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Optical cavity tests of Lorentz invariance for the electron
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A hypothetical violation of Lorentz invariance in the electrons’ equation of motion~expressed within the
Lorentz-violating extension of the standard model! leads to a change in the geometry of crystals and thus shifts
the resonance frequency of an electromagnetic cavity. This allows experimental tests of Lorentz invariance of
the electron sector of the standard model. The material dependence of the effect allows us to separate it from
an additional shift caused by Lorentz violation in electrodynamics, and to place independent limits on both
effects. From present experiments, upper limits on Lorentz violation in the electrons’ kinetic energy term are
deduced.
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I. INTRODUCTION

Special relativity and the principle of Lorentz invarian
describe how the concepts of space and time have to
applied when describing physical phenomena in flat spa
time. Improving the accuracy of the experimental verific
tion of these fundamental concepts is of great interest,
because a violation of Lorentz invariance is a feature
many current models for a quantum theory of gravity, e
string theory@1,2#, loop gravity @3,4#, and noncommutative
geometry@5#. Such a violation of Lorentz invariance is de
scribed in the general standard model extension~SME! de-
veloped by Colladay and Kostelecky´ @6#. According to it,
Lorentz-violating terms might enter the equations of mot
of bosons and fermions. At first sight, the quantum grav
induced corrections and effects are of the order ofE/EQG
;10228 where E is the energy scale of the experime
~which in ordinary optical experiments is of the order 1 e!
andEQG;EPlanckis of the order of the Planck energy. Ther
fore these effects seem to be far from being observabl
laboratory experiments. However, as it occurs, e.g., in s
narios leading to a modification of the Newton potential
small distances, some mechanism may apply which ef
tively leads to much larger effects in the laboratory. It is th
interesting to find experimental configurations in the labo
tory that can place strong upper limits on as many of th
terms as possible.

Experiments on Lorentz symmetry that study light prop
gation have a long and fascinating history, starting from
original interferometer experiments of Michelson@7# in Pots-
dam and Michelson and Morley@8# in Cleveland. Modern
versions of these experiments@9–15# replace the interferom
eter by a measurement of the resonance frequencn
5mc/(2L) of an electromagnetic~Fabry–Pe´rot! cavity, that
is given by the velocity of lightc along the cavity axis, the
cavity lengthL, and a constant mode numberm. Lorentz
violation causing a shift ofc or L connected to a rotation o
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boost of the cavity frame of reference can thus be detec
through the corresponding shift of the resonance freque
From such experiments, upper limits on a tensor (kF)klmn

have been found, that encodes Lorentz violation in the p
tonic sector of the SME@12,13,15–18#. These experiments
are mainly based on the shift ofc connected to nonzero val
ues of (kF)klmn , as an additional change ofL caused by
(kF)klmn and a corresponding orientation dependent mod
cation of the Coulomb potential is negligible for most cav
materials@19#.

In this work, we treat the effect of Lorentz violatio
within the fermionic sector of the standard model extens
in cavity experiments. A modified kinetic energy term ent
ing the nonrelativistic Schro¨dinger Hamiltonian of the free
electron (p212Ejk8 pj pk)/(2m) leads to a change of the ge
ometry of crystals, and thus a changede2n of the resonance
frequency of a cavity made from this crystal. Here,pj is the
3-momentum,m the electron mass, andEjk8 52cjk2c00d jk a
dimensionless 333 matrix given by a tensorcmn of the
SME. Thus, the total shift of the resonance frequencydn
5de2n res1dEMn res, where dEMn denotes the shift due to
Lorentz violation in the electromagnetic sector. Sincede2n
depends on the cavity material, it can be distinguished fr
Lorentz violation in electrodynamics by comparing caviti
made from different materials. Experiments using suita
configurations of cavities can place separate upper limits
the components ofcmn and (kF)klmn . Using data available
from past experiments, we deduce approximate bounds
some combinations of components ofcmn at the 10214 level.
From future cavity experiments, Earth and space-based,
are projected as tests of Lorentz violation in electrodynam
@20–22#, bounds at a level down to 10218 can be expected.

In Sec. II we present the nonrelativistic Hamiltonian
the free electron within the SME. Since violations of Loren
invariance are certainly small, it is sufficient to work to fir
order in the Lorentz-violating modifications throughout. T
crystal adjusts its geometry such as to minimize the to
energy^dh&1Uelast, where^dh& is the expectation value o
the Lorentz-violating part of the Hamiltonian andUelastis the
©2003 The American Physical Society06-1
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elastic energy associated with distortion of the crystal. I
calculated in Sec. III. The resulting geometry change is c
culated in Sec. IV. A fairly detailed model for the cryst
allows us to obtain specific results for practical materia
including quartz and sapphire. In Sec. V, we discuss exp
mental configurations and obtain bounds on Lorentz vio
tion in the electrons’ equation of motion from present expe
ments. In Appendix A, we discuss the hypothetical case o
cavity made from a spin-polarized solid, which allows
place experimental limits on an additional, spin depend
term from the SME, at least in principle. In Appendix B, w
summarize some conventions made in elasticity theory
are needed for our calculations, and in Appendix C, we g
in detail the Fourier components of the signal for Loren
violation in laboratory experiments on Earth.

II. STANDARD MODEL EXTENSION

A. Model

The SME starts from a Lagrangian formulation of t
standard model, adding all possible observer Lorentz sca
that can be formed from the known particles and Lore
tensors. Taken from the full SME that contains all know
particles, the Lagrangian involving the Dirac fieldsce of the
electron andcp of the proton and the electromagnetic fie
Fmn can be written as~in this section, we use units with\
5c51; the greek indices take the values 0,1,2,3)@6,23#

L5
i

2
c̄eGn

eDnce2
1

2
c̄eMece1

i

2
c̄pGn

pDncp2
1

2
c̄pM pcp

1h.c2
1

4
FmnFmn2

1

4
~kF!klmnFklFmn

1
1

2
~kAF!keklmnAlFmn, ~1!

where h.c. denotes the Hermitian conjugate of the previ
terms, andAl is the vector potential. The symbolsGn

e,p and
Me,p are given by

Gn5gn1cmngm1dmng5gm1en1 i f ng51 1
2 glmnslm,

M5m1amgm1bmg5gm1 1
2 Hmnsmn, ~2!

where the superscriptse andp are to be added to the symbo
am ,bm ,cmn ,dmn ,em , f m ,glmn , and Hmn that represent ten
sors encoding Lorentz violation for the fermions.me andmp

are the electron and the proton mass,gn ,g5, andsmn are the
conventional Dirac matrices, andDn is the covariant deriva-
tive. In this work, we deal mostly with electrons and add
superscript to denote parameters for particles other than
electron, e.g.,cmn is a parameter for the electron andcmn

p the
corresponding parameter for the proton. The tensors ente
M have the dimension mass, the others are dimension
Hmn is antisymmetric;glmn is antisymmetric in its first two
indices. cmn and dmn are traceless. Gauge invariance a
renormalizability excludesen , f n , and glmn , so these are
either zero or suppressed relative to the others@23#.
11600
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Lorentz violation for the photons is encoded in the tens
(kAF)k and (kF)klmn . The four degrees of freedom con
tained in (kAF)k are constrained strongly in measurements
cosmological birefringence@17,18# and are neglected in wha
follows. 10 of the 19 degrees of freedom of (kF)klmn are
constrained by astrophysical observations@17,18#, the other
nine can be measured in cavity experiments@13,15–18#.

B. Modified nonrelativistic Hamiltonian

1. Free electron

The nonrelativistic Schro¨dinger Hamiltonianh5ĥ1dh of
a single free electron within the SME derived from this L
grangian ~using Foldy–Wouthuysen methods@24#! is the
sum of the usual free-particle Hamiltonianĥ and a Lorentz-
violating term@23,24#

dh5mA81mBj8s
j1Cj8pj1D jk8 pjs

k1Ejk8
pj pk

m

1F jkl8
pj pk

m
s l ~3!

with the components of the 3-momentumpj and of the Pauli
matricess j . The italic indices take the values 1,2,3.~We
denote both 3-vectors such asxj and reciprocal 3-vectors
such aspj by subscript.! A Hamiltonian of this form has also
been derived in Ref.@25#. The constant termmA8 has no
physical consequences and is included for completeness.
term proportional toCj8 can be eliminated by choosing coo
dinates such that the systems center of mass is at rest@25#.
The dimensionless coefficientsA8,Bj8 ,Cj8 ,D jk8 ,Ejk8 , andF jkl8
can be expressed in terms of the quantities entering the
grangian@23,24#:

A85
1

m
a02c002e0 , ~4!

Bj852
bj

m
1dj 02

1

2
« jklgkl01

1

2m
« jklHkl , ~5!

Cj852
aj

m
1~c0 j1cj 0!1ej , ~6!

D jk8 5
b0

m
d jk2~dk j1d00d jk!2«klmS 1

2
gml j1gm00d j l D

2
1

m
« jklHl0 , ~7!

Ejk8 52cjk2
1

2
c00d jk , ~8!
6-2
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F jkl8 5F ~d0 j1dj 0!2
1

2 S bj

m
1dj 01

1

2
« jmngmn0

1
1

2m
« jmnHmnD Gdkl1

1

2 S bl

m
1

1

2
« lmngmn0D d jk

2« j lm~gm0k1gmk0!. ~9!

2. Interaction terms

In addition todh, the Hamiltonian arising from the La
grangian Eq.~1! also involves modified interaction term
proportional to combinations ofam , bm , cmn , dmn , em ,
f m , glmn , andHmn . For the nonrelativistic electrons in so
ids, however, these are suppressed by a factor given ba,
the fine-structure constant, relative to the modifications
the free-particle Hamiltoninian, Eq.~3! @23#. This is basically
because the typical energy scale for such electrons is
Rydberg energyma2/2. We can therefore neglect the mod
fied interaction terms.

C. Coordinate and field redefinitions

Some of the parameters contained in either the pho
electron, or proton sectors of the Lagrangian Eq.~1! can be
absorbed into the other sectors by coordinate and field re
nitions without loss of generality. Thus, not all of the coef
cients in the Lagrangian have separate physical meani
Loosely speaking, in experiments where one compares
sectors against each other only differential effects are me
ingful.

For example, in a hypothetical world containing only ph
tons and electrons, the nine components of (kF)klmn not con-
strained by astrophysical experiments could be absorbed
the nine symmetric components ofcmn

e @6,17,18,26#. By defi-
nition, either the photon or the electron sector could be ta
as conventional with all the Lorentz violation in the oth
sector. For example, for tests of Lorentz violation for t
photon @13,15–18#, one implicitly assumes a convention
electron sector.

The presence of protons~and neutrons! in the solid
changes this picture. We can still assume that one of
sectors is conventional, but then in general the other sec
are Lorentz violating. Choosing a conventional proton sec
allows us to disregard the proton terms. It also fixes
definition of coordinates and fields so that the component
cmn cannot be absorbed into (kF)klmn in general, i.e., they
acquire separate physical meanings.

To illustrate this, it suffices to consider an extension of
toy version of the SME introduced in Ref.@18#. Its Lagrang-
ian describes electrons and protons as scalar fieldsfe and
fp, neglecting spin effects,

L f5~hmn1kmn!~Dmfe!†Dnfe2m2~fe!†fe

1~Dmfp!†Dmfp2~mp!2~fp!†fp

2 1
4 FmnFmn2 1

4 ~kF!klmnFklFmn. ~10!

It has a conventional proton sector and nonconventio
electron and photon sectors. Lorentz violation for the el
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tron is given by the coefficientkmn . As usual, the covarian
derivative is given byDmfe,p5(]m1 iqe,pAm)fe,p, where
qe,p is the particle’s electric charge. If one identifieskmn

5cmn
e , this Lagrangian leads to the modified Hamiltonia

Eq. ~3! if only the cmn are nonzero.
For simplicity, consider the special case of only one no

zero componentk005k221, wherek deviates slightly from
unity. The Lagrangian takes the form@18#

L f5~Dmfe!†Dnfe1~k221!uD0feu22me
2~fe!†fe

1~Dmfp!†Dmfp2~mp!2~fp!†fp

2 1
4 FmnFmn2 1

4 ~kF!klmnFklFmn. ~11!

By coordinate transformationst→tk, xW→xW , the field redefi-
nition A0→A0 , Ai→Aik, and rescaling the electric charg
q→q/k, one obtains the Lagrangian

L f5~Dmfe!†Dnfe2m2~fe!†fe1~Dmfp!†Dmfp

1~k2221!uD0fpu22~mp!2~fp!†fp2 1
4 FmnFmn

2 1
4 ~kF!klmnFklFmn1

12k2

2
B2, ~12!

whereB is the magnetic field. Thus, the Lorentz violation
the electron sector has been moved to the proton and ph
sectors.@If ( kF)klmn50, the parameter 1/k can be inter-
preted as a modified velocity of light@18#.# However, it is in
general not possible to eliminate Lorentz violation in mo
than one sector at the same time.

Cavity experiments compare the velocity of a light wa
to a length defined by a crystal. In the light of Eq.~11!, the
Lorentz violation for the electron acts via the term (k2

21)uD0feu2. With a time-independent Coulomb potenti
A05const, this contributes a term

22im~k221!@f ,01qR~A0!f# ~13!

to the equation of motion forFe5e2 imx0fe in the nonrela-
tivistic limit ~obtained, in the usual way, by the Euler
Lagrange equations and setting to zero terms of orderuA0u2

andm0). R denotes the real part. The second term modifi
the coupling of the electron to the Coulomb potential, ca
ing a geometry change of the crystal. Thus, a combination
k221 and the modified velocity of light given by (kF)klmn is
measured in the experiment.

In the alternative description by Eq.~12!, the same Lor-
entz violation acts via a term analogous to Eq.~13! in the
equation for the proton, i.e., a rescaled coupling of the pro
to the electric field, and a modified velocity of light given b
(kF)klmn andk221. Physically, both pictures are equivalen

Here, we considered only a single parameter analogou
c00, that causes a scaling of the solid that is rotatio
6-3
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invariant. Thus, it cannot be measured in usual cavity exp
ments, that search for a modulation of the effect connecte
a rotation of the cavity in space. However, the tensorscmn

emerging from our special case via the three Lorentz bo
can—i.e., at least three out of nine degrees of freedom c
tained in the symmetric part ofcmn . It is not impossible that,
by coordinate and field redefinitions, some of the other
rameters can be absorbed into quantities that have no m
surable effect. However, as we have shown, at least 12 o
18 parameters from the photon and electron sector~restrict-
ing the electron sector to those parameters that are not
strained by cosmological experiments! would be separately
measurable, that can, e.g., be chosen as threecmn and nine
(kF)klmn .

In what follows, we adopt a conventional proton sect
with all the Lorentz violation in the electron and photo
sectors. One could possibly extract the measurable quan
from cmn and consider only those in what follows; howeve
thereby one would single out a preferred frame in which
measurable quantities are defined, and lose the covari
under observer Lorentz transformations which otherw
holds in the SME. Therefore, we choose not to do so
treat all elements ofcmn as independent.

D. Previous experimental limits on electron parameters

It is convenient to express limits on the coefficients with
a sun-centered celestial equatorial reference frame as de
in Ref. @23#. The components of quantities given in th
frame are denoted by capital indices. Limits for many p
ticles, including muons, protons, and neutrons, have b
studied, see Refs.@22,23,27#, and references therein. For th
electron, the limits given below have been found. Howev
to our knowledge there are no experimental limits onEjk8 and
on many components ofF jkl8 for the electron.

From clock comparison experiments@23#, a limit on BJ8

&10224 (mBJ8 is denotedb̃J in Ref. @23#! is obtained. Fur-
thermore, for the linear combinations

d̃J5m~d0J1dJ0!2 1
2 ~mdJ01 1

2 «JKLHKL!,

g̃D,J5m«JKL~gK0L1 1
2 gKL0!2bJ , ~14!

d̃J /m&10219 and g̃D,J /m&10219. These are order-of
magnitude limits, since some assumptions are needed to
tract them from the measurements@23#.

An experiment using spin polarized solids yieldeduBZ8 u
.(2.761.6)310225 @28,29#; in a similar experiment@30#,
((BX8 )21(BY8 )2)1/2<6.0310226 and uBZ8 u<1.4310225 have
been found.

Hydrogen spectroscopy could prospectively limit line
combinations ofBJ8 ,BJ8

p ,dJ0 ,dJ0
p ,HJK , andHJK

p ~where the
superscriptsp denotes parameters for the proton! to about
10227 GeV @31#. Comparing the frequencies of hydroge
masers@32#, find uBJ8

pmp1BJ8mu&2310228 GeV (m and
mp are the electron and proton mass, respectively!.

The potential for further tests of Lorentz invariance
space is discussed in Ref.@33#; for the electron, limits on
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several parameter combinations are expected using133Cs and
87Rb clocks. However, these tests allow no limits on t
components ofEjk8 .

III. INFLUENCE OF dh ON SOLIDS

To first order in the changes, the influence of Loren
violation in the electron’s equation of motion on the prope
ties of a crystal is induced by the expectation values of
Lorentz-violating contribution to the Hamiltonian, that is ca
culated in this section. In Sec. III A we present our ansatz
the electron wave function; the expectation value^dh& is
then calculated in Sec. III B.

We denote by (xa) i , (pa) i , and (sa) i the spatial,
3-momentum, and Pauli matrices for theath particle. The
nonrelativistic single-particle Hamiltonian for theath par-
ticle is denotedha5ĥa1dha . The Hamiltonian of the solid

hall5(
a

@ ĥa1dha#1
1

2 (
aÞb

@ ĥa,b1dha,b# ~15!

is the sum ofĥa1dha over all particles, plus the sum of th
interaction termsĥa,b over all pairs, and overdha,b , a pos-
sible Lorentz-violating correction to it.~The factor1

2 corrects
for the double counting of pairs.! The Lorentz violating
terms are contained indha and dha,b . To first order in the
changes, the resulting modifications of the properties of
solid are the sum of the modifications arising form the in
vidual terms.

The interactions in a solid are electromagnetic. The geo
etry change of crystals as a consequence of the modifica
to the interaction term from the photonic sector of the SM
@17,18# has been treated for ionic crystals in@19#. We will
not consider this term further here. In this work, we deal w
the modifications due to the Lorentz violation in the ele
trons’ equation of motion,(adha .

A. Wave function ansatz for the solid

According to the Bloch theorem~Ref. @34#, pp. 133–141!,
the single-electron wave functionca for the ath electron
(a51, . . . ,N) of a solid can be written as the product of
plane wave exp$(i/\)qWaxWa% ~whereqW a is the quasimomentum
of the ath electron! and a functionuqW(rW) with the period of
the lattice.uqW a

(rW) depends onqW a , and thus on the electron

numbera. To make a Fourier expansion ofuqW a
(rW), we note

that, if kji is the 333 matrix containing the primitive recip
rocal lattice vectorskW i , any reciprocal lattice vector can b
expressed as a linear combinationnikji with some coeffi-
cientsniPZ ~Ref. @34#, pp. 86–87!. Therefore,

ca5
1

AV
expH i

\
qW axWaJ (

nW
~cnW !a exp$2 in jki j ~xa! i%,

~16!

whereV is the volume of the~macroscopic! solid considered.
The (cnW)a are the Fourier coefficients ofuqW a

(rW); they depend
6-4
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only on njki j 2(qa) i , i.e., they can be expressed
cnjki j 2(qa) i

. The nW summation is carried out overZ3. The

(cn)a satisfy

(
nW

u~cnW !au251 ~17!

because of normalization̂(c)au(c)a&51. If we assume tha
the crystal has inversion symmetry, the origin of the coor
nate system may be chosen such that~Ref. @34#, p. 137!

~c2nW !a5~cnW
* !a . ~18!

The star denotes complex conjugation.
The normalized antisymmetricN-electron stateCN (N is

the total number of electrons! can be constructed from th
N3N matrix

~c!ªS c1~xW1! . . . c1~xWN!

A � A

cN~xW1! . . . cN~xWN!
D ~19!

as the Slater determinant@35# CN5(1/AN!)det(c) ~det de-
notes the determinant of a square matrix!.

B. Calculation of matrix elements

1. Specifications

For a bound system in its rest frame, the expectation va
of the particle momenta vanishes

(
a

^~pa! i&50. ~20!

We also assume no spin polarization, i.e., the sum of the
expectation values

Sl[
1

N (
a

^~sa! l& ~21!

vanishes. The case of spin polarization will be considere
Appendix A. Furthermore, we assume a vanishing sum of
helicities of the electrons,
11600
i-

e

in
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e

(
a

^~pa! j~sa!k&50 ~22!

and

(
a

^~pa! i~pa! j~sa!k&50. ~23!

Although situations could be imagined which violate the la
two relations in spite ofSl50, this can be considered highl
unrealistic. Therefore, the expectation values of the te
proportional toCj , D jk , andF jkl8 from the Hamiltonian, Eq.
~3!, vanish. Disregarding the constant term proportional toA,

^~dh!&5
1

m
Ei j8 (

a51

N

^~pa! i~pa! j&.

2. Calculation of dh

We now calculate the matrix element^(p1) i(p1) j& for the
first electron. Since it turns out to be independent from
electrons number~a consequence of the antisymmetry of t
N-electron stateCN), the sum of the matrix elements for a
electrons can then be obtained by multiplying^(p1) i(p1) j&
with the total number of electronsN. We have

^~p1! i~p1! j&5E
V
CN*

2\2]2

]~x1! i~x1! j
CN d3x1 ••• d3xN .

~24!

The integrations are carried out over the volumeV of the
solid. CN andCN* are given by Slater determinants. Eval
ation of the matrix element starts by an expansion of th
determinants with respect to the first column,

det~c!5 (
a51

N

~21!a det~ u1c* a!, ~25!

where (u1c* a) denotes the (N21)3(N21) minor matrix
obtained from theN3N matrix (c) by deleting the first
column and theath row. The derivatives can then be carrie
out
^~p1! i~p1! j&5
1

N! (
a,b51

N

~21!a1b(
nW ,mW

~cmW !a* ~cnW !b@~qb! i~qb! j1\2nlkil nkkjk2\nkkik~qb! j2\nlkjl ~qb! i #

3
1

VEV
expH i ~x1! lF ~mi2ni !kli 1

1

\
@~qb! l2~qa! l #G J d3x1E

V
det~ u1c* a!det~ u1c̄b!d3x2 ••• d3xN . ~26!
Note that only the first integral in Eq.~26! containsxW1. Using
the abbreviation

k l5~mi2ni !kli 1
1

\
@~qb! l2~qa! l #, ~27!
the d3x1 integration in Eq.~26! can be expressed as

E
V
exp$ i ~x1! lk l%d

3x15H V ~k l50!,

0 ~k lÞ0!.
~28!
6-5
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Since the quasimomenta (qa) i are within the first Bril-
louin zone~Ref. @34#, p. 89!, u(qa) l u<(\/2)unjkl j u for any
njP$Z\0%. Thus, k l50 only if ni5mi and (qb) l5(qa) l .
We may assume that this holds only fora5b. That allows to
carry out themW and theb summations. We now use

(
nW

u~cnW !au2ni50, ~29!

which follows from Eq.~18! and eliminates the terms linea
in n from the first line of Eq.~26! @36#. We define

~ja! lkª(
nW

u~cnW !au2nlnk ~30!

and

qiqjª
1

N (
a

~qa! i~qa! j , ~31!

the average of the quasimomentum productqiqj over all
electrons. We also define the average

j i jª
1

N (
a

~ja! i j . ~32!

Together with Eq.~17!, this yields

^~p1! i~p1! j&5
N

N!
@qiqj1\2j lkkil kjk#

3E
V
d3x2 ••• d3xN det~ u1c* a!det~ u1c̄b!

5@qiqj1\2j lkkil kjk#^CN21uCN21&. ~33!

To prove that̂ CN21uCN21&51 we expand the remainin
determinants of (u1c* a) in terms of the column which is now
the first one. Thed3x2 integration can then be carried ou
The procedure is repeated, until thed3xN integration is done.
Each step reduces the dimension of the Slater determinan
one and produces a factor equal to the number of elect
still involved. Taking all these factors together cancels
normalization factor 1/(N21)!. Thus, we obtain the desire
result

^~p1! i~p1! j&5qiqj1\2j lkkil kjk . ~34!

Since the right-hand side of this result contains no refere
to the electron’s number, it holds for alla51, . . . ,N elec-
trons.

3. Estimatingj lk

The properties of the wave function enter the moment
expectation value viaj lk andqiqj .

j lk is an ensemble average over all electrons,

j lk5(
nW

S 1

N (
a

u~cnW !au2nlnkD 5:(
nW

ucnW u2nlnk , ~35!
11600
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obtained by substituting Eq.~30! into Eq. ~32!. A detailed
evaluation ofj lk would start from material specific Fourie
coefficientscnW obtained experimentally or theoretically~see,
e.g, Ref.@37#!. Since detailed wave-function calculations f
realistic materials are notoriously difficult and would have
be performed for each individual material, it is interesting
use a relatively simple model for the Fourier coefficien
Such a model might already be quite accurate, since only
average of the absolute squareucnW u2 is required, rather than
the detailed (cnW)a for the individual electrons. A~possibly
complicated! dependency of the (cnW)a on nW can be hoped to
smooth out in the averaging. The model must, however, b
accordance with the requirement that the wave function
the rotational symmetry of the lattice, i.e.,cr̂nW[cnW if r̂ is any
operator of the rotation group of the crystal~Ref. @37#, p.
469!.

For such a simple model, we assume thatucnW u[ucunW uu, i.e.,
the average of the absolute squares of the average o
Fourier coefficients depends only onunW u. It follows that

j lk5gmatd lk ~36!

with some material dependent constantgmat. For determin-
ing gmat, we note that the average kinetic energy of an el
tron ^T&5(1/2m)^pipj&d i j . From Eqs.~34!, ~35!, and~36!,

^T&5gmat

\2

2m
d lkkil kjkd i j . ~37!

If we neglect for the moment the energy of the chemi
bonding, this should correspond to the average of the kin
energies of the atoms’ valence electrons, which can be e
mated using the Bohr model. The kinetic energy of an el
tron in the Bohr modelTBohr5ERZ/n2. Here,ER.13.6 eV
is the Rydberg energy,Z the charge number of the atom cor
andn the principal quantum number. Thus, the kinetic ene
from the Bohr model, averaged over the electrons within
atoms of the molecule,

TBohr5
1

Ne,m
(
k51

Ne,m

vk

ERZk

nk
2

, ~38!

whereNe,m gives the number of valence electrons per m
ecule. The indexk enumerates the atoms of the molecule a
vk ,nk , and Zk are the valence, principal quantum numb
and charge number, respectively, of the atomk. Note that
Zk5vk , since in an atom withv valence electrons, the
charge number of the atom cores and the inner shell elect
is Z5v. For example, in quartz, SiO2, there is one Si atom
with v54, n53 and two O atoms withv52 and n52.
Thus, for example,

~TBohr!quartz5
ER

8 S 1
42

32
12

22

22D 5
17

36
ER . ~39!

Comparing this to Eq.~37!, we obtain the material specifi
valuesgmat given in Table I.
6-6
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The model can be refined by taking into account the
ergy of the chemical bonding, which leads to an increase
the actual kinetic energy of the electrons. The so-called
thalpy of formationD fH

0 gives the enthalpy for the forma
tion of the crystal from the elements in their usual state
standard conditions~room temperature and pressure!, e.g.,
solid or diatomic (O2, for example!. The Bohr model, how-
ever, predicts the energy of the unbound atoms. That me
the changeT2TBohr between the sum of the kinetic energ
of the valence electrons of the free atomsTBohr and the sum
of their kinetic energy in the moleculeT is the difference of
D fH

0 and the applicable enthalpies of sublimationDsublH
0

or dissociationDdissH
0 of the elements. For sapphire, Al2O3,

for example,

D fH
0~Al2O3!516.8 eV,

2DsublH
0~2Al!52233.0 eV,

2DdissH
0~3O!52332.5 eV,

T2TBohr53.3 eV,

or about 5% ofTBohr568 eV. This would lead to a 5% in
crease of the factorgmat. This indicates that the energy of th
chemical bonding is, for our purposes, negligible.

The ultimate refinement of the model would be the ins
tion of material specific Fourier coefficientscnW into Eq.~35!.
The precision of the model would then approach the lim
tions of the Bloch ansatz for the wave function itself, whi
is based on a mean field model for the electron–elec
interactions. Such a detailed model is, however, beyond
scope of the present work.

4. Result

The expectation value of the Lorentz-violating correcti
to the single particle Hamiltonian(adha can be obtained
from Eq. ~34! by multiplying with the number of electrons
Inserting j lk as obtained in the preceding section into E
~34!, we obtain

TABLE I. Elements of the sensitivity matrix for fused and/o
cubic materials. fq denotes fused quartz, fs fused sapphire, C
notes diamond. Materials for which three elements ofB are given
are isotropic; the coefficients should be inserted into Eq.~78!. The
other materials are trigonal; the coefficients for these are to be
serted into Eq.~82!.

Mat. gmat B11 B12 B13 B14 B31 B33 B41 B44

fq 0.38 0.77 20.09 0.57
fs 0.29 0.06 20.01 0.05
Si 0.50 2.51 20.70 2.05
C 1.16 5.77 20.59 5.35

Al2O3 0.29 0.14 20.01 20.00 0.02 20.02 0.01 0.01 0.04
SiO2 0.38 1.41 20.07 20.06 0.35 20.14 0.44 0.25 0.41
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^dh&5
N

m
Ei j8 ~qiqj1gmat\

2d lkkil kjk!. ~40!

The quasimomentauqW au are restricted to the first Brillouin
zone, uqW u,(\/2)ukW j u. Most electrons, however, will have
quasimomentum lower than this maximum value, so that
averageqiqj is a relatively small contribution tôdh&. If we
neglect it, we obtain the final result

^dh&5Ngmat

\2

m
Ei j8 d lkkil kjk . ~41!

d lkkil kjk is symmetric in the indicesi and j. This result will
be used in the next section to compute the geometry cha
of the crystal caused by Lorentz violation in the electro
equation of motion.

IV. CHANGE OF CRYSTAL GEOMETRY

The direct lattice vectorslWa contained in the matrixl ia
determine the structure of the lattice without Lorentz vio
tion. Lorentz violation will cause a changel̃ ia of the crystal
geometry, i.e., the lattice vectors are now given byl ia

1 l̃ ia . To calculate it, we adjustl̃ ia such as to minimize the
total energy of the lattice

U5U0~ l ia1 l̃ ia!1^dh~ l ia1 l̃ ia!&. ~42!

The first term is the conventional total energy of the latt
without Lorentz violation. It can be expressed as

U0~ l ia1 l̃ ia!5U0~ l ia!1Uelast~ l̃ ia!1Uc , ~43!

whereUc is a constant andUelast is the elastic energy con
nected to a distortion of the lattice. Ifl̃ ia50, the elastic
energyUelast50. The total energy is thus given by

U5U0~ l ia!1Uelast~ l̃ ia!1^dh~ l ia1 l̃ ia!&. ~44!

The correctionl̃ ia is found by setting to zero the derivativ

]U

] l̃ jb

5
]Uelast

] l̃ jb

1
]^dh~ l ia1 l̃ ia!&

] l̃ jb

50. ~45!

To explicitly calculatel̃ jb , we have to express the contribu
tions to U in terms of l̃ jb . We will do so for ^dh& in Sec.
IV A and in Sec. IV B for Uelast. In Sec. IV C, the total
energy per unit cell thus obtained is minimized and the
ometry change as expressed by a strain tensorei j is calcu-
lated.

A. Dependence ofdh on l̃ ia

The change of the Hamiltonian’s expectation value^dh&,
Eq. ~41! depends on the geometry via the reciprocal latt
vectorski j , for which we have the relation~Ref. @34#, p. 87!,

l i j kik52pd jk , ~46!

e-

n-
6-7
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and thereforel i j kn j52pd in . If we substitutel i j 1 l̃ i j and
kjk1 k̃ jk , with l̃ i j ! l i j and k̃ jk!kjk , we obtain

~ l i j 1 l̃ i j !~kik1 k̃ik!52pd jk ~47!

or

l i j kik1 l i j k̃ik1 l̃ i j kik1 l̃ i j k̃ik52pd jk . ~48!

The first term on the left-hand side~lhs! cancels with the
right-hand side~rhs! due to Eq.~46!; we neglect the secon
order term on the lhs, and obtain

l i j k̃ik1 l̃ i j kik50. ~49!

Multiplying with kn j and using Eq.~46! again,

k̃nk52
1

2p
kn j l̃ i j kik . ~50!

We can now substituteki j 1 k̃i j into Eq. ~41! to obtain
dh( l̃ ab),

dh~ l̃ ab!5Ngmat

\2

m
d lkS kil 2

1

2p
kia l̃ bakblD

3S kjk2
1

2p
kja l̃ bakbkDEi j8 ~51!

5const2gmat

N\2

2pm
Ei j8 ~kia l̃ bakbkkjk

1kja l̃ bakbkkik!. ~52!

The const5Ngmat(\
2/m)Ei j8 d lkkil kjk does not depend on

l̃ ab . A term of orderEi j8 ( l̃ ab)
2 has been neglected.

B. Elastic energy

The elastic energy is given as@38#

Uelast5
1
2 l i jkl ei j eklV, ~53!

wherel i jkl is the elastic modulus,V the volume considered
and

ei j 5
1

2 S ]ui

]xj
1

]uj

]xi
D ~54!

is the strain tensor, whereui is the displacement of a volum
element at some locationxi . For i 5 j , ui j represents the
relative change of length in thexi direction, and foriÞ j , it
represents the change of the right angle between lines o
nally pointing in thexi andxj direction.

To express the elastic energy in terms ofl̃ i j , we note that
the locationxb of a point of the direct lattice can be ex
pressed as a linear combination of the primitive lattice v
tors

xb5hal ba , ~55!
11600
i-

-

with some coefficientshaPN. Multiplying this equation by
kbc and using Eq.~46!, we obtain

hc5
1

2p
kbcxb . ~56!

If l ba is shifted tol ba1 l̃ ba , the lattice point originally atxb
will be shifted toxb1ub , where

ub5hal̃ ba5
1

2p
kdaxdl̃ ba . ~57!

Therefore, we have

]ud

]xc
5

1

2p
kcal̃ da ~58!

or

edc5
1

4p
~kdal̃ ca1kcal̃ da!. ~59!

This can now be used to express the elastic energy in te
of l̃ ab ,

Uelast5
1

2
l i jkl

1

4p
~kia l̃ ja1kja l̃ ia!

1

4p
~klb l̃ kb1kkbl̃ lb!V.

~60!

Some manipulation of indices usinglabcd5lbacd5lcdab
leads to the more simple form

Uelast5
V

8p2
l i jkl kia l̃ jaklb l̃ kb . ~61!

C. Minimizing the total energy per unit cell

Summing up the contributions, we find for the ener
change per unit cell~leaving out the constant terms!

U5udet~ l i j !u
1

8p2
l i jkl kia l̃ jaklb l̃ kb

2gmat

N\2

2pm
Ei j8 ~kia l̃ bakbkkjk1kja l̃ bakbkkik!, ~62!

whereV5udet(l i j )u, the volume of a unit cell, andN5Ne,u
the number of valence electrons per unit cell have been
serted~not to be confused withNe,m the corresponding num
ber per molecule!. The inner-shell electrons are assumed n
to influence the crystal geometry. A minimum is found, wh

]U

] l̃ mn

50. ~63!

After some manipulation, the derivative can be expresse
6-8
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]U

] l̃ mn

5
udet~ l i j !u

4p2
l imklkinklb l̃ kb2gmat

Ne,u\2

2pm

3Ei j8 ~kinkmkkjk1kjnkmkkik!50. ~64!

We denoteE( i j )8 5 1
2 (Ei j8 1Eji8 ) the symmetric part of the ten

sor Ei j8 . The last equation can be simplified a bit by mul
plying with l pn ,

lpmklklb l̃ kb2gmat

4p\2Ne,u

udet~ l i j !um
E(p j)8 kmkkjk50. ~65!

For solving this forl̃ , we need the inversemabkl ~called the
compliance tensor! of labcd, defined by

mabkllabcd5dkcddl . ~66!

Multiplying Eq. ~65! with mdepm gives

kebl̃ db5gmat

4pNe,u

udet~ l i j !u
\2

m
E(p j)8 mdempkmkkjk ~67!

and a further multiplication byl es yields

l̃ ds5gmat

2\2Ne,u

mudet~ l i j !u
E(p j)8 mdempl eskmkkjk . ~68!

The strain tensor can be calculated from this result using
~59! as

edc5B̃dcp jE(p j)8 ~69!

with

B̃dcp j5gmat

2Ne,u\2

mudet~ l i j !u
mdcmpkmkkjk . ~70!

This has been simplified by using Eq.~46!. Since for Eq.
~69!, this is multiplied with the symmetricE( jp)8 , only the

part Bdcp j5
1
2 (B̃dcp j1B̃dc jp) that is symmetric inj andp,

Bdc jp5gmat

Ne,u\2

mudet~ l i j !u
~mdcmpkmkkjk1mdcm jkmkkpk!,

~71!

is used. The resulting strain tensor

edc5Bdcp jEp j8 ~72!

is given by the 333 Lorentz violation tensorEp j8 and a ten-
sor Bdcp j , which gives the sensitivity of the material geom
etry change to Lorentz violation in the electron sector of
SME. This is the desired result of this section.

1. General properties of the sensitivity tensorBdcpj

and conventions

The sensitivity tensor has the symmetries

Bdc jp5Bcd jp5Bdcp j . ~73!
11600
q.

e

In general, however,Bdc jpÞBjpdc . It has, therefore, at mos
36 independent elements, the number of which is reduced
a symmetric crystal. For a compact presentation of the m
terial specific results in the following sections, we will a
range these into a 636 matrix, that allows to express Eq
~69! as a six-dimensional matrix equation

eG5BGJEJ8 . ~74!

We therefore arrange the six independent elements ofedc and
E(b j)8 as the vectors

eG5~exx ,eyy ,ezz,eyz ,ezx ,exy!, ~75!

EG85~Exx8 ,Eyy8 ,Ezz8 ,Eyz8 ,Ezx8 ,Exy8 ! ~76!

~the capital greek indices run from 1, . . . ,6), anddefine the
sensitivity matrix

B5S B1111 B1122 B1133 2B1123 2B1131 2B1112

B2211 B2222 B2233 2B2223 2B2231 2B2212

B3311 B3322 B3333 2B3323 2B3331 2B3312

B2311 B2322 B2333 2B2323 2B2331 2B2312

B3111 B3122 B3133 2B3123 2B3131 2B3112

B1211 B1222 B1233 2B1223 2B1231 2B1212

D .

~77!

The factors of 2 account for the double-counting of the no
diagonal elements ofE(p j)8 in the tensor equation~69!.

2. Sensitivity matrix for isotropic materials

Let us first consider isotropic materials that have no p
ferred crystal orientation, i.e., crystals of cubic structure a
noncrystalline ~fused! materials which consist of a larg
number of small crystals oriented statistically. Cubic mate
als have one single lattice constanta; the matrix of the primi-
tive direct lattice vectors is given byl i j 5ad i j . According to
Eq. ~46!, the matrix of the reciprocal lattice vectors is give
by ki j 5(2p/a)d i j . In the Appendix, it is described how t
obtain the compliance constantsmabcd from the elasticity
constants that are tabulated for various materials in the
erature, e.g., Ref.@39#. Inserting into Eqs.~71! and~77!, we
obtain the sensitivity matrixB. It is of the structure

B5S B11 B12 B12 0 0 0

B12 B11 B12 0 0 0

B12 B12 B12 0 0 0

0 0 0 B44 0 0

0 0 0 0 B44 0

0 0 0 0 0 B44

D . ~78!

For cubic crystals, the nonzero values

B115j/~a2!C11,

B125j/~a2!C12,
6-9
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B445j/~2a2!C44,

where

j5gmat

8p2Ne,u\2

mudet~ l i j !u
~79!

and CGJ are the elements of the 636 compliance matrix,
Eq. ~B9!. From symmetry arguments, this is also the str
ture of theB matrix for noncrystalline materials without
preferred orientation. The elements of this matrix for so
cubic and/or fused materials are given in Table I. The val
for fused quartz and sapphire have been calculated from
values of the crystalline materials~to be calculated below! as
averages over crystal orientations.

3. Sensitivity matrix for trigonal crystals

Quartz and sapphire are of trigonal structure and are
quently used in cavity experiments. Therefore, we also c
sider the trigonal case here. The matrix of the primitive
rect lattice vectors can be chosen as

l i j 5S a/2 a/2 0

A3a/2 2A3a/2 0

0 0 c
D , ~80!

wherea andc are the two lattice constants. We calculate t
inverseki j ; the product

kikkjk54p2S 2/a2 0 0

0 2/~3a2! 0

0 0 1/c2
D ~81!

turns out to be a diagonal matrix. Trigonal crystals have
independent compliance constants and two lattice consta
which makes eight independent components for theB ma-
trix. It has the structure

B51
B11 B12 B13 B14 0 0

3B12
1

3
B11 B13 2B14 0 0

B31
1

3
B31 B33 0 0 0

B41 2
1

3
B41 0 B44 0 0

0 0 0 0 B55
2

3
B41

0 0 0 0 B55 B66

2
~82!

with

B555B441
1

3
B41,
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1

3
B112B12.

The matrix elements are explicitly

B1152j/~a2!C11,

B1252j/~3a2!C12,

B135j/~c2!C13,

B145j@1/~3a2!11/~2c2!#C14,

B3152j/~a2!C13,

B335j/~c2!C33,

B415j/~a2!C14,

B445j@1/~6a2!11/~4c2!#C44.

CGJ are the elements of the compliance matrix given in E
~B9!. Numerical values ofBGJ for quartz and sapphire ar
given in Table I. The matrixB is not symmetrical; the ele
ments of the first column are generally the highest in t
matrix, i.e., the geometry change of trigonal materials
most sensitive to thexx element of the Lorentz violation
parametersE( i j )8 . This is because the direct lattice vect
components in thex direction are a factorA3 smaller than
they components. Hence, the wave function of the electr
oscillate faster in thex direction, i.e., thê px& momentum
component is larger. Since the influence of Lorentz violat
is given by the^pipj& matrix element, this means a highe
influence of thex component of the Lorentz violation coe
ficientsE( i j )8 .

High elastic constants decrease the values ofB so that
crystals of high stiffness~such as sapphire! should show
lower values ofB. However, in some cases~particularly dia-
mond!, this is outweighed by small dimensions of the un
cell ~that imply high momentum expectation values due
short period of the electron wave functions! and a large num-
ber of electrons per unit cell.

V. EXPERIMENTS

Here, we discuss the application of our results to extr
limits on Lorentz violation in the electrons’ equation of m
tion from experiments.

A. Lorentz-violation signal in cavity experiments

As discussed in the introduction, Lorentz violation m
affect the resonance frequency of a cavityn through a varia-
tion of c andL,

dn

n0
5

dc

c0
2

dL

L0
. ~83!

Here, n0 ,c0, and L0 are quantities in absence of Loren
violation. For cavity experiments, we have to consider b
6-10
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Lorentz violation in electrodynamics as well as in the ele
trons’ equation of motion. The influence of Lorentz violatio
in electrodynamics leads to a frequency changedEMn that is
mainly caused by a variation of the velocity of light,dEMc
@17,18#, and a small material-dependent contribution due t
length changede2L, that is usually negligible@19#. Lorentz
violation in the electrons’ equation of motion affects sole
L. This leads to a frequency changede2n, so that

dn5dEMn1de2n. ~84!

For example, if the cavity axis is parallel to thez axis of the
crystal,

2
de2n

n0
5

dLz

Lz,0
[e3 . ~85!

From Eq.~74!, e35B3JEJ8 .

B. Limits from previous experiments

Cavity experiments have been performed repeatedly
tests of Lorentz violation in electrodynamics@9–15#. It is
interesting to estimate the level of the limits oncmn resulting
from these experiments. Since none of them were done
a setup optimized for obtaining separate bonds on Lore
violation in electrodynamics and in the electrons’ equation
motion ~see below!, we have to use an assumption that si
plifies the analysis, so we can work with the published d
only. To obtain a sharp upper limit, we have to compare t
experiments of high precision that used different cavity m
terials.

Müller et al. @15# performed a Michelson–Morley exper
ment using two sapphire~s! cavities subject to the Earth’
rotation. The cavity axes were parallel to the crystalsc axis.
Since for such cavities, the elements ofB 3J

s giving the sen-
sitivity to Lorentz violation in the electronic sector are rel
tively low, we neglect the effect on Lorentz violation in th
electrons’ equation of motion for this experiment, i.e., w
view the experiment as a pure test of Lorentz violation
electrodynamics. Due to Earth’s rotation with the angu
frequencyv % .2p/23 h 56 min and Earth’s orbit withV %

52p/1 year, Lorentz violation in electrodynamics leads to
time dependency of the frequency difference between
cavities that has Fourier components at six frequencies
are linear combinations ofv % and V % . The experiment
gives individual bounds on the amplitudes of these Fou
components. At 2v % and 2(v % 6V % ), the bounds are be
low 4310215.

Brillet and Hall @9# used a single fused quartz~fq! cavity
~actually, ‘‘ultralow expansion’’ glass ceramics, ULE! on a
turntable rotating atv t . Frequency measurement was a
complished by comparison to a stationary CH4 standard.
Since in a single-cavity setup, the same Lorentz violation
electrodynamics leads to half the frequency variation co
pared to a two-cavity setup, the experiment of Mu¨ller et al.
excludes signals from Lorentz violation in electrodynam
larger than 2310215 for this experiment. We may thus view
this experiment as a measurement of
11600
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de2n

n0
5B 3̄J̄

f q
EJ̄

8 . ~86!

The indicesJ̄ denote components in the cavity frame
reference. In accordance with Refs.@17,18,23#, we define the
x axis of the laboratory frame as the north–south axis, thy
axis as the east–west axis, and thez axis as pointing up-
wards. The turntable rotated in thexy plane @9#. We define
the cavity framez̄ axis parallel to thez axis, the x̄ axis
parallel to the cavity axis. A calculation of the hypothetic
signal starts from transformingcmn as given in the sun-
centered standard frame into the laboratory frame, as
scribed in Refs.@17,18,23#. A further rotation around the
laboratoryz axis gives the quantitiescm̄n̄ in the cavity frame,
from which Eī j̄

8 follows from Eq. ~8!. Due to the rotations,
the hypothetical signal becomes time dependent and is g
by ~assuming that atT% 50, the cavity axis coincides with
the X axis, and neglecting terms proportional to Earth’s
bital velocity b %;1024)

dn

n
5C~2,0,0!cos 2v tT% 1S~2,2,0!sin~2v t12v % !T%

1C~2,2,0!cos~2v t12v % !T% 1A1O~b %

2 !, ~87!

whereA denotes Fourier components at other frequenc
for which no experimental results are published in Ref.@9#.
The sine component at 2v t vanishes. The coefficients are

C~2,0,0!52
1

4
~B 11

f q2B 12
f q!sin2xB~cXX1cYY22cZZ!

.20.13~cXX1cYY22cZZ!,

S~2,2,0!5cos4
xB

2
~B 11

f q2B 12
f q!c(XY)

.0.58c(XY) ,

C~2,2,0!5
1

2
cos4

xB

2
~B 11

f q2B 12
f q!~cYY2cXX!

.0.29~cYY2cXX!.

xB denotes the colatitude of Boulder,xB.50°. B 11
f q andB 12

f q

are given in Table I. From the experiment, an amplitude
2v t of ;2310213 is found, attributed to a slight tilt in the
horizontal alignment of the turntable. In principle, a hyp
thetical Lorentz-violation signal at 2v t cannot be separate
in the analysis from a signal caused by such tilt. However
we consider an exact cancellation between a strong Lore
violation signal and a strong tilt signal improbable, we obta
a rough order-of-magnitude bound onucXX1cYY22cZZu at a
level of about 10212. The measured upper limit on the am
plitude of the component of the hypothetical signal at 2(v t
1v % ) ~which can be distinguished from a tilt generated s
nal in the Fourier analysis! is 4310215. Adding in quadra-
ture the maximum possible contribution from Lorentz viol
6-11
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tion in electrodynamics according to the result of@15#, 2
310215, we obtain AS(2,2,0)21C(2,2,0)2&4.5310215.
This gives the limits

uc(XY)u&8310215,

ucXX2cYYu&1.6310214. ~88!

Given the small magnitude ofB 3J
s , these values would in

deed lead to negligible contributions to the experiment
Müller et al., so our above assumptions seem reasonable

C. Optimized setups

To obtain clean separate bounds on Lorentz violation
electrodynamics and the electrons’ equation of motion, w
out using the above assumptions, a dedicated experime
desirable. One could, for example, compare the resona
frequenciesn f q and ns of a cavity made from fused quart
and one from crystalline sapphire, with the cavity axis p
allel to the crystalz axis, for example. This seems to be
realistic scenario, since such cavities have been used in
periments and proved to be of high stabili
@9–11,14,15,40,41#. The signal for Lorentz violation would
be the frequency differencens2n f q . If a parallel arrange-
ment of cavities would be chosen, the influence of Lore
violation in electrodynamics could be eliminated, and a cle
bound on some components ofEjk8 could be extracted,

ns2nq

n
5~B 3̄J̄

f q
2B 3̄J̄

s
!EJ̄

8 . ~89!

Here,n.ns.nq is the average frequency. An accuracy lev
of below one part in 1015 in frequency comparisons of cav
ties made from quartz@40# and sapphire@15# has been dem
onstrated in the laboratory. Thus, placing bounds of a
parts in 1015 on the components ofEJK8 that dominate the
signal seems feasible. A contribution of the time-compone
c(0J) to the signal arises if one takes into account the la
ratory velocity given by the velocityb %;1024 of Earth’s
orbit and 0<bL&1.531026 due to Earths rotation~depend-
ing on the geographical latitude!. The Lorentz transforma
tions between the sun-centered inertial reference frame
the laboratory frame lead to additional Fourier compone
of the signal that are proportional toc(0J) and eitherb % or
bL . In a Fourier analysis of a sufficiently long time trace, t
Fourier components can be resolved and individual limits
almost all components ofcmn ~only c00 does not lead to
time-dependent signals to first order inb % or bL) can be
expected, at or below about a part in 1015 for the dominating
parameters and to about a part in 1011 for the parameters tha
are suppressed byb % . Future space experiments, for whic
a resolution of the frequency measurement of up to 10218 is
projected@21,20#, might bound the dominating componen
of Ejk8 at the 10218 level, and the suppressed components
cmn at the 10214 level.

Instead of using different cavity materials, two caviti
made from the same crystalline material, but having differ
orientations of the cavities with respect to the crystal a
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might be used. Using, e.g., quartz, a comparison betwee
cavity fabricated such that the cavity axis is parallel to t
crystalsc axis to one having its cavity axis perpendicular
the c axis would provide a relatively high sensitivity give
by B 1J

q andB 3J
q . Another possibility would be two orthogo

nal cavities within a single block of crystalline materia
Such an arrangement might be favorable for eliminat
parasitic effects, like thermal expansion and vibration. Ho
ever, in such an experiment the frequency changedEMn due
to Lorentz violation in electrodynamics would not drop ou
thus complicating the analysis. Another configuration wou
be the comparison of a cavity against an atomic clock, s
as a cesium clock and/or a hydrogen maser. This scenar
interesting, since it is projected for the OPTIS satellite@21#.
This satellite is projected to carry three cavities orthogona
each other, so it is probably possible to separate the elec
dynamic terms from the electronic ones in an analysis of
complete data, that consists of all frequency differences
tween the three cavities and the atomic clock~s!. Such an
analysis would also have to take into account a poss
Lorentz-violating shift of the atomic clock frequencie
which could give the experiment sensitivity to additional p
rameters.

VI. SUMMARY AND OUTLOOK

We have calculated the change of the geometry of crys
that is caused by Lorentz invariance violation in the ferm
onic sector of the extended standard model. The len
change is caused by a modified kinetic energy term (d jk

12Ejk8 )(1/2m)pj pk that enters the kinetic energy term of th
Hamiltonian for the free electron.Ejk8 52cjk2 1

2 c00d jk ,
wherecmn is a Lorentz tensor originating from the standa
model extension. The calculation proceeds using a Bloch
satz for the wave function of the valence electrons with
lattice periodic function given by a Fourier series. The cry
tal adjusts its geometry such as to minimize its total ene
In that way, Lorentz violation in the electrons’ equation
motion affects the length of an electromagnetic cavity tha
made from the crystal, and thus the resonance frequency
cavity made from the material. As a main result of this pap
there is thus a method to measure thecmn in cavity tests of
Lorentz violation.

Comparing cavities made from different materials, it
possible to separate the effect connected tocmn from Lorentz
violation in electrodynamics, that also affects the resona
frequency of cavities. Under some assumptions that hel
separate the electrodynamic and the electronic terms, alre
performed experiments@9,14,15# imply constraints onc(XY)
andcXX2cYY at the 10214 level, and oncXX1cYY22cZZ at
the 10212 level. This is to our knowledge the only prese
experimental constraint on the components ofcmn . We dis-
cuss possible setups for experiments that can obtain sep
bounds without using these assumptions, and obtain res
on more components ofcmn . Future experiments on Eart
and in space promise increased sensitivity up to a par
1018.

In Appendix A, we briefly discuss the case of spi
polarized matter. An additional contribution to the leng
6-12
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change arises from a spin-dependent termF jkl8 (1/2m)pj pks
l

also originating from the standard model extension. This
lows to deduce limits onF jkl8 from experiments using a spin
polarized cavity material, at least in principle.

Our model of the solid state could be improved by us
material specific values for the Fourier coefficients of t
single electron wave function. Since our model Fourier
efficients already satisfy the symmetry requirements fo
realistic wave function, this might result in relatively mino
corrections for the length change. A check~maybe for a
simple material!, however, might be worthwhile. Most im
portantly, however, a dedicated experiment will be p
formed to obtain more complete and/or stronger limits
Lorentz violation in the electrons’ equation of motion. Cav
ties made from crystalline sapphire and fused quartz
ready to be implemented.
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APPENDIX A: SPIN-POLARIZED MATERIALS

For a spin-polarized material, an additional contributi
to the geometry change arises from a spin-dependent ter
the nonrelativistic single-electron Hamiltonian of the SM
Eq. ~3!, that is given byF jkl8 . That means, from experimen
using cavities made from spin-polarized materials, a limit
F jkl8 can, at least in principle, be deduced. This is interest
since many degrees of freedom ofF jkl8 are not yet fixed
experimentally. In this appendix, we estimate the effect a
the level of sensitivity that can be expected for such an
periment.

1. Hamiltonian

If the average of the spin expectation values is nonze
the spin-dependent terms contribute to the Lorentz-viola
correction to the Hamiltonian. We still assume a vanish
average helicity, Eq.~22!, for all electrons. Thus,

^dh&5mc2Bj8(
a51

N

^~sa! j&1
1

m
Ei j8 (

a51

N

^~pa! i~pa! j&

1
1

m
F jkl8 (

a51

N

^~pa! j~pa!k~sa! l&. ~A1!

We assume that a fractionh i of the totalN electrons have
their spin 1

2 polarized parallel toxi . The other electrons ar
assumed to be unpolarized. The average of the spin exp
tion values is then given by

Sl[
1

N (
a

^~sa! l&5
1

2
h l . ~A2!

For the last term of Eq.~A1!,
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a51

N

^~pa! j~pa!k~sa! l&5
1

2
h l (

a51

N

^~pa! j~pa!k&. ~A3!

Therefore,

^dh&5mc2
N

2
Bj8h

j1
1

m S Ei j8 1
1

2
Fi jk8 hkD (

a51

N

^~pa! i~pa! j&.

~A4!

2. Geometry change

The termmc2NBj8h
j /2 contained in the Hamiltonian is

independent from the crystal geometry and does, theref
not lead to a geometry change. The second term that is
portional to the average of̂pipj& over all electrons, how-
ever, leads to a geometry change, that can be calculate
analogy to the discussion in the main parts of this paper.
can overtake the result, Eq.~69!, for the geometry change i
we replaceEi j8 by Ẽi j8 5Ei j8 1 1

2 Fi jk8 hk.
The sensitivity of the cavity geometry toF jkl8 is thus given

by BGJ as well ashk. The magnitude of the latter can b
estimated as the ratio of the number of spin-polarized e
tronsnB,u to the total number of electronsNe,u per unit cell,
uhu5nB,u /ne,u . In a saturated ferromagnetic material, e.
iron at a magnetic field of 1.7 T,nB,u'2.2 @42# spins are
polarized per unit cell, souhu is of order unity.~Note that
nB,u can be as high as.10 for Dysprosium.! Therefore, the
sensitivity of the cavity length~and thus, its resonance fre
quency! to F jkl8 is comparable to the sensitivity toEjk8 .

3. Possible experiments

If the cavity is made from a spin-polarized solid, i.e.,
magnetized ferromagnetic material, the cavity length wo
depend onEi j8 1Fi jk8 hk/2. That means, from a measureme
of the resonance frequency of such a cavity, a limit onFi jk8
could be derived, provided that separate limits onEi j8 are
known from previous experiments using one of the meth
discussed above. However, note that the systematics of
an experiment are largely unknown. The selection of mat
als suitable for building stable cavities is a highly nontriv
discussion of the experimental systematics, some of wh
are far from obvious. Because of the manifold effects co
nected to magnetization~e.g., magnetostriction!, an experi-
ment using a magnetized cavity could suffer from vario
systematic effects, so our discussion is a bit speculative
theoretical complication is that practical ferromagnetic ma
rials are usually alloys~such as AlNiCo!, whereas the theory
presented above is directly applicable for crystals only.

For such a measurement ofFi jk8 , one could use a cavity
made from a permanent magnetic material. The direction
the spin polarization with respect to the cavity axis det
mines the components ofFi jk8 which dominate the experi
ment. A rotation of the cavity would modulate th
Fi jk8 -induced frequency shift. The corresponding time dep
dency of the cavity resonance frequency would be the sig
for a nonzeroFi jk8 . It could be beneficial to use solely th
Earth’s rotation to avoid possible systematics associated
6-13
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a magnetized cavity rotating in the Earth’s magnetic fie
Magnetic shielding will probably also be necessary. If t
frequency stability of a cavity made from a suitable mag
tized material would be of the same order as the stab
achieved with quartz or sapphire cavities, limits onFi jk8 of
order 10215 could be achieved.

APPENDIX B: NOTATION CONVENTION IN ELASTICITY
THEORY

For obtaining the material specific values of the sensi
ity tensor Babcd, the compliance tensormabcd has to be
known. The relation between stresss i j and strainedc is
given as

s i j 5l i jkl ekl . ~B1!

In engineering, it is common to replace this by a s
dimensional matrix equation

s5S•e, ~B2!

where~Ref. @34#, p. 445!

s5~sxx ,syy ,szz,syz ,szx ,sxy!, ~B3!

e5~exx ,eyy ,ezz,2eyz,2ezx,2exy!, ~B4!

and

S5S l1111 l1122 l1133 l1123 l1131 l1112

l2211 l2222 l2233 l2223 l2231 l2212

l3311 l3322 l3333 l3323 l3331 l3312

l3211 l3222 l3233 l3223 l3231 l3212

l3111 l3122 l3133 l3123 l3131 l3112

l1211 l1222 l1233 l1223 l1231 l1212

D .

~B5!

This is called the Voigt convention in the literature@37#, pp.
604–609. The matrixS is symmetric, it thus contains at mo
21 independent elements. The symmetry of the crystal
duces the number of independent elements. For example
matrix for cubic symmetry has three independent elemen

S5S S11 S12 S12 0 0 0

S12 S11 S12 0 0 0

S12 S12 S11 0 0 0

0 0 0 S44 0 0

0 0 0 0 S44 0

0 0 0 0 0 S44

D . ~B6!

For trigonal symmetry, there are six,
11600
.

-
y

-

-

e-
the
,

S5S S11 S12 S13 S14 0 0

S12 S11 S13 2S14 0 0

S13 S13 S33 0 0 0

S14 2S14 0 S44 0 0

0 0 0 0 S44 S14

0 0 0 0 S14 S66

D , ~B7!

where

S6652~S112S12!. ~B8!

By inverting S one obtains the compliance matrixC that
satisfiesS•C51, where1 is the six-dimensional unit matrix
C enters the equatione5C•s between the stress and stra
6-vectors Eqs.~B3! and ~B4!. On the other hand, the com
pliance tensormabcd enters the relationship between th
stress and strain tensors,eab5mabcdscd . Therefore, the
compliance tensor is related to the compliance matrix by

C5S m1111 m1122 m1133 2m1123 2m1131 2m1112

m2211 m2222 m2233 2m2223 2m2231 2m2212

m3311 m3322 m3333 2m3323 2m3331 2m3312

2m3211 2m3222 2m3233 4m3223 4m3231 4m3212

2m3111 2m3122 2m3133 4m3123 4m3131 4m3112

2m1211 2m1222 2m1233 4m1223 4m1231 4m1212

D .

~B9!

The compliance and elasticity matrices for cubical cryst
have the same symmetry; for trigonal crystals, the symme
of the compliance matrix is similar to the one of the elastic
matrix, with the exception thatC665

1
2 (C112C12). The com-

pliance tensor elementsmabcd are obtained from the tabu
lated elements of the elasticity matrixS by inverting the
elasticity matrix and reading of the tensor elements from
~B9!.

APPENDIX C: SIGNAL COMPONENTS FOR
LABORATORY EXPERIMENTS WITH TURNTABLE

Here, we give the full signal components caused by L
entz violation in the electrons’ equation of motion in th
laboratory frame for a cavity rotated, using a turntable, at
angular frequencyv t , assuming a material of trigonal o
higher crystal symmetry, i.e., the sensitivity matrixB is of
the form Eq.~82! or simpler. The rotation axis is fixed to
point vertically. We use a turntable time scalet t defined such
that t t50 at any one instant when the cavity is pointing
the x direction of the laboratory frame.

We use two reference frames, one sun-centered cele
equatorial reference frame and one laboratory frame. As
fined in Ref. @23#, the sun-centered frame has theX axis
pointing towards the vernal equinox~spring point! at 0 h
right ascension and 0° declination, theZ axis pointing to-
wards the celestial north pole (90° declination! and theY
axis such as to complete the right-handed orthogo
dreibein. Earth’s equatorial plane lies in theX–Y plane; its
6-14
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orbital plane is tilted byh.23° with respect to the latter
The time scaleT50 when the sun passes the spring poi
e.g., on March 20, 2001 at 13:31 UT.

The laboratory frame has thex axis pointing south, they
axis east, and thez axis vertically upwards. The laborator
time scaleT% 50 when they and theY axis coincide.

The signal derivation starts from the symmetrized ten
c(mn) given in the sun-centered celestial equatorial refere
frame, which is suitable for expressing the tensor becaus
is inertial on all time scales involved in terrestrial expe
ments. Toc(mn) , we first apply a Lorentz boost to first orde
in b % .1024, the velocity of Earth’s orbit,

bW % 5b %S sinV %T

2cosh cosV %T

2sinh cosV %T
D , ~C1!

whereV % .2p/1 yr is the angular frequency of Earth’s o
bit. We neglect the smaller velocity 0,bL&1.531026 due
to Earth’s rotation in order not to complicate the signal co
ponents below further. Subsequently, application of the ro
tion matrix

R5S cosx cosv %T% cosx sinv %T% 2sinx

2sinv %T% cosv %T% 0

sinx cosv %T% sinx sinv %T% cosx
D ,

~C2!

where x is the geographical colatitude, andv %

.2p/23 h 56 min Earth’s rotation angular frequency, lea
to the tensorcmn as expressed within the laboratory fram
Another rotation around thez axis using the rotation matrix

Rt5S cosv tt t sinv tt t 0

2sinv tt t cosv tt t 0

0 0 1
D ~C3!

leads to the quantities within the rotating turntable fram
which are then decomposed according to Eq.~8!. The time
scale t t50 when the cavity axis is parallel to thex axis.
Insertion of the results into Eq.~74! gives the cavity length
change, and thus the frequency change that is given bel

For compact notation, we define the abbreviations

v~a,b,c!5av t1bv % 1cV % , ~C4!

f~a,b,c!5av tt t1bv %T% 1cV %T. ~C5!

We give the signal components for the two most interest
cavity constructions: A cavity with the resonator axis poi
ing parallel to the crystals’sc axis ~which is currently the
most familiar cavity type!, and a cavity with the resonato
axis parallel to the crystal’sa or b axis ~which gives sensi-
tivity to the c(0i ) components to first order inb % , the Earth’s
orbital velocity!. The signals are expressed as a Fourier
ries
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5C~0,0,0!1 (

a,b,c
@S~a,b,c!sinf~a,b,c!

1C~a,b,c!cosf~a,b,c!# ~C6!

with coefficientsS(a,b,c) andC(a,b,c); the dc component
C(0,0,0) is not included in the equations below, as it is n
measurable.

1. Cavity axis parallel to a axis

We use the abbreviationsBA5B111B1222B13 and BB
5B112B12. The signal consists of 18 frequenciesv(a,b,c)
with

C~0,1,0!52BAc(XZ) cosx sinx,

S~0,1,0!52BAc(YZ) cosx sinx,

C~0,2,0!52~1/4!BA~cXX2cYY!sin2 x,

S~0,2,0!52~1/2!BAc(XY) sin2 x,

C~1,22,0!52B14c(XY) cos
x

2
sin3

x

2
,

S~1,22,0!5B14~cXX2cYY!cos
x

2
sin3

x

2
,

C~1,21,21!52B14b % sin2
x

2
sin

h

2 S c(TY) cos
h

2

1c(TZ) sin
h

2 D ,

S~1,21,21!52
1

2
B14b %c(TX) sin2

x

2
sinh,

C~1,21,0!5B14c(YZ)~112 cosx!sin2
x

2
,

S~1,21,0!5B14c(XZ)~112 cosx!sin2
x

2
,

C~1,21,1!5B14b % cos
h

2
sin2

x

2 S c(TZ) cos
h

2

2c(TY) sin
h

2 D ,

S~1,21,1!52
1

2
B14b %c(TX) sin2

x

2
sinh,

C~1,0,21!52~1/2!B14b %c(TX) cosh sinx,

S~1,0,21!5~1/2!B14b %c(TY) sinx,

C~1,0,0!50,
6-15
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S~1,0,0!52~1/4!B14~cXX1cYY22cZZ!sin 2x,

C~1,0,1!52~1/2!B14b %c(TX) cosh sinx,

S~1,0,1!52~1/2!B14b %c(TY) sinx,

C~1,1,21!52B14b % cos2
x

2
cos

h

2 S c(TZ) cos
h

2

2c(TY) sin
h

2 D ,

S~1,1,21!52
1

2
B14b %c(TX) cos2

x

2
sinh,

C~1,1,0!5B14c(YZ) cos2
x

2
~2 cosx21!,

S~1,1,0!52B14c(XZ) cos2
x

2
~2 cosx21!,

C~1,1,1!5B14b % cos2
x

2
sin

h

2 S c(TY) cos
h

2

1c(TZ) sin
h

2 D ,

S~1,1,1!52
1

2
B14b %c(TX) cos2

x

2
sinh,

C~1,2,0!5~1/2!B14c(XY)~11cosx!sinx,

S~1,2,0!52B14~cXX2cYY!cos3
x

2
sin

x

2
,

C~2,22,0!5
1

2
BB~cXX2cYY!sin4

x

2
,

S~2,22,0!52BBc(XY)sin4
x

2
,

C~2,21,0!52BBc(XZ) cos
x

2
sin3

x

2
,

S~2,21,0!522BBc(YZ) cos
x

2
sin3

x

2
,

C~2,0,0!52~1/4!BB~cXX1cYY22cZZ!sin2 x,

S~2,0,0!50,

C~2,1,0!522BBc(XZ) cos3
x

2
sin

x

2
,

S~2,1,0!522BBc(YZ) cos3
x

2
sin

x

2
,

11600
C~2,2,0!5
1

2
BB~cXX2cYY! cos4

x

2
,

S~2,2,0!5BBc(XY) cos4
x

2
.

The signal for a cavity parallel to the crystalsb axis can be
obtained from these equations, if thex andy axis are inter-
changed.

2. Signal for a cavity parallel to the c axis

The cavity is oriented with its axis parallel to thext axis.
We introduce the abbreviationsBC522B311B321B33 and
BD5B322B33. @For the trigonal case, Eq.~82!, B32
5B31/3, for isotropic materials,B325B31.] We have seven
signal frequencies with the amplitudes

C~0,1,0!52BCc(XZ) cosx sinx,

S~0,1,0!52BCc(YZ) cosx sinx,

C~0,2,0!52~1/4!BC~cXX2cYY!sin2 x,

S~0,2,0!52~1/2!BCc(XY) sin2 x,

C~2,22,0!52
1

2
BD~cXX2cYY!sin4

x

2
,

S~2,22,0!5BDc(XY) sin4
x

2
,

C~2,21,0!522BDc(XZ) cos
x

2
sin3

x

2
,

S~2,21,0!52BDc(YZ) cos
x

2
sin3

x

2
,

C~2,0,0!5~1/4!BD~cXX1cYY22cZZ!sin2 x,

S~2,0,0!50,

C~2,1,0!52BDc(XZ) cos3
x

2
sin

x

2
,

S~2,1,0!52BDc(YZ) cos3
x

2
sin

x

2
,

C~2,2,0!52
1

2
BD~cXX2cYY! cos4

x

2
,

S~2,2,0!52BDc(XY) cos4
x

2
.
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@23# V.A. Kostelecký and C.D. Lane, Phys. Rev. D60, 116010

~1999!.
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