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Kaon matrix elements andCP violation from quenched lattice QCD: The 3-flavor case
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We report the results of a calculation of theK→pp matrix elements relevant for theDI 51/2 rule ande8/e
in quenched lattice QCD using domain wall fermions at a fixed lattice spacinga21;2 GeV. Working in the
three-quark effective theory, where only theu, d, and s quarks enter and which is known perturbatively to
next-to-leading order, we calculate the latticeK→p and K→u0& matrix elements of dimension six, four-
fermion operators. Through lowest order chiral perturbation theory these yieldK→pp matrix elements, which
we then normalize to continuum values through a nonperturbative renormalization technique. For the ratio of
isospin amplitudesuA0u/uA2u we find a value of 25.361.8 ~statistical error only! compared to the experimental
value of 22.2, with individual isospin amplitudes 10%–20% below the experimental values. Fore8/e, using
known central values for standard model parameters, we calculate (24.062.3)31024 ~statistical error only!
compared to the current experimental average of (17.261.8)31024. Because we find a large cancellation
between theI 50 and I 52 contributions toe8/e, the result may be very sensitive to the approximations
employed. Among these are the use of quenched QCD, lowest order chiral perturbation theory, and continuum
perturbation theory below 1.3 GeV. We also calculate the kaonB parameterBK and find BK,MS(2 GeV)
50.532(11). Although currently unable to give a reliable systematic error, we have control over statistical
errors and more simulations will yield information about the effects of the approximations on this first-
principles determination of these important quantities.

DOI: 10.1103/PhysRevD.68.114506 PACS number~s!: 11.15.Ha, 11.30.Er, 12.38.Gc, 12.39.Fe
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I. INTRODUCTION

The experimental observation ofCP violation in kaon de-
cays@1–5# presents a continuing challenge to theoretical c
culations within the standard model and its possible ext
sions. The standard model allowsCP violation through the
single avenue set down by Kobayashi and Maskawa alm
30 years ago@6#, but a quantitative comparison betwee
theory and experiment requires the calculation of we
defined electroweak interactions involving quarks, when
quarks are bound into kaons and pions. These ‘‘weak ma
elements’’ can be calculated from first principles using
techniques of lattice QCD, although many technical diffic
ties have impeded the realization of this goal. A large num
of analytical and phenomenological techniques have a
been employed to estimate these matrix elements and t
are reviewed in@7#. The work described in this paper repr
sents a complete calculation of the matrix elements, us
the approximations described below, that determines the
plitudesA0 andA2 which describe two pion decays of kaon
both their magnitudes, and theirCP-violating phases. We
also calculate the kaonB parameterBK which enters stan-
dard model predictions for theCP violation effects first seen
by Cronin and Fitch@1#.

A major approximation made in this work is the use
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quenched lattice QCD in the evaluation of the matrix e
ments and the determination of their normalizations. T
truncation of the full theory reduces the required compu
power markedly, but is an uncontrolled approximation.
most cases where quenched results are compared with
perimental values, agreement is at or better than the;25%
level, but there is no convincing argument that such
agreement must be uniformly good for all low-energy ha
ronic phenomena. It should be stressed that, if the neces
computer power were available to generate an ensembl
dynamical fermion lattices, the numerical work and analy
in this paper could be easily redone, yielding values with
the approximation of quenching.

Almost all attempts to calculate the matrix elemen
needed forCP violation using lattice QCD have been done
the quenched approximation. The first lattice calculations
ing Wilson fermions were unsuccessful@8,9#, primarily due
to the lack of chiral symmetry on the lattice. Staggered f
mions do provide a remnant chiral symmetry on the latt
and a calculation of the matrix elements studied here
been done@10#. To match continuum and lattice operators f
staggered fermions, perturbation theory was used@11#. Be-
cause of the large size of the one-loop perturbative cor
tions for unimproved staggered fermions, the matching int
duces large uncertainties. The current calculation u
domain wall fermions, which have controllable chiral sym
metry breaking at finite lattice spacing, and a nonperturba
renormalization technique to relate lattice quantities to
continuum.

ity,
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The electroweak physics responsible forK→pp decays
is readily described by an effective weak Hamiltonian, va
for low energy processes, which is given by four-quark o
erators multiplied by perturbatively calculable Wilson coe
ficients. In Sec. II, we give our notation for the effectiv
Hamiltonian and the operator basis we will use. We disc
both the three-quark effective Hamiltonian, whereu, d, ands
quarks can appear, and the four-quark Hamiltonian, wh
includes thec quark. The Wilson coefficients are known
both cases, although the three-quark case requires using
tinuum perturbation theory down to a scale below the cha
quark mass,mc'1.3 GeV. The SU(3)L ^ SU(3)R quantum
numbers of the operators are given, since these determ
their mixing under renormalization and their behavior in t
chiral limit. In this section we also give the relations betwe
the matrix elements we calculate and the quantitiese8 ande.

A second approximation made in this work is the use
primarily lowest order chiral perturbation theory in the d
termination of the desiredK→pp matrix elements@12#. We
evaluateK→p and K→u0& matrix elements in quenche
lattice QCD and then use lowest-order, full QCD chiral p
turbation theory to determineK→pp matrix elements. This
is reviewed in Sec. III. Thus our calculation is strictly a
evaluation of the relevant matrix elements for small qu
masses. The effects of quenching on lowest order full Q
chiral perturbation theory and the chiral limit of quench
QCD are still subjects where analytic understanding is l
ited. We address quenching effects in our results where
lytic calculations offer guidance as to the mass depende
expected in quenched amplitudes. However, in general, s
phenomena are neglected in the quenched approximation
their presence serves as a measure of the size of syste
error. Once we have determined values for theK→pp ma-
trix elements valid in the region of small quark mass,
then use the known chiral logarithms in full QCD to extrap
late to the physical kaon mass. The size of these nex
leading-order, chiral logarithms provides an indication of t
importance of the other next-to-leading-order terms wh
we do not include in our extrapolation. Terms of this typ
i.e., m2 ln(m2) wherem is a pseudoscalar mass, we will ref
to as conventional chiral logarithms. Similarm2 ln(m2) terms
also occur in the quenched theory, along with the m
singular quenched chiral logarithms@13–15# discussed in
Sec. III.

To employ chiral perturbation theory as discussed in
previous paragraph, it is important to use a lattice ferm
formulation which preserves chiral symmetry for the low e
ergy physics.~The presence of chiral symmetry also simp
fies operator mixing and renormalization, which we discu
shortly.! A major theoretical advance in this area@16# is pro-
vided by the domain wall@16–18#and overlap fermion
@19,20# formulations of lattice fermions. Here we use th
domain wall fermion formulation, which has been show
even for the quenched theory, to have small chiral symm
breaking effects for currently accessible values for the len
of the introduced fifth dimension@21,22#. In Sec. IV we dis-
cuss the features of domain wall fermions relevant for t
calculation, paying particular attention to the nonuniver
character of the chiral symmetry breaking for power div
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gent operators and the topological near-zero modes pre
in quenched calculations at finite volume. This discuss
will be important for understanding the chiral limit of ou
matrix elements and in the subtraction of power diverg
terms from them.

In Sec. V we discuss the basic parameters of our num
cal calculations. Then in Sec. VI we present further tests
the chiral properties of domain wall fermions, in particul
extending the results of@21# to the case of Ward-Takahash
identities involving power divergent operators. Here we a
determine the size of quenched chiral logarithm effects
our simulations. The numerical examples in this sect
complement the theoretical explanations in Sec. IV.

The continuum perturbation theory calculations of t
Wilson coefficients for the low energy effective Hamiltonia
have been done to next-to-leading order@23,24#. Using the
results from these calculations, we must evolve the Wils
coefficients to the scale where we have renormalized
lattice operators. This is discussed in Sec. VII and involv
some subtlety due to the matching between the Wilson c
ficients calculated in full QCD and our quenched operato
In addition, we must also incorporate perturbatively calc
lated matching factors to move from the modified minim
subtraction (MS) scheme used in the continuum to the reg
larization independent scheme used for our lattice operat

To handle the renormalization of lattice operators, we e
ploy another major theoretical advance of recent years,
nonperturbative renormalization~NPR! technique. In this
method one adopts a renormalization scheme for defin
renormalized operators that is independent of the regular
tion. Such a scheme can then be implemented in both pe
bation theory~where dimensional regularization is typical
used! and in a nonperturbative lattice calculation. This NP
approach avoids the use of lattice perturbation theory and
attendant worries about its accuracy. In principle, NPR p
mits the use of perturbation theory to be restricted to sh
distances where its validity is more certain. Of the two m
developed approaches to NPR, the Schroedinger functi
@25# and momentum-space based RI method@26#, we have
adopted the latter method since much important analyt
work for the kaon system has already been done suppor
this approach. In Sec. VIII, we discuss in some detail h
we have implemented this technique for theDS51 operators
of primary interest in this paper. This represents one of
most complicated cases where this technique has been
to date and we have only removed mixings with the dom
nant lower-dimensional operators. It is worth noting that t
technique is particularly well suited for use with domain w
fermions, since the definition of the regularization indepe
dent scheme involves off-shell quark fields. For domain w
fermions the suppression of explicit chiral symmetry brea
ing and the consequent elimination of ordera lattice spacing
errors occurs both on- and off-shell.

In Sec. IX, we discuss the precise quantities that we m
sure on the lattice to determineK→p and K→u0& matrix
elements. We have used standard ratios of lattice Gre
functions to measure these matrix elements, but the pres
of topological near-zero modes leads to preferred choices
the factors in the ratio to minimize the effects of zero mod
6-2
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The tables referred to in Sec. IX report our bare lattice val
for these quantities.

We can now use our lattice results for the bareK→p and
K→u0& matrix elements to evaluate the chiral perturbat
theory constants which determineK→pp matrix elements.
In Sec. X we discuss theDI 53/2 matrix elements, where th
chiral perturbation theory constants come directly fromK
→p matrix elements. Depending on the operator involv
these operators can vanish or be nonzero in the chiral li
We find that it is important to know the coefficients of th
conventional chiral logarithm terms from analytic calcu
tions in order to determine the chiral perturbation theory c
stants.

In Sec. XI, we perform a similar analysis of our lattic
data to determine the chiral perturbation theory constants
DI 51/2 matrix elements. This case is more subtle num
cally, since it involves the cancellation of unphysical, pow
divergent effects betweenK→p and K→u0& matrix ele-
ments in the determination of the desired physical chiral p
turbation theory constants. For one group of operators,
can check this cancellation by using the Wigner-Eckart th
rem to relateDI 51/2 constants, which involve subtraction
to DI 53/2 constants, which do not. We find the agreem
expected. The end result of our numerical determinations
the values given in Table XXXVIII. These are lattice valu
from a quenched calculation, using the formulas from ch
perturbation theory for full QCD.

In Sec. XII we discuss how to take these final latti
values and calculate physical quantities. In the spirit of
quenched approximation we take these quenched resul
an approximation for the desired full QCD quantities. In p
ticular, for K→pp matrix elements which vanish in the ch
ral limit, we take our quenched values for the slope w
respect to quark mass of these matrix elements as the v
for the slope for the full QCD matrix elements. ForK
→pp matrix elements which are nonzero in the chiral lim
the chiral limit value in the quenched theory is used as
chiral limit value in the full theory. We can then determin
physical matrix elements at the kaon mass by extrapola
in lowest order chiral perturbation theory. Since the chi
logarithms are known, we can also extrapolate including
effects of the logarithms. This is not a complete higher or
chiral perturbation theory calculation, but gives an indicat
of the size of the effects entering at next order.

In Sec. XIII we combine the matrix elements, Wilson c
efficients, nonperturbative renormalization, and central v
ues for standard model parameters to give physical value
Re(A0), Re(A2) and their ratio, which reflects theDI 51/2
rule. Figures 29, 30, and 31 show our results for the vari
extrapolations, along with the physical values. The gen
agreement with the experimental values is quite good
spite of the many approximations in the calculation. We a
report our results for the kaonB parameter,BK , at the end of
this section.

Section XIV also combines matrix elements, Wilson c
efficients, nonperturbative renormalization, and central v
ues for standard model parameters, but now the values
Im(A0), Im(A2), and Re(e8/e) are the focus. Figures 35 and 3
show Im(A0) and Im(A2) and Fig. 38 shows Re(e8/e). For
11450
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Re(e8/e), a large cancellation is occurring between individu
isospin contributions, as can be seen in Fig. 39. It is imp
tant to note that the magnitudes of each of the two individ
isospin terms are very similar to the experimental value
Re(e8/e). We would like to point out that even though i
principle lattice techniques allow a calculation ofe8/e, here
we have used experimental information regarding the pha
of e8 ande in our calculation of Re(e8/e).

Table XLIX gives our final values for the physical qua
tities Re(A0), Re(A2), Re(A0)/Re(A2), and Re(e8/e). Our con-
clusions are given in Sec. XV and the five Appendixes co
tain further details about our conventions, the decomposi
of operators into irreducible representations of SU(3L
^ SU(3)R , and other definitions used in the text.

II. GENERAL ANALYTIC FRAMEWORK

A. K\pp in the standard model

At energies below the electroweak scale, the weak in
actions can be described by local four-fermion operators
to the essentially point-like character of the vector bos
interactions for low energies. Simple charged vector bo
exchange produces current–current operators, with both
rents left-handed, of the form (q̄q8)(V2A) (q̄9q-)(V2A) . Ad-
ditional low-energy four-fermion operators arise from mo
complicated standard model processes involving loops w
heavy particles, including the vector bosons and the
quark. The naive suppression of these nonexchange op
tors, due to the large masses in the loop propagators
additional powers of the couplings, is offset somewhat by
large phase space for the loop integrals and the large lo
rithms which appear due to the disparity between GeV sc
hadronic physics and these heavy masses. The operator
uct expansion and the renormalization group provide
framework for understanding such logarithmic enhanceme
and, coupled with continuum perturbation theory, provide
way to calculate these logarithmic effects. Such calculati
yield the low-energy four-fermion operators’ Wilson coef
cients, which encapsulate the high energy physics in the l
energy effective theory.

Thus for energies well below the electroweak scale
above the bottom quark mass, we have an effective w
Hamiltonian with four-fermion interactions, where the coe
ficients of a given operator depend onm, mt , mW , mZ , as ,
a, and the elements of the Cabibbo-Kobayashi-Maska
~CKM! matrix, Vlm . The four-fermion interactions can in
volve all quark fields, except the top, giving the Hamiltoni
the generic form

Heff5
GF

&
(

i
Ai~m,mt ,mW ,mZ ,as ,a,Vlm!

3~ q̄iG iqi8!~ q̄i9G i8qi-!. ~1!

The scalem which appears in this equation is introduce
through the normalization condition required to define t
composite four-fermion operators, whose dependence onm is
not shown. The explicitm dependence of the coefficientsAi
cancels them dependence implicit in these operators.
6-3



om
o

co

ve
w

te
el

om
m
n

in

r

n-

u
ea
o

su

ta
e

se

d

e
r

s
r-

w

to
d
y
e

rk
l

n

n

l

m-
k
ark

the

m-

ly
p-

ierz
ing
la-
er-
see

the

as
in
ge
f

s
er

ee-
nte-
the
nd

.
nge
ar

er

r
ra-

BLUM et al. PHYSICAL REVIEW D 68, 114506 ~2003!
studying physics at energy scales well below the bott
quark mass, we can remove the bottom quark from the
erators that appear inHeff , renormalizing at a scalem which
is generally chosen near the scale of the physics under
sideration. Of course, the Wilson coefficientsAi must now
depend explicitly on the bottom quark mass,mb . A similar
elimination of the charm degrees of freedom can be achie
if Heff is specialized to a form valid for energies well belo
the charm quark mass.

Following the general discussion above, one can de
mine the terms in the low-energy effective Hamiltonian r
evant to particular processes, such as theDS51, DD521
case of primary interest in this study. The terms arising fr
simple vector boson exchange, which should play a do
nant role in theDI 51/2 rule because of their large Wilso
coefficients, were first discussed in@27,28#, where it was also
found that theAi coefficients for these terms could expla
some of the enhancement given by theDI 51/2 rule. Subse-
quently, additional low-energy terms arising from standa
model graphs involving loops were identified@29,30# and
their importance for CP violation in the full six-quark sta
dard model emphasized in Refs.@31–33#. These additional
low-energy four-quark operators are referred to as peng
operators and are further refined into QCD and electrow
penguin operators. Historically attention was first focused
the QCD penguins, since the electroweak penguins are
pressed by a power of the electroweak couplinga. However,
as reviewed below, the electroweak penguins are impor
for CP violation in the standard model since they are nonz
to lowest order in the light quark masses, are enhanced
the DI 51/2 rule, and enter with coefficients that increa
with the top quark mass.

For our calculations, the energy scale that can be use
the effective theory must be well belowmb , since we will
work on a lattice witha21;2 GeV. We do, however, hav
the ability to work both with an effective theory valid fo
energies at or abovemc ~a four-flavor theory! and with a
three-flavor theory that is only valid for energies belowmc .
Thus we will actually deal with two effective Hamiltonian
for DS51 processes. For clarity, we will denote the fou
flavor DS51 effective Hamiltonian valid for energies belo
mb by Hc

(DS51) and useH(DS51) for the three-flavor theory
valid only for energies belowmc . Note, the renormalization
scale m that appears inHc

(DS51) is conventionally chosen
well abovemc while them that appears inH(DS51) should be
chosen abovems . ~Of course, in both cases we would like
choosem in a region where perturbation theory can be use!
In the notation of Ref.@32#, operators in the effective theor
are given byOi for the five-quark theory which includes th
up, down, strange, charm, and bottom quarks, byPi for the
effective four-quark theory, and byQi for the effective three-
quark theory including only the up, down, and strange qua
explicitly. We follow this notation, but since we will not dea
with the effective five-quark theory, we also useOi to rep-
resent a generic operator. Using the operator basis defi
below and following Refs.@32,23,24# the effective Hamilto-
nians can be written as
11450
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~DS51!5

GF

&
VudVus* H (

i 51

2

Ci~m!@Pi1~t21!Pi
c#

1t(
i 53

10

Ci~m!PiJ , ~2!

H~DS51!5
GF

&
VudVus* H (

i 51

10

@zi~m!1tyi~m!#QiJ . ~3!

HereGF is the Fermi coupling constant,Vkl are elements of
the CKM matrix, lk[VkdVks* for k5u, c, t, and t5
2l t /lu . For the four-flavor theory, we denote the Wilso
coefficients by real numbersCi(m) and the four-quark op-
erators byPi and Pi

c . In general, charm quark fields wil
appear in the operatorsPi as well asPi

c . For the three-flavor
theory, we denote the Wilson coefficients by the real nu
bersyi(m) andzi(m) and useQi to represent the four-quar
operators, which are made of up, down, and strange qu
fields only. The dependence of the Wilson coefficients on
other parameters shown in Eq.~1! is suppressed.

Before describing the operator basis in detail, a few i
portant features of the effectiveDS51 Hamiltonians should
be noted.

~1! In these Hamiltonians, CP violation enters entire
through the parametert, since we choose the standard re
resentation of the CKM matrix of Ref.@34# whereVtd , and
thust, is complex.

~2! Of the 12 operators enteringHc
(DS51) , only nine are

linearly independent in a regularization that preserves F
transformations. Similarly, for the ten operators enter
H(DS51), only seven are linearly independent. The calcu
tions of the Wilson coefficients most commonly use an ov
complete basis, since this allows one to transparently
how the original physics is inherited by the operators in
low-energy effective theory.

~3! The Wilson coefficients, which can be thought of
the couplings for the low-energy theory, vary markedly
size. The Wilson coefficient for the vector boson exchan
term is of O~1!. The QCD penguin terms are naively o
O(as) while the electroweak penguins are naively ofO~a!.
This simple counting is influenced by the large logarithm
generated from QCD running, which we will discuss furth
in Sec. VII.

The numerical results reported here are for the thr
flavor theory, where the charm quark mass has been i
grated out. In the remainder of this section we summarize
relevant low-energy four-fermion operators for the three- a
four-flavor theories and establish notation for both cases

As mentioned above, charged vector boson excha
gives rise to left-left current interactions, with a particul
color trace structure (Q2 , P2 , andP2

c below!. Mixing under
renormalization produces a left-left operator with the oth
possible color trace (Q1 , P1 , andP1

c below!. Letting ~L, R!
denote the SU(3)L ^ SU(3)R representation of an operato
andI its isospin, we give the quantum numbers of the ope
6-4
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tors as~L, R! I. Then witha andb denoting color indices, the
charged vector boson exchange operators in our basis
@32,24#

Current–current operators:

Q1[P15~ s̄ada!V2A~ ūbub!V2A

~8,1! 1/2 ~27,1! 1/2 ~27,1! 3/2, ~4!

P1
c5~ s̄ada!V2A~ c̄bcb!V2A ~8,1! 1/2, ~5!

Q2[P25~ s̄adb!V2A~ ūbua!V2A

~8,1! 1/2 ~27,1! 1/2 ~27,1! 3/2, ~6!

P2
c5~ s̄adb!V2A~ c̄bca!V2A ~8,1! 1/2. ~7!

Here the subscript (V2A) refers to a quark bilinear of the
form q̄gm(12g5)q. Operators with color trace structur
similar to Q1 are referred to as color diagonal operato
while Q2 is an example of a color mixed operator. Note th
the exchange operators in Eqs.~4! and~6! get a contribution
from more than one representation of SU(3)L ^ SU(3)R and
contain bothI 51/2 and 3/2 parts.

In addition to the simple exchange diagrams which lead
the operators of Eqs.~4!–~7!, loop diagrams in the standar
model ~the penguin diagrams! produce additional four-
fermion terms in the effective theory. In the penguin d
grams relevant to this paper, a top quark loop appears in
full electroweak theory. QCD penguins involve gluon e
change with this top quark loop, while electroweak pengu
involve Z0 and photon exchange with the top quark loo
The resulting four-fermion operators in the effective theo
include interactions between left-handed and right-han
currents and both color diagonal and color mixed opera
arise. For effective operators generated by the QCD pen
diagrams, all quarks which are present in the effective the
enter with equal weight, since the strong interactions cou
equally to each flavor.

QCD penguin operators:

Q35~ s̄ada!V2A (
q5u,d,s

~ q̄bqb!V2A ~8,1! 1/2, ~8!

P35~ s̄ada!V2A (
q5u,d,s,c

~ q̄bqb!V2A ~8,1! 1/2, ~9!

Q45~ s̄adb!V2A (
q5u,d,s

~ q̄bqa!V2A ~8,1! 1/2, ~10!

P45~ s̄adb!V2A (
q5u,d,s,c

~ q̄bqa!V2A ~8,1! 1/2, ~11!

Q55~ s̄ada!V2A (
q5u,d,s

~ q̄bqb!V1A ~8,1! 1/2, ~12!

P55~ s̄ada!V2A (
q5u,d,s,c

~ q̄bqb!V1A ~8,1! 1/2, ~13!
11450
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Q65~ s̄adb!V2A (
q5u,d,s

~ q̄bqa!V1A ~8,1! 1/2, ~14!

P65~ s̄adb!V2A (
q5u,d,s,c

~ q̄bqa!V1A ~8,1! 1/2. ~15!

Here the subscript (V1A) refers to a quark bilinear of the
form q̄gm(11g5)q. As the list above shows, the QCD pe
guin operators all haveI 51/2 and are singlets unde
SU(3)R , even though they contain right-handed quark fiel

The electroweak penguin operators have the same q
flavors as the QCD penguins, but each quark bilinear is m
tiplied by its electric chargeeq .

Electroweak penguin operators:

Q75
3

2
~ s̄ada!V2A (

q5u,d,s
eq~ q̄bqb!V1A

~8,8! 1/2 ~8,8! 3/2, ~16!

P75
3

2
~ s̄ada!V2A (

q5u,d,s,c
eq~ q̄bqb!V1A

~8,8! 1/2 ~8,8! 3/2 ~8,1! 1/2, ~17!

Q85
3

2
~ s̄adb!V2A (

q5u,d,s
eq~ q̄bqa!V1A

~8,8! 1/2 ~8,8! 3/2, ~18!

P85
3

2
~ s̄adb!V2A (

q5u,d,s,c
eq~ q̄bqa!V1A

~8,8! 1/2 ~8,8! 3/2 ~8,1! 1/2, ~19!

Q95
3

2
~ s̄ada!V2A (

q5u,d,s
eq~ q̄bqb!V2A

~8,1! 1/2 ~27,1! 1/2 ~27,1! 3/2, ~20!

P95
3

2
~ s̄ada!V2A (

q5u,d,s,c
eq~ q̄bqb!V2A

~8,1! 1/2 ~27,1! 1/2 ~27,1! 3/2, ~21!

Q105
3

2
~ s̄adb!V2A (

q5u,d,s
eq~ q̄bqa!V2A

~8,1! 1/2 ~27,1! 1/2 ~27,1! 3/2, ~22!

P105
3

2
~ s̄adb!V2A (

q5u,d,s,c
eq~ q̄bqa!V2A

~8,1! 1/2 ~27,1! 1/2 ~27,1! 3/2. ~23!

Note that Q7 and Q8 are in a single representation o
SU(3)L ^ SU(3)R , so their I 51/2 and 3/2 matrix element
can be related by the Wigner-Eckert theorem. This is not t
6-5
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for P7 andP8 , since the addition of the charm quark brin
in a contribution from a different SU(3)L ^ SU(3)R represen-
tation.

These operators can also be decomposed into irredu
representations of isospin and SU(3)L ^ SU(3)R and the de-
tails are given in Appendix B. For the left-left operato
made ofu, d, ands quarks, there is a single~27,1! and two
~8,1! irreducible representations. Thus there are only th
matrix elements needed to determineQ1 , Q2 , Q3 , Q4 , Q9 ,
andQ10.

With these definitions and knowledge of the Wilson co
ficients,K→pp processes in the standard model can be
pressed in terms of the matrix elements^ppuPi(m)uK& de-
fined in the four-quark effective theory or the three-qua
effective theory matrix elements^ppuQi(m)uK&. Notice that
here we have shown explicitly the dependence of the op
tor on the scalem, which cancels them dependence of the
Wilson coefficients. Since the Wilson coefficients are cal
lated in continuum perturbation theory using dimensio
regularization and we will calculate the hadronic matrix e
ments using a lattice regularization, we must relate,
match, operators normalized on the lattice and the continu
operators. This matching will also involve operator mixin
so in general one has

Oi
cont~m!5Zi j ~m,a!Oj

lat~a!, ~24!

where a is the lattice spacing. In this work, we employ
relatively new technique, nonperturbative renormalization
part of the calculation of theZi j ’s. This is explained in detai
in Sec. VIII. Before turning to our lattice determination
^ppuOi(m)uK& matrix elements, we summarize the effecti
Hamiltonian forDS52 transitions in the standard model.

B. K0-K̄0 mixing in the standard model

In the development of the standard model, theK0-K̄0 sys-
tem has played an important role. The GIM mechanism@35#
provided a natural theoretical explanation for the small m
difference between theKL and KS and was subsequentl
used to give an estimate for the charm quark mass@36#.
These calculations were done for the case of only f
quarks, where there is no imaginary part to theK0-K̄0 mass
matrix and noCP violation. For the six-quark standar
model, this system should in general exhibitCP violation
and the low energy theory describing these effects, includ
QCD corrections to leading logarithm order, was first giv
in @37,38#. Subsequent work has determined the Wilson
efficients to next-to-leading order@39,40#.

We write theDS52 Hamiltonian for the effective three
flavor theory to NLO as@39#

H~DS52!5
GF

2

16p2 MW
2 @lc

2h1S0~xc!1l t
2h2S0~xt!

12lcl th3S0~xc ,xt!#

3@as
~3!#22/9F11

aS
~3!~m!

4p
J3GQ~DS52!1H.c., ~25!
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where

Q~DS52!5~ s̄ada!V2A~ s̄bdb!V2A ~27,1! 1, ~26!

xq5mq
2/MW

2 and the functionsS0(xi) andS0(xi ,xj ) are the
Inami-Lim functions@41#. J3 is defined as

J3[
g~0!b1

2b0
2 2

g~1!

2b0
, ~27!

whereg ( i ) is the i th-order contribution to the anomalous d
mension forQ(DS52) andb j are thej th-order coefficients for
the QCD beta function in a three flavor theory. In additio
aS

(3)(m) is the QCD running coupling for a three flavo
theory.

The coefficientsh i are known to NLO@39,40# and have
the values

h151.3860.20, h250.5760.01, h350.3760.04.
~28!

CP violating processes involvingK0-K̄0 mixing in the stan-
dard model are then known if the CKM matrix elements a
known and the matrix element^K̄0uQ(DS52)uK0& is known.
Since for three degenerate quarks,Q(DS52) is part of the
same~27,1! irreducible representation asQ1 and Q2 , one
can relate the ^K̄0uQ(DS52)uK0& matrix element to
^p1uQ1uK1& and ^p1uQ2uK1&.

C. Connecting experiment and theory

The previous two sections have given theDS51 and
DS52 effective Hamiltonians in the notation we will use
this paper. To further establish our notation and conventio
we now collect the relevant formulas to connect these Ham
tonians with the experimentally measured quantities. Fo
more comprehensive review, the reader is referred to@42,43#.

Considering only the strong Hamiltonian, a neutral kao
the K0, containing an antistrange and down quark and
antiparticle, theK̄0, containing an antidown and strang
quark are energy eigenstates. We adopt the conventi
definitions of parityP and charge conjugationC for quark
fields in the standard model, givingCPuK0&52uK̄0&. While
charge conjugation and parity are valid symmetries of
strong interactions, they are violated by the weak inter
tions. Allowing for the weak interactions to also violateCP,
for the neutral kaons seen in nature one writes

uKS&5puK0&2quK̄0&, ~29!

uKL&5puK0&1quK̄0&, ~30!

with p21q251. CP is not a valid symmetry if the resulting
physical states havepÞq. ProvidedCP violating effects are
small,KS , being predominantlyCP even, has a much shorte
lifetime thanKL , sinceKS decay to two pions, where mor
phase space is available, conservesCP.

The quantities measured experimentally to determineCP
violation are
6-6
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h125uh12ueif125
A~KL→p1p2!

A~KS→p1p2!
, ~31!

h005uh00ueif005
A~KL→p0p0!

A~KS→p0p0!
. ~32!

The current values for these quantities are@34# uh12u
'uh00u52.2831023 and uf12u'uf00u544°.

It is important to distinguish betweenCP violation due to
mixing, also known as indirectCP violation, andCP viola-
tion in decays, also referred to as directCP violation. CP
violation due to mixing refers toKL↔KS transitions~or al-
ternatelyK0↔K̄0) and if all CP violation came from this
source, one would findh125h00. The initial states would
mix and the decay processes would preserveCP. Allowing
for CP violation in decays, one defines

h125e1e8, h005e22e8 ~33!

and a nonzero value fore8 signalsCP violation in decays.
The current value fore is (2.27160.017)31023 and for
e8/e is (2.160.5)31023 @34#.

To relate the experimental quantities to the theoretical m
trix elements calculated here, it is conventional to define
isospin amplitudes by

A~K0→pp~ I !!5AIe
id I, ~34!

A~K̄0→pp~ I !!52AI* eid I, ~35!

where I gives the isospin state of the pions andd I is the
final-state phase shift determined frompp scattering. In gen-
eral, A@K0→pp(I )#5^pp(I )u2 iHuK0&. Defining ē
through

p

q
5

~11 ē !

~12 ē !
~36!

and using the isospin decomposition

up0p0&5A2

3
upp~ I 52!&2A1

3
upp~ I 50!&, ~37!

A1

2
~ up1p2&1up2p1&)

5A1

3
upp~ I 52!&1A2

3
upp~ I 50!& ~38!

one can show@42#

e5 ē1 i S Im A0

ReA0
D ~39!

e85
iei ~d22d0!

&

ReA2

ReA0
F Im A2

ReA2
2

Im A0

ReA0
G . ~40!

We define
11450
-
e

v[
ReA2

ReA0
, ~41!

P0[
Im A0

ReA0
, ~42!

P2[
Im A2

ReA2
, ~43!

and simplify Eqs.~39! and ~40! to

e5 ē1 iP0 , ~44!

e85
iei ~d22d0!

&
v@P22P0#. ~45!

The equations above assume that bothē and v are small
quantities, which is true for the physical values of qua
masses. In particular, the small value ofv ~0.045! is the
quantitative expression of theDI 51/2 rule. For our
quenched QCD simulations, we must be careful to only
these formulas for situations where bothē andv are small.

There are corrections to Eq.~45! from isospin violations.
These will not be included in our current calculation b
have been estimated by@44,45#.

From Eq.~45! one sees thatCP violation in decays comes
from a nonzero value ofP22P0 . This in turn arises through
isospin-dependent imaginary parts ofAI . In the standard
model, CP-violating imaginary contributions toA0 and A2
enter only through the CKM matrix elementVtd . The effects
of Vtd enter through the penguin operators and in particu
the major contribution to ImA2 is expected to come from th
electroweak penguin operators, while the QCD penguin
erators should produce most of ImA0. Given thatP22P0
determines the size of directCP violation effects, estimates
of the generic size ofP0 andP2 do not tightly constraine8.

Since a nonperturbative lattice calculation ofK→pp ma-
trix elements yieldsA0 andA2 , the calculation also produce
a value forv. The value ofv is an interesting quantity in its
own right and because of its dependence only on the
parts of the amplitudes, it probes standard model physics
is quite different fromCP violation.

To determinee, one needs the value forē which in turn
comes from a determination of the off-diagonal elements
the two by two matrix governing the evolution of theK0-K̄0

system@43#. These off-diagonal contributions are common
parameterized by definingBK(m) through

^K̄0uQ~DS52!~m!uK0&[
8

3
BK~m! f K

2 mK
2 ~46!

and the renormalization group invariant parameterB̂K by

B̂K[BK~m!@as
~3!~m!#22/9F11

as
~3!~m!

4p
J3G . ~47!

With these definitions, one finds that
6-7
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e5B̂K Im l t

GF
2 f K

2 mKMW
2

12&p2DMK

3$Relc@h1S0~xc!2h3S0~xc ,xt!#2Rel th2S0~xt!%

3exp~ ip/4!, ~48!

whereDMK is the mass difference betweenKL andKS .
Thus a determination from lattice QCD simulations

^ppuQi(m)uK& and ^K̄0uQ(DS52)(m)uK0& matrix elements,
coupled with experimental measurements ofe8 ande, gives
constraints on the elements of the CKM matrix in the st
dard model. Additionally, the lattice calculations should a
yield a value forv which is expected to be essentially ind
pendent of the elements of the CKM matrix. We now turn
some of the issues faced in the lattice determinations of
matrix elements.

III. CONTINUUM CHIRAL PERTURBATION THEORY
AND KAON MATRIX ELEMENTS

The calculation of decay amplitudes with multiparticle
nal states presents a challenge to the Euclidean-space
niques of lattice QCD. In a general field-theoretic conte
Euclidean space and Minkowski space are related by an
lytic continuation. Such an analytic continuation in a nume
cal calculation is extremely difficult, given that a discrete
of data points with statistical errors does not define an a
lytic function. Fortunately, there are matrix elements we c
calculate directly from lattice QCD using the usual latti
projection technique of evaluating the large time limit of t
operatore$2HQCDt%. For single particle matrix elements, w
directly achieve the matrix element at the desired kinem
values. However, for multiparticle states with nonzero re
tive momentum, the state will not be the lowest energy s
with a specific set of quantum numbers and, therefore, c
not be isolated by the large time limit of the operat
e$2HQCDt%, the Maiani-Testa theorem@46#. As a result,K
→pp transition amplitudes with physical masses cannot
directly measured on the lattice with current techniqu
~There is a recent promising proposal@47# to tune the finite
volume of a Euclidean-space simulation so that the physi
multiparticle final state corresponds to a next-lowest ene
finite-volume eigenstate ofHQCD—a state that might be ex
tracted from the time dependence given bye$2HQCDt%.)

Even before the formalization of the Maiani-Testa the
rem, it was realized@12# that chiral perturbation theory coul
be used to relateK→pp amplitudes toK→p andK→u0&
amplitudes~here u0& is the vacuum!. In addition to circum-
venting the Maiani-Testa theorem, these amplitudes sho
be easier to measure numerically, since they involve fe
interpolating operators to produce the mesons. Chiral pe
bation theory uses the effective Lagrangian representing
pseudo-Goldstone boson degrees of freedom for QCD to
termine relations between the desired matrix elements
should be noted that the chiral effective Lagrangian au
matically satisfies the relevant Ward-Takahashi identities
QCD, in the limit when these identities are dominated
arbitrarily light pseudo-Goldstone bosons.
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Our use of chiral perturbation theory in the calculation
theK→pp weak matrix elements requires that we addres
number of issues. We cannot currently calculate lattice m
trix elements for arbitrarily small quark mass, where t
quark mass dependence is linear, since such small ma
require large volumes and computer resources beyond t
currently available. Since our quark masses will be as la
as the strange quark mass, we must understand the nonl
dependence expected from continuum chiral perturba
theory forK→p andK→u0& matrix elements. Such an un
derstanding will allow us to see if our data matches th
expectations and to permit us to accurately extract the l
energy chiral perturbation theory parameters needed to m
the connection to the desired two pion decay.~As we will
discuss in Sec. IV we can also get nonlinearities from
lattice effect, domain wall fermion zero modes in quench
QCD for finite volume.! Since our calculation is done in th
quenched approximation, we must also look for the patho
gies expected from quenched chiral perturbation theory.
nally, our results forK→pp weak matrix elements in the
chiral limit must be compared with the physical values me
sured for nonzero quark mass. Estimates of the effects
higher order terms in chiral perturbation theory are crucia
estimating the systematic errors in extrapolating to the ph
cal kaon mass. We now turn to the results from chiral p
turbation theory relevant to our determination of weak m
trix elements.

A. Lowest order chiral perturbation theory

Following @12# and adopting their conventions for stat
and normalizations~see Appendix A for a summary!, one
must represent the various operators listed in Eqs.~4!–~23!
in terms of the fields used in chiral perturbation theory. O
starts with a unitary chiral matrix field,S, defined by

S[expF2ifata

f G , ~49!

wherefa are the real pseudo-Goldstone boson fields,ta are
proportional to the Gell-Mann matrices, with Tr(tatb)
5dab , andf is the pion decay constant. In chiral perturbati
theory, the lowest order Lagrangian for QCD, ofO(p2), is

LQCD
~2! 5

f 2

8
Tr~]mS]mS†!1v Tr@MS1~MS!†#. ~50!

HereM is the quark mass matrix and

v5
f 2mp1

2

4~mu1md!
. ~51!

Thus v is the chiral condensate at zero quark mass and
shown in Appendix A^ūu&(mq50)522v. Note that the
matrix field S has SU(3)L ^ SU(3)R quantum numbers
(L,R)5(3,3̄). Heref is the pion decay constant in the lim
mq→0 and we use a normalization wheref p is 131 MeV.

Working to lowest order in chiral perturbation theory, on
finds @12# that there are two possible~8, 1! operators with
6-8
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DS51 andDD521, denoted byQ̃1
(8,1) and Q̃2

(8,1) , and a

single ~27, 1! operatorQ̃ (27,1). These three operators are a
that is required to represent the matrix elements of the
erators in Eqs.~4!–~23!, exceptQ7 , Q8 , P7 , andP8 . Other
work @33# showed that there is a single~8, 8! operator. Thus
the correspondence between an operatorQ (L,R) given in
terms of quark fields and its representation in chiral per
bation theory is given by

Q~8,1!→a1
~8,1!Q̃1

~8,1!1a2
~8,1!Q̃2

~8,1! , ~52!

Q~27,1!→a~27,1!Q̃~27,1!, ~53!

Q~8,8!→a~8,8!Q̃~8,8!, ~54!

where thea’s are constants and

Q̃1
~8,1![Tr@L~]mS!~]mS†!#, ~55!

Q̃2
~8,1![

8v
f 2 Tr@LSM1L~SM !†#, ~56!

Q̃~27,1![Tkl
i j ~S]mS†! i

k~S]mS†! j
l , ~57!

Q̃~8,8![Tr@LSTRS†#. ~58!

HereL i j [d i3d j 2 , Tkl
i j is symmetric ini, j andk, l and trace-

less on any pair of upper and lower indices, andTR
[diag(2,21,21). Further detail is given in Appendixes
and D, along with precise values forTkl

i j for both theDI
51/2 andDI 53/2 components.

There is a unique set ofa’s for each four-quark operato
that is in an irreducible representation of SU(3L
^ SU(3)R . The operators in Eqs.~4!–~23! are generally in
reducible representations, so we will determine thea’s for
each operator individually. The matrix elements of the eff
tive operatorsQ̃ given in Eqs. ~55!–~58! between states
composed of pions and kaons can be easily evaluated in
ral perturbation theory. For theK→0 matrix elements one
finds

^0uQ~8,1!uK0&5
16iv

f 3 ~ms82md8!a2
~8,1! , ~59!

^0uQ~27,1!uK0&50, ~60!

^0uQ~8,8!uK0&50, ~61!

wherems8 andmd8 are the quark masses used in the constr
tion of theK0. Similarly

^p1uQ~8,1!uK1&5
4mM

2

f 2 ~a1
~8,1!2a2

~8,1!!, ~62!

^p1uQ~27,1!&K1&52
4mM

2

f 2 a~27,1!, ~63!
11450
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^p1uQ~8,8!uK1&5
12

f 2 a~8,8!, ~64!

wheremM is the common meson mass of thep1 and K1.
Following @12#, one then finds that the desiredK→pp ma-
trix elements are given by

^p1p2uQ~8,1!uK0&5
4i

f 3 ~mK0
2

2mp1
2

!a1
~8,1! , ~65!

^p1p2uQ~27,1!uK0&52
4i

f 3 ~mK0
2

2mp1
2

!a~27,1!, ~66!

^p1p2uQ~8,8!uK0&5
212i

f 3 a~8,8!. ~67!

Since the~27,1! and ~8,8! operators contain bothDI 51/2
andDI 53/2 parts, which we will need to measure to det
mine K→pp amplitudes of definite isospin, we give th
isospin decomposition of Eqs.~63!, ~64!, ~66!, and ~67! in
Appendix D.

These simple relations form the heart of the calculat
we have performed and a few important points are wo
highlighting.

~1! The current calculation is a determination of the phy
cal parametersa1

(8,1) , a (27,1), and a (8,8) for a fixed lattice
spacing and volume in the quenched approximation. As su
K→pp amplitudes are determined to lowest order in chi
perturbation theory in the quenched approximation.

~2! TheK1→p1 matrix elements of~8,1! and~27,1! op-
erators vanish in the chiral limit, while for~8,8! operators the
matrix element is nonzero. Thus, for small enough qu
masses, the electroweak penguin operators will dominate
amplitudes. Since the electroweak penguin operators are
pressed by the electroweak coupling constant, the qu
mass where they dominate is quite small.

~3! The terma2
(8,1) is determined by the unphysicalK0

→0 matrix element and in general is quadratically diverg
for regularizations which preserve chiral symmetry. To det
mine a1

(8,1) , and hence the physicalK→pp amplitude, re-
quires canceling this quadratic divergence against the q
dratic divergence in̂ p1uQ (8,1)uK1&. This first-principles
cancellation arises in the relevant Ward-Takahashi identi
of QCD and is reflected in chiral perturbation theory, whi
respects these identities. For the most extreme cases
physical result is only 5% of the size of the divergent term
This a2

(8,1) subtraction will be extensively discussed in Se
XI A.

~4! The a2
(8,1) subtraction is determined by matrix ele

ments of four-quark operators in hadronic states. As par
the renormalization of lattice four-quark operators, a rela
subtraction must be done for matrix elements of these op
tors in off-shell Green’s functions involving quark field
Only the momentum independent divergent parts of th
two subtractions are the same. This issue is discussed fu
in Sec. VIII.

~5! In these lowest order chiral perturbation theory e
pressions, onlya2

(8,1) is divergent. However, higher orde
6-9
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terms in chiral perturbation theory can be multiplied by
vergent coefficients, as happens for~8,8! operators. Thus Eq
~64! is modified at next order by the addition of a diverge
term of the form

^p1uQ~8,8!uK1&5
12

f 2 $a~8,8!1mM
2 adiv

~8,8!1¯%, ~68!

where the dots represent possible nondivergent higher o
terms. Even though the matrix element is nonzero whenmq
50, the finite quark mass corrections enter with a pow
divergent coefficient. One way to find themq50 value is to
extrapolate in quark mass. For domain wall fermions at fin
Ls , the zero quark mass limit is not precisely known f
power divergent operators. This, coupled with the power
vergent slope, makes the extrapolation problematic. One
use a subtraction to remove the divergent slope. Howeve
even simpler approach is to use theDI 53/2 part of the~8,8!
operator, which does not have divergent coefficients, to
terminea (8,8).

B. Full QCD one loop chiral perturbation theory: K\pp

An important early calculation in QCD revealed that
the small quark mass limitmp

2 deviates from simple linea
dependence on the quark mass,mq , due to chiral logarithm
terms of the formmq ln mq @48#. In the language of chira
perturbation theory such logarithms arise from higher or
loop effects, which formp

2 come from calculating loop cor
rections usingLQCD

(2) . To work to a consistent order in chira
perturbation theory requires that if loop effects in theO(p2)
effective Lagrangian are included, one must also include
effects of theO(p4) terms in the effective Lagrangian, de
notedLQCD

(4) . Unfortunately,LQCD
(4) introduces new, unknown

parameters, but for on-shell particles at rest these param
are multiplied bymq

2. Thus the general form for a quantit
like mp

2 in full QCD is

mp
2 5a1mq1almq

2 ln mq1a2mq
2. ~69!

Systematic calculations of higher loop effects in chi
perturbation theory@49,50# have been done including the u
down, and strange quarks. We will give these results in te
of the lowest order chiral perturbation theory, or bare, me
masses, which are given, for example, bymp1

2
54v(mu

1md)/ f 2 wheref andv are constants. We will setmu5md
and denote the subtraction point for chiral perturbat
theory by LxPT . Calculating the one-loop terms inLQCD

(2)

gives @50#

~mp
2 !~1 loop!5mp

2 H 11Lx~mp!2
1

3
Lx~mh!1¯J , ~70!

~mK
2 !~1 loop!5mK

2 H 11
2

3
Lx~mh!1¯J , ~71!

~ f p!~1 loop!5 f $122Lx~mp!2Lx~mK!1¯%, ~72!
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~ f K!~1 loop!5 f H 12
3

4
Lx~mp!2

3

2
Lx~mK!2

3

4
Lx~mh!

1¯J , ~73!

where

Lx~m![
m2

~4p f !2 ln S m2

LxPT
2 D ~74!

and the dots represent terms quadratic in the pseudos
masses. The coefficients of these terms depend on pa
eters enteringLQCD

(4) .
To study matrix elements in chiral perturbation theo

one starts from the lowest order QCD Lagrangian in Eq.~50!
and adds terms representing the effective four-fermion op
tors at low energies. ToO(p2) this yields

Leff
O~p2!5LQCD

~2! 1LDS51
~0! 1LDS51

~2! 1LDS52
~2! ~75!

for the DS51 andDS52 processes of interest here. No
that there are terms atO(p0) that enter theDS51 part of the
chiral Lagrangian. These are the~8,8! operators mentioned in
the previous section which represent the electroweak p
guinsQ7 andQ8 for m,mc , or a part ofP7 and P8 for m
.mc . The termLDS51

(0) depends on the single paramet
a (8,8) for each operator, whileLDS51

(2) depends ona1
(8,1) ,

a2
(8,1) , a (27,1) and the coefficients for higher order~8,8! op-

erators. The single operator appearing inLDS52
(2) enters with a

parameter which can be shown to be related toa (27,1).
The chiral logarithm terms inDS51 andDS52 matrix

elements can be calculated usingLeff
O(p2) . Amplitudes involv-

ing Q (8,8), which are nonzero atO(p0) due toLDS51
(0) , have

chiral logarithms atO(p2) due to interaction terms in

Leff
O(p2) . These chiral logarithms have not yet been calcula

explicitly, but should modify Eq.~68! to the form

^p1uQ~8,8!uK1&5
12

f 2 $a~8,8!@11j~8,8!Lx~mM !1¯#

1mM
2 adiv

~8,8!1¯%, ~76!

wherej (8,8) is a calculable coefficient andmM is the com-
mon mass for thep1 and K1 in this matrix element.~For
full QCD, these terms were calculated after this paper w
finished in @51#.! As previously mentioned, unless only th
DI 53/2 amplitude is considered, there are higher or
terms in chiral perturbation theory with power divergent c
efficients, given collectively in Eq.~76! by adiv

(8,8) .

The effective Lagrangian to the next order,Leff
O(p4) , in-

cludes all possibleO(p4) terms and introduces many un
known coefficients. This Lagrangian takes the form

Leff
O~p4!5Leff

O~p2!1LQCD
~4! 1LDS51

~4! 1LDS52
~4! . ~77!
6-10
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For DS51 processes atO(p4), amplitudes will include loop
effects coming fromLQCD

(2) andLDS51
(2) . There are alsoO(p4)

contributions from two-loop corrections toLDS51
(0) .

For Q (8,1) and Q (27,1) DS51 operators, the chiral loga
rithm corrections to the matrix elements of interest in t
work have been calculated@52–56#. The results forK1

→p1 are

^p1uQ~8,1!uK1&5
4mM

2

f 2 H a1
~8,1!F11

1

3
Lx~mM !G

2a2
~8,1!@112Lx~mM !#J , ~78!

^p1uQ~27,1!uK1&52
4mM

2

f 2 H a~27,1!F12
34

3
Lx~mM !G J .

~79!

Similarly for K→u0& one finds

^0uQ~8,1!uK0&5
4ia2

~8,1!

f
~mK

2 2mp
2 !H 12

3

4
Lx~mp!

2
3

2
Lx~mK!2

1

12
Lx~mh!J

1
4ia1

~8,1!

f
~mK

2 2mp
2 !

3H 1

3
Lx~mh ,mK!22Lx~mh ,mp!J , ~80!

^0uQ~27,1!uK0&5
4ia~27,1!

f
~mK

2 2mp
2 !

3$22Lx~mh ,mK!12Lx~mh ,mp!%,

~81!

where

Lx~m1 ,m2![
1

~4p f !2

1

m1
22m2

2

3Fm1
4 lnS m1

2

LxPT
2 D 2m2

4 lnS m2
2

LxPT
2 D G . ~82!

One of the most important aspects of using these form
to determineK→pp matrix elements is the determination
the coefficientsa2

(8,1) , which are in general quadratically d
vergent in a regularization which preserves chiral symme
@Since ~8,1! operators are pureDI 51/2, we cannot avoid
a2

(8,1) by measuring onlyDI 53/2 amplitudes, as we ca
avoid adiv

(8,8) .] However, as the equations above show,a2
(8,1)

is multiplied by chiral logarithm corrections at subleadi
order. Given the large difference possible ina1

(8,1) anda2
(8,1) ,

a1
(8,1) can be much smaller thana2

(8,1) Lx(mp).
11450
s
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The power divergent part of the four-quark operators c
be written as a quark bilinear times a momentu
independent coefficient. Thus the chiral logarithm corre
tions to the power divergent parts of four-quark operat
must be the same as the chiral logarithm corrections to
corresponding quark bilinears. That this is indeed the c
for full QCD can be seen explicitly, since the chiral log
rithms for the bilinears are known and can be compared w
Eqs.~78!–~81!. Following @53#, we define

Q~3,3̄!5 s̄~12g5!d5a~3,3̄!Tr~AS! ~83!

to lowest order in chiral perturbation theory. HereA is a three
by three matrix withAi , j5d i ,3d j ,2 and with our conventions

a (3,3̄)522iv. Then the chiral logarithm corrections for th

matrix elements of̂ p1uQ (3,3̄)uK1& and ^0uQ (3,3̄)uK0& are

given in @53#. We will use the value for̂ p1uQ (3,3̄)uK1&
from @53#, since here there is a single meson mass,mM . For

^0uQ (3,3̄)uK0&, where the meson masses are not degene
the formula in @53# does not include separate chiral log
rithms for each of the possible meson masses,mp , mK , and
mh . Thus, for this matrix element, we make use of the fa
that

^0uQ~3,3̄!uK0&;~mK
2 !~1 loop!~ f K!~1 loop!/mq ~84!

and use Eqs.~71! and ~73! to determine the chiral loga
rithms. This gives

^p1uQ~3,3̄!uK1&5
2

f 2 a~3,3̄!$112Lx~mM !%, ~85!

^0uQ~3,3̄!uK0&5
2i

f
a~3,3̄!H 12

3

4
Lx~mp!

2
3

2
Lx~mK!2

1

12
Lx~mh!J . ~86!

Thus we have

^0uQ~8,1!uK0&

^0uQ~3,3̄!uK0&
52

a2
~8,1!

a~3,3̄!
~mK

2 2mp
2 !$11¯%

12
a1

~8,1!

a~3,3̄!
~mK

2 2mp
2 !$chiral logs1¯%,

~87!

where the dots represent nonlogarithmic higher order ter
The ‘‘chiral logs’’ in Eq. ~87! are those given in the secon
line of Eq. ~80! and in Eq. ~86!. As expected, the chira
logarithms from the power divergent part of the four-qua
operator are the same as for the corresponding quark bilin
The logarithms in thea1

(8,1) term in Eq.~87! are higher order
in chiral perturbation theory and are suppressed by the r
tive sizes ofa1

(8,1) and a2
(8,1) . For m2 corrections which

come from loops in theO(p2) Lagrangian, one also expec
a cancellation between the bilinears and the four-quark
6-11
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erators. This analysis leads us to expect that the ratio in
~87! is a linear function ofmK

2 2mp
2 with very small correc-

tions. We will investigate this numerically in Sec. XI A.
It is also important to note that oncea2

(8,1) has been de-
termined, we must numerically evaluate

^p1uQ~8,1!uK1&1a2
~8,1!

4mM
2

f 2 @112Lx~mM !# ~88!

to determinea1
(8,1) if we are not working with arbitrarily

small quark masses. If we could work close enough to
chiral limit, the chiral logarithm terms in Eq.~88! would
make an arbitrarily small contribution. This is not the ca
for the data presented here, where the minimum pseudos
mass is 390 MeV. Equation~88! involves large cancellation
between divergent quantities. Notice that the chiral lo
rithms are very important in this determination, since th
multiply the divergent coefficienta2

(8,1) . A simple way to do
this is to recall that the power divergent part of four-qua
operators should also have the same chiral logarithms as
corresponding quark bilinear. Equation~85! shows this to be
the case. Thus the combination

^p1uQ~8,1!uK1&12mM
2

a2
~8,1!

a~3,3̄!
^p1uQ~3,3̄!uK1&

5
4mM

2

f 2
a1

~8,1!F11
1

3
Lx~mM !G ~89!

yields a result only involving the physical coefficienta1
(8,1) ,

with corrections in chiral perturbation theory that do not
volve the power divergent coefficient. The chiral logarithm
which multiply power divergent coefficients have been
moved, without having to know their precise values.~This
subtraction technique was originally discussed in Ref.@57#,
although its ability to remove power divergent terms mu
plied by chiral logarithm corrections was not discusse!
Note, this complete cancellation of the quadratic diverge
will hold as well in the quenched theory. This is importa
since our actual calculation is done in the quenched appr
mation where the coefficients of the chiral logarithms are
known.

C. Quenched one-loop chiral perturbation theory:
K\p and K\0

The discussion in the previous section focused on the
ral logarithms present in various full QCD masses and ma
elements. Similar techniques can be used to calculate
nonanalytic dependence on the quark mass for quenc
simulations@13–15#. A surprising aspect of these calcul
tions is the appearance of quenched chiral logarithms, wh
in addition to themp

2 ln mp
2 form of a conventional QCD

chiral logarithm, terms of the formd ln mp
2 also appear. Here

d is a constant given in terms of the parameters which e
the low-energy effective Lagrangian for quenched QC
These effects are larger for small quark masses than the
responding conventional QCD logarithms, since they lac
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factor of mp
2 . Such effects may also appear in the mat

elements studied in this paper and in this section we disc
the current state of analytic results and how we will han
these effects in our simulation data.

For quenched chiral perturbation theory, a Lagrang
framework has been developed@15# and two new parameter
enter,a and m0 . Calculating one-loop effects for the pio
mass gives

~mp
2 !~1 loop!

5mp
2 H 11

1

8p2f 2 Fa
3

LQxPT
2 2

m0
2

3
2Fm0

2

3
2

2a

3
mp

2 G
3 ln~mp

2 /LQxPT
2 !GJ , ~90!

whereLQxPT is the scale used to renormalize the quench
theory. From loops in theO(p2) Lagrangian, one gets a
O(mp

4 ) term of amp
4 /24p2f 2, which is not shown in Eq.

~90!. It is common to define the coefficient of the quench
chiral logarithm byd, where

d[
m0

2

24p2f 2 . ~91!

It is important to note that, in addition to the appearance
the m0

2 ln mp
2 term, the only conventional chiral logarithm

appears multiplied bya. In Sec. VI we discuss the determ
nation of m0 and a from our measurements of the depe
dence of pion mass squared on the quark mass for quen
domain wall fermion simulations.

For the kaon matrix elements of primary interest in th
work, quenching is also expected to modify the quark m
dependence from the full QCD forms given in the previo
section. A recent calculation of the quenched chiral log
rithms for the~8,1! and ~27,1! operators has been present
in Ref. @55#. Calculations of this type, including the~8,8!
operators, are very useful in the analysis of matrix eleme
from QCD simulations. Unfortunately, the currently ava
able calculations completely remove all quark loops, inclu
ing those in the effective low energy four-quark operato
For theO(p2) DS51 Lagrangian of quenched chiral pertu
bation theory, Eq.~2.2! of @55# shows that the authors hav
used a supertrace to represent the operators in chiral pe
bation theory. The supertrace introduces ghost quarks to
cel loop effects of real quarks, which is an unconventio
definition of the quenched approximation.

However, for actual numerical QCD calculations, qua
loops which can be made through self-contractions of
low-energy four-quark operators of Eqs.~4!–~23! are in-
cluded. Only disconnected quark loops, generated thro
the quark determinant in QCD and connected solely by glu
exchange with the four-quark operators, are discarded.
numerical simulations correspond to evaluating all relev
four-quark operators, at low energies, in background glu
fields generated without explicit vacuum polarization qua
loops. In the quenched approximation these vacuum qu
loop effects are partially included by using an appropriat
6-12
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shifted value of the bare QCD couplingb. The existing ana-
lytic calculations for the quenched theory correspond
evaluating all relevant four-quark operators, including gh
quark self-contractions, in a quenched gluon backgrou
Since these situations are quite distinct, formula presente
@55# are not generally applicable to our simulation results

There is one result from@55# and earlier calculations
which is applicable to our simulations, the amplitude f
K1→p1 for the ~27,1! operators. Since there are no se
contractions of the four-quark operators in this amplitude
is unaffected by the ghost-quark loops discussed in the
vious paragraphs. Quenched chiral perturbation theory
dicts that this amplitude has the form

^p1uQ~27,1!uK1&52
4mM

2 a~27,1!

f 2 F126LQx~mM !

2
~m0

222amM
2 !

24p2f 2 ln~mM
2 /LQxPT

2 !G
1O~mM

4 !, ~92!

whereLQx(m) is the same asLx defined in Eq.~82! except
thatLxPT is replaced byLQxPT . Note that Eq.~92! contains
both a conventional chiral logarithm and a quenched ch
logarithm. The conventional chiral logarithm is quite lar
~its coefficient is 6! but markedly smaller than the conve
tional chiral logarithm in full QCD, Eq.~79! ~its coefficient
is 34/3!. It is fortunate that this quenched formula is know
since, as we will discuss in Sec. X, the value ofa (27,1) we
can determine from our data is strongly dependent on
known analytic value for the coefficient of the convention
chiral logarithm in quenched QCD.

For our quenched simulations, we must still perform
subtraction of power divergent quantities to get the quenc
values fora1

(8,1) . As we discussed in the previous section f
full QCD, it is vital to do the subtraction in a way whic
correctly removes power divergent coefficients times b
conventional and quenched logarithms. If the quenched
mula analogous to Eqs.~78!–~81! existed, one could in prin-
ciple fit individual amplitudes to the formulas, includin
logarithms, and extract the desired coefficients. Even w
the formula, such a process could prove difficult due to
statistical errors on the data.

However, we can make use of the fact that in chiral p
turbation theory, the power divergent parts of operators
pear as lower dimensional operators. Thus the logarith
corrections, both conventional and quenched, should be
same for the power divergent parts of a four-quark opera
and the appropriate quark bilinear. This is the basis for
cancellation of the chiral logarithms in Eqs.~87! and ~89!.
Thus for the subtractions of power divergent operators,
analytic coefficients of the logarithms are not needed
would, however, be useful to know the coefficients of t
logarithms for the remaining finite terms.~As this paper was
being completed, such a calculation was reported for som
the operators of interest here@58#.! We will have to rely on
the behavior of our data to estimate the size of these effe
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It is important to stress that this cancellation of the qu
dratic divergence in the logarithmic corrections to the chi
limit discussed above provides a concrete example of
general cancellation of quadratic divergences implied by
form of the subtraction term which we adopt. As will b
discussed in Sec. XI A, we choose to implement the subt
tion required by chiral perturbation theory in a fashion whi
removes the quadratic divergence completely from the
sulting ^p1uQ (8,1)uK1& amplitude in the limitmres→0. The
cancellation of the quadratic divergence is guaranteed
standard renormalization arguments and does not rely on
ral perturbation theory.

IV. DOMAIN WALL FERMION MODIFICATIONS
TO CHIRAL PERTURBATION THEORY

In the previous section, results relevant to the current c
culation from both quenched and full QCD continuum chi
perturbation theory were discussed. In addition to the ba
lowest order relations, chiral perturbation theory gives
logarithmic corrections for both full and quenched QCD. F
domain wall fermions with finite extent in the fifth dimen
sion, exact chiral symmetry does not exist, even if only
fermionic modes relevant for low-energy QCD physics a
studied, due to the mixing between the left- and right-hand
fermion surface states that form at the boundaries of the
dimension. However, for low energy physics this mixing a
pears as an additional contribution to the fermion mass,
residual massmres, in the low-energy effective Lagrangia
describing domain wall fermion QCD at finite values for th
fifth dimension@21,22#.

For the calculation at hand, we must include power div
gent operators, which are also affected by the residual ch
symmetry breaking. However, due to their dependence
scales up to the cutoff, chiral symmetry breaking effects h
cannot be precisely described in terms of an extra additio
mass in the low-energy effective Lagrangian. As we will s
in Sec. IV A below, these effects modify the formula in Eq
~52!–~67!. These modifications will be important in th
analysis of our numerical data.

A second modification to the chiral perturbation theo
formula of the previous section comes from the presence
unsuppressed topological near-zero modes in our quen
QCD calculation. Without the fermionic determinant, the
modes need not occur with the distribution of full QCD a
the light-quark mass limit of quenched QCD has been s
to be pathological@21#. The effects of such modes are su
pressed for large volumes, but can be important for the v
umes used in the matrix element calculations discussed h
Since the zero modes can lead to nonlinear dependenc
the input quark mass, just as the chiral logarithms can, i
important to quantify their effects. We do this through a d
cussion of some of the relevant Ward-Takahashi identitie
Sec. IV B.

The notation we use for domain wall fermions is given
@21#. In particular, we useC i(x,s) to represent a five-
dimensional fermion field with four spin components a
flavor i. A generic four-dimensional fermion field with fou
spin components and flavori will be given byc i(x), while
6-13
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the specific four-dimensional field defined fromC i(x,s) will
be given byqi(x). For quark fields of specific flavor,u, d, s,
and c will be used to represent four-dimensional fields d
fined fromC i(x,s).

A. Residual mass effects

Residual chiral symmetry breaking effects for doma
wall fermions at finiteLs can be easily discussed by intro
ducing a new term into the action containing a spec
unitary flavor matrix V @59#. This term connects four
dimensional planes at the midpoint of the fifth dimension a
has the form

SV52(
x

$C̄x,Ls/221PL~V†21!Cx,Ls/2

1C̄x,Ls/2
PR~V21!Cx,Ls/221%. ~93!

If we let V transform as

V→URVUL
† ~94!

under SU(3)L ^ SU(3)R , then the domain wall fermion
Dirac operator possesses exact chiral symmetry. WhenLs
→`, this extra midpoint term in the action should not mat
for low-energy physics, so any Green’s function that conta
a power ofV should also contain a factor of exp(2aLs).
~Here we assume that in theLs→` limit the residual chiral
symmetry vanishes exponentially. For the quenched the
the numerical data is not conclusive on this point, but d
show that the residual chiral symmetry breaking effects
be made quite small.! Since V is a (3̄,3) under SU(3)L
^ SU(3)R , it transforms ‘‘like a mass term.’’

Consider a continuum effective Lagrangian description
QCD with domain wall fermions at finiteLs . The presence
of the parameterV implies the mass term in this Lagrangia
will be

Zmmf c̄c1c$c̄V†PRc1c̄VPLc%, ~95!

to leading order. HereZm is a mass renormalization consta
and c is a constant with dimensions of mass that
O@exp(2aLs)/a# wherea is the lattice spacing. With the con
ventional choiceVa,b5da,b , Eq. ~95! reduces to the form

Zm~mf1mres!c̄c ~96!

where mres'1023 for quenched lattices witha21;2 GeV
andLs516.

A simple case where power divergences are involved
given by the determination of̂q̄q& on the lattice with do-
main wall fermions. Since this transforms as a (3,̄3) plus
(3,3̄) in chiral perturbation theory, its dependence on expl
chiral symmetry breaking terms is given by

^q̄q&~mf ,Ls!;c1~M1M†!1c18~V1V†! ~97!

wherec1 andc18 are two constants. Sincec1 depends on high
momentum scales and behaves as 1/a2, c18 also depends on
11450
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high momentum and is thus not simply equal toc1mres. In
particular,c18;exp(2aLs)/a

3. For the case with SU~3! flavor
symmetry and the conventional choiceVab5dab , the chiral
condensate for domain wall fermions should have the fo

^q̄q&~mf ,Ls!5^q̄q&01c1mf1c18 . ~98!

Notice that the value of̂q̄q&(mf ,Ls) for mf52mres is not
equal to^q̄q&(mf50,Ls5`) since there is no simple rela
tion betweenc1 andc18 . Thus the residual chiral symmetr
breaking effects in a power divergent quantity are small
largeLs , but they cannot be cancelled by a simple choice
the input quark mass.

The presence of the new parameterV for domain wall
fermions means that there is an additional operator neede
representQ (8,1) in chiral perturbation theory. In particular
replacingM in Eq. ~56! by mresV yields the operator

Q̃3
~8,1![

8v
f 2 mresTr@LSV1L~SV!†# ~99!

and the representation ofQ (8,1) in Eq. ~52! is modified to

Q~8,1!→a1
~8,1!Q̃1

~8,1!1a2
~8,1!Q̃2

~8,1!1a3
~8,1!Q̃3

~8,1! . ~100!

As mentioned in the previous section, the coefficienta2
(8,1) is

power divergent and consequently so isa3
(8,1) . Because we

have used an explicit factor ofmres in the definition of
Q̃3

(8,1) , which involves power divergences,a3
(8,1)Þa2

(8,1) .
Similar to the behavior of̂q̄q& at finite Ls , the chiral limit
of Q (8,1) is not given by settingmf52mres.

The presence of this additional term in the representa
of Q (8,1) does not change Eq.~59!, sinceV is flavor sym-
metric anda3

(8,1) is defined in the zero quark mass limi
~There can be quark mass dependence in the residual c
symmetry breaking effects, but this is a higher order effe
Such quark mass dependence has been seen in quen
simulations, but is a small effect@21,22#.! This new term
does change Eq.~62! for finite Ls to

^p1uQ~8,1!uK1&5
4mM

2

f 2 ~a1
~8,1!2a2

~8,1!!2
32v
f 4 mresa3

~8,1! ,

~101!

where we have also takenVab5dab . Thus we see tha
^p1uQ (8,1)uK1& will not vanish at mf50, nor at mf5

2mres, since there is no simple relation betweena2
(8,1) and

a3
(8,1) . However, since all we require from simulations is t

value of a1
(8,1) , we see that it can be determined from t

slope of^p1uQ (8,1)uK1& with respect tomf and the value of
a2

(8,1) from ^0uQ (8,1)uK0&.
It is true that̂ p1uQ (8,1)uK1& should reach its chiral limit

at mf5O(2mres), since the residual chiral symmetry brea
ing effects still depend on the overlap between the surf
states at the ends of the fifth dimension. We will be able
check that our numerical results show this behavior. In g
eral, the chiral limit for any divergent quantity is uncertain
finite Ls . As previously mentioned, this directly impacts th
6-14
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determination ofa (8,8) from theDI 51/2 matrix elements of
^p1uQ (8,8)uK1&. Fortunately, here we can use the finiteDI
53/2 matrix elements and the Wigner-Eckart theorem to
terminea (8,8).

B. Topological near-zero modes and Ward-Takahashi identities

In the previous section we discussed how residual ch
symmetry breaking effects from finiteLs values can enter the
operators of interest in this work. These effects make
chiral limit uncertain for divergent operators. A second dif
culty with the chiral limit arises for quenched domain wa
simulations in finite volumes from fermionic topologic
near-zero modes which are unsuppressed due to negle
the fermionic determinant. The presence of these zero mo
is an important feature of domain wall fermions, but it do
lead to additional complications in the quenched simulati
reported here. Since these modes distort the chiral limit, t
can produce nonlinear behavior in Green’s functions t
may, in a range of small quark masses, be difficult to dis
guish from the chiral logarithm effects discussed earlier.
the remainder of this section, we will refer to the topologic
near-zero modes as zero modes, with the understanding
their eigenvalues are not precisely zero for finiteLs .

The presence of zero modes in quenched simulations
been extensively discussed in@21#, where their effects were
seen in the chiral condensate and hadronic masses. In
calculation we will be subtracting large, power divergent l
tice quantities to achieve our final physical results; it is i
portant that the zero mode effects be well understood for
subtraction process. Since zero mode effects are suppre
as the volume increases, naively down by a factor of 1/AV
relative to the fermionic modes responsible for chiral sy
metry breaking and low energy QCD physics, their effe
are not included in the infinite volume chiral perturbati
theory results of Sec. III.

To gain a quantitative understanding of the zero mo
effects, we will use the Ward-Takahashi identities of dom
wall fermion QCD. Since these identities are true in t
quenched theory for any quark mass and volume, they m
include the effects of zero modes. Continuum chiral per
bation theory is the simplest way to represent the Wa
Takahashi identities in the infinite volume limit with arb
trarily small quark masses. In this limit, where zero mod
do not enter, saturating intermediate states with light pseu
scalars gives the relations of lowest order chiral perturba
theory. Thus the Ward-Takahashi identities can detail h
zero mode effects alter the lowest order chiral perturba
theory we are using to determineK→pp matrix elements.
Of course, the chiral logarithm corrections to lowest ord
chiral perturbation theory are also included in the Wa
Takahashi identities, but these are more easily hand
through chiral perturbation theory techniques.

The Ward-Takahashi identity for domain wall fermion
with SU~3! flavor symmetry is@18,21#

Dm^Am
a ~x!O~y!&52mf^J5

a~x!O~y!&12^J5q
a ~x!O~y!&

1 i ^daO~y!&. ~102!
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Here Am
a is the conserved axial current which involves a

points in the fifth dimension,J5
a[q̄tag5q andJ5q

a is a similar
pseudoscalar density defined at the midpoint of the fifth
mension. Summing overx yields the integrated form of this
identity

(
x

@^@2mfJ5
a~x!12J5q

a ~x!#O~y!&1 i ^daO~y!&#50

~103!

which we will use extensively.
We first consider the simple case whereO(y)5J5

a(y).
Then Eq.~103! becomes

(
x

^@mfJ5
a~x!1J5q

a ~x!#J5
a~y!&

5^ūu~y!&[12̂ ūu~y!& lat norm ~no sum on a!, ~104!

where the factor of 12 is needed since we normal
^ūu(y)& lat norm per spin and color.@We are considering the
case with SU~3! flavor symmetry, making the chiral conden
sate foru, d, ands quarks the same.# Working in Euclidean
space with correlators evaluated through the Feynman
integral, we break the sum overx into the points withxÞy
and the point withx5y. For the points withxÞy, the cor-
relator is a sum of exponentials, with the overlap between
operatorsJ5

a(x) andJ5q
a (x) and the different mass states co

ventionally represented as a matrix element. Forx5y a
‘‘contact’’ term is generated. Using the normalizations for t
states given in Appendix A gives

(
x,n

^0umfJ5
a~x,0!1J5q

a ~x,0!un&
exp@2En~ ux02y0u!#

2VsEn

3^nuJ5
a~y,0!u0&1C~y!2^ūu~y!&50, ~105!

whereVs is the spatial volume andC(y) is the contact term
generated whenx5y. The pseudo-Goldstone boson term
the sum overn gives

^0umfJ5
a~0!1J5q

a ~0!upa&
1

mp
2 ^pauJ5

a~0!u0&

52
mf1mres

mp
2 u^0uJ5

a~0!up&u2 ~106!

since for the low energy physics described by the stateupa&
we haveJ5q

a 5mresJ5
a . This term in the sum is not suppresse

for light quark masses due to themp
2 term which appears in

the denominator. For a general integrated Ward-Takah
identity, keeping only the leading terms in themf→0 limit,
which includes such ‘‘pion pole saturation’’ contribution
leads to the relations of lowest order chiral perturbat
theory@49#. To apply this procedure here, we must first no
that the other states in the sum and the contact term giv
contribution ofO(mf)/a

21O(mres)/a
2. Here high momen-
6-15
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tum modes can enter and the midpoint pseudoscalar de
J5q

a is not simply related toJ5
a . Thus, without any effects o

zero modes, we have

2
mf1mres

mp
2 u^0uJ5

a~0!up&u21
O~mf !

a2 1
O~mres!

a2

5^ūu&~mf ,Ls!. ~107!

This relation is the same as Eq.~98! and once again demon
strates that the chiral limit cannot be achieved at finiteLs by
setting mf52mres when divergent quantities are involve
However, since the Ward-Takahashi identities include z
mode effects, we can investigate their contributions to t
relation.

To simplify the discussion of zero modes, we consider
Ls→` limit where the contribution of theJ5q

a term to the
Ward-Takahashi identity vanishes. Following@21# we work
with generic fermion fields c, the continuum four-
dimensional Dirac operatorD” (4) with eigenvalues and eigen
vectors given by (D” (4)1m)cl5( il1m)cl and write the
quark propagator as

Sx,y
~4!5(

l

cl~x!cl
†~y!

il1m
. ~108!

@Here we are considering a particular gauge fieldUm(x) and
the eigenvaluesl, eigenvectorscl(x), and quark propagato
are functions ofUm(x). Green’s functions result from ave
aging over an appropriate distribution of gauge fields.# The
integrated Ward-Takahashi identity, Eq.~104!, then becomes

2mf (
x,l,l8

TrS cl~y!cl
†~x!

2 il1mf

cl8~x!cl8
†

~y!

il81mf
D

1(
l

TrS cl~y!cl
†~y!

il1mf
D 50. ~109!

Performing the sum overx in the first term givesdl,l8 and
we are left with

2mf(
l

TrS cl~y!cl
†~y!

l21mf
2 D 1(

l
TrS cl~y!cl

†~y!

il1mf
D 50.

~110!

This relation is easily seen to be true, since forlÞ0, there is
also an eigenvalue2l. Also, the zero mode contribution
cancel between the two terms. Zero modes in the left te
will alter numerical measurements of pion properties in m
erate volumes, while the right term contains the zero mo
which enter in the chiral condensate.

Consider working in moderate sized volumes where z
mode effects may be present but enter only as small cor
tions to the infinite volume results. We decompose the su
in Eq. ~109! into terms without zero modes and terms w
zero modes. The terms without zero modes will give E
~107!. Including zero mode effects changes Eq.~107! for
small mf in the Ls→` limit to
11450
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2mfH u^0uJ5
a~0!up&u2

mp
2

1 (
x,l50

or l850

TrS cl~y!cl
†~x!

2 il1mf

cl8~x!cl8
†

~y!

il81mf
D J 1

O~mf !

a2

5^c̄c&~mf !2 (
l50

TrS cl~y!cl
†~y!

il1mf
D . ~111!

For finite Ls , the modifications to Eq.~111! come from in-
cluding the midpoint termJ5q

a and a residual chiral symmetr
breaking term for each eigenvector, referred to asdmi in
@21#. In @21# it was found that a histogram ofdmi values for
modes with eigenvalues below'LQCD was peaked very
close tomres. It is certainly possible that asa→0 the low
lying eigenvalues all show a common residual chiral symm
try breaking of mres, although this has not been demo
strated. To proceed with our general analysis including fin
Ls effects, we make this reasonable assumption and in
sums over eigenvalues replacemf by mf1mres for modes
with eigenvalues below'LQCD. For such terms, the facto
of mf multiplying the quantity in braces on the left-hand si
is also modified tomf1mres. For terms with eigenvalues
above'LQCD, such a simple modification does not see
likely. However, these terms do not produce any effe
which diverge asmf→0 since the 1/mf from the zero mode
is cancelled by the explicitmf multiplying the terms in
braces on the left-hand side of Eq.~111!. This gives us the
finite Ls result

2~mf1mres!H u^0uJ5
a~0!up&u2

mp
2

1 (
x,l50

or l850

l,l8,LQCD

TrS cl~y!cl
†~x!

2 il1mf1mres

cl8~x!cl8
†

~y!

il81mf1mres
D J

1
O~mf !

a2 1
O~mres!

a2

5^ūu&~mf ,Ls!2 (
l50

TrS cl~y!cl~y!†

il1mf1mres
D . ~112!

When ^0uJ5
a(0)up& and mp are measured from the cor

relator ^ iJ5
a(x) iJ5

a(y)& in a numerical simulation, some zer
mode effects can be present depending on the rangex
2y used. The effects of zero modes@the second term in
braces in Eq.~112!# will enter in the measured value
^0uJ5

a(0)up8& andmp8 , where the primes indicate quantitie
deviating slightly from their infinite volume values. We ca
replace the quantity in braces in Eq.~112! by

u^0uJ5
a~0!up8&u2

mp8
2 ~113!
6-16
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which is bounded by the values for^ūu&(mf ,Ls) measured
with and without zero mode effects.

We can now do a similar analysis for the matrix eleme
^p1us̄duK1&. This is an instructive example since we wa
to use measured values of^p1uQi uK1& matrix elements on
the lattice to determine physical quantities and we seek s
understanding of the role of zero modes in matrix eleme
of this form. We start from Eq.~103! taking J5

a(x)

5@ d̄g5u#(x) and lettingO(y)→@ s̄d#(y)@ i ūg5s#(z). We de-
fine the pseudoscalar densitiesPK2(x)[@ i ūg5s#(x) and
Pp1(x)[@ i d̄g5u#(x) and the scalar density S(x)
[@ s̄d#(x). @We adopt the notationPK2(x) to distinguish
these pseudoscalar operators from the operators likeK2(x)
of chiral perturbation theory, as in Eqs.~A9! and ~A10!,
which have a different normalization.# We can then write Eq.
~103! as

(
x

^@2mf Pp1~x!12Pp1
MP

~x!#S~y!PK2~z!&

2^PK1~y!PK2~z!&1^S~y!S†~z!&50 ~114!

wherePp1
MP(x) is the ‘‘midpoint’’ pseudoscalar density with

the p1 quantum numbers formed fromC i(x,s) for s
5Ls/221 andLs/2. Considering the case whereLs→`, y
2z is large, there are no zero modes present andmf→0
gives

2mf

mp
2 ^p1us̄duK1&2150. ~115!

The term^S(y)S†(z)& plays no role in this case, since it doe
not contain any contribution from the massless pseudo
lars.

We now consider the role of zero modes for theLs5`
case. We start with the complete spectral decomposition
Eq. ~114!, which is

2mf (
x,l,l8,l9

TrS cl~y!cl
†~z!

il1mf

cl8~z!cl8
†

~x!

2 il81mf

cl9~x!cl9
†

~y!

il91mf
D

2 (
l,l8

TrS cl~y!cl
†~z!

il1mf

cl8~z!cl8
†

~y!

2 il81mf
D

2 (
l,l8

TrS cl~y!cl
†~z!

il1mf

cl8~z!cl8
†

~y!

il81mf
D 50. ~116!

The sum overx allows this to be written as

(
l,l8

TrS cl~y!cl
†~z!

il1mf
cl8~z!cl8

†
~y!

3F 2mf

~l8!21mf
22

1

2 il81mf
2

1

il81mf
G D 50. ~117!

The term in brackets is easily seen to be zero. As must be
case, the zero modes entering the spectral decompos
also satisfy the Ward-Takahashi identity.
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We now consider the modifications to Eq.~115! from zero
modes, when̂p1uSuK1& is measured on the lattice from th
correlator ^Pp1(x)S(y)PK2(z)&, with x.y.z. Provided
the zero modes are localized, their effects will predominan
enter the quark propagatorsD21(x,y) andD21(y,z), since
x2z can exceed the size of the zero mode. Thus our m
sured quantities will not include thel850 term in the first
summation of Eq.~116!. Separating out this term and aga
letting primes denote states where some zero mode cont
nation is possible gives the following result for the War
Takahashi identity whenmf→0:

2mf

mp8
2 ^0uPp1u~p1!8&^~p1!8uS~y!PK2~z!&

5^PK1~y!PK2~z!&2^S~y!S†~z!&

22 (
l850
x,l,l9

TrS cl~y!cl
†~z!

il1mf
cl8~z!cl8

†
~x!

cl9~x!cl9
†

~y!

il91mf
D

5^PK1~y!PK2~z!&2^S~y!S†~z!&

22 (
l850,l

TrS cl~y!cl
†~z!

il1mf

cl8~z!cl8
†

~y!

mf
D . ~118!

The combination^PK1(y)PK2(z)&2^S(y)S†(z)& has zero
mode effects. These arise from a zero mode in either on
both quark propagators. Thel50 term in the sum cancel
the contribution from̂ PK1(y)PK2(z)&2^S(y)S†(z)& when
both quark propagators have a zero mode. WhenlÞ0, the
additional term cancels half of the zero mode contribut
from ^PK1(y)PK2(z)&2^S(y)S†(z)& due to a zero mode in
only one propagator. Since zero mode effects en
^PK1(y)PK2(z)& and ^S(y)S†(z)& identically, the right-
hand side of Eq.~118! becomes

^PK1~y!PK2~z!&no zero1^PK1~y!PK2~z!&one zero

2^S~y!S†~z!&no zero. ~119!

Here ‘‘no zero’’ means no zero modes included in the sp
tral sum and ‘‘one zero’’ means one of the two quark prop
gators is a zero mode. For smallmf , ^S(y)S†(z)&no zeroplays
no role leaving us with

2mf

mp8
2 ^0uPp1u~p1!8&^~p1!8uS~y!PK2~z!&

5^PK1~y!PK2~z!&no zero1^PK1~y!PK2~z!&one zero.

~120!

For finite Ls , Eq. ~120! is modified by replacing 2mf with
2(mf1mres) since no divergent terms appear.

For the range ofy2z where our matrix elements calcula
tions are done, we have explicit results for^PK1(y)PK2(z)&
and ^S(y)S†(z)&. Since

^PK1~y!PK2~z!&no zero5^PK1~y!PK2~z!&1^S~y!S†~z!&
~121!
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we can estimate the effects of the one zero mode term on
right side of Eq.~120!. We can compare our numerical da
to the Ward-Takahashi identity with no zero modes@Eq.
~115!# and with zero modes@Eq. ~120!#. We will discuss our
numerical results for the Gell-Mann–Oakes–Ren
~GMOR! relation in Sec. VI B and for thes̄d Ward-
Takahashi identity in Sec. VI C.

C. Topological near-zero modes and operator subtraction

A final part of this calculation where the features of d
main wall fermions in quenched QCD are important is t
role of zero modes in the subtraction of power divergen
operators required to determineK→pp matrix elements us-
ing chiral perturbation theory. As discussed in Sec. III B a
shown in Eq.~87!, the ratio

^0uQ~8,1!uK0&

^0uQ~3,3̄!uK0&
~122!

has no chiral logarithms multiplying power divergent qua
tities. This is due to the locality of the power divergent p
of the operatorQ (8,1). The situation for zero mode effects
identical since in the denominator they only enter the qu
propagators connecting theK0 to the operator. For the powe
divergent part of the numerator, zero modes also only e
the propagators connecting theK0 to the operator and thei
effects cancel in the ratio. Thus the linearity in (mK

2 2mp
2 )

given in Eq.~87! should also be true for thea2
(8,1) term when

zero mode effects are included. This linearity will make t
determination ofa2

(8,1) much more accurate and our resu
will not be influenced by a small zero mode effect times
power divergent contribution.

Oncea2
(8,1) is known, we can use the combination of m

trix elements given on the left-hand side of Eq.~89! to de-
terminea1

(8,1) . Here we take a linear combination of twoK
→p matrix elements and zero modes may enter in bo
However, once again the power divergent part

^p1uQ (8,1)uK1& and a2
(8,1)^p1uQ (3,3̄)uK1& are altered iden-

tically by zero mode effects in the quark propagators
tween the operators creating the pion and kaon and theQ’s.
Thus our results will not be altered by small zero mode
fects multiplied by power divergent terms. There can, ho
ever, be zero mode effects left in the finite part of the le
hand side of Eq.~89!. These should be similar to the ze
mode effects discussed in the preceding section
^p1us̄duK1&, whose size we will estimate from our data
Sec. VI C.

V. BASIC FEATURES OF NUMERICAL SIMULATIONS

A. Simulation parameters

The quenched gauge field ensemble used to calculate
pectation values in this study was generated at gauge
pling b56.0 with lattice four-volume 163332 (space
3time). The ensemble comprises 400 configurations se
rated by 10 000 sweeps, with each sweep consisting
simple two-subgroup heat-bath update of each link. T
11450
he

r

e

d

-
t

k

er

.
f

-

-
-
-

r

x-
u-

a-
a

e

gauge coupling corresponds to a lattice cutoff ofa21

51.922 GeV set by ther mass@21#. The domain wall fer-
mion fifth dimension wasLs516 sites with a domain wal
height M551.8. These parameters yield a residual qu
mass of about 3% of the strange quark mass@21#.

The light quark masses in units of the lattice spacing w
taken to bemf50.01, 0.02, 0.03, 0.04, and 0.05. The val
of mf corresponding to a pseudoscalar state made of de
erate quarks with mass equal to the physical kaon ab
56.0 is 0.018@21#. Heavier quarks were also included
allow matrix elements to be calculated in the 4-flavor ca
where a charm quark is present. These heavy masses,
values ofmf50.1, 0.2, 0.3, and 0.4 will not be discussed
this paper but rather in a subsequent publication. Qu
propagators were calculated using the conjugate grad
method with a stopping residualr 51028.

Quark propagators were calculated from Coulomb ga
fixed wall sources at time slicestK55 and tp527. The re-
sulting propagators were fixed to lattice Coulomb gauge~on
the ‘‘sink’’ end! to reduce fluctuations in gauge averages a
to allow construction of wall-wall correlators. Forward an
backward in time propagators were constructed from lin
combinations of propagators computed with periodic and
tiperiodic boundary conditions. This amounts to using an
physical doubled lattice in the time direction with periodici
64. The random wall sources used to calculate eye diagr
were spread over timest514– 17, and the correspondin
propagators had periodic boundary conditions.

Before starting the production simulation, all correlatio
functions were computed for a single common configurat
on each of the QCDSP machines that were to be used in
calculation. They agreed bit by bit. During the producti
simulation, we checkpointed every tenth configuration.
quark propagators and contractions were calculated twice
this checkpointed configuration in order to detect any ha
ware errors. If the output from the repeated calculation
not agree with the original, the node responsible for the f
ure was tracked down and replaced. The process was
peated until bit by bit agreement was obtained. Such ha
ware errors occurred very infrequently~less than 1% of the
configurations!.

B. Computer code details

We have written two completely separate production co
puter programs to calculate weak matrix elements. The
is based on the general purpose QCD code written by
Columbia University lattice group and runs primarily on th
QCDSP supercomputers at the RIKEN-BNL Research C
ter and Columbia University. The second program is ba
on the general purpose QCD code written by the MILC C
laboration which was extended by us to use domain w
fermions. We only have a single code which calculates
propagators necessary to compute renormalization~Z! fac-
tors, which is part of the QCDSP version. In addition w
have three independently written analysis packages that
on workstations which take the raw matrix elements a
combine them withZ factors and Wilson coefficients to yiel
physical amplitudes.
6-18
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We have performed several checks of these codes. M
importantly, a completely independent check code was w
ten to compare with the two production versions~this does
not include theZ factors!. Output generated on the sam
configuration from each code was compared for several
cases. In each case one code was run on a scalar works
and the other on a parallel machine. The expected agree
was obtained in each test. We also checked the produc
simulation by calculating all of the required correlation fun
tions with the check code on a single common gauge fi
configuration. All of the production simulation paramete
~volume, gauge coupling, quark masses, sources, etc.! were
used in this test. TheZ factor code, which runs on a work
station, has not been exhaustively checked by second i
pendent code.

As a final useful check, note that we work explicitly wit
the operators defined in Eqs.~4!–~23!. The (V2A)3(V
2A) operators go into themselves under a Fierz transfor
tion. Thus color-mixed contractions can be compared to c
responding color-diagonal ones. We find perfect agreem
in all cases.

VI. BASIC TESTS OF THE CHIRAL PROPERTIES
OF DOMAIN WALL FERMIONS

In the earlier sections we have discussed the change
full QCD, chiral perturbation theory relations due to quenc
ing and using domain wall fermions at finiteLs . In this
section, we will present our numerical results for simp
cases and check their consistency with the theoretical ex
tations. The cases we consider are:~1! the presence o
quenched chiral logarithms inmp

2 , ~2! tests of the Gell-
Mann–Oakes–Renner relation for finiteLs domain wall fer-
mions, and~3! the Ward identity satisfied by the matrix ele
ment of ^p1us̄duK1&.

A. Quenched chiral logarithms in mp
2

Numerous simulations have looked for the presence
quenched chiral logarithms inmp

2 versusmf of the form
given in Eq.~90!. Recent values ford are '0.1 @60# using
Wilson fermions, the Wilson gauge action, and lattice sp
ings in the range 0.1–0.05 fm, 0.06560.013 @61# using
clover-improved Wilson fermions, the modified quench
approximation, and a lattice spacing of 0.17 fm, and 0
60.04 @21# using domain wall fermions, the Wilson actio
and a lattice spacing of 0.2 fm. Sinced is a parameter of
low-energy quenched QCD, the general agreement betw
the results from the different lattice formulations quot
above is encouraging and expected.

All the values for d are below the initial estimates o
;0.2, based on the value for theh8 mass in full QCD. This
suggests that the effects of quenched chiral logarithms
only be evident at quite small quark masses. In this sec
we want to revisit the determination ofd from mp

2 versusmf

for domain wall fermions, but at a smaller lattice spaci
~0.104 fm! than our earlier determination at 0.197 fm@21#.
We will then be able to assess the importance of quenc
chiral logarithms in our determination of kaon matrix el
ments.
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In our earlier work on the chiral limit of domain wal
fermions, we found that by working on large enough vo
umes to suppress the effects of topological near-zero mo
our data was consistent with the presence of a quenc
chiral logarithm and that the point wheremp

2 vanished for
such a fit was also in agreement with our value ofmres de-
termined independently. For our current simulations, wh
the volumes are not as large, we will use the previou
measured valuemres50.00124(5) as an input and neglect th
mf50.01 point in our analysis. This should exclude t
dominant effects of topological near-zero modes and w
also allow us to determine a value ford.

In fitting to the general form of Eq.~90! we must decide
how to handle the presence of the parametera as well asd.
We first note an important consequence of our range of p
masses, which is thatmp

2 ln(mp
2/LQxPT

2 ) only varies by 5% for
0.02<mf<0.04 withLQxPT51 GeV. This is shown in Fig.
1 where we have usedmp

2 50.0098(20)13.14(9)mf from
@21#. Thus the termamp

2 ln(mp
2/LQxPT

2 ) will be approximately
constant over our range of quark masses and we canno
pect to resolve it with our data. The small variation
mp

2 ln(mp
2/LQxPT

2 ) over our pion mass range will be an impo
tant point in fits to much of our data.

Thus we fit our lattice data to the form

~mp
2 ! lat5ap~mf1mres!F12d lnS ap~mf1mres!

LQxPT
2 D G . ~123!

We have used this functional form to fitmp
2 from the 85

configurations used in@21#, where quark masses 0.015, 0.0
0.025, 0.03, 0.035, and 0.04 were used for the fits. Th
values for mp

2 come from the axial current correlato
^A0

a(x)A0
a(0)& to reduce the effects of topological near-ze

modes. We have also done fits for the 400 configuration d
set generated for this matrix elements calculation, wh
quark masses 0.02, 0.03, 0.04, and 0.05 were used in the

FIG. 1. The value ofmp
2 ln(mp

2/LQxPT
2 ) vs mf for the range of

quark masses used in our simulations. The dashed lines
mp

2 ln(mp
2/LQxPT

2 )520.0938 and20.0996. For 0.02<mf<0.04 the
variation inmp

2 ln(mp
2/LQxPT

2 ) is about 5%.
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BLUM et al. PHYSICAL REVIEW D 68, 114506 ~2003!
The pion masses for this data set come from^pa(x)A0
a(0)&

correlators, since we only have pseudoscalar sinks in
matrix elements programs. We choose to quote results
LQxPT51 GeV and have also done fits forLQxPT50.77 and
1.2 GeV.

Figure 2 shows the data for both data sets and the curv
the fit to the 85 configuration set. For the 400 configurat
data set we findap53.27(2) and d50.029(7) with
x2/DOF52.3, while for the earlier 85 configuration data s
we find ap53.18(6) andd50.05(2) with x2/DOF50.3.
Since these are uncorrelated fits to correlated data, the va
of x2 are of limited validity, but, particularly for the 85 con
figuration data set, show the data is consistent with
quenched chiral logarithm form. VaryingLQxPT only
changesap by 62% and does not changed within errors.
The difference in the value ofd between the two data sets
due to themf50.015 point only being present in the 8
configuration set. Without this point a smaller curvature
needed, and hence a smallerd, to makemp

2 vanish atmf5

2mres. Also notice that themf50.05 value formp
2 lies sub-

stantially above the fit line, which neglects this point. Sin
we are interested in quenched pathologies appearing at s
quark masses, we have not includedO@(mf1mres)

2# terms
in our fit. Given thatmp5790 MeV for this heaviest quark
mass, such higher order terms are expected to be impor

Notice that we cannot determine the one loop effects
the value ofap . The combination of constants in the brac
in Eq. ~90!, the almost precise constancy
mp

2 ln(mp
2/LQxPT

2 ), and the uncertainty inLQxPT provide too
many similar effects to be distinguished in our data. Sincd
is small, it is reasonable to expect that ignoring these term
a good approximation. Also note that a large value fora
should make theamp

4 term give a noticeable nonlinearity fo
largermp

2 . This is not seen, implying either a small value f
a or a cancellation with terms from theO(p4) Lagrangian.

FIG. 2. The data formp
2 from 85 configurations and 400 con

figurations. The line is a fit to the 85 configuration data, exclud
the mf50.01 point, and givesd50.05(2).
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Thus we have consistency with other measurementsd
and will use a value of 0.05 for the remainder of this wo
The fact that this value is small means the effects are
pronounced for the scales of masses where we are curre
simulating.

B. Gell-Mann–Oakes–Renner relation for domain wall
fermions

In Secs. IV A and IV B we discussed the role of residu
mass and zero mode effects in the Ward-Takahashi iden
which is the basis for the Gell-Mann–Oakes–Renn
~GMOR! relation. The result is given by Eq.~112!. In this
section we show our numerical results for the quantities
this equation.

The zero mode effects in Eq.~112! are associated with
^ūu& and^J5

a(x)J5
a(y)&. For ^ūu&, the effects produce a 1/mf

pole, as shown in@21#, which can be separated out by doin
an extrapolation tomf50 from heavy quark masses. Fo
^J5

a(x)J5
a(y)&, we can see the size of the zero mode effects

a function ofx2y by comparing the correlator^S(y)S†(z)&
to ^PK1(y)PK2(z)&. We plot this ratio in Fig. 3, using the
wall source, point sink propagators from@21#. In the figure
one sees that this ratio is essentially zero forx2y.8 and
mf>0.02, as it should be since the pseudoscalar mas
much smaller than the scalar mass. However, formf50.01
or 0.015, the scalar correlator changes sign and is a mea
able fraction of the pseudoscalar correlator even forx2y
.8. We attribute this effect to zero modes and note that z
mode effects are identical in the two correlators. Thus,
discussing the GMOR relation, we can easily remove
effects of zero modes in̂ūu&, but zero modes in the pseu
doscalar correlator become;5% effects only for separation
greater than 12.

Since many of the terms in Eq.~112! have been measure
in @21# for two different values ofLs with the quenched

g

FIG. 3. The ratio2^Swall(0)S†(t)&/^PK1
wall(0)PK2(t)& of the

scalar and pseudoscalar correlators, as a function of temporal s
ration. Without zero mode effects the ratio should be zero formf

small, since the pseudoscalar mass is vanishing. Zero mode ef
are present at the;10% level fort59 – 12. This is the separation
used in our evaluation of lattice matrix elements.
6-20
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KAON MATRIX ELEMENTS AND CP VIOLATION FROM . . . PHYSICAL REVIEW D 68, 114506 ~2003!
Wilson gauge action atb56.0, we can discuss how well th
GMOR relation is satisfied. Figure 4 shows the terms in
GMOR relation using these measured values. The up
panel is forLs516 and the lower is forLs524. The closed
symbols are the values for2^ūu& lat norm(mf50,Ls) and the
dashed line gives themf /a2 dependence of this quantity. Th
zero mode term@the sum on the right-hand side of Eq.~112!#
has been excluded by extrapolating tomf50 from large val-
ues ofmf where zero mode effects play no role. The op
circles are

u^0uJ5
a~0!up8&u2S mf1mres

12mp8
2 D ~124!

as measured from pseudoscalar correlators^Pp1(y)Pp2(z)&
using values ofuy2zu from 7 to 16. Since this ratio contain
zero mode effects, some of the zero mode terms fr
^J5

a(x)J5
a(y)& are included. The solid lines are the sam

quantity where a quenched chiral logarithm is included
mp8

2 .
For theLs516 case, we expect the quantity in Eq.~124!

to differ from 2^ūu& lat norm(mf50,Ls) due to the presence o
zero modes in this quantity and themres terms on the left-
hand side of Eq.~112!. In Fig. 4 one sees that themf→0
extrapolation of the heavier mass points lies considera
above 2^ūu& lat norm(mf50,Ls), revealing the size of the
O(mres)/a

2 term. Since the slope of2^ūu& lat norm(mf ,Ls)
with mf is power divergent~the dashed line!, a small value

FIG. 4. The GMOR relation forLs516 ~upper panel! and Ls

524 ~lower panel!. The open symbols are (mf

1mres)u^0uJ5
a(0)up8&u2/(12mp8

2 ) and the closed symbols ar
2^ūu& lat norm(mf50,Ls). The prime on the states and masses in
cates that zero mode effects may be present. The dashed line
themf /a2 dependence of2^ūu& lat norm(mf ,Ls) as determined from
large quark masses where zero mode effects are absent. The
line includes the effects of quenched chiral logarithms inmp

2 .
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for mres has a large effect. Any zero mode effects for sm
mf are not visible within our statistical errors. Sincex2y in
the range 7–16 has been used in determining the quan
in Eq. ~124!, Fig. 3 shows that the effects should be at t
few percent level. ForLs524 the residual mass is muc
smaller, and themf50 extrapolation from heavy quar
masses agrees quite well with2^ūu& lat norm(mf50,Ls).
Some nonlinearity at small quark masses is seen, but
errors are too large for a definite conclusion.

Thus we see that forLs516, the naive GMOR relation is
noticeably modified by the presence ofmres, while for Ls
524 themres effects for this power divergent case appear
be smaller than 10%. It is important to note thatmres is small
for Ls516, but mres/a

2 effects are not. We now turn to
similar comparison of our numerical results with the War
Takahashi identity for̂p1us̄duK1&.

C. Ward-Takahashi identity for s̄d

In contrast to the GMOR relation discussed in the pre
ous section, the Ward-Takahashi identity fors̄d does not con-
tain any power divergent terms. Thus we can work in t
largeLs limit and then replacemf with mf1mres at the end.
We can use Eq.~120! to understand the size of the zero mo
effects in^p1us̄duK1&. Such zero mode effects will appea
identically in the power divergent part of^p1uQi uK1& and
will be removed in the subtraction procedure given in E
~89!. The remaining finite terms in the subtracted matrix
ement will have zero mode effects, whose source we w
understand more clearly after investigating^p1us̄duK1&.

To measurêp1us̄duK1&, one can start with the ratio

R1[
^Pp1

wall
~x0!@ s̄d#~y!PK2

wall
~z0!&

^Pp1
wall

~x0!Pp2~y!&^PK1~y!PK2
wall

~z0!&
, ~125!

wherePp1
wall(x), etc. are Coulomb gauge fixed, pseudosca

wall sources andx0 is the time coordinate at the pointx. ~For
more details on the measurement of three-point correlat
please see Sec. IX.! We plot this ratio in Fig. 5 where we
take x055, z0527, and average over 14<y0<17. For x
@y@z and without zero-mode effects, this ratio should b

R15
^p1us̄duK1&

^p1uPp2u0&^0uPK1uK1&
~126!

which is finite and nonzero in the chiral limit. From th
Ward-Takahashi identity, without zero modes and chi
logarithms, this ratio is 2mf /(mp

2 f 2), which is'120 in lat-
tice units. @In this section, we consider the case of SU~3!
flavor symmetry so thatmp5mK5mM , where mM is the
common meson mass first used in Eq.~62!.# One sees from
the figure that for smallermf the points actually are decrea
ing, rather than increasing towards'120.

Since our measurements are made with 9<x02y0<12
and 10<y02z0<13, zero mode effects do enter the terms
the denominator. Consider a zero mode with support atx and
y. It produces a power of 1/mf in the numerator ofR1 and
contributions of order 1/mf

2 and 1/mf in the first term in the

-
ves

olid
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denominator ofR1 . A similar argument is also true for
quark propagator containing a zero mode aty and z. Thus,
for very smallmf , the ratioR1 will go to zero due to zero
modes. We believe this to be the source of the turnove
Fig. 5 for small values ofmf .

One can also determinêp1us̄duK1& from the ratio

R2[
^Pp1

wall
~x0!@ s̄d#~y!PK2

wall
~z0!&

^Pp1
wall

~x0!Pp2
wall

~z0!&
. ~127!

In the denominator ofR2 , zero modes should be negligibl
sincex02z0522 and the lattice has been doubled to ma
propagation around the ends unimportant. Thus we are
introducing zero mode effects into the ratio through the
nominator. Zero modes in the numerator enter through
propagatorsD21(x2y) andD21(y2z). Without zero mode
effects, we have

R25
^p1us̄duK1&

2mpVs
, ~128!

where Vs is the spatial volume. To precisely describe o
numerical situation, we again use primes to describe st
and masses which can have zero mode effects. For the
rent case, only one of the quark propagators in the pseu
calars in the numerator can have a zero mode. With
notation, we insert complete sets of states in Eq.~127! and
find

R25^~p1!8us̄du~K1!8&
u^0uPp1u~p1!8&u2

u^0uPp1up1&u2

2mpVs

~2mp8Vs!
2

3e~mp2mp8!~x02z0!. ~129!

The Ward-Takahashi identity result given in Eq.~120! can
be similarly written as

FIG. 5. A plot ofR1 , the ratio of a three point correlator to two
two-point correlators, defined in Eq.~125!. The larger zero mode
effects in the two-point correlators should make this quantity van
in the mf→0 limit, a marked change from the chiral limit value o
'120 expected without these chiral pathologies.
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2mf

mp8
2 ^0uPp2u~p1!8&^~p1!8us̄du~K1!8&

3^~K1!8uPK2u0&
e2mK8~y2z0!

2mK8VS

5
u^0uPp2u~p1!8&u2

2mp8Vs
e2mp8~y2z0!, ~130!

which reduces to

2mf

mp8
2 ^~p1!8us̄du~K1!8&51. ~131!

We now letLs be finite and changemf→mf1mres. We are
left with

R2

4Vs~mf1mres!

mp

u^0uPp2up1&u2

u^0uPp2u~p1!8&u2
e~mp82mp!~x02z0!51.

~132!

When there are no zero mode effects,mp5mp8 and up1&
5u(p1)8& leaving R24Vs(mf1mres)/mp51. Notice that a
small difference inmp and mp8 is multiplied by x02z0 ,
which can lead to larger effects inR2 . This is a result of the
simple fact that zero modes effect the pseudoscalar prop
tors in the numerator ofR2 differently than they effect the
propagators in the denominator.

Figure 6 is a plot of the value of 4R2Vs(mf1mres)/mp

versus quark mass. We use a value formp that is not effected
by zero modes. One sees that for the smaller values ofmf

h

FIG. 6. A plot of 4Vs(mf1mres)R2 /mp vs mf , where R2 is
defined in Eq.~127!. The Ward-Takahashi identity determines th
this value should be 1 formf→0 if there are no zero mode effect
present. The deviation from 1 for smallmf is consistent with esti-
mates of the different effective pseudoscalar masses entering in
Green’s functions in the numerator and denominator ofR2 . The
different effective pseudoscalar masses arise through zero mod
fects, as discussed in Secs. IV B and VI C.
6-22
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KAON MATRIX ELEMENTS AND CP VIOLATION FROM . . . PHYSICAL REVIEW D 68, 114506 ~2003!
this ratio deviates substantially from 1, being 16% below
for mf50.01. We would like to see if this is consistent wi
the prediction of Eq.~132!. We do not have direct measure
ments ofmp8 , since this is a mass which comes from co
elators with at most one zero mode. However, the effec
mass plots shown in Fig. 21 of@21# give values formp9 , the
mass from the pseudoscalar correlator where any numbe
zero modes is allowed, formf50.01. In the range of separa
tions 9–12,mp950.211(6), compared withmp50.199, our
best estimate formp without zero mode effects formf

50.01. This givesmp92mp50.014 and exp@(mp92mp)(x0

2z0)#51.36 forx2z522.
We do not know the relative contributions of one and tw

zero mode terms tomp9 . However, the zero modes hav
eigenvectors where the productcl(x)cl

†(y) is going to zero
in the range of separations we are considering. It is reas
able to argue that the falloff in the eigenvectors withx2y is
producingmp9.mp , since the two zero mode contributio
should dominate for small mf , they involve
ucl(x)u2ucl(y)u2 and the pseudoscalar correlator is posit
definite. Formp8 , only terms with at most one zero mod
contribution are included. In this casecl(x)cl(y) enters not
ucl(x)u2ucl(y)u2 and there is no positivity for the one zer
mode contribution alone. However, naively one could exp
mp9.mp8.mp . Thus it is reasonable that 1,exp@(mp8
2mp)(x02z0)#,1.36. From the determination off p in @21#
using pseudoscalar and axial vector correlators, the z
mode effects in̂ 0uPp2u(p1)8& are at the few percent leve
Thus the deviation of 4R2Vs(mf1mres)/mp from 1 in Fig. 6
is consistent with the estimates based on the difference in
mass of the pseudoscalar states relevant to the numerato
denominator ofR2 . From Eq.~131!, the zero mode effects in
^(p1)8us̄du(K1)8& are at most a few percent. The small d
ferences in the ‘‘masses,’’mp8 2mp indicate a substantial ef
fect of zero modes for time separations of the order of
We believe that these effects are responsible for the la
deviation seen from the predictions of chiral symmetry
theses̄d matrix elements~Fig. 6!.

We now turn to the question of the extraction of mat
elements from our lattice correlators. As we have discus
in the subtraction of divergent terms zero mode effects c
cel. In the ratioR1 , large zero mode effects are introduc
into the denominator through the pseudoscalar correla
acting over moderate distances. This produces a differen
fective pseudoscalar mass in the numerator and denomin
In the ratioR2 , no zero modes are introduced in the denom
nator, but there is a similar mismatch in pseudoscalar ma
since the numerator can contain zero modes. However,
mismatch is most pronounced for the power divergent ter
which behave like thes̄d matrix element above. In the finite
subtracted operator, a similar mass mismatch can occu
eye type diagrams, but will not in general occur for figu
eight diagrams due to the way gamma matrices enter
traces and the fact that all zero modes have the same ch
ity. Thus the ratioR2 will not eliminate all the effects of zero
modes in the desired physical quantities, but it minimiz
them. We will useR2 for the determination of our desire
K→p matrix elements.
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Figure 7 shows 2mpVsR2 versusmf . With no zero mode
effects this equalŝ p1us̄duK1&. For mf50.01, the zero
modes should produce the same relative distortions in
quantity as are shown in Fig. 6. This matrix element is us
in the operator subtraction and as discussed previously
zero mode and chiral logarithm effects in this matrix elem
will match those in the power divergent parts
^p1uQi uK1&. Since the plot is not obviously linear, it i
important to subtract the two matrix elements to take f
advantage of the correlation of zero mode and chiral lo
rithm effects between them.

VII. WILSON COEFFICIENTS

The twelve-dimensional vector of Wilson coefficien
C(m) has been calculated at next to leading order~NLO! in
QCD and QED by the Munich@62–64# and Rome@65#
groups. In those calculations the Callan-Symanzik equati
are solved to determine the Wilson coefficients at an ene
scalem'1 GeV, appropriate for lattice calculations, startin
from their values at the weak scale,'MW . The solution is
obtained within the approximation that the parametersas
and a ~the fine structure constant of electromagnetism! are
small but that the products (ast)

n are of order one, wheret
5 ln(MW/m). According to this reasoning, in leading ord
~LO! one sums all terms of the formas

ntn and aas
ntn11.

These terms are identified asO~1! and O(a/as), respec-
tively. In the next to leading order approximation~NLO! one
also includes all terms of the formas

n11tn andaas
ntn, iden-

tified asO(as) andO~a!, respectively. Terms of orderan for
n>2 are not included.

In the notation of Ref.@64# the NLO evolution ofC(m) to
a value ofm below the charm threshold is given by

FIG. 7. A graph of 2mpVsR2 vs mf . Without zero mode effects
this quantity is^p1us̄duK1&. In the operator subtraction, any non
linearities in the power divergent parts of^p1uQi uK1& will exactly
match the nonlinearities in this plot. The resulting subtracted op
tor will not have chiral logarithm and zero mode effects multipli
by power divergent terms.
6-23
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TABLE I. Decomposition of the next-to-leading order~NLO! Wilson coefficients into contributions of a
given order. The coefficientszi at m51.3 GeV~the charm quark mass! are given in the NDR scheme for th
3-flavor case where the charm quark has been integrated out.

i O~1! O(as) O~a! O(a/as) Total

1 20.517 171 0.119 497 0.001 607 68 20.003 938 67 20.400 005
2 1.266 03 20.067 024 2 20.002 53 0.009 641 83 1.206 12
3 0.0 0.004 210 37 0.000 032 065 3 0.0 0.004 242 43
4 0.0 20.012 631 1 20.000 096 195 9 0.0 20.012 727 3
5 0.0 0.004 210 37 0.000 032 065 3 0.0 0.004 242 43
6 0.0 20.012 631 1 20.000 096 195 9 0.0 20.012 727 3
7 0.0 0.0 0.000 052 588 2 0.0 0.000 052 588 2
8 0.0 0.0 0.0 0.0 0.0
9 0.0 0.0 0.000 052 588 2 0.0 0.000 052 588 2
10 0.0 0.0 0.0 0.0 0.0
,

a
n
an

e

g
st

n

KM

e
-

on

ce,
vio-

irst
e

nd
ef-
-
k-

rm
co-

ra-
ing
rz

e in
to

m

ere
wn
C~m!5Û3~m,mc ,a!M̂4Û4~mc ,mb ,a!

3M̂5Û5~mb ,MW ,a!C~MW!, ~133!

whereÛ f(m1 ,m2 ,a) is the renormalization group improved
evolution matrix from the scalem2 down to the scalem1 in a
theory with f quark flavors. The matrixÛ f(m1 ,m2 ,a) is a
12312 matrix for f 54 and 5 while it reduces to a 10310
matrix for f 53. The flavor matching matrixM̂ f relates the
Wilson coefficients that appear in thef and f 21 flavor ef-
fective theories. It is naturally written as a 12312 matrix for
f 54 and 5, while forf 53 it is a 10312 array. HereC(MW)
are the 12 coefficients of the effective theory calculated
the scaleMW by matching to the full theory. Evolution dow
to a value ofm above the charm threshold is given by
obvious truncation of Eq.~133!. The matrix Û f(m,m,a)
contains terms of orderO~1! and O(as) in QCD and in-
cludes terms ofO(a/as) and O~a! when QED effects are
included. Following convention, we fixa51/128 at m
5MW and do not include its running in the evolution of th
Wilson coefficients.

Following Ref.@23#, we express the contributions arisin
from chargedW exchange as the sum of two terms. The fir
which evolves with Wilson coefficients defined aszi(m),
contains the difference of charm and up quark fields a
carries the CKM coefficients (12t). The second evolves
with Wilson coefficients defined asv i(m), contains the dif-
ference of the top and up quark fields, and carries the C
coefficientst @see Ref.@23#, Eq. ~4.4!#. For the three-flavor,
‘‘charm-out’’ case, only the ten operatorsQi appear and their
Wilson coefficients are given by

Ci5tv i1~12t!zi ~134!

5tyi1zi , ~135!

whereyi5v i2zi . With this separation, the evolution of th
coefficientszi is particularly simple: The cancellation be
tween the charm and up quark loops~the GIM mechanism!
prevents the appearance of penguin contributions until
11450
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matches to the 3-flavor, charm-out effective theory. Sin
with our standard choice of phase conventions, the CP
lating phase is contained in the CKM parametert, the larger,
t-independent terms coming fromzi will provide the domi-
nant contribution to the CP conserving amplitudes ReA0,2
while yi must appear in the CP violating amplitudes ImA0,2
@see Eq.~3!#.

We calculate these Wilson coefficients in two steps. F
we determineC(m) in the NDR scheme using exactly th
formulas and procedures given in Refs.@23,64#. In particular,
when using Eq.~133!, all O(as

2,asa) and higher order terms
which are generated by multiplication of the evolution a
matching matrices are dropped so that the final Wilson co
ficients at scalem contain all contributions up to and includ
ing O(as ,a/as ,a) and no more. An example of the brea
down of zi and yi at m51.3 GeV in the NDR scheme is
given in Tables I and II. In the second step, we transfo
these coefficients, obtained in the NDR scheme, into the
efficients of operators defined according to the RI scheme1 in
Landau gauge using

CRI~m!5S 12
as~m!

4p
~Dr l* 50

NDR
!TDCNDR~m!, ~136!

where the matching matrixDr l* 50
NDR is given in Table VIII of

Ref. @24#.

1This matching requires a careful definition of our basis of ope
tors in the NDR scheme associated with the difficulties of defin
g5 in dimensional regularization. While in the RI scheme, Fie
rearrangement of the fermion fields has no effect, this is not tru
the NDR scheme. In fact, for the NDR calculation and matching
RI to be described correctly, we should follow Ref.@64# and write
our operatorsQ1,2 in a Fierz rearranged fashion. This is the for
that is used in the NDR calculation@64# we are following and in
determining the matching coefficientsDr l* 50

NDR in Refs. @65,24#.
However, in our own matrix element and NPR calculations, wh
the Fierz ordering is immaterial, we find the Fierz structure sho
in Eqs.~4!–~7! to be more convenient.
6-24
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TABLE II. Decomposition of the next-to-leading order~NLO! Wilson coefficients into contributions of a
given order. The coefficientsyi at m51.3 GeV~the charm quark mass! are given in the NDR scheme for th
3-flavor case where the charm quark has been integrated out.

i O~1! O(as) O~a! O(a/as) Total

1 0.0 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0 0.0
3 0.026 693 3 20.000 750 255 0.001 433 01 0.000 130 383 0.027 506 5
4 20.051 399 20.002 549 18 20.001 071 9 20.000 277 595 20.055 297 6
5 0.013 273 9 20.007 886 98 0.000 117 102 0.000 077 474 6 0.005 581 5
6 20.077 522 2 20.005 344 37 20.000 868 366 20.000 372 801 20.084 107 7
7 0.0 0.0 0.000 700 858 20.000 878 706 20.000 177 847
8 0.0 0.0 0.001 236 6 20.000 180 252 0.001 056 34
9 0.0 0.0 20.010 766 4 20.000 999 603 20.011 766
10 0.0 0.0 0.004 061 02 0.000 173 261 0.004 234 29
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In this paper we discuss only the three-flavor, charm-
case. Thus we naturally deal with an effective theory t
describes physics at energy scales below the charm ma
the scales that dominate the matrix elements we are com
ing. However, we are concerned about potential errors
come from using perturbation theory so close to the n
perturbative region. We cannot avoid the use of perturba
matching to connect the four-flavor~charm-in! and three-
flavor ~charm-out! theories since in the lattice calculation
presented in this paper we do not include a propaga
charm quark. However, the connection between the N
and RI Wilson coefficients, also done in perturbation theo
can be done at a scale above the charm quark mass, the
reducing the perturbative uncertainties. Note, in these dis
sions the energym specifies the energy scale that appe
in the normalization condition that defines the operat
that appear in our effective theory. For the case at hand
are free to choose this scale to be well abovemc where
perturbation theory may be more reliable. Of course,
effective theory will not describe processes in nature in t
region of energies (;mc), but only processes involving
lower energy scales. Note, we are prevented from usin
very large value form since we do not want large lattic
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spacing errors to enter our nonperturbative normalization
these operators.

In order that the product of the RI Wilson coefficien
times the RI operators be independent of the scalem they
must both be computed in the full or the quenched theo
Since our nonperturbative normalization is determined in
quenched approximation, them-dependence of the Wilson
coefficients should be determined in the quenched the
Therefore we adopt the following transition to our quench
approximation. In evolving the effective weak Hamiltonia
from the W mass scale down to a form valid in the thre
quark, charm-out theory, we include all required quark lo
effects. Making a ‘‘quenched’’ approximation here is n
necessary and would leave out physically important phen
ena. We then interpret the resulting NDR scheme, 3-fla
effective weak Hamiltonian with operators and coefficien
defined atm5mc as our quenched approximation Ham
tonian. Thus we use the Wilson coefficients without chan
but interpret the operators as defined in the quenched
proximation. We are then free to vary the renormalizati
scalem, increasing it abovemc if we choose. However, we
must normalize the operators by evaluating quenc
Green’s functions and evolve the Wilson coefficients fro
he
olved

2

3
2

TABLE III. The Wilson coefficientszi(m) in the RI scheme for the 3-flavor case. Starting from t
3-flavor, NDR scheme Wilson coefficients in full QCD at the charm mass, the Wilson coefficients are ev
to them values in this table using the quenched three-loop value forLMS and the two-loop quenchedas . At
this m they are converted to the RI scheme.

i 1.51 2.13 2.39 3.02~GeV!

1 20.346 301 20.304 999 20.292 757 20.269 806
2 1.173 84 1.149 51 1.142 47 1.129 47
3 0.004 048 56 0.001 813 46 0.001 214 41 0.000 164 314
4 20.012 939 7 20.005 736 13 20.003 686 11 0.000 066 681 1
5 0.004 763 83 0.002 815 54 0.002 223 81 0.001 098 64
6 20.014 647 1 20.006 561 06 20.004 404 76 20.000 612 69
7 0.000 053 034 8 0.000 066 681 1 0.000 073 936 1 0.000 092 251
8 20.000 022 313 5 20.000 062 572 4 20.000 072 154 2 20.000 087 598 8
9 0.000 041 580 3 0.000 034 010 3 0.000 035 681 3 0.000 044 365
10 0.000 015 928 9 0.000 042 263 6 0.000 049 355 9 0.000 061 744
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TABLE IV. The Wilson coefficientsyi(m) in the RI scheme for the 3-flavor case. Starting from t
3-flavor, NDR scheme Wilson coefficients in full QCD at the charm mass, the Wilson coefficients are ev
to them values in this table using the quenched three-loop value forLMS and the two-loop quenchedas . At
this m they are converted to the RI scheme.

i 1.51 2.13 2.39 3.02~GeV!

1 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0
3 0.023 894 3 0.022 464 4 0.022 021 1 0.021 168 5
4 20.050 515 5 20.051 148 4 20.051 301 4 20.051 553 6
5 0.005 832 45 0.007 190 03 0.007 560 92 0.008 223
6 20.091 293 5 20.081 790 1 20.079 262 9 20.074 830 7
7 20.000 176 754 20.000 155 239 20.000 148 013 20.000 133 228
8 0.001 156 08 0.000 971 975 0.000 921 86 0.000 832 504
9 20.011 419 6 20.011 143 6 20.011 064 9 20.010 921
10 0.003 684 73 0.003 251 91 0.003 127 29 0.002 897 85
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their m5mc values using quenched evolution equations.2

Our results in the RI scheme for the three-flavor the
are given in Tables III and IV. The scalesm51.51, 2.13,
2.39, and 3.02 GeV correspond to those where the non
turbative, operator renormalizationZ factors were calculated
The standard model parameters used to obtain these num
are given in Table V. Two-loop running ofas is used
throughout. We have performed several checks of our an
sis. Our numerical values ofCNDR(m) agree exactly with
those reported in@64# when their values for the standar
model parameters are used. We also agree within 20%
much better in most cases, with the Wilson coefficients giv
in @24# for the NDR and RI schemes. These differences a
because the treatment of terms beyond NLO differs betw
that adopted in Ref.@64#, which we follow, and that of@24#.

We note that there is a potential ambiguity which aris
when using the one-loop matching given by Eq.~136!.
Straight multiplication ofCNDR(m) by the one-loop match
ing matrix generates anO(asa) contribution which is large.
After matching we findC8,RI(m'2 GeV)'0.0006 if we
drop this term, or 0.0009 if we do not. Thus thisO(asa)
term increasesC8,RI by 50%. The origin of this large correc
tion is easily understood by examining theO(a/as) and
O~a! terms inC8,NDR. The subleadingO~a! term is roughly
seven times the leading orderO(a/as) term and they have
opposite signs. The origin of this reversal is well known; t
O~a! term is dominated by the contribution proportional
mt

2 which is quite large. This sum of leading~small! and
subleading~large! terms is then to be multiplied by the one
loop matching forC8 which is dominated by the diagona

2In the results described below, we carry out this prescription o
approximately. For them dependence ofas we use thef 50 b
function and the value ofLQCD5238 MeV from the quenched cal
culation of Ref.@66#. However, we still use the 3-flavor, two-loo
anomalous dimension matrix rather than the 0-flavor matrix as
quired by the above discussion. Since the resulting evolution o
corresponds to scale changes on the order of a factor of 2, ther
no large logarithms and it is appropriate to neglect such two-l
effects in our NLO calculation.
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term which is itself anomalously large, (Dr l* 50
NDR )8,8'10.

The above discussion may lead the reader to conclude
there is a significant uncertainty inC8 , an important quantity
in e8. In fact, we believe that this is not the case. The la
corrections which arise from the matching calculation m
be included as complete factors in the Wilson coefficients
maintain the scheme independence of the weak Hamilton
Arbitrarily dropping these higher order terms could pote
tially increase the scheme dependence of our final result~we
follow the general argument given in Ref.@67# for the NDR
and HV schemes which applies to the RI scheme as well!. In
practice, the scheme and scale dependence of the W
coefficients and the renormalized operators cancel when
are combined in the weak Hamiltonian. Schematically,

HW5QTC5QRI
T CRI

5QNDR
T S 11

as~m!

4p
~Dr l* 50

NDR
!T1¯ D

3S 12
as~m!

4p
~Dr l* 50

NDR
!T1¯ DCNDR5QNDR

T CNDR.

~137!

By far the largest contribution to theO~a! part of the weak
Hamiltonian isC8Q8 which then, by itself, must be schem
independent. As we saw, theO(aas) contribution to the

y

e-
ly
are
p

TABLE V. Standard model parameters used to generate the
son coefficients. Dimensionful parameters are in GeV.

Parameter Value

MW 80.419
mt(MW) 175.5
mb(mb) 4.4
mc(mc) 1.3

a 1/128

LMS
( f 55) 0.20860.025

sin2 uW 0.23117
6-26
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matching matrix~which by definition is scheme dependen!
was quite large. In our calculation, the renormalization of
operators is done to all orders in QCD in the RI schem
Thus the productC8Q8 could implicitly contain a compen
sating largeO(aas) scheme dependent contribution comi
from theO~a! term inC8 and theO(as) term implicit in the
nonperturbative renormalization ofQ8 . Thus it is natural to
include the full matching coefficient in the RI value ofC8 so
that these compensating terms will both be present in
productC8Q8 .

Recently, partial next-next-to-leading order~NNLO! cal-
culations have been performed@68,67#. We only examine the
latter case where the complete set ofO(aas) and
O@aas sin2(uW)mt

2# corrections to the Wilson coefficient
C7 – 10 of the electroweak penguins have been calculated
Ref. @67# it is argued that these are the dominant NNL
contributions. We simply take the values in Ref.@67# for m
51.4 GeV to estimate the change inC7 – 10 in the RI scheme,
and use these values in conjunction with the ones in Ta
III and IV to estimate the effects of these corrections on
K→pp amplitudes given in later sections. We conclude t
the changes in the Wilson coefficients and finalK→pp am-
plitudes are modest.

We explicitly tabulate the values of the Wilson coef
cients at four different scalesm. In later sections these coe
ficients are combined with the nonperturbativeZ factors,
computed at these same four values ofm to determine the
final physical results. Since these final numbers should
independent of this renormalization scalem, this comparison
gives a significant indication of how well our method
working.

VIII. OPERATOR RENORMALIZATION USING NPR

As is well known, in using the lattice to calculate matr
elements, one cannot simply transcribe the operators of
continuum theory to the lattice. The lattice operators a
continuum operators have to be properly renormalized
the relationship between them explicitly known. For this w
use a two step process to take advantage of existing
tinuum calculations for the Wilson coefficients.

~1! We use a renormalization scheme~here the RI or regu-
larization independent scheme! to define renormalized opera
tors which is independent of the underlying regulator. T
ensures a common definition of renormalized operators
the lattice and in the continuum.

~2! We also need the relationship between operators re
malized in the RI scheme and those in theMS scheme since
the existing perturbative calculations of the Wilson coe
cients are done in this scheme. The matching between RI
MS with naive dimensional regularization~NDR! is known
at one loop@65,24#.
An additional complication in the renormalization of the o
erators in theDS51 Hamiltonian is the mixing betwee
these operators and lower dimensional operators. This is
to the presence of quark and antiquark fields of the sa
flavor in theDS51 operators. Since this mixing in gener
involves power divergent coefficients, it can be quite large
the lattice formulation badly breaks chiral symmetry. Sin
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in our calculation with domain wall fermions chiral symm
try breaking effects are small, this problem becomes tr
table.

A. Mixing for DSÄ1 operators

For theDS51 Hamiltonian, the continuum renormalize
dimension-six operators can be written in terms of bare
tice operators as

Oi
cont,ren~m!5(

j
Zi j ~m!FOj

lat1(
k

ck
j ~m!Bk

latG1O~a!.

~138!

We have introduced the scalem used to define the renorma
ized operators. HereOj

lat is also a four-quark dimension-si
operator and theBk

lat’s are operators that contain only tw
quark fields. Due to theDS51, DD521 nature of the op-
erators we are considering, theBk

lat’s must have thes̄d flavor
structure. These operators can mix with coefficientsck

j that
diverge as the lattice spacing tends to zero.

We will consider here the renormalization of the par
conserving part of theDS51 effective Hamiltonian assum
ing, as in the rest of this work, that chiral symmetry is r
spected.~We have investigated this question in detail for t
renormalization of quark bilinear operators and found no s
nificant effects due to explicit chiral symmetry breaking
domain wall fermions at finiteLs @59#.! The renormalization
conditions will be imposed in the massless limit and as s
operators in different multiplets of SU(3)L ^ SU(3)R or isos-
pin do not mix under renormalization. This imposes stro
constraints on the allowed operator mixing, and in particu
on the number of quark bilinear operators that need to
considered. The latter may be split into three classes@69,62#.

~1! Operators that vanish on shell by the equations of m
tion.

~2! Gauge invariant operators that do not vanish by
equations of motion.

~3! Nongauge, but BRST, invariant operators.

Operators of types one and three do not contribute to ph
cal processes and so do not have to be considered in
calculation of hadronic matrix elements. However, they
have to be taken into account in operator renormalizati
where amplitudes with off-shell gauge-fixed external fie
are used.

The bilinear operatorsBk in Eq. ~138! must contain ans̄
and d quark and conserve parity. Thus their general fo
must be one of the following:

s̄X~1!d, ~139!

s̄smnXmn
~2!d, ~140!

s̄gmXm
~3!d, ~141!

whereX(1), Xmn
(2) , andXm

(3) are flavor singlet quantities which
may include gluon, ghost, and derivative terms. It is sim
to see that Eq.~139! is in a (3,3̄)1(3̄,3) representation of
6-27
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SU(3)L ^ SU(3)R and so may not mix with any of the
dimension-six operators we are considering in the mass
limit.

In fact, the only operator that is allowed to mix b
SU(3)L ^ SU(3)R is Eq. ~141!, which transforms as an
(8,1)1(1,8). This gives one dimension-four operator,

s̄~2D”Q 1D”W !d, ~142!

with a mixing coefficientck
j that may behave as 1/a2 as a

→0, which we must consider. BRST noninvariant operat
are allowed to mix only if they vanish by the equations
motion @69#. This forbids the second possible dimension fo
operator,s̄]”d, from appearing. This argument allows oper
tors of dimension-five to appear. However, these opera
break chiral symmetry and are therefore forbidden. Sev
dimension-six operators~for example, those involving thre
D” operations! can also occur, although their mixing coeffi
cients diverge at most logarithmically.

The arguments above rely on the fact the renormaliza
conditions that we will be imposing are defined in the chi
limit. The numerical simulations that we have done to eva
ate them, however, were performed at multiple, finite valu
of the quark mass and the results extrapolated to the mas
limit. As this is the case, it is also important to study ope
tors that may be present due to the breaking of chiral s
metry by the quark mass and also the explicit chiral symm
try breaking from finite Ls . This allows many more
operators to mix. We will focus on the most divergent o
~which diverges as 1/a2) given by Eq.~139! with X(1)51
and show that its contributions are negligible in the chi
limit.

B. Nonperturbative renormalization

Although, in principle, the renormalization of lattice op
erators can be done by using lattice perturbation theory
practice simple uses of lattice perturbation theory suffer fr
poor convergence for currently accessible gauge coupl
(b;6.0). Use of renormalized or boosted couplings@70#
improves the perturbative behavior in many cases of inte
but considerable arbitrariness remains@71#. Furthermore, for
domain wall fermions lattice perturbation theory has t
added complication that the renormalization coefficients
depend sensitively onM5 , the domain-wall height@59,72–
74#. The nonperturbative renormalization technique p
neered by the Rome-Southampton group@26# provides a
method for removing the uncertainties associated with p
turbation theory. ~Another approach to nonperturbativ
renormalization has been developed by@25#.! The use of this
technique here represents one of the most complicated
ations where it has been applied. We now give a brief ov
view of the method and elaborate on its use for theDS51
case.

The NPR method starts with the computation of Gree
functions of the bare operators in question. The Gree
function is calculated using off-shell external quark fields
large Euclidean momentum. This momentum defines
renormalization scalem. The quark fields must be in a pa
11450
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ticular gauge, and in this work we only use Landau gau
We note that renormalization coefficients in the RI sche
can be gauge dependent. Schematically, we have

G~4!~p1 ,p1 ,p2 ,p2!5^qa
i ~p1!qg

k~p1!Omq̄b
j ~p2!q̄d

l ~p2!&
~143!

and, as we will discuss in more detail later, we work w
up1u5up2u5up12p2u. This Green’s function is then ampu
tated using the full quark propagators calculated in the sa
gauge. A renormalization condition which fixes theZi j and
ck

j factors in Eq.~138! may then be applied by requiring tha
the amputated Green’s function ofOi

cont,ren take on its free
field value for all spin and color indices on these qua
fields. This defines the RI scheme. Its relationship to ot
renormalization schemes requires only continuum pertur
tion theory, which is better behaved than lattice perturbat
theory at the low scales (m;2 GeV) used in the presen
calculations.

The success of this method requires two important con
tions to be satisfied.

~1! A suitable ‘‘window’’ of momenta must exist. The
window must include momenta which are large enough
make nonperturbative~condensate! effects small. It must also
include momenta which are small enough to avoid artifa
due to finite lattice spacing. Such a window was seen
quark bilinears in@59#.

~2! Since the method of nonperturbative renormalizat
must eventually make a connection with continuum pert
bation theory, our approach which uses Landau gauge is
tentially vulnerable to the presence of Gribov gauge cop
Such multiple gauge copies, present in Landau gauge la
simulations, invalidate a comparison of gauge-variant qu
tities with perturbation theory, even when our calculatio
are performed at increasingly weak coupling. For the succ
of our method the effects of Gribov copies must therefore
small.
In principle, the Gribov copy problem can be avoided by
more complete gauge fixing procedure. For example,
could begin with a gauge transformation to a complet
fixed axial gauge and then follow with the usual Land
gauge fixing. Such a procedure would guarantee that in
weak coupling, small volume regime, a comparison w
continuum perturbation theory would be accurate. While
have not implemented this more sophisticated gauge ch
for the NPR calculations described here, we have mad
nontrivial test. We have carried out a companion calculat
for both 84 and 164 lattices of the renormalization factors fo
both the dimension-three quark bilinear operators and
single four-quark operator that enters the calculation ofBK
and found no meaningful difference between our usual L
dau gauge fixing determination of the renormalization fact
and the same determination using the more elaborate
step procedure described above@75#. Thus we believe that
the presence of Gribov copies is not a cause of difficulty
the work presented here.

With this overview of NPR, we now turn to the specifi
issues and conventions we use in the application of this te
nique toDS51 operators. We first consider the type of qua
6-28
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contractions that can occur in Eq.~143! and see that there ar
two types. The first has each quark field in the operator c
tracted with an external quark field, which we will call tre
contractions in this section, and the second, which we
eye contractions, have quark propagators that begin and
on the operator. This second class of contractions are
theoretically and numerically challenging. They are theor
cally challenging because it is through these diagrams
the mixing with lower dimensional operators occurs. Th
are numerically challenging because they involve the ev
ation of a spectator quark propagatorS(p,q) with pÞq.
These numerical issues will be discussed later, after the
oretical issues are outlined.

In the RI scheme, the standard condition for determin
ck

j (m) is the requirement that the renormalized four-qua
operator vanish when evaluated in a Green’s function w
two external quark fields. In particular

G~2!~p,p!5^sa
i ~p!Omd̄b

j ~p!& ~144!

should be zero. As such, it is convenient when calculat
Zi j (m) to use a two step process where first a subtrac
operator is defined by evaluating theck

j (m) in Eq. ~138!
through

Oi
sub5Oi

latt1(
k

ck
i Bk . ~145!

The second step consists of evaluating the four-qu
Green’s functionGsub

(4) for the subtracted operator using th
external quark fields in Eq.~143!. We now discuss which
quark bilinears we will subtract.

A full subtraction of all the bilinear operators that cou
potentially mix with the four-quark operators in questio
would be challenging and prone to numerical error due
their large number. However, in the context of the curr
study our accuracy is limited by the existing one-loop p
turbative calculations of the matching coefficients betwe
the RI andMS schemes and the current Wilson coefficien
for which the finite terms are also known only to one-lo
accuracy. Therefore it is not necessary to subtract opera
that affect the renormalization factors at orderg4 and above
in perturbation theory, provided we have noa priori reason
to expect them to give anomalously large contributions.

Consequently, we neglect the subtraction of any bilin
operator that is not power divergent and which mixes w
the four-quark operators at orderg2 and above. The expla
nation for this is straightforward. Consider the Green’s fun
tion of a generic subtracted operatorGsub

(4)(p1 ,p1 ,p2 ,p2),
evaluated in the free case. The bilinear operator will give
contribution to this Green’s function, due to the choice
momenta. For interacting theories, gluon exchange can tr
fer momenta, allowing a nonzero contribution of the biline
operator to this Green’s function. Such effects occur at or
g. If the lowest order contribution ofck

j (m) begins atg2 the
total contribution will be of higher order and may be n
glected.

This counting is clearly not relevant for the bilinear o
erators of dimension below six as the needed subtrac
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coefficients may be power divergent as the lattice spac
tends to zero. This means we must always consider the
erator given in Eq.~142!, and away from the massless limit
may be useful to subtract the operator given in Eq.~139!, the
subtraction coefficient of which has the leading behav
m/a2. Now we have to consider various dimension-six o
erators. AtO(g0) there are no dimension-six bilinear oper
tors that mix. At one loop, hereO(g), there is a single op-
erator that can mix@62#:

s̄gndDmFmn . ~146!

To be consistent we should subtract this operator. Howe
as we will argue later, the numerical effect of neglecting t
subtraction is small. At two loops additional gauge invaria
operators which vanish by virtue of the equations of mot
and possible gauge noninvariant operators must also be
cluded @62#. However, as explained earlier, we can cons
tently ignore such orderg4 effects in the present calculation

We will therefore consider the subtraction of only tw
bilinear operators

B1[ s̄d,

B2[ s̄~2D”Q 1D”W 1ms1md!d

5 s̄~2D”Q 1ms!d1 s̄~D”W 1md!d. ~147!

B2 is a modification of Eq.~142! with additional mass de-
pendent terms added such that the operator vanishes on-
both in and out of the chiral limit, andB1 is the operator in
Eq. ~139! with X(1)51. The two subtraction coefficients,c1

i

andc2
i , should have leading behavior

c1
i }

ms1md

a2 1¯ , ~148!

c2
i }

1

a2 1¯ . ~149!

As mentioned previously, we subtract these operators by
quiring that Green’s functions for the subtracted four-qua
operatorsOi

sub vanish between external quarks states w

flavor structuresd̄. To determine both coefficients we nee
to impose two linearly independent conditions which w
choose as

Tr@^s~p!Oi
subd̄~p!&amp#50, ~150!

Tr@ ip” ^s~p!Oi
subd̄~p!&amp#50, ~151!

where ‘‘amp’’ denotes the amputated vertex. The moment
p where the condition is enforced is explained in detail b
low.

In QCD, the operatorsOi mix under renormalization. To
account for this mixing we define a set of suitable color, sp
and flavor projectors which we use to implement our ren
malization conditions and thus yield theZi j in the RI
6-29
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scheme. First, to distinguish the flavor structure of the ope
tors we define a set of external quark fields, denoted
Eabgd

j , as

Eabgd
j 5 f j ,abcdqa

a~p1!q̄b
b~p2!qg

c~p1!q̄d
d~p2!, ~152!

whereq is a generic quark field; the subscripts represent
spin and color and the superscripts representing the fla
Here f j ,abcd is a set of constants defining the flavor structu
of the j th set of external quark fields. We then construct
amputated Green’s functions ofOi

sub between these externa
quark fields

Labgd
i , j 5^Oi

subEabgd
j &amp ~153!

and trace the result with a chosen set of projectors,Pj ,

Pj$L i j %[Gabgd
j Lbadg

i , j ~154!

whereG j is a rank-four tensor in spin and color space th
defines the projector, and there is no sum overj in the above
equation. The renormalization factorsZki are then fixed by
requiring that, for renormalized operators with a spec
choice of the momenta appearing in Eq.~152!, this set of
quantities be equal to its free case value,

1

Zq
2 ZkiPj$L i , j%5Fk j. ~155!

Here Fi j is the free case limit ofPj $L i , j% and Zq
1/2 is the

quark wave function renormalization factor from@59#. This
may be conveniently be written in matrix form

1

Zq
2 Z5FM 21 ~156!

with Mi j [Pj$L i , j%. Z, M, andF are all realN3N matrices,
whereN is the number of operators in our basis.

As long as the external states and projectors are cho
such that a linearly independent set of conditions is app
~F is invertible!, this completely and uniquely specifies th
renormalization coefficients for any such choice of the fla
structure of the external quark fieldsf j ,abcd and projectors
Gabgd

j .

C. Numerical implementation

We now move to a discussion of the numerics of o
calculation. All the results presented were measured
quenched gauge configurations generated using the W
gauge action for a lattice of size 163332 with b56.0. These
configurations were then fixed into Landau gauge~see@59#!.
On these Landau gauge-fixed configurations we then ca
lated the needed quark propagators using the domain
fermion action withLs516.

To construct the quark contractions that arise in E
~150!, ~151!, and ~153! three distinct quark propagators a
needed for a fixed mass.
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~1! The propagator from the position of the operator to
general sitex on the lattice transformed into momentu
space onx.

~2! The propagator from the position of the operator back
that position.

~3! A spectator propagator transformed into moment
space on both source and sink indices with distinct m
menta,S(p,q) with pÞq.

The first two of these require a single inversion of the Dir
operator for each mass. However, to calculate the las
these we inverted the Dirac operator using a fixed mom
tum source, which costs an inversion for every momentaq,
needed. For this reason we calculate this propagator for o
four fixed momenta and a limited range of masses.

As we are working on a finite lattice with periodic boun
ary conditions, the possible values of the momenta fo
given directioni P$x,y,z,t% are

api5
2pni

Li
, ~157!

whereLi is the lattice size in directioni,

Lx5Ly5Lz516, Lt532 ~158!

and

2
Li

2
,ni<

Li

2
. ~159!

1. Bilinear operator subtractions

To evaluate the subtraction coefficientsc1
i and c2

i the
spectator propagator is not needed, a single momentum s
propagator from a point being sufficient. As this is the ca
we have used a separate data set from that used for the
four-quarkZ-factor calculation. We used an ensemble of
gauge configurations for which we calculated the qu
propagators for bare quark massesmf50.02, 0.03, 0.04, and
0.05.

From Eqs.~150! and ~151! we obtain

2c1
i 22c2

i Tr@S21~p!#

Tr@^s~p!~ s̄d!d̄~p!&amp#
5

Tr@^s~p!Oid̄~p!&amp#

Tr@^s~p!~ s̄d!d̄~p!&amp#

5k i , ~160!

2c1
i Tr@ ip” ^s~p!~ s̄d!d̄~p!&amp#

2 Tr@ ip”S21~p!#
2c2

i 5
Tr@ ip” ^s~p!Oid̄~p!&amp#

2 Tr@ ip”S21~p!#

5l i , ~161!

where we have explicitly taken the degenerate limit,ms
5md5mf . These two relations may be simplified by notin
that
6-30



s

gh

a
as
am
. T

ion
as

at
of

e.

for
ti-
l

a

r

-

-

r

KAON MATRIX ELEMENTS AND CP VIOLATION FROM . . . PHYSICAL REVIEW D 68, 114506 ~2003!
Tr@S21~p!#

Tr@^s~p!~ s̄d!d̄~p!&amp#
5mf ~162!

to within the statistical errors given in@59#. It was also found
in @59# that Tr@ ip” ^s(p)( s̄d)d̄(p)&amp#50 up toO(a2) con-
tributions. As this is the case, we extractc2

i from Eq.~161! in
the chiral limit. We then substitute this value into Eq.~160!
to give c1

i .
It is instructive to investigate the mass dependence ofc1

i ,
since c1

i should vanish in the chiral limit. In addition, a
shown in Eqs.~148! and ~149!, the dominant 1/a2 diver-
gences inc1

i and c2
i are momentum independent, althou

subleading terms are expected to depend on ln(pa). Thus the
dominant contributions toc1

i and c2
i as determined through

Eqs.~160! and ~161! are momentum independent as long
we are in the required ‘‘window;’’ however, experience h
shown that at the momenta accessible for the lattice par
eters we are using, discretization errors may be important
check for the above features ofc1

i and c2
i , we first rewrite

Eqs.~160! and ~161! as

k i~p!52mfAk i~p!1Bk i~p!, ~163!

TABLE VI. The O(a)2 errors in the lower dimensional operato
subtractions are eliminated by fitting the coefficientAk i(p) in Eq.
~163! to the formAk i(p)5Ak i

(0)
1Ak i

(2)(ap)2. This table gives results
for Ak i

(0) andAk i
(2) .

i Ak i
(0) Ak i

(2)

1 2.2(16)31023 27.2(54)31024

2 8.3(89)31023 21.3(30)31023

3 2.3(19)31022 24.6(65)31023

4 2.9(27)31022 25.2(92)31023

5 6.73(12)31021 1.9(31)31023

6 2.037~44! 1.3(97)31023

7 23.330(73)31021 21.7(13)31023

8 29.95(20)31021 25.6(33)31023

9 28.3(89)31023 1.3(30)31023

TABLE VII. The O(a)2 errors in the lower dimensional opera
tor subtractions are eliminated by fitting the coefficientBk i(p) in
Eq. ~163! to the form Bk i(p)5Bk i

(0)
1Bk i

(2)(ap)2. This table gives
results forBk i

(0) andBk i
(2) .

i Bk i
(0) Bk i

(2)

1 21.6(21)31024 1.02(72)31024

2 28(13)31024 3.5(43)31024

3 22.0(29)31023 9.8(93)31024

4 22.7(41)31023 1.2(13)31023

5 1.05(19)31022 27.3(47)31024

6 2.49(62)31022 1(13)31024

7 25.4(11)31023 4.1(21)31024

8 21.52(30)31022 9.4(46)31024

9 8(13)31024 23.5(43)31024
11450
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l i~p!52mfAl i~p!1Bl i~p!, ~164!

where we have used notation that explicitly allowsk i , l i ,
Ak i, Bk i, Al i, and Bl i to depend on the momentum.~The
parametersc1

i andc2
i are given in terms ofAk i, Bk i, Al i, and

Bl i.) Thus, for each momentum, we fit our data fork i andl i

to a linear function ofmf .
Having determinedAk i(p), Bk i(p), Al i(p), andBl i(p),

we can now remove the dominant effects of discretizat
errors. For the momenta we are using, these enter
O@(ap)2# effects, which we can determine by fittingAk i(p),
Bk i(p), Al i(p), and Bl i(p) to the form Ak i(p)5Ak i

(0)

1Ak i
(2)(ap)2, etc. Momenta are used in the fits such th

0.8,(ap)2,2.0. Tables VI and VII summarize the results
the fits forAk i andBk i, respectively, while Tables VIII and
IX give the same information for the fits toAl i andBl i. All
fits use 50 configurations, with jackknife blocks of size on

Tables VI and VII show thatAk i
(2) andBk i

(2) are generally
zero within our statistical errors, so discretization errors
Ak i(p) andBk i(p) are not resolved. In addition, the statis
cal errors onAk i

(2) and Bk i
(2) for i 55, 6, 7, and 8 are smal

compared toAk i
(0) andBk i

(0) , so any discretization errors are

TABLE VIII. The O(a)2 errors in the lower dimensional opera
tor subtractions are eliminated by fitting the coefficientAl i(p) in
Eq. ~164! to the form Al i(p)5Al i

(0)
1Al i

(2)(ap)2. This table gives
results forAl i

(0) andAl i
(2) .

i Al i
(0) Al i

(2)

1 7(64)31025 1(21)31025

2 21.03(29)31022 2.93(98)31023

3 21.97(60)31022 5.7(20)31023

4 23.02(87)31022 8.6(30)31023

5 23.62(34)31022 8.85(96)31023

6 21.32(12)31021 3.36(34)31022

7 1.60(14)31022 23.85(39)31023

8 4.59(41)31022 21.10(11)31022

9 1.03(29)31022 22.93(98)31023

TABLE IX. The O(a)2 errors in the lower dimensional operato
subtractions are eliminated by fitting the coefficientBl i(p) in Eq.
~164! to the formBl i(p)5Bl i

(0)
1Bl i

(2)(ap)2. This table gives results
for Bl i

(0) andBl i
(2) .

i Bl i
(0) Bl i

(2)

1 22.02(48)31023 2.06(69)31024

2 1.14(14)31022 22.31(36)31023

3 1.67(32)31022 24.02(79)31023

4 3.01(44)31022 26.5(11)31023

5 4(14)31024 25.3(23)31024

6 4.26(45)31022 28.8(12)31023

7 25.95(95)31024 1.32(26)31024

8 21.82(28)31023 4.13(78)31024

9 21.14(14)31022 2.31(36)31023
6-31
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small effect forAk i(p) andBk i(p). For Al i(p) andBl i(p),
the discretization errors are statistically resolved and,
(ap)252, alterAl i

(0) andBl i
(0) , by ;30%. Given these fits to

(ap)2, we can determinec1
i and c2

i from c2
i 52Bl i

(0) and

from c1
i 522mf(c2

i 1Ak i
(0))2Bk i

0 . Note that the combination

2mfAk i
(0)

1Bk i
0 entering c1

i is k i(0), i.e., the value of Eq.
~163! for p50. In our final determination ofc1

i this combi-
nation is found directly from fitting k i(p) to k i ,(0)

1k i ,(2)(ap)2 and using the value ofk i ,(0). This reduces any
possible numerical imprecision from fitting bothmf depen-
dence andp dependence separately. Our data is well fit
the various relations given above, which shows that the d
has mass dependence predicted forc1

i and c2
i in Eqs. ~148!

and ~149!.
Sincec2

i shows no visible mass dependence, we have c
sen to use its value in the chiral limit, as just described,
the final computation of theZ factors at nonzero quark mas
~If mass dependence were visible inc2

i , our entire approach
would be suspect.! On the other hand, sincec1

i is strongly
mass dependent, we extract it at nonzero mass from
~160!. The values ofc1

i used for themf50.04 subtractions
are given in Table X. The quoted error is only a statisti
error, which comes from the jackknife procedure.

2. Four-quark operator renormalization

For the extraction of the four-quark renormalization fa
tors we have 100 configurations with two values of the qu
mass,mf50.02 andmf50.04 and a further 390 configura
tions for the second mass value. The extra configurations
the heavier mass were obtained to gain increased statisti
a reasonable cost after the subtracted renormalization fa
had been found to be mass independent to a good degr
accuracy on the first 100 configurations.

The renormalization condition we apply is such that
the momentum scales in the problem should be the sa
i.e.,

p1
25p2

25~p12p2!25m2. ~165!

The values ofni corresponding to the momenta that we us
are given in Table XI. The results are averaged over equ
lent orientations, and denoted by the corresponding Euc
ean squared momenta (ap)2.

TABLE X. The lower dimensional operator subtraction coef
cientsc1

i used in themf50.04 subtraction.

i c1
i

1 1.2(12)31024

2 28.0(77)31024

3 21.2(17)31023

4 22.2(24)31023

5 26.42(13)31022

6 21.916(34)31021

7 3.204(65)31022

8 9.49(17)31022

9 8.0(77)31024
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The operators below the charm threshold,Qi ( i
51,...,10), are not linearly independent. As can be seen f
Eq. ~156! the method we use to calculateZ requires the in-
verse of M, which is singular in this case. Therefore w
actually calculateZ from Eq.~156! for a linearly independen
subset of these operators.

This subset was defined by eliminatingQ4 , Q9 , andQ10,
through the identities

Q452Q11Q21Q3 ,

Q95
3

2
Q12

1

2
Q3 ,

Q105
1

2
Q11Q22

1

2
Q3 . ~166!

Since conventionally theDS51 Hamiltonian is given in the
dependent basis, after calculating the 737 matrix Z in the
reduced basis, we reconstructed a 10310 matrixẐ in the full
basis using the relations

Ẑi j 5Zi j , i , j P$1,2,3,5,6,7,8%, ~167!

Ẑi j 50, i P$1,2,3,4,5,6,7,8,9,10%, ~168!

j P$4,9,10%, ~169!

Ẑi j 5Tk
i Zk j , i P$4,9,10%, ~170!

j P$1,2,3,5,6,7,8%, ~171!

TABLE XI. The discrete Euclidean four-momenta used in t
four-quark operator renormalization calculation. Values are given
the order@x, y, z, t#.

(ap)2 n1 n2

1.23

@0, 2, 2, 0# @2, 2, 0, 0#
@0, 2, 2, 0# @22, 2, 0, 0#
@0, 2, 2, 0# @2, 0, 2, 0#
@0, 2, 2, 0# @22, 0, 2, 0#
@0, 2, 2, 0# @0, 2, 0, 4#
@0, 2, 2, 0# @0, 2, 0,24#

@0, 2, 2, 0# @0, 0, 2, 4#
@0, 2, 2, 0# @0, 0, 2,24#

1.54

@1, 1, 2, 4# @1, 22, 1, 4#
@1, 1, 2, 4# @1, 2, 21, 4#
@1, 1, 2, 4# @22, 1, 1, 4#
@1, 1, 2, 4# @2, 1, 21, 4#
@1, 1, 2, 4# @22, 1, 2, 2#
@1, 1, 2, 4# @2, 1, 2,22#

@1, 1, 2, 4# @1, 22, 2, 2#
@1, 1, 2, 4# @1, 2, 2,22#
6-32
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whereTk
i encodes Eq.~166! as Qi5Tk

i Qk for k54, 9, and
10.

As enumerated in Appendix B, the four-quark operat
we are considering are composed of elements transform
according to the~8,1!, ~27,1!, and ~8,8! representations o
SU(3)L ^ SU(3)R . There are four distinct~8,1! representa-
tions, two distinct~8,8! representations and a single~27,1!.
Since we renormalize in the massless limit, ourZ factors
should not have mixings between the~8,1!, ~27,1!, and~8,8!
representations, but there can be mixings between the
distinct ~8,1! representations and also between the two~8,8!
representations. In particular, the calculated values foZ
should be block diagonal in an operator basis where e
operator is purely an~8,1!, ~27,1!, or ~8,8!. This is already
the case forQ5 andQ6 , which are in distinct~8,1! represen-
tations, andQ7 andQ8 , which are in distinct~8,8! represen-
tations. However,Q1 , Q2 , andQ3 are mixtures of two~8,1!
representations and a single~27,1!. To check the chiral struc
ture of the renormalization factors it is convenient to co
sider a basis with operatorsQi8 in distinct SU(3)L
^ SU(3)R representations, given by

TABLE XII. The inverse of the four-quark renormalization ma
trix, MF21, in the block diagonal basis of irreducible represen
tions of SU(3)L3SU(3)R . Q18 is in the ~27,1! representation,Q28 ,
Q38 , Q58 , and Q68 are in ~8,1! representations, andQ7,88 belong to
~8,8! representations. Note that entries connecting the various
resentations are either zero within statistical errors or very sm
The renormalization point is (ap)25(ap)diff

2 51.23.

1 2 3

1 1.1380~35! 3(11)31025 2.1(70)31025

2 6(245)31028 1.052~12! 7.03(98)31022

3 28(368)31028 8.0(19)31022 1.086~22!

5 26(45)310220 4.8(32)31022 1.8(24)31022

6 21(112)310220 22.1(60)31022 1.3(73)31022

7 1.11(37)31024 5.1(41)31023 9.9(50)31023

8 21.5(20)31025 1.6(12)31022 3.0(15)31022

5 6 7

1 1.52(80)31025 22.87(33)31025 1.71(36)31023

2 9.7(38)31023 28(21)31024 22.3(18)31024

3 22.2(61)31023 2.1(11)31022 21.08(77)31023

5 1.039~12! 9.00(77)31022 1.1(16)31023

6 3.2(23)31022 1.218~35! 22.2(50)31023

7 24(15)31024 21.8(22)31023 1.0562~29!

8 21.3(45)31023 25.1(64)31023 6.10(25)31022

8

1 25.4(15)31024

2 8(16)31025

3 7.3(65)31024

5 1.2(18)31023

6 8.5(55)31023

7 8.31(17)31022

8 1.1354~43!
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Q1853Q112Q22Q3 , ~172!

Q285
1

5
~2Q122Q21Q3!, ~173!

Q385
1

5
~23Q113Q21Q3!, ~174!

Qi85Qi ; i P$5,6,7,8%. ~175!

In this new basisQ18 is in the ~27,1! representation andQ28
andQ38 are in the~8,1! representation. To display the chira
symmetry properties we tabulate elements ofMF21 in this
basis in Tables XII and XIII. We tabulateMF21 rather than
FM 21 because the former is linear in the quark contractio
so individual contributions are more easily distinguished.
terms of the elements ofMF21 in the Q8 basis, the restric-
tion that operators in different multiplets cannot mix may
written

~MF21!1i5~MF21! i150; i P$2,3,5,6,7,8%,

~MF21!7i5~MF21! i750; i P$2,3,5,6%,

~MF21!8i5~MF21! i850; i P$2,3,5,6%. ~176!

TABLE XIII. The same as Table XII except the renormalizatio
point is (ap)25(ap)diff

2 51.54.

1 2 3

1 1.1516~36! 25(99)31026 5(59)31026

2 2(235)31028 1.0665~95! 8.95(76)31022

3 24(353)31028 7.3(15)31022 1.066~18!

5 1(13)310220 28(23)31023 29(21)31023

6 5(68)310220 24.8(53)31022 21.5(61)31022

7 7.5(31)31025 21.9(25)31023 24(33)31024

8 21.0(15)31025 26.1(76)31023 22.1(97)31023

5 6 7

1 1.9(78)31026 22.25(23)31025 1.02(32)31023

2 23(28)31024 21.8(13)31023 1.6(11)31024

3 29.6(63)31023 3.29(77)31022 22.4(41)31024

5 1.0684~82! 8.65(67)31022 23.1(10)31023

6 4.7(21)31022 1.246~26! 28.8(31)31023

7 26(11)31024 22.0(18)31023 1.0626~26!

8 21.8(33)31023 25.8(52)31023 7.57(18)31022

8

1 26(12)31025

2 7(11)31025

3 2.1(62)31024

5 8(10)31024

6 2.6(40)31023

7 8.80(18)31022

8 1.1234~41!

-

p-
ll.
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As can be seen from Tables XII and XIII, these relations
satisfied to a good degree of accuracy by our data. As s
for the calculation of the final renormalization factors w
will set these elements to be exactly zero inMF21, before
inverting to getZ to reduce the statistical error on the fin
result.

The final values forẐi j /Zq
2 are given in Tables XIV–XIX

where (ap)2 is the square of the Euclidean momenta for t
external legs and (apdiff)

2 is the transferred momenta. T
display the numerical importance of the various compone
of the calculation, three sets of renormalization coefficie
are given:~1! The full renormalization coefficients~Tables
XIV and XV!, ~2! those calculated without the eye-diagra
contributions~Tables XVI and XVII!, and ~3! those calcu-
lated with the eye-diagrams but without the subtraction

TABLE XIV. The four-quark operator renormalization facto

Ẑi j /Zq
2 at the renormalization point (ap)251.23 (m52.13 GeV)

for the 3-flavor case. Values are given in the full overcomplete b
of operators as explained in the text.

1 2 3

1 9.466(27)31021 26.79(26)31022 3.1(35)31023

2 25.65(72)31022 9.353(70)31021 24.7(59)31023

3 9.1(14)31022 29.1(14)31022 8.79(16)31021

4 29.13(20)31021 9.13(20)31021 8.71(19)31021

5 21.03(51)31022 1.03(51)31022 21.13(92)31022

6 1.4(21)31022 21.4(21)31022 2(18)31023

7 0.0~0! 0.0~0! 0.0~0!

8 0.0~0! 0.0~0! 0.0~0!

9 1.3746~73! 25.65(72)31022 24.347(61)31021

10 3.715(35)31021 9.466(27)31021 24.424(40)31021

5 6 7

1 29.2(37)31023 2.4(19)31023 0.0~0!

2 3.1(53)31023 21.61(85)31022 0.0~0!

3 22.1(12)31022 22.5(15)31022 0.0~0!

4 29(15)31023 24.3(24)31022 0.0~0!

5 9.65(11)31021 27.11(64)31022 0.0~0!

6 22.6(18)31022 8.23(24)31021 0.0~0!

7 0.0~0! 0.0~0! 9.508(25)31021

8 0.0~0! 0.0~0! 25.11(20)31022

9 23.1(53)31023 1.61(85)31022 0.0~0!

10 9.2(37)31023 22.4(19)31023 0.0~0!

8

1 0.0~0!

2 0.0~0!

3 0.0~0!

4 0.0~0!

5 0.0~0!

6 0.0~0!

7 26.96(12)31022

8 8.845(34)31021

9 0.0~0!

10 0.0~0!
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the lower dimensional operators~Tables XVIII and XIX!. All
values given are withmf50.04 for 490 configurations. The
quoted error is statistical, and was calculated by jackknifi
the data in blocks of 10. To obtainẐ we useZq50.808(3)
(15) @59# at 2 GeV. In principleZq should be run to the exac
scale at which we are working, however, this is a very sm
effect ~see Ref.@59#, Fig. 17!.

D. Discussion

Having completed the renormalization of our four-qua
operators, we now turn to a discussion of the size of vari
contributions, the effects of discretization errors, and the r
of the dimension six bilinear operators which were not
cluded in our present work. Turning first to the size of effe
from our calculation, the numerical results show that the e
diagrams, even though they have a 1/a2 dependence in the

is

TABLE XV. The same as Table XIV except the renormalizatio
point is (ap)251.54 (m52.39 GeV).

1 2 3

1 9.458(23)31021 27.74(22)31022 29(26)31024

2 27.14(57)31022 9.397(60)31021 1.9(48)31023

3 9.0(10)31022 29.0(10)31022 8.70(12)31021

4 29.28(16)31021 9.28(16)31021 8.72(15)31021

5 22.4(33)31023 2.4(33)31023 1.9(70)31023

6 9(17)31023 29(17)31023 9(15)31023

7 0.0~0! 0.0~0! 0.0~0!

8 0.0~0! 0.0~0! 0.0~0!

9 1.3739~65! 27.14(57)31022 24.361(49)31021

10 3.567(31)31021 9.458(23)31021 24.333(31)31021

5 6 7

1 26(25)31024 3.5(11)31023 0.0~0!

2 9.6(53)31023 22.57(54)31022 0.0~0!

3 1.7(12)31022 24.1(10)31022 0.0~0!

4 2.8(16)31022 27.0(15)31022 0.0~0!

5 9.389(70)31021 26.54(47)31022 0.0~0!

6 23.5(16)31022 8.05(17)31021 0.0~0!

7 0.0~0! 0.0~0! 9.464(22)31021

8 0.0~0! 0.0~0! 26.38(14)31022

9 29.6(53)31023 2.57(54)31022 0.0~0!

10 6(25)31024 23.5(11)31023 0.0~0!

8

1 0.0~0!

2 0.0~0!

3 0.0~0!

4 0.0~0!

5 0.0~0!

6 0.0~0!

7 27.42(12)31022

8 8.951(32)31021

9 0.0~0!

10 0.0~0!
6-34
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continuum limit, are small compared to the other grap
This is in stark contrast to the matrix element case, wher
we will see in Sec. XI, such divergent graphs overshadow
physical signal by approximately two orders of magnitud
and their subtraction is an extremely delicate operation
must be performed with great precision.

In the matrix element study, when considering dimensi
ful quantities, an order of magnitude estimate of the size o
physical signal may be made by takingLQCD to the relevant
number of powers. If the quantity is divergent, however,
dimensions may also be made up with inverse powers of
lattice spacing. Asa21'103LQCD at the lattice spacing we
are working, the physical signal may be much smaller th
the subtraction. For the renormalization factors, however,

TABLE XVI. The four-quark operator renormalization facto

Ẑi j /Zq
2 at the renormalization point (ap)251.23 (m52.13 GeV)

for the 3-flavor case except that the eye diagrams~and consequently
the lower dimensional operator subtractions! have been omitted in

the calculation ofẐi j /Zq
2.

1 2 3

1 9.484(26)31021 26.96(16)31022 9(380)31028

2 26.96(16)31022 9.484(26)31021 9(380)31028

3 6.96(16)31022 26.96(16)31022 8.787(27)31021

4 29.484(26)31021 9.484(26)31021 8.787(27)31021

5 3.3(54)31025 23.3(54)31025 23.1(10)31024

6 24.72(71)31024 4.72(71)31024 5.6(48)31025

7 0.0~0! 0.0~0! 0.0~0!

8 0.0~0! 0.0~0! 0.0~0!

9 1.3877~38! 26.96(16)31022 24.394(13)31021

10 3.698(24)31021 9.484(26)31021 24.394(13)31021

5 6 7

1 21.29(38)31024 21.7(13)31025 0.0~0!

2 21.14(18)31024 1.05(16)31024 0.0~0!

3 26.1(14)31024 1.58(50)31024 0.0~0!

4 26.0(12)31024 2.80(55)31024 0.0~0!

5 9.510(23)31021 27.03(11)31022 0.0~0!

6 25.108(98)31022 8.823(31)31021 0.0~0!

7 0.0~0! 0.0~0! 9.509(23)31021

8 0.0~0! 0.0~0! 25.103(98)31022

9 1.14(18)31024 21.05(16)31024 0.0~0!

10 1.29(38)31024 1.7(13)31025 0.0~0!

8

1 0.0~0!

2 0.0~0!

3 0.0~0!

4 0.0~0!

5 0.0~0!

6 0.0~0!

7 27.02(11)31022

8 8.823(31)31021

9 0.0~0!

10 0.0~0!
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are studying high energy quantities, so the relevant sca
a21'm. Thus eye-graphs involving powers ofa21 have a
much smaller effect on the renormalization factors than c
responding eye-graphs have on physical hadronic matrix
ements. In addition, the eye-graphs are suppressed as
are zero in the free case, with the nonzero signal being du
gauge interactions. The numerical evidence in Tables XI
XIX shows that inclusion of the divergent eye graphs affe
the renormalization factors on the order of a few percent

As we are studying high energy quantities, we must a
worry about the effect of discretization errors. If the m
menta, although large, still allow lattice artifacts to be trea
as small corrections, it is possible to describe them
O(ap2) andO(apdiff

2 ) terms. Then, with a sufficient numbe
of different momentum configurations, they can be isola
and removed. A naive estimate of the scale at which th
effects become large isp'1/a. This is only a rough esti-

TABLE XVII. The same as Table XVI except the renormaliz
tion point is (ap)251.54 (m52.39 GeV).

1 2 3

1 9.465(23)31021 27.81(16)31022 1(47)31027

2 27.81(16)31022 9.465(23)31021 1(47)31027

3 7.81(16)31022 27.81(16)31022 8.684(27)31021

4 29.465(23)31021 9.465(23)31021 8.684(27)31021

5 3.3(36)31025 23.3(36)31025 22.07(84)31024

6 21.47(52)31024 1.47(52)31024 3.8(35)31025

7 0.0~0! 0.0~0! 0.0~0!

8 0.0~0! 0.0~0! 0.0~0!

9 1.3807~34! 27.81(16)31022 24.342(13)31021

10 3.560(26)31021 9.465(23)31021 24.342(13)31021

5 6 7

1 28.4(33)31025 21.1(10)31025 0.0~0!

2 25.7(14)31025 3.0(12)31025 0.0~0!

3 23.6(12)31024 2.6(45)31025 0.0~0!

4 23.4(10)31024 6.7(47)31025 0.0~0!

5 9.474(22)31021 27.45(11)31022 0.0~0!

6 26.07(11)31022 8.943(29)31021 0.0~0!

7 0.0~0! 0.0~0! 9.474(22)31021

8 0.0~0! 0.0~0! 26.07(11)31022

9 5.7(14)31025 23.0(12)31025 0.0~0!

10 8.4(33)31025 1.1(10)31025 0.0~0!

8

1 0.0~0!

2 0.0~0!

3 0.0~0!

4 0.0~0!

5 0.0~0!

6 0.0~0!

7 27.45(11)31022

8 8.942(29)31021

9 0.0~0!

10 0.0~0!
6-35
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mate, however, and previous studies have shown that for
lattice parameters we are using, momenta as large as (ap)2

52 produce discretization errors of a few percent@59#. As
such in this preliminary study, for which we have only a fe
momenta configurations, all of which have a momenta sc
of '1/a, we will ignore these effects.

Next we consider the effect of neglecting the subtract
of the dimension six quark bilinear operators. These subt
tions are needed for two reasons.

~1! Discretization errors in our expressions forB1 andB2
are ofO(a2) and may be written in terms of the dimensio
six quark bilinear operators we are considering. When
Green’s functions of these operators are multiplied by
subtraction coefficientsc1

i and c2
i , which have leading be

havior 1/a2, this can lead to errors in the final results that a
of O~1! in the lattice spacing.

TABLE XVIII. The four-quark operator renormalization factor

Ẑi j /Zq
2 at the renormalization point (ap)251.23 (m52.13 GeV)

for the 3-flavor case except that lower dimensional operator s

tractions have been omitted in the calculation ofẐi j /Zq
2.

1 2 3

1 9.463(28)31021 26.75(26)31022 4.2(35)31023

2 25.52(73)31022 9.340(71)31021 29.0(66)31023

3 9.2(14)31022 29.2(14)31022 8.73(17)31021

4 29.09(21)31021 9.09(21)31021 8.60(21)31021

5 29.0(49)31023 9.0(49)31023 21.06(93)31022

6 2.4(21)31022 22.4(21)31022 21.6(19)31022

7 0.0~0! 0.0~0! 0.0~0!

8 0.0~0! 0.0~0! 0.0~0!

9 1.3733~75! 25.52(73)31022 24.303(67)31021

10 3.719(34)31021 9.463(28)31021 24.436(41)31021

5 6 7

1 27.5(36)31023 23(19)31024 0.0~0!

2 23.8(60)31023 25.1(88)31023 0.0~0!

3 23.0(13)31022 21.1(16)31022 0.0~0!

4 22.6(17)31022 21.6(25)31022 0.0~0!

5 9.70(11)31021 27.99(75)31022 0.0~0!

6 24.1(17)31022 8.42(23)31021 0.0~0!

7 0.0~0! 0.0~0! 9.521(24)31021

8 0.0~0! 0.0~0! 24.67(17)31022

9 3.8(60)31023 5.1(88)31023 0.0~0!

10 7.5(36)31023 3(19)31024 0.0~0!

8

1 0.0~0!

2 0.0~0!

3 0.0~0!

4 0.0~0!

5 0.0~0!

6 0.0~0!

7 27.32(25)31022

8 8.720(73)31021

9 0.0~0!

10 0.0~0!
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~2! The operator in Eq.~146! mixes atO(g) in perturba-
tion theory and so should be subtracted to the order at wh
we are working. Such a subtraction was not attempted in
first work, since it involves explicit external gluons.

Expanding on the issues raised in case one, we consid
simplified situation involving a single dimension-six oper

b-

TABLE XIX. The same as Table XVIII except the renormaliza
tion point is (ap)251.54 (m52.39 GeV).

1 2 3

1 9.451(24)31021 27.67(22)31022 28(24)31024

2 26.86(59)31022 9.370(62)31021 1.7(48)31023

3 9.3(11)31022 29.3(11)31022 8.69(13)31021

4 29.21(16)31021 9.21(16)31021 8.72(16)31021

5 23.6(29)31023 3.6(29)31023 3.0(67)31023

6 1.7(18)31022 21.7(18)31022 1.2(15)31022

7 0.0~0! 0.0~0! 0.0~0!

8 0.0~0! 0.0~0! 0.0~0!

9 1.3712~68! 26.86(59)31022 24.359(49)31021

10 3.575(31)31021 9.451(24)31021 24.333(30)31021

5 6 7

1 24(24)31024 1.1(11)31023 0.0~0!

2 8.7(51)31023 21.68(57)31022 0.0~0!

3 1.6(12)31022 23.0(11)31022 0.0~0!

4 2.5(15)31022 24.8(16)31022 0.0~0!

5 9.407(67)31021 26.79(53)31022 0.0~0!

6 23.3(15)31022 8.34(18)31021 0.0~0!

7 0.0~0! 0.0~0! 9.475(23)31021

8 0.0~0! 0.0~0! 25.98(17)31022

9 28.7(51)31023 1.68(57)31022 0.0~0!

10 4(24)31024 21.1(11)31023 0.0~0!

8

1 0.0~0!

2 0.0~0!

3 0.0~0!

4 0.0~0!

5 0.0~0!

6 0.0~0!

7 27.48(18)31022

8 8.927(58)31021

9 0.0~0!

10 0.0~0!

TABLE XX. Values for mp versusmf from 85 configurations
using ^Aa(x)A0

a(0)& and from the 400 configurations of this wor
using ^pa(x)A0

a(0)&.

mf mp ~85 configurations! mp ~400 configurations!

0.01 0.203~3! 0.2052~17!

0.02 0.270~3! 0.2699~14!

0.03 0.324~2! 0.3231~12!

0.04 0.371~2! 0.3700~12!

0.05 0.4129~11!
6-36
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tor in the continuum,B3
cont. Then we can write, for example

B2
lat5B2

cont1O~a2!B3
cont. ~177!

When B2
lat is multiplied by c2

j (m), which behaves as 1/a2,
thenB3

cont is multiplied by a coefficient ofO~1! in the lattice
spacing. As we have just discussed, discretization effects
small, and so is the contribution ofO(a2)B3

cont to Eq. ~177!.
In addition, as we have noted, the contribution ofck

j (m)Bk
lat

to the four-quark renormalization factors is also small. Hen
we expect any effects due to these discretization errors t
negligible.

A similar argument may be put forward for case tw
While this operator should be subtracted at the order in p
turbation theory in which we are working, the subtracti
coefficient associated with this operator will be only log
rithmically divergent in the lattice spacing, rather than pow
divergent. Our data from the extraction of the subtract
coefficients supports the numerical dominance ofB1 andB2
@Eqs. ~148! and ~149!# very well. This suggests that th
power divergent terms are much more important, for this
of lattice parameters, than the logarithmically diverge
terms that would multiply the dimension-six operato
Again this indicates that we are correctly treating the do
nant part of the subtractions, which themselves amoun
only a small correction to the final renormalization factor

IX. LATTICE CALCULATION OF K\p AND K\z0‹
MATRIX ELEMENTS

In this section we present the lattice calculation of theK
→p and K→u0& matrix elements. In the first two section
the lattice method and basic contractions are briefly
scribed. Results forK→p andK→u0& matrix elements ob-
tained by using this methodology, which form the basis
our calculation, are given in the last section. We continue
label pseudoscalar states withK and p to make the discus
sion clear, but the matrix elements^p1uQi uK1& are calcu-
lated with degeneratequarks and havemp15mK1. Since
K→u0& matrix elements vanish in this limit, we use nond
generate quark propagators for this case. It is useful to k
in mind that when the quarks are degenerate, flavor is sp
fied by the type of quark contraction.

A. Lattice method of matrix element calculation

In order to obtain the desired matrix elements, we work
Euclidean space-time and calculate correlation functions.
example, a typicalK→p correlation function is

GpOK~ t ![(
z,z8

1

Vs
(

y
(
x,x8

^@ i d̄~z8,tp!g5u~z,tp!#O~y,t !

3@ i ū~x8,tK!g5s~x,tK!#&, ~178!

where^& denotes an average over gauge field configuratio
tp.t.tK with tp and tK fixed, Vs is the three-dimensiona
spatial volume and the factors ofi make the pseudoscala
correlator positive. We employ Coulomb gauge fixed w
sources which have significant overlap with the pseudosc
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ground states and the spatial average over the operator
slice enhances the statistical average. For fixed values otK
andtp , a ‘‘plateau’’ in GpOK(t) emerges whentp@t@tK as
then the lowest energy states (up1& anduK1&) dominate the
correlation function. The correlation function becomes tim
independent since the meson masses are equal. Up to s
matrix elements and kinematical factors,GpOK(t) then di-
rectly yields the desired matrix element

lim
tp@t@tK

GpOK~ t !

→ ^p1uOuK1&
N~2mpVs!~2mKVs!

e2mK~ t2tK!e2mp~ tp2t !, ~179!

which is easily seen by inserting two complete sets of re
tivistically normalized states between the operator and e
source. The factorN represents an unknown normalizatio
factor introduced by the wall sources.

One way to remove the kinematic factors and the u
known normalization of our wall sources is to divide by th
pseudoscalar two-point correlation function from ea
source. For example, with the wall-point~spatially extended
source-local sink! two-point correlation function

Gp~ t ![
1

Vs
(

x
@ i ū~x,t !g5d~x,t !#(

z,z8
@ i d̄~z8,tp!g5u~z,tp!#,

~180!

and similarly forGK(t), we can form a ratio of the desire
matrix element to known factors.

lim
tp@t@tK

GpOK~ t !

Gp~ t !GK~ t !
5

^p1uOuK1&

^p1uPp2u0&^0uPK1uK1&
. ~181!

@We usePK2(x)[@ i ūg5s#(x) and Pp1(x)[@ i d̄g5u#(x) as
in Sec. IV B.# We can also normalize Eq.~179! by
pseudoscalar-axial vector correlators, which changes the
nominator in Eq.~181! to ^p1uūg0g5du0&^0us̄g0g5uuK1&.
The axial current matrix elements have the normalizat
given in Eq.~A12!. These axial current matrix elements ha
been calculated using point-point correlation functions
Ref. @21# and can also be extracted from a simultaneous fi
the wall-point and wall-wall two-point functions calculate
in the present study. As discussed in Sec. VI C, zero m
effects are introduced throughGp(t) and GK(t) since such
effects are seen in scalar correlators at a separationt. We also
determine the pion mass from pseudoscalar-axial vector
relators~wall-point! for the 400 configurations used in th
work and the results are given in Table XX and plotted
Fig. 2.

Another possibility is to divide the three-point function b
a different three-point function. In particular

lim
tp@t@tK

GpOK~ t !

Gp s̄dK~ t !
5

^p1uOuK1&

^p1us̄duK1&
5

2mf

mp
2 ^p1uOuK1&,

~182!

where we have used the Ward-Takahashi identity Eq.~115!,
neglecting zero mode effects, in the last step. Since as
have seen, zero modes have a noticeable effect on this W
Takahashi identity, we do not divide by this three-point fun
tion to extract̂ p1uOuK1&.
6-37
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Our preferred approach is to divideGpOK(t) by the wall-
wall two-point function computed from the correlator fro
tp to tK ,

Gww~ tp ,tK![
1

Vs
(
x,x8

K @ i ū~x,tp!g5d~x8,tp!#

3(
z,z8

@ i d̄~z8,tK!g5u~z,tK!#L . ~183!

Since we work with degenerate quarks, we have

lim
tK@t@tp

GpOK~ t !

Gww~ tp ,tK!
5

^p1uOuK1&
2mp

~184!

where we determine 2mp from a covariant fit to the wall-
point two-point function in the ranget512– 20 for each
quark mass. As discussed in Sec. VI C this normalizat
minimizes the effects of zero modes.

We have tested the various methods described above
extractingK→p matrix elements from three-point correla
tion functions and find the results generally consiste
within errors. We give results for the last method since it
the simplest, requiring only the value formp , does not rely
on chiral perturbation theory, and minimizes zero mode
fects. In addition, we have used two types of wall sources
create and destroy pseudoscalar mesons: the usual ps
scalar sourcei q̄g5taq and an axial-vector sourceq̄g0g5taq.
They give statistically equivalent results, but the pseu
scalar source yields somewhat smaller errors; we will alw
quote the former unless otherwise specified.

As mentioned earlier, forK→u0& matrix elements we ex
tract the needed power divergent coefficient from the rat

lim
tp@t@tK

GOK~ t !

GK~ t !
5

^0uOuK0&

^0us̄g5duK0&
, ~185!

where

GOK~ t !5
1

Vs
(

y
(
x,x8

^O~y,t !@ i d̄~x8,tK!g5s~x,tK!#&. ~186!

The ratio in Eq.~185! is just the parity-odd analogue of Eq
~182! if we recognize the denominator of each ratio as
parity even or odd component, respectively, of the subtr

tion operatorQ (3,3̄) discussed in Secs. III and XI. Howeve
in Eq. ~185! the ratio immediately gives the neededO(1/a2)
coefficient without relying on the Ward-Takahashi identity

B. Contractions

To compute theK→p correlation function in Eq.~178!,
the quark fields are Wick contracted into propagators wh
are calculated by inverting the five-dimensional domain w
fermion Dirac matrix on an external source and projecting
four dimensions in the usual way~see@21#!. Two types of
diagrams emerge: figure eight diagrams as shown in Fig.~a!
and eye diagrams as shown in Fig. 8~b!. TheK→u0& matrix
elements are computed in an analogous fashion and req
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the annihilation contraction given in Fig. 8~c!. The matrix
element of^p1us̄duK1&, which is needed to subtract th
power divergent contribution, is shown in Fig. 8~d!.

The figure eight diagrams are constructed from qu
propagators from the wall sources attK and tp to a point
(x,t). Propagators from (x,t) to tp andtK are obtained from
the Hermiticity of the quark propagators,G(x,y)
5g5G†(y,x)g5 . After the appropriate propagators are com
bined at a point (x,t) where the weak operator is inserted,
average overx is done.

For the eye diagrams@Fig. 8~b!# and K→u0& diagrams
@Fig. 8~c!# we also need an additional propagator from (x,t)
to itself, since two fields in the weak operator are contrac
together. To efficiently calculate this propagator we use
common technique in lattice simulations, calculating
propagator from a complex Gaussian random wall sou
Since we only want the loop propagator for the weak ope
tor in meson states, we choose the random source to be
zero on time slices with 14<t<17. When the propagator
are assembled to form a particular contraction, we inclu
the complex conjugate of the random source at each
point (x,t) and average over random sources and gauge
figurations to project out the desired diagonal contributio
This allows the spatial average of the correlation funct

FIG. 8. The quark contractions needed for^p1uQi uK1& matrix
elements are the figure eight~a! and eye~b! contractions. If the
quark loop in~b! contains ad or s quark, there are two different ey
contractions possible. This is the case forQ3–Q10. For ^0uQi uK0&
matrix elements, the annihilation contraction~c! is needed. For the
determination of^p1uQi uK1&sub the contraction shown in~d! is
needed, where the cross is an insertion of the quark bilinears̄d. The
closed boxes represent insertions of a generic four-fermion op
tor, and the closed dots the creation and annhilation of the pse
scalar states. Depending on the particular weak operator, the q
loops in~b! and~c! may containq5u, d, s quarks~andc if charm
is an active flavor!.
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over the operator time slice for any number of time slices
be done with only one~or a few! quark propagator inver
sion~s! on each gauge field configuration. We have chose
calculate two independent, random source quark propaga
on each configuration, corresponding to 1/3 of the compu
time spent calculating propagators. The same rand
sources are used for all quark masses on a given config
tion. The last part of the eye diagrams is the spectator qu
propagator fromtK to tp . This is constructed using the wa
source propagator fromtK and using a wall sink attp where
the spatial coordinates of the propagator are summed
before inserting the propagator into the contraction.

FIG. 9. ^p1uQ2,lat
(3/2)uK1& for each Euclidean time slicet where

the four quark operator was inserted. The differentmf values shown
are: 0.01~,!, 0.02 ~n!, 0.03 ~L!, 0.04 ~h!, and 0.05~s!. The
matrix element is time-independent for the range 14<t<17 for
each mass~vertical dashed lines!, showing that only the lowes
energy pseudoscalar states are contributing.

FIG. 10. ^p1uQ2,lat
(1/2)uK1& for the time slices 14<t<17. This

matrix element involves a noisy estimator for the fermion loop
the eye contractions. The symbols denote different values formf ,
as in Fig. 9, and the lines are the average over time slices f
single mf . The values on different time slices agree within t
quoted statistical errors.
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C. Lattice values for K\p and K\0 matrix elements

We first demonstrate that fortp527, t514– 17, andtK
55 the ratio 2mpGpOK(tp ,t,tK)/Gww(tp ,tK) is t indepen-
dent. If this is the case, then from Eq.~184! this ratio is the
desired matrix element. In Fig. 9 we show^p1uQ2,lat

3/2 uK1& as
a function of t for mf50.01, 0.02, 0.03, 0.04, and 0.05
There is no visible time dependence in the range 10<t
<20, demonstrating that only the lowest energy pseu
scalar state is contributing to the matrix element and just
ing our choice of 14<t<17 for the range over which ey
contractions are calculated. TheDI 53/2 parts of operators
do not involve any eye contractions and are easier to de
mine with small statistical errors.

Having established that a plateau exists fort from 14 to
17, we plot the dependence ont of the DI 51/2 parts of
operators, where random noise sources are used in the c
lation of the eye diagrams. Figure 10 shows^p1uQ2,lat

1/2 uK1&
as a function oft for the values ofmf used and Fig. 11 is the
same for^p1uQ6,lat

1/2 uK1&. Note the large difference in the
vertical scale between Figs. 10 and 11, which is due to
larger divergent contribution inQ6 . One sees appreciabl
fluctuations between different times slices, but they ag
within errors. This is the expectation from using a noi
estimator for the quark loops. Figures 12 and 13 show
data for the annihilation contractions needed for^0uQi uK0&
matrix elements. These also involve random sources in
calculation of the quark loops and we see again that
results on different time slices agree within errors.

The results for^p1u( s̄d) latuK1&, ^p1uQi , lat
1/2 uK1&, and

^p1uQi , lat
(3/2)uK1& are tabulated in Tables XXI, XXII, and

XXIII, respectively. Results for the ratio
^0uQi uK0&/^0us̄g5duK0& are given in Tables XXIV and
XXV. In each case the matrix elements have been avera
over time slices 14–17. The relative statistical error for t
DI 51/2 matrix elements is almost 100% for matrix eleme
that are quite small ~compatible with zero!, i.e.,
^p1uQ1uK1&. For the left-left operators likeQ2 the statisti-
cal errors are 10%–20% and the errors fall to 0.5%–3%

a

FIG. 11. The same as in Fig. 10, except that^p1uQ6,latuK1& is
shown. Again values agree on different time slices within errors
6-39
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the color-mixed left-right operators. ForDI 53/2 matrix ele-
ments the relative statistical error is 2% to 3%.

X. DIÄ3Õ2 MATRIX ELEMENTS

In this section we discuss the latticeK1→p1 matrix el-
ements for theDI 53/2 parts of the operators listed in Eq
~4!–~23!. In lowest order chiral perturbation theory, thre
constants serve to determine all of these matrix element
single value ofa lat

(27,1),(3/2)fixes theDI 53/2 parts ofQ1 , Q2 ,
Q9 , Q10, P1 , P2 , P9 , and P10. For the electroweak pen
guin operators,a7,lat

(8,8),(3/2) is needed for theDI 53/2 part of
Q7 andP7 anda8,lat

(8,8),(3/2) is needed forQ8 andP8 . @The two

FIG. 12. A graph ofV2[^0uQ2,latuK0&/@(ms2md)^0us̄g5duK&#
for each Euclidean time slice where the operator was inserted.
data is formd50.01 andms50.02. A noisy estimator is used for th
closed fermion loop and the values on each time slice agree w
errors. The line is the average overt.

FIG. 13. A graph ofV6[^0uQ6,latuK0&/@(ms2md)^0us̄g5duK&#
for each Euclidean time slice where the operator was inserted.
data is formd50.01 andms50.02. A noisy estimator is used for th
closed fermion loop and the values on each time slice agree w
errors. The line is the average overt.
11450
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values for the~8,8! operators arise since Fierz transform
tions do not relate the electroweak operators with and w
out color-mixed indices.# The constants a lat

(27,1),(3/2),
a7,lat

(8,8),(3/2), anda8,lat
(8,8),(3/2) are all finite and no subtraction i

needed to determine the correspondingK→pp matrix ele-
ments. In addition, since there is a single~27,1! representa-
tion for left-left operators, the value ofa lat

(27,1),(3/2) also pro-

vides a determination of̂K̄0uQ(DS52)uK0&.

A. The lattice value of a lat
„27,1…,„3Õ2…

We start with a determination ofa lat
(27,1),(3/2). From Eqs.

~B6!, ~B7!, ~B10!, and~B11! of Appendix B, we see that we
need the matrix element ofQLL,S,(27,1),3/2

Ds51,Dd521, defined in Eq.
~B2!, which is theDI 53/2 part ofQ (27,1). To follow more
closely the notation of Sec. III A, in Appendix C we defin
Q (27,1),(3/2)[QLL,S,(27,1),3/2

Ds51,Dd521. Then a lat
(27,1),(3/2) is defined by

Eq. ~D11!, the generalization of Eq.~63! for a particular
isospin.@For the~27,1! operator the generalization is trivia
and in facta lat

(27,1),(3/2)5a lat
(27,1), but we will usea lat

(27,1),(3/2) to
make it clear that this is determined from theDI 53/2 am-
plitude.# The dependence of this matrix element on the
rameters of low-energy quenched QCD is given in Eq.~92!.

Table XXVI gives our values for̂ p1uQ lat
(27,1),(3/2)uK1&

versus quark mass. The function we fit to is Eq.~92! with
a50. For our particular lattice spacing this takes the form

^p1uQ lat
~27,1!,~3/2!uK1&

5b1
~27,1!mM

2 F12S d1
6mM

2

~4p f !2D ln~3.6941mM
2 !G

1b2
~27,1!mM

4 ~187!

with mM
2 53.18(mf1mres) and 1/(4p f )251.246. Here we

have used the result forf from @21#, which is 137~10! MeV,
rather than the physical value, since we do not assume
quenched QCD at our fixed lattice spacing agrees with
physical world. The factor of 3.6941 in the logarithm
LQxPT

2 51 GeV2 in lattice units. Figure 14 is a plot of the
data and the solid line shows the result of a fit to Eq.~187!.
The fit uses all five values for the quark mass and setd
50.05. The fit is again an uncorrelated fit to our correla
data, which results in a value ofx2/DOF51.9. The other
lines in the figure give the contribution to the total of th

he

in

he

in

TABLE XXI. The values for̂ p1us̄dlatuK1& for each light quark
mass studied. These matrix elements are used in the subtra
needed in the determination ofK→pp matrix elements fromK
→p andK→u0& matrix elements.

mf ^p1u( s̄d) latuK1&

0.01 1.510~25!

0.02 1.548~16!

0.03 1.599~12!

0.04 1.660~10!

0.05 1.722~9!
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TABLE XXII. The values for^p1uQi , lat
1/2 uK1&3102 for each light quark mass studied.

i mf50.01 mf50.02 mf50.03 mf50.04 mf50.05

1 0.030~24! 0.024~26! 0.007~27! 20.012~28! 20.032~29!

2 20.058~12! 20.117~13! 20.176~14! 20.233~14! 20.290~15!

3 20.03~8! 20.18~9! 20.37~10! 20.56~10! 20.75~10!

4 20.12~7! 20.32~8! 20.55~8! 20.78~8! 21.01~9!

5 2.10~8! 4.12~9! 6.28~10! 8.61~10! 11.09~11!

6 5.92~12! 11.79~14! 18.07~16! 24.84~18! 32.03~19!

7 21.805~34! 22.989~34! 24.227~36! 25.553~38! 26.955~40!

8 25.56~10! 29.16~11! 212.93~11! 216.98~12! 221.26~12!

9 0.063~12! 0.127~13! 0.194~14! 0.261~14! 0.329~15!

10 20.026~24! 20.013~26! 0.011~27! 0.040~28! 0.071~29!
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various terms in Eq.~92!. Of particular importance is the
chiral logarithm term~the dot-dash line! ;mM

4 LQx(mM)
which is very nearly linear inmf up to mf50.035. Numeri-
cally, this term cannot be distinguished from the simplemM

2

term and, as the graph shows, the term proportional tomM
2

and the chiral logarithm term are of roughly equal size. Th
our value forb1

(27,1) is strongly dependent on the known c
efficient,26, for the chiral logarithm in Eq.~92!. In particu-
lar, leaving out the chiral logarithm term makes the value
b1

(27,1) almost a factor of 2 larger.
In contrast to the chiral logarithm, the quenched chi

logarithm, shown by the short dashed line in Fig. 14 is c
tributing very little to the final result. This appears to be
consequence of the small value ford and the fact that we are
working with pseudoscalar masses above 390 MeV. This
ticular DI 53/2 amplitude has quite small statistical erro
and the one-loop quenched chiral perturbation theory
mula is known. Since we see very little effects of t
quenched chiral logarithms here, we expect them to h
little effect on other amplitudes where the explicit coefficie
of the quenched chiral logarithm is not known.

The full range of quark masses~0.01–0.05! has been used
in the fit shown in Fig. 14. The range of pseudoscalar mas
covered by this quark mass range is 390–790 MeV and f
the fit it appears that one-loop quenched chiral perturba
theory is working reasonably well over this range. T
x2/DOF is somewhat large for an uncorrelated fit, with t
mf50.05 point lying somewhat above the curve from the
This point may be showing the limitations of one-loop chi
perturbation theory. At the other extreme, themf50.01 point
is where chiral perturbation theory should work the best,
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this light quark mass is the most susceptible to the effect
finite volume and topological near-zero modes. It is wo
reemphasizing that even formf50.01, the chiral logarithm
contributions are about 25% of the total value and must
included.

To test for sensitivity to the quark mass range used in
fit, we have done fits with different ranges and give the
sults in Table XXVII. One sees essentially no difference b
tween the fits tomf50.02 to 0.04 andmf50.01 and 0.05. On
this basis, we choose to fit to all five quark masses and

a lat
~27,1!,~3/2!524.13~18!31026. ~188!

B. The lattice value of a7,lat
„8,8…,„3Õ2… and a8,lat

„8,8…,„3Õ2…

Unlike the single~27,1! operator which enters in man
Qi ’s andPi ’s, the color diagonal~8,8! enters only inQ7 and
P7 and the color mixed~8,8! enters only inQ8 andP8 . We
therefore defineQ i

(8,8),(3/2)[@Qi #
(3/2) for i 57 and 8, as

shown in more detail in Appendixes C and D. Equatio
~B14!, ~B17!, and ~B18! give the isospin decomposition o
Q7 in terms of quark fields. The results forQ8 are similar,
with color mixed indices on the quark fields. In lowest ord
chiral perturbation theory,a7,lat

(8,8),(3/2) anda8,lat
(8,8),(3/2) are deter-

mined from ^p1uQ7,lat
(8,8),(3/2)uK1& and ^p1uQ8,lat

(8,8),(3/2)uK1&
through Eq.~D4!, which is Eq.~64! decomposed into opera
tors of definite isospin. Unlike the~27,1! operator, the chiral
logarithm corrections for the~8,8! operator in quenched
QCD are not currently known.

Table XXVIII gives our values for̂ p1uQ7,lat
(8,8),(3/2)uK1&

and Table XXIX gives them for̂p1uQ8,lat
(8,8),(3/2)uK1&. Since
TABLE XXIII. The values for ^p1uQi , lat
3/2 uK1&3104 for each light quark mass studied.

i mf50.01 mf50.02 mf50.03 mf50.04 mf50.05

1 0.914~30! 2.106~45! 3.64~7! 5.55~9! 7.85~12!

2 0.914~30! 2.106~45! 3.64~7! 5.55~9! 7.85~12!

7 244.7~12! 254.3~11! 264.0~12! 274.8~13! 286.8~14!

8 2137.5~38! 2162.1~35! 2185.8~35! 2211.9~37! 2240.1~40!

9 1.370~44! 3.16~7! 5.46~10! 8.33~14! 11.78~18!

10 1.370~44! 3.16~7! 5.46~10! 8.33~14! 11.78~18!
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TABLE XXV. The values for the ratiô 0uQi , latuK0&/^0u( s̄g5d) latuK0& matrix elements fori 57 – 10 for
each nondegenerate pair of light quark masses.

i ms md50.01 md50.02 md50.03 md50.04

7 0.02 3.4616(68)31023

0.03 6.911(11)31023 3.4359(47)31023

0.04 10.333(15)31023 6.8498(86)31023 3.4074(40)31023

0.05 13.723(19)31023 10.235(12)31023 6.7876(77)31023 3.3762(37)31023

8 0.02 10.402(20)31023

0.03 20.759(34)31023 10.316(14)31023

0.04 31.031(45)31023 20.563(26)31023 10.226(12)31023

0.05 41.207(55)31023 30.722(37)31023 20.370(23)31023 10.131(11)31023

9 0.02 20.338(22)31023

0.03 20.662(26)31023 20.323(20)31023

0.04 20.976(29)31023 20.632(22)31023 20.311(20)31023

0.05 21.281(32)31023 20.934(24)31023 20.610(21)31023 20.301(19)31023

10 0.02 0.010(43)31023

0.03 0.057(50)31023 0.014(40)31023

0.04 0.101(57)31023 0.055(43)31023 0.020(39)31023

0.05 0.144(62)31023 0.094(47)31023 0.056(40)31023 0.026(38)31023

TABLE XXIV. The values for the ratiô 0uQi , latuK0&/^0u( s̄g5d) latuK0& for i 51 – 6 for each nondegenerat
pair of light quark masses. These ratios are used in the determination of the subtraction coefficient r
to relateK→p matrix elements toK→pp matrix elements.

i ms md50.01 md50.02 md50.03 md50.04

1 0.02 20.009(43)31023

0.03 20.056(50)31023 20.013(40)31023

0.04 20.098(56)31023 20.053(43)31023 20.019(39)31023

0.05 20.138(62)31023 20.090(47)31023 20.054(40)31023 20.026(38)31023

2 0.02 0.338(22)31023

0.03 0.663(26)31023 0.323(20)31023

0.04 0.979(29)31023 0.634(22)31023 0.331(20)31023

0.05 1.287(32)31023 0.938(24)31023 0.612(21)31023 0.301(19)31023

3 0.02 0.065(15)31022

0.03 0.116(18)31022 0.061(14)31022

0.04 0.166(21)31022 0.111(16)31022 0.056(14)31022

0.05 0.215(23)31022 0.160(17)31022 0.106(15)31022 0.052(14)31022

4 0.02 0.100(13)31022

0.03 0.187(15)31022 0.094(12)31022

0.04 0.273(17)31022 0.179(13)31022 0.089(12)31022

0.05 0.357(19)31022 0.263(15)31022 0.172(13)31022 0.085(12)31022

5 0.02 20.635(13)31022

0.03 21.293(15)31022 20.644(12)31022

0.04 21.950(18)31022 21.302(13)31022 20.647(12)31022

0.05 22.605(19)31022 21.958(15)31022 21.303(12)31022 20.648(11)31022

6 0.02 21.870(1)31022

0.03 23.775(13)31022 21.8956(88)31022

0.04 25.680(15)31022 23.803(10)31022 21.8970(80)31022

0.05 27.576(17)31022 25.700(12)31022 23.7962(90)31022 21.8900(74)31022
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the one-loop corrections are not known, but the general fo
should be as in Eq.~76!, except that themM

2 term has a finite
coefficient for theDI 53/2 amplitudes, we will try fitting
with and without a conventional chiral logarithm term. W
will not include any quenched chiral logarithm effects, sin
these were seen to be small for the~27,1!, DI 53/2 ampli-
tudes discussed in the previous section. Thus we will fit
data to the form

^p1uQ i , lat
~8,8!,~3/2!uK1&5bi ,0

~8,8!F11S j i
~8,8!mM

2

~4p f !2 D ln~3.6941mM
2 !G

1bi ,1
~8,8!mM

2 , ~189!

wherei 57, 8, mM
2 53.18(mf1mres), 1/(4p f )251.246, and

3.6941 is the value ofLQxPT
2 51 GeV2 in lattice units. Since

j i
(8,8) is not known, we will do fits where it is zero and whe

it is a free parameter.
Figure 15 is a plot of the values for^p1uQ7,lat

(8,8),(3/2)uK1&
and Fig. 16 is the same for^p1uQ8,lat

(8,8),(3/2)uK1&. An obvious
feature of the graphs is the nearly linear behavior of
matrix elements. To determinea7,lat

(8,8),(3/2) anda8,lat
(8,8),(3/2), we

TABLE XXVI. Values for ^p1uQ lat
(27,1),(3/2)uK1& versusmf .

mf ^p1uQ lat
(27,1),(3/2)uK1&

0.01 0.000 274~9!

0.02 0.000 632~14!

0.03 0.001 092~20!

0.04 0.001 665~27!

0.05 0.002 356~36!

FIG. 14. The matrix element forQ lat
(27,1),(3/2) , which shows no-

ticeable nonlinearity as a function of quark mass. The solid line
fit to Eq. ~187!, using all five quark masses. The contributions fro
the various terms in Eq.~187! are shown, with the conventiona
chiral logarithm term~the dot-dashed line! of particular importance
due to its essential linearity over most of our quark mass range
extract a value ofa lat

(27,1),(3/2) from this data, we rely on the known
analytic value for the conventional chiral logarithm.
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must extrapolate to the chiral limit,mf52mres. Since there
are no power divergences involved in these operators, t
chiral limit, up to O(a2), corrections should be determine
by mres. Table XXX gives the results of fits to Eq.~189!,
wherej i

(8,8) is held to zero~simple linear fit! and allowed to
be a free parameter~chiral logarithm fit!. In Fig. 15 and 16
the solid lines are the linear fits and the dashed lines incl
the chiral logarithm term with a free parameter.

One sees that the value ofb7,0
(8,8) changes by about 15%

with the inclusion of a chiral logarithm term, whileb8,0
(8,8)

moves by about 8%. Knowingj i
(8,8) analytically would de-

crease the uncertainty in our extrapolation. Without t
knowledge, we will take the chiral logarithm fits to dete
mine the intercepts, with the difference between the two
choices giving an indication of our systematic uncertain
Thus we find

a7,lat
~8,8!,~3/2!521.61~8!31026, ~190!

a8,lat
~8,8!,~3/2!524.96~27!31026. ~191!

XI. DIÄ1Õ2 MATRIX ELEMENTS

In this section, we turn to the determination of the latti
K1→p1 matrix elements for theDI 51/2 parts of the op-
erators listed in Eqs.~4!–~23!. The numerical evaluation o
these matrix elements is much more involved, since
physical quantities are found from the difference of two l
tice quantities which contain power divergences. The ba
idea behind the subtraction of the unphysical effects w
discussed in Sec. III A and it is important to recall that th
subtraction is done for matrix elements in hadronic states
related subtraction was discussed in Sec. VIII, which is do
in Landau gauge fixed quark states and is used for matc
operator normalizations between the lattice and continu
perturbation theory. An important check of our calculation
the consistency of these two subtractions, which sho

TABLE XXVII. The dependence of the fit parameters in E
~187! on the range of quark masses used.

mf range b1
(27,1) b2

(27,1) x2/DOF

0.01–0.04 0.003 45~16! 0.049 7~22! 1.1~4!

0.01–0.05 0.003 25~14! 0.054 2~18! 1.9~6!

0.02–0.04 0.003 20~14! 0.053 7~18! 0.4~1!

0.02–0.05 0.003 01~13! 0.057 5~15! 0.7~2!

TABLE XXVIII. Values for ^p1uQ7,lat
(8,8),(3/2)uK1& versusmf .

mf ^p1uQ7,lat
(8,8),(3/2)uK1&

0.01 20.004 47~12!

0.02 20.005 43~11!

0.03 20.006 40~12!

0.04 20.007 48~13!

0.05 20.008 68~13!

a

o
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receive the same contribution from the leading momentu
independent power-divergent terms.

A. Subtraction of power divergent operators

All the operators in Eqs.~4!–~23! have unphysical contri-
butions to theirDI 51/2, K1→p1 matrix elements at finite
quark mass, since an~8,1! or ~8,8! representation appears
eachQi . For the~8,1! parts of the operators, the formulas
Sec. III A show how these unphysical contributions are
moved. For the operatorsQ7 andQ8 , naively more options
exist since they are in a single irreducible representation
SU(3)L ^ SU(3)R . One can~1! find theDI 51/2 matrix ele-
ments from the value fora i , lat

(8,8),(3/2) of the previous section
~2! extrapolate the divergentDI 51/2 matrix elements to the
chiral limit, or ~3! perform a subtraction as for the~8,1!
operators at finite quark mass and then extrapolate the
maining, nondivergent matrix element to the chiral limit. F
domain wall fermions at finiteLs , only the first option is
precisely defined, since at finiteLs the value of the input
quark mass yielding the chiral limit is not well defined f
divergent operators. One only knows that the chiral limit

FIG. 15. The lattice matrix element forQ7,lat
(8,8),(3/2) , fit to Eq.

~189!. All five quark masses are used in the fit and any nonlinea
in the data is small. The vertical dashed line is drawn atmf5
2mres. There is no analytic result for the coefficient of the conve
tional chiral logarithm in the quenched theory for this matrix e
ment, so we have done both simple linear fits (j7

(8,8)50) and fits
where the chiral logarithm is included with a free coefficient. T
linearity of the data shows the chiral logarithm is not nearly
important here as for the fits toQ lat

(27,1),(3/2) .

TABLE XXIX. Values for ^p1uQ8,lat
(8,8),(3/2)uK1& versusmf .

mf ^p1uQ8,lat
(8,8),(3/2)uK1&

0.01 20.0137~4!

0.02 20.0162~3!

0.03 20.0186~4!

0.04 20.0212~4!

0.05 20.0240~4!
11450
-

-

of
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achieved by settingmf52O(mres). For completeness and t
study the effects ofO(mres) errors, we will include the sub-
traction of theDI 51/2 ~8,8! operators in this section, bu
will use the values ofa7,lat

(8,8),(3/2) anda8,lat
(8,8),(3/2) found previ-

ously to determine our final value for theDI 51/2 parts of
Q7 andQ8 .

In Sec. III B we have argued that a particular combinati
of matrix elements@Eqs. ~87! and ~89!# will not involve
power divergent coefficients times higher order logarithm
terms in chiral perturbation theory. This is extremely impo
tant for our numerical subtraction, since such higher or
logarithmic terms in chiral perturbation theory are not sm
for the pseudoscalar masses we can currently use. In a
tion, there is a great benefit numerically to dealing w
quantities where such effects cancel, rather than cance
them through the explicit determination of extra fit para
eters. We will also apply the same subtraction toQ7 andQ8
that we apply to the other operators. This will remove t
divergent term,mM

2 adiv
(8,8) , given in Eq.~76!, since any diver-

gent term looks likeQ (3,3̄). The finite term proportional to
mM

2 that is left will not be related to themM
2 dependence of

y

-
-

s

FIG. 16. The lattice matrix element forQ8,lat
(8,8),(3/2) , fit to Eq.

~189!. All five quark masses are used in the fit and there is lit
nonlinearity in the data. The vertical dashed line is drawn atmf5

2mres. Both linear fits (j8
(8,8)50) and fits where the chiral loga

rithm is included with a free coefficient are shown. The linearity
the data shows that the chiral logarithm is not nearly as impor
here as for the fits toQ lat

(27,1),(3/2) .

TABLE XXX. The results for fits tô p1uQ i , lat
(8,8),(3/2)uK1& using

the parametrization of Eq.~189!. The data givesO(1) coefficients
for the chiral logarithm term, which are not currently known an
lytically.

i bi ,0
(8,8) bi ,1

(8,8) j i
(8,8) x2/DOF

7 20.003 23~13! 20.0328~9! set to 0 0.6~2!

7 20.003 80~20! 20.0334~9! 1.5~2! 0.1~3!

8 20.0108~4! 20.0801~27! set to 0 0.2~1!

8 20.0117~6! 20.0809~25! 0.8~3! 0.1~2!
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K→pp matrix elements, since this subtraction has not pr
erly handled such finite corrections. However for these
erators the physical value we seek is the extrapolation to
chiral limit, not the coefficient of themM

2 term, and the sub-
traction will only impact our ability to extrapolate to th
~approximately known for finiteLs) chiral limit.

While a general approach to subtracting the power div
gences is dictated by the requirement that we ob
^ppuOi uK& to leading order in chiral perturbation theory, th
specific subtraction procedure that we describe below is c
sen so that all quadratic divergence is removed from
subtracted amplitude ifmres50. This ensures that our resu
will not be polluted by possibly large 1/a2 terms entering at
higher order in chiral perturbation theory.

In this section, we will not report our results in terms
the various parametersa1

(8,1) anda2
(8,1) , since there are man

different~8,1! representations present in the operators in E
~4!–~23! and each irreducible representation has its own v

FIG. 17. The ratio^0uQ2uK0&/^0us̄g5duK0& vs ms82md8 . The
line is a linear fit of the form given in Eq.~192!.

FIG. 18. The ratio^0uQ6uK0&/^0us̄g5duK0& vs ms82md8 . The
line is a linear fit of the form given in Eq.~192!.
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ues fora1
(8,1) anda2

(8,1) . For each operatorQi , we will de-
termine a subtraction coefficienth1,i , following the form of
Eq. ~87!, through

^0uQi , latuK0&

^0u~ s̄g5d! latuK0&
5h0,i1h1,i~ms82md8!, ~192!

wherems8 andmd8 are the nondegenerate quark masses u
in the calculation ofK0→0 matrix elements. Corrections t
this formula from higher order effects in chiral perturbatio
theory are free of power divergences. We expect thath0,i
should be zero, but we add this free parameter to the fi

FIG. 19. The ratio^0uQi uK0&/^0us̄g5duK0& vs ms82md8 for i
51, 3, 4, and 5. The line is a linear fit of the form given in E
~192!. The symbols have the same meaning as in Fig. 18.

FIG. 20. The ratio^0uQ8uK0&/^0us̄g5duK0& vs ms82md8 . The
line is a linear fit of the form given in Eq.~192!.
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test that expectation. The arguments leading to Eq.~87! show
that when, for example, a2

(8,1) is very large,
^0uQi , latuK0&/^0u( s̄g5d) latuK0& should not show the presenc
of chiral logarithms, since such terms appear only throu
a1

(8,1) . Thus, for largea2
(8,1) , where the subtraction is mor

delicate, the determination of the subtraction coefficien
easier since the linearity is better.

Starting from the values for ^0uQi , latuK0&/
^0u( s̄g5d) latuK0& given in Tables XXIV and XXV, we have
plotted this ratio versusms82md8 in Figs. 17–21. ForQ2 ,
Q6 , andQ8 , graphs are shown with better resolution. No
that forQ6 andQ8 they axis is a much larger scale than fo
Q2 . For Q2 , there is some deviation for different values
ms8 andmd8 with the same value forms82md8 , but within our
statistics no clear conclusion can be drawn. ForQ6 andQ8 ,
any such deviation is much smaller, as would be expected
these operators with large power divergent contributions,
again deviations are within our statistical error.

The results for uncorrelated fits to this data are given
Table XXXI. One sees thath1,6 is the largest subtraction
coefficient and has a statistical error of about 0.2%. T
other operators with large subtraction coefficients areQ5 ,
Q7 , and Q8 , which have comparable statistical precisio
The good linearity of the data makes quoting such sm
statistical errors sensible. It is also vital that we know the
subtraction coefficients to this accuracy, since there
O(a22) divergences to cancel through this subtraction. E
cept forQ7 andQ8 , h0,i is zero within statistical errors. Fo
Q7 and Q8 , h0,i is statistically nonzero, but very small i
magnitude.

An important cross-check of our calculation is the co
parison of the subtraction coefficientsh1,i , determined from

FIG. 21. The ratio^0uQi uK0&/^0us̄g5duK0& vs ms82md8 for i
57, 8, 9, and 10. The line is a linear fit of the form given in E
~192!. The symbols have the same meaning as in Fig. 18.
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properties of the operators in hadronic states, with the s
traction coefficients determined by the NPR procedure
Sec. VIII. A similar subtraction is performed there to remo
the mixing between four quark operators and quark bilinea
This subtraction is done in Landau gauge fixed quark sta
at momentum scales>1.5 GeV. Thus the two subtractio
coefficients should not be identical. Only the power div
gent parts should agree, since these are independent of e
nal momenta. For the operators with the largest subtrac
coefficients, the agreement should be quite close, since
large subtraction comes from the power divergent pie
dominating.

Table XXXII gives a comparison of the subtraction coe
ficients as determined from nonperturbative renormalizat
and the values from Table XXXI, which were determine
from chiral perturbation theory in hadronic states. The no
perturbative renormalization subtraction coefficients are
values in the second column of Table IX minus the values
the second column of Table VI. The results in Table XXX
are also plotted in Fig. 22. For the (V2A)3(V1A) opera-

TABLE XXXI. Results for uncorrelated fits of
^0uQi , latuK0&/^0u( s̄g5d) latuK0& to the form h0,i1h1,i (ms82md8).
For Q7 and Q8 the value forh0,i is very small, but statistically
nonzero.

i h0,i h1,i

1 0.024(35)31023 20.040(12)31021

2 20.005(18)31023 3.220(59)31022

3 0.006(13)31022 0.521(42)31021

4 0.004(11)31022 0.883(36)31021

5 0.010(10)31022 26.543(37)31021

6 0.077(71)31023 218.978(36)31021

7 21.285(74)31025 34.326(46)31022

8 20.401(19)31024 10.307(14)31021

9 0.004(18)31023 23.203(59)31022

10 20.025(35)31023 0.042(12)31021

TABLE XXXII. A comparison of the subtraction coefficients in
hadronic states,h1,i , with those found from Landau gauge-fixe
quark states. Divergent contributions, which are independent of
ternal momenta, should give the same contribution to the two c
ficients. For operators with large power divergent subtractions,
Q6 andQ8 , the two coefficients are very similar.

i h1,i NPR

1 20.0040~12! 20.0042~17!

2 0.032 20~59! 0.0031~91!

3 0.0521~42! 20.006~20!

4 0.0883~36! 0.001~28!

5 20.6543~37! 20.672~12!

6 21.8978~36! 21.995~45!

7 0.343 26~46! 0.332~7!

8 1.0307~14! 0.993~20!

9 20.032 03~59! 20.0031~91!

10 0.0042~12!
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tors (Q5 , Q6 , Q7 , and Q8) where the subtraction coeffi
cients are the largest, the agreement between the two t
niques is very good. This gives us confidence in
subtraction procedure, since the comparison is betw
quantities determined in entirely different ways using diffe
ent computer programs for data generation and analy
Note that the errors from the hadronic state calculation
considerably smaller.

B. Subtracted DIÄ1Õ2 matrix elements

The combination of terms on the left-hand side of E
~89! that removes chiral logarithm effects from the diverge
parts of the operators can be written as

^p1uQi , lat
~1/2!uK1&sub

[^p1uQi , lat
~1/2!uK1&1h1,i~ms1md!^p1u~ s̄d! latuK1&.

~193!

It is easy to see that when written in this form, the subtr
tion required by chiral perturbation theory removes the en
1/a2 divergence present in the original^p1uQi , lat

(1/2)uK1& ma-
trix element if mres50. Usual power counting argument
combined with exact chiral symmetry and the CPS symme
of Ref. @12#, dictate that all 1/a2 divergences which appear i
the matrix elements of the operatorQi , lat

(1/2) can be written as a
divergent coefficient times matrix elements of t
dimension-three operator (md1ms) s̄d1(md2ms) s̄g5d.
Equation~192! determines this coefficient ash1,i ensuring
that the subtraction in Eq.~193! removes the entire 1/a2

divergent piece from theQi , lat
(1/2) matrix element.

In addition to chiral logarithm effects, we saw in Se
VI C that the matrix element̂p1u( s̄d) latuK1& is altered by
zero modes for light quark masses. These same zero m

FIG. 22. The subtraction coefficients determined in hadro
states~s! compared with those determined in Landau gauge fi
quark states atm52.13 GeV ~h!. For the operators with large
power divergences, the subtraction coefficients agree well since
external momentum does not enter the power divergent coeffic
11450
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effects will also enter the divergent part of^p1uQi , lat
(1/2)uK1&

matrix elements. In particular, recalling Fig. 7, we are
minded that this matrix element is not well represented b
simple linear dependence onmf . Again it is simpler to let
the subtraction of matrix elements in Eq.~193! remove these
nonlinear terms. Any remaining nonlinearities should be
sociated with the chiral logarithms on the right-hand side
Eq. ~89! and near-zero mode effects in the finite terms. O
once again avoids the possibility of failing to remove a
vergent term which is multiplied by a higher order term
chiral perturbation theory.

With the values for the subtraction coefficients,h1,i , from
the previous section, we have calculated the subtracted
trix elements. To see the extent of the subtraction, in Fig.
we plot ^p1uQ6,latuK1&, 2mf uh1,6u^p1u( s̄d) latuK1&, and
^p1uQ6,latuK1&sub. The first two quantities show very simila
nonlinearity and produce a subtracted matrix element wh
is much smaller. Given the large cancellation involved,
importance of removing divergence terms times higher or
terms in chiral perturbation theory is clear.

The complete results for the subtracted matrix eleme
are given in Table XXXIII and are plotted versusmf in Figs.
24–28. The subtraction is done under a jack-knife error lo
to make maximum use of any correlations in the values
^p1uQi , lat

(1/2)uK1&, h1,i , and^p1u( s̄d) latuK1&. The subtracted
matrix elements forQ2 , Q6 , andQ8 are shown on an ex
panded scale. Concentrating for a moment onQ6 ~Fig. 25!,
the graph for the subtracted operator reveals a numbe
important features.

c
d

he
t.

FIG. 23. The matrix elements ^p1uQ6uK1& ~h!,
2mf uh1,6u^p1u( s̄d) latuK1& ~s!, and ^p1uQ6uK1&sub ~L! showing
the noticeable, and very similar, nonlinearity in the first two qua
tities and the size of the subtraction for this left-right operator. T
slope of the subtracted matrix element determines the desireda1,lat

(8,1)

for Q6 and is about 30 times smaller than the slope of the uns
tracted operator, and of opposite sign. Note that the subtracted
erator does not vanish atmf52mressince the divergent parts of th
operator do not see only the chiral symmetry breaking of the
energy theory.
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TABLE XXXIII. Values of the DI 51/2 matrix elements of the subtracted operators,^p1uQi , lat
(1/2)uK1&sub

3102. This subtraction is done in hadronic states and removes the unphysical contribution to this
element foriÞ7 and 8. ForQ7 andQ8 , the subtraction leaves a finite matrix element, whose value in
chiral limit is related to physical quantities.

i mf50.01 mf50.02 mf50.03 mf50.04 mf50.05

1 0.018~24! 20.001~27! 20.031~29! 20.065~32! 20.101~36!

2 0.039~11! 0.082~13! 0.133~14! 0.194~16! 0.265~17!

3 0.123~84! 0.139~96! 0.13~10! 0.13~11! 0.14~13!

4 0.144~70! 0.222~80! 0.298~87! 0.393~96! 0.51~11!

5 0.127~74! 0.067~85! 20.001~93! 20.08~10! 20.18~11!

6 0.193~75! 0.037~81! 20.141~89! 20.362~97! 20.65~11!

7 20.768~20! 20.864~16! 20.934~15! 20.995~15! 21.046~16!

8 22.450~63! 22.784~53! 23.045~50! 23.292~51! 23.520~53!

9 20.034~11! 20.071~13! 20.113~14! 20.164~16! 20.223~17!

10 20.013~24! 0.013~27! 0.051~29! 0.095~32! 0.143~36!
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~1! The presence of finiteLs and power divergent opera
tors means that̂p1uQ6,latuK1&sub need not vanish atmf50
or mf52mres. This is obvious in the graph, where the m
trix element vanishes aroundmf of 0.02.

~2! For Qi containing an~8,1! representation, only the
slope of the subtracted matrix element is needed, so the
biguities ofO(mres) in the chiral limit are unimportant. Fo
~8,8! parts of an operator, such ambiguities prohibit a prec
determination of the desireda’s from the DI 51/2 ampli-
tudes.

~3! The subtracted values forQ6 ~and alsoQ2 and Q9)
show some nonlinearity, although the effect is not conclus
given the statistical errors. We have not fit to the nonlinea
ties, since the coefficients of the chiral logarithms are
known for the~8,1! operators in quenched QCD. For the fu
QCD case, where they are known, the coefficient is 1
compared to 34/3 for the~27,1! operators. Thus we us
simple linear fits and expect the corrections in the slope
seek, due to logarithms, to be small.

FIG. 24. The matrix element̂p1uQ2,lat
(1/2)uK1&sub which has the

divergent contribution removed. Due to the contact term in
Ward-Takahashi identity the matrix element does not vanish atmf

52mres. The slope is related to the matrix elements we seek.
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~4! Q6 is a pure~8,1! operator, but forQ1 , Q2 , Q9 , and
Q10, which contain a~27,1! for which the chiral logarithm
coefficient is known and large, fits could be done to inc
porate this effect. However, theDI 51/2 part of the~27,1!
enters the total operator with a small coefficient~1/10 or
1/15!. Also, sincea lat

(27,1),(1/2)5a lat
(27,1),(3/2) and a lat

(27,1),(3/2) is
small, this particular chiral logarithm contribution should n
be visible in our data.

~5! The lower points in the figure~L! are the result if the
subtraction in Eq.~193! has (ms1md) changed to (ms1md
12mres). This subtraction will also not exactly remove th
O(mres/a

2) term, but the two subtractions show that chir

e

FIG. 25. The matrix element̂p1uQ6,lat
(1/2)uK1&sub which has the

divergent contribution removed~s!. The subtraction does not re
move theO(mres/a

2) divergent term, so the matrix element do
not vanish atmf50. The line is a linear fit to the data, since th
chiral logarithm corrections are not known, and the slope of t
line is related to physical matrix elements. From the data, nonlin
effects appear small. The lower points~L! are the result if the
subtraction in Eq.~193! has (ms1md) changed to (ms1md

12mres). This subtraction will also not exactly remove th
O(mres/a

2) term, but the two subtractions show that chiral symm
try breaking from finiteLs is quantitativelyO(mres/a

2).
6-48



tio

e-

of
f

e

th
en

o
ry
t

e
is

e

KAON MATRIX ELEMENTS AND CP VIOLATION FROM . . . PHYSICAL REVIEW D 68, 114506 ~2003!
symmetry breaking from finite Ls is quantitatively
O(mres/a

2).
We have fitted the subtracted operators to a linear func

parametrized by

^p1uQi , lat
~1/2!uK1&sub5c0,i1c1,imf ~194!

FIG. 26. The matrix element^p1uQi , lat
(1/2)uK1&sub, for i 51, 3, 4,

and 5, which has the divergent contribution removed. Due to
contact term in the Ward-Takahashi identity the matrix elem
does not vanish atmf52mres.

FIG. 27. The matrix element̂p1uQ8,lat
(1/2)uK1&sub which has the

divergent contribution removed. Due to the power divergence
this operator, the value ofmf needed to cancel the chiral symmet
breaking effects of finiteLs is not precisely known. Thus we do no
know where to evaluate this matrix element to geta8

(8,8) and must
rely on theDI 53/2 amplitude to determine this quantity.
11450
n

with the results given in Table XXXIV. These are uncorr
lated linear fits to all five quark masses. We see that forQ6 ,
in spite of the very large subtraction involved, the slope
^p1uQi , lat

(1/2)uK1&sub is determined with a statistical error o
about 10%.

For Q7 andQ8 , we can start from the fits given in Tabl
XXXIV and compare the value for theDI 51/2 matrix ele-
ments with the value expected from theDI 53/2 matrix ele-
ments. Sincea i , lat

(8,8),(1/2)52a i , lat
(8,8),(3/2) for i 57 and 8, we can

e
t

f

FIG. 28. The matrix element^p1uQi , lat
(1/2)uK1&sub, for i 57, 8, 9,

and 10, which has the divergent contribution removed. ForQ9 and
Q10, the slope is needed to determine theK→pp matrix elements.
Q7 andQ8 are shown for completeness.

TABLE XXXIV. Results for linear fits of^p1uQi , lat
(1/2)uK1&sub to

the form of Eq.~194!. The slope of the fit, given byc1,i , is related
to the low energy constant needed to determineK→pp matrix
elements foriÞ7 and 8. Fori 57 and 8, the matrix element in th
chiral limit is the physical quantity we seek, but the chiral limit
uncertain for these power divergent operators at finiteLs . For these
operators, we use theDI 53/2 part of the operator to determine th
DI 51/2 part.

i c0,i c1,i x2/DOF

1 0.000 53~27! 20.0297~78! 0.05~8!

2 20.000 24~13! 0.0555~40! 0.6~3!

3 0.001 23~97! 0.0036~284! 0.004~12!

4 0.000 47~80! 0.089~24! 0.04~6!

5 0.002 10~84! 20.074~25! 0.02~4!

6 0.004 26~84! 20.203~25! 0.3~2!

7 20.007 20~21! 20.0675~37! 0.8~3!

8 20.0223~7! 20.262~12! 0.4~2!

9 0.000 18~13! 20.0464~40! 0.4~2!

10 20.000 59~27! 0.0389~79! 0.09~10!
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use the values fora i , lat
(8,8),(3/2) given in Sec. X B to find

a7,lat
~8,8!,~1/2!523.22~16!31026, ~195!

a8,lat
~8,8!,~1/2!529.92~54!31026. ~196!

The unsubtractedDI 51/2 matrix elements should have th
form

^p1uQi , lat
~1/2!uK1&5c0,i1c1,i~mf1mres!1c1,i

div@mf1O~mres!#.

~197!

From Table XXII and Eq.~193! one sees thatc1,7
div;21.3 and

c1,8
div;23.9. Using these values andmres50.00124 gives amf

independent contribution to thei 57 and 8 matrix elements
of O~0.0016! andO~0.0044! from contact terms in the Ward
Takahashi identities. The values forc0,i for i 57 and 8 are
given in Table XXXIV and are 20.00720~21! and
20.0223~7!, respectively. Thus the expected uncertainty d
to finite Ls in determininga i , lat

(8,8),(1/2) from the subtracted
DI 51/2 amplitudes is about 20% in both cases. Using th
values forc0,i yields

a7,lat,sub
~8,8!,~1/2!523.05~9!31026, ~198!

a8,lat,sub
~8,8!,~1/2!529.44~30!31026. ~199!

The agreement with the results from theDI 53/2 matrix el-
ements is better than might be expected. However, theDI

TABLE XXXV. The lattice values for the low energy, chira
perturbation theory constants forDI 51/2 amplitudes foriÞ7 and
8. These were determined from subtractedK1→p1 matrix ele-
ments.

i a i , lat
(1/2)

1 21.19(31)31025

2 2.22(16)31025

3 0.15(113)31025

4 3.55(96)31025

5 22.97(100)31025

6 28.12(98)31025

9 21.85(16)31025

10 1.55(31)31025

TABLE XXXVI. The lattice values for theDI 51/2 and DI
53/2 low energy, chiral perturbation theory constants determi
from K1→p1 matrix elements not requiring subtraction.

Parameter Value

a lat
(27,1),(1/2) 24.13(18)31026

a7,lat
(8,8),(1/2) 23.22(16)31026

a8,lat
(8,8),(1/2) 29.92(54)31026

a lat
(27,1),(3/2) 24.13(18)31026

a7,lat
(8,8),(3/2) 21.61(8)31026

a8,lat
(8,8),(3/2) 24.96(27)31026
11450
e

e

53/2 fits include chiral logarithm corrections which chan
the results by 15% fori 57 and 8% fori 58. The change
happens to improve the agreement with the values from
subtracted operators. However, this general agreement
demonstrate the reliability of the subtraction of the pow
divergent operators.

Defining constantsa i , lat
(1/2) for iÞ7,8 through

^p1uQi , lat
~1/2!uK1&sub[

4mM
2

f 2 a i , lat
~1/2! ~200!

and usingmM
2 53.18(mf1mres) gives the values in Table

XXXV. We collect thea’s determined without requiring sub
tractions in Table XXXVI. Finally Table XXXV gives the
DI 51/2 andDI 53/2 values fora i for the ten operators in
the basis used in the three-quark effective theory. These
our results for the lattice values for the constants determin
kaon matrix elements in lowest order chiral perturbati
theory from quenched QCD and domain wall fermions.
the next two sections we will combine these values with
Wilson coefficients of Sec. VII, theZ factors from Sec. VIII,
and known experimental quantities to give physical valu
for the real and imaginary parts of isospin zero and t
amplitudes forK→pp.

d

TABLE XXXVII. Central values for standard model paramete
and experimental results relevant to the calculations presente
this paper. All values are from the 2000 Particle Data Book unl
otherwise noted. The central values forlCKM , ACKM , r̄CKM , and
h̄CKM are taken, without errors. Current errors on all quantities
the table which enter as inputs in our calculation have virtually
effect on our results.

Quantity Central value Comments and references

mp1 139.57 MeV
mp0 134.98 MeV
f p1 130.7 MeV
mK1 493.68 MeV
mK0 497.67 MeV
f K1 159.8 MeV
GF 1.16631025 GeV22

lCKM 0.2237 @89#

ACKM 0.819 @89#

r̄CKM 0.222 @89#

h̄CKM 0.316 @89#

rCKM 0.228 FromlCKM , r̄CKM , andh̄CKM

hCKM 0.324 FromlCKM , r̄CKM , andh̄CKM

uVusu 0.2237 [lCKM

uVudu 0.9747
uVcbu 0.0410 5ACKMlCKM

2

Vtd 0.007 08– 0.002 97i
t 0.001 33– 0.000 559i
e 2.27131023

ReA0 3.3331027 GeV
v 0.045
Re(e8/e) (20.762.8)31024 KTEV @3#

(15.362.6)31024 NA48 @5#
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XII. PHYSICAL MATRIX ELEMENTS

The physical values forK→pp amplitudes can now be
calculated from the effective Hamiltonian in Eq.~3! using
the Wilson coefficients in Tables III and IV, theẐi j

NPR/Zq
2

values from nonperturbative renormalization in Tables X
ou
n
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th

so
th

lu

fu
-
-
s

th

l
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and XV, the valueZq50.808(3)(15) from Table II of @59#,
the chiral perturbation theory formulas in Eqs.~65! and~67!,
the central values for standard model parameters in Ta

XXXVII, and the values fora j , lat
(1/2) and a j , lat

(3/2) from Table
XXXVIII. The explicit formula is
^pp~ I !u2 iH~DS51!uK0&52 i A3

4
GFVudVus* (

i 51

10

(
j 51,j Þ4

8

@zi~m!1tyi~m!#Ẑi j
NPR~m!

35
4i

f 3 a j , lat
~1/2!~mK0

2
2mp1

2
!a24 I 50, j 51,2,3,5,6

24& i

f 3 a j , lat
~3/2!~mK0

2
2mp1

2
!a24 I 52, j 51,2,3,5,6

212i

f 3 a j , lat
~1/2!a26 I 50, j 57,8

212& i

f 3 a j , lat
~3/2!a26 I 52, j 57,8

, ~201!
ue
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pe
es
on
in

n-
he

on
the
nd

f
hed
we
wherea21, the inverse lattice spacing, is 1.922 GeV@21#.
Before discussing the numerical values produced from
data, we will outline our strategy for making the transitio
from the quenched QCD matrix elements we have calcula
to the full QCD matrix elements needed for comparison w
the physical world. We can then assess the impact of
known chiral logarithms in full QCD on our results and al
discuss how sensitive our results are to the values of
standard model parameters given in Table XXXVII.

For our lattice calculation we have used a quenched va
for f, which is defined in the chiral limit, of 137 MeV@21#.
There is no reason why this value must agree with the
QCD value off QCD'120 MeV. In quenched chiral perturba
tion theory, f p

(1 loop) and f K
(1 loop) do not contain any conven

tional chiral logarithms, only quenched chiral logarithm
which we have argued are small. This is consistent with

TABLE XXXVIII. The lattice values for the low energy, chira
perturbation theory constants decomposed by isospin forQ1 to
Q10.

i a i , lat
(1/2) a i , lat

(3/2)

1 21.19(31)31025 21.38(6)31026

2 2.22(16)31025 21.38(6)31026

3 0.15(113)31025 0.0
4 3.55(96)31025 0.0
5 22.97(100)31025 0.0
6 28.12(98)31025 0.0
7 23.22(16)31026 21.61(8)31026

8 29.92(54)31026 24.96(27)31026

9 21.85(16)31025 22.07(9)31026

10 1.55(31)31025 22.07(9)31026
r

d

e

e

e
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linear quark mass behavior seen in@21# in the determination
of f. In relating latticeK→p matrix elements to latticeK
→pp matrix elements, one should use thisf. For small
quark masses, the resulting latticeK→pp matrix elements
should be equal to those explicitly calculated via a techniq
such as has been proposed by Lellouch and Luscher@47#,
provided the quenched theory does not corrupt the full Q
relations betweenK→p andK→pp.

We will make the transition from the quenched theory
full QCD at the level of the matrix elementŝppuQi uK0&
and not at the level of the lattice constantsa i , lat . Since the
a i , lat factors in Eq.~201! are multiplied by f 23, changing
from f to f QCD would be a large effect and a factor off 2 has
already entered in the calculation of thea i , lat from our lattice
data. For thê ppuQi uK0& matrix elements which vanish in
the chiral limit, we have actually only determined the slo
of the matrix element. The matrix element itself involv
using chiral perturbation theory to extrapolate to the ka
mass. This extrapolation introduces an additional choice
relating quenched matrix elements to those in full QCD.

With this strategy of using the values for quenchedK
→pp matrix elements as estimates for full QCD, we co
sider two choices for the extrapolation to the kaon scale. T
first choice involves extrapolating to the kaon mass for~8,1!
and ~27,1! operators using lowest order chiral perturbati
theory in the quenched theory. The second extrapolates to
kaon scale in the full theory and incorporates the known a
estimated chiral logarithms for theK→pp matrix elements
in full QCD. We now discuss these choices in detail.

~1! Physical values formK0
2 and mp1

2 are used in Eq.
~201!. For ~8,1! and ~27,1! operators, this can be thought o
as an extrapolation to the physical kaon mass in quenc
QCD using lowest order chiral perturbation theory, since
6-51
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TABLE XXXIX. The contribution in GeV from the renormalized continuum operatorQi ,cont to the real
parts of ^(pp) I u2 iH(DS51)uK0& for m51.51 GeV. The central values for the standard model parame
given in Table XXXVII have been used.

i

RealA0 RealA2

choice 1 choice 2 choice 1 choice 2

1 3.02(68)31028 4.28(97)31028 24.11(18)31029 24.82(22)31029

2 2.00(18)31027 2.83(25)31027 1.392(62)31028 1.635(73)31028

3 1.4(29)310210 2.0(41)310210 0.0 0.0
4 23.80(84)31029 25.4(12)31029 0.0 0.0
5 26.9(29)310210 29.8(41)310210 0.0 0.0
6 4.99(77)31029 7.1(11)31029 0.0 0.0
7 4.04(21)310211 8.00(42)310211 2.86(15)310211 3.63(19)310211

8 25.74(32)310211 21.137(63)310210 24.06(22)310211 25.15(28)310211

9 23.91(39)310212 25.54(56)310212 4.69(21)310213 5.51(25)310213

10 2.27(41)310212 3.23(59)310212 3.70(17)310213 4.35(20)310213
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have found the quenched chiral logarithms to be small
there are no conventional chiral logarithms in these mas
in the quenched theory. These quenchedK→pp matrix el-
ements withmK0

2 and mp1
2 taking their physical values ar

taken as the matrix elements for full QCD. The same res
would be achieved by a lowest order extrapolation in f
QCD, except that the use of the physical kaon and p
masses is somewhat ambiguous, since physical masse
clude chiral logarithm corrections if the quark masses
taken as known input parameters. This ambiguity wo
change the matrix elements at the 10% level.

~2! We extrapolate to the physical kaon mass in full QC
including the chiral logarithm corrections. For the~8,1! and
DI 53/2 part of the~27,1! operators the quenched slope
taken for the full QCD value and the known chir
i-
e
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logarithms in full QCD@53,76# are used in the extrapolation
For ~8,8! operators, the nonzero value in the quenched ch
limit is taken directly to full QCD. Recent work on the elec
troweak penguins@77# allows us to estimate the coefficien
of the chiral logarithm term. These authors write the mat
elements for the electroweak penguins atO(p2) as MI

5MI
(0)(11D I) where MI

(0) is the lowest order value a
given in Eq.~67!. They findD050.9860.55 andD250.27
60.27 and state thatD I only includes the contributions from
chiral logarithms. The errors they quote come from varyi
LQxPT . If we assume the correction is all from a chir
logarithm termLx(mK), then the coefficient of this term
would be;28.4 for I 50 and;22.3 for I 52.
Thus, for our second extrapolation choice, where chiral lo
rithms are included, we modify the second line of Eq.~201!
to
35
4i

f 3 a j , lat
~1/2!~mK0

2
2mp1

2
!a24 F12

97

27
Lx~mK!G I 50, j 51,2,3,5,6

24& i

f 3 a j , lat
~3/2!~mK0

2
2mp1

2
!a24 F12

3

2
Lx~mK!G I 52, j 51,2,3,5,6

212i

f 3 a j , lat
~1/2!a26 @128.4Lx~mK!# I 50, j 57,8

212& i

f 3 a j , lat
~3/2!a26 @122.3Lx~mK!# I 52, j 57,8

. ~202!
en

ow
In these equations, the physical values formK0
2 and mp1

2

should be used. We use our quenched value forf in the
1/(4p f )2 factor in the chiral logarithms. In addition to est
mating the coefficient of the chiral logarithm term for th
~8,8! operators, we have also used the~8,1! chiral logarithm
for all of the nonelectroweakDI 51/2 matrix elements. This
is a very good approximation, since theDI 51/2 part of the
~27,1! operator contributes very little here as can be se
from the size ofa lat

(27,1),(1/2).

XIII. REAL A0 , A2 , AND BK

Following the procedure of the previous section, we n
proceed to our results for Re(A0) and Re(A2) and theDI
6-52
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TABLE XL. The contribution in GeV from the renormalized continuum operatorQi ,cont to the imaginary
parts of ^(pp) I u2 iH(DS51)uK0& for m51.51 GeV. The central values for the standard model parame
given in Table XXXVII have been used.

i

ImaginaryA0 ImaginaryA2

choice 1 choice 2 choice 1 choice 2

1 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0
3 24.7(94)310213 27.(13)310213 0.0 0.0
4 8.2(18)310212 1.17(26)310211 0.0 0.0
5 4.7(20)310213 6.7(28)310213 0.0 0.0
6 21.72(27)310211 22.45(38)310211 0.0 0.0
7 7.57(39)310214 1.498(78)310213 5.35(28)310214 6.78(35)310214

8 21.787(98)310212 23.54(19)310212 21.263(70)310212 21.602(88)310212

9 29.45(95)310213 21.34(14)310212 1.135(51)310213 1.334(60)310213

10 22.25(41)310213 23.19(58)310213 23.66(16)310214 24.30(19)310214
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51/2 rule. These amplitudes are expected to come predo
nantly from the current–current operatorsQ1 and Q2 , as
seen in the relative sizes of the Wilson coefficientszi(m) and
yi(m) given in Tables III and IV.~Such a statement depend
on the scalem under consideration, since the operators m
under renormalization.! As such, they are quite independe
of Vtd and CP violation effects in the standard model a
provide an independent forum for comparison between
quenched lattice QCD calculations and experimental res
We conclude with our results forBK , since it is determined
by the matrix elements of the same~27, 1! operator that
determines Re(A2).

Using our data and Eqs.~201! and ~202! produces the
values for Re(A0), Re(A2), Im(A0), and Im(A2) in Tables
XXXIX–XLVI. Here the contribution to ^pp (I )

u2iH(DS51)uK0& is decomposed into contributions for ea
value of the indexi in Eqs.~201! and~202!. We will refer to
this as the full contribution tôpp (I )u2 iH(DS51)uK0& from
the continuum operatorQi ,cont. These tables use the centr
values for standard model parameters given in Table XX
11450
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VII. The matching scalem is 1.51 GeV for Tables XXXIX
and XL, 2.13 GeV for Tables XLI and XLII, 2.39 GeV fo
Tables XLIII and XLIV, and 3.02 GeV for Tables XLV and
XLVI. It should be noted that the continuum operators m
when this scale is changed, so the decomposition of
physical amplitudes into particularQi ,cont contributions will
change. Only the complete amplitude should be insensi
to scale and this will only occur if the Wilson coefficien
and nonperturbative renormalization factors are known to
orders in aS . In addition, we always useZq(m) for m
52.0 GeV in the matching, since in the determination
Zq(m) the running effects were found to be quite small@59#.
~The one-loop anomalous dimension forZq vanishes in Lan-
dau gauge.! The scale dependence of our results will be
important test of our calculation.

Results for the two choices for extrapolation discussed
Sec. XII are given in Tables XXXIX–XLVI. The first choice
a zero-loop extrapolation in quenched QCD, and the seco
a one-loop extrapolation in full QCD, differ by no more tha
;40%, except for the contributions toA0 coming from
en in

TABLE XLI. The contribution in GeV from the renormalized continuum operatorQi ,cont to the real parts

of ^(pp) I u2 iH(DS51)uK0& for m52.13 GeV. The central values for the standard model parameters giv
Table XXXVII have been used.

i

RealA0 RealA2

choice 1 choice 2 choice 1 choice 2

1 2.69(61)31028 3.82(87)31028 23.64(16)31029 24.27(19)31029

2 1.81(12)31027 2.57(17)31027 1.371(61)31028 1.610(72)31028

3 1.(13)310211 2.(18)310211 0.0 0.0
4 21.46(33)31029 22.07(47)31029 0.0 0.0
5 24.4(18)310210 26.3(26)310210 0.0 0.0
6 3.09(38)31029 4.38(54)31029 0.0 0.0
7 5.32(27)310211 1.054(54)310210 3.76(19)310211 4.77(24)310211

8 21.785(97)310210 23.53(19)310210 21.262(68)310210 21.601(87)310210

9 22.59(20)310212 23.68(28)310212 3.43(15)310213 4.03(18)310213

10 5.14(94)310212 7.3(13)310212 8.33(37)310213 9.79(44)310213
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TABLE XLII. The contribution in GeV from the renormalized continuum operatorQi ,cont to the imaginary
parts of ^(pp) I u2 iH(DS51)uK0& for m52.13 GeV. The central values for the standard model parame
given in Table XXXVII have been used.

i

ImaginaryA0 ImaginaryA2

choice 1 choice 2 choice 1 choice 2

1 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0
3 27.(87)310214 21.(12)310213 0.0 0.0
4 7.2(16)310212 1.02(23)310211 0.0 0.0
5 6.3(26)310213 9.0(36)310213 0.0 0.0
6 22.12(26)310211 23.00(37)310211 0.0 0.0
7 6.95(36)310214 1.376(70)310213 4.91(25)310214 6.23(32)310214

8 21.583(86)310212 23.13(17)310212 21.119(61)310212 21.419(77)310212

9 28.43(64)310213 21.196(91)310212 1.114(50)310213 1.309(59)310213

10 22.01(37)310213 22.85(52)310213 23.25(15)310214 23.82(17)310214

TABLE XLIII. The contribution in GeV from the renormalized continuum operatorQi ,cont to the real parts
of ^(pp) I u2 iH(DS51)uK0& for m52.39 GeV. The central values for the standard model parameters giv
Table XXXVII have been used.

i

RealA0 RealA2

choice 1 choice 2 choice 1 choice 2

1 2.69(59)31028 3.82(84)31028 23.45(15)31029 24.05(18)31029

2 1.87(11)31027 2.65(16)31027 1.346(60)31028 1.582(71)31028

3 9.(87)310212 1.(12)310211 0.0 0.0
4 29.9(22)310210 21.40(31)31029 0.0 0.0
5 23.5(14)310210 25.0(20)310210 0.0 0.0
6 2.03(25)31029 2.88(35)31029 0.0 0.0
7 5.76(29)310211 1.140(58)310210 4.07(21)310211 5.16(26)310211

8 22.08(11)310210 24.12(22)310210 21.472(80)310210 21.87(10)310210

9 22.97(21)310212 24.21(30)310212 3.70(17)310213 4.35(20)310213

10 6.1(11)310212 8.7(15)310212 9.46(42)310213 1.111(50)310212

TABLE XLIV. The contribution in GeV from the renormalized continuum operatorQi ,cont to the imagi-
nary parts of̂ (pp) I u2 iH(DS51)uK0& for m52.39 GeV. The central values for the standard model par
eters given in Table XXXVII have been used.

i

ImaginaryA0 ImaginaryA2

choice 1 choice 2 choice 1 choice 2

1 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0
3 29.(86)310214 21.(12)310213 0.0 0.0
4 7.5(17)310212 1.07(23)310211 0.0 0.0
5 6.6(27)310213 9.4(38)310213 0.0 0.0
6 21.99(24)310211 22.83(34)310211 0.0 0.0
7 6.46(33)310214 1.279(65)310213 4.57(23)310214 5.79(30)310214

8 21.512(82)310212 22.99(16)310212 21.069(58)310212 21.356(74)310212

9 28.76(61)310213 21.243(87)310212 1.093(49)310213 1.285(58)310213

10 21.99(35)310213 22.83(50)310213 23.09(14)310214 23.63(16)310214
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TABLE XLV. The contribution in GeV from the renormalized continuum operatorQi ,cont to the real parts
of ^(pp) I u2 iH(DS51)uK0& for m53.02 GeV. The central values for the standard model parameters giv
Table XXXVII have been used.

i

RealA0 RealA2

choice 1 choice 2 choice 1 choice 2

1 2.46(54)31028 3.48(77)31028 23.09(14)31029 23.63(16)31029

2 1.72(12)31027 2.45(16)31027 1.294(58)31028 1.520(68)31028

3 22.(13)310212 23.(18)310212 0.0 0.0
4 24.5(11)310213 26.4(15)310213 0.0 0.0
5 21.64(69)310210 22.33(98)310210 0.0 0.0
6 3.51(42)310210 4.98(60)310210 0.0 0.0
7 6.79(35)310211 1.344(69)310210 4.80(25)310211 6.09(31)310211

8 22.58(14)310210 25.10(28)310210 21.821(99)310210 22.31(13)310210

9 23.92(30)310212 25.56(43)310212 5.12(23)310213 6.02(27)310213

10 7.4(13)310212 1.05(19)310211 1.127(51)310212 1.324(59)310212
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Q7,cont and Q8,cont. These contributions change by almost
factor of 2, due to the large coefficient of the chiral logarith
term. As we will see, these play no role in our final resu
due to the small size ofDI 51/2 effects from electroweak
penguin operators compared to theDI 51/2 effects from ex-
change and gluon penguin operators. Table XLVII shows
values for Re(A0), Re(A2), and Re(A0)/Re(A2)51/v for the
two extrapolation choices form52.13 GeV. In addition, we
plot Re(A0), Re(A2), and Re(A0)/Re(A2)51/v for m
52.13 GeV in Figs. 29, 30, and 31 as a function of a para
eter j, which we introduce into Eqs.~201! and ~202! by
replacing all the squared pseudoscalar massesmPS

2 by jmPS
2 .

The chiral limit is given byj50 and the physical poin
corresponds toj51. The experimental values are given b
the closed triangles. The difference between the two extra
lations gives an indication of the contribution expected fro
including all theO(p4) terms, rather than just the logarithm
We comment that the dependence of the chiral logarithms
the scaleLxPT must be canceled by a similar dependence
the O(p4) coefficients.
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Starting with Re(A0) and its dependence as a function oj
shown in Fig. 29, we see that the chiral logarithms are p
ducing a 42% change in the value at the physical po
Given this large correction, the close agreement between
choice 2 value of 2.96(17)31027 GeV and the experimenta
value of 3.3331027 GeV must be viewed as coincidenta
but it is encouraging that the chiral logarithms move t
quenched theoretical prediction closer to the experime
value. Similar consideration of Re(A2) and Fig. 30 shows tha
inclusion of the chiral logarithms only changes the extrap
lated value by 18%, also in the direction of the experimen
value. Our choice 2 extrapolation value of 1.172(5
31028 GeV is 22% below the experimental value of 1.5
31028 GeV.

For Re(A0)/Re(A2), the differences in the extrapolation
are smaller. The chiral logarithms for the~8,1! and ~27,1!
operators which dominate Re(A0) and Re(A2), respectively,
have the same sign but different amplitudes. From Fig. 31
is readily apparent that the logarithms have little effect on
answer and it is in good agreement with the experimen
value of 22.2.
am-

TABLE XLVI. The contribution in GeV from the renormalized continuum operatorQi ,cont to the imagi-

nary parts of̂ (pp) I u2 iH(DS51)uK0& for m53.02 GeV. The central values for the standard model par
eters given in Table XXXVII have been used.

i

ImaginaryA0 ImaginaryA2

choice 1 choice 2 choice 1 choice 2

1 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0
3 1.2(80)310213 2.(11)310213 0.0 0.0
4 6.7(16)310212 9.5(23)310212 0.0 0.0
5 6.8(29)310213 9.6(41)310213 0.0 0.0
6 22.06(25)310211 22.93(35)310211 0.0 0.0
7 5.49(28)310214 1.087(56)310213 3.88(20)310214 4.92(25)310214

8 21.386(75)310212 22.74(15)310212 29.80(53)310213 21.243(67)310212

9 28.01(62)310213 21.137(88)310212 1.049(47)310213 1.232(55)310213

10 21.82(33)310213 22.58(46)310213 22.78(12)310214 23.27(15)310214
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We choose to quote as our best estimates for Re(A0),
Re(A2), and Re(A0)/Re(A2) the values using the choice 2 e
trapolation~one-loop full QCD!. This extrapolation includes
the most information currently available for corrections
lowest order chiral perturbation theory, but is not a compl
higher order calculation. The value ofm to use for our final
answer should, in principle, not matter. However, form
51.51 GeV, nonperturbative low-energy QCD effects co
be causing a systematic shift in the values forZi j

NPR. For m
53.02 GeV, finite lattice spacing effects could begin to p
a role. In Table XLVIII we give them dependence of ou
results. For Re(A0) and Re(A2), the m dependence is plotte
in Fig. 32, while for Re(A0)/Re(A2) them dependence is plot
ted in Fig. 40. No statistically significantm dependence is
seen, so choosing to quote results atm52.13 GeV, where

TABLE XLVII. The dependence of physical quantities on th
extrapolation choice form52.13 GeV.

Quantity
Choice 1

~zero-loop quenched!
Choice 2

~one-loop full!

ReA0 2.09(12)31027 2.96(17)31027

ReA2 9.98(45)31029 1.172(53)31028

Im A0 21.60(28)310211 22.35(40)310211

Im A2 29.91(56)310213 21.264(72)310212

ReA0 /ReA2 2.09(15)3101 2.53(18)3101

(e8/e)v exp 23.2(22)31024 24.0(23)31024

(e8/e)v th 23.4(23)31024 23.5(19)31024

FIG. 29. Re(A0) plotted vsj, wherej multiplies the pseudo-
scalar masses appearing in Eqs.~201! and~202!. The chiral limit is
j50 and the physical point corresponds toj51. Two ways of
extrapolating to the physical point are shown:~1! zero-loop chiral
perturbation theory in quenched QCD and~2! one-loop chiral per-
turbation theory in full QCD. The difference between them gives
indication of the contribution expected from including allO(p4)
terms in chiral perturbation theory. Since allO(p4) terms are not
included in our results, the close agreement with the experime
value should be regarded as fortuitous. The data is form
52.13 GeV.
11450
e

systematic effects should be smallest, does not alter
quoted values

Our final results for Re(A0), Re(A2), and Re(A0)/Re(A2)
for the choice 2 extrapolation~one-loop full QCD chiral per-
turbation theory! with m52.13 GeV are given in Table
XLIX. Figure 33 shows a breakdown of the contribution
Qi ,cont to Re(A0) ~upper panel! and Re(A2) ~lower panel!. The
solid filled bars in the graph denote positive quantities a
the hashed represent negative quantities. One clearly
that the dominant contributions are fromQi ,cont for i 51, 2.
The good agreement with experiment is very encourag
although better than might be expected given the approxi

n

al

FIG. 30. As in Fig. 29, except that Re(A2) is plotted vsj. Here
the one-loop chiral perturbation theory extrapolation in full QC
differs from the experimental result by;18%. This is well within
the general expectation for higher order effects in chiral pertur
tion theory at scales aroundmK . The data is form52.13 GeV.

FIG. 31. As in Fig. 29, except that Re(A0)/Re(A2) is plotted vsj.
The two extrapolations are only slightly different due to the chi
logarithms having coefficients with the same sign for the domin
operators contributing to Re(A0) and Re(A2). The data is form
52.13 GeV.
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TABLE XLVIII. The dependence of the physical quantities we have calculated on the scale used to match from continuum pert
theory to the lattice calculation for extrapolation choice 2. The dependence onm indicates the reliability of the combination of usin
continuum perturbation theory below 1.3 GeV~needed to define the three-quark effective theory!, one-loop matching from the NDR to R
schemes, and our implementation of nonperturbative renormalization.

Quantity m51.51 GeV m52.13 GeV m52.39 GeV m53.02 GeV

ReA0 3.27(25)31027 2.96(17)31027 3.04(16)31027 2.79(17)31027

ReA2 1.151(52)31028 1.172(53)31028 1.163(52)31028 1.140(51)31028

Im A0 21.78(44)310211 22.35(40)310211 22.12(37)310211 22.26(39)310211

Im A2 21.444(83)310212 21.264(72)310212 21.206(68)310212 21.103(63)310212

ReA0 /ReA2 2.84(24)3101 2.53(18)3101 2.61(17)3101 2.45(18)3101

(e8/e)v exp 29.9(23)31024 24.0(23)31024 24.8(20)31024 22.2(24)31024

(e8/e)v th 27.8(16)31024 23.5(19)31024 24.1(16)31024 22.0(21)31024
om
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tions inherent in the current calculation.
We end this section with our results for the kaonB pa-

rameter,BK , discussed in Sec. II C and defined in Eq.~46!.
In the SU~3! flavor limit, one has

^K̄0uQlat
~DS52!uK0&53^p1u@Q11Q2# lat

~3/2!uK1&

52^p1uQ lat
~27,1!,~3/2!uK1&. ~203!

For the determination ofBK , we need̂ p1uQ lat
(27,1),(3/2)uK1&

at mf50.018, a quark mass which gives a kaon made fr
degenerate quarks its physical mass. This matrix elemen
been fit to the form given in Eq.~187! with the fit parameters
given in the second line of Table XXVII. To convert from th
lattice matrix element to one with a continuumMS normal-

FIG. 32. A plot of Re(A0) ~upper panel! and Re(A2) ~lower
panel! vs m for the physical values obtained using one-loop f
QCD chiral perturbation theory for the extrapolation to the physi
kaon mass. The results show no statistically significantm depen-
dence. We choose to quote final values withm52.13 GeV.
11450
as

ization we useZQDS52(2 GeV)/ZA
250.928@78#, ZA50.7555

@21#, and the one-loop matching between the RI andMS
schemes from@79#. This one-loop matching has a value
1.02 in this case.

To complete the determination ofBK , values formK and
f K are needed@Eq. ~46!#. Although f K andmK are given in
Tables XIX and XXXI in @21#, the current calculation con
tains 400 configurations compared to the 85 of@21#, produc-
ing a reduced statistical error. To extractf K and mK , we
simultaneously fit wall-wall pseudoscalar correlators a
wall-point pseudoscalar axial-current correlators to de
mine the pseudoscalar mass,̂0uPK1,walluK1& and
^0uA0,ptuK1&. The fits use correlators a distancet512– 19
from the wall source and, as can be seen in Fig. 3, in
range zero mode effects should be small.

From the 400 configuration data set of this work, the v
ues we find formPS and f PS are given in Table L formf
50.01– 0.05.~Here the subscriptPSadded to the mass, de
cay constant, andB parameter is a label for a generic pse
doscalar meson which could be thep, K, etc.! Including the
determinations of mPS, f PS and the fit to
^p1uQ lat

(27,1),(3/2)uK1& under a jackknife loop produces th
values forBPS

wall in the fifth column of Table L. Adding an
interpolation tomf50.018 in the jackknife loop, we find
BK,MS

wall (2 GeV)50.532(11) where the error is statistical onl
We can also calculate the value in the chiral limit,mf5

2mres, and this gives BPS,MS
wall (2 GeV)(mf52mres)

50.267(14). This method of extractingBK using wall-wall

l

TABLE XLIX. Our final values for physical quantities using
one-loop full QCD extrapolations to the physical kaon mass~choice
2! and a value ofm52.13 GeV for the matching between the lattic
and continuum. The errors for our calculation are statistical onl

Quantity Experiment This calculation
~statistical errors only!

ReA0(GeV) 3.3331027 (2.9660.17)31027

ReA2(GeV) 1.5031028 (1.17260.053)31028

v21 22.2 (25.361.8)
Re(e8/e) (15.362.6)31024~NA 48! (24.062.3)31024

(20.762.8)31024~KTEV!
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BLUM et al. PHYSICAL REVIEW D 68, 114506 ~2003!
correlators for the matrix element avoids introducing ze
mode effects through normalization factors in a similar fa
ion to the techniques we have used in the analysis oK
→p matrix elements.

This result agrees within errors with the value 0.538~8!
that we obtained on a subset of 200 configurations from
present ensemble@80#. There the traditional method of ca

FIG. 33. A breakdown of the contribution ofQi ,cont to Re(A0)
~upper panel! and Re(A2) ~lower panel!. The solid filled bars in the
graph denote positive quantities and the hashed represent neg
quantities. The data is form52.13 GeV.

TABLE L. Values for the pseudoscalar massmPS and decay
constantsf PS ~both in lattice units! versus the quark massmf ,
along with the pseudoscalarB parameter,BPS, determined from
two different normalizations.BPS

AA is found by normalizing the de
siredDS52 Green’s function by axial current-pseudoscalar Gree
functions, which may introduce zero mode effects.BPS

wall is deter-
mined by normalizing with the wall-wall correlators used for t
K→p matrix elements, which we have argued should not introd
zero modes through the normalization. Values forBPS are given in
the MS scheme atm52 GeV. The results for each value ofmf are
averaged over the time-slice range 14<t<17. The physical value
BK50.532(11) is found by choosingmf50.018 so that a kaon
made with degenerate quarks has its physical mass.

mf mPS f PS BPS
AA BPS

wall

0.01 0.2073~19! 0.0769~7! 0.478~10! 0.466~14!

0.02 0.2713~16! 0.0797~6! 0.554~6! 0.547~11!

0.03 0.3245~15! 0.0837~6! 0.602~5! 0.600~10!

0.04 0.3716~14! 0.0876~6! 0.636~4! 0.635~9!

0.05 0.4147~13! 0.0915~7! 0.662~3! 0.662~9!
11450
o
-

e

culating BK was used, where aDS52 Green’s function is
normalized with axial current-pseudoscalar correlators. T
ratio of Green’s functions should be free of quenched ch
logarithms, but the axial current correlator can introduce z
modes for small quark masses. We revisit this earlier de
mination here with the full 400 configuration data set and u
BPS

AA to denote the result from this method. To get the va
in the MS scheme atm52 GeV, the latticeDS52 matrix
element must be multiplied by the value ofZQDS52 /ZA

2 given
above and a factor of 1.02, which is the value for the o
loop matching between the RI andMS schemes. In the fourth
column of Table L, our values forBPS

AA in the MS scheme at
m52 GeV are given formf50.01– 0.05. Fitting this data to
the form given by one-loop quenched chiral perturbat
theory for degenerate mesons@81,55#,

BPS
AA5b0

AAF1.02
1

~4p f !2 S 6mPS
2 log

mPS
2

LQxPT
2 D G1b1

AAmPS
2 ,

~204!

we find

BK,MS
AA

~2 GeV!50.536~6! ~205!

which is in very good agreement with our earlier result
200 configurations. The fit givesb0

AA50.285(4) andb1
AA

51.44(6) and we note thatb0
AA is the chiral limit value for

tive

FIG. 34. Values forBPS,MS(2 GeV) vsmf . The points labeled
AA normalization ~s! are determined by normalizing with two
point functions which may introduce zero mode effects for sm
quark mass. The wall normalization points~h! determineBPS from
a K→p matrix element, where a wall normalization is used, a
zero mode effects should not be introduced through the norma
tion. Some difference can be seen for the smaller quark masses
wall normalization point atmf52mres is the value ofBPS in the
chiral limit. The solid line is the result of fitting the AA norm point
to the form given in Eq.~204!. Since the fit goes below the AA
norm point atmf50.01, the extrapolated value agrees with the w
normalization value. The dashed line hasmf50.018 and marks the
point where a kaon made of degenerate quarks has its phy
mass. Using the value ofBPS at this point, we findBK,MS(2 GeV)
50.532(11).
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KAON MATRIX ELEMENTS AND CP VIOLATION FROM . . . PHYSICAL REVIEW D 68, 114506 ~2003!
the unrenormalizedB parameter using this method. Includin
renormalization factors yieldsBPS,MS

AA (2 GeV)(mf52mres)
50.270(4). Thedetails of the fit are the same as those f
lowing Eq. ~187! in Sec. X where the extraction o
a lat

(27,1),(3/2) was discussed. The one difference is that
quenched chiral logarithm appears in Eq.~204!, since they
cancel in the ratio of the matrix element and its vacu
saturation approximation.

The two methods described above have produced q
similar results forBK ; 0.536~6! using the axial current-
pseudoscalar normalization and 0.532~11! using the wall-
wall correlator normalization. The results given in Table
and plotted in Fig. 34 show very good agreement inBPS

AA and
BPS

wall for mf50.03, 0.04, and 0.05. For smaller quark mass
differences at the one standard deviation level occur. S
both analysis methods use the same raw data, the differ
may be correlated and have statistical significance, but
have not pursued this question. The solid line in Fig. 34 i
fit of BPS

AA to the form given in Eq.~204!. This fit goes below
the mf50.01 data point and agrees well in the chiral lim
with the value determined from the wall normalization. Sin
the nonlinearity due to the chiral logarithm is quite pr
nounced near the chiral limit, the extrapolation to this lim
likely requires further study to understand all the system
effects.

Because the wall-wall normalization does not introdu
additional zero mode effects and it is the technique we h
used for all theK→p matrix elements, we will use the re
sults from this approach for our final values. Therefore
our single lattice spacing@a2151.922(40) GeV# and vol-
ume (163332) we findBK,MS(2 GeV)50.532(11) and the
value forBPS in the chiral limit is 0.267~14!. Our value for
BK is smaller than that found in Ref.@82# using the RG-
improved gauge action of Iwasaki at a similar lattice spac
and volume. In theMS scheme at 2 GeV they findBK(q*
51/a)50.564(14), where perturbation theory has been u
to determine the renormalization factors.~The dependence o
their result onq* is smaller than the error quoted above!
The two central values differ by about 6%, while the quot
errors are about 2% to 3%. The difference between the
culations is small and could be merely a statistical fluct
tion. However, there are also systematic differences betw
the two calculations that are not reflected in the statist
errors; the gauge actions are different and Ref.@82# uses
perturbation theory to calculateZ factors, whereas this work
has used NPR. The smaller value formres for the Iwasaki
action seems unlikely to effectBK , given that no power
divergent operators are involved and the large mass of
kaon. ForZ factors for this four-quark operator, a direct com
parison has not been done due to the difference in ga
actions. A direct comparison of perturbative and nonper
bative Z factors for quark bilinears was given in Ref.@59#
where agreement at the 5% level was found between m
field perturbative results and NPR. This could be respons
for much of the difference in the central values forBK with
domain wall fermions.

Our value forBPS in the chiral limit, 0.267~14!, is mark-
edly lower than the value of 0.412 given in Ref.@82# for the
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chiral and continuum limit. The continuum limit extrapola
tion in Ref. @82# is likely not responsible for this difference
rather, it is the form of the extrapolation to the chiral lim
Our data uses the analytically calculated coefficient of
chiral logarithm term as a fixed input parameter, where
Ref. @82# fits for this coefficient, using data with the AA
normalization. Their fit results in a coefficient;3 times
smaller than the analytic result, which will have a pr
nounced effect on the chiral limit and explains much of t
difference in the two results. We find that our data is well
using the analytically known coefficient, provided zero mo
effects are minimized, and have used this coefficient con
tently in both the determination of the~27,1! DI 53/2 K
→p matrix elements and the extrapolation ofBPS to the
chiral limit.

Our domain wall fermion result is more than one stand
deviation lower than the continuum limit quenched value
0.628~42! @83# computed with Kogut-Susskind fermions. Fo
Kogut-Susskind fermions, largeO(a2) effects are seen. Ou
result does not include an extrapolation to the continuum,
in Ref. @82# this extrapolation is done for domain wall fe
mions, yielding 0.5746~61! @Eq. ~191!#. Thus it appears tha
domain wall fermions are giving a quenched value ofBK
about 10% smaller than the quenched value computed
Kogut-Susskind fermions and slightly more than one st
dard deviation away. Given the relatively small statistic
errors currently possible, these systematic differences nee
be reconciled.

XIV. IMAGINARY A0 AND A2

In the previous section, we saw that the results for the r
K→pp amplitudes from this single lattice spacin
quenched calculation were quite consistent with the kno
experimental values. We now present our results for
imaginary K→pp amplitudes and Re(e8/e). These are all
directly proportional to the parameterh in the CKM matrix
and we will use the central value forh from Table XXXVII.

Values for Im(A0) and Im(A2) are given in Tables XL,
XLII, XLIV, and XLVI for m51.51, 2.13, 2.39, and 3.02
GeV, respectively. The tables include both extrapolat
choices. The values in the tables reflect the long-stand
expectation that the dominant part of Im(A0) is produced by
Q6,cont, althoughQ4,cont is ;35% of the size ofQ6,contand of
the opposite sign andQ8,cont is ;10% of Q6,cont and of the
same sign. Since we choose to work in a basis whereQ4,cont
is linearly dependent, most of its value is coming fro
Z41

NPR^p1uQ1,lat
(1/2)uK1&sub and Z42

NPR^p1uQ2,lat
(1/2)uK1&sub. Since

the values fora1,lat
(1/2) and a2,lat

(1/2) in Table XXXVIII have op-
posite sign andZ41

NPR andZ42
NPR also have opposite sign, thes

contributions add inQ4,cont. Finally we note thaty4(m) and
y6(m) are of similar size, resulting in the sizable contributio
of Q4,cont to Im(A0). Im(A2) is dominated byQ8,cont and re-
ceives only ;10% contributions from the next larges
source,Q9,cont.

The values for Im(A0) and Im(A2) and their dependenc
on the choice of extrapolation to the physical kaon mas
given in Table XLVII for m52.13 GeV. Figures 35 and 3
show Im(A0) and Im(A2), respectively, as a function ofj for
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BLUM et al. PHYSICAL REVIEW D 68, 114506 ~2003!
m52.13 GeV. We note that Im(A0) does not vanish asj
→0, due to the contribution from the electroweak pengui
The chiral logarithms change the extrapolated value
Im(A0) by 47% and Im(A2) by 28%. Them dependence o
Im(A0) and Im(A2), using extrapolation choice 2, is given
Table XLVIII and plotted in Fig. 37. The results for Im(A0)
show no statistically significantm dependence, while Im(A2)
varies by about 25% over this range ofm.

We can now discuss our results for Re(e8/e). Considering
only the contribution from the dominant operatorsQ2 , Q6 ,
and Q8 ~represented byQ2;a2mK0

2 j, Q6;a6mK0
2 j, and

Q8;a8) and assumingZi , j
NPR has small off-diagonal element

yields a schematic formula for Re(e8/e) giving the rough size
and mass dependence of the various contributions.

FIG. 35. As in Fig. 29, except that Im(A0) is plotted vsj. Here
a physical value is not directly known. The one-loop chiral pert
bation extrapolation in full QCD is a 47% correction to the ze
loop extrapolation. The data is form52.13 GeV.

FIG. 36. As in Fig. 29, except that Im(A2) is plotted vsj. Here
a physical value is not directly known. The one-loop chiral pert
bation extrapolation in full QCD is a 28% correction to the ze
loop extrapolation. The data is form52.13 GeV.
11450
.
f

Re~e8/e!5S v

&ueu
D

exp

H F aWa8

aWa81a2mK0
2 jG ~3/2!

2FaWa81aSa6mK0
2 j

aWa81a2mK0
2 j G ~1/2!J , ~206!

whereaW is the electroweak fine structure constant andaS is
for QCD. Here we takev and ueu from experiment, since we
will concentrate on the mass dependence ofP22P0 . Recall-
ing theDI 51/2 rule gives

@a2mK0
2 j#~3/2!5v@a2mK0

2 j#~1/2!, ~207!

which makes theI 53/2 contribution at the physical poin
(j51) O(aW /v) rather thanO(aW). Equation~206! shows
that in the chiral limit (j50), the electroweak penguin
dominate Re(A0), Re(A2), Im(A0), and Im(A2) and produce
Re(e8/e)50. Since in this limit, both theI 51/2 andI 53/2
amplitudes come from the same source, there is no ph
difference between them. This limit is quite different fro
the case with physical quark masses, where the sourc
Im(A0) is primarily the gluonic penguins, Im(A2) the elec-
troweak penguins, and Re(A0) and Re(A2) the exchange op-
erators.

To examine thej dependence ofP22P0 when the opera-
tors important to the physically relevant case are noticea
we plot in Fig. 38 the quantity

-
-

-
-

FIG. 37. A plot of Im(A0) ~upper panel! and Im(A2) ~lower
panel! vs m for the physical values obtained using one-loop f
QCD chiral perturbation theory for the extrapolation to the physi
kaon mass. The results for Im(A0) show no statistically significantm
dependence, while Im(A2) varies by 25% over this range ofm. We
choose to quote final values withm52.13 GeV.
6-60
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S v

&ueu
D

exp

@P2~j!2P0~j!# ~208!

starting atj50.2. The data is form52.13 GeV and we re-
mark that forj51, the quantity in Eq.~208! is Re(e8/e). One
sees that for both extrapolation choices, Eq.~208! starts out
large and negative and becomes very small forj51. The
large negative value arises when Re(A2) is receiving very
little contribution from the exchange operators and this
minishes as Re(A2) grows withj. For the one-loop full QCD
extrapolation, we show the individual contribution
@v/(&ueu)#expP2 and 2@v/(&ueu)#expP0 in Fig. 39 for m
52.13 GeV. The contribution proportional toP2 is going to
zero with increasingj due to the increase in Re(A2). The
term proportional to2P0 is constant in lowest order chira
perturbation theory, oncej is large enough that the elec
troweak penguins play no role, and has no chiral logarit
corrections. At the physical pointj51, the two terms are
largely canceling. Them dependence of Re(e8/e) is given in
Table XLVIII and plotted in Fig. 40. Them dependence is
coming largely from them dependence of Im(A2). We will
take the value for Re(e8/e) at m52.13 GeV for our final re-
sult.

We can also study the contribution of the individu
continuum operators to the imaginary amplitud
entering Re(e8/e). To do this, we definePI

i by PI
i

[Im„^(pp) I u2 iH(DS51)uK0&…i /Re(AI), where the subscrip

FIG. 38. A plot of @v/(&ueu)#exp(P22P0) vs j, wherej50 is
the chiral limit andj51 is the physical point. We only plot point
for j>0.2, since in the chiral limit only the electroweak~8,8! op-
erators contribute andP22P050. As masses increase from zer
the contributions toP22P0 of current–current, gluon penguin, an
electroweak penguin operators forj,0.2 are quite different from
the physical world. As explained in the text, for 0.2,j,0.5, the
electroweak penguins continue to dominate by makinguP2u large.
As one approaches the physical point, the electroweak and glu
penguins are canceling almost completely. Higher order term
chiral perturbation theory could be expected to alter this large c
cellation. The data is form52.13 GeV.
11450
-

i on the matrix element in the numerator means that only
contribution from the renormalized continuum opera
Qi ,cont is included. Figure 41 shows a breakdown of the co
tributions of 2@v/(&ueu)#expP0

i ~upper panel! and
@v/(&ueu)#expP2

i ~lower panel! to Re(e8/e) and Table LI
gives the numerical values. The solid filled bars in the gra
denote positive quantities and the hashed bars repre
negative quantities. This figure shows the importance
Q4,cont and Q6,cont to 2@v/(&ueu)#expP0 and that
@v/(&ueu)#expP2 comes primarily fromQ8,cont.

In spite of the near cancellation inP22P0 visible in Fig.
39, the statistical error on the final answer,62.331024 is
quite encouraging. The figure also shows that the magnit
of the contribution to Re(e8/e) from the term proportional to
P2 is about the magnitude of the experimental value, as
also true forP0 . In Table XLIX we give our final values for
the main physical quantities calculated in this work. Wheth
v is taken from experiment or from this calculation is n
very significant in Re(e8/e), as can be seen from Tabl
XLVIII. Given the general agreement with the experimen
values for realK→pp amplitudes and the relatively sma
statistical error on Re(e8/e), the difference between the cu
rent calculation for Re(e8/e) and experiment is surprising.

XV. CONCLUSIONS

A. Summary

We have reported the details and results of our calcula
of theK→pp matrix elements relevant for theDI 51/2 rule
ande8/e in quenched lattice QCD using domain wall ferm
ons. In addition, we have also reported a value forBK ,
which is needed to determinee from the standard model. Ou

FIG. 39. The values for2@v/(&ueu)#expP0, @v/(&ueu)#expP2,
and their sum, using the one-loop chiral perturbation theory
trapolation in full QCD, are plotted vsj. The contribution propor-
tional toP2 is going to zero with increasingj due to the increase in
Re(A2). 2P0 is constant in lowest order chiral perturbation theo
oncej is large enough that the electroweak penguins play no r
and has no chiral logarithm corrections. At the physical poinj
51, the two terms are almost canceling, producing the small va
for Re(e8/e). The data is form52.13 GeV.
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value forBK is slightly smaller than with other approache
but the differences are at the 10% percent level. Our res
for Re(A0) and Re(A2) are 10%–20% smaller than exper
mental values, but our value for their ratio is within 10%
the experimental value. This is a very encouraging res
since a large enhancement of theI 50 amplitude is being
seen from the nonperturbative hadronic matrix elements,
culated using a technique where the current approximat
can be reduced in the future.~The perturbative enhanceme
through the QCD running of theI 50 andI 52 Wilson co-
efficients is almost an order of magnitude smaller than
experimentally observed enhancement.! Improvements of
these calculations will provide reliable systematic errors a
fewer approximations, leading to a more precise test of
initial agreement between theory and experiment.

For e8/e, the situation is more complex and more inte
esting. Our results quantitatively support the long stand
expectation from simple estimates that the two isospin c
tributions toe8/e are of the same order and opposite sign.
course, such a large cancellation may be dramatically alte
by removing the approximations in the current calculatio
While a subtraction of power divergences is needed
Re(A0), it is quantitatively much smaller than the subtracti
for Q6 , which is the major contribution to Im(A0). @No sub-
traction is required for the contributions to Im(A2).] As we
have shown, the dominant term in the subtraction proced
is not affected by chiral logarithm and zero mode effec
making the subtraction seem quite robust given our cur
understanding. Thus it appears that domain wall fermio

FIG. 40. A plot of Re(A0)/Re(A2)51/v ~upper panel! and
Re(e8/e) ~lower panel! vs m for the physical values obtained usin
one-loop full QCD chiral perturbation theory for the extrapolati
to the physical kaon mass. The results for 1/v show somem depen-
dence beyond the statistical errors. For Re(e8/e) them dependence is
noticeable, reflecting the visiblem dependence in Im(A2). We
choose to quote final values withm52.13 GeV.
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with their small chiral symmetry breaking for finite lattic
spacing, have removed the problems found in earlier
tempts where chiral symmetry breaking effects were larg

The many approximations in this calculation could affe
the real and imaginary amplitudes in different ways,
though at present we have no insight into how this mig
occur. We can estimate the size of the effects introduced
the approximations acting singly. The quenched approxim
tion has been generally found to agree with experimen
results at the 10%–20% level, except for QCD near the fin
temperature phase transition where light quarks play a la
role. The lowest order chiral perturbation theory results
the K→pp matrix elements are altered at the;30% level
when the extrapolation to the physical kaon mass inclu
the known chiral logarithms. We see a;25% variation in
Im(Ai) with the scalem, which indicates the reliability of the
combination of: using continuum perturbation theory belo
1.3 GeV, one-loop matching from the NDR to RI schem
and our implementation of nonperturbative renormalizat
where some operators, of ordergS

2 which are argued to be
small, are neglected. We have used linear fits to our lat
data in many cases, since analytic results for the chiral lo
rithm terms are not known, and this could easily contribu
errors on the 10% scale. We have not included any effect
isospin breaking in our results. Finally, we have only work
at one lattice spacing, but our experience with hadron ma
calculated with domain wall fermions makes it likely th
changes of no more than 10% will be encountered in tak
the continuum limit.

FIG. 41. A breakdown of the contribution ofQi ,cont to the imagi-
nary amplitudes entering2@v/(&ueu)#expP0 ~upper panel! and
@v/(&ueu)#expP2 ~lower panel!. The solid filled bars in the graph
denote positive quantities and the hashed bars represent neg
quantities. The experimental values forv and ueu are used here and
the data is form52.13 GeV.
6-62



t

in

KAON MATRIX ELEMENTS AND CP VIOLATION FROM . . . PHYSICAL REVIEW D 68, 114506 ~2003!
TABLE LI. The contribution from the renormalized continuum operatorQi ,cont to the imaginary parts of
^(pp) I u iH(DS51)uK0& is used to calculatePI

i [Im(^(pp)Iu2iH(DS51)uK0&) i /Re(AI). Here we tabulate
2@v/(&ueu)#expP0

i and@v/(&ueu)#expP2
i for our two extrapolation choices form52.13 GeV. One sees tha

the largest contribution to theI 50 channel is fromQ6,contand the largest contribution to theI 52 channel is
from Q8,cont. The very small errors for the contribution ofQ9,cont andQ10,cont to @v/(&ueu)#expP2

i is due to
the fact that the~27,1! operator is dominating the numerator and denominator. Since the errors in theQi ,cont

are correlated, the error for Re(e8/e) is not simply related to the errors from the individual contributions
this table. The experimental values forv and ueu are used here.

i

2@v/(&ueu)#expP0
i @v/(&ueu)#expP2

i

choice 1 choice 2 choice 1 choice 2

1 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0
3 5.(58)31026 5.(58)31026 0.0 0.0
4 24.8(11)31024 24.8(11)31024 0.0 0.0
5 24.2(17)31025 24.2(17)31025 0.0 0.0
6 1.42(19)31023 1.42(19)31023 0.0 0.0
7 24.66(36)31026 26.50(50)31026 6.90(33)31025 7.45(35)31025

8 1.061(84)31024 1.48(12)31024 21.571(77)31023 21.697(84)31023

9 5.65(23)31025 5.65(23)31025 1.563 83(69)31024 1.564 93(75)31024

10 1.35(24)31025 1.35(24)31025 24.5635(20)31025 24.5668(22)31025
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Each of these approximations could individually produ
a ;25% change in Re(A0), Re(A2), Im(A0), or Im(A2). Cu-
mulatively, these approximations could markedly alter o
result for e8/e, but there is currently no identified singl
approximation that could easily explain the discrepancy
tween our results and the experimental value. Lackin
single ‘‘worst’’ approximation to focus on we do not hav
enough information at present to even estimate how th
effects act in concert for a quantity likee8/e, which is the
difference of the ratio of amplitudes. With further work, im
proved calculations involving fewer approximations and
liable systematic errors will be possible.

Removing the uncontrolled effects introduced by t
quenched approximation will simplify the calculation in a
dition to deleting a significant possible systematic error. T
simplification comes from the removal of the effects of u
suppressed zero modes present in quenched QCD an
change from quenched chiral perturbation theory, where n
free parameters appear in the Lagrangian, to full or parti
quenched chiral perturbation theory. A recent calculation
quenched chiral perturbation theory@58# has shown that a
quenched chiral logarithm appears in the determination
the subtraction coefficienta2

(8,1) , multiplied by a new free
parameter. From the linearity of our data withms2md , we
conclude that this parameter is small, but the presenc
such terms makes fitting to numerical results less precise
offers new ways in which the quenched approximation c
exhibit pathologies.

We have also calculated all the lattice matrix elements
renormalization coefficients necessary to repeat the cur
calculation in the context of the four-flavor effective low
energy theory, where the charm quark is not integrated
For the four-flavor theory, continuum perturbation theo
need only be used to a scale of;2 GeV to match to our
lattice. This should decrease the errors coming from the W
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son coefficients. However, the quenched lattice calculatio
now required to well approximate full QCD running betwe
the scales of 2 GeV and;500 MeV, the scale of the kaon
physics we are studying. This will clearly be a worse a
proximation than in the current calculation where t
quenched running must approximate full QCD only betwe
1.3 GeV and;500 MeV. Finally, in the four-flavor theory
operators with dimension greater than six in the effect
Lagrangian are suppressed by powers of;~0.5 GeV/5.0
GeV! compared to powers of;~0.5 GeV/1.3 GeV! in the
current calculation. The different systematic errors inher
in the use of the four-flavor theory will provide insight int
the stability of our current results from the three-flav
theory.

B. Outlook

We would like to close by discussing the prospects
improving this calculation in the immediate future. It is im
portant to note that attempts to use lattice QCD to calcu
K→pp matrix elements have been ongoing for almost
years and without at least some chiral symmetry on the
tice these calculations were not successful. The current
culation demonstrates that all the theoretical tools are
place for these first-principles calculations and that reas
able statistical accuracy can be achieved in the quenc
approximation. One consequence of the statistical accu
achieved is increased interest in the unknown systematic
rors in the calculation. We would like to address the outlo
for improving the calculation by determining, and reducin
these systematic errors.

In addition to the results in this paper, the CP-PACS C
laboration has also reported results for the same observa
using domain wall fermions@84#. There is general agreemen
in the results fore8/e, while our value for Re(A0)/Re(A2) is
6-63
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about a factor of 2 larger than their result. For both qua
ties, there are differences in the details of the analysis s
leading from the unrenormalized lattice matrix elements
the physical results.@A large part of the difference in
Re(A0)/Re(A2) is due to our use of the analytically know
coefficient for the chiral logarithm in the fits for Re(A2).]
There are also differences in the gauge actions and volu
used and the general agreement fore8/e indicates that the
systematic errors from such effects are not large. In part
lar, the CP-PACS calculations have a smallermres, due to the
different gauge actions used, but, as we have argued, themres

effects should be under good control. This seems to be
ported by comparing the work of the two groups. The rou
agreement between the groups indicates that this complic
calculation is tractable and that subsequent calculat
should be able to refine these results.

In the previous section, we have mentioned estimates
the systematic errors in a single amplitu
@Re(A0),Re(A2),Im(A0),Im(A2)# due to the approximation
employed, when each approximation is considered sin
These are only estimates, based on calculations of other
servables using quenched lattice QCD, and there is no t
retical framework for addressing how these approximatio
taken together, affecte8/e. We also do not know how a
single approximation, i.e., quenching, impacts the combi
tion of amplitudes that yieldse8/e. However, near-term cal
culations, some already underway, can show how large
errors due to any single approximation are. With increas
computer power, the desired full-QCD calculations in lar
volumes will be possible.

The RBC Collaboration is currently repeating the calc
lation presented here using weaker coupling (a21;3 GeV)
and a similar size physical volume. This calculation is be
performed with an improved gauge action~DBW2 @85#!
which will reducemres by about a factor of 10 compared t
the calculation presented here. This will allow a determi
tion of how the quenched calculation depends on the lat
spacing and allow a check that we have correctly handled
mres affects in the current calculation. In addition, at th
weaker coupling the domain wall formulation may be se
sible for a quark as heavy as the charm quark. This allow
the possibility of also calculatingK→pp matrix elements in
a four-flavor effective theory, which includes internal cha
quark loops. If possible, this would check another import
systematic uncertainty, the use of the three-flavor effec
theory and continuum perturbation theory down to a scale
;1.3 GeV.

We are also generating full QCD lattices, with 2 flavors
dynamical domain wall quarks, at a lattice spacing ofa21

;1.7 GeV, with physical volumes similar to those used he
MeasuringK→pp matrix elements on these lattices w
give some indication about the size of quenching effects.
volumes will not be asymptotically large and the input d
namical quark masses will be around half the strange qu
mass, but these calculations should provide direct inform
tion about the importance of quenching. Larger volumes
smaller quark masses will be achieved with the next gen
tion of computers.
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To improve beyond lowest order chiral perturbatio
theory requires either the calculation of the higher order
efficients in the chiral expansion, and/or the direct calcu
tion of K→pp matrix elements@47#. Both are the subject o
active research in the field and require considerable num
cal and analytical work to implement. While we have ma
extensive use of known chiral perturbation theory expr
sions in fitting our data, with generally good agreement,
data is too correlated and over too limited a range of qu
masses to determine the coefficients of the chiral logarith
An important aspect of trying to incorporate higher orders
chiral perturbation theory into this calculation is to have s
ficient data to allow extraction of the additional low ener
constants of chiral perturbation theory. Additionally, doin
either higher order chiral perturbation theory or a direct c
culation of K→pp in quenched QCD may be problemat
due to the pathologies of the quenched approximation.
course, for the long run, both of these methods hold prom
for full QCD calculations.

We conclude by reiterating that the entire framework
successful calculations is in place and all the current appr
mations can be steadily improved. Accompanying this i
provement will be a more quantitative understanding of o
systematic errors, allowing for greater clarity in the compa
son of these first principles calculations with experime
Starting from continuum calculations of the Wilson coef
cients, a very substantial effort, the lattice is used to calcu
low energy matrix elements and the matching between
lattice and continuum normalizations. The current calcu
tion demonstrates that: statistical errors are not a limit
factor; the domain wall fermion formulation, in addition t
being a major theoretical advance, can be used in prac
simulations; and that the complicated matching of continu
and latticeDS51 operators can be done with nonperturb
tive renormalization and domain wall fermions. This prese
a very exciting future for precise calculations of experime
tally important quantities using analytic techniques and
tice QCD.
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APPENDIX A: CONVENTIONS FOR STATES
AND OPERATORS

Comparing the Lagrangian of chiral perturbation theo
described in Sec. III A with the Lagrangian of QCD defin
the relationship between quantities expressed in terms o
pseudoscalar fields of chiral perturbation theory and
quark fields used in our simulations. Our conventions foll
@88#, where more details can be found. We start with
Lagrangian given in Eq.~50! and the Minkowski space QCD
Lagrangian

LQCD52
1

4
~Fmn

a !21c̄~ iD” 2m!c. ~A1!

We use the conventional assignment of pseudoscalars to
chiral perturbation theory fields

p̄[fata

5S p0/&1h/A6 p1 K1

p2 2p0/&1h/A6 K0

K2 K̄0 22h/A6.
D .

~A2!

We work with relativistically normalized states

^pa~p!upb~p8&5dab~2Ep!~2p!3d3~p2p8!

——→
lattice

dab~2Ep!Vsdp,p8 . ~A3!

By considering global axial transformations withUL
5exp(2iaata) andUR5exp(iaata), we find for the axial cur-
rentsAm

a

Aa
m5

i f 2

4
@Tr~Sta]mS†!2Tr~S†ta]mS!#, xPT, ~A4!

Aa
m5c̄gug5tac, QCD. ~A5!

The divergence of the axial currents is

]mAa
m5 iv Tr@ ta~$M ,S%2$M†,S†%!#, xPT, ~A6!

]mAa
m52m@ i c̄g5tac#, QCD. ~A7!

For degenerate quark masses, Eq.~A6! becomes
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]mAa
m52imv Tr@ ta~S2S†!#, xPT. ~A8!

Thus, in lowest order in chiral perturbation theory, we c
make the associations

i d̄~x!g5u~x!5 i c̄~x!g5

t11 i t 2

&
c~x!⇔ 24v

f
p1~x!, ~A9!

i s̄~x!g5u~x!5 i c̄~x!g5

t41 i t 5

&
c~x!⇔ 24v

f
K1~x!. ~A10!

StatesuK1& created by the operatorK2(x) therefore have

^0u i s̄g5uuK1&52
4v
f

~A11!

and to lowest order in chiral perturbation theory

^0ud̄~x!gug5u~x!up1&52 i f pme2 ip•x ~A12!

where f .0.
We define a pseudoscalar density in chiral perturbat

theory by

Pa
xPT[2

4v
f

fa ~A13!

and a corresponding QCD pseudoscalar density as

Pa
QCD[ i c̄g5tac. ~A14!

Then for degenerate quark masses, the Minkowski sp
Ward-Takahashi identity governing the pseudoscalar ma
is

i ]m
x ^Aa

m~x!Pb~y!&52mi^Pa~x!Pb~y!&

24vda,bd4~x2y!, xPT, ~A15!

i ]m
x ~Aa

m~x!Pb~y!!52mi^Pa~x!Pb~y!&

12^ūu~x!&da,bd4~x2y!, QCD,

~A16!

where the chiral perturbation theory result is valid in lowe
order. Here we see the relation^ūu&522v between the chi-
ral condensate in QCD and in chiral perturbation theory.

APPENDIX B: FLAVOR AND ISOSPIN DECOMPOSITION
OF FOUR-QUARK OPERATORS

As discussed in@88#, one can apply the tensor method f
finding irreducible representations of groups to the opera
in Eqs.~4!–~23!. We start first with the left-left operators an
note the general termq̄L,i ,q̄L, j ,qL,k ,qL,l , wherei, j, k, andl
are flavor indices, is a member of a representation of SU(L

with dimension 81. Denoting this term by (TL)k,l
i , j , the irre-

ducible representations are found by appropriately sym
trizing TL .
6-65



b
th
n
th
e

re

u
ol

ra
a
n

te

s

s
rs

Th

m

be

ep-

n-
nts

he

is
for

we

BLUM et al. PHYSICAL REVIEW D 68, 114506 ~2003!
Symmetry ofTL (TL) $k,l %
$ i , j % (TL) @k,l #

$ i , j % (TL) $k,l %
@ i , j # (TL) @k,l #

@ i , j #

Dimension 36 18 18 9
Irrep. dimension 27,8,1 8,8,1,1 8,8,1,1 8,1

The irreducible representations in the last line are found
tracing on pairs of upper and lower indices. For example,
27 representation is completely symmetric in all indices a
traceless on any pair of upper and lower indices, while
completely symmetric representation, which has a nonz
trace, is dimension 8.

We can now determine the number of irreducible rep
sentations thatQ15( s̄d)V2A(ūu)V2A enters. Here we will
suppress the color indices and only consider the color
mixed case, so the terms in parentheses will have their c
indices contracted together. Since (s̄d)V2A and (ūu)V2A
commute with each other, left-left four quark current ope
tors are symmetric under simultaneous exchange of qu
and antiquark indices. Thus, left-left operators must belo
to (TL) $k,l %

$ i , j % or (TL) @k,l #
@ i , j # and they have either (L,R)5(8,1) or

(L,R)5(27,1). We will also want to simultaneously separa
the operators into representations of definite isospin.

The operator

~ s̄d!V2A~ ūu!V2A1~ s̄u!V2A~ ūd!V2A ~B1!

is completely symmetric on all indices. To get a~27,1! with
I 53/2, we must add terms so it is simultaneously traceles
SU(3)L and isospin. Equation~B1! has (TL)2,1

3,15(TL)1,2
3,1

5(TL)2,1
1,35(TL)1,2

1,351/2, so if we add (TL)2,2
3,25(TL)2,2

2,35
21/2 with all other elements zero, we have tracelessnes
SU(3)L and isospin. Thus, we have for left-left operato
symmetric in all indices, a~27,1! representation withI
53/2 given by

QLL,S,~27,1!,3/2
Ds51,Dd5215~ s̄d!V2A~ ūu!V2A1~ s̄u!V2A~ ūd!V2A

2~ s̄d!V2A~ d̄d!V2A . ~B2!

Returning again to Eq.~B1! we can find theI 51/2 operator
by making Eq.~B1! symmetric underu↔d and then making
the results traceless on pairs of upper and lower indices.
gives

QLL,S,~27,1!,1/2
Ds51,Dd5215~ s̄d!V2A~ ūu!V2A1~ s̄u!V2A~ ūd!V2A

12~ s̄d!V2A~ d̄d!V2A23~ s̄d!V2A~ s̄s!V2A

~B3!

corresponding to (TL)2,1
3,15(TL)1,2

3,15(TL)2,1
1,35(TL)1,2

1,351/2,
(TL)2,2

3,25(TL)2,2
2,351, and (TL)2,3

3,35(TL)3,2
3,3523/2, with other

elements zero.
For the~8,1! from (TL) $k,l %

$ i , j % we start again from Eq.~B1!,
again symmetrizing Eq.~B1! under u↔d to get I 51/2.
However, demanding that the operator not be traceless
contraction of upper and lower indices while still being sy
metric on exchange of upper or lower indices gives
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QLL,S,~8,1!,1/2
Ds51,Dd5215~ s̄d!V2A~ ūu!V2A1~ s̄u!V2A~ ūd!V2A

12~ s̄d!V2A~ d̄d!V2A12~ s̄d!V2A~ s̄s!V2A .

~B4!

The final~8,1! comes from (TL) @k,l #
@ i , j # , which is antisymmetric

on pairs of upper and lower indices, and is easily seen to

QLL,A,~8,1!,1/2
Ds51,Dd5215~ s̄d!V2A~ ūu!V2A2~ s̄u!V2A~ ūd!V2A .

~B5!

Thus, we have found that there are three irreducible r
resentations of left-left,Ds51, Dd521 four-quark opera-
tors under SU(3)L ^ SU(3)R ; a ~27,1! and two~8,1! repre-
sentations. The~27,1! contains bothI 51/2 andI 53/2 parts.
We can writeQ1 , Q2 , Q3 , Q4 , Q9 , and Q10 in terms of
these representations, yielding

Q15
1

10
QLL,S,~8,1!,1/2

Ds51,Dd5211
1

2
QLL,A,~8,1!,1/2

Ds51,Dd5211
1

15
QLL,S,~27,1!,1/2

Ds51,Dd521

1
1

3
QLL,S,~27,1!,3/2

Ds51,Dd521, ~B6!

Q25
1

10
QLL,S,~8,1!,1/2

Ds51,Dd5212
1

2
QLL,A,~8,1!,1/2

Ds51,Dd5211
1

15
QLL,S,~27,1!,1/2

Ds51,Dd521

1
1

3
QLL,S,~27,1!,3/2

Ds51,Dd521, ~B7!

Q35
1

2
QLL,S,~8,1!,1/2

Ds51,Dd5211
1

2
QLL,A,~8,1!,1/2

Ds51,Dd521, ~B8!

Q45
1

2
QLL,S,~8,1!,1/2

Ds51,Dd5212
1

2
QLL,A,~8,1!,1/2

Ds51,Dd521, ~B9!

Q952
1

10
QLL,S,~8,1!,1/2

Ds51,Dd5211
1

2
QLL,A,~8,1!,1/2

Ds51,Dd521

1
1

10
QLL,S,~27,1!,1/2

Ds51,Dd5211
1

2
QLL,S,~27,1!,3/2

Ds51,Dd521, ~B10!

Q1052
1

10
QLL,S,~8,1!,1/2

Ds51,Dd5212
1

2
QLL,A,~8,1!,1/2

Ds51,Dd521

1
1

10
QLL,S,~27,1!,1/2

Ds51,Dd5211
1

2
QLL,S,~27,1!,3/2

Ds51,Dd521, ~B11!

For left-right operators, we can perform a similar co
struction. For the gluonic penguins, the right-handed curre
are singlets under SU(3)R due to the sum overu, d, ands
quarks, with equal weight for each quark. Including t
charm quark still produces an~8,1! since the charm quark is
also an SU(3)R singlet.

For the left-right electroweak penguins, a bit more work
required. Now we have three representation matrices
each operator, (TL) j

i , (TR) l
k , and (TI) j ,l

k , for SU(3)L ,
SU(3)R , and isospin, respectively. For the isospin case,
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restrict j, k, and l to be 1 or 2. Notice that both left- an
right-handed quarks appear in theT for isospin and to get the
desired isospin decomposition we will have to symmetri
antisymmetrize, and trace on these indices. To get~8,8! rep-
resentations, we must have (TL) i

i50 and (TR)k
k50.

We start with a part ofQ7 and see how many irreducibl
representations it enters by appropriate symmetrizations,
on the quarks. The first term inQ7 is

~ s̄d!V2A~ ūu!V1A . ~B12!

To make anI 53/2 operator (TI) j ,l
k must be symmetric onj

andl and traceless onk and eitherj or l. Symmetrizing gives

~ s̄d!V2A~ ūu!V1A1~ s̄u!V2A~ ūd!V1A ~B13!

and tracelessness in both isospin and SU(3)R gives

QL,R,~8,8!,S,3/2
Ds51,Dd5215~ s̄d!V2A~ ūu!V1A1~ s̄u!V2A~ ūd!V1A

2~ s̄d!V2A~ d̄d!V1A . ~B14!

From Eq.~B12! we can make anI 51/2 operator by putting
the quarks in anI 51 state and then adding the antiqua
such that the total isospin is 1/2. We symmetrize (TI) j ,l

k on j
and l and require that (TI) j ,1

1 5(TI) j ,2
2 to get isospin 1/2. This

yields

~ s̄d!V2A~ ūu!V1A1~ s̄u!V2A~ ūd!V1A12~ s̄d!V2A~ d̄d!V1A .

~B15!

The last step requires tracelessness on only the SU(3)R in-
dex, to give an 8R . Thus we get

QLR,~8,8!,S,1/2
Ds51,Dd5215~ s̄d!V2A~ ūu!V1A1~ s̄u!V2A~ ūd!V1A

12~ s̄d!V2A~ d̄d!V1A23~ s̄d!V2A~ s̄s!V1A .

~B16!

From Eq.~B12! we can make a secondI 51/2 operator by
putting the quarks in anI 50 state and then adding the an
quark. We antisymmetrize (TI) j ,l

k on j and l and require that
(TR) l

k50 to produce an 8R . This yields

QLR,~8,8!,A,1/2
Ds51,Dd5215~ s̄d!V2A~ ūu!V1A2~ s̄u!V2A~ ūd!V1A

2~ s̄d!V2A~ s̄s!V1A . ~B17!

With these isospin representations of an~8,8! color un-
mixed operator, we can write

Q75
1

2
QLR,~8,8!,S,3/2

Ds51,Dd5211
1

2
QLR,~8,8!,A,1/2

Ds51,Dd521. ~B18!

The result forQ8 is identical, except the color indices a
mixed.

APPENDIX C: DEFINITIONS OF Q OPERATORS

In this section we give the relations between theQ opera-
tors of chiral perturbation theory and the four-quark ope
11450
,

tc.
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tors defined in Appendix B. We define

Q~27,1!,~3/2![QLL,S,~27,1!,3/2
Ds51,Dd521 @Eq.~B2!#, ~C1!

Q~27,1!,~1/2![QLL,S,~27,1!,1/2
Ds51,Dd521 @Eq.~B3!#, ~C2!

Q7
~8,8!,~3/2![

1

2
QLR,~8,8!,S,3/2

Ds51,Dd521 @Eq.~B14!#, ~C3!

Q7
~8,8!,~1/2![

1

2
QLR,~8,8!,A,1/2

Ds51,Dd521 @Eq.~B17!#. ~C4!

The definitions forQ8
(8,8),(3/2) andQ8

(8,8),(1/2) are the same as
in Eqs. ~C3! and ~C4!, except that the four-quark operato
has color mixed indices. Fori 57, 8 this gives

Qi5Q i
~8,8!5Q i

~8,8!,~3/2!1Q i
~8,8!,~1/2! . ~C5!

In terms of the parametersa (27,1) anda (8,8) defined in Eqs.
~52!, ~53!, and~54! we have

Q~27,1!,~1/2!5a~27,1!Q̃~27,1!,~1/2!, ~C6!

Q~27,1!,~3/2!5a~27,1!Q̃~27,1!,~3/2!, ~C7!

Q~8,8!,~1/2!5a~8,8!Q̃~8,8!,~1/2!, ~C8!

Q~8,8!,~3/2!5a~8,8!Q̃~8,8!,~3/2!. ~C9!

APPENDIX D: ISOSPIN DECOMPOSITION OF
OPERATORS IN CHIRAL PERTURBATION THEORY

In Appendix B we have given the decomposition of o
DS51, DD521 four-quark operators into irreducible rep
resentations of SU(3)L ^ SU(3)R with well-defined isospin.
In this section, we give the explicit decomposition of th
chiral perturbation theory operatorsQ̃ (27,1) and Q̃ (8,8) into
definite isospin components. From this one can easily w
out the relations between theDI 51/2 andDI 53/2 parts of
matrix elements.

For Q̃ (8,8), we use the definition in@33# and write

Q̃~8,8!5TrF S 0 0 0

0 0 0

0 1 0
D SS 2 0 0

0 21 0

0 0 21
D S†G .

~D1!

The nonzero element of the first matrix in the equation ab
reproduces thes̄d factor in Eq.~16! while the diagonal terms
in the second matrix represent the terms in the sum o
quarks in Eq.~16!. The isospin decomposition can be imm
diately read off from Eqs.~B14! and ~B17! giving
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Q̃~8,8!,~3/2!5TrF S 0 0 0

0 0 0

0 1 0
D SS 1 0 0

0 21 0

0 0 0
D S†G

1TrF S 0 0 0

0 0 0

1 0 0
D SS 0 1 0

0 0 0

0 0 0
D S†G , ~D2!

Q̃~8,8!,~1/2!5TrF S 0 0 0

0 0 0

0 1 0
D SS 1 0 0

0 0 0

0 0 21
D S†G

1TrF S 0 0 0

0 0 0

1 0 0
D SS 0 21 0

0 0 0

0 0 0
D S†G ,

~D3!

whereQ̃ (8,8)5Q̃ (8,8),(1/2)1Q̃ (8,8),(3/2).
With this explicit isospin decomposition, one finds

^p1uQ~8,8!,~3/2!uK1&[
12

f 2 a~8,8!,~3/2!5
4

f 2 a~8,8!, ~D4!

^p1uQ~8,8!,~1/2!uK1&[
12

f 2 a~8,8!,~1/2!5
8

f 2 a~8,8!, ~D5!

which yields a (8,8),(1/2)52a (8,8),(3/2) where a (8,8)

5a (8,8),(1/2)1a (8,8),(3/2). Similarly one finds

^p1p2uQ~8,8!,~3/2!uK0&52
12i

f 3 a~8,8!,~3/2!5
24i

f 3 a~8,8!,

~D6!

^p1p2uQ~8,8!,~1/2!uK0&5
212i

f 3 a~8,8!,~1/2!5
28i

f 3 a~8,8!.

~D7!

For Q̃ (27,1), we use the definition in@12# and write

Q̃~27,1!,~3/2!

5TrF S 0 0 0

0 0 0

0 1 0
D S]mS†GTrF S 1 0 0

0 21 0

0 0 0
D S]mS†G

1TrF S 0 0 0

0 0 0

1 0 0
D S]mS†GTrF S 0 1 0

0 0 0

0 0 0
D S]mS†G ,

~D8!
11450
Q̃~27,1!,~1/2!

5TrF S 0 0 0

0 0 0

0 1 0
D S]mS†GTrF S 1 0 0

0 2 0

0 0 23
D S]mS†G

1TrF S 0 0 0

0 0 0

1 0 0
D S]mS†GTrF S 0 1 0

0 0 0

0 0 0
D S]mS†G .

~D9!

Working in lowest order chiral perturbation theory then giv

^p1uQ~27,1!,~3/2!uK1&[2
4mM

2

f 2 a~27,1!,~3/2!52
4mM

2

f 2 a~27,1!,

~D10!

^p1uQ~27,1!,~1/2!uK1&[2
4mM

2

f 2 a~27,1!,~1/2!52
4mM

2

f 2 a~27,1!,

~D11!

and

^p1p2uQ~27,1!,~3/2!uK0&52
4i

f 3 ~mK0
2

2mp1
2

!a~27,1!,~3/2!

52
4i

f 3 ~mK0
2

2mp1
2

!a~27,1!,

~D12!

^p1p2uQ~27,1!,~1/2!uK0&52
4i

f 3 ~mK0
2

2mp1
2

!a~27,1!~1/2!

52
4i

f 3 ~mK0
2

2mp1
2

!a~27,1!.

~D13!

APPENDIX E: DEFINITIONS FOR STANDARD MODEL
PARAMETERS

We follow @34# and define the Cabibbo-Kobayash
Maskawa matrix as

V[S Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

D
'S 12l2/2 l Al3~r2 ih!

2l 12l2/2 Al2

Al3~12r2 ih! 2Al2 1
D .

~E1!
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Outside of this section, we uselCKM5l, ACKM5A, and
rCKM5r to avoid confusion. Recent reviews have quot
values for

r̄[rS 12
l2

2 D , ~E2!
y,

ys

A

.

e,

ys

-

s

A.

tt.

l.

11450
d h̄[hS 12
l2

2 D . ~E3!

Our values forVtd are determined from

Vtd5Al3~12r2 ih!. ~E4!
l.
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