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Self-energy-part resummed quark and gluon propagators in a spin-polarized quark matter
and generalized Boltzmann equations

A. Niégawa*
Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan

~Received 29 July 2003; published 29 December 2003!

We construct perturbative frameworks for studying nonequilibrium spin-polarized quark matter. We employ
the closed-time-path formalism and use the gradient approximation in derivative expansion. After constructing
self-energy-part resummed quark and gluon propagators, we formulate two kinds of mutually equivalent
perturbative frameworks: The first one is formulated on the basis of the initial-particle distribution function,
and the second one is formulated on the basis of a ‘‘physical’’ particle distribution function. In the course of the
construction of the second framework, the generalized Boltzmann equations and their relativesdirectly come
out, which describe the evolution of the system. The frameworks are relevant to the study of a magnetic
character of quark matter, e.g., possible quark stars.
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I. INTRODUCTION

The possible recent discovery of a quark star@1,2# has
renewed our interest in the study of quark matter. The p
sibility of the existence of a quark liquid in a ferro-magne
phase has been pointed out@3#. For analyzing the magneti
property of quark matter in a consistent manner@4–6#, it is
necessary to construct self-energy-part resummed quark
gluon propagators in spin-polarized quark matter, a
thereby frame a perturbation theory.

The spin-polarized quark matter is, in general, out
equilibrium. For dealing with such systems, we employ
closed-time-path formalism@4,5#. In this formalism, propa-
gators, vertices, and self-energy parts enjoy (232)-matrix
forms, denoted ‘‘ˆ. ’’ Let Ĝ(x,y) be a generic two-poin
function. Fourier transforming with respect tox2y ~Wigner
transformation!, we haveĜ(P,X) with X5(x1y)/2. We as-
sume thatĜ(P,X) depends weakly onX. Then, as usual
employing a derivative expansion~DEX!, we use the gradi-
ent approximation

Ĝ~P;X!.Ĝ~P;Y!1~X2Y!m]YmĜ~P;Y!.

We refer to the first term on the right-hand side~RHS! as the
leading part~term! and to the second term as the gradie
part ~term!. Throughout this paper, we assume that the d
sity matrix is a color singlet, so that the quark and glu
propagators are diagonal in color space and independe
the color index. Then, we drop the color index throughou

The plan of the paper is as follows. In Sec. II, the lead
term in the DEX of the self-energy-part resummed~SEPR!
quark propagator is constructed. In Sec. III, we construct
leading term of the SEPR gluon propagator in a Coulo
gauge. In Secs. II and III, the argumentX is dropped
throughout. In Sec. IV, we present the gradient terms of
quark and gluon propagators. Then, we frame two mutu
equivalent perturbative frameworks. One framework is c
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structed in terms of the ‘‘bare’’ number-density function~and
its relative!, and the other, which we call physical-N scheme,
is constructed in terms of the ‘‘renormalized’’ numbe
density function~and its relative!. The latter scheme accom
panies the generalized Boltzmann equation for the renorm
ized number-density function and its relatives. The form
the leading part of the SEPR gluon propagator in a covar
gauge is given in Appendix D.

II. QUARK PROPAGATOR

A. Preliminaries

1. Spin-polarization vector

We define a spin-polarization vectorS(P) as follows.
For a timelike (P25p0

22pW 2.0) mode, we chooseS m

5(0,zW ) ([zm) @zW251# in the rest frame, wherePm

5„e(p0)AP2,0W …. Similarly, for a spacelike (P2,0) mode,
we chooseS m5(0,zW ) in the ‘‘p050 frame,’’ where Pm

5(0,A2P2 jW ) ([A2P2jm) @jW251,jW•zW50#. S(P) in any
frame, wherePm5(p0 ,pW ), is obtained through a Lorent
transformation:

S m~P!5u~P2!H pW •zW @Pm1e~p0!AP2 nm#

AP2@AP21up0u#
1zmJ

1u~2P2!H 2
pW •zW @Pm1e~pW •jW !A2P2jm#

A2P2@A2P21upW •jW u#
1zmJ ,

~2.1!

S•P50, S 2521, ~2.2!

nm5~1,0W !.

When a magnetic field is applied along thezW direction,
p0.0 modes with positive~negative! charge go to the state
S m(P) @2S m(P)#, while their ‘‘antiparticle’’ counterparts
(p0,0 modes! go to the state2S m(P) @S m(P)#. In what
follows, the concrete form~2.1! is not used, but only the
properties~2.2! will be used.
©2003 The American Physical Society07-1
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The projection operatorsP6(P) onto the states of definite
polarization (6) read

Pr~P!5
11re~p0!g5S” ~P!

2
.

2. Orthogonal basis in Minkowski space and the standard form

As an orthogonal basis in Minkowski space, we choos

Pm, S m,

Nm5nm2
p0

P2
Pm1S0S m ~N25S 0

22pW 2/P2!,

e'
m5 i emnrsPnNrSs ~e'

2 52P2N2!.

A generic (434)-matrix functionA(P,N,S,e') in a Dirac-
matrix space is written in the form,

A5A181A28g51A38P” 1A48N” 1A58S”1A68e”'1A78g5P” 1A88g5N”

1A98g5S”1A108 g5e”'1A118 P” N” 1A128 P” S”1A138 P” e”'

1A148 N” S”1A158 N” e”'1A168 S”e”' . ~2.3!

We decomposeA into four parts,

A5 (
r,s56

PrAPs[ (
r,s56

P rArsPs , ~2.4!

and writeArs in the form

Arr5A1
rr1A2

rrP”1A3
rrN” 1A4

rrP” N” ,

Ar2r5g5@A1
r2r1A2

r2rP” 1A3
r2rN” 1A4

r2rP” N” #.
~2.5!

It is a straightforward task to obtain

A1
rr5A181re~p0!A98 , A2

rr5A382re~p0!N2A158 ,

A3
rr5A481re~p0!P2A138 , A4

rr5A118 1re~p0!A68 ,

A1
r2r5A282re~p0!A58 , A2

r2r5A781re~p0!A128 ,

A3
r2r5A881re~p0!A148 , A4

r2r5A168 2re~p0!A108 .
~2.6!

We refer to Eq.~2.5! as the standard form~SF! andArs or
Aj

rs as a SF element ofA. It is to be understood that the~bare
and self-energy-part resummed! propagators and the sel
energy part, which appear in the following, are to be writt
in the SF.

B. Bare propagator

First of all, we note that the bare propagator matrixŜ(P)
and the self-energy-part resummed propagator matrixĜ(P)
enjoy the symmetry property,
11600
Ŝ†~P!52 t̂1g0 t
Ŝ~P!g0t̂1 , Ĝ†~P!52 t̂1g0 t

Ĝ~P!g0t̂1 ,
~2.7!

which results from the Hermiticity of the density matrix
Here, t̂1 is the first Pauli matrix, † acts on Dirac gamm
matrix function, e.g., (AP” )†5A* Pmgm

† , and tŜ(P) denotes

the transpose of the (232)-matrix functionŜ(P), etc.
The bare propagatorŜ(P) is an inverse ofŜ21(P)

5(P” 2m) t̂3. A general solution toŜ21Ŝ5ŜŜ2151 is

Ŝ~P!5Ŝ(0)~P!1SK~P!M̂ 1 , ~2.8!

Ŝ(0)~P!5 (
r56

Pr@ŜRA~P!2 f r~SR2SA!M̂ 1#, ~2.9!

SK~P!52 (
r56

Cr2r~P!@DR~P!2DA~P!#

3Prg5~P” 2m!N” P2r , ~2.10!

where the suffix ‘‘K ’’ stands for the ‘‘Keldish component’’
and

ŜRA~P!5S SR 0

SR2SA 2SA
D ,

M̂ 65S 1 61

61 1 D ,

SR(A)5~P” 1m!DR(A)~P!5
P” 1m

P22m26 ip001
, ~2.11!

f r~P!5u~p0!Nr~ up0u,pW !1u~2p0!@12N̄r~ up0u,2pW !#.

~2.12!

Here SR(A) is the retarded~advanced! propagator, and
Nr(up0u,pW ) @N̄r(up0u,2pW )# (r56) is the bare number-
density function of a quark@an antiquark# with polarization

rS(P), energy up0u (5ApW 21m2), and momentum
pW @2pW #. SK in Eq. ~2.10! connects opposite polarizatio
states. From Eqs.~2.7!, ~2.8!, and~2.10!, we have

„C12~P!…* 5C21~P!.

The derivative expansion is an efficient device for deal
with quasiuniform systems near equilibrium or nonequil
rium quasistationary systems. For such systems,SK is small
when compared toŜ(0).

C. Dyson equation

The self-energy-part (Ŝ) resummed propagatorĜ obeys
the Dyson equation
7-2
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Ĝ~P!5Ŝ~P!@11Ŝ~P!Ĝ~P!#5@11Ĝ~P!Ŝ~P!#Ŝ~P!.
~2.13!

We write Ĝ and Ŝ in SF’s,

Ĝ5 (
r,s56

P rĜrsPs , Ŝ5 (
r,s56

P rŜrsPs .

It is worth mentioning that, for the system that enjoys

azimuthal symmetry around thezW direction,Ŝ, and then also
Ĝ, are independent ofE'

m , provided that we choosejW5pW

3zW/ upW 3zW u. Then, from Eqs.~2.3!–~2.6!, we have

Ŝ4
r2r50 ~r56 !,

Ŝ j
115Ŝ j

22 ~ j 52,3,4!.

Same relations hold forĜ’s.

Substituting the SF’s forŜ, Ŝ, and Ĝ in Eq. ~2.13!, we
obtain coupled equations

Ĝrs5Ŝrs1~ŜŜĜ!rs5Ŝrs1~ĜŜŜ!rs ~r,s56 !,
~2.14!

where (ŜŜĜ)rs[(j,z56ŜrjŜjzĜzs, etc. The relation tha
involves (•••)rs is to be understood to hold when san
wiched between projection operatorsPr•••Ps . We write
Eq. ~2.14!, with obvious notation, as

Ĝ5Ŝ1ŜŜĜ5Ŝ1ĜŜŜ, ~2.15!

where boldface letters denote (232) matrix in a ‘‘polariza-
tion space.’’

From Eq.~2.7!, we obtain the symmetry relations for th
SF elements ofĜrs @cf. Eqs.~2.4! and ~2.5!#,

„Ĝj
rs~P!…* 52s j

rst̂1
tĜj

sr~P!t̂1 , ~2.16!

where

s j
rs55

1 for ~rs, j ! 5 ~rr,1!,~rr,2!,~rr,3!,

~r2r,2!,~r2r,3!,

~r2r,4!

2 for ~rs, j ! 5 ~rr,4!,~r2r,1!.

Similar relations hold forŜ j
rs’s.

Let us introduce (232)-matrix functionf in the polariza-
tion space,

f5diag~ f 1 , f 2!.

Then Ŝ is written as
11600
Ŝ5Ŝ(0)1SKM̂ 1 , ~2.17!

Ŝ(0)5ŜRA12f~SR2SA!M̂ 1

SK5@SR~P!2SA~P!#g5N” C~P!, ~2.18!

C~P!5S 0 C12~P!

C21~P! 0 D .

Among the components ofŜ is a relation

S111S121S211S2250. ~2.19!

Then,Ŝ is written as

Ŝ5Ŝ(0)2SKM̂ 2 , ~2.20!

Ŝ(0)5S SR 0

2SR1SA 2SA
D 2~SRf2f SA!M̂ 2 ,

~2.21!

SR5S111S1252S222S21, ~2.22!

SA5S111S2152S222S12, ~2.23!

SK5f S112S11f1f S211S12~12f!. ~2.24!

From Eq.~2.16! with Ŝ j
rs for Ĝj

rs , we obtain the symmetry
relations

„SR j
rs~P!…* 5s j

rsSA j
sr~P!,

„SK j
rs~P!…* 52s j

rsSK j
sr~P!.

Among the components ofĜ is a relation

G111G225G121G21. ~2.25!

Then,Ĝ is written as

Ĝ5Ĝ(0)1GKM̂ 1 , ~2.26!

Ĝ(0)5S GR 0

GR2GA 2GA
D 2~GRf2fGA!M̂ 1 , ~2.27!

GR5G112G1252G221G21, ~2.28!

GA5G112G2152G221G12, ~2.29!

GK5G11f2fG111fG211G12~12f!. ~2.30!

It is worth mentioning that, for equilibrium systems,SK
5GK50. From Eq.~2.16! follow the symmetry relations

„GR j
rs~P!…* 5s j

rsGA j
sr~P!,

„GK j
rs~P!…* 52s j

rsGK j
sr~P!. ~2.31!
7-3
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Substitution of Eqs.~2.17!, ~2.20!, and ~2.26! into Eq.
~2.15! yields

Ĝ(0)5Ŝ(0)1Ŝ(0)Ŝ(0)Ĝ(0)5Ŝ(0)1Ĝ(0)Ŝ(0)Ŝ(0),
~2.32!

GK5SK1SRSRGK1SKSAGA2SRSKGA

5SK1GRSRSK1GKSASA2GRSKSA . ~2.33!

From Eq.~2.32!, we obtain

GR(A)5@P” 2m2SR(A)#
21, ~2.34!

where use has been made of (Ŝ(0)21)rs5drs(P” 2m) t̂3. We
get from Eq.~2.34!, after some manipulation,

GR
rr5@P” 2m2SR

rr2SR
r2rGR

(pre)2r2rSR
2rr#21,

~2.35!

GR
r2r5GR

(pre)rrSR
r2rGR

2r2r5GR
rrSR

r2rGR
(pre)2r2r ,

~2.36!

where

GR
(pre)rr5@P” 2m2SR

rr#21. ~2.37!

As has been remarked above after Eq.~2.14!, Eq. ~2.37! is to
be understood to mean

PrGR
(pre)rr@P” 2m2SR

rr#Pr

5Pr@P” 2m2SR
rr#GR

(pre)rrPr5Pr1Pr5Pr . ~2.38!

Such an understanding also applies to Eq.~2.35!. Concrete
form for GR(A) will be given in the next section.

As for GK , Eq. ~2.33!, we show in Appendix A that

GK5GK
(1)1GK

(2)1GK
(3) , ~2.39!

GK
(1)52GRSKGA , ~2.40!

GK
(2)5GR@g5N” C~P!SA2SRg5N” C~P!#GA[GRH lGA ,

~2.41!

GK
(3)5GRg5N” C~P!2g5N” C~P!GA . ~2.42!

‘‘ l ’’ of H l in Eq. ~2.41! stands for the ‘‘leading part’’ of the
DEX. As mentioned above at the end of Sec. II B, for qua
 i-

uniform systems near equilibrium or nonequilibrium quas
tationary systems,GK

(2) andGK
(3) are much smaller thanGK

(1) .
The SF forGK

(1) will be given in the next section. The stan
dard forms forH l in Eq. ~2.41! andg5N” C(P) in Eq. ~2.42!
are also given in the next section. The SF’s forGK

(2)

and GK
(3) are obtained by repeatedly using the formulas

Appendix B.

D. Self-energy-part resummed propagator Ĝ

It is convenient to introduce

Ĝ̃rr5S GR
rr GK

(1)rr

0 2GA
rr D , Ŝ̃rs5S SR

rs SK
rs

0 2SA
rsD .

We observe that Eq.~2.35! andGK
(1)rr in Eq. ~2.40! are uni-

fied to a matrix equation

Ĝ̃rr5@~P” 2m!t̂32 Ŝ̃rr2 Ŝ̃r2rĜ̃(pre)2r2rŜ̃2rr#21,
~2.43!

where

Ĝ̃(pre)rr5S GR
(pre)rr GK

(pre)rr

0 2GA
(pre)rrD 5@~P” 2m!t̂32 Ŝ̃rr#21.

~2.44!

1. Forms for GR„A…

„pre…rr and GK
„pre…rr

The SF for (P” 2m) t̂32 Ŝ̃rr reads

~P” 2m!t̂32 Ŝ̃rr~P!52@mt̂31 Ŝ̃1
rr~P!#1@ t̂32 Ŝ̃2

rr~P!#P”

2 Ŝ̃3
rr~P!N” 2 Ŝ̃4

rr~P!P” N” . ~2.45!

One obtains the expressions for the SF elementsGT j
(pre)rr

(T5R,A,K and j 51 –4) through straightforward but te
dious manipulation of Eq.~2.44!, which includes Eq.~2.38!.
Writing S j[SR j

rr for short, we have

GR j
(pre)rr5s j

rr~GA j
(pre)rr!* ~ j 51 –4!,

GR1
(pre)rr5

m1S1

Dpre
rr

, GR2
(pre)rr5

12S2

Dpre
rr

,

GRl
(pre)rr52

S l

Dpre
rr

~ l 53,4!,
GK j
(pre)rr5

(
l 51

4

N j
( l )SKl

rr

Im$@~m1S1!22N2~S3!2#@~S2* 21!22N2~S4* !2#%
~ j 51 –4!,

116007-4
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where

Dpre
rr 5@~12S2!22N2~S4!2#P22~m1S1!21N2~S3!2

~2.46!

and

N 1
(1)52@E13

(1)F241E24
(1)F13#, N 1

(2)522F13ReF1234
(2) ,

N 1
(3)52N2Re@F13H241F24H13#,

N 1
(4)52iN2F13ImF1423

(1) ,

N 2
(1)522F24ReF1234

(1) , N 2
(2)52@E24

(2)F131E13
(2)F24#,

N 2
(3)52N2F24ReF1423

(1) ,

N 2
(4)52iN2Im@F13H241F24H13#,

N 3
(1)522Re@F13H242F24H13#,

N 3
(2)522F13ReF1423

(2) ,

N 3
(3)52@E13

(1)F242E24
(1)F13#, N 3

(4)52iF 13ImF1234
(2) ,

N 4
(1)522iF 24ImF1423

(2) ,

N 4
(2)52i Im@2F13H241F24H13#,
11600
N 4
(3)52iF 24ImF1234

(1) , N 4
(4)52@E13

(2)F242E24
(2)F13#,

with

E13
(6)5um1S1u26N2uS3u2, E24

(6)5u12S2u26N2uS4u2,

F245Im
~12S2!22N2~S4!2

Dpre
rr

,

F135Im
~m1S1!22N2~S3!2

Dpre
rr

,

F1234
(6) 5~m1S1!~12S2* !6N2S3S4* ,

F1423
(6) 5~m1S1!S4* 6~12S2!S3* ,

H135~m1S1!S3* , H245~12S2!S4* .

2. Form for GR„A…

rr and GK
„1…rr , Eqs. (2.35) and (2.40)

Using the definition~B1! in Appendix B, one can write
the quantity in the square brackets in Eq.~2.43! as

~P” 2m!t̂32 Ŝ̃rr2†@ Ŝ̃ ^ Ĝ̃(pre)# ^ Ŝ̃‡

rr. ~2.47!

The SF for this is obtained by the repeated use of the form
las in Appendix B:
Eq. ~2.47!52@mt̂31 Ŝ̃1
rr1Â1

r2rŜ̃1
2rr2P2Â2

r2rŜ̃2
2rr2N2Â3

r2rŜ̃3
2rr2P2N2Â4

r2rŜ̃4
2rr#1@ t̂32 Ŝ̃2

rr2Â1
r2rŜ̃2

2rr

1Â2
r2rŜ̃1

2rr2N2Â3
r2rŜ̃4

2rr2N2Â4
r2rŜ̃3

2rr#P” 2@ Ŝ̃3
rr1Â1

r2rŜ̃3
2rr2P2Â2

r2rŜ̃4
2rr2Â3

r2rŜ̃1
2rr

2P2Â4
r2rŜ̃2

2rr#N” 2@ Ŝ̃4
rr1Â1

r2rŜ̃4
2rr2Â2

r2rŜ̃3
2rr1Â3

r2rŜ̃2
2rr1Â4

r2rŜ̃1
2rr#P” N” , ~2.48!
where

Â1
r2r5 Ŝ̃1

r2rĜ̃1
(pre)2r2r1P2Ŝ̃2

r2rĜ̃2
(pre)2r2r

1N2Ŝ̃3
r2rĜ̃3

(pre)2r2r2P2N2Ŝ̃4
r2rĜ̃4

(pre)2r2r ,

Â2
r2r5 Ŝ̃1

r2rĜ̃2
(pre)2r2r1 Ŝ̃2

r2rĜ̃1
(pre)2r2r

2N2Ŝ̃3
r2rĜ̃4

(pre)2r2r1N2Ŝ̃4
r2rĜ̃3

(pre)2r2r ,

Â3
r2r5 Ŝ̃1

r2rĜ̃3
(pre)2r2r1P2Ŝ̃2

r2rĜ̃4
(pre)2r2r

1 Ŝ̃3
r2rĜ̃1

(pre)2r2r2P2Ŝ̃4
r2rĜ̃2

(pre)2r2r ,

Â4
r2r5 Ŝ̃1

r2rĜ̃4
(pre)2r2r1 Ŝ̃2

r2rĜ̃3
(pre)2r2r

2 Ŝ̃3
r2rĜ̃2

(pre)2r2r1 Ŝ̃4
r2rĜ̃1

(pre)2r2r . ~2.49!
We observe that Eq.~2.48! with Eq. ~2.49! is obtained from
Eq. ~2.45! through the following substitutions (T stands for
R, A, or K):

ST1
rr→ST1

rr1T111
rr 1P2T221

rr 1N2T331
rr

2P2N2T441
rr 2P2@T122

rr 1T212
rr 2N2T342

rr 1N2T432
rr #

2N2@T133
rr 1P2T243

rr 1T313
rr 2P2T423

rr #

2P2N2@T144
rr 1T234

rr 2T324
rr 1T414

rr #,

ST2
rr→ST2

rr1T112
rr 1P2T222

rr 1N2T332
rr

2P2N2T442
rr 2T121

rr 2T211
rr 1N2T341

rr 2N2T431
rr

1N2@T134
rr 1P2T244

rr 1T314
rr 2P2T424

rr #

1N2@T143
rr 1T233

rr 2T323
rr 1T413

rr #,
7-5
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ST3
rr→ST3

rr1T113
rr 1P2T223

rr 1N2T333
rr

2P2N2T443
rr 2P2@T124

rr 1T214
rr 2N2T344

rr 1N2T434
rr #

2@T131
rr 1P2T241

rr 1T311
rr 2P2T421

rr #

2P2@T142
rr 1T232

rr 2T322
rr 1T412

rr #,

ST4
rr→ST4

rr1T114
rr 1P2T224

rr 1N2T334
rr

2P2N2T444
rr 2@T123

rr 1T213
rr 2N2T343

rr 1N2T433
rr #

1@T132
rr 1P2T242

rr 1T312
rr 2P2T422

rr #

1@T141
rr 1T231

rr 2T321
rr 1T411

rr #. ~2.50!

Here forT5R andA,

Ri jl
rr5SRi

r2rGR j
(pre)2r2rSRl

2rr

and

Ai jl
rr5SAi

r2rGA j
(pre)2r2rSAl

2rr ,

respectively, and, forT5K,

Ki jl
rr5SRi

r2r@GR j
(pre)2r2rSKl

2rr2GK j
(pre)2r2rSAl

2rr#

1SKi
r2rGA j

(pre)2r2rSAl
2rr .

Then, the expressions forGR j
rr , GA j

rr , andGK j
(1)rr ( j 51 –4)

are obtained from those of their counterparts, in respec
order,GR j

(pre)rr , GA j
(pre)rr , andGK j

(pre)rr with the above substi-
tutions.

3. The forms for Hl
rs in GK

„2…rs , Eq. (2.41), and for
g5N” Crs

„P… in GK
„3… , Eq. (2.42)

The form for Hl
rs is obtained by using the formulas i

Appendix B:

Hl
rr52Cr2r~N2SA3

2rr2N2SA4
2rrP” 1SA1

2rrN” 2SA2
2rrP” N” !

1~N2SR3
r2r2N2SR4

r2rP” 2SR1
r2rN” 1SR2

r2rP” N” !C2rr ,

Hl
r2r5g5@Cr2r~N2SA3

2r2r2N2SA4
2r2rP”

1SA1
2r2rN” 2SA2

2r2rP” N” !1~N2SR3
rr 2N2SR4

rr P”

2SR1
rr N” 1SR2

rr P” N” !Cr2r#. ~2.51!

The form forg5N” Crs(P) is given by Eq.~2.51! with

SA1
rs→drs, SA j

rs→0 ~ j 5224!,

SR j
rs→0 ~ j 51 –4!.

4. The form for ĜrÀr

Having obtained the expression forĜrr, we can get the
expression forĜr2r from Eqs.~2.36!, ~2.39!–~2.42! by re-
peatedly using the formulas in Appendix B.
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III. GLUON PROPAGATOR

A. Preliminary

We adopt a Coulomb gauge. The result for a covari
gauge is summarized in Appendix D.

As an orthogonal basis in Minkowski space, we choos

P̃m[Pm2p0nm5~0,pW !, z̃m5„0,zW2~zW•pW !pW /pW 2
…,

nm5~1,0W !, E'
m5emnrsP̃nz̃rns . ~3.1!

These vectors are orthogonal with each other and their no
are

P̃252pW 2, z̃25211~zW•pW !2/pW 2,

n251, E'
2 5pW 2z̃2.

Incidentally, emnrsP̃rz̃s , emnrsP̃rns , and emnrsz̃rns are
not independent but are constructed out of the above
vectors, e.g.,emnrsP̃rz̃s5(E'

mnn2nmE'
n ), etc.

We define the projection operators

P T
mn~P!5gmn2

nmnn

n2
2

P̃mP̃n

P̃2
, ~3.2!

P L
mn~P!5

nmnn

n2
, ~3.3!

P G
mn~P!5

P̃mP̃n

P̃2
. ~3.4!

Although,n251, we have writtenn2 explicitly for later con-
venience. In the above definitions, ‘‘T, ’’ ‘‘ L, ’’ and ‘‘ G’’
stand, in respective order, for transverse, longitudinal,
gauge fixing.@Following tradition, we callnmnn/n2 in Eq.
~3.3! the ‘‘longitudinal projection operator.’’# From Eqs.
~3.1!–~3.4!, one can show that

P̃mP U
mn5P U

nmP̃m5dUGP̃n,

nmP U
mn5P U

nmnm5dULnn,

z̃mP U
mn5P U

nmz̃m5dUTz̃n,

~E'!mP U
mn5P U

nm~E'!m5dUTE'
n . ~3.5!

Let A be a generic second-rank tensor in Minkows
space, whose (mn) component is (A)mn5Amn. Amn is de-
composed as

Amn~P!5 (
U,V5T,L,G

P U
mr~AUV!rsP V

sn

[ (
U,V5T,L,G

~PU•AUV•PV!mn, ~3.6!
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ATT
mn5A1

TTP T
mn1A2

TTz̃mz̃n2A3
TT8z̃mE'

n 1A3
T8TE'

mz̃n,

ALL
mn5A1

LLP L
mn ,

AGG
mn 5A1

GGP G
mn ,

ATL
mn5A1

TLz̃mnn1A2
TLE'

mnn,

ALT
mn5A1

LTnmz̃n2A2
LTnmE'

n ,

ATG
mn 5A1

TGE'
mP̃n1A2

TGz̃mP̃n,

AGT
mn 5A1

GTP̃mE'
n 2A2

GTP̃mz̃n,

ALG
mn 5A1

LGnmP̃n,

AGL
mn 52A1

GLP̃mnn. ~3.7!

From Eq. ~3.5! follows (PU•AUV•PV)mn5AUV
mn (U,V

5T,L,G). We call Eqs.~3.6! and ~3.7! the SF’s and refer
AUV

mn (U,V5T,L,G) or Aj
UV (U,V5T,T8,L,G) to as a SF

element ofAmn. It is to be understood that the~bare and
self-energy-part resummed! propagators and the self-energ
part, which appear in the following, are to be written
the SF.

B. Bare propagators

1. Bare gluon propagator

First of all, we note that the bare propagator matrixD̂(P)
and the self-energy-part resummed propagator matrixĜ(P)
enjoy the ‘‘symmetry’’ property,

„D̂mn~P!…* 52 t̂1
tD̂nm~P!t̂1 ,

„Ĝmn~P!…* 52 t̂1
tĜnm~P!t̂1 ,

D̂mn~P!5 tD̂nm~2P!,

Ĝmn~P!5 tĜnm~2P!. ~3.8!

The first two equations result from the Hermiticity of th
density matrix.

D̂mn(P) is an inverse of

„D̂21~P!…mn52FP2gmn2PmPn1
1

l
P̃mP̃nG t̂3 ~3.9!

with l a gauge parameter. A general solution to (D21D)mn

5gmn is written as

D̂5D̂(0)1DKM̂ 1 , ~3.10!

D̂(0)5D̂RA1 f̃ ~DR2DA!M̂ 1 , ~3.11!
11600
D̂RA5S DR 0

DR2DA 2DA
D , ~3.12!

DK
mn5~DK!TT

mn52C̃mn@DR~P!2DA~P!#, ~3.13!

C̃mn5C2
TT~P!z̃mz̃n2C3

TT8~P!z̃mE'
n 1C3

T8T~P!E'
mz̃n,

~3.14!

where

f̃ ~P!5u~p0!N~ up0u,pW !2u~2p0!@11N~ up0u,2pW !#,

DR
mn5~DA

mn!* 52DRP T
mn2

1

P̃2 F11l
p0

2

P̃2GP L
mn

2
l

P̃2
P G

mn2l
p0

P̃4
~ P̃mnn1nmP̃n!.

~3.15!

Here N is the number density of the transverse gluon a
DR(A) is as in Eq.~2.11!. From Eqs.~3.8!, ~3.10!, and~3.13!,
we have

~C2
TT!* 5C2

TT, ~C3
TT8!* 52C3

T8T . ~3.16!

Note that, for the quasiuniform systems near equilibriu

C2
TT , C3

TT8 , andC3
T8T are small when compared tof̃ .

2. Bare ghost propagator

A bare Fadeev-Popov~FP! ghost propagatorD̂̃ is

D̂̃5
1

P̃2
t̂3 . ~3.17!

C. Dyson equation

1. Gluon sector

The self-energy-part (P̂) resummed propagatorĜ obeys

Ĝ~P!5D̂~P!2D̂~P!P̂~P!Ĝ~P!. ~3.18!

From Eq.~3.8!, we obtain the symmetry relations, for the S
elements ofĜmn,

„Ĝj
UV~P!…* 52s j

UVt̂1
tĜj

VU~P!t̂1 ,

Ĝj
UV~P!5 tĜj

VU~2P! ~U,V5T,T8,L,G!,
~3.19!

wheres j
UV5s j

VU with s j
UU51 (U5T,L,G) and

s j
UV5H 1 for ~UV, j !5~TL,1!,~TG,1!

2 for ~UV, j !5~TT8,3!,~TL,2!,

~TG,2!,~LG,1!.
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A. NIÉGAWA PHYSICAL REVIEW D 68, 116007 ~2003!
Similar relations hold for (P̂ j )UV’s.
Components ofP̂ follow the same relation as Eq.~2.19!

and thenP̂ is written as

P̂5P̂(0)2PKM̂ 2, ~3.20!

P̂(0)5S PR 0

2PR1PA 2PA
D 1 f̃ ~PR2PA!M̂ 2 ,

~3.21!

PR5P111P12, ~3.22!

PA5P111P21, ~3.23!

PK5~11 f̃ !P122 f̃ P21. ~3.24!

From Eq. ~3.19! with P̂ j for Ĝj , we obtain the symmetry
relations (U,V,5T,T8,L,G)

„PA j
UV~P!…* 5s j

UVPR j
VU~P!, ~3.25!

„PK j
UV~P!…* 52s j

UVPK j
VU~P!, ~3.26!

PR j
UV~P!5PA j

VU~2P!5s j
UV~PR j

UV~2P!!* ,

PK j
UV~P!5PK j

VU~2P!2e~p0!@N~ up0u,pW !

2N~ up0u,2pW !#@PR j
VU~2P!2PA j

VU~2P!#.

Components ofG follow the same relation as Eq.~2.25!
and thenĜ is written as

Ĝ5Ĝ(0)1GKM̂ 1 , ~3.27!

Ĝ(0)5S GR 0

GR2GA 2GA
D 1 f̃ ~GR2GA!M̂ 1 , ~3.28!

GR5G112G12, ~3.29!

GA5G112G21, ~3.30!

GK5~11 f̃ !G122 f̃ G21. ~3.31!

For equilibrium systems,PK5GK50. From Eq.~3.19!, fol-
lows the symmetry relations (U,V,5T,T8,L,G)

„GA j
UV~P!…* 5s j

UVGR j
VU~P!, ~3.32!

„GK j
UV~P!…* 52s j

UVGK j
VU~P!, ~3.33!

GR j
UV~P!5GA j

VU~2P!5s j
UV

„GR j
UV~2P!…* , ~3.34!
11600
GK j
UV~P!5GK j

VU~2P!1e~p0!@N~ up0u,pW !

2N~ up0u,2pW !#@GR j
VU~2P!2GA j

VU~2P!#.

~3.35!

Substitution of Eqs.~3.10!, ~3.20!, and ~3.27! into Eq.
~3.18! yields

Ĝ(0)5D̂(0)2D̂(0)P̂Ĝ(0), ~3.36!

GK5DK2DRPRGK1DRPKGA2DKPAGA . ~3.37!

Equation~3.36! is formally solved to give

GR(A)5@D211PR(A)#
21. ~3.38!

For later convenience, we rewrite Eq.~3.38! as@cf. Eq.~3.9!#

GR5@D0
211PR8 #21, ~3.39!

~D0
21!mn52 P̃2FP T

mn1P L
mn1

1

l
P G

mnG , ~3.40!

PR8
mn5PR

mn2p0
2~P T

mn1P G
mn!1p0~nmP̃n1 P̃mnn!.

~3.41!

The SF forGR(A) will be given in the next section.
As for GK , Eq.~3.37!, through similar procedure as in th

quark case~cf. Appendix A!, we obtain

GK5GK
(1)1GK

(2)1GK
(3) ,

GK
(1)5GRPKGA ,

GK
(2)52GR@C̃PA2PRC̃#GA[2GRH̃ lGA , ~3.42!

GK
(3)5GRC̃2C̃GA ,

whereC̃ is as in Eq.~3.14!. SF elements ofH̃ l are given in
the next section. The SF elements ofGK are obtained by
repeatedly using the formulas in Appendix C.

2. Ghost sector

The self-energy-part (P̂̃) resummed propagatorĜ̃ obeys

Ĝ̃~P!5 D̂̃~P!@11 P̂̃~P!Ĝ̃~P!#5@11 Ĝ̃~P!P̂̃~P!# D̂̃.
~3.43!

SinceD̂̃, Eq. ~3.17!, is a diagonal (232)-matrix, P̂̃ is also

diagonal. Then, from Eq.~3.43!, Ĝ̃ is diagonal also. Among

the components ofP̂̃ ( Ĝ̃), there is the same relation as E
~2.19! @Eq. ~2.25!#. Then we have

P̂̃5P̃t̂3 , Ĝ̃5G̃t̂3 ~3.44!

with P̃ andG̃ real, and
7-8
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G̃~P!5
1

P̃22P̃~P!
52

1

pW 21P̃~P!
. ~3.45!

D. Self-energy-part resummed gluon propagator

1. Form for „GR„A…
…UV

Through a Slavnov-Taylor identity, (Ĝ1)UG (U
5G,T,L) and (Ĝ2)TG @and then also (Ĝ1)GU and (Ĝ2)GT
via Eq. ~3.19!# are related to the self-energy-part resumm

FP-ghost propagatorĜ̃ and the FP-ghost ‘‘pre-self-energ

part’’1 P̂̃m .
The Slavnov-Taylor identity reads@7#:

ĜmnP̃n5l@t̂3P̂̃m2Pm#Ĝ̃5l@t̂3~ P̂̃m2p0nmt̂3!2 P̃m#Ĝ̃.
~3.46!

Here Ĝ̃(P) is as in Eq.~3.44! with Eq. ~3.45!. As in Eq.

~3.44!, P̂̃m is a diagonal (232) matrix,

P̂̃m5P̃mt̂3 ~P̃m* 5P̃m!. ~3.47!

Substitution of the SF forĜmn into Eq. ~3.46! yields

GR1
GG~P!5GA1

GG~P!5l
1

P̃2
@P̃~P!2 P̃2#G̃~P!52l

1

P̃2
,

~3.48!

GR1
TG~P!5GA1

TG~P!5l
1

P̃2E'
2 @E'

mP̃m~P!#G̃~P!, ~3.49!

GR2
TG~P!5GA2

TG~P!5l
1

P̃2z̃2
@ z̃mP̃m~P!#G̃~P!, ~3.50!

GR1
LG~P!5GA1

LG~P!5l
1

P̃2n2
@nmP̃m~P!2p0#G̃~P!, ~3.51!

GK1
GG5GK1

TG5GK2
TG5GK1

LG50. ~3.52!

All the above quantities are real. In deriving Eq.~3.48!, Eq.
~3.45! has been used. Substituting Eqs.~3.48!–~3.52! into
Eq. ~3.35!, we obtainGK j

GT5GK1
GL50. From the above for-

1P̂̃m is evaluated by replacing the vertex factorgCabcP̃
m at the

‘‘end vertex’’ with gCabc . Here the end vertex is the vertex from
which the outgoing ghost comes out of the diagram. Then, the g

self-energy partP̂̃ is related toP̂̃m throughP̂̃5 P̃mP̂̃m .
11600
d

mulas, we see thatĜUG
mn (U5T,L,G) and ĜGU

mn (U5T,L)
vanish in the strict Coulomb gauge (l50).

We are now in a position to obtain (GR)UV (UÞG,V
ÞG) from Eq. ~3.39!. We divide (GR)UV into two pieces,
(GR)UV5(GR

(l50))UV1(GR
(l))UV , the latter of which van-

ishes in the strict Coulomb gauge (l50).
Straightforward manipulation of Eq.~3.39! using the for-

mulas in Appendix C yields, for the SF elements ofG(l50)

([GR
(l50)) (P j

UV[PR j
UV),

DG1
(l50)TT52~ P̃22P18

TT2 z̃2P2
TT!~ P̃22P1

LL!

1 z̃2n2P1
TLP1

LT ,

DG2
(l50)TT52~ P̃22P1

LL!P2
TT1 P̃2n4P2

TLP2
LT

1n2P1
TLP1

LT ,

DG3
(l50)T8T52~ P̃22P1

LL!P3
T8T2n2P1

LTP2
TL ,

DG1
(l50)LL52~ P̃22P18

TT2 z̃2P2
TT!~ P̃22P18

TT!

1 P̃2z̃4n2P3
TT8P3

T8T ,

DG2
(l50)TL52~ P̃22P18

TT2 z̃2P2
TT!P2

TL2 z̃2P1
TLP3

T8T ,

DG1
(l50)LT52~ P̃22P18

TT!P1
LT2 P̃2z̃2n2P2

LTP3
T8T ,

~3.53!

where

D5@~ P̃22P18
TT!~ P̃22P1

LL!2 P̃2z̃2n4P2
LTP2

TL#

3~ P̃22P18
TT2 z̃2P2

TT!

2 z̃2n2P1
LT@~ P̃22P18

TT!P1
TL1 P̃2z̃2n2P3

TT8P2
TL#

1pW 2z̃4P3
T8T@~ P̃22P1

LL!P3
TT81n2P1

TLP2
LT#.

Here we note that, from Eq.~3.41!, P̃22P18
TT5P22P1

TT

holds. The SF elements of the gauge-parameter depen
part G(l)[GR

(l) read
st
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DG1
(l)TT52 P̃4z̃2n2@~ P̃22P18

TT2 z̃2P2
TT!$~ P̃22P1

LL!P1
GT1n2P18

GLP2
LT%

1 z̃2P2
GT$~ P̃22P1

LL!P3
TT81n2P1

TLP2
LT%2 z̃2n2P1

LT$P1
GTP1

TL2P18
GLP3

TT8%#G1
TG,

DG2
(l)TT52

P̃2

z̃2P3
T8T

@$~ P̃22P1
LL!P2

GT1n2P18
GLP1

LT%~ P̃22P18
TT!21 P̃2z̃2n4P2

TL~ P̃22P18
TT!$P1

LTP1
GT2P2

LTP2
GT%

2 P̃2z̃4n2P3
T8T$~ P̃22P1

LL!~P2
GTP3

TT82P1
GTP2

TT!1n2P18
GL~P1

LTP3
TT82P2

TTP2
LT!1n2P1

TL~P2
GTP2

LT

2P1
GTP1

LT!%#G1
TG2

n2

z̃2

P2
TLG1

LG

P3
T8TG1

TG
G3

(l)T8TD1
P̃2

z̃4

P1
TG

P3
T8T

G2
GTD,

DG3
(l)T8T5 P̃2@2 P̃2z̃2n2P1

GT$~ P̃22P1
LL!P3

T8T1n2P1
LTP2

TL%2P2
GT$~ P̃22P18

TT!~ P̃22P1
LL!2 P̃2z̃2n4P2

TLP2
LT%

2n2P18
GL$~ P̃22P18

TT!P1
LT1 P̃2z̃2n2P2

LTP3
T8T%#G1

TG,

DG1
(l)LL5pW 2@~ P̃22P18

TT2 z̃2P2
TT!$~ P̃22P18

TT!P18
GL1 P̃2z̃2n2P1

GTP2
TL%

1 z̃2P2
GT$~ P̃22P18

TT!P1
TL1 P̃2z̃2n2P2

TLP3
TT8%2 P̃2z̃4n2P3

T8T$P18
GLP3

TT82P1
GTP1

TL%#G1
LG ,

DG2
(l)TL5 P̃2@2P18

GL~ P̃22P18
TT!21 P̃2z̃4n2P1

GT$P2
TTP2

TL2P1
TLP3

T8T%

1 z̃2~ P̃22P18
TT!$2 P̃2n2P1

GTP2
TL1P2

TTP18
GL2P2

GTP1
TL%2 P̃2z̃4n2P3

TT8$P2
GTP2

TL2P18
GLP3

T8T%#G1
TG,

G1
(l)LT5G3

(l)T8T
G1

LG

G1
TG

. ~3.54!

HereG1
TG ([GR1

TG) andG1
LG ([GR1

LG) are as in Eqs.~3.49! and~3.51!, respectively.G2
GT ([GR2

GT) is obtained fromGA2
TG , Eq.

~3.50!, with the help of Eq.~3.32!.
(GA)UV is obtained from the above formulas with the substitutionsP j

UV ([PR j
UV)→PA j

UV . GR3
TT8 , GR1

TL , and GR2
LT are

obtained, in respective order, fromGA3
T8T , GA1

LT , andGA2
TL with the help of Eq.~3.32! or Eq. ~3.34!.
p-

h

nd
ua-

e in
2. Form for „H̃ l…UV in Eq. (3.42)

Straightforward computation using the formulas in A
pendix C yields, for the SF elements ofH̃ l ,

~H̃ l !1
TT52i z̃2E'

2 Im~C3
TT8PR3

T8T!,

~H̃ l !2
TT52i Im$2C2

TT~PR1
TT1 z̃2PR2

TT!

1E'
2 C3

T8T~PR3
TT81PA3

TT8!%,

~H̃ l !3
TT85 z̃2C2

TTPA3
TT82C3

TT8~2i ImPR1
TT1 z̃2PR2

TT!,

~H̃ l !1
TL5 z̃2C2

TTPA1
TL2E'

2 C3
TT8PA2

TL ,

~H̃ l !2
TL5 z̃2C3

T8TPA1
TL . ~3.55!

(H̃ l)3
T8T , (H̃ l)1

LT , and (H̃ l)2
LT are obtained using Eqs.~3.32!

and ~3.35!. Other SF-elements than the above ones vanis
11600
.

IV. GRADIENT PARTS OF THE PROPAGATORS
AND THE GENERALIZED BOLTZMANN EQUATIONS

Here, we deduce the gradient terms of the quark a
gluon propagators, and derive generalized Boltzmann eq
tions and their relatives. Procedure goes parallel to thos
@8–10#, and then we describe briefly.

A. Quark sector

A configuration-space counterpart ofF(P,X) is denoted
by F(x,y):

F~x,y!5E d4P

~2p!4
e2 iP•(x2y)F~P,X! S X5

x1y

2 D ,

[„F~P,X!…IWT~x,y!.

If F(P,X) is independent of X, F(x,y)5F(x2y)
[„F(P)…IFT(x2y). Here ‘‘IWT’’ ~‘‘IFT’’ ! stands for an in-
verse Wigner~Fourier! transform.

1. Preliminary

Configuration-space counterparts of Eqs.~2.4! and ~2.5!
are, with obvious notation,
7-10
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A~x,y!5 (
r,s56

@Pr•Ars
•Ps#~x,y!, ~4.1!

Arr5A1
rr1 1

2 @A2
rr
•~ i ]” !1~ i ]” !•A2

rr#1 1
2 @A3

rr
•N”

1N” •A3
rr#1 1

2 @A4
rr
•~ i ]” !•N” 1~ i ]” !•N” •A4

rr#,

Ar2r5g5@A1
r2r1 1

2 @A2
r2r

•~ i ]” !1~ i ]” !•A2
r2r#

1 1
2 ~A3

r2r
•N” 1N” •A3

r2r!

1 1
2 @A4

r2r
•~ i ]” !•N” 1~ i ]” !•N” •A4

r2r##.

Here we have used the shorthand notationF•G, which is a
function whose ‘‘(x,y) component’’ is

@F•G#~x,y!5E d4zF~x,z!G~z,y!. ~4.2!

For later use, we display the Wigner transform ofFG
5F•G:

FG~P,X!5F~P,X!G~P,X!2
i

2
$F~P,X!, G~P,X!%,

~4.3!

which is valid to the gradient approximation. The ‘‘Poiss
bracket’’ in Eq.~4.3! is defined as

$F,G%[
]F

]Xm

]G

]Pm
2

]F

]Pm

]G

]Xm
. ~4.4!

2. Bare propagator and counter-Lagrangian

We proceed as in@9#. We start from the expression for th
free propagatorŜ(x,y) @cf. Eqs.~2.8!–~2.10!#,

Ŝ~x,y!5 (
r56

P r•Ŝr•P r1SKM̂ 1 ,

Ŝr5S SR 0

SR2SA 2SA
D 2~SR• f r2 f r•SA!M̂ 1 ,

SK5 (
r56

Pr•~SR•g5N” •Cr2r

2Cr2r•g5N” •SA!•P2r .

For the time being,f r(x,y) and Cr2r(x,y) in the above
equations are left to be arbitrary. Specification of them w
be made in Sec. IV 5.Ŝ in Eq. ~2.8! is the leading part of the
derivative expansion~DEX! of Ŝ(P,X) @5(Ŝ(x,y))WT#.
Here ‘‘WT’’ indicates to take Wigner transformation
Straightforward calculation within the gradient approxim
tion yields

Ŝ21
•Ŝ5Ŝ•Ŝ2151, ~4.5!
11600
l

-

Ŝ21~x,y!5~ i ]” x2m!d4~x2y!t̂32Lc~x,y!M̂ 2 ,

Lc5Lc11Lc2 ,

Lc15 i (
r56

~]”Xf r!Pr

5 i (
r56

PrF P•]X

P2
P” 1

N•]X

N2
N”

1
re~p0!

e'
2 ~e'•]X!P” N” G f rPr , ~4.6!

Lc25 i (
r56

Prg5F ]N”

]Pa

]Cr2r

]Xa
~P” 2m!1~]”XCr2r!N” GP2r

5 i (
r56

Prg5F H 2
re~p0!

N2
N” e'

m]Nm

]Pa
2

P” N”

2N2

]N2

]Pa

2mS 2
P”

P2
Na1

N”

2N2

]N2

]Pa
2

re~p0!

e'
2

P” N” e'
m]Nm

]Pa
D J

3
]Cr2r

]Xa
1H re~p0!

P2
P” ~e'•]X!1

P” N”

P2
~P•]X!J

3Cr2rGP2r . ~4.7!

Here 1/P2[P/P2, 1/N2[P/N2, and 1/e'
2 5P/e'

2 , with P
denoting to take the principal part.

Equation~4.5! tells us that the free action of the theo
@6,9# is

A05E d4x d4y ĉ̄~x!Ŝ21~x,y!ĉ~y!, ~4.8!

ĉ̄5~ c̄1 , c̄2!, ĉ5S c1

c2
D .

Since the term withLc(x,y) (PŜ21) in A0 is absent in the
original action, we should introduce a counteraction to co
pensate it:

Ac5E d4x d4y ĉ̄~x!Lc~x,y!M̂ 2ĉ~y!, ~4.9!

which yields a~two-point! vertex factor

i ~Lc~x,y!!WTM̂ 25 i @Lc1~P,X!1Lc2~P,X!#M̂ 2 .
~4.10!

3. Dyson equation

Let us start with considering a ‘‘product’’ ofA andB of
the type~4.1! @cf. Eq. ~4.2!#,
7-11
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C~x,y!5@A•B#~x,y!

5F (
r,j,s56

Pr•Arj
•Pj•Bjs

•PsG~x,y!.

~4.11!

Using Eq.~4.3!, we obtain, for the Wigner transform ofC to
the gradient approximation,

C~P,X!5 (
r,j,s56

FP rArj~P,X!Bjs~P,X!Ps

1
i

2
PrH Arj

]Pj

]Pm

]Bjs

]Xm
2

]Arj

]Xm

]Pj

]Pm
BjsJ Ps

1•••G , ~4.12!

where ‘‘••• ’’ stands for other pieces of the gradient term
than the second term. Thanks to the relation

P6r

]Pr

]Pm
5

]Pr

]Pm
P7r ,

the second term vanishes,Pr$•••%Ps50. Then, to the gra-
dient approximation,C(x,y) in Eq. ~4.11! may be written as

C~x,y!.F (
r,j,s56

Pr•Arj
•Bjs

•PsG~x,y!.

Thus, as in Eq.~2.15!, we can use the (232)-matrix nota-
tion in a polarization space, (A)rs5Ars (r,s56).

The self-energy-part@Ŝ(x,y)# resummed propagatorĜ
obeys

Ĝ5Ŝ1Ŝ•Ŝ•Ĝ5Ŝ1Ĝ•Ŝ•Ŝ, ~4.13!

Ŝ5S SR 0

SR2SA 2SA
D 12~SR•f2f•SA2SK!M̂ 1 ,

SK5SR•g5N” •C2C•g5N” •SA ,

C5S 0 C12

C21 0 D .

For Ĝ andŜ, we have@cf. Eqs.~2.26!–~2.30!, ~2.20!–~2.24!#

Ĝ5S GR 0

GR2GA 2GA
D 2@GR•f2f•GA2GK#M̂ 1 ,

~4.14!

Ŝ5S SR 0

2SR1SA 2SA
D 2@SR•f2f•SA1SK#M̂ 2 ,

GK5GR•f2f•GA1G12,
11600
SK52SR•f1f•SA1Ŝ12. ~4.15!

Equation~4.13! may be solved to give

GR(A)~x,y!5@1~ i ]” x2m!21d4~x2y!2SR(A)~x,y!#21,
~4.16!

GK5GK
[1]1GK

[2]1GK
[3] , ~4.17!

GK
[1]52GR•SK•GA , ~4.18!

GK
[2]5GR•@g5N” •C•SA2SR•C•g5N” #•GA

[GR•H•GA , ~4.19!

GK
[3]5GR•g5N” •C2C•g5N” •GA . ~4.20!

The form for the leading part of the DEX ofĜ(X,P)

@5(G(x,y))WT# is theĜ that is deduced in Sec. II.

4. Gradient piece of the self-energy-part resummed propagato

Form for GR„A…

From Eq.~4.16!, we obtain, for the componentGR
rs ,

GR
rr~x,y!5@~ i ]”2m!d4~x2y!2SR

rr

2SR
r2r

•GR
(pre)2r2r

•SR
2rr#21, ~4.21!

GR
r2r~x,y!5GR

(pre)rr
•SR

r2r
•GR

2r2r

5GR
rr
•SR

r2r
•GR

(pre)2r2r , ~4.22!

GR
(pre)rr~x,y!5@~ i ]”2m!d4~x2y!2SR

rr~x,y!#21.
~4.23!

Solving Eqs.~4.21! and ~4.22!, we write the solutions as
GR

rs5GR
(0)rs1GR

(1)rs . Here, GR
(0)rs is the leading part of

the DEX of GR
rs , whose form has been obtained in Sec.

The gradient partGR
(1)rs is obtained as

GR
(1)rr5

i

2
GR

(0)rr@$~GR
(0)rr!21,GR

(0)rr%

2$SR
r2ruGR

(pre)2r2ruSR
2rr%GR

(0)rr

2SR
r2r$GR

(pre)2r2r ,SR
2rr%GR

(0)rr

2$SR
r2r ,GR

(pre)2r2r%SR
2rrGR

(0)rr#

5
i

2
@$GR

(0)rr ,~GR
(0)rr!21%

2GR
(0)rr$SR

r2ruGR
(pre)2r2ruSR

2rr%

2GR
(0)rr$SR

r2r ,GR
(pre)2r2r%SR

2rr

2GR
(0)rrSR

r2r$GR
(pre)2r2r ,SR

2rr%#GR
(0)rr ,
7-12
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GR
(1)r2r52

i

2
@$GR

(pre)rr ,SR
r2r%GR

(0)2r2r

1$GR
(pre)rruSR

r2ruGR
(0)2r2r%

1GR
(pre)rr$SR

r2r ,GR
(0)2r2r%#

52
i

2
@$GR

(0)rr ,SR
r2r%GR

(pre)2r2r

1$GR
(0)rruSR

r2ruGR
(pre)2r2r%

1GR
(0)rr$SR

r2r ,GR
(pre)2r2r%#, ~4.24!

where

$AuBuC%[
]A

]Xm
B

]C

]Pm
2

]A

]Pm
B

]C

]Xm
. ~4.25!

Then,GR(x,y) is written as@cf. Eq. ~4.1!#

GR~x,y!5 (
r,s56

@Pr•„GR
rs~P,X!…IWT•Ps#~x,y!.

We write the solution to Eq. ~4.23! as GR
(pre)rr

5GR
(pre)(0)rr1GR

(pre)(1)rr . The form forGR
(pre)(0)rr is given in

Sec. II, while the form forGR
(pre)(1)rr is given by Eq.~4.24!

with the following replacements:

GR
(0)rs→GR

(pre)(0)rs , GR
(1)rs→GR

(pre)(1)rs , GR
(pre)7r7r→0.

GA(P,X) is obtained fromGR(P,X) with SA’s for SR’s.

Form for SK , which is involved in GK
†1‡ in Eq. (4.18)

Computation of Eq.~4.15! to the gradient approximation
yields

SK5Lc11Lc22 (
r,s56

Pr•@~SR
rs f s! IWT2~ f rSA

rs! IWT

2S12
rs#•Ps1SK

[1] , ~4.26!

SK
[1]52

i

2 (
r,s56

Pr@$ f s ,SR
rs%1$ f r ,SA

rs%#Ps . ~4.27!

Lc1 andLc2 in Eq. ~4.26! come fromAc in Eq. ~4.9! @see Eq.
~4.10!#. The standard forms forSK

[1] , H @Eq. ~4.19!#, and
g5N” •C andC•g5N” in Eq. ~4.20! are given in Appendix E.

5. Perturbation theories—generalized Boltzmann equations
and their relatives

The aim of this section is to construct perturbation the
ries. We are employing the interaction picture in the sens
@11#. Then, the quark-gluon system of our concern is char
terized by a density matrixr at an initial timeX05Xi

0 , from

which f r(P,Xi
0 ,XW ) and Cr2r(P,Xi

0 ,XW ) @cf. Eqs. ~2.8!–
~2.10!# are determined. It should be emphasized that ther
no information at this stage on howf r(P,X) andCr2r(P,X)
11600
-
of
c-

is

evolve in spacetime. Then, in the course of construction o
perturbative framework, certain evolution equations that
scribe the spacetime evolution forf r and Cr2r should be
settled. As a matter of fact, one can choose any forms for
evolution equations, on the basis of which a perturbat
framework is constructed. Different frameworks are phy
cally equivalent in the sense that they lead to the same re
for the physical quantities~see below for more details!. In
the sequel, we construct two kinds of perturbative fram
works by employing two different forms for the evolutio
equations.

As seen from Eq.~4.14!, the propagatorĜ is written in
terms ofGR , GA , andGK . GR(P,X) @GA(P,X)# is analytic
in an upper@a lower# half complexp0 plane. Then, in calcu-
lating some quantity, the parts ofĜ that are proportional to
GR or to GA yield well-defined contributions. Now, we ob
serve thatGK

[1] and GK
[2] , Eqs. ~4.18! and ~4.19!, contain

GRGA . Since GA is essentially the complex conjugate
GR , GRGA is disastrously large on the energy shells,2 p0

56v6(6pW,X), on which

Re@GR
rr~P,X!#21up056v6(6pW ,X)50. ~4.28!

As a matter of fact, in the narrow-width approximatio
Im(GR

rr)21→e(p0)01, GR
rrGA

rr develops pinch singularities
at the energy shells in ap0 plane.3 Then,GK

[1] andGK
[2] yield

diverging contribution. In practice, Im(GR
rr)21 (}g2) is a

small quantity, so that the contributions, although not div
gent, are large, which invalidates the perturbative sche
These large contributions come from the vicinities of t
energy shells, on which Re(GR

rr)21;0.
Appropriate use of the first and second equalities of E

~2.36! together with Eq.~2.31! shows thatGR
rrGA

6r7r and
GR

r2rGA
6r7r do not yield large contributions. This is be

cause, in general, the energy shells ofGR
rr andGR

2r2r , and
of GR

(pre)rr andGR
(pre)2r2r , do not coincide. For the case o

f 15 f 2 , however, this is not the case. ForGR
rrGA

6r7r , a
large contribution emerges from the region Re(GR

rr)21;0,
and, for GR

r2rGA
6r7r , large contributions emerge from th

regions Re(GR
rr)21;0 and from the region Re(GR

(pre)rr)21

;0.
From Eqs.~4.18! and~4.19! with Eq. ~4.26!, we have the

following for the (rr) and (r2r) components (r56) of
H2SK @5GR

21
•(GK

[1]1GK
[2] )•GA

21#:

~Hrr2SK
rr!WT52 i F P•]X

P2
P” 1

N•]X

N2
N”

1
re~p0!

e'
2 ~e'•]X!P” N” G f r1 i G̃p

rr2SB
rr ,

~4.29!

2How to find the solution to Eq.~4.28! is given in Appendix F.
3This is a characteristic feature of nonequilibrium dynamics@12#.
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~Hr2r2SK
r2r!WT

52 ig5F H m

P2
~N•]X!1

re~p0!

P2
~e'•]X!J P”

2H re~p0!

N2
e'

m]Nm

]Pa
1

m

2N2

]N2

]Pa
J N”

]

]Xa

2H 1

2N2

]N2

]Pa

]

]Xa
2m

re~p0!

e'
2

e'
m]Nm

]Pa

]

]Xa

2
P•]X

P2 J P” N” GCr2r1 i G̃p
r2r2SB

r2r , ~4.30!

G̃p
rs5 i @~12 f s!S12

rs1 f rS21
rs1~ f r2 f s!S11

rs#, ~4.31!

SB
rs5SK

[1]rs2@~g5N” •C•SA2SR•C•g5N” !rs#WT .
~4.32!

The first term on the RHS of Eq.~4.29! @Eq. ~4.30!# comes
from the counter-LagrangianLc1 (Lc2), Eq.~4.6! @Eq. ~4.7!#,
in Eq. ~4.26!.

For later reference, we note that the physical number d
sitiesN6

(ph)(P,X) andN̄6
(ph)(P,X) are obtained through com

puting current density,

^ j m~x!&[Tr@c̄~x!gmc~x!r#

52
i

2
Tr$gm@G21~x,x!1G12~x,x!#r%. ~4.33!

Similarly, the physicalC67(P,X), C67
(ph)(P,X), is obtained

from

^ j 5
m~x!&[Tr@c̄~x!g5gmc~x!r#

52
i

2
Tr$g5gm@G21~x,x!1G12~x,x!#r%. ~4.34!

Bare-N scheme

As has been emphasized at the beginning of this sec
f r(P,X) in Eq. ~4.29! and Cr2r(P,X) in Eq. ~4.30! (Xi

0

,X0) have not been defined so far. For the purpose of
termining them, we impose here the condition that
counter-LagrangianLc is absent,Lc50:

P•]Xf r
(B)5N•]Xf r

(B)5e'•]Xf r
(B)50, ~4.35!

@m~N•]X!1re~p0!~e'•]X!#Cr2r
(B)

5Fre~p0!e'
m ]Nm

]Pa
1

m

2

]N2

]Pa
G]Cr2r

(B)

]Xa

5F P2

2

]N2

]Pa

]

]Xa
1mre~p0!e'

m ]Nm

]Pa

]

]Xa

2N2~P•]X!GCr2r
(B) 50, ~4.36!
11600
n-

n,

e-
e

where we have writtenf r
(B) (Cr2r

(B) ) for f r (Cr2r).
Then, Eq.~4.29! @Eq. ~4.30!#, of which the first term on the
RHS is absent, is to be solved under the giv
initial data f r(P,Xi

0 ,XW ) @Cr2r(P,Xi
0 ,XW )#. Equation

~4.35! is a ‘‘free Boltzmann equation’’ and its
relatives for the bare number densitie
Nr

(B)(p0 ,pW ,X)5u(p0) f r
(B)(P,X) and N̄r

(B)(up0u,pW ,X)51

2u(2p0) f r
(B)(p0 ,2pW ,X) @cf. Eq. ~2.12!#.

The physical number densities, which are obtained fr
^ j m(x)& @Eq. ~4.33!#, and the physicalCr2r

(ph) , which is ob-
tained from^ j 5

m(x)& @Eq. ~4.34!#, are functionals off s
(B) and

Cs2s
(B) :

f r
(ph)~P,X!5u~p0!Nr

(ph!~p0 ,pW ,X!1u~2p0!

3@12N̄r
(ph)~ up0u,2pW ,X!#

5Fr~P,X;@ f s
(B)#,@Cs2s

(B) # !,

Cr2r
(ph) ~P,X!5Gr~P,X;@ f s

(B)#,@Cs2s
(B) # !.

Fr andGr here contain large contributions mentioned abo
Solving these equations forf r

(B) andCr2r
(B) , one obtains

f r
(B)5 f r

(B)~P,X;@ f s
(ph)#,@Cs2s

(ph) # !, ~4.37!

Cr2r
(B) 5Cr2r

(B) ~P,X;@ f s
(ph)#,@Cs2s

(ph) # !. ~4.38!

In the case of scalar theory@8#, the physical number densit
is shown to obey the generalized Boltzmann equation.

Computation of some physical quantity yields the expr
sion F(@ f r

(B)#,@Cr2r
(B) #), which includes large contribution

Substituting the RHS’s of Eq.~4.37! and of Eq.~4.38! for, in
respective order,f r

(B) andCr2r
(B) in F, one obtains the expres

sion F8(@ f r
(ph)#,@Cr2r

(ph) #), which does not include large con
tributions.

The perturbation theory thus constructed is called
‘‘bare-N scheme’’ in@8#.

Physical-N scheme

Here we aim at constructing a perturbation theory, on
basis of which no large contributions appear. Then, in suc
scheme, there are no large terms in the relations betw
( f r

(ph) ,Cr2r
(ph) ) and (f r ,Cr2r). This is achieved if the condi-

tion Eq. ~4.29! 5 Eq. ~4.30! 5 0 could be imposed. This is
however, not possible. Nevertheless, it is possible to c
struct the scheme that is free from the large contribution

For determining so far arbitraryf r(P,X) andCr2r(P,X)
(Xi

0,X0), we impose the conditions

Tr„P” 1V f~P,X!…@Eq. ~4.29!#5TrN” @Eq. ~4.29!#

5TrP” N” @Eq. ~4.29!#50,

~4.39!
7-14
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Trg5~P” 2m!N” @Eq. ~4.30!#5Trg5@P” 2VC~P,X!#

3@Eq. ~4.30!#

5Trg5N” @Eq. ~4.30!#50.

~4.40!

Here, V f(P,X) and VC(P,X) are arbitrary functions with
the property

V f„p056v6~6pW ,X!,pW ,X…

5VC„p056v6~6pW ,X!,pW ,X…

5$@v6~6pW ,X!#22pW 2%1/2. ~4.41!

As has been discussed in@8#, this arbitrariness does not ma
ter ~see also Sec. IV A 6 below!. Computation of Eqs.~4.39!
and ~4.40! yields, in respective order,

P•]Xf r5 1
4 Tr„P” 1V f~P,X!…@G̃p

rr1 iSB
rr#, ~4.42!

N•]Xf r5 1
4 TrN” @G̃p

rr1 iSB
rr#, ~4.43!

e'•]Xf r5 1
4 re~p0!TrP” N” @G̃p

rr1 iSB
rr#, ~4.44!

and

FN2P•]X2
1

2
~P22m2!

]N2

]Pa

]

]XaGCr2r

52
1

4
Trg5~P” 2m!N” @G̃p

r2r1 iSB
r2r#, ~4.45!

@mN•]X1re~p0!e'•]X#Cr2r

52 1
4 Trg5@P” 2VC~P,X!#@G̃p

r2r1 iSB
r2r#,

~4.46!

Fre~p0!e'
m ]Nm

]Pa

]

]Xa
1

m

2

]N2

]Pa

]

]XaGCr2r

5
1

4
Trg5N” @G̃p

r2r1 iSB
r2r#. ~4.47!

These equations are the determining equations forf r and
Cr2r , which are to be solved under the given initial da
f r(P,Xi

0 ,XW ) andCr2r(P,Xi
0 ,XW ), respectively.

After imposition of Eqs.~4.42!–~4.47!, Hr6r2SK
r6r ,

Eqs.~4.29! and ~4.30!, turns out to be

Hrr2SK
rr5

i

4P2
~P22V f P” !Tr~ G̃p

rr1 iSB
rr!, ~4.48!

Hr2r2SK
r2r5

i

4P2
g5~P22VCP” !Trg5~ G̃p

r2r1 iSB
r2r!.

~4.49!
11600
On the energy shellsp056v6 , these quantities vanish
since (P22V f (C)P” )(P21V f (C)P” )5P2(P22V f (C)

2 ). Then,
the above mentioned large contributions, which turn out
be diverging contributions in the narrow-width approxim
tion, do not appear. Thus,GK

[1]1GK
[2] turns out to be a well-

behaved function. As a matter of fact, in the narrow-wid
approximation,

GK
[1]1GK

[2]}
p07v6

~p07v6!21~01!2
5

P

p07v6
~p0.6v6!,

which is a well-defined distribution. In particular, the rel
tions between the physical (f r

(ph) ,Cr2r
(ph) ) and (f r ,Cr2r) con-

tain no large term:

f r
(ph)5 f r1D f r , Cr2r

(ph) 5Cr2r1DCr2r ~4.50!

with D f r andDCr2r the perturbative corrections.
Proceeding as in@9#, from Eq.~4.42! on the energy shells

one obtains a generalized Boltzmann equation. In fact,
term withG̃p

rr on the RHS of Eq.~4.42! is proportional to the
net production rate. To avoid complete repetition, we do
reproduce it here.

6. Discussion

Here we like to mention a similarity between the tw
schemes presented here, the bare-N scheme and the physica
N scheme, and those in the ultraviolet~UV! renormalization
schemes in quantum-field theory. For simplicity of presen
tion, taking a complex-scalar theory, we focus on the m
renormalization and do not mention the coupling const
and wave function renormalizations.

Summary of the UV-renormalization theory

‘‘Bare’’ UV renormalization scheme.The free Lagrangian
density readsL052f†(x)(]21mB

2)f(x) with mB the bare
mass. Computation of the physical massMph yields Mph
5Mph(mB), which includes diverging terms. Solving th
equation formB , we havemB5mB(Mph). Perturbative com-
putation of some physical quantityF yields the expression
F5F(mB), which contains, in general, UV divergence
Substituting the equationmB5mB(Mph) for mB in F(mB),
one getsFR(Mph)[F„mB(Mph)…, which is free from UV
divergence.

Physical UV-renormalization scheme.One introduces new
free LagrangianL0852f†(x)(]21m2)f(x) with m the
renormalized mass. Then, the counter-Lagrangian shoul
introduced,Lc5L02L085f†(x)@m22mB

2 #f(x). m22mB
2 is

determined so that the perturbatively computed phys
massMph is free from the UV divergence. Thus, no diver
ing term is involved in the relationMph5Mph(m). However,
there is arbitrariness in the definition of the finite part ofm,
which is determined by imposing some condition. This ar
trariness is called a ‘‘renormalization scheme dependen
~see, e.g.,@13#!. It is well known that, when one compute
some physical quantityF up to, say,nth order of perturbation
theory, the above arbitrariness affectsF at the next to thenth
7-15
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order. The renormalization scheme, in whichm5M (ph), is
convenient for many cases.

Summary of the two schemes presented above

Bare-N scheme.No counter-Lagrangian is introduced
Computation of the physical number densities~that are re-
lated to f r

(ph)) and Cr2r
(ph) , which are the functionals off r

(B)

andCr2r
(B) , include large contributions. Perturbative comp

tation of some quantity yields the expression, which is w
ten in terms off r

(B) and Cr2r
(B) and includes large contribu

tions. Rewriting it in terms of the physical quantities,f r
(ph)

andCr2r
(ph) , one obtains the large-contribution free form.

Physical-N scheme.We introduce a counter-Lagrangia
Lc5Lc11Lc2, which is determined so that the perturbative
computed physical number densities andCr2r

(ph) do not con-
tain large contributions. There is arbitrariness in the defi
tion of the ‘‘finite parts’’ of f r andCr2r . The arbitrariness in
the choice of the functionsV f @Eqs. ~4.42! and ~4.48!# and
VC @Eqs. ~4.46! and ~4.49!# is this arbitrariness. It is worth
mentioning that, if we could chooseV f and VC so that
f r(P,X)5 f r

(ph)(P,X), Eq. ~4.42! on the energy shell turn
out to be a genuine~generalized! Boltzmann equation. In the
opposite case, the function that obeys the generalized B
mann equation isf r and the physicalf r

(ph) is written as in Eq.
~4.50!.

Similar comment to the above one at the end of thePhysi-
cal UV renormalization schememay be made here.

Correspondence

Above observation discloses the correspondence betw
the two schemes presented here and those in the
renormalization scheme.

Bare scheme:

E d4x L0~x!↔A0 in Eq. ~4.8! with Lc50,

mB↔ f r
(B) and Cr2r

(B) ,

Mph↔ f r
(ph) and Cr2r

(ph) .

Physical scheme:

E d4x L08~x!↔A0 ,

E d4x Lc~x!↔Ac in Eq. ~4.9!,

m↔ f r and Cr2r ,

Mph↔ f r
(ph) and Cr2r

(ph) ,

absence of

divergence↔ large contribution,

arbitrariness inm↔arbitrariness inV f andVC ,
11600
-
-

i-

tz-

en
V-

scheme with

m5M (ph)↔ f r5 f r
(ph) and Cr2r5Cr2r

(ph) .

B. Gluon sector

1. Preliminary

Configuration-space counterparts of Eqs.~3.6! and ~3.7!
are, with obvious notation,

Amn~x,y!5 (
U,V5T,L,G

(
j 51

JUV

@RL j
UV

•Ãj
UV

•RR j
UV#mn~x,y!,

~4.51!

where JTT54, JLL5JGG5JLG5JGL51, and JTL5JLT
5JTG5JGT52, and

(
j 51

4

@Rj
TT
•Ãj

TT
•Rj

TT#mn[PT
mr
•A1

TT
•~PT!r

n1 z̃m
•A2

TT
• z̃n

2 z̃m
•A3

TT8
•E'

n 1E'
m
•A3

T8T
• z̃n,

@Rj
LL
•Ãj

LL
•Rj

LL#mn[nmA1
LLnn,

@Rj
GG

•Ãj
GG

•Rj
GG#mn[~ i ]̃m!A1

GG~ i ]̃n!,

(
j 51

2

@Rj
TL
•Ãj

TL
•Rj

TL#mn[z̃m
•A1

TLnn1E'
m
•A2

TLnn,

(
j 51

2

@Rj
LT
•Ãj

LT
•Rj

LT#mn[nmA1
LT
• z̃n2nmA2

LT
•E'

n ,

(
j 51

2

@Rj
TG

•Ãj
TG

•Rj
TG#mn[E'

m
•A1

TG~ i ]̃n!1 z̃m
•A2

TG~ i ]̃n!,

(
j 51

2

@Rj
GT

•Ãj
GT

•Rj
GT#mn[~ i ]̃m!A1

GT
•E'

n 2~ i ]̃m!A2
GT

• z̃n,

@Rj
LG

•Ãj
LG

•Rj
LG#mn[nmA1

LG~ i ]̃n!,

@Rj
GL

•Ãj
GL

•Rj
GL#mn[2~ i ]̃m!A1

GLnn,

with ]̃m5]m2nm]0 and]05]/]X0.

2. Bare propagator and counter-Lagrangian

We proceed as in@10#. We start from the expression fo

the bare propagatorD̂(x,y) @cf. Eqs.~3.10!–~3.13!#,
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D̂mn5~PT•D̂T•PT!mn1~PL•D̂L•PL!mn1 i ]̃mD̂G~ i ]̃n!

1nmD̂LT~ i ]̃n!1 i ]̃mD̂TLnn1DK
mnM̂ 1 ,

D̂T5S 2DR 0

2DR1DA DA
D 2@DR• f̃ 2 f̃ •DA#M̂ 1 ,

DL52F 1

P̃2 S 11l
p0

2

P̃2D G
IFT

t̂3

2F H 1

P̃2 S 11l
p0

2

P̃2D J
IFT

• f̃

2 f̃ •H 1

P̃2 S 11l
p0

2

P̃2D J
IFT

G M̂ 1 ,

DG52lF 1

P̃4G
IFT

t̂32lF H 1

P̃4J
IFT

• f̃ 2 f̃ •H 1

P̃4J
IFT

G M̂ 1 ,

DLT5DTL

52lF p0

P̃4G
IFT

t̂32lF H p0

P̃4J
IFT

• f̃ 2 f̃ •H p0

P̃4J
IFT

G M̂ 1 ,

DK
mn52 z̃m

•@DR•C2
TT2C2

TT
•DA#• z̃n

1 z̃m
•@DR•C3

TT82C3
TT8

•DA#•E'
n

2E'
m
•@DR•C3

T8T2C3
T8T

•DA#• z̃n.

D̂ in Eq. ~3.10! is the leading part of the DEX ofD̂(P,X)

@(D̂(x,y))WT#. Calculation within the gradient approxima
tion yields

~D̂21!mn
•D̂n

r5gmr, ~4.52!

~D̂21!mn~x,y!5S gmn]22]m]n1
1

l
]̃m]̃nD

IFT

t̂32L̂c
mn~x,y!

5 t̂3FP T
mn~ i ]!]21P L

mn~ i ]!]̃2

2]0~ ]̃mnn1nm]̃n!

1P G
mn~ i ]!S ]̃2

l
1]0

2D G
IFT

2L̂c
mn~x,y!,

~4.53!
11600
L̂c
mn5Lc

mnM̂ 252iM̂ 2F ~P•] f̃ !P T
mn1 P̃• ]̃ f̃ nmnn

1H 1

P̃2 S p0
2

P̃2
1

2

l D P̃• ]̃ f̃ 1
p0

P̃2
]0 f̃ J P̃mP̃n

2H p0

P̃2
P̃• ]̃ f̃ 1

1

2
]0 f̃ J ~nmP̃n1 P̃mnn!

1P•]C2
TT~P,X!z̃mz̃n2P•]C3

TT8~P,X!z̃mE'
n

1P•]C3
T8T~P,X!E'

mz̃nG . ~4.54!

HereP•] f̃ 5Pm] f̃ (P,X)/]Xm, etc.
From Eq.~4.52!, we see that the free action of the theo

is

A05
1

2E d4x d4y tÂm~x!„D̂21~x,y!…mnÂn~y!,

tÂm5~Â1
m ,Â2

m!, ~4.55!

where the color index is suppressed. Equation~4.55! with
Eq. ~4.53! tells us that there emerges a counteraction

Ac5
1

2E d4x d4y tÂm~x!L̂c
mn~x,y!Ân,

which yields a~two-point! vertex factor

i ~ L̂c
mn~x,y!!WT5 iL c

mn~P,X!M̂ 2 .

3. Dyson equation

As in Sec. III, we use the (434)-matrix notation in

Minkowski space. The self-energy-part@P̂(x,y)# resummed

propagatorĜ(x,y) obeys

Ĝ5D̂2D̂•P̂•Ĝ,

D̂5S DR 0

DR2DA 2DA
D 1@DR• f̃ 2 f̃ •DA1DK#M̂ 1 .

~4.56!

For Ĝ and P̂, we have@cf. Eqs.~3.27!–~3.31! and ~3.20!–
~3.24!#

Ĝ5S GR 0

GR2GA 2GA
D 1@GR• f̃ 2 f̃ •GA1GK#M̂ 1 ,

P̂5S PR 0

2PR1PA 2PA
D 1@PR• f̃ 2 f̃ •PA2PK#M̂ 2 ,

GK52GR• f̃ 1 f̃ •GA1G12,

PK5PR• f̃ 2 f̃ •PA1P12. ~4.57!
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Equation~4.56! may be solved to give

GR(A)5@DR(A)
21 1PR(A)#

21, ~4.58!

GK5GK
[1]1GK

[2]1GK
[3] ,

GK
[1]5GR•PK•GA , ~4.59!

GK
[2]5GR•@PR•C2C•PA#•GA[2GR•H̃•GA , ~4.60!

GK
[3]5GR•C2C•GA , ~4.61!
,

u-
n

11600
Cmn5 z̃m
•C2

TT
• z̃n2 z̃m

•C3
TT8

•E'
n 1E'

m
•C3

T8T
• z̃n.

The form for the leading part of the DEX ofĜ(X,P), a
Wigner transform ofG(x,y), is the Ĝ that is deduced
in Sec. III.

4. Gradient piece of the self-energy-part resummed propagato

Form for GR„A…

We divide the Wigner transform ofPR(A)•GR(A) @cf. Eq.
~4.58!# into two pieces@cf. Eq. ~4.51!#,
~PR(A)•GR(A)!WT5PR(A)~P,X!GR(A)~P,X!1~PR(A)GR(A)!
(1), ~4.62!

~PR(A)GR(A)!
(1)mn5

i

2 (
U,V,V85T,L,G

(
j 51

JUV

(
j 851

JVV8 F ]R L j
UV

]Pm

]P̃R(A) j
UV

]Xm
R R j

UVRL j 8
VV8G̃R(A) j 8

VV8 RR j8
VV8

2R L j
UV

]P̃R(A) j
UV

]Xm

]R R j
UVRL j 8

VV8G̃R(A) j 8
VV8 RR j8

VV8

]Pm
1

]R L j
UVP̃R(A) j

UV R R j
UVRL j 8

VV8

]Pm

]G̃R(A) j 8
VV8

]Xm
RR j8

VV8

2R L j
UVP̃R(A) j

UV R R j
UVRL j 8

VV8
]G̃R(A) j 8

VV8

]Xm

]RR j8
VV8

]Pm
Gmn

. ~4.63!
5,
of

-

tion
Here PR(A)(P,X) and GR(A)(P,X) are, in respective order
PR(A)(P) andGR(A)(P) in Sec. III. Using Eq.~4.62! in Eq.
~4.58!, we obtain the solution forGR(A) (5GR(A)

(0) 1GR(A)
(1) ).

The form for the leading partGR(A)
(0) is given in Sec. III. The

gradient part is

GR(A)
(1) 5GR(A)

(0) F H igmnP•]2
i

2
~Pm]n1]mPn!

1
i

2
l~ P̃m]̃n1 ]̃mP̃n!J GR(A)

(0) 2~PR(A)GR(A)
(0) !(1)G .

Form for PK , which is involved in GK
[1] in Eq. (4.59)

In the following, we restrict ourselves to the strict Co
lomb gaugel50, which is a physical gauge. Computatio
of Eq. ~4.57! to the gradient approximation yields

PK
mn52Lc

mn1(
j

(
UV5T,L

†RL j
UV

•$„ f̃ @~P̃12! j
UV

2~P̃21! j
UV#…IWT1~P̃12! j

UV%•RR j
UV

‡

mn

1PK
[1]mn1PK

[2]mn . ~4.64!

In GK
[1]mn , Eq. ~4.59!, PK

mn , and thenLc
mn in Eq. ~4.64!, are

sandwiched betweenGR and GA . Then, in the case ofl
50, P̃mP̃n and (nmP̃n1 P̃mnn) terms inPc

mn , Eq. ~4.54!, do
not contribute toGK

[1] ~cf. Sec. III!.
The standard forms for the gradient termsPK
[1]mn and

PK
[2]mn , andH̃ @Eq. ~4.60!# are given in Appendix G.

5. Generalized Boltzmann equation and its relatives

Structure of the theory is fully discussed in Sec. IV A
so that we restrict ourselves to giving a brief description
the physical-N scheme only.

Same reasoning as in Sec. IV A applies here:GK
[1] and

GK
[2] , Eqs.~4.59! and~4.60!, bring about disaster. This disas

ter would be overcome if the condition

PK2H̃50 ~4.65!

could be imposed. This is, however, not possible. Equa
~4.65! may be imposed for theP T

mn , nmnn, z̃mz̃n, andz̃mE'
n

components, which read, in respective order,

2P•] f̃ 52 i @~11 f̃ !~P12!1
TT2 f̃ ~P21!1

TT#2 iPK1
TT

22Im~ z̃2E'
2 C3

TT8PR3
T8T!1 iH 1

(1)TT, ~4.66!

2P̃• ]̃ f̃ 52 i @~11 f̃ !~P12!1
LL2 f̃ ~P21!1

LL#2 iPK1
LL ,

~4.67!

2P•]C2
TT52 i @~11 f̃ !~P12!2

TT2 f̃ ~P21!2
TT#2 iPK2

(1)TT

22Im@2C2
TT~PR1

TT1 z̃2PR2
TT!

1E'
2 C3

T8T~PR3
TT81PA2

TT8!#1 iH 2
(1)TT, ~4.68!
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2P•]C3
TT852 i @~11 f̃ !~P12!3

TT82 f̃ ~P21!3
TT8#2 iPK3

(1)TT8

1 i @ z̃2C2
TTPA3

TT81C3
TT8~PA1

TT2PR1
TT2 z̃2PR2

TT!#

1 iH 3
(1)TT8 . ~4.69!

Proceeding as in@10#, from Eqs. ~4.66! and ~4.67! on the
energy shells, we obtain the generalized Boltzmann eq
tions for the transverse and the longitudinal modes, resp
tively. „As a matter of fact, on the energy shells, the first te
on the RHS of Eq.~4.66! @Eq. ~4.67!# is proportional to the
net production rates of the transverse~longitudinal! mode.…
We do not reproduce them here. It should be remarked t
in the case ofL mode, Eq.~4.67!, the ‘‘time-derivative term’’
]0 f̃ in the Boltzmann equation comes fromPK1

LL . More pre-

cisely, the]0 f̃ term comes fromPK
[1]mn ~with UV5LL), Eq.

~G1! in Appendix G, which is inPK1
LL in Eq. ~4.67!. Equation

~4.68! @Eq. ~4.69!# determines spacetime evolution ofC2
TT

@C3
TT8# alongP. An evolution equation forC3

T8T is obtained
from Eqs.~4.69! and ~3.16!.

One cannot impose Eq.~4.65! for the remainingz̃mnn,
nmz̃n, E'

mnn, and nmE'
n components. This is because, f

these components, there are no counterparts off̃ , C2
TT ,

C3
TT8 , andC3

T8T . For equilibrium systems, these modes a
absent. Then, one can expect that, for the quasiuniform
tems near equilibrium, these modes do not yield disastro
large contributions.

C. Ghost sector

The self-energy-part@ P̂̃(x,y)# resummed propagato

Ĝ̃(x,y) obeys

Ĝ̃5 D̂̃1 D̂̃•P̂̃• Ĝ̃. ~4.70!

D̂̃ is an inverse Fourier transform ofD̂̃ in Eq. ~3.17!. As in

Eq. ~3.44!, D̂̃, P̂̃, and Ĝ̃ are diagonal (232)-matrix func-

tions D̂̃5D̃t̂35, etc. Solving Eq.~4.70!, we see that the
gradient part ofG̃(P,X) vanishes and

Ĝ̃~P,X!5„Ĝ̃~P,X!…* 5
1

P̃22P̃~P,X!
.
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APPENDIX A: RESUMMATION OF THE QUARK
PROPAGATOR

Here we derive Eqs.~2.39!–~2.42!. Formally solving Eq.
~2.33!, we obtain
11600
a-
c-

t,

s-
ly

e
,
,

GK52GRSKGA1GK8 ,

GK8 5GRSR
21SK~11SAGA!, ~A1!

where use has been made of Eq.~2.32!. SinceSR
21SK}(P2

2m2)d(P22m2)50, we haveGK8 50. This means that the
pieceSK of the bare propagator disappears through resu
mation, which is unnatural.

A correctGK8 is obtained by substituting Eq.~2.18! for SK

in Eq. ~A1! as follows:

GK8 5GRSR
21~SR2SA!g5N” C~P!~11SAGA!

5@GRSR
21SRg5N” 2GRSR

21g5N” SA#C~P!~11SAGA!

5GRg5N” C~P!~11SAGA!2~11GRSR!g5N” C~P!GA ,

where use has been made ofGRSR
215(11GRSR), which

follows from Eq.~2.32!. This is natural in the sense that

GK ——→
Ŝ→0

SK .

APPENDIX B: ‘‘MULTIPLICATIONS’’ OF THE TWO
STANDARD FORMS FOR THE QUARK PART

We define ‘‘multiplications’’ of the functions of the type
~2.5! as the products

~A^ B!rs[Arr Brs, @A^ B#rs[Ar2r B2rs. ~B1!

Straightforward manipulation yields the SF’s@cf. Eq. ~2.5!#
of (A^ B)rs,

~A^ B!1
r6r5A1

rrB1
r6r6P2A2

rrB2
r6r6N2A3

rrB3
r6r

2P2N2A4
rrB4

r6r ,

~A^ B!2
r6r5A1

rrB2
r6r6A2

rrB1
r6r7N2A3

rrB4
r6r

1N2A4
rrB3

r6r ,

~A^ B!3
r6r5A1

rrB3
r6r6P2A2

rrB4
r6r6A3

rrB1
r6r

2P2A4
rrB2

r6r ,

~A^ B!4
r6r5A1

rrB4
r6r6A2

rrB3
r6r7A3

rrB2
r6r

1A4
rrB1

r6r . ~B2!

@A^ B# j
r2r ( j 51 –4) is given by (A^ B) j

rr in Eq. ~B2! with
Bj

2r2r for Bj
rr , and@A^ B# j

rr is given by (A^ B) j
r2r in Eq.

~B2! with Bj
2rr for Bj

r2r .

APPENDIX C: MULTIPLICATION OF THE TWO
STANDARD FORMS FOR THE GLUON PART

We define a multiplication of the functionsAmn andBmn

of the type~3.6! with Eq. ~3.7!, by Cmn5AmrBr
n . Straight-

forward computation yields the SF forCmn:
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C1
TT5A1

TTB1
TT1 P̃2z̃4n2A3

T8TB3
TT81 P̃2z̃2n4A2

TLB2
LT

2 P̃4z̃2n2A1
TGB1

GT,

C2
TT5A1

TTB2
TT1A2

TTB1
TT1 z̃2A2

TTB2
TT1 P̃2z̃2n2A3

TT8B3
T8T

2 P̃2z̃2n2A3
T8TB3

TT81n2A1
TLB1

LT2 P̃2n4A2
TLB2

LT

1 P̃4n2A1
TGB1

GT2 P̃2A2
TGB2

GT,

C3
TT85A1

TTB3
TT81 z̃2A2

TTB3
TT81A3

TT8B1
TT1n2A1

TLB2
LT

2 P̃2A2
TGB1

GT,

C3
T8T5A1

TTB3
T8T1A3

T8TB1
TT1 z̃2A3

T8TB2
TT1n2A2

TLB1
LT

2 P̃2A1
TGB2

GT,

C1
LL5 z̃2n2A1

LTB1
TL1 P̃2z̃2n4A2

LTB2
TL1A1

LLB1
LL

2 P̃2n2A1
LGB1

GL ,

C1
GG52 P̃4z̃2n2A1

GTB1
TG2 P̃2z̃2A2

GTB2
TG

2 P̃2n2A1
GLB1

LG1A1
GGB1

GG,

C1
TL5A1

TTB1
TL1 z̃2A2

TTB1
TL1 P̃2z̃2n2A3

TT8B2
TL

1A1
TLB1

LL2P2A2
TGB1

GL ,

C2
TL5A1

TTB2
TL1 z̃2A3

T8TB1
TL1A2

TLB1
LL2 P̃2A1

TGB1
GL ,

C1
LT5A1

LTB1
TT1 z̃2A1

LTB2
TT1 P̃2z̃2n2A2

LTB3
T8T1A1

LLB1
LT

2 P̃2A1
LGB2

GT,

C2
LT5 z̃2A1

LTB3
TT81A2

LTB1
TT1A1

LLB2
LT2 P̃2A1

LGB1
GT,

C1
TG5A1

TTB1
TG1 z̃2A3

T8TB2
TG1n2A2

TLB1
LG1A1

TGB1
GG,

C2
TG5A1

TTB2
TG1 z̃2A2

TTB2
TG1 P̃2z̃2n2A3

TT8B1
TG

1n2A1
TLB1

LG1A2
TGB1

GG,

C1
GT5A1

GTB1
TT1 z̃2A2

GTB3
TT81n2A1

GLB2
LT1A1

GGB1
GT,

C2
GT5 P̃2z̃2n2A1

GTB3
TT81A2

GTB1
TT1 z̃2A2

GTB2
TT

1ñ2A1
GLB1

LT ,

C1
LG5 z̃2A1

LTB2
TG1 P̃2z̃2n2A2

LTB1
TG1A1

LLB1
LG

1A1
LGB1

GG,

C1
GL5 P̃2z̃2n2A1

GTB2
TL1 z̃2A2

GTB1
TL1A1

GLB1
LL

1A1
GGB1

GL .
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APPENDIX D: GLUON PROPAGATOR IN A COVARIANT
GAUGE

Here we present a ‘‘translation table’’ to get the expre
sions for the gluon propagator in a covariant-gauge from
Coulomb gauge counterparts given in Sec. III.

An orthogonal basis in Minkowski space is given by E
~3.1! with the replacements4

~ P̃m,z̃m,nm,E'
m!⇒~Pm,z̃m,ñm,E'

m!, ~D1!

ñm[nm2
n•P

P2
Pm5nm2

p0

P2
Pm

S ñ252
pW 2

P2D .

Then, among the projection operators, Eqs.~3.2!–~3.4!, P L
mn

andP G
mn are replaced as

P L
mn~P!5

nmnn

n2
⇒P L

mn~P!5
ñmñn

ñ2
,

P G
mn~P!5

P̃mP̃n

P̃2
⇒P G

mn~P!5
PmPn

P2
.

PT is the same as in Eq.~3.2!.
Equation~3.9! is replaced with

„D̂21~P!…mn52P2FP T
mn1P L

mn1
1

l
P G

mnG t̂3 ,

which is already in SF.
The SF elements ofDK in Eq. ~3.13! are replaced by

DK2
TT~P!52p iC2

TT~P!e~p0!d~P2!,

DK3
TT8~P!52p iC3

TT8~P!e~p0!d~P2!,

DK1
TL~P!52p iC1

TL~P!e~p0!d~P2!,

DK2
TL~P!52p iC2

TL~P!e~p0!d~P2!,

DK j
UV~P!50 ~otherwise!.

In obtaining these, we have used the fact that (D̂UG)mn

5(D̂GU)mn50 (U5T,L), which is verified from the ‘‘bare
counterparts’’ of Eq.~D2!, below. DR

mn in Eq. ~3.15! is re-
placed with

DR
mn5~DA

mn!* 52DRP T
mn1

dDR

dP2
P2~P L

mn1lP G
mn!.

Equation~3.16! is replaced with

4It should be noted thatE'
m5emnrsPnz̃rñs5emnrsP̃nz̃rns .
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~C2
TT!* 5C2

TT, ~C3
TT8!* 52C3

T8T ,

~C1
TL!* 5C1

LT , ~C2
TL!* 52C2

LT .

Equation~3.17! is replaced by

D̃̂~P!5S DR 0

DR2DA 2DA
D 1 f̃ ~DR2DA!M̂ 1 .

Introduction of PR8 , Eq. ~3.39!, is not necessary,D0
21

5D21 andPR85PR , and, Eqs.~3.39!–~3.41! are deleted.
Description after Eq.~3.43! is replaced with the following

one: Solving Eq.~3.43!, we obtain

Ĝ̃5S G̃R 0

G̃R2G̃A 2G̃A
D 1@ f̃ ~G̃R2G̃A!1G̃K#M̂ 1 ,

where

G̃R~P!5G̃A* ~P!5
1

P22P̃R~P!
,

G̃K~P!52G̃R~P!P̃K~P!G̃A~P!,

P̃R5P̃A* 5P̃111P̃1252P̃222P̃21,

P̃K5~11 f̃ !P̃112 f̃ P̃21.

Equation~3.46! is replaced with

ĜmnPn5l@t̂3P̂̃m2Pm#Ĝ̃. ~D2!

Equation~3.47! is deleted.
Equations~3.48!–~3.52! are replaced by

GR1
GG~P!5l

1

P21 ip001
@P̃~P!2P2#G̃R~P!

52l
1

P21 ip001
,
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GR1
TG~P!5l

1

~P21 ip001!E'
2 @E'

mP̃Rm~P!#G̃R~P!,

GR2
TG~P!5l

1

~P21 ip001!z̃2
@ z̃mP̃Rm~P!#G̃R~P!,

GR1
LG~P!5l

1

~P21 ip001!ñ2
@ ñmP̃Rm~P!#G̃R~P!,

GK1
GG~P!52lF P2~P22P̃R!G̃K

~P21 i01!~P22 i01!
1

P̃KG̃A

P22 ip001G
52 iple~p0!d~P2!P̃KG̃A,

GK1
TG~P!5l

1

E'
2 F E'

mP̃RmP2G̃K

~P21 i01!~P22 i01!
2

E'
mP̃KmG̃A

P22 ip001G ,

GK2
TG~P!5l

1

z̃2 F z̃mP̃Rm P2G̃K

~P21 i01!~P22 i01!
2

z̃mP̃Km G̃A

P22 ip001G ,

GK1
LG~P!5l

1

ñ2 F ñmP̃Rm P2G̃K

~P21 i01!~P22 i01!
2

ñmP̃KmG̃A

P22 ip001G .

In Eqs. ~3.53! and ~3.54!, the replacements~D1! and
(P j8)UV’s → (P j )UV’s are made, and, in the formulas i
Appendix C, the replacement~D1! is made.

APPENDIX E: STANDARD FORMS
FOR THE QUANTITIES IN SEC. IV A

1. Standard form for SK
†1‡

From Eq.~4.27!, we obtain, after some algebra,
SK
[1]52

i

2 (
r56

PrF2$ f r ,ReSR
rr%8•Pr1$ f 2r ,SR

r2r%8•P2r1$ f r ,SA
r2r%8P2r

12
] f r

]Xa
ReH P”

P2
@PaSR2

rr 2NaSR3
rr 2re~p0!e'

aSR4
rr #1

N”

N2 S NaSR2
rr 1

1

2

]N2

]Pa
SR3

rr 2re~p0!e'
m]Nm

]Pa
SR4

rr D
1

P” N”

P2N2
re~p0!S 2e'

aSR2
rr 2e'

m ]Nm

]Pa
SR3

rr 1re~p0!N2P̂aSR4
rr D J 1g5H P”

P2
@Pa~L2

r2r!a2Na~L3
r2r!a

1re~p0!e'
a~L4

r2r!a#1
N”

N2 S Na~L2
r2r!a1

1

2

]N2

]Pa
~L3

r2r!a1re~p0!e'
m]Nm

]Pa
~L4

r2r!aD
1

P” N”

P2N2
re~p0!S e'

a~L2
r2r!a1e'

m]Nm

]Pa
~L3

r2r!a1re~p0!N2P̂a~L4
r2r!aD J G ,
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where

P̂a[Pa1
P2

2N2

]N2

]Pa
,

~L j
r2r!a[SR j

r2r
] f 2r

]Xa
1SA j

r2r
] f r

]Xa
~ j 52,3,4!,

$ f 2r ,SR
r2r%8[g5@$ f 2r ,SR1

r2r%1$ f 2r ,SR2
r2r%P” 1$ f 2r ,SR3

r2r%N” 1$ f 2r ,SR4
r2r%P” N” #,

etc. Here$ . . . , . . .% is as in Eq.~4.4!.

2. Standard form for H in GK
†2‡ in Eq. „4.19…

Straightforward manipulation of Eq.~4.19! yields

H5 (
r, s56

Pr•@Hl
rs# IWT•Ps1H (1),

H (1)5
i

2 (
r, s56

Prg5S ]N”

]Pa

]Cr2rSA
2rs

]Xa
2N” $Cr2r ,SA

2rs% DPs

1
i

2 (
r,s56

PrS 2
]SR

rsCs2s

]Xa

]N”

]Pa
1$Cs2s ,SR

rs%N” D g5P2s , ~E1!

whereHl
rs is as in Eq.~2.51!. The SF for each term on the RHS of Eq.~E1! reads

Prg5

]N”

]Pa

]Cr2rSA
2rr

]Xa
Pr5Pr

]Nm

]Pa

]

]Xa FCr2rH 2PmSA2
2rr2NmSA3

2rr2re~p0!e'
mSA4

2rr

1
P”

P2
@2PmSA1

2rr1P2NmSA4
2rr1re~p0!e'

mSA3
2rr#

1
N”

N2
@2N2PmSA4

2rr2NmSA1
2rr2re~p0!e'

mSA2
2rr#

1
P” N”

P2N2
@2N2PmSA3

2rr1P2NmSA2
2rr1re~p0!e'

mSA1
2rr#J G ,

Prg5

]N”

]Pa

]Cr2rSA
2r2r

]Xa
P2r5Pr

]Nm

]Pa
g5

]

]Xa FCr2rH PmSA2
2r2r1NmSA3

2r2r2re~p0!e'
mSA4

2r2r

1
P”

P2
~PmSA1

2r2r2P2NmSA4
2r2r1re~p0!e'

mSA3
2r2r!

1
N”

N2
~N2PmSA4

2r2r1NmSA1
2r2r2re~p0!e'

mSA2
2r2r!

1
P” N”

P2N2
@N2PmSA3

2r2r2P2NmSA2
2r2r1re~p0!e'

mSA1
2r2r#J G ,
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P r

]SR
rrCr2r

]Xa

]N”

]Pa
g5P2r52Pr

]Nm

]Pa
g5

]

]Xa F H 2PmSR2
rr 2NmSR3

rr 2re~p0!e'
mSR4

rr

1
P”

P2
~PmSR1

rr 1re~p0!e'
mSR3

rr 1P2NmSR4
rr !

1
N”

N2
~NmSR1

rr 2re~p0!e'
mSR2

rr 2N2PmSR4
rr !

1
P” N”

P2N2
~re~p0!e'

mSR1
rr 2P2NmSR2

rr 1N2PmSR3
rr !J Cr2rG ,

P r

]SR
r2rC2rr

]Xa

]N”

]Pa
g5Pr52Pr

]Nm

]Pa

]

]Xa F H 2PmSR2
r2r2NmSR3

r2r1re~p0!e'
mSR4

r2r

1
P”

P2
~PmSR1

r2r2re~p0!e'
mSR3

r2r1P2NmSR4
r2r!

1
N”

N2
@NmSR1

r2r1re~p0!e'
mSR2

r2r2N2PmSR4
r2r#

1
P” N”

P2N2
@2re~p0!e'

mSR1
r2r2P2NmSR2

r2r1N2PmSR3
r2r#J C2rrG ,

Prg5N” $Cr2r ,SA
2rr%Pr52Pr@N2$Cr2r ,SA3

2rr%2N2P” $Cr2r , SA4
2rr%1N” $Cr2r ,SA1

2rr%2P” N” $Cr2r ,SA2
2rr%#Pr

2
]Cr2r

]Xa
PrFNaSA2

2rr1
1

2

]N2

]Pa
SA3

2rr2re~p0!e'
m ]Nm

]Pa
SA4

2rr

1
P”

P2 S re~p0!e'
aSA2

2rr1re~p0!e'
m ]Nm

]Pa
SA3

2rr2N2P̂aSA4
2rrD

1
P” N”

P2
@2PaSA2

2rr1NaSA3
2rr1re~p0!e'

aSA4
2rr#GPr ,

Prg5N” $Cr2r ,SA
2r2r%P2r5Prg5@N2$Cr2r ,SA3

2r2r%2N2P” $Cr2r ,SA4
2r2r%

1N” $Cr2r ,SA1
2r2r%2P” N” $Cr2r ,SA2

2r2r%#P2r

1
]Cr2r

]Xa
Prg5FNaSA2

2r2r1
1

2

]N2

]Pa
SA3

2r2r1re~p0!e'
m]Nm

]Pa
SA4

2r2r

1
P”

P2 S 2re~p0!e'
aSA2

2r2r2re~p0!e'
m]Nm

]Pa
SA3

2r2r2N2P̂aSA4
2r2rD

1
P” N”

P2
@2PaSA2

2r2r1NaSA3
2r2r2re~p0!e'

aSA4
2r2r#GP2r ,
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Pr$Cr2r ,SR
rr%N” g5P2r5Prg5@N2$Cr2r ,SR3

rr %2N2P” $Cr2r ,SR4
rr %2N” $Cr2r ,SR1

rr %1P” N” $Cr2r ,SR2
rr %#P2r

1
]Cr2r

]Xa
Prg5FNaSR2

rr 1
1

2

]N2

]Pa
SR3

rr 2re~p0!e'
m ]Nm

]Pa
SR4

rr

1
P”

P2 S re~p0!e'
aSR2

rr 1re~p0!e'
m ]Nm

]Pa
SR3

rr 2N2P̂aSR4
rr D

1
P” N”

P2
@PaSR2

rr 2NaSR3
rr 2re~p0!e'

aSR4
rr #GP2r ,

Pr$C2rr ,SR
r2r%N” g5Pr5Pr@N2$C2rr ,SR3

r2r%2N2P” $Cr2r ,SR4
r2r%2N” $Cr2r ,SR1

r2r%1P” N” $Cr2r ,SR2
r2r%#Pr

1
]C2rr

]Xa
PrFNaSR2

r2r1
1

2

]N2

]Pa
SR3

r2r1re~p0!e'
m ]Nm

]Pa
SR4

r2r

1
P”

P2 S 2re~p0!e'
aSR2

r2r2re~p0!e'
m ]Nm

]Pa
SR3

r2r2N2P̂aSR4
r2rD

1
P” N”

P2
@PaSR2

r2r2NaSR3
r2r1re~p0!e'

aSR4
r2r#GPr .
3. Standard forms for g5N” "C and C"g5N” in GK
†3‡ in Eq. „4.20…

Form for g5N” •C in GK
[3] in Eq. ~4.20! is given by Eq.

~E1! with

SA1
rs→drs, SA j

rs→0 ~ j 52 –4!,

SR j
rs→0 ~ j 51 –4!.

C•g5N” in Eq. ~4.20! is given by Eq.~E1! with

SR1
rs→2drs, SR j

rs→0 ~ j 52 –4!,

SA j
rs→0 ~ j 51 –4!.

APPENDIX F: ENERGY SHELLS OF GR
rr
„P,X…

To find the energy shells of GR
rr , we need

@GR
rr(P,X)#21, the inverse ofGR

rr(P,X) @cf. Eq. ~4.28!#. To
the gradient approximation, we have

~GR
rr!215~GR

(0)rr1GR
(1)rr!21

.~GR
(0)rr!212~GR

(0)rr!21GR
(1)rr~GR

(0)rr!21.

~F1!
11600
Here (GR
(0)rr)21 is the (11)-element of Eq.~2.48! andGR

(1)rr

is as in Eq.~4.24!. If we ignore the gradient term in Eq.~F1!,
the energy shells are obtained through

Re@GR
(0)rr~P,X!#21up056v

6
(0)(6pW ,X)}D rrup056v

6
(0)(6pW ,X)50,

where D rr is given by Eq. ~2.46! with the substitutions
~2.50! being made. Then, the true energy shellsp0

56v6(6pW ,X) are obtained from Eq.~F1!,

6
]Re@GR

(0)rr~P,X!#21

]p0
U

p056v
6
(0)(6pW ,X)

3@v6~6pW ,X!2v6
(0)~6pW ,X!#

5ReH @GR
(0)rr~P,X!#21GR

(1)rr~P,X!

3@GR
(0)rr~P,X!#21J U

p056v
6
(0)(6pW ,X)

.

APPENDIX G: STANDARD FORMS FOR THE QUANTITIES IN SEC. IV B

1. Standard forms for PK
†1‡µn and PK

†2‡µn in Eq. „4.64…

From Eq.~4.57! with Eq. ~4.64!, we obtain

PK
[1]mn5

i

2 (
j

(
UV5T,L

@R L j
UV$ f̃ ,P̃R j

UV1P̃A j
UV%R R j

UV#mn, ~G1!
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PK
[2]mn52iP T

mnReFPR1
TG2

z• P̃

P̃2
PR3

T8TG ~E'•]! f̃

12i
z̃mz̃n

z̃2
ReF S 2

z• P̃

P̃2
PR2

TT1PR2
TGD ~ z̃•]! f̃ 1H z• P̃

P̃2
~PR3

T8T2PR3
TT8!2PR1

TGJ ~E'•]! f̃ G
1 i z̃mE'

n F2
1

P̃2
PR3

TT8~ P̃• ]̃ ! f̃ 1
1

E'
2 S PR2

TG2
z• P̃

P̃2
PR2

TTD ~E'•]! f̃ 1
1

z̃2 S PA1
GT1

z• P̃

P̃2
~PR3

TT81PA3
TT8!D ~ z̃•]! f̃ G

12inmnnRePR1
LG]0 f̃ 1 i z̃mnnFPR2

TG]0 f̃ 2
1

z̃2 S PA1
GL1

z• P̃

P̃2
PA1

TLD ~ z̃•]! f̃ 1
z• P̃

P̃2z̃2
PA2

TL~E'•]! f̃ G
1 iE'

mnnF 1

P̃2
PA2

TL~ P̃• ]̃ ! f̃ 1PR1
TG]0 f̃ 2

z• P̃

P̃2z̃2
PA2

TL~ z̃•]! f̃ 2
1

E'
2 S PA1

GL1
z• P̃

P̃2
PA1

TLD ~E'•]! f̃ G1 iE'
mz̃n@•••#

1 inmz̃n@•••#1 inmE'
n @•••#. ~G2!

@•••# ’s are obtained using Eq.~3.26!.

2. Standard form for H̃ in Eq. „4.60…

We write H̃mn5H̃ (0)mn1H̃ (1)mn, with H̃ (0)mn the leading term andH̃ (1)mn the gradient term of the DEX ofH̃mn(P,X).
Straightforward manipulation of Eq.~4.60! yields

H̃ (0)mn5PT
mr
•@~H̃ l !1

TT# IWT•~PT!r
n1 z̃m

•@~H̃ l !2
TT# IWT• z̃n2 z̃m

•@~H̃ l !3
TT8# IWT•E'

n 1E'
m
•@~H̃ l !3

T8T# IWT• z̃n

1 z̃m
•@~H̃ l !1

TL# IWTnn1E'
m
•@~H̃ l !2

TL# IWTnn1nm@~H̃ l !1
LT# IWT• z̃n2nm@~H̃ l !2

LT# IWT•E'
n ,

with (H̃ l) j
UV as in Eq.~3.55!, and

H̃ (1)mn5 iP T
mnReF z̃2E'

2 $C3
TT8 ,PR3

T8T%22~z• P̃!H z̃2C3
TT8~ z̃• ]

↔
!PR3

T8T2
1

P̃2
C3

TT8~E'•]!PR1
TTJ G

1 i z̃mz̃nReF2$C2
TT,PR1

TT%2 z̃2$C2
TT,PR2

TT%1E'
2 $C3

T8T ,PR3
TT82PA3

TT8%22
z• P̃

P̃2
C2

TT~ z̃• ]
↔

!PR2
TT12z̃2C3

T8T~ P̃• ]
↔

!PR3
TT8

12~z• P̃!@C3
TT8~ z̃• ]

↔
!PR3

T8T2C3
T8T~ z̃• ]

↔
!PR3

TT8#22
z• P̃

P̃2z̃2
@C2

TT~ z̃•]!12ReC3
TT8~E'•]!#PR1

TTG
1

i
2

z̃mE'
n

P̃2 F P̃2z̃2~$C2
TT,PA3

TT8%1$C3
TT8 ,PR2

TT%!12P̃2$C3
TT8 ,RePR1

TT%22C3
TT8~ P̃• ]̃ !PA1

TT12~z• P̃!

3H 2C2
TT E'•]

E'
2

PA1
TT1C2

TT~ z̃• ]
↔

!PA3
TT81C3

TT8~ z̃• ]
↔

!PR2
TT12i ~E'•]!Im~C3

TT8PR3
T8T!1

2

z̃2
C3

TT8~ z̃•]!RePR1
TTJ G

1
i
2z̃mnnF2 z̃2$C2

TT, PA1
TL%1E'

2 $C3
TT8 ,PA2

TL%2
2z• P̃

P̃2
C2

TT~ z̃• ]
↔

!PA1
TL12C3

TT8@ z̃2~ P̃• ]
↔

!2~z• P̃!~ z̃• ]
↔

!#PA2
TLG

2 iE'
mnnF z̃2

2 $C3
T8T , PA1

TL%1
z• P̃

P̃2
C3

T8T~ z̃• ]
↔

!PA1
TLG1 iE'

mz̃n@•••#1 inmz̃n@•••#2 inmE'
n @•••#,

whereA ]
↔

B[A]B2A ]
←

B, and@•••# ’s are obtained using Eqs.~3.32! and ~3.35!.
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