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Superfield realizations of Lorentz andCPT violation
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Superfield realizations of Lorentz-violating extensions of the Wess-Zumino model are presented. These
models retain supersymmetry but include terms that explicitly break the Lorentz symmetry. The models can be
understood as arising from superspace transformations that are modifications of the familiar one in the Lorentz-
symmetric case.
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I. INTRODUCTION ducing Lorentz-violation into supersymmetric theories. Most
theories incorporate the Poincasgmmetry at the outset.

Spacetime symmetries have played an important role if his assumption is well-justified on the basis that no viola-
the formulation of theories of fundamental physics for thetions have ever been observed experimentally. However, in
last hundred years. The special and general theories of relight of the argument just made that supersymmetry is an
tivity are founded on underlying spacetime symmetries, an@pproximate spacetime symmetry, it seems appropriate to
the most popular speculations about the possible advances #@nsider the possibility that there is a violation of the other
physics involve further spacetime symmetries such as supegpacetime symmetries at some level. Supersymmetry can be
symmetry[1]. If supersymmetry does in fact describe nature broken within the context of local field theory. Lorentz and
then it is clear from experimental observation that this is & PT violation might arise from nonlocal interactions in a
symmetry that must be broken. more fundamental theory. One approach is to use a field

Since spacetime symmetries are central to fundamentaheory treatment of Lorentz ar@P T-violation that incorpo-
particle physics, it is important to consider the consequencei@tes their effects by adding explicit terms to a symmetric
of all possible ways of breaking them. Broken supersymmelagrangian and the resulting field theories should be re-
try has been extensively studied because of the experimentgigrded as effective theories only. Problems with microcau-
necessity of splitting the masses of the observed particlesality are addressed in the underlying fundamental theory at
from their supersymmetric partners. The Lorentz symmetryjhe energy scales at which the effective theory breaks down
requires that there be no preferred direction in space and ri®]. The experimental implications of Lorentz and
preferred frame. Whether this symmetry is exact or broken i€ P T-violation have been explored extensively in recent
a question for experiment. years|[6].

It is usually considered desirable for a broken symmetry In Ref. [2] we examined the possibility that one could
to arise spontaneously since then certain properties of theonstruct a Lagrangian that respects a supersymmetry alge-
theory that result from the underlying symmetry are retainedbra, but that has terms that explicitly violate the Lorentz
Furthermore, it is expected that any symmetry that is apsymmetry. Since these models contain Lorentz-violation,
proximately valid must have some fundamental realizationthey fall outside the usual classification of supersymmetry
and any breaking should arise spontaneously. Presumably tiégebras[7]. The conventional supersymmetry algebra is
explicit supersymmetry breaking terms that are added to thgiven by a transformatiofinvolving a two-component Weyl
models used in phenomenological supersymmetric theoriegpinorQ) between bosons and fermions that upon anticom-
such as the minimal supersymmetric standard model arise imutation yields the translation operator
a more fundamental theory from some spontaneous breaking

of supersymmetry. Nevertheless, these low-energy super- [Q.P.]=0
symmetric theories can be viewed as effective theories. Ol= 24P 1
If one believes in electroweak-scale supersymmetry, one {Q.Qt=20"P,,. @

has to accept that a spacetime symmetry is broken. From the a5 shown that there are indeed simple extensions of the
point of view of avallab_le experiment, this breaking Seems tqyess-Zumino modeJ8] that respect a similar algebra, but
be a very large effect; in fact, the supersymmetry breaking igpat have extra terms that explicitly violate the Lorentz sym-

so large that no superpartners have even been found. HOWsetry characterized by the generators of boosts and rota-
ever, compared to the fundamental Planck scale, the supgtz o
[} nv

symmetry breaking scale is very small, and supersymmetry

is more appropriately viewed as an approximate symmetry. [P..P,]=0
Indeed major effort has gone into trying to understand why _
the breaking of supersymmetry is so small compared to the [PuM,o]=1(7,,Po= 17,6P,)
Planck scale. .
Recent articlef2—4] have studied the possibility of intro- My Mo ] =107, o= 706M i
- nMpM V(T+ ﬂMUM Vp) . (2)
*Electronic address: berger@indiana.edu The commutation relations in E¢R) form the Poincarel-
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gebra, and when the supersymmetric generators are includedhere the superspace integrals elegantly project out the

as in Eq.(1), the result is the superPoincalgebra. Lorentz-  (9¢)(96) component of the* ® superfield in the first term,
violating models will not respect all the commutation rela- and the#d component in the second term. The result is the
tions involvingM . Wess-Zumino Lagrangian,

Two extensions to the supersymmetric Wess-Zumino
model were presented that have explicit terms containing the . i — —
Lorentz-violation. One of these models presen@®T L=0,¢" " b+ S[(0u) oY+ () oyl + F* F
whereas the other i€ PT-violating. A superspace formula-
tion for the CPT preserving theory was already presented in
Ref.[2]. In this paper we extend the superspace formulation
to theC P T-violating model. We show that the Wess-Zumino

1 11—
FM ST+ P~ S SU |+ O[T+ AR

model and its two extensions all admit a description in terms ~ — (i) — &* (Yih)]. (7)
of transformations on superspace. In addition, we present the o o o
two extended models in an alternative form involving two- The actionds®(x, 6,6) = —i(eQ+ Q) P(x, 6, 6) of the su-

component Weyl spinors as opposed to the four-componergersymmetry generatof@ and Q
Majorana spinors used in Rd2].

The usual Wess-Zumino Lagrangian is elegantly derived 5S<D(x,9,§)=[e“aa+€?‘+i Bcr“:aﬂ
in the framework of superspaf®@]. A superfield®(x, 0, 6) is = —
a function of the commuting spacetime coordinatésnd of —i€a”09,]D(x,0,06), ®)

four anticommuting coordinate® and 6, which form two-  ransforms the Lagrangian into itself plus a total derivative.
component Wiyl spinors. A chiral superfield is a function of ¢ shown in Ref[2], Lorentz-violation can be introduced
yF=x*+i0c*6 and 6, i.e. into the Wess-Zumino Lagrangian via the substitutigpn
o \/_ —d,t kMV&”,
D (x,0,0)=d(y) +V204(y)+(660) F(y),
Ly orentz= (&M+ k,uvav) d* (9" + kﬂp&p) ¢
= $(X)+100"0d,,$(X) i _ L
+ L0t K@V WL G (3,4 K, 0 Yo g

1 _
= 7(00)(86)01h(x) + V26(x) -
+ P FAmLGF+ ¢* T == 3 4¢]

+iN200%0600,p(x)+(00) F(x)  (3) + o[ P2F+ * 2F* — p(hip) — * (hih)]. 9

where one can define the usual real components of the conm this equationk,,, is a real, symmetric, traceless, and di-
plex scalar components as mensionless coefficient determining the magnitude of
Lorentz-violation. The coefficientk,, transforms as a
1 . 1 . 2-tensor under observer Lorentz transformations but as a sca-
¢= E(A*"B)v F= E(F_'G)- (4)  lar under particle Lorentz transformatiof0, 11.
An extension of the Wess-Zumino model that violates
CPT in addition to containing Lorentz-violation was intro-

The conjugate superfield is duced in Ref[2]. The Lagrangian for the model is

D*(x,0,0)=d* (2)+\204(2)+ (00) F* (2), i
Lepr=[(d,—ik,)¢* [ (*+ik*)p]+ 5{[(@
= ¢* (X) =i 0003 ,,¢* (X) _ L

+ik,) 1o g+(9,—iK,) Plor g+ F* F.

1 J—
—2(00)(69)D¢*(X)+ V20y(X) (10

Here the Lorentz andC P T-violation is controlled byk,,,
which is a real coefficient of mass dimension-one transform
_ as a four-vector under observer Lorentz transformations but
where z#=x*—ifg"§=y**. We have taken the opportu- s unaffected by particle Lorentz transformatioff0,11].

nity to reexpress the superfields in terms of Weyl spinors as)nlike the coefficienk . the quantityk,, has an odd num-

+iV200%060,(x)+(06)F* (x) (5)

uv

opposed to the use of Majorana spinors in Ref. _ ber of four-indices so it violate§ PT. It has been shown on
The Lagrangian can be derived from the superspace intgquite general grounds tha P T-violation implies Lorentz
gral violation [12,13. The Lagrangian for the model with the

CPT-violating coefficientk,, can be obtained from the ki-

1 1 i Zur o :
f d40<I>*<D+f d26) =md2+ = gd3+H.c. 6) netic part of the V\(esg Zumino ngranglan in Eq. with the
2 3 appropriate substitution,—d,,* ik, .
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Il. MODIFIED SUPERFIELDS Consider now theC P T-violating model in Eq.(10). De-

The two Lorentz-violating models can be understood inflne modified superfields by the substitutions

the superspace formalism in a way that parallels that of the

ordinary Wess-Zumino model. Define superfields Pul(x,0,0)=P(x,0,0,9,—3,11K,)

®y(X,0,0)=D(X,0,0;0,—d,+K,,0") = $(X)+ 00 0(id,—K,) $(X)
= P(X4) TV20%(X,) +(00)F (x4 ), + %(60)(6—0)(ir?#—kﬂ)(ia“—k“m)(x)
= $(X) 1 60%6(0,,+ K,,0") b(X) +\200(X) + 200 06(i 0 — k) (X)
- %(00)(0_0)((9“+ K., +(00)F(x), (16)
and

X (9 +KPd,) (X)+\20(x)

FiN200700(3,+ K, 0" h(X) + (00)F(x), K (,0,0)=D*(x,0,6;0,—7,~ik,)

(0 = 5% (X)— B0 B9, +K,) ¥ (X)
and L
D*(x,0,0)=D*(X,0,0:9,—3,+k,,3") +2(00)(00)(1,+K,) (19 +k) ¢* (X)
y VM P V)T 0, 0,0,—0, nv
= §* (X2) +\200(x )+ (00)F* (x_) +\200(X)+ V200 00(19,+K,) p(X)
— +(06)F* (). 1
= ¢* (X) =100 0(9,+K,,0") ¢* (X) (OOF ) 10
1 The infinitesimal supersymmetry transformation acting on a
- Z(aa)(gg)(alu+ K,ind") superfieldS - - B
X (3 4KH9,) §* (X) +209(X) OsDi(X,0,0) =["0at €u0" +100Me(d, +1K,)
P — N
+i\2600760(3,+K,,0") P(x) ~leat( ‘?M__'ku)]_q)k(x’ 0,0) |
+(86)F* (x) (12 =[€*(91k,0"0)a+ €(9—k, 007
where +ifo*ed,~iea”0,]D(X,0,0),
(18)
X“=x1+i 00" 6= ik* 00,6, (13)

closes by construction on real superfield&=S. However,
are shifted coordinates that take the placeyéfand z#. it does notclose on the superfield®, and @} as can be
Under aCPT-transformation the chiral superfiel#t, and ~ €xplicitly checked by a short calculatidrthe obstruction to
the antichiral superfield®} transform into themselves just as defining a supersymmetry generator on chiral superfields was
the usual superfield® and ®* do. The Lagrangian in Eq. already pointed out in Ref2]. The objectsb, and @} are
(9) can be obtained by the same superspace integral in E§Onjugates and can be used to construct real superfields.
(6) with the superfieldsb, and®} substituted in the place ince the supersymmetric transformation in Etp) closes

of ® and®* [see Eq(29) below]. on all real superfields, it closes @by @\ .
As argued in Ref[2], it is clear that the Lagrangian in Eq.
(9) transforms into a total derivative under the supersymmet- Ill. SUPERSPACE TRANSFORMATIONS

ric transformation N
Now we proceed to show how the Lorentz-violating ex-

i @y 4 o el - v tensions of the Wess-Zumino model can be understood as
0sPy(X,0,0)=[ €°0ut €,0" + 100" €5, K, d") transformations on the superfields. Define
—iead”0(d,+K,,0")]Py(X,0,0) (14 _
X=(0c"0)d,, (19
since it is simply the usual supersymmetric transformation in
Eq. (1) with the substitutiony,,— d,+k,,,d". The superalge-
bra generated b® andP,=id,, is Application of the supersymmetric transformation in E8) to

o the chiral superfieldb, generates components in the antichiral su-
[P,.Q]=0, {Q,Q}=20"P,+2k,,0c"P". (15  perfield®;, and vice versa.
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Y=k, (05"6)3", (20)
K=k, (00"0), (22)
so that
. _ — 1 .
UXEeIX=1+|(6aﬂ0)aM—Z(ee)(aa)m, (22
U,=eY=1+ik,,(05%"8)5"
1 _

— 7KK (00)(00)73,, (23)

_  Kk? _

T,=e X=1-k,(05"0)+ Z(ea)(ee).
(24

SinceX andY are derivative operators, the actionld§ and

U, on a superfield can be understood as a coordinate shift.
In the customaryLorentz symmetrigcase involvingJ, one
has

U,S(x,6,0)=8(y,6,6), (25)

i.e. the spacetime coordinat# is shifted toy#. The chiral
superfieldd)(x,a,?) is a function ofy* and 6 only, so it
must then be of the fornti)(x,&,?):UX‘If(x,e) for some
functionW. The chiral superfiel@(x,&,?) does not depend
on Eexcept through the coordinage*. As is well-known,

the kinetic terms of the Wess-Zumino model can be ex-

pressed as
f d*6[Ux W (x,0)* J[ULP (x,0)]
=f d*0d* (z,0)d(y, 0). (26)

The supersymmetric models with Lorentz-violating terms

PHYSICAL REVIEW D68, 115005 (2003

1 2

1
3
qu)y'i‘ §g<I)y+ H.c.

J d40d>;‘d>y+jd20{

=f d*o[UE * (U, P]

+f d?e ! (29

Smd?+ 1g<I>3‘+H c
2 3 e

For the CPT-violating model the superfields have the
form

D(X,0,0)=T U, (X, 6), (30)
¥ (x,0,0)=TrUF¥*(x,6)
=T U 1W*(x,6). (31)

It is helpful to note that the transformatiah, acts on¥ and
its inverseU, * acts on¥*, while the same transformation
Ty acts on both" andW* (rather than its invergeA con-
sequence of this fact is that the supersymmetry transforma-
tion will act differently on the components of the chiral su-
perfield and its conjugate as described in RER].
Specifically the chiral superfiel®, is the same a® with
the substitutiond,,—d,+ik, whereas the antichiral super-
field ®f is the same a* with the substitutions,—d,,
—ik,.

TﬁeCPT—vioIating model in Eq(10) can then be repre-
sented in the following way as a superspace integral:

f d40<1>;<1>k=fd4a<b*e—2*<cb. (32

The projection factore 2% commutes through the super-

fields, but its placement in E¢32) is suggestive of the cou-
pling of a chiral superfield to a gauge fidldnlike the
CPT-conserving model, the#p)(66) component ofd* d

no longer transforms into a total derivative. A certain com-
bination of components ab* ® does transform into a total
derivative, and this combination can be understood as being

can be expressed in terms of superfields in an analogous wéiie (06)(66) component of®} ®,. Therefore, we have

Consider the superfields

®,(x,0,0)=U,U,¥(x,0), (27)
D} (x,0,0)=UFUFV*(x,0)
=U, U M (%, 0). (28

Applying Uy, to the chiral and antichiral superfields merely
effects the substitution,—d,+k,,d". SinceU, involves a
derivative operator just ad,, the derivation of the chiral
superfield®, can be understood as a function of the vari-
ablesx® and # analogous to how, in the usual cade,is a
function of the variableg* and #. The Lagrangian is given
by

achieved a superspace formulation of @B T-violating su-
persymmetric model that was first described in R2f.

As mentioned above, the supersymmetry transformation
does not close for a chiral superfield. The components of the
standard chiral supermultiplét and its conjugateb™ each

2The kinetic terms of a supersymmetric gauge theory for which
the kinetic terms can be expressed as
f d*6p* 9V (33

whereV is a vector superfield, and the ordinary derivativgsare
replaced bygaugecovariant derivativeD ,=d, *igv, whereg is

the gauge coupling and, is the component of/ multiplying

f0a* 6. The sign in the covariant derivative is different for the chiral
and antichiral superfields.
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transform into themselves underGP T-transformation(as It is clear that adding Lorentz-violation in this fashion can be
opposed to a parity transformation which interchanges th@mmediately extended to encompass supersymmetric gauge
components of the supermultiplet with those of its conju-theories as well.

gate. On the other hand, fab, and®} , the CPT transfor- The CPT-violating model, however, does not involve
mation takesk,— —k,,, so that the chiral and antichiral su- adding a derivative operator. A certain combination of the
perfields®, and®§ mix under it. components of thed*d superfield does in fact transform
into a total derivative. This combination can be projected out
IV. CONCLUSIONS of the vector superfield by applying the operagor<«(?"?)

Extensions of the Wess-Zumino model that contain termé”lnd then performing Fhe usu:_;\I projection of t_l'%I(%)
. component. One obtains precisely tG® T-violating model
that violate the Lorentz symmetry but preserve the super: .
: S ; . presented in Ref2].
symmetric part of the superPoincaakyebra exist. The sim-

. . . . The conventional Wess-Zumino model can be described
plest extension preserv€P T and is obtained by the substi- . . L
. v e . o in terms of superspace transformations and projecting out the
tution 4,—d,+k,,d". Since this substitution replaces a

derivative operator with another derivative operator, th highest component of the result. It was shown that the two
ative op . P ' eLorentz-violating models can be understood in terms of simi-
(66)(66) component of a vector superfield and ¥ com- |5, transformations on the superfields.

ponent of functions of a chiral superfield still transform as
total derivatives. The projection from superfields to compo-
nents proceeds in the usual way. In fact one can introduce the

new coordinate” = x*+i g+ 6+ik** 6,6 and obtain the This work was supported in part by the U.S. Department
chiral superfield as the most general function of thad 6. of Energy under Grant No. DE-FG02-91ER40661.
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