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Optical cavity tests of Lorentz invariance for the electron
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A hypothetical violation of Lorentz invariance in the electrons’ equation of mofexpressed within the
Lorentz-violating extension of the standard mgdeads to a change in the geometry of crystals and thus shifts
the resonance frequency of an electromagnetic cavity. This allows experimental tests of Lorentz invariance of
the electron sector of the standard model. The material dependence of the effect allows us to separate it from
an additional shift caused by Lorentz violation in electrodynamics, and to place independent limits on both
effects. From present experiments, upper limits on Lorentz violation in the electrons’ kinetic energy term are
deduced.
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I. INTRODUCTION boost of the cavity frame of reference can thus be detected
through the corresponding shift of the resonance frequency.
Special relativity and the principle of Lorentz invariance From such experiments, upper limits on a tensiof) (, .,
describe how the concepts of space and time have to beave been found, that encodes Lorentz violation in the pho-
applied when describing physical phenomena in flat spaceeonic sector of the SME12,13,15—18 These experiments
time. Improving the accuracy of the experimental verifica-are mainly based on the shift ofconnected to nonzero val-
tion of these fundamental concepts is of great interest, alsges of &r) cr.o @S an additional change of caused by
because a violation of Lorentz invariance is a feature of(kF)KWV and a corresponding orientation dependent modifi-

many current models for a quantum theory of gravity, €.9.cation of the Coulomb potential is negligible for most cavity
string theory[1,2], loop gravity[3,4], and noncommutative materials[19].

geometry[5]. Such a violation of Lorentz invariance is de-

scribed in the general standard model extens®ME) de- \ihin the fermionic sector of the standard model extension

veloped t.)y C_olladay anq Kosteleckg]. Acco'rdmg oI, cavity experiments. A modified kinetic energy term enter-
Lorentz-violating terms might enter the equations of motion,

. ' . - ing the nonrelativistic Schabnger Hamiltonian of the free
of bosons and fermions. At first sight, the quantum gravity lect 24 oF! 1(2m) leads t h fth
induced corrections and effects are of the ordeEoE g electron 0 jkPjPi)/(2m) leads to a change of the ge-

~10% where E is the energy scale of the experiment ometry of crystals, and thus a change v of the resonance

(which in ordinary optical experiments is of the order 1)ev frequency of a cavity made from this crystal. Hepgis the
andE o~ Epiancis of the order of the Planck energy. There- 3-momentummthe electron mass, artf,= — cj,— Coodjk @
fore these effects seem to be far from being observable ifimensionless &3 matrix given by a tensoc,, of the
laboratory experiments. However, as it occurs, e.g., in sceSME. Thus, the total shift of the resonance frequedey
narios leading to a modification of the Newton potential at= 6,_ Vst SemVres, Where dgyv denotes the shift due to
small distances, some mechanism may apply which effectorentz violation in the electromagnetic sector. Sirdze v
tively leads to much larger effects in the laboratory. It is thusdepends on the cavity material, it can be distinguished from
interesting to find experimental configurations in the laboradlorentz violation in electrodynamics by comparing cavities
tory that can place strong upper limits on as many of thesenade from different materials. Experiments using suitable
terms as possible. configurations of cavities can place separate upper limits on
Experiments on Lorentz symmetry that study light propa-the components of,,, and kg). ,,. Using data available
gation have a long and fascinating history, starting from therom past experiments, we deduce approximate bounds on
original interferometer experiments of Michelsdf] in Pots-  some combinations of componentsy, at the 10 ¥ level.
dam and Michelson and Morlej8] in Cleveland. Modern From future cavity experiments, Earth and space-based, that
versions of these experimeri&-15| replace the interferom- are projected as tests of Lorentz violation in electrodynamics
eter by a measurement of the resonance frequency [20-23, bounds at a level down to 1&° can be expected.
=md/(2L) of an electromagnetitFabry—Peot) cavity, that In Sec. Il we present the nonrelativistic Hamiltonian of
is given by the velocity of light along the cavity axis, the the free electron within the SME. Since violations of Lorentz
cavity lengthL, and a constant mode number. Lorentz  invariance are certainly small, it is sufficient to work to first
violation causing a shift of or L connected to a rotation or order in the Lorentz-violating modifications throughout. The
crystal adjusts its geometry such as to minimize the total
energy( sh)+ U s, Where(sh) is the expectation value of
*Electronic address: holger.mueller@physik.hu-berlin.de the Lorentz-violating part of the Hamiltonian akld,,sis the

In this work, we treat the effect of Lorentz violation
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elastic energy associated with distortion of the crystal. It is Lorentz violation for the photons is encoded in the tensors
calculated in Sec. lll. The resulting geometry change is cal{kag)“ and Kg) ... The four degrees of freedom con-
culated in Sec. IV. A fairly detailed model for the crystal tained in kag)* are constrained strongly in measurements of
allows us to obtain specific results for practical materials,cosmological birefringendel 7,18 and are neglected in what
including quartz and sapphire. In Sec. V, we discuss experifollows. 10 of the 19 degrees of freedom ®gj,, ,, are
mental configurations and obtain bounds on Lorentz violaconstrained by astrophysical observati¢hg,18|, the other
tion in the electrons’ equation of motion from present experi-nine can be measured in cavity experimdrt3,15—-18.

ments. In Appendix A, we discuss the hypothetical case of a
cavity made from a spin-polarized solid, which allows to
place experimental limits on an additional, spin dependent
term from the SME, at least in principle. In Appendix B, we 1. Free electron

summarize some conventions made in elasticity theory that

are needed for our calculations, and in Appendix C, we give The nonrelativistic Scfidinger Hamiltoniarh=h+ sh of

in detail the Fourier components of the signal for Lorentza single free electron within the SME derived from this La-

B. Modified nonrelativistic Hamiltonian

violation in laboratory experiments on Earth. grangian (using Foldy—Wouthuysen method&4]) is the
sum of the usual free-particle Hamiltoni&nand a Lorentz-
Il. STANDARD MODEL EXTENSION violating term[23,24
A. Model
The SME starts from a Lagrangian formulation of the sh= mA’+mB’oJ+C pJ+D]kpjo +Ej PiPx
standard model, adding all possible observer Lorentz scalars m
that can be formed from the known particles and Lorentz PPk
tensors. Taken from the full SME that contains all known +Fj’k,’Ta' 3

particles, the Lagrangian involving the Dirac field$ of the
electron and/® of the proton and the electromagnetic field
F#” can be written agin this section, we use units with  with the components of the 3-momentymand of the Pauli
=c=1; the greek indices take the values 0,1,28P3] matriceso’. The italic indices take the values 1,2,8Me
: 1 i 1 denote both 3-vectors such as and reciprocal 3-vectors
— _eren v, e_ —eMe et _ PTPRY, P —PMP,P such a9, by subscrip). A Hamiltonian of this form has also
£ 2$ LB 21# M™y+ 2(// 5% 2¢ M™y been dejrived in Refl25]. The constant ternmA’ has no
1 1 physical consequences and is included for completeness. The
+h.e— ZFPF = = (Kg) o uF N FA term proportional taC; can be eliminated by choosing coor-
4 dinates such that the systems center of mass is af2Bkt
1 The dimensionless coefficieds, B/ ,C; ,Djy ,Ej,, andFy,
+ E(kAF)KeKMVA"F“V, (1) can be expressed in terms of the quantities entering the La-
grangian[23,24:

where h.c. denotes the Hermitian conjugate of the previous
terms, andA* is the vector potential. The symbd¥? and 1

MeP are given by A= 8~ Coo~ €, (4)
L=y, +tC,y*+d,, vy +e,+if ,ys+ 30, ,,0™,
M=m-+a,y*+b,ysy"+iH 0", ) Bf:_%+djo—%81k|9klo+ %Sjlekla ®
where the superscriptsandp are to be added to the symbols
s ncsdin Lorentz wieiaion for fhe fermion: amdmp €=~ o+ (¢ o)+, ®

are the electron and the proton mags, ys, ando*” are the

conventional Dirac matrices, amd” is the covariant deriva-

tive. In this work, we deal mostly with electrons and add a . b 1

superscript to denote parameters for particles other than the ik~ E5ik_(dki+d0051'k)_sklm(igmli“LngO‘SJ')
electron, e.g.¢c,, is a parameter for the electron aoﬁl,, the

corresponding parameter for the proton. The tensors entering _ i H )
M have the dimension mass, the others are dimensionless. m SikiTlio

H,, is antisymmetricg, ,, is antisymmetric in its first two
indices.c,, andd,, are traceless. Gauge invariance and
renormalizability excludee,,f,, andg,,,, so these are " e _lc S5 ®
either zero or suppressed relative to the otti2g. ik Jk g 00Tk
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b, 1 tron is given by the coefficierk,, . As usual, the covariant
E*‘djo+ 5 £jmnImno derivative is given byD ,¢*P=(3,+iq®PA,) P, where
q®P is the particle’s electric charge. If one identifigg,

1
Fj’klz[(dofl'djo)_z

1 1/b =cfw, this Lagrangian leads to the modified Hamiltonian
+ ﬁsjmnHmn) S+ 2 ﬁ"' 5 &imndmno Sj Eqg. (3) if only the c,,, are nonzero.
For simplicity, consider the special case of only one non-
— €jim(Imok T Imio) - (9 zero componenky,=k?—1, wherek deviates slightly from

unity. The Lagrangian takes the forrh8]
2. Interaction terms

In addition to sh, the Hamiltonian arising from the La- é_ et ey (12_ e2_ 2 s\t e
grangian Eq.(1) also involves modified interaction terms L£7=(D,5) D%+ (K= 1)[Do¢" = me(6°) ¢
proportional to combinations of,, b,, c,,, d,,, e,, +(D,¢P)'D# P — (mP)2(4P)T 9P
f., 9w, @andH . For the nonrelativistic electrons in sol- e L N
ids, however, these are suppressed by a factor givea,by — iFMF = 2 (Ke) i PO FEY 1D
the fine-structure constant, relative to the modifications of
the free-particle Hamiltoninian, EB) [23]. This is basically ) ) .. ] _
because the typical energy scale for such electrons is tHgy coordinate transformatiorts—tk, x—x, the field redefi-

Rydberg energyna?/2. We can therefore neglect the modi- nition Ag—Ag, Aj—Aik, and rescaling the electric charge
fied interaction terms. g—a/k, one obtains the Lagrangian

C. Coordinate and field redefinitions E¢:(DM¢E)TDV¢9_ m2(¢e)‘r¢e+ (Dﬂd)p)TDqu)p
Some of the parameters contained in either the photon, B ,
electron, or proton sectors of the Lagrangian Bg.can be +(k2=1)|DogP|*— (mP)%(4P) TP — 3 F# Fuv
absorbed into the other sectors by coordinate and field redefi- 1—Kk2
nitions without loss of generality. Thus, not all of the coeffi- - %(kF)KMwF"}‘FWJr
cients in the Lagrangian have separate physical meanings.
Loosely speaking, in experiments where one compares the

sectors against each other only differential effects are MealhereB is the magnetic field. Thus, the Lorentz violation in

ingful. . . . the electron sector has been moved to the proton and photon
For example, in a hypothetical world containing only pho- sectors.[If (Kg).,.,=0, the parameter &/can be inter-

tons and electrons, the nine componentsk@) £, ,, NOLCON- Kretad a5 a modified velocity of light8].] However, it is in
strained by astrophysical experiments could be absorbed InG’eneral not possible to eliminate Lorentz violation in more
the nine symmetric componentsdf, [6,17,18,26. By defi- {41 one sector at the same time.

nition, either the photon or the electron sector could be taken Cavity experiments compare the velocity of a light wave
as conventional with all the Lorentz violation in the other g 5 length defined by a crystal. In the light of 1), the
sector. For example, for tests of Lorentz violation for the| grentz violation for the electron acts via the terrk? (
photon[13,15-18, one implicitly assumes a conventional —1)|Dy¢%2. With a time-independent Coulomb potential

electron sector. _ , Ao, =const, this contributes a term
The presence of protongand neutrons in the solid

changes this picture. We can still assume that one of the
sectors is conventional, but then in general the other sectors —2im(k*~1)[ ¢ o+ qR(Ag) ¢ ] (13
are Lorentz violating. Choosing a conventional proton sector
allows us to disregard the proton terms. It also fixes the .
definition of coordinates and fields so that the components db the equation of motion fob®=e™'™*0¢® in the nonrela-
c,, cannot be absorbed intkg) ,, ., in general, i.e., they tivistic limit (obtained, in the usual way, by the Euler—
acquire separate physical meanings. Lagrange equations and setting to zero terms of dlgl?

To illustrate this, it suffices to consider an extension of theandm®). 9t denotes the real part. The second term modifies
toy version of the SME introduced in RéfL8]. Its Lagrang- the coupling of the electron to the Coulomb potential, caus-
ian describes electrons and protons as scalar figfdand ing a geometry change of the crystal. Thus, a combination of

B?, (12)

¢P, neglecting spin effects, k?—1 and the modified velocity of light given PKE) in v IS
s ot e 2 et e measured in the experiment.
LP=(7n,,+K,,)(D,¢°)'D,¢p*—m(¢°) "¢ In the alternative description by E¢L2), the same Lor-

(D DA — (MDY P P entz violation acts via a term analogous to E@) in the
(D7) ¢'—(MA)*(¢5) ¢ equation for the proton, i.e., a rescaled coupling of the proton
—LFVE = LK) o FFAY, (10  tothe electric ;‘ield, and a modified velocity of light given by
(Kg) ox v @andk=—1. Physically, both pictures are equivalent.

It has a conventional proton sector and nonconventional Here, we considered only a single parameter analogous to
electron and photon sectors. Lorentz violation for the elecey, that causes a scaling of the solid that is rotation-
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invariant. Thus, it cannot be measured in usual cavity experiseveral parameter combinations are expected %g and
ments, that search for a modulation of the effect connected t6’Rp clocks. However, these tests allow no limits on the
a rotation of the cavity in space. However, the tensgys  components oF}, .

emerging from our special case via the three Lorentz boosts

cap—i._e., at least thrge out of nine .degre'es of frgedom con- Il INELUENCE OF &h ON SOLIDS

tained in the symmetric part @f,, . Itis not impossible that,

by coordinate and field redefinitions, some of the other pa- To first order in the changes, the influence of Lorentz
rameters can be absorbed into quantities that have no mewiolation in the electron’s equation of motion on the proper-
surable effect. However, as we have shown, at least 12 out d¢ies of a crystal is induced by the expectation values of the
18 parameters from the photon and electron segtstrict-  Lorentz-violating contribution to the Hamiltonian, that is cal-
ing the electron sector to those parameters that are not conulated in this section. In Sec. Il Awe present our ansatz for
strained by cosmological experimentsould be separately the electron wave function; the expectation vafuth) is
measurable, that can, e.g., be chosen as thygeand nine  then calculated in Sec. Ill B. _

(Ke) ionpuw - We denote by X,);, (p.)i, and (,)' the spatial,

In what follows, we adopt a conventional proton sector,3-momentum, and Pauli matrices for th¢h particle. The
with all the Lorentz violation in the electron and photon nonrelativistic single-particle Hamiltonian for theth par-
sectors. One coulq possibly extract the measurable quantitig|e is denotech,= h,+ sh,. The Hamiltonian of the solid
from c,,, and consider only those in what follows; however,
thereby one would single out a preferred frame in which the R 1 -
measurable quantities are defined, and lose the covariance hai= > [Ra+ shy]+ > > [Raptohapl (15
under observer Lorentz transformations which otherwise 2 arb

holds in the SME. Therefore, we choose not to do so and ~ .
; is the sum oth,+ sh, over all particles, plus the sum of the
treat all elements of ,, as independent.

interaction termsﬁab over all pairs, and ovebh, ,,, a pos-
sible Lorentz-violating correction to iThe factor; corrects
for the double counting of pains.The Lorentz violating
It is convenient to express limits on the coefficients withinterms are contained igh, and éh,,. To first order in the
a sun-centered celestial equatorial reference frame as definedanges, the resulting modifications of the properties of the
in Ref. [23]. The components of quantities given in that solid are the sum of the modifications arising form the indi-
frame are denoted by capital indices. Limits for many par-vidual terms.
ticles, including muons, protons, and neutrons, have been The interactions in a solid are electromagnetic. The geom-
studied, see Ref$22,23,27, and references therein. For the etry change of crystals as a consequence of the modification
electron, the limits given below have been found. Howeverto the interaction term from the photonic sector of the SME
to our knowledge there are no experimental IimitsEcjpand [17,18 has been treated for ionic crystals[ib9]. We will
on many components (ﬁj/kl for the electron. not consider this term further here. In this work, we deal with
From clock comparison experimerfta3], a limit on B,  the modifications due to the Lorentz violation in the elec-

=10 2* (mBj) is denotedb; in Ref.[23]) is obtained. Fur- trons’ equation of motion2., 3N, .
thermore, for the linear combinations

D. Previous experimental limits on electron parameters

A. Wave function ansatz for the solid

dy=m(doy+dyo) — 3(Mdyo+ 383 Hkr). According to the Bloch theoreifRef.[34], pp. 133-141,
the single-electron wave functiotr, for the ath electron
aD,JZmSJKL(gKOL+ 10kLo) — by, (14 (a=1,...N) of a solid can be written as the product of a

plane wave exffi/%)q.x,} (Whereq, is the quasimomentum
d,/m=10"'° and gp;/m=10"'° These are order-of- of theath electron and a functioru(r) with the period of

magnitude limits, since some assumptions are needed to eye lattice.ug (F) depends Ofﬁa, and thus on the electron
tract them from the measuremenzs]. numbera Toamake a Fourier expansion o (F) we note
An experiment using spin polarized solids yieldgg}| ' P 6.1,

=(2.7+1.6)x 10 25 [28,29; in a similar experimen{30], that, if k;; is the 3><’3: matrix containing the primitive recip-
((B)?+(B})?)¥2<6.0x 10 26 and |B,|<1.4x10 2 have  rocal lattice vectors;, any reciprocal lattice vector can be
been found. expressed as a linear combinatiork;; with some coeffi-

Hydrogen spectroscopy could prospectively limit linearcientsn; e Z (Ref.[34], pp. 86—87. Therefore,
combinations oB},B}P,d;q,d5, ,H,k, andH¥, (where the

superscriptgp denotes parameters for the protdo about :i T. . R ik ()
10 %7 GeV [31]. Comparing the frequencies of hydrogen Va \/vex 7 da%a % (Cr)a €xp=in kij(Xa)i},
masers[32], find |B;PmP+Bim|<2x10 2 GeV (m and (16)

mP are the electron and proton mass, respectjvely _ o _
The potential for further tests of Lorentz invariance in WhereV is the volume of thémacroscopiksolid considered.

space is discussed in RdB3]; for the electron, limits on The (c;;), are the Fourier coefficients u(;a(F); they depend
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only on njkj;—(qgy);, i.e., they can be expressed as .
Cok,—(ap- The n summation is carried out ovéf®. The é ((Pa)j(2))=0 (22)
(Cn)a SatiSfy and

2 [(eaal*=1 (17 S ((Pa)i(Pa)(00))=0. (23

because of normalizatiof{y)a|(#)a) = 1. If we assume that  Ajthough situations could be imagined which violate the last
the crystal has inversion symmetry, the origin of the coordi+wo relations in spite o8 =0, this can be considered highly

nate system may be chosen such tifRef. [34], p. 137 unrealistic. Therefore, the expectation values of the terms
N proportional toC;, Dy, andFJ-’kI from the Hamiltonian, Eq.
(c-n)a=(C7)a- (18) (3), vanish. Disregarding the constant term proportionad,to
The star denotes complex conjugation. 1 N
The normalized antisymmetrid-electron stateF’™ (N is _ T _ _
the total number of electrongan be constructed from the ((ah) mE”azl {(Pa)i(Pa);)-
N>XN matrix

Pi(X) o (Xy) 2. Calculation of 6h
: : We now calculate the matrix elemefito,);(p,);) for the

()= R R (19 first electron. Since it turns out to be independent from the

InXa) e n(Xn) electrons numbefa consequence of the antisymmetry of the
N-electron statel'N), the sum of the matrix elements for all

as the Slater determinaf@5] ¥N=(1/\/N)det(y) (det de- electrons can then be obtained by multiplyit@:);(p1);)

notes the determinant of a square matrix with the total number of electrord. We have

242

A(X1)i(X1);

B. Calculation of matrix elements
PNd3x, - - d3xy.

<(p1)i(p1)j>:qu’N*

1. Specifications

(24)
For a bound system in its rest frame, the expectation value
of the particle momenta vanishes The integrations are carried out over the volumef the
solid. ¥N and¥N* are given by Slater determinants. Evalu-
2 ((pa)i)=0. (20) ation of the matrix element starts by an expansion of these
a determinants with respect to the first column,

We also assume no spin polarization, i.e., the sum of the spin N
expectation values de( lﬂ) — E (_ 1).’:1 dE( | 1¢* a), (25)

| 1 | a=1

s=5 2 ((0a)) (21)
a

where (,y*?) denotes the N—1)X(N—1) minor matrix
vanishes. The case of spin polarization will be considered ibtained from theNXN matrix () by deleting the first
Appendix A. Furthermore, we assume a vanishing sum of theolumn and theth row. The derivatives can then be carried
helicities of the electrons, out

. N
((pDi(p)j)= NI abE:l(—l)a+bZ (Cr) & ()l (Ap)i(Ap); + 72k Nk — ki (dp) — K (ap)i]

1
xvaexp{i(xl)|

1 _ _
(m—nk;; + g[(%)ﬁ(%)ﬂ ]d3X1fvde(|1¢*a)de(|1</fb)d3xz o dPxy. (26)

Note that only the first integral in E§26) containsx,. Using  the d*x; integration in Eq(26) can be expressed as
the abbreviation

! f i dx=| L T 28
KI:(mi_ni)kli+ﬁ[(Qb)l_(Qa)l]: (27) VEXp['(Xl)lKl} X1= 0 (x#0). (28)
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Since the quasimomentayf); are within the first Bril-
|<(#/2)|njk);| for any
n;e{Z\0}. Thus, k;=0 only if nj=m; and @p);=(qa) -
We may assume that this holds only o+ b. That allows to
carry out them and theb summations. We now use

> l(ch)al?ni=0, (29)

which follows from Eq.(18) and eliminates the terms linear

in n from the first line of Eq.(26) [36]. We define
(§a)|k’=2_ |(ca)al®ning (30)
n

and

1
aig;=y ; (02)i(da); » (31)

the average of the quasimomentum prodga; over all
electrons. We also define the average

— 1
fu =N ; (fa)ij .

Together with Eq(17), this yields

(32

<(p1) 1) > N! [q|q1+ﬁ glkkllkjk]

><fo|3x2.--d3
\%

= [0 + 2k ki IO N WL,

X det | 1y ) deq| 1 ¢P)

(33

PHYSICAL REVIEW D 68, 116006 (2003

obtained by substituting E¢30) into Eq. (32). A detailed
evaluation of¢), would start from material specific Fourier
coefficientsc;; obtained experimentally or theoreticallgee,

e.g, Ref[37]). Since detailed wave-function calculations for
realistic materials are notoriously difficult and would have to
be performed for each individual material, it is interesting to
use a relatively simple model for the Fourier coefficients.
Such a model might already be quite accurate, since only the
average of the absolute squaog|? is required, rather than
the detailed €;), for the individual electrons. Apossibly

complicatedl dependency of thec(), on n can be hoped to
smooth out in the averaging. The model must, however, be in
accordance with the requirement that the wave function has
the rotational symmetry of the lattice, i.e;;=c; if f) is any
operator of the rotation group of the crysi®ef. [37], p.
469). o

For such a simple model, we assume flagt=|c 5, i.e.,
the average of the absolute squares of the average of the
Fourier coefficients depends only ¢m/. It follows that

EZ Ymatdik (36)
with some material dependent constant,;. For determin-
iNg ymat» We note that the average kinetic energy of an elec-
tron (T)=(1/2m){p;p;) §; . From Eqs.(34), (35, and(36),

2

h
(M= Ymaty 4 oKilKjk Gij - (37)

If we neglect for the moment the energy of the chemical
bonding, this should correspond to the average of the kinetic
energies of the atoms’ valence electrons, which can be esti-
mated using the Bohr model. The kinetic energy of an elec-
tron in the Bohr modeT gy, = ErZ/n?. Here,Ex=13.6 eV

is the Rydberg energy, the charge number of the atom core,

To prove that{ ¥N " WwN"1)=1 we expand the remaining
determinants of|g#*?) in terms of the column which is now
the first one. Thed®x, integration can then be carried out.
The procedure is repeated, until tti&x integration is done.
Each step reduces the dimension of the Slater determinant by
one and produces a factor equal to the number of electrons
still involved. Taking all these factors together cancels the
normalization factor 1l —1)!. Thus, we obtain the desired
result

andn the principal quantum number. Thus, the kinetic energy
from the Bohr model, averaged over the electrons within the
atoms of the molecule,

RZk

e m
TBohr 2

(38

whereN, ., gives the number of valence electrons per mol-
ecule. The indek enumerates the atoms of the molecule and
vy,Nk, andZ, are the valence, principal quantum number,
and charge number, respectively, of the atknmNote that
k=Uk, Since in an atom withv valence electrons, the

charge number of the atom cores and the inner shell electrons
is Z=v. For example, in quartz, SiQthere is one Si atom
with v=4, n=3 and two O atoms withv=2 andn=2.
Thus, for example,

The properties of the wave function enter the momentum
expectation value v@k andq;q;.

&k is an ensemble average over all electrons,

b=

((PLi(P1);) =00 + 7 2& ki K - (34)

Since the right-hand side of this result contains no referencg
to the electron’s number, it holds for al=1, ... N elec-
trons.

3. Estimating &,

(39

r[ 4% 22\ 17
(TBohr)quartz:? 1? + 2? = 3_6ER
Comparing this to Eq(37), we obtain the material specific
valuesyng given in Table .

1 _
NEa |(Ca)al®ning :32 lcal®ning,  (35)
n
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TABLE I. Elements of the sensitivity matrix for fused and/or N
cubic materials. fq denotes fused quartz, fs fused sapphire, C de- (oh)=—Ejj(qiq;+ ymaﬁ25|kk”kjk). (40)
notes diamond. Materials for which three element$3aire given m

are isotropic; the coefficients should be inserted into (Z§). The . > . . . .
other materials are trigonal; the coefficients for these are to be in- 1he quasimomentd,| are restricted to the first Brillouin

serted into Eq(82). zone,|§|<(ﬁ/2)|l2j|. Most electrons, however, will have a
quasimomentum lower than this maximum value, so that the
Mat.  ¥ma Bu  Biz  Bizs B Ba Bss Ba Ba averageyq; is a relatively small contribution tosh). If we
neglect it, we obtain the final result

fq 0.38 0.77 —0.09 0.57

fs 0.29 0.06 —0.01 0.05 52

Si 0.50 2.51 -0.70 2.05 <5h> =N 7matE El,j 5Ikki| k]k . (41)
C 1.16 5.77 —0.59 5.35

oikki Kji is symmetric in the indicesandj. This result will
Al;0; 0.29 0.14 —0.01 —0.00 0.02 —0.02 0.01 0.01 0.04 pe uysed in the next section to compute the geometry change
Si0, 0.38 141 -0.07 —0.06 0.35—-0.14 0.44 0.25 0.41 of the crystal caused by Lorentz violation in the electrons’
equation of motion.

The model can be refined by taking into account the en-
ergy of the chemical bonding, which leads to an increase of
the actual kinetic energy of the electrons. The so-called en- The direct lattice vector$, contained in the matrix;,

thalpy of formationA(H® gives the enthalpy for the forma- getermine the structure of the lattice without Lorentz viola-

tion of the crys_t_al from the elements in their usual state aEion. Lorentz violation will cause a chande, of the crystal
standard conditiongroom temperature and pressyre.g., geometry, i.e., the lattice vectors are now given ly

solid or diatomic (@, for examplg. The Bohr model, how- ~ ) o~ e
ever, predicts the energy of the unbound atoms. That meang, |ia- T0 calculate it, we adjus, such as to minimize the
the changel — Tagy, between the sum of the kinetic energy tOt@l energy of the lattice

of the valence electrons of the free atoms,, and the sum
of their kinetic energy in the moleculeis the difference of
A¢H? and the applicable enthalpies of sublimatitg,,H°
or dissociation 4 H® of the elements. For sapphire, 8,

IV. CHANGE OF CRYSTAL GEOMETRY

U:UO(Iia+Tia)+<5h(|ia+Tia)>- (42)

The first term is the conventional total energy of the lattice
without Lorentz violation. It can be expressed as

for example,
AHO(ALO,) = 16.8 eV, Uo(lia*+Tia) =Ug(lia) + Ueias(Tia) +Uc, (43
0 whereU. is a constant antll ., iS the elastic energy con-
~AsupH(2Al)=—2X3.0 eV, nected to a distortion of the lattice. Tf,=0, the elastic
energyU..s= 0. The total energy is thus given b
_AdissHO(30): —3X25 eV, QYUY elast™ ay g y
U=Up(lia) + Ueias(Tia) +(SN(lia+Tia)).  (44)
T—Tgon=3.3 €V, The correctionl , is found by setting to zero the derivative
or about 5% ofTg,n,=68 eV. This would lead to a 5% in- U Ugas HN(lig+T10))
crease of the factoy,,,.. This indicates that the energy of the —=—+ = =0. (45
chemical bonding is, for our purposes, negligible. ljp Al lip

The ultimate refinement of the model would be the inser- o ~ .
tion of material specific Fourier coefficients into Eq.(35). 10 explicitly calculatel j,, we have to express the contribu-
The precision of the model would then approach the limita-tions toU in terms ofl;,. We will do so for(sh) in Sec.
tions of the Bloch ansatz for the wave function itself, whichIV A and in Sec. IV B forUg,g In Sec. IV C, the total
is based on a mean field model for the electron—electroenergy per unit cell thus obtained is minimized and the ge-
interactions. Such a detailed model is, however, beyond themetry change as expressed by a strain teegois calcu-
scope of the present work. lated.

4. Result A. Dependence ofsh onT;,

The expectation value of the Lorentz-violating correction 14 change of the Hamiltonian’s expectation vajda)
to the single particle Hamiltonial,6h, can be obtained g4 (41) depends on the geometry via the reciprocal lattice

from Eq. (34) by multiplying with the number of electrons. vectorsk;; , for which we have the relatiofRef. [34], p. 87),
Inserting &, as obtained in the preceding section into Eq.

(34), we obtain lijKik=27 6, (46)
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and thereforel;jk,j=275;,. If we substitutel;;+1;; and  With some coefficientsy, e N. Multiplying this equation by

K+ Kiy, with T <1;; andk;, <Ky, we obtain kpe and using Eq(46), we obtain
- T 1
(lij + 1) (Ki + ki) = 27 0y (47) 7c=5 Koo - (56)
or

If 1,, is shifted tol,,+1p,, the lattice point originally ak,,

ik DK+ Tk Tigkie= 278 (48 Wil be shifted tox,+ Uy, where

The first term on the left-hand sidéhs) cancels with the

! . _ 1 _
right-hand sidgrhs) due to Eq.(46); we neglect the second Ur= 2T ei= — KX T 5
order term on the Ihs, and obtain b~ Malba™ 5 Fdatd ba ®7)
Iij~kik+Tijkik:O- (49  Therefore, we have
Multiplying with k,; and using Eq(46) again, %_ ik i 59
AX¢ T g ca da
Knk=— anﬂ ij Kik - (50) o
We can now substitutd<i,-+12ij into Eq. (41) to obtain 1 _ _
5h(Tab), edc:E(kdal catKeal da)- (59)
~ h? 1 . . : :
Sh(T,p) = N)’matm Sl ki — Ekial baKpl Th|~s can now be used to express the elastic energy in terms
of | .p,
x| k 1ka)E’ (51) 1 1 1
k™ 5~ Kjal baKok | Ejj ~ ~ ~ ~
2m ! Uetasi=5 Nijki 7 (Kial ja T Kjal ia) 7— (KipT ko + Kol 1n) V.-

= CONSt™ Ymary E (Kial bakokKik
Some manipulation of indices uSINGapcq= Nbacd= Acdab
+kjaTbakbkkik)- (52) leads to the more simple form

The const Nyma(hzlm)Ei’j oikilkjx does not depend on

V ~ ~
Tap. Aterm of orderEf;(T,,)? has been neglected. Ue'aS‘:ﬁ)\”k' ial jakin!co- (62)

B. Elastic energy C. Minimizing the total energy per unit cell

The elastic energy is given 488] Summing up the contributions, we find for the energy

Uelas™= 2 Nijia €€V, (53  change per unit cellleaving out the constant terins
where\;;, is the elastic modulud/ the volume considered, 1 ~ =
and kI U=|detlij)| = Nijukial jakin b
8
1/du; du, N# 2 - -
_ ! J 4 ’
&i=5 ax; + ax; (54) ~ Ymaty - Eij(Kial baokKjx + Kjal bakoikix), (62)

is the strain tensor, whetg is the displacement of a volume |\ harey/ = |det(;)|, the volume of a unit cell, anti=N,,,

element at some locatior;. Fori=j, uj; represents the o nymper of valence electrons per unit cell have been in-
relative change of length in the_ direction, and foi #J, It serted(not to be confused Wit » the corresponding num-
represents the change of the right angle between lines origher per molecule The inner-sheil electrons are assumed not

nally pointing in thex; andx; direction. to influence the crystal geometry. A minimum is found, when
To express the elastic energy in termd gf we note that

the locationx, of a point of the direct lattice can be ex- U
pressed as a linear combination of the primitive lattice vec- —=0. (63
tors N mn
Xp= Nalpas (55  After some manipulation, the derivative can be expressed as
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Ng 7i2 In general, howevet3yj,# Bjpqc- It has, therefore, at most

du det(l;;
—= m 36 independent elements, the number of which is reduced for

NimkiKinKipl kb= Ymat

Al'mn 47 2am a symmetric crystal. For a compact presentation of the ma-
, terial specific results in the following sections, we will ar-
X Ejj (KinKmiKjic+ KjnKmikix) = 0. (64) range these into a6 matrix, that allows to express Eg.
We denoteE = %(Ei’j +Ej;) the symmetric part of the ten- (69) as a six-dimensional matrix equation
sor Ei’j . The last equation can be simplified a bit by multi- er=BrzEL. (74)
plying with I,

We therefore arrange the six independent elemenrggaind

- 4mh2Ne, / E/, ., as the vectors
N pmkKip kb= 'ymat—|de(|__)rr; EpjKmikjk=0. (69 (b
ij

er=(€yx 1€yy !ezzyeyzaezxyexy)v (75
For solving this forl, we need the inversg . (called the , S,
compliance tensorof \ 4,4, defined by Er=(Exx Eyy.Ez2.Eyz:Ezx.Exy) (76)
LabkNabed™ OkcOd - (66)  (the capital greek indices run from 1 . ,6), anddefine the

sensitivity matrix
Multiplying Eq. (65 with ugepmgives
Bllll ‘81122 ZS,1133 281123 281131 281112

. 4mNg, H% _,
Kopl gb= 'ymatmmlz(pj)#demd(mkkjk (67) Baa11 Bazoz Bazsz 282223 282231 282212

B3311 B3322 83333 283323 283331 283312

and a further mUltiplication b!/es ylelds B= 82311 82322 82333 282323 262331 232312
~ 272Ng Bsi11 Baizo Baisz 2Bsizz 2831z 2B3112
las= 7matm|de(| i)l Epiydemd ek (68) Bio11 Bi2os Bioas 2Bisoz 2Bi231 2Bi212

(77

The strain tensor can be calculated from this result using Eq.

(59 as The factors of 2 account for the double-counting of the non-
diagonal elements df(’pj) in the tensor equatio(69).

€dc™ Bdcij(,pj) (69)
ith 2. Sensitivity matrix for isotropic materials
wi
Let us first consider isotropic materials that have no pre-
~ 2N, 2 ferred crystal orientation, i.e., crystals of cubic structure and
Bycpi= '}’matmﬂdcmpkmkkjk- (700 noncrystalline (fused materials which consist of a large
ij

number of small crystals oriented statistically. Cubic materi-
This has been simplified by using EG46). Since for Eq.  ls have one single lattice constanthe matrix of the primi-

(69), this is multiplied with the symmetri€,;.,, only the tive direct lattice vectors is given Hy; =ad;; . According to
’ (Jp) 1 . . . . .
(B —L(B. +B that i tric iri and Eq. (46), the matrix of the reciprocal lattice vectors is given
part Bycp;= z (Bycpjt Bacjp) that is symmetric irj andp, by kij=(2m/a)&; . In the Appendix, it is described how to

N. 72 obtain the compliance constants,,.q from the elasticity
Bycjp= Ymatde'—u|(ﬂdcm;}<mkkjk+Mdcmjkmkkpk), constants that are tabulated for various materials in the lit-
m|de(l;;)] 71 erature, e.g., Ref39]. Inserting into Eqs(71) and(77), we

obtain the sensitivity matriys. It is of the structure

is used. The resulting strain tensor By By By O 0 0
€4c=BacpiEpj (72) Bi, By By, 0 0 0

. o Bi» B, B 0O 0 o

is given by the X3 Lorentz violation tensoE,; and a ten- g=| # " T . (79

sor Bycpj, Which gives the sensitivity of the material geom- 0 0 0 By O O

etry change to Lorentz violation in the electron sector of the 0 0 0 0 By O

SME. This is the desired result of this section. 0 0 0 0 0 Bu

1. General properties of the sensitivity tensfp,;

. For cubic crystals, the nonzero values
and conventions

The sensitivity tensor has the symmetries By,=¢£/(a%)Cyy,
Bycjp=Bedjp=Bacp; - (73) Bi,=¢&/(a%)Cyp,
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Byy=E&(2a°)Cyy, 1
Bee= 5511— Bia.
where
The matrix elements are explicitly

B 8772Ne'uﬁ2

&= YmatGeql, )] 79 By=2¢/(a%)Cyy,
and Crz are the elements of thex66 compliance matrix, B1,=2¢/(38%)Cyp,
Eqg. (B9). From symmetry arguments, this is also the struc- )
ture of the B matrix for noncrystalline materials without a Bis=§&/(c%)Cya,

preferred orientation. The elements of this matrix for some
cubic and/or fused materials are given in Table I. The values
for fused quartz and sapphire have been calculated from the
values of the crystalline material®o be calculated belopas
averages over crystal orientations.

B14=£[1/(3a%) +1/(2¢?)]Cyq,
B=2£&/(a%)Cys,
Baz=¢&l(c?)Cags,

3. Sensitivity matrix for trigonal crystals

. . By=£l(a%)Cyy,
Quartz and sapphire are of trigonal structure and are fre-

quently used in cavity experiments. Therefore, we also con- Bys= £[1/(6a@%) + 1/(4¢?)]Cyy.
sider the trigonal case here. The matrix of the primitive di-
rect lattice vectors can be chosen as Crz= are the elements of the compliance matrix given in Eq.
(B9). Numerical values of3rz for quartz and sapphire are
al2 a2z 0 given in Table I. The matri@3 is not symmetrical; the ele-
lij= \/§a/2 _ \/§a/2 0|, (80) menys qf the first column are generally_the highest _in th_is
matrix, i.e., the geometry change of trigonal materials is
0 0 c most sensitive to thexx element of the Lorentz violation

h d h latti Wi Ul h parameterf(’ij). This is because the direct lattice vector
wherea andc are the two lattice constants. We calculate t ecomponents in the direction are a factor\/§ smaller than

inversek;; ; the product they components. Hence, the wave function of the electrons
o/a2 0 0 oscillate faster in the direction, i.e., the(p,) momentum
component is larger. Since the influence of Lorentz violation
kikjc=4m2| 0 2(3a% 0 (81 s given by the(p;p;) matrix element, this means a higher
0 0 12 influence of thex component of the Lorentz violation coef-

ficientsE .
MSEj) -
turns out to be a diagonal matrix. Trigonal crystals have six High elastic constants decrease the valuesSafo that
independent compliance constants and two lattice constantgfystals of high stiffnesgsuch as sapphiyeshould show
which makes eight independent components for fhma-  lower values of3. However, in some caseparticularly dia-

trix. It has the structure mond, this is outweighed by small dimensions of the unit
cell (that imply high momentum expectation values due to
By, B, By By 0 0 short period of the electron wave functigrd a large num-

1 ber of electrons per unit cell.
3B, 5311 Biz =By O 0

V. EXPERIMENTS
1 . L
Byy =By Bz O 0 0 Here, we discuss the application of our results to extract
B= 3 limits on Lorentz violation in the electrons’ equation of mo-
N 1 tion from experiments.
By - §B41 0 By O 0
5 A. Lorentz-violation signal in cavity experiments
0 0 0 0 Bss 380 As discussed in the introduction, Lorentz violation may
affect the resonance frequency of a cavitthrough a varia-
0 0 0 0  Bss DBes tion of c andL,
(82
Sv oc oL 83
with o o Lo (83

Here, vq,co, and L, are quantities in absence of Lorentz

1
= + = . . . . .
Bss=Baat 3841, violation. For cavity experiments, we have to consider both
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Lorentz violation in electrodynamics as well as in the elec- Se_v
trons’ equation of motion. The influence of Lorentz violation
in electrodynamics leads to a frequency chafAggv that is
mainly caused by a variation of the velocity of lighiz,c

=BlagL. (86)

Vo 3EE

) o The indicesE denote components in the cavity frame of
[17,18, and a small mate_rlal—dependent_ C_ontrlbutlon due to Jeference. In accordance with Ref$7,18,23, we define the
length changee_L, that is usually negligiblgl9]. Lorentz o iq of the laboratory frame as the north—south axisythe
violation in the electrons’ equation of motion affects solely , i< o< the east—west axis. and thexis as pointing up-
L. This leads to a frequency change- », so that wards. The turntable rotated in thxg plane[9]. We define

_ the cavity framez axis parallel to thez axis, thex axis
Sv=Sgyv+ Se_v. 84 . : . ' i

VT OBMPT GeV &9 parallel to the cavity axis. A calculation of the hypothetical
signal starts from transforming,,, as given in the sun-

For example, if the cavity axis is parallel to thexis of the )
P y P centered standard frame into the laboratory frame, as de-

crystal, ) . X
4 scribed in Refs[17,18,23. A further rotation around the
Sev oL, laboratoryz axis gives the quantities,, in the cavity frame,
T =% (85  from which Ei’—j follows from Eq.(8). Due to the rotations,
0 20 the hypothetical signal becomes time dependent and is given
From Eq.(74), e3=By=EL . by (assuming that aT =0, the cavity axis coincides with

the X axis, and neglecting terms proportional to Earth’s or-

o _ _ bital velocity 8, ~ 10" %)
B. Limits from previous experiments

Cavity experiments have been performed repeatedly as ﬂ: ;
tests of Lorentz violation in electrodynami8—15]. It is y — C(2.00c08 20T +$(2,2,08iN 20+ 206) Te
interesting to estimate the level of the limits op, resulting
from these experiments. Since none of them were done with
a setup optimized for obtaining separate bonds on Lorent
violation in electrodynamics and in the electrons’ equation of ¢ which no experimental results are published in Fef.

motion (see beloy, we have to use an assumption that sim- . . -
plifies the analysis, so we can work with the published data G SIN€ component at vanishes. The coefficients are

only. To obtain a sharp upper limit, we have to compare two 1
experiments of high precision that used different cavity ma- C(2,0,0=— Z(Bfl‘}—Bflg)sinsz(cxva Cyy—2Cz7)
terials.

Mdller et al.[15] performed a Michelson—Morley experi-
ment using two sapphirés) cavities subject to the Earth’s
rotation. The cavity axes were parallel to the crystaéis.

+C(2,2,0c08 2w+ 2w,) Ty + A+ O(B2), (87

here A denotes Fourier components at other frequencies,

=—0.13cxx*+Cyy—2Cz2),

Since for such cavities, the elementsﬁﬁalglvmg the sen 5(2,2,0)=CO§7(B§?—BE)C(XY)
sitivity to Lorentz violation in the electronic sector are rela-

tively low, we neglect the effect on Lorentz violation in the

electrons’ equation of motion for this experiment, i.e., we =0.5&xy) ,

view the experiment as a pure test of Lorentz violation in
electrodynamics. Due to Earth’s rotation with the angular
frequencywq=2m/23 h 56 min and Earth’s orbit witl)
=2/l year, Lorentz violation in electrodynamics leads to a
time dependency of the frequency difference between the =0.29Cyy— Cxx)-
cavities that has Fourier components at six frequencies that
are linear combinations oé, and Q.. The experiment xg denotes the colatitude of Bouldary=50°. 519 and 514
gives individual bounds on the amplitudes of these Fourieare given in Table I. From the experiment, an amplitude at
components. At @, and 2, *+ ), the bounds are be- 2w, of ~2x10 2 is found, attributed to a slight tilt in the
low 4Xx 10 1°, horizontal alignment of the turntable. In principle, a hypo-
Brillet and Hall[9] used a single fused quartf) cavity  thetical Lorentz-violation signal ate, cannot be separated
(actually, “ultralow expansion” glass ceramics, ULBn a  in the analysis from a signal caused by such tilt. However, if
turntable rotating atw;. Frequency measurement was ac-we consider an exact cancellation between a strong Lorentz-
complished by comparison to a stationary Lhktandard. violation signal and a strong tilt signal improbable, we obtain
Since in a single-cavity setup, the same Lorentz violation ira rough order-of-magnitude bound fyx+cyy—2c;5| at a
electrodynamics leads to half the frequency variation comlevel of about 102 The measured upper limit on the am-
pared to a two-cavity setup, the experiment ofIMiuet al.  plitude of the component of the hypothetical signal aiv (
excludes signals from Lorentz violation in electrodynamics+ w,) (which can be distinguished from a tilt generated sig-
larger than 210~ 1° for this experiment. We may thus view nal in the Fourier analysiss 4x 1015 Adding in quadra-
this experiment as a measurement of ture the maximum possible contribution from Lorentz viola-

X
2 (Bfﬁ_ ng)(cvv_ Cxx)

1
C(2,2,0= Ecoé?
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tion in electrodynamics according to the result[@6], 2  might be used. Using, e.g., quartz, a comparison between a
x 10715 we obtain VS(2,2,0f+C(2,2,0f<4.5x10 >  cavity fabricated such that the cavity axis is parallel to the

This gives the limits crystalsc axis to one having its cavity axis perpendicular to
the ¢ axis would provide a relatively high sensitivity given
lcixy)|=8x 1071, by B{= andB= . Another possibility would be two orthogo-

nal cavities within a single block of crystalline material.

|Cxx—Cyy| =1.6x 10714 (88) Such an arrangement might be favorable for eliminating

parasitic effects, like thermal expansion and vibration. How-
Given the small magnitude d83=, these values would in- ever, in such an experiment the frequency chafiggv due
deed lead to negligible contributions to the experiment ofto Lorentz violation in electrodynamics would not drop out,
Muiller et al,, so our above assumptions seem reasonable. thus complicating the analysis. Another configuration would
be the comparison of a cavity against an atomic clock, such
as a cesium clock and/or a hydrogen maser. This scenario is
) _ . interesting, since it is projected for the OPTIS sate[l2&].

To obtain clean separate bounds on Lorentz violation inrpjs satellite is projected to carry three cavities orthogonal to
electrodynamics and the electrons’ equation of motion, withwach other, so it is probably possible to separate the electro-
out using the above assumptions, a dedicated experiment i§namic terms from the electronic ones in an analysis of the
desirable. One could, for example, compare the resonancgmplete data, that consists of all frequency differences be-
frequenciesr¢q and vs of a cavity made from fused quartz yyeen the three cavities and the atomic clsckSuch an
and one from crystalline sapphire, with the cavity axis par-gnalysis would also have to take into account a possible
allel to the crystalz axis, for example. This seems to be & | grentz-violating shift of the atomic clock frequencies,

rea!istic scenario, since such cavities have bgen used .if‘ &Which could give the experiment sensitivity to additional pa-
periments and proved to be of high stability ;gmeters.

[9-11,14,15,40,41 The signal for Lorentz violation would
be the frequency differences—v¢q. If a parallel arrange-
ment of cavities would be chosen, the influence of Lorentz

violation in electrodynamics could be eliminated, and a clean We have calculated the change of the geometry of crystals

C. Optimized setups

VI. SUMMARY AND OUTLOOK

bound on some components Bf, could be extracted, that is caused by Lorentz invariance violation in the fermi-
onic sector of the extended standard model. The length
Vg— V, , i ifi inati
s q:(B;iE_ B;_:)Eg_ (89) change is caused by a modified kinetic energy tei (

v + 2E{,) (1/2m) p;py that enters the kinetic energy term of the

_ Hamiltonian for the free eIectronEJ-’k= —cjk—%cooﬁjk,

Here,v=vs=, is the average frequency. An accuracy levelyherec,,, is a Lorentz tensor originating from the standard
of below one part in 18 in frequency comparisons of cavi- model extension. The calculation proceeds using a Bloch an-
ties made from quartt0] and sapphir¢15] has been dem-  satz for the wave function of the valence electrons with the
onstrated in the laboratory. Thus, placing bounds of a fewattice periodic function given by a Fourier series. The crys-
parts in 16° on the components df} that dominate the tal adjusts its geometry such as to minimize its total energy.
signal seems feasible. A contribution of the time-componentn that way, Lorentz violation in the electrons’ equation of
C(oy) to the signal arises if one takes into account the labomotion affects the length of an electromagnetic cavity that is
ratory velocity given by the velocityd,~10"* of Earth’s  made from the crystal, and thus the resonance frequency of a
orbit and 0< 3, <1.5x 10" ® due to Earths rotatiofdepend-  cavity made from the material. As a main result of this paper,
ing on the geographical latitupleThe Lorentz transforma- there is thus a method to measure the in cavity tests of
tions between the sun-centered inertial reference frame ancrentz violation.
the laboratory frame lead to additional Fourier components Comparing cavities made from different materials, it is
of the signal that are proportional Qg; and eitherB, or  possible to separate the effect connected,tofrom Lorentz
B - In a Fourier analysis of a sufficiently long time trace, theviolation in electrodynamics, that also affects the resonance
Fourier components can be resolved and individual limits orfrequency of cavities. Under some assumptions that help to
almost all components of,, (only co, does not lead to separate the electrodynamic and the electronic terms, already
time-dependent signals to first order ), or 8,) can be performed experiment®,14,15 imply constraints Ort(xv)
expected, at or below about a part in‘3for the dominating  andcyy— Cyy at the 10 level, and oncyx+ cyy—2¢,5 at
parameters and to about a part inifor the parameters that the 10 12 level. This is to our knowledge the only present
are suppressed by . Future space experiments, for which experimental constraint on the componentspf. We dis-
a resolution of the frequency measurement of up t0'8@&  cuss possible setups for experiments that can obtain separate
projected[21,20, might bound the dominating components bounds without using these assumptions, and obtain results
of Ej’k at the 108 level, and the suppressed components ofon more components af,,. Future experiments on Earth
c,, at the 1014 level. and in space promise increased sensitivity up to a part in

Instead of using different cavity materials, two cavities 108,
made from the same crystalline material, but having different In Appendix A, we briefly discuss the case of spin-
orientations of the cavities with respect to the crystal axegolarized matter. An additional contribution to the length
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change arises from a spin-dependent téljm(llm)pjpka' N 1 N

also originating from the standard model extension. This al- 2 ((pa)j(Pa)k(0)')y = 577' > ((Pa)j(Pa)K)- (A3)
lows to deduce limits off¥ ,, from experiments using a spin- a1 a=t

polarized cavity material, at least in principle. Therefore,

Our model of the solid state could be improved by using
material specific values for the Fourier coefficients of the N 1 1 N
single electron wave function. Since our model Fourier co- <5h)=mc2§Bj’ 7'+ a( Efi+ EFi'jkﬁk) > ((pa)i(Pa)))-
efficients already satisfy the symmetry requirements for a a=1
realistic wave function, this might result in relatively minor (A4)
corrections for the length change. A che@kaybe for a
simple materigl however, might be worthwhile. Most im- 2. Geometry change
portantly, however, a dedicated experiment will be per-

formed to obtain more complete and/or stronger limits on The termmc*NB 7//2 contained in the Hamiltonian is
S piete X gel - independent from the crystal geometry and does, therefore,
Lorentz violation in the electrons’ equation of motion. Cavi-

ties made from crystalline sapphire and fused quartz arnOt lead to a geometry change. The second term that is pro-
ready to be implemented. Bortlonal to the average dfp;p;) over all electrons, how-

ever, leads to a geometry change, that can be calculated in
analogy to the discussion in the main parts of this paper. We
ACKNOWLEDGMENTS can overtake the result, E¢59), for the geometry change if
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comments. It is a pleasure to acknowledge the cooperation The sensitivity of the cavity geometry By, is thus given
with Stephan Schiller and to thankrden Mlynek for his by Brz as well as7®. The magnitude of the latter can be

valuable support. estimated as the ratio of the number of spin-polarized elec-
tronsng , to the total number of electrons, , per unit cell,
APPENDIX A: SPIN-POLARIZED MATERIALS | 71=ng,u/Ney- In & saturated ferromagnetic material, e.g.,

iron at a magnetic field of 1.7 Tg ,~2.2 [42] spins are
For a spin-polarized material, an additional contributionpolarized per unit cell, s¢y| is of order unity.(Note that
to the geometry change arises from a spin-dependent term gf  can be as high as 10 for Dysprosium. Therefore, the
the nonrelativistic single-electron Hamiltonian of the SME, sensitivity of the cavity lengtitand thus, its resonance fre-
Eq. (3), that is given byF/,, . That means, from experiments quency to F/y, is comparable to the sensitivity &, .
using cavities made from spin-polarized materials, a limit on
Fjw can, at least in principle, be deduced. This is interesting,
since many degrees of freedom Bfy, are not yet fixed L ) . L
experimentally. In this appendix, we estimate the effect and ! the cavity is made from a spin-polarized solid, i.e., a
the level of sensitivity that can be expected for such an exi"gnetized feromagnetic material, the cavity length would
periment. depend orEj; +Fjj, #*/2. That means, from a measurement
of the resonance frequency of such a cavity, a Iimithm
could be derived, provided that separate limits Efp are
) ) ) known from previous experiments using one of the methods
If the average of the spin expectation values is nonzerogiscyssed above. However, note that the systematics of such
the spin-dependent terms contribute to the Lorentz-violating, experiment are largely unknown. The selection of materi-
correction to the Hamiltonian. We still assume a vanishingys suitable for building stable cavities is a highly nontrivial

3. Possible experiments

1. Hamiltonian

average helicity, E(22), for all electrons. Thus, discussion of the experimental systematics, some of which
N 1 N are far from obvious. Because of the manifold effects con-

shy=mcB’ N+ —E! A ‘ nected to magnetizatiofe.g., magnetostriction an experi-
(o) ’;1 (et 4 ”321 {(Pa)i(Pa)y) ment using a magnetized cavity could suffer from various

N systematic effects, so our discussion is a bit speculative. A

theoretical complication is that practical ferromagnetic mate-
—F’ . I
T FJk'aZ’l {(Pa)j(Pa)(0a)"). AL Jials are usually alloy$such as AINiCo, whereas the theory
presented above is directly applicable for crystals only.
We assume that a fraction' of the totalN electrons have For such a measurement Bf;, , one could use a cavity

their spin polarized parallel toc. The other electrons are made from a permanent magnetic material. The direction of

assumed to be unpolarized. The average of the spin expectdtre spin polarization with respect to the cavity axis deter-

tion values is then given by mines the components @&, which dominate the experi-
ment. A rotation of the cavity would modulate the

1 1 -,. _. . . . _
g== 2 (o)== 7. (A2) Fijk-induced freq_uency shift. The corresponding time depen
N G 2 dency of the cavity resonance frequency would be the signal
for a nonzeroF{;, . It could be beneficial to use solely the
For the last term of Eq(AL), Earth’s rotation to avoid possible systematics associated with
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a magnetized cavity rotating in the Earth’'s magnetic field. S: S Sz Su 0 0

Magnetic shielding will probably also be necessary. If the S S S. —s 0 o
frequency stability of a cavity made from a suitable magne- 12 11 13 14

tized material would be of the same order as the stability Siz S35 Sz O 0 0

achieved with quartz or sapphire cavities, limits Bfy, of S= Sw -Su 0 Sw 0 0] (B7)

order 10 *® could be achieved.
0 0 0 0 Sis Suia

APPENDIX B: NOTATION CONVENTION IN ELASTICITY 0 0 0 0 S Ses
THEORY
where
For obtaining the material specific values of the sensitiv-
ity tensor Bypeq, the compliance tensop,,.q has to be Se6=2(S11~ S12)- (B8)
known. The relation between stresg; and strainey, is

By inverting S one obtains the compliance matr& that
satisfiesS- C=1, wherel is the six-dimensional unit matrix.
C enters the equatioe=C- o between the stress and strain
6-vectors Eqs(B3) and (B4). On the other hand, the com-
pliance tensoru,,cq enters the relationship between the
In engineering, it is common to replace this by a six-stress and strain tensor8up=papciocq- Therefore, the
dimensional matrix equation compliance tensor is related to the compliance matrix by

given as

Tij = Njjki € - (B1)

o=S-¢ (B2) M1l M2 M1133 281123 2M1131 2H1112

Mo211  M2222  M2233  2M2223 2M2231 2M2212

where(Ref.[34], p. 445 M3311  M3322  M3333 23323 2Ma3z31 243312
C= 23211 23020 23233 Azzas Amsasn Az

0-:(UXX’GYY’UZZ’UYZ’UZX’UW)’ (B3) 2pzin1 2M312 2p3133 AMziz Amaiz Az
21011 21222 2M1233 AMizoz Apazar AMazie
€= (€xx,€yy,€,,2€y,,26,,,26y,), (B4)
(B9)
and . - . .
The compliance and elasticity matrices for cubical crystals
N N N N N N have the same symmetry; for trigonal crystals, the symmetry
1111 41122 41133 A1123 1131 1112 of the compliance matrix is similar to the one of the elasticity
Noo11 AN22oo A2233 ANoooz Aoozr Aoopo matrix, with the exception thagg=3(C1,— C;,). The com-
Nas11 MNasr Masss MNasos MNagss Masis pliance tensor elemen'r,sabcd_ are obtained f_rom the tabu-
S= lated elements of the elasticity matr& by inverting the
N3211 Naz22 Na2ss ANazaz Naza1 Nsarz | elasticity matrix and reading of the tensor elements from Eq.
A3111 MN3122 N3133 Az123 Azizr Asire (B9).

A A ) A ) A
tell Tizzz 7233 Tl223 23l Tl2l2 APPENDIX C: SIGNAL COMPONENTS FOR

(B5) LABORATORY EXPERIMENTS WITH TURNTABLE

. . L . Here, we give the full signal components caused by Lor-
This is called the Voigt convention in the literatu], pp. entz violatiorglJ in the elect?ons’ equr;tion of motion il}ll the

604._609' The matrigis symmetric, it thus contains at most laboratory frame for a cavity rotated, using a turntable, at an
21 independent elements. The symmetry of the crystal '€ nqular frequenc assuming a material of triqonal or
duces the number of independent elements. For example, the 9 9 Yot 9 g

. . : higher crystal symmetry, i.e., the sensitivity matixis of
matrix for cubic symmetry has three independent elementsthe form Eq.(82) or simpler. The rotation axis is fixed to

point vertically. We use a turntable time scale@efined such

St S S 0 00 thatt,=0 at any one instant when the cavity is pointing in
S, S Sp O 0 0 the x direction of the laboratory frame.
S. S. S o 0 o We use two reference frames, one sun-centered celestial
g | T T2 Tu (B6) equatorial reference frame and one laboratory frame. As de-
0 0 Sy O 0 fined in Ref.[23], the sun-centered frame has tKeaxis
0 0 0 Sy O pointing towards the vernal equingspring poini at 0 h
right ascension and 0° declination, tFeaxis pointing to-
0 0 0 0 Sy wards the celestial north pole (90° declinajicand theY
axis such as to complete the right-handed orthogonal
For trigonal symmetry, there are six, dreibein. Earth’s equatorial plane lies in the-Y plane; its
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orbital plane is tilted byn=23° with respect to the latter. Sv .
The time scaleT=0 when the sun passes the spring point, -, =C000+ > [S(a,b,c)sing(a,b,c)
e.g., on March 20, 2001 at 13:31 UT. abe
The laboratory frame has theaxis pointing south, thg +C(a,b,c)cos¢(a,b,c)] (C6)
axis east, and the axis vertically upwards. The laboratory
time scaleT,=0 when they and theY axis coincide. with coefficientsS(a,b,c) andC(a,b,c); the dc component

The signal derivation starts from the symmetrized tensoiC(0,0,0) is not included in the equations below, as it is not
C(u») given in the sun-centered celestial equatorial referenceneasurable.
frame, which is suitable for expressing the tensor because it
is inertial on all time scales involved in terrestrial experi- 1. Cavity axis parallel to a axis
ments. Toc,,), we first apply a Lorentz boost to first order

=11~ Bq,. The signal consists of 18 frequencie$a,b,c)

sinQ T with
Bo=PBs| —COSRCOSQT | (C1 C(0,1,00= — BaC(xz) COSx Siny,
—sinz costl, T S(0,1,00= — BaCyz COSx Siny,
whereQ =2m/1yr is the angular frequency of Earth’s or- C(0,2,0) = — (1/4) B(Cxx— Cyy)SiM? x
bit. We neglect the smaller velocity<08, <1.5x 10 ¢ due Y '
to Earth’s rotation in order not to complicate the signal com- S(0,2,0 = — (1/2) BAC(xy) Sir? x,
ponents below further. Subsequently, application of the rota-

tion matrix X X
C(1,-2,0=2ByC(xv) OS5 sin3§,
COSY COSwgTg COSySiNwgT, —Siny

R= —SiNwgTg COSwg Tg 0

’ X . 3X
S(1,—2,0)=Bi4(Cxx— Cyy)COS= SI =,
siny cosw, T, sSinysinw,T,  cOSy ( ) = B14(Cxx— Cyy) > >

(C2

where y is the geographical colatitude, andv
=2/23 h 56 min Earth’s rotation angular frequency, leads
to the tensorc,,, as expressed within the laboratory frame. 7
Another rotation around the axis using the rotation matrix +Cz sm2 '

.o X .M 7
C(1,—1,—-1)=—B4Bs S|n255|n5< C(ry) COS

coswit;  Sinwit; 0 1-1-1 18 'nZX _
H [T Y C SIn™=Sin 7,
Ri=| —sinwt; coswt; O (C3) S )=~ FBrBeCax STy sing
0 0 1
.o X
S _ C(1,—1,00=ByC(yz(1+2 cosy)sirZ,
leads to the quantities within the rotating turntable frame, 2
which are then decomposed according to ). The time
scalet,=0 when the cavity axis is parallel to the axis. _ .o X
) - . . - = + =
Insertion of the results into Eq74) gives the cavity length S(1,- 1.0 =Bixp(1+2 cosy)sin? 2’
change, and thus the frequency change that is given below.
For compact notation, we define the abbreviations

C(1,—1,1)=B4B, cos%si#%( C(rz) cosg

w(a,b,c)=aw;+bw,+cQ,, (C9

.7
—C sin=|,
$(a,b,c)=amti+bw,To+cQ,T.  (CH () 2)

We give the signal components for the two most interesting S(1—-1.1= 18 Lo X
. : I Y —1)=—= Cirx SIF=siny,
cavity constructions: A cavity with the resonator axis point- ( )=~ gB1BoCry SN siny
ing parallel to the crystals's axis (which is currently the

most familiar cavity typg and a cavity with the resonator C(1,0-1)=—(1/2)B14BC(tx) COSR SiN Y,
axis parallel to the crystal'a or b axis (which gives sensi-

tivity to the c(o;y components to first order i, , the Earth’s S(1,0,—-1)=(1/2) B14BsC(tv) SiNY,

orbital velocity. The signals are expressed as a Fourier se-

ries C(1,0,0=0,
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S( 1,0,0) = - ( 1/4)814(0)()("‘ CYY_ ZCZz)Sin 2)(,
C(1,0,1)=—(1/2) B14B4C(rx) COS7 SiNY,

S(1,0,1) = —(1/2)B1aBsC(tv) SinY,

X Y n
C(1,1-1)=—BB, cos’-zcosi( C(rz) COS5

—C s:in2
(TY) 2/
1 X .
S(1,1-1)=— 5B1aBsCirx cos’-ism 7,
X
C(1,1,0 =By 7 cos’-z(z cosy—1),
X
S(1,1,0= — BiC(xz) c052§(2 cosy—1),

C(1,1,1)=B14B, co§§sing( Cery) cosg

..n
+ C(TZ) Sln§> y
1 X .
S(1.1,1) =~ 5B14BC(rx cos’-zsm 7,
C( 1,2,0) = ( 1/2)814C(Xy)(1+ COSX)SinX,
S(1,2,0) = = Bi(Cxx— CYY)CO§§Sin§a

1 4 X
C(2,—-2,0= EBB(CXX_ Cyy)sir’ >

S(2,-2,0= —BBC(XY)sin“g,

_ XisX
C(2,-1,00=2B5C(x7 COS, sin® >

X . aX
S(2,-1,0=~2BsC(vz Cos; S|n3§,

C(2,0,0)= — (1/4) Bg(Cyx+ Cyy— 2Cz2)SIIF x,

S$(2,0,00=0,

__ XinX
C(2,1,0= — 2BgC(xz) COS’ > sinz,

X . X
S(2,1,00= —2BgC vz cos”zsm§,

PHYSICAL REVIEW D 68, 116006 (2003

1 X
C(2,2,0= 5Bg(Cxx—Cyv) co¢ >

8(2,2,0) = BBC(XY) COé‘; .

The signal for a cavity parallel to the crystddsaxis can be
obtained from these equations, if tkeandy axis are inter-
changed.

2. Signal for a cavity parallel to the c axis

The cavity is oriented with its axis parallel to tleaxis.
We introduce the abbreviationSe= — 283,+ B3>+ B33 and
Bp=Bs,—Bss. [For the trigonal case, EQ(82), Bs,
=[33,/3, for isotropic materialsB;,=33;.] We have seven
signal frequencies with the amplitudes

C(0,1,0 = — BcC(xz cosy siny,
S(0,1,0)= — B¢Cyz cosy siny,
C(0,2,0 = — (1/4) B(Cxx— Cyv)Sirt x,

S(0,2,0)= — (1/2) BeCx) Sif? X,

1 Ca X
C(2,—2,0=—- EBD(CXX_ CYY)S|n4§y

S(2,-2,0= Bocey sin'y,

__ XX
C(2,-1,0 =~ 2BpC(xz) COS, sin® >

X . aX
S(2,-1,0=2BpC(vz Cosy; S|n3§,

C(Z,0,0) = (1/4)BD(CXX+ Cyy— ZCZz)SinZ X
8(25010) = 01

_ X ginX

C(2,1,0=2BpCxz COS’ > sinz,

X . X

S(2,1,0)=2BpC(yz C0S 5 sin7,

1 X
C(2,20=—- EBD(CXX_ Cvy) CO§§.

8(2,2,0) =—- BDC(XY) CO§‘§.
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