = o} VIIg] (P), (3.25

(I} (P))* =

- VI (P), (3.26

IRY(P)=11}{(—P)=o}V(IIR (- P))*,

Y (P)=TI¢P(— P) — €(po)[N(|pol.p)
=N(|pol, — PR (= P)~TIXP(—P)].

Components ofs follow the same relation as EQ.25
and thenG is written as

G=GO+GM., , (3.27

é<°>=( Cr +T(Gr—G)N . | (3.28
Gr—Gp —Ga

GR Gll GlZ! (329)

Ga=G11— Gy, (3.30

Gk=(1+1)G,—TGyy. (3.31)

For equilibrium systemd]I,=Gx=0. From Eq.(3.19), fol-
lows the symmetry relationd,V,=T,T’,L,G)

(G (P)*=0{VGE](P), (3.32
GR)(P)*==afVGy(P), (3.33
GRY(P)=GYY(—P)=aPV(GR(—P))*, (3.34

PHYSICAL REVIEW D 68, 116007 (2003

GKY(P)=Gy!(—P)+ e(po)[N(|pol,P)
—P)IGE(—P) =G (—P)].
(3.35

Substitution of Eqgs(3.10, (3.20, and (3.27) into Eq.
(3.18 yields

—N(|pol,

GO =p)_ ﬁ(O)ﬁé(O), (3.36
GK:DK_DRHRGK+ DRHKGA_DKHAGA' (337)

Equation(3.36 is formally solved to give
Greay=[D 1+l * (3.38
For later convenience, we rewrite £§.38 as[cf. Eq.(3.9)]
Gr=[Dg '+ 1151, (3.39

—1\uv D2l puv % 1 v

(DO ) :_P PT +PL +XPG , (34@

IR =114"— p5(P4 "+ PE") + po(n*P+ PHn”).

(3.4)

The SF forGga) Will be given in the next section.
As for G¢ , Eq.(3.37), through similar procedure as in the
quark casdcf. Appendix A, we obtain

Gk=GP+GP+GY,
G&l):GRHKGA-

GP= Gy Cll,—IIRC]|GA=—GxH,G,, (342

GP=GrC—CG,,

whereC is as in Eq.(3.14. SF elements ofi, are given in
the next section. The SF elements @ are obtained by
repeatedly using the formulas in Appendix C.

2. Ghost sector

The self-energy-partﬁ) resummed propagatg} obeys

&(P)=D(P)[1+T1(P)&(P)]=[1+&(P)II(P)]D.
(3.43

SinceB Eq.(3.17, is a diagonal (X 2)-matrix, Il is also
diagonal. Then, from Ec(S 43, Gis diagonal also. Among

the components oH (G) there is the same relation as Eq.
(2.19 [Eq. (2.29]. Then we have

(3.49

with TI and G real, and
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5 1 1 mulas, we see thab/% (U=T,L,G) and G4}, (U=T,L)
GP)=— = . (349 vanish in the strict Coulomb gauga € 0).
P*=11(P) p=+1I(P) We are now in a position to obtainGg)yy (U#G,V
#G) from Eq. (3.39. We divide Gg)yy into two pieces,
(GR)uv= (G =) yy+(GW)yy, the latter of which van-
ishes in the strict Coulomb gauga €0).
1. Form for (Gra))uv Straightforward manipulation of E¢3.39 using the for-
mulas in Appendix C yields, for the SF elementsGif=?
Through a Slavnov-Taylor identity, Gi)ue (U (=GE~9) V=1gy),
=G,T,L) and G,)r¢ [and then also ;) and G,)ar
via Eq. (3.19] are related to the self-energy-part resummed

FP-ghost propagato& and the FP-ghost “pre-self-energy

»1 5

part”~ 11 ,. -
The Slavnov-Taylor identity read3]: + P2y,

D. Self-energy-part resummed gluon propagator

DGS)\:O)TT: _ (~P2_ HiTT_'ZZH;T)(TjZ_ H&L)

G, P =\[7sll,,— P, 1G=\[T5(I1 ,— pon, 75)— P, ]G.

346 pp-OTTo (B nig T By
Here G(P) is as in Eq.(3.44 with Eq. (3.45. As in Eq. +n2IIE T,
(3.44), ﬁﬂ is a diagonal (X 2) matrix,
M,=01,7; (I1*=11,). (3.47)

IDG:(;\:O)T/T: _ (’|52_ HkL)HE'T_ nZH&THTL,
Substitution of the SF fo6#* into Eq. (3.46 yields

1 - L 1 ,DG()\=0)LL: _ "F‘)Z_HrTT_"“ZHTT ‘F'>2_HrTT
GE2(P)=GRf(P) =\ = [T1(P)-PYG(P)= -\ =5, ' ( vt v
P P + P2y T,

(3.489
1
Gri(P)=GA3(P)=Az F[ELIL(P)IG(P), (349 DGY=0T— — (P21, T2} It -z T,
1L
16/ py = GTC 1 DGO = — (P2 11,1y~ PPy

where
LG _ ~LG _ 1 “T] _ o
GR{(P)=GAT(P) =\ 5 [n“I1,(P)—polG(P),  (3.5D

»D:[('IBZ_H/TT)('ISZ_HLL)_"pZZZn4HLTHTL]
GES=GLS=GIS=GLe=0. (3.52 . P
y . X (P2-I13TT= 22113 7)
All the above quantities are real. In deriving E§.48), Eq.
(3.45 has been used. Substituting E48.48—(3.52 into =T (P21 HI - P2n2n T Y
Eq. (3.35, we obtainGS'=GS-=0. From the above for-
Ki K1 S AT Tr (B2 LU\ TT o 27y TLpLT
+p Il [(Pe—1I)I5  +nIl; TIIG ]

11 .. is evaluated by replacing the vertex facp€,,P* at the 5
“end vertex” with gCyy.. Here the end vertex is the vertex from Here we note that, from Eq3.41), P2—1I1; "=P2—1I] '
which the outgoing ghost comes out of the diagram. Then, the ghodtolds. The SF elements of the gauge-parameter dependent

self-energy paril is related toﬁM throughTl=P*II,, . part GMN=GW) read

116007-9
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DG&)\)TT P4~2 2[(P2 H/TT ZHET){(ﬁZ_H&L)HfT_,’_nZHiGLHéT}
+ TSP =TI IT +n?I ] ST} = 22T T - 115 S T G,
D2
DG(zh)TT: gzzTT[{(Pz HLL)HGT+n2H/GLHLT}(P2 H/TT)2+PZZ2 4HTL(P2 H/TT){HLTHGT HLTHGT}

_ﬁz"lanHg T{(ﬁZ_H&L)(HSTHgT HGTHTT)"’nZH,GL(HiTH;’—T _H-2|—TH|£T)+n2HIL(H(23TH|£T

-n¢MiNHy G - nzﬁe(m TD+~2 IGG;"TD
2 qT'TATG T'T !
276l 4 1!

DG =P PP nI (B~ 115113 T+ n’IIE T3 — NS T{(F?— 113 T (P~ 111H) — P77 n*11; 1157}
nZHiGL{(‘F')Z_HiTT)H&T_i_ "F‘)ZZZnZHIéTH'gl"T}]GTG’
DGo\)LL_ pz[(PZ HITT ZH'2I'T){(“F',2_HiTT)HiGL_i_TDZZZnZH?TH;'L}
+22H§T{(’|52—HiTT)HIL'l‘ﬁZZZnZH;LHgT,}—ﬁr4n2H£,T{HiGLH-3I—T’—H%THIL}]G&G
DG(ZA)TLZI’sz[_HieL(’lsz_HiTT)2+“pZZ4n2H(13T{H;TH;L_HILH;"T}
+22('|52_HiTT){_’ﬁ,ZnZHfTH'ZI'L_l_H;’TH]/-GL_HSTHIL}_'|52‘Z4n2HgT’{H§5TH£L_H:/LGLH':IS"T}]GTG’

GLG
(MLT mT'T -1
GMLT =G ore (3.54
HereG1® (=Gg;) andG:® (=Ggy) are as in Eqs(3.49 and(3.51), respectivelyGS T (=Gg;) is obtained fronG,3, Eq.
(3.50, with the help of Eq(3.32.
(Ga)uy is obtained from the above formulas with the substitutiéh$” (=ITp))—~II3Y. G} , GR;, and Gk} are

obtained, in respective order, fro@,' , G5, andG L5 with the help of Eq(3.32 or Eq.(3.34).

2. Form for (H))yy in Eq. (3.42) IV. GRADIENT PARTS OF THE PROPAGATORS

. . . . AND THE GENERALIZED BOLTZMANN EQUATIONS
Straightforward computation using the formulas in Ap- Q

pendix C vyields, for the SF elements idf , Here, we deduce the gradient terms of the quark and

gluon propagators, and derive generalized Boltzmann equa-

_ _ L tions and their relatives. Procedure goes parallel to those in
(H)1'=21%Ef Im(C3 T TIL,), [8—10, and then we describe briefly.

~ ~ A. Quark sector
(Rz"=2iIm{—CJ (Ilgi+ Mgy N _
A configuration-space counterpart B{ P,X) is denoted

+E2CT TRy + TR}, by F(x,y):

d‘p X+

=(F(P,.X)wr(x,y).

If F(P,X) is independent of X, F(x,y)=F(x—y)
=(F(P))er(x—y). Here “IWT” (“IFT” ) stands for an in-
(Hl);L:ZZC;THX'& (3.55  Verse Wigner(Fouriep transform.

(Ap3" =2C3 A —CLT (2iImITLg + Z2M1RD),

(Fn1-=27c; - EZ2C3T IS,

1. Preliminary

(AT, (A)LT, and @,)5T are obtained using Eqé3.32) Configuration-space counterparts of E¢g.4) and (2.5)
and (3.35. Other SF-elements than the above ones vanish.are, with obvious notation,
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a1
A(X,y): E [Ep'épo—',’_Da'](X1y)v (4.1 § (X,y)=(idy— m)é“(x Y)Ts (X Y)M—.
p,o==%
Ec:_cl+L02
APP=ALP+3[AL-(10)+ (1) ASPT+ 5[ AL N
+N-ASPT+ (AL (i4)- N+ (id) - N-AZ], Lea=i 2 (Oxf))P,
p==
AP =y [ AL + Z[AS P (i8)+(i6)-A5"] P-dy  N-dyx
=i Pp| —5 P+ —"N
(A5 PN AL ) == P N
+3IAL(10)- W (i0)- M- AF 1], +2P0) o o .6
e?
Here we have used the shorthand notafois, which is a :
function whose “,y) component” is IN 9C
Leo=i 20 Pys| o — o (P=m)+(4:C, mlp_,,
[F-Glxy)- [ dFxne@y. @2
PN oN2
. | 1S, e 2S00 N PU
For later use, we display the Wigner transform B§ =gt N2 P, 2N2 P,

:E.g:

P N N2 _ pe(po) IN#
i -m| — N+ — >— PNef
Fa(P.X)=F(P.X)G(P,X)~ 5{F(P.X), G(P,X)}, P 2N? P, € IPq
4.3 iC,_, |pe (po) PN
o . - . Xt P(e,-dx)+ o5 (P dx)
which is valid to the gradient approximation. The “Poisson 128
bracket” in Eq.(4.3) is defined as
XC,_,|P_,. 4,
OF 4G  JF IG e @7

{(FGl=— 55 —. (4.4

Here 1P?=P/P2, 1/N>=P/N?, and 1£%=P/e?, with P
denoting to take the principal part.

Equation(4.5) tells us that the free action of the theory
We proceed as if8]. We start from the expression for the [g,9] is

free propagatoB(x,y) [cf. Egs.(2.9—(2.10],

2. Bare propagator and counter-Lagrangian

. . . Ao=f d*x dy Y08 1% Y) d(y), (4.9
§(X,y)=p2,i PpSpPptSkMy,

=, ) :/,:(‘”1)
v 2 Ly, )

Since the term witi .(x,y) (e;S‘l) in Ag is absent in the

original action, we should introduce a counteraction to com-
Sk=2, Py (Sr-vsN-C,p)y pensate it:

"o Yl S By A= [ dxay HooL M ), @9
For the time beingf,(x,y) and C,_,(x,y) in the above

equations are left to be arbitrary. Specification of them willwhich yields a(two-point vertex factor

be made in Sec. IV55in Eq. (2.8 is the leading part of the

derivative expansionDEX) of S(P,X) [=(5(x.y))wrl. (L Y)wiM - =i[Lc1(P,X) +Leo(P,X) M - %10
Here “WT” indicates to take Wigner transformation. '
Straightforward calculation within the gradient approxima- )
tion yields 3. Dyson equation
L Let us start with considering a “product” oA andB of
S t.S=S.51t=1, (4.5  the type(4.1) [cf. Eq. (4.2)],
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C(x,y)=[A-Bl(x,y)

:[ > Ep'ﬁpg'fg'ﬁég'fo (X,Y).

p,§o==

PHYSICAL REVIEW D 68, 116007 (2003

EK:_ER'E+I'§A+§12- (4.19

Equation(4.13 may be solved to give

(4.12) QR(A>(x,y)=[1(i&x—m)’lé“(x—y)—ZR(A)(x,y)];l, 5
4.1
Using Eq.(4.3), we obtain, for the Wigner transform @f to
the gradient approximation, Gk=GR!+G2 + Gl (4.17
[11_ _
C(P.X)= X | P,A%PX)BE(PX)P, Gk’ =~Gr 2k Ga, (4.18
p,§o==*
G'=Gg-[ysN-C-3pr—3g-C-ysN]-G
N iP N IP; 9BET  GAPE gP, B S= B Lysl & 2a™ 2e Lo 75l Ca
2N e e, "Gt o o
GRl=Ggr-ysM-C—C- y5N-G,. (4.20
+--, (4.12 - = - - T =
The form for the leading part of the DEX o@(X,P)
where “--.” stands for other pieces of the gradient terms[=(G(x,y))wrt] is the G that is deduced in Sec. Il.

than the second term. Thanks to the relation

P, P,

the second term vanisheB,{- - -}P,=0. Then, to the gra-

dient approximationC(x,y) in Eq. (4.11) may be written as

Cxy)=| X P, A%BYP,I(xy).

p.éo==%

Thus, as in Eq(2.15, we can use the (22)-matrix nota-
tion in a polarization spaceA)* =A"" (p,o==*).

The self-energy-par[g(x,y)] resummed propagatcé
obeys

(4.13

For G and3, we have(cf. Eqs.(2.26—(2.30), (2.20—(2.24]

A ER 0 )

C=lg—c, -G, [CrTTT-CaCcIM.,
- (4.14

A_( 3R 0 ) . )

= —3pt34 — 32 “[Erf-fZat 2 IM

Gr=Cr-1=1-CatCaa,

4. Gradient piece of the self-energy-part resummed propagator

Form for Gga)

From Eq.(4.16, we obtain, for the compone@g”,

Egp(X,Y)Z[(iﬁ—m) #(x—y)_zgp

_gfé—p,Efqpfe)—p—P,z';pp]—l, (4.21)
E/&*p(x,y) ZE(RDre)pp,sz*p.Eip*p
:E%p.zgfp.gg)re)*p*p, (4.22

G P (x,y)=[(i6—m)s*(x—y) SR (x,y)] "
(4.23

Solving Egs.(4.21) and (4.22, we write the solutions as
GE7=GOP7+ GP7 . Here, GV is the leading part of
the DEX of GE”, whose form has been obtained in Sec. II.
The gradient par6$)77 is obtained as

i
G(Rl)pp: > G%O)PP[{(G(RO)PP) - l,Gf?O)pp}
—{2§7p| G%pre)*p*pm};pp}ego)pp
_ Eg*p{G&pre)*p*p ,EQPP}GS))‘OP
_{Eg—p ,Gg)re)—p—p}zappeg)pp]
i
= E[{G(Ro)mo ,(G(RO)”") 71}

_ G%O)PP{E»&_P| G%pre)*p—pmapp}
_ GEO)pp{Eg—p 'G%Dre)—p—p}zapp

_ Ggo)ppzﬁ—p{G(RPre)—p—p ,Eg’”’}]G(RO)p” ,
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evolve in spacetime. Then, in the course of construction of a

[
G r=— E[{G(Rpre)pp SEPGI e perturbative framework, certain evolution equations that de-
scribe the spacetime evolution féy and C,_, should be
+{GPere|3omr|GO7PrY settled. As a matter of fact, one can choose any forms for the
evolution equations, on the basis of which a perturbative
+ GRS e G framework is constructed. Different frameworks are physi-
i cally equivalent in the sense that they lead to the same result
=— [{GOwr sp-ryGPre-rr for the physical quantitiegsee below for more detajlsin
2 the sequel, we construct two kinds of perturbative frame-
+{GOPP| S| GPE Py works by employing two different forms for the evolution
equations.
+GOrrrsemr G (4.24) As seen from Eq(4.14), the propagato6 is written in
terms ofGr, G, andGy . Gr(P,X) [GA(P,X)] is analytic
where in an uppefa loweq half complexp, plane. Then, in calcu-
lating some quantity, the parts &f that are proportional to
[A|B|C}= IA B£— ﬁBﬁ_ (4.25 Gg or to G, yield well-defined contributions. Now, we ob-
P, P, X~ serve thatG[! and GI?!, Egs. (4.18 and (4.19, contain
GRrGA. Since G, is essentially the complex conjugate of
Then,Gg(x,y) is written as[cf. Eq. (4.1)] Ggr, GRrG, is disastrously large on the energy shélls,

=twt(i5,X), on which
Gr(x.Y)= 2 [P, (GE(P.X)wr Pol(X.y).
hr REGE (P X)] Hpp=sw. (=p0=0. (428

We write the solution to Eq.(4.23 as GPrerr
=GP Opr gP(IPr  The form forGP® (¥ s givenin  As a matter of fact, in the narrow-width approximation,
Sec. I, while the form foiGP™®(¥* is given by Eq.(4.24  Im(GE) *—€(po)0*, GRGA” develops pinch singularities
with the following replacements: at the energy shells inja, plane® Then,GI andG[?! yield
diverging contribution. In practice, Ig%) ! (xg?) is a
small quantity, so that the contributions, although not diver-
gent, are large, which invalidates the perturbative scheme.
These large contributions come from the vicinities of the
energy shells, on which R&g’) ~1~0.

Appropriate use of the first and second equalities of Eq.
Computation of Eq(4.15 to the gradient approximation (2.36) together with Eq.(2.31) shows thatG’;{’GiP:” and

G%O)pUHG%pre)(O)pa' , G%l)pUHG&pre)(l)p(r , G%pre)IpIpHO_

GA(P,X) is obtained fromGg(P,X) with X 5’s for 2g’s.

Form for 3, which is involved in G in Eq. (4.18)

yields GK "G,”"" do not yield large contributions. This is be-
cause, in general, the energy shellsG# andGr” ", and
2=Latle~ 2 Pp [(ERTT D wr = (F 2R wr of GE"™®”? andG{™»7, do not coincide. For the case of
- f,=f_, however, this is not the case. FG'G,""", a
o _ .
—397]- P+ 3, (4.2 large contribution emerges from the region Bg() *~0,

and, forG& ?G,*"", large contributions emerg%e grom the
i regions ReG£’) "1~0 and from the region R ™®¥P)~1
SW=-5 S RUGLIEHGIMNP. @2 g son KA
T From Egs.(4.18 and(4.19 with Eq. (4.26, we have the
following for the (pp) and (p—p) components g= =) of
L; andL; in Eq. (4.26 come fromAC in Eq.(4.9 [see Eq. H-3 [=Gr* (G +GI2)). G 1
(4.10]. The standard forms foEll!, H [Eq. (4.19], and ~ -

¥sN-C andC- ysN in Eq. (4.20 are given in Appendix E. P.g N-g
(HPP =S yr=—i[ — P+ —N
5. Perturbation theories—generalized Boltzmann equations - P2 N2
and their relatives
The aim of this section is to construct perturbation theo- p (pO)( e -dx)PN|f, +|FPP 28,
ries. We are employing the interaction picture in the sense of eL
[11]. Then, the quark-gluon system of our concern is charac- (4.29

terized by a density matrix at an initial timex°= XO from
which f,(P,X?,X) and C,_,(P,X?,X) [cf. Egs. (2.8~
(2.10] are determined. It should be emphasized that there is?How to find the solution to Eq4.28) is given in Appendix F.
no information at this stage on hoy(P,X) andC,_ ,(P,X) 3This is a characteristic feature of nonequilibrium dynanfic®.
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(HP7P =28 P)wr

. m pe(Po)
=—lys i;(N'ﬁxH?(eyﬁx)iP
pe(Ppy) N, m aN?| 4
_ bty
N2 “9P, 2N2dP,| gx«
1 oN? 9 pe(pg) IN* 9
N5 oo m— el
2N2 9P, gX e P, gx«
P pulc, ,+iTrr-sge 4.3
P2 p_P+I p B ’ ( . Q
Ter=i[(1-f,)S09+1,550+(f,~f,)58], (43D
Eggzzi(l]pg_[(ySﬂ'E'EA_ER'E’ '}/Sﬂ)pU]WT.
(4.32

The first term on the RHS of Eq4.29 [Eqg. (4.30] comes
from the counter-Lagrangidn;; (Lc,), Eq.(4.6) [Eq.(4.7)],
in Eq. (4.26).

PHYSICAL REVIEW D 68, 116007 (2003

where we have writtenf’® (C®) for f, (C,_,).
Then, Eq.(4.29 [Eq. (4.30], of which the first term on the

RHS is absent, is to be solved under the given
initial  data f,(P,X?,X) [C,-,(P,X?,X)]. Equation

(435 is a “free Boltzmann equation” and its
relatives for the bare number densities,

N (po.p.X) = 8(po) {(P,X) and N(|pol,p,X)=1

= 6(~po)fP(Po, —p,X) [cf. Eq. (2.12].
The physical number densities, which are obtained from
(i*(x)) [Eq. (4.33], and the physicaC® | which is ob-

p=p’
tained from(j£(x)) [Eq. (4.34)], are functionals of ® and
(B .

[

fPU(P,X) = 0(po)NP(po. P, X) + 6(— Po)
X[1=NPY(|p|,—p,X)]
= F(P.X[FPLICP, D),

CPY (P, X)=G,(P,X;[f®1[C® 1).

For later reference, we note that the physical number den}-p andg, here contain large contributions mentioned above.

sitiesN(iph)(P,X) andm_f’h)(P,X) are obtained through com-  Solving these equations fdiJB) andc®

puting current density,
(#00y=TiL g(x) ¥ (x)p]
=~ TG X) + G x) ]} (4.33
Similarly, the physicaC. - (P,X), CPY(P,X), is obtained
from
(JEOY=TH g(x) ysy*(X)p]
i
=- ETr{ Ys¥*[Ga1(X,X) + G1X,X)]p}.  (4.39

Bare-N scheme

b—ps ONE obtains
=1 PPV [CED), (437
C®,=Ci (P.X[FEV],[CEN, D). (439

In the case of scalar theofg], the physical number density
is shown to obey the generalized Boltzmann equation.
Computation of some physical quantity yields the expres-

sion F([f®1,[C® 1), which includes large contribution.
Substituting the RHS’s of Ed4.37) and of Eq.(4.38 for, in
respective orderf’® andC!® | in F, one obtains the expres-
sion F/([f®PM],[C{PMT), which does not include large con-
tributions.

As has been emphasized at the beginning of this section, The perturbation theory thus constructed is called the

f,(P,X) in Eq. (4.29 and C,_,(P,X) in Eq. (4.30 (X}

“bare-N scheme” in[8].

<X% have not been defined so far. For the purpose of de-

termining them, we impose here the condition that the

counter-Lagrangiah . is absentL .=0:

P-oxf®=N-oxfP=e, . o5 =0, (4.35

[M(N-dx) +pe(po)(e, - 3x)1C,

2 (B)
N, N Tﬂ an,p
P, 2 dP,| sx=

pe(po)el

P2 9N2 ¢ IN® 9

- M
2 (9Pa, axa+mp6(p0)el apa (9Xa

—N2(P-ay) |C® =0, (4.36

Physical-N scheme

Here we aim at constructing a perturbation theory, on the
basis of which no large contributions appear. Then, in such a
scheme, there are no large terms in the relations between
(f®M . cPYy and (f,,C,-,). This is achieved if the condi-
tion Eqg.(4.29 = Eq. (4.30 = 0 could be imposed. This is,
however, not possible. Nevertheless, it is possible to con-
struct the scheme that is free from the large contributions.

For determining so far arbitrarf,(P,X) andC,_ ,(P,X)

(x?< X%, we impose the conditions

Tr(P+Q:(P,X))[EQ.(4.29]=TrN[ Eq. (4.29 ]
=TrPN[Eq.(4.29]=0,
(4.39
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Trys(P—m)N[EQ.(4.30]=Trys[P—Qc(P,X)]
X[ Eq.(4.30]
=TrysN[Eq.(4.30]=0.
(4.40

Here, Q¢(P,X) and Qc(P,X) are arbitrary functions with
the property

Q(po=* w-(£p,X),p,X)
=Qc(po=*w~(=p,X),p,X)
={[w(£p,X)]*~ P}, (4.4

As has been discussed[i8, this arbitrariness does not mat-

ter (see also Sec. IV A 6 belowComputation of Eqs4.39

and (4.40 yields, in respective order,
P-axf,=iTr(P+Q (P X)) TH+iZE], (442
N-oxf,= 3TN T +iZ 41, (4.43

e, - xf,=kpe(po) TIPN[T L/ +iS g1, (4.44)
and

2

N2P. gy — 1(Pz—mz)&— C
2 AP, gxe| P7°

1 -
=~ JTrys(P—mN[T} *+i3g 7], (4.4

[MN-dx+pe(pg)e, -dxIC,—,

= —ITrys[P—Qc(PX)I[Th P+ixg 7],

(4.49
LN, +mc9N2 9 |o
Pe(PoICL TP, oxa " 2 9P, axa| 0
1 TP—PLisp—p
= TrysNITh P +i%g7]. (4.47)

These equations are the determining equationsf foand

PHYSICAL REVIEW B8, 116007 (2003

On the energy shellpy=*w. , these quantities vanish,
since P2—Qyc)P)(P?+ Qg ()P)=P?(P?— 07 ). Then,
the above mentioned large contributions, which turn out to
be diverging contributions in the narrow-width approxima-
tion, do not appear. Thu§[t!+GI2! turns out to be a well-
behaved function. As a matter of fact, in the narrow-width
approximation,

Po+w=

(PoFw=)2+(07)2 B Po+ -

GR!+ Gl (Po==*w.),

which is a well-defined distribution. In particular, the rela-
tions between the physical P",C"™) and (,,C,-,) con-
tain no large term:
h)_ h) _
fPV=f +Af,, CcP"=C, ,+AC,., (450

with Af, andAC,_, the perturbative corrections.

Proceeding as if@], from Eq.(4.42 on the energy shells,
one obtains a generalized Boltzmann equation. In fact, the
term withI"” on the RHS of Eq(4.42 is proportional to the
net production rate. To avoid complete repetition, we do not
reproduce it here.

6. Discussion

Here we like to mention a similarity between the two
schemes presented here, the ddreecheme and the physical-
N scheme, and those in the ultraviol&tV) renormalization
schemes in quantum-field theory. For simplicity of presenta-
tion, taking a complex-scalar theory, we focus on the mass
renormalization and do not mention the coupling constant
and wave function renormalizations.

Summary of the UV-renormalization theory

“Bare” UV renormalization schemeThe free Lagrangian
density readsCy= — ¢'(x)(9%+m3) ¢(x) with mg the bare
mass. Computation of the physical mads,, yields My,
=Mp(mg), which includes diverging terms. Solving this
equation formg, we havemg=mg(M ;). Perturbative com-
putation of some physical quantify yields the expression
F=F(mg), which contains, in general, UV divergences.
Substituting the equatiomg=mg(M ) for mg in F(mg),
one getsFg(Mpy)=F(mg(Mpy)), which is free from UV
divergence.

Physical UV-renormalization schent@ne introduces new

C,-p.» Which are to be solved under the given initial datafree Lagrangian’y=—¢T(x)(32+m?)(x) with m the

0 v 0 v :
f,(P, X7, X) andC,_,(P,X{,X), respectively. . )
After imposition of Egs.(4.42—(4.47, HP=P—3L=F,
Egs.(4.29 and(4.30, turns out to be

i ~ .
HIr == (PP-QP)THI+isg), (448

i ~
HP*P—E{{”:H y5(P?=QcP)Trys(T6 P +iZg 7).
(4.49

renormalized mass. Then, the counter-Lagrangian should be
introduced L= Lo— L= ¢ (X)[M?—m3]¢(x). m>—m3 is
determined so that the perturbatively computed physical
massM y, is free from the UV divergence. Thus, no diverg-
ing term is involved in the relatioM ,,= M ,(m). However,
there is arbitrariness in the definition of the finite paringf
which is determined by imposing some condition. This arbi-
trariness is called a “renormalization scheme dependence”
(see, e.g.[13]). It is well known that, when one computes
some physical quantitlf up to, saynth order of perturbation
theory, the above arbitrariness affeEtat the next to theith
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order. The renormalization scheme, in whigh=M®", is scheme with
convenient for many cases.
_ h — £(ph) —c(ph)
Summary of the two schemes presented above m=M® )pr_ fp and Cp—p_cp—p'
Bare-N schemeNo counter-Lagrangian is introduced.
Computation of the physical number densiti¢gisat are re- B. Gluon sector
(ph) (ph) i i (B)
lated tof ") and C,”, which are the functionals of, 1. Preliminary

and CE,B,)p, include large contributions. Perturbative compu- i )

tation of some quantity yields the expression, which is writ- ~ Configuration-space counterparts of E¢8.6) and (3.7)

ten in terms off(® andC{®  and includes large contribu- '€ with obvious notation,

tions. Rewriting it in terms of the physical quantitiel§?™

andC!™" . one obtains the large-contribution free form. , Juv WV =Y OV
Physical-N scheméWe introduce a counter-Lagrangian A" (x,y)=U V:ETL G ,Zl [Re- A7 Rej 177(x,y),

L¢=L¢1+ Lo, which is determined so that the perturbatively o (4.51)

computed physical number densities a(D}thL do not con-

tain large contributions. There is arbitrariness in the defini- _ _ _ _ _ _

tion of the “finite parts” of f , andC,_ ,. The arbitrariness in Vlf‘]]ere:“]]ﬁ_jz’ ;hb_ Joe=Jde=JdeL=1, and Iy =Ji7

the choice of the function§; [Eqgs.(4.42 and (4.48] and reTreT S

Q¢ [Egs. (4.46 and (4.49] is this arbitrariness. It is worth 4

mentioning that, if we could choos@; and (. so that E

fp(P,X)=f§,ph)(P,X), Eq. (4.42 on the energy shell turns &

out to be a genuingeneralizeg Boltzmann equation. In the

(R R = AT (P, B AT

opposite case, the function that obeys the generalized Boltz- _zu.AgT’ EV+ ETA;T'Z“”,
mann equation i§, and the physical* is written as in Eq. - - = = =
(4.50. LL ALL pLLyuv LL.»

Similar comment to the above one at the end ofRhgsi- [Ri=- A7 Ry 1#"=n*A;n”,

cal UV renormalization schemmay be made here.

GG A GG GGuv— ;5 GG/ v
Correspondence [Ry7Z-A7”-Ry=1#=(10")Ar=(19"),
Above observation discloses the correspondence between 5
the two schemes presented here and those in the UV- TLSTL s gy ~n ATLop L,
renormalization scheme. > [RIVATSRIY#=0r AT+ EL- A,
Bare scheme:

2
4 . . _ —_ ~
f d*x Lo(X)>Ap in EQ.(4.8) with L.=0, ;1 [&LT'Q}‘T'&LT]“”E”“AET'?—n”ﬁET'EIv
mgf(® and C®
2
Mthfgph) and CE)DI‘L El [&TG'EJTGRTG]MVE Ei‘AIG(Ib'V) +ZM'A-2|—G(i§'V),
~ A = A S A
Physical scheme:
2
f d*x LX) Ao, le [RETAST. RETHr=(i91)AST-E! — (i9)AST- T,
f d* LX)+ A, in Eq. (4.9, [Ry AR RyCI#=n#ALS(i9"),
m<—>fp and Cp—p! [&GL-E-GL-E]GL]#VE_(i’z”u)é?Lny,

Mphe £V and PV _
with g#=g*—n*dq and do= dl IX,.
absence of

) o 2. Bare propagator and counter-Lagrangian
divergence-large contribution,

We proceed as if10]. We start from the expression for
arbitrariness im« arbitrariness i) andQ, the bare propagat@(x,y) [cf. Egs.(3.10—(3.13)],
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D#’=(Py-Dr-Pr)#+(PL- Dy P*+i3*Dg(i3")

+n#Dy1(i9") +19* Dy n"+DE'M .,

B & O T 1. AL
D= - —[Ax-T=T-A,M
_T _éR+éA AA [_R_ __A] + 1
(1 2\
D =—|= 1+>\B—2 T3
LP P IFT
1 2 -
- ['“_2 N } !
L P P IFT
|1 2 .
—E[N—Z 1+7\E—2 ] M.,
P P ter
26T M= T =z I7'"\=2 +
IFT P IFT P IFT
DLTZETL
B [|p_] i1 |p_ a..
P IFT IFT P IFT
Di'=—7*[Ag-C3T=C3T-Ap]- 2"

+7# [Ap-CIT—CIT - AM]-EY
—EX[Ar-CIT-CIT- AL T

D in Eq. (3.10 is the leading part of the DEX db(P,X)

[(5(x,y))WT]. Calculation within the gradient approxima-
tion yields

(D~H#"-B, =g, (4.52

3= LEY(x.y)

~ 1. -
(D™ H*(x,y)= ( 9o — 9"+ —M”)
IFT

=13 PH#(i0)3*+PL(i3)5?

— do(d*n*+n¥3”)
i A
+PE'9)| - +do || —Lexy),
IFT

(4.53

PHYSICAL REVIEW B8, 116007 (2003
LAY=LA"M_=2iM _

fil

Pox ~ 1 LDV PRAY
- —P-&f+§aof (n*P”+P#n”)

(P-gf)P4+P.Gfn#n”

2

2\ - e
%+X>P-af+%aof]P“P”
'|52

+P.gCI(P,X) 04" —P-9CLT (P, X)T“E”

+P-aCy (P X)EFT"|. (4.54

HereP- of = P#f (P, X)/dX*, etc.
From Eq.(4.52), we see that the free action of the theory
is

1 A . .
Ao=§f d*x dy 'A#(x) (D 1(x,Y)) ., AY(Y),

TAL= (AL AL, (4.55

where the color index is suppressed. Equatiérb5 with
Eq. (4.53 tells us that there emerges a counteraction

1 4y, A4 A [ mv AV
Ac=5 | dxdy A%X)Le (X y)A,
which yields a(two-point) vertex factor
i(EgV(X,Y))WT:iL/c”(P’X)'\A/L-

3. Dyson equation
As in Sec. lll, we use the (¥4)-matrix notation in
Minkowski space. The seIf—energy—p@ﬁ(x,y)] resummed
propagato@(x,y) obeys

+ [ER'E_};'EA+ 2K]|\7I 4
(4.56

For§ andﬁ, we havelcf. Egs.(3.27—(3.31) and (3.20—
(3.29]

_DA

—~ Gr 0 ¥ % N

G=| _— +[GrT-F-Gp+GIM., ,
~ GR_EA _EA [_R_ 1TMA _K] +

N Il 0 = .
n=( — g F-T- Iy~ I IV _
= Hptm, —10, [Mg-f—f- ML~ M _,

6= ~Gr T+1-Ga+ Gaa

(4.57
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Equation(4.56 may be solved to give E,LV:ZME;TZV_ZME;T’ 'EI+E’I'E§'TZ”-

Grea)=[Drpay + Mg ]~ 45 A

Griw =[Dria + Mrew] (4.58 The form for the leading part of the DEX d&(X,P), a
G=GH+G&+cE, Wigner transform ofG(x,y), is the G that is deduced
- - - in Sec. lll.

QE]:QR'EK'EAa (4.59

4. Gradient piece of the self-energy-part resummed propagator

Gl =Gk [Mg-C—C-TI,]-Gp=—Gg- -Gy, (4.60
et —RLZR =2 Z AL =" — = Form for Gga)

We divide the Wigner transform dilg a)- Ggea [cf. EQ.

Gl=Gg-C—C G, (4.6)  (4.58] into two pieceqcf. Eq. (4.51)],
|
(ER(A)'ER(A))WT:HR(A)(Pyx)GR(A)(Pyx)+(HR(A)GR(A))(l)a (4.62
i Jov vy aREV AT, wEn g
(HR(A)GR(A))(l)’”=2 > E Z —5+ — Ry IR, i" Greayj Rrj
UV,V'=TLGI= P, ax»

VvV = VvV VV WAV \VAVARRR-RVAVL
‘mR(A)J IRR R i" Greayj R +‘9RL1 MRy R RLj’ IGRp)’ v

IXH &PM P, IXH Rj’

LJ

anv’ RV\_/’ M
UVTT UV VV/ R(A)j’ Rj’
~ R Trgy R R Rijr “oxr P, (4.63

s

Here Ilga)(P,X) and GR(A)(P X) are, in respective order, The standard forms for the gradient tenﬁ:{”’” and
Ig(a)(P) andGgea(P) in Sec. lll. Using Eq (4 62 in Eq 11217 andH [Eq. (4.60] are given in Appendix G.
(4.58, we obtain the solution foGR(A) (= GR(A)+GR(A))
The form for the leading pan;R(A) is given in Sec. Ill. The 5. Generalized Boltzmann equation and its relatives
gradient part is Structure of the theory is fully discussed in Sec. IVAS5,
. so that we restrict ourselves to giving a brief description of
(ig’”Pﬂ— '_(P,Lawr&upu) the physicalN scheme only.
2 Same reasoning as in Sec. IV A applies hegg! and
o [2] 'Egs.(4.59 and(4.60), bring about disaster. This disas-
NP + a"PV)]G(R%)A)—(HR(A)GQ&\))(” : ter would be overcome if the condition

1 0
Ghim = ki

- H=0 (4.65
Form for I, which is involved in G in Eq. (4.59) _ o _ _
could be imposed. This is, however, not possible. Equation

(4.65 may be imposed for th@%”, n#n*, 77, andZ*E”
components, which read, in respective order,

In the following, we restrict ourselves to the strict Cou-
lomb gauge\ =0, which is a physical gauge. Computation
of Eq. (4.57 to the gradient approximation yields

s s 2P gf=—i[(1+T)(I1)1 "= (T T —iT1E]
47 = — LMY+ [R Fr (I - -
== T s AT —2Im(Z?E2CIT L) +iHPTT (466

— (o) YD + (1) PV - RV 2P FF = —i[(1+T) (I o) - —F (I ] i TTLE

+ I TR (4.64 469

TT_ ¥ TT_ % T (UTT
In G, Eq.(4.59, 1", and therL*” in Eq. (4.64), are 2P-9C; =~il(1+ 111, f(Hzl)z Il

sandW|ched betweeGR and G, . Then in the case ok —2Im[— CJ (I + 2211
=0, P“P¥ and @*P"+P#n”) terms inlI~”, Eq.(4.54, do Tt T Tt
not contribute toGl! (cf. Sec. Il). +EIC; (Ilgg +1I4; )]""H(z) , (469
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2P-9CTT = —i[(1+T) ()" —F (M, i T 1—in@™ Gk=—Gr2kGa+ Gk,
+i[Z2CT Ty + CIT (M — TR 2211 50) ] Gy =GRSz Sk (1+34Gp), (A1)
+IHPTT (4.69  where use has been made of E2.32. Since Sy 'S¢ (P?

_ _ —m?)§(P2—m?) =0, we haveG;=0. This means that the
Proceeding as i10], fr(_)m Eqs.(4.6@.and (4.67) on the iece S¢ of the bare propagator disappears through resum-
energy shells, we obtain the generalized Boltzmann equds o+ion which is unnatural.

tions for the transverse and the longitudinal modes, respec- ' - P
tively. (As a matter of fact, on the energy shells, the first term. A correctGy is obtained by substituting E¢2.18) for S¢

on the RHS of Eq(4.66) [Eq. (4.67)] is proportional to the n Eq. (A1) as follows:
net production rates of the transvergengitudina) mode) r_ “la _ n
We do not reproduce them here. It should be remarked that,GK CrSr (SR Sa) sWC(P)(1+2Gp)
in the case of. mode, Eq(4.67), the “time-derivative term” :[GRSE{lSRYsW— GRS§1y5IXISA]C(P)(1+2AGA)
dof in the Boltzmann equation comes frditf}; . More pre-

= = + —(1+
cisely, thedof term comes fromI#” (with UV=LL), Eq. CrysMC(P)(1+24Ca) ~ (11 Cr2r) ysNC(P)Ca,
(GD) in Appendix G, which is inlT; in Eq. (4.67). Equation \yhere use has been made @Sy =(1+GgZg), Which
(4.68 [Eq. (4.69] determines spacetime evolution 65" follows from Eq.(2.32. This is natural in the sense that
[C:T ] alongP. An evolution equation fo€] T is obtained A
from Eqgs.(4.69 and(3.16). 2—0

. A ~ v GK _— S( .
One cannot impose Ed4.65 for the remainingZ#n”,

n“Z”, E*n”, and n“E’ components. This is because, for APPENDIX B: “MULTIPLICATIONS” OF THE TWO
these components, there are no counterparts,o€}", STANDARD FORMS FOR THE QUARK PART
TT TT TR
C3" , andCy *. For equilibrium systems, these_mc_)des e \We define “multiplications” of the functions of the type
absent. Then, one can expect that, for the quasiuniform sy?—2 5 as the products
tems near equilibrium, these modes do not yield disastrously™ P

Iarge contributions. (A® B)pa’EApp BrY, [A® B]pUEAp—P B 7. (Bl)
C. Ghost sector Straightforward manipulation yields the SHif. Eq. (2.5)]
s of (A®B)*7,
The self-energy-part[1I(x,y)] resummed propagator ( )
G(x.y) obeys (A®B);™P=AgPBL P+ PPALPBS ™, + N?ALPBS ™7
L B B L 2 _ p2\NI2 *
G=D+D-0I-G. (4.70 PIN"ALBS ",

s s pEp_ pAPPRPEP PPRPEP = N2APPRPEP
D is an inverse Fourier transform @f in Eq. (3.17. As in (A®B); A"By PR AYBYT T NTASTBY
Eq. (3.44, D, I, andG are diagonal (X 2)-matrix func- +N?AL"BS™Y,
tions 5=5}3=, etc. Solving Eq.(4.70, we see that the DD APPRPTP 4 D2 . .
- = ., p— P4 PPRPEP + APPRPEP
gradient part oiG(P,X) vanishes and (A®B)s "=AT"Bs '+ PEARTBY "= ASTBY
—PZAﬁpBgip,

G(P.X)=(G(P,X))* =0——=——. . 3 L .
P2_TI(P,X) (A®B);™P=AIPB, "+ ALPBL ™ = ALPBL™"
+ALBLY. (B2)
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APPENDIX C: MULTIPLICATION OF THE TWO
APPENDIX A: RESUMMATION OF THE QUARK STANDARD FORMS FOR THE GLUON PART

PROPAGATOR We define a multiplication of the functions*” and B*”

Here we derive Eq92.39—(2.42. Formally solving Eq.  of the type(3.6) with Eq. (3.7), by C#”=A#’B ”. Straight-
(2.33, we obtain forward computation yields the SF f@*":
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Cl'=A"B]"+PZ*n2A] "B]" + P7{2n*A]'BST
P472,2ATGRGT
—P2n?A°BTT,
Cy'=A]'B] +A]'B] "+ ?A] BT+ P72n?Al T B T
—PZ2n?A] TBT +n2A] B —P2n’Al'BST
PAr2ATCRGT _P2ATGRGT
+P*n?A[°BYT-P?AJBST,
CiV=A]"BI" +7?2A]™B]" + A" B]"+n2A]"B}"
P2ATGRGT
~P2AJ°BTT,
ClT=A]"B] T+Al TB] "+ 72A] TB]T+n2A] BT
P2ATGRGT
~P2AI°BST,
CH-=72n?A BT+ PZ22n*AL B+ ALFBLE
_~P2n2AIiGBGL’
GG B GTRTG_ P GTRTG
CEC=—P2n?ATB]°—P?[?ATTB]
~P2n?AP'BI®+ATCBSC,
Clt=A"BI"+7?A]'B]"+P??n?AlT B]"
+AILB&L_ PZA-ZFGBGL’
C;L:AITB;L'FZZA;TBIL'FA;LB&L—bZAIGBGL,
CI'=A"B] "+ 2?A'B] T+ P72n?A5TB] T+ AL BYT
_”|52A|iGBGT'
C5' =72A1"BI" +A5TB] T+ AT"BS — P2ALCBST,
C1°=A]"BI°+72A] TB]°+n?A]'BI®+A]°BSC,
TG TTIRTG F2ATTRTG, B TT'RTG
Ci8=A]"BC+?A B+ PZn?A]T B]
+n?A] B C+ATCBFC,
CST=ASTBIT+72ASTBIT +n2AS-B5T+ ASCRST,
CyT=PZ2n?ATTB]" +ASTB] +?ATTB]"
+F12A(13LBLT,
CLe=72A1"BI®+P?n?A5TB] °+ AT BL®
LGRGG
CE-=PZPn?ATB] + AT BT+ AT B

GGRGL
+ASCBSL,
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APPENDIX D: GLUON PROPAGATOR IN A COVARIANT
GAUGE

Here we present a “translation table” to get the expres-
sions for the gluon propagator in a covariant-gauge from the
Coulomb gauge counterparts given in Sec. Ill.

An orthogonal basis in Minkowski space is given by Eq.
(3.1) with the replacements

(P#, 7% n* EM)= (PH,7* n* EM), (D1)

Then, among the projection operators, E@s2)—(3.4), P{*"
andPg” are replaced as

§ n“n” , n¥n”

P (P)=—=P"(P)= =,
n n

P#pY P#p”

PE(P)= =P (P)=—;

Pr is the same as in E¢3.2).
Equation(3.9) is replaced with

R 1 -
N (P)#'= =P P+ PL + TPE" |3,

which is already in SF.
The SF elements ddy in Eq. (3.13 are replaced by

Diz(P)=2miC3 (P)e(po) 8(P?),
Dy3 (P)=2miC}" (P)e(po) 8(P?),
Di(P)=2miC1"(P)e(po) 8(P?),
Di5(P)=2miC35(P)e(po) 8(P?),
DR}(P)=0 (otherwisg.
In gbtaining these, we have used the fact thBg,E)"”
=(Dgy)*’=0 (U=T,L), which is verified from the “bare

counterparts” of Eq(D2), below. D" in Eq. (3.1 is re-
placed with

nv I2%3 mv dAR 2 mv 3%

Equation(3.16) is replaced with

“Iit should be noted thaE!' = e“"*P,{ n,= e“"*"P,{,n,.
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(C'ZFT)* — C;T, (C;'TI)* — C-:I;/T,
(CiH*=Ci', (C3hH*=—C5'.
Equation(3.17 is replaced by

Ar

+T(AR—ADM .
Ap-r, —a, ) TTARTAIM,

5(P>=(

Introduction of IT;,, Eq. (3.39, is not necessaryp,*
=D ! andIl;=TIlg, and, Eqs(3.39—(3.4)) are deleted.
Description after Eq(3.43 is replaced with the following

one: Solving Eq(3.43), we obtain

& G 0 [F(Br—Cp)+ BN
= _ _ |+ -G+ ,
GG, —Gn rR—Ga kIM 4
where
Ggr(P)=Gi(P)=

P2—TIx(P)’

G (P)=—Gg(P)IT((P)GA(P),
ﬁR:ﬁX:ﬁlﬁ I~]12: _ﬁ22_ﬁ211
= (1+1) 0~ Fll,.

Equation(3.46 is replaced with

G,,P'=\[7sll,~P,]G. (D2)

Equation(3.47) is deleted.
Equations(3.48—(3.52 are replaced by

1 ~ -
GSE<P>=xW[H<P>—P2]GR<P>
0

P2+
_ 1
P2+ip0*’
|
|
s=_ _
K 2 =k

af/’ a pp a pp pp N
+2MR [P H—N“ZE5—pe(po)ef 2R 4]+W

— PP_

N
+pe(po)ef(Aﬁ_p)a]+N—

+ PZNZ

Neag-m ¢ 2N
(A2 et 35,
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GRE(P)=\ [EXTIg,(P)IGR(P),

(P?+ipy0")E?

GRS(P)=\ [2#T1R,(P)1GR(P),

(PZ+ipy0*) 22

GRS(P)=\ [MHT1g,(P)IGR(P),

(P?2+ipy0*)n?

P2(P?~T1g) Gk [1Gy
(P2+i0%)(P?—i0%) P2?—ip0*

GeL(P)=—

= —im\e(po) 8(P?) TG,

Effle,P?Gx  Efly,Ga
(P?2+i07)(P2=i0") P?—ip,0*]’

1
TG, by _
GKl(P)_)\EE

T Sl N S L < S S L
K2 22| (P2+i07)(P2=i0%) P2—ip,0*]’

ooy b n*llg, P?Gy - n~ly ,Ga
Cri(P)=N=g| 2_in 0t |
n“| (P<+i0")(P“—i0") P“—ipy0™]

In Egs. (3.53 and (3.54), the replacement¢D1) and
(Hj’)uv’s — (ITj)yy's are made, and, in the formulas in
Appendix C, the replacemefiDl) is made.

APPENDIX E: STANDARD FORMS
FOR THE QUANTITIES IN SEC. IVA

1. Standard form for 3!
From Eq.(4.27), we obtain, after some algebra,

Pp Z{fp!Ré:Elp}/',Pp_l_{f*p ,Eg—p}/ ',pr_l_{fp :Eﬁ_p}/pr

N pp+1aN2 LINF 0
2 P,

app

}+7’5[—[P“(A” M) a= N (ALP),

N2 INH
(A5 "), +p6(po)e"—(A” ") e )

" pf(po)(el(/\” or +e’fa (A” ?) ot pe(PIN?P(AL ), )”
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where
- P? oN?
TN
(AP7P) = p*p(?f_p_F p*pafp (j=2,3,9
bl TR g A'aX”J
{fp 2 PV =vel{f- ) 2R "hH{f ) 2R "IPH{f_, 2R "IN +{f_, 2R, "}PN],
etc. Here{ ..., ...} is asin Eq.(4.9).

2. Standard form for H in G{?! in Eq. (4.19
Straightforward manipulation of Eq4.19 yields

H= 2 P, [H{lwr P+ H®,
0= <, ForH
[ N aC,_ 3P B
H(l):zp(,z:I pys( apa%_m{cpfﬁ)lepa} P(?’
i I2R7Chy IN ”
+§ME:+ Pol =@ ap, T1Coa 2RIN | 5P, (E1)

whereH{? is as in Eq.(2.51). The SF for each term on the RHS of H&1) reads

oo M IC, 23" N, 9
PSP, axe P PoP, gx

c| —PES £~ NES A7 pel(Po)et S pf
P U PP D2NKS — PP wy P
+§[—P EAl + P“N 2A4 +p6(p0)eJ_EA3 ]

X
+ W[_ NZPAZ 0§ = NES AP = pe(po)ef S "]

N
+ [ — N2P~S 0P+ PZN“2A2”P+pe(po)ei‘EAf”]] 1

P2N2

N 9C,_ 2P F N,
Porsam, T axe TR, Yo xe

Cpp[ PN PHNFE AL P—pe(po)ef2pal "
P o

+§(PﬂEAf P—P NI AL P+ pe(po)ef2pl ")
oo o o

+W(N PAEAL PHNPI AL P —pe(po)ef2paf ")

+

PN 2P ——p 2w - ~p-
PZNZ[N PHYag P=PN#ZLS P+ pe(po)efZal "1t |,
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JIZgC,_, N p =P N,
Paxe 9P PP, o X

[ PMEPP_NMEPP_pE(pO)e}f p
P

+ —(P"E f+pe(po) el S+ PPN L)
W ©S PP LS pp 2pus pp

+W(N R1—pe(po)ef 2R —NP*XR))

X
(pe(po)e> 8 — P2NH3LE+N2PH3R8)  C,

P2 2
9%k PC_,, N N, e o
g X P, ¥sPp= PP&P IX@ — PR P= N 25"+ pe(po) el 2Ry,

+ —(Pﬂzp P~ pe(Po)elZfs”+ P?N# 34, ")

X
+N_[N”2’§1P+P€(po)e B2’ —N?PH3L, 7]

X
’ P2N2[ pe(po)elS by P—P2NLS L, P+ N2PHS L P

—pp

Pp75N{Cp*p !Egpp}Pp: _Pp[NZ{Cp*p 12;3?’)}_ NZP{Cp*p ) 2;4”)}4_ N{Cp,p 12;{)‘0}_ PN{Cp*p ’2;2‘0'0}]73;)

aC,, NS o N? N5 #0NM

axa AN A8 —pe(po)el P,

P pp N pp 2pay —pp
+§ pe(Po)e% 5"+ pe(po)ef &P —N“PZ 4

PN
oy [ PR NI+ pelpo)eSaf ] P

P,ysK{C,_, . Za" }P_,=P,¥s[N¥C,_,, 228 "} =N?P{C,_, . 2a0 "}
+N{Cp_p,2;1p_p}—PN{CP_P,E;£_p}]P_p

2 N,

2 9P, =28 +Pf(p0)eLl9P

JC
+—= pP s

Nes PP+ =
IXE A2

o N, e
—pe(po)ef2af - (pO)eJ_ 2A3 P=NP2 "

PN
g [P NI O pelpo)elaf 1)

P,
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Pp{Cp—p!EQP}NVSP—p:Pp75[N2{Cp—pv IIJ?%}_NZP{Cp—p' %ﬁ}_m{cp—p' Eﬁ.}—’—PN{Cp—p! II;%}]P—;)
2

2 0P,

C,
pP—p

P
X 2Ch

N,
_pE( pO)eiL IP

+

N ~
= Pf(po)efE‘Ee%JFPf(po)efapﬂzﬁg_szazﬁﬁ)

PN
+—[P“2pp— N“XR5—pe(po)ef Z]P—p,

PAC_,, 3k "INysP,=P,[N*C_,, 383"} —N?P{C,_, 38, "} —N{C,_, Sk "} + PN{C,_, 38"} 1P,
2

Pop | NOS By P+ = i P+ pe(po)e ahT
RT3 9P, pe(Po)el 55

dC_
+—
IxX«

£.P

N,
~ pe(po)el Xy~ pe(poet 5" 1" - NPTIL, )

PN
+ g IPTS " ~N"Sa" 4 pe(po)elTh; ]|

p*

3. Standard forms for ysX-C and C-ysM in Giin Eq. (420 Here G?) L is the (11)-element of Eq2.48 andG{)*

Form for ysN-C in G in Eq. (4.20 is given by Eq. is as in Eq(4.24). If we ignore the gradient term in E¢F1),
(E1) with - - the energy shells are obtained through

SRT— 807, SRT-0 (j=2-4), RGP (P X)] ™ py= 6@ (5.5 Dl py= =@ (5.3 =0,

3Ri—0 (j=1-4). o : -
where D? is given by Eq.(2.46 with the substitutions

C-ysN in Eq. (4.20 is given by Eq.(E1) with (2.50 being made. Then, the true energy sheflg

- - - . =*w.(*xp,X) are obtained from EqF1),

Ri—— 07, 2Rj—0 (j=2-49),
. (0)pp -1

RI-0 (j=1-4). iaRG[GR (P,X)]

JPo

Po==00(=p.X)
APPENDIX F: ENERGY SHELLS OF GE&°(P,X)

To find the energy shells ofGZ, we need X[w+(£p,X)—0O(+p,X)]
[GR(P,X)]" 1, the inverse ofG&(P,X) [cf. Eq.(4.28]. To
the gradient approximation, we have

- (0)pp -1z@)pp

(GR) ™= (GR™ +GRI") ™ Re{[GR (PO GRTHEX)

—~ (Gg))p”) -1_ (G%O)”p) —leql)pp(G(RO)pp) -1

x[Gg’W(P,xw] o
Po==00(=p,X)

(FD
APPENDIX G: STANDARD FORMS FOR THE QUANTITIES IN SEC. IVB
1. Standard forms for ITIX” and IZH” in Eq. (4.64
From Eq.(4.57 with Eq. (4.64), we obtain

[ -~ ~
=53 2 ROEIGHIIRR D, (GY)
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(E,-)F

2l = 2i73’T”Re{H£(f gp 1y

~
+2i§~—§Re{

£2

- HT;+H;‘;)@ a)f+[ (g —TIRY ) —TTES

(E,-o)f

o~ v 1 !~~~ { ~ ’ ! ~ ~
HICEY] - Tl (P-a)T+ 22| TR+ =5 (15 + HI&))(z-mf]

{-
nis- S e, o+

E?

1 (P ~ 2, &P
IR dof - g(HEthX&)(g-a)f =7 As(E. - 0)f

+2in*n"RellLS dof +in” 72

, (P 1 ;P
+iE*n” 5zZzHI\5(5 a)f—E IS+ = =2 ML | (E,-a)f |+IEXZT- -]

1 e ~
=3 1ha(P- )T+ 1R70oT -

+in“g - ]+ intEL- -] “
[---]'s are obtained using Eq3.26).

2. Standard form for A in Eq. (4.60

We write H#*=HO#»»+ H®er with HO# the leading term andi(V#" the gradient term of the DEX dfi#*(P,X).
Straightforward manipulation of E¢4.60 yields

E(O)#V:E#p'[(ﬁl)IT]IWT'(ET)pV'i_ZM'[(FlI)-lZ—T]IWT'gV §” [(HDE" Twr EI*’ET[(FH);TLWT'ZV

+ 2% [(HD T Twrn”+ B4 L(HD S T+ 0L (HD S Twr - 27— n# L (HD5 Twr - EL

with (H)){" as in Eq.(3.55, and

ﬁ‘”’”=i7’¢”R{Zin{C£T',HQ’J}—2<§~?’> ey @ a)HEJ——CP(EL L

S~ o~ ’ gﬁ ~ ~ ! ~
+|§M§VRe[—{cTT,H 1h = THCE Mg} + EX{CT T MIRg — A3} = 2555 CL (2 ) Mg+ 222C3 (P ) g

(¢-PICIT(T g -cy (@ Ty - zfm[c (2 9)+2ReC]T (E, - 9)]ITL

i Z“E”
T2

P72 It I+ {cIT ik + 2Pl R} —2CIT (P9I +2(L-P)

E ~ ! I o~ . ! ! 2 1~
{ o PN+ CIT(E ) + T (2 T I+ 20 (E, - apim(CYT HEJH?C?({-@RGHEH

1

1@ R+ 2CIT (P 9)— (- P)(T- 9IS

i~ - ,
+ ?ﬁn{ — Gy, IR +EHCET Mg

—iEfn” gz{C” H,E&}+g Pcwz IR HIELLT- - J+in# g ]=inkE![- -],

whereAgBEA&B—A;B, and[ - - - ]'s are obtained using Eq$3.32 and(3.35.
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