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Kaon matrix elements and CP violation from quenched lattice QCD: The 3-flavor case
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We report the results of a calculation of tke— 77 matrix elements relevant for thel = 1/2 rule ande’/ e
in quenched lattice QCD using domain wall fermions at a fixed lattice spacifg 2 GeV. Working in the
three-quark effective theory, where only tbed, ands quarks enter and which is known perturbatively to
next-to-leading order, we calculate the lattise~ 7 and K—|0) matrix elements of dimension six, four-
fermion operators. Through lowest order chiral perturbation theory theseliela matrix elements, which
we then normalize to continuum values through a nonperturbative renormalization technique. For the ratio of
isospin amplitude$A,|/|A,| we find a value of 25.3 1.8 (statistical error onlycompared to the experimental
value of 22.2, with individual isospin amplitudes 10%—20% below the experimental values!’ /feprusing
known central values for standard model parameters, we calcutatedf- 2.3)x 10 # (statistical error only
compared to the current experimental average of (171.8)x 10 “. Because we find a large cancellation
between thd =0 and|=2 contributions toe’/e, the result may be very sensitive to the approximations
employed. Among these are the use of quenched QCD, lowest order chiral perturbation theory, and continuum
perturbation theory below 1.3 GeV. We also calculate the kBoparameterBy and find By ys(2 GeV)
=0.532(11). Although currently unable to give a reliable systematic error, we have control over statistical
errors and more simulations will yield information about the effects of the approximations on this first-
principles determination of these important quantities.
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I. INTRODUCTION quenched lattice QCD in the evaluation of the matrix ele-
ments and the determination of their normalizations. This
The experimental observation 6 violation in kaon de-  truncation of the full theory reduces the required computer
cays[1-5] presents a continuing challenge to theoretical calpower markedly, but is an uncontrolled approximation. In
culations within the standard model and its possible extenmost cases where quenched results are compared with ex-
sions. The standard model allov@P violation through the perimental values, agreement is at or better than-t28%
single avenue set down by Kobayashi and Maskawa almosével, but there is no convincing argument that such an
30 years agd6], but a quantitative comparison between agreement must be uniformly good for all low-energy had-
theory and experiment requires the calculation of well-ronic phenomena. It should be stressed that, if the necessary
defined electroweak interactions involving quarks, when thecomputer power were available to generate an ensemble of
quarks are bound into kaons and pions. These “weak matrigynamical fermion lattices, the numerical work and analysis
elements” can be calculated from first principles using thein this paper could be easily redone, yielding values without
techniques of lattice QCD, although many technical difficul-the approximation of quenching.
ties have impeded the realization of this goal. Alarge number Almost all attempts to calculate the matrix elements
of analytical and phenomenological techniques have alspeeded foICP violation using lattice QCD have been done in
been employed to estimate these matrix elements and thesige quenched approximation. The first lattice calculations us-
are reviewed if7]. The work described in this paper repre- ing Wilson fermions were unsuccessf@,9], primarily due
sents a complete calculation of the matrix elements, using the lack of chiral symmetry on the lattice. Staggered fer-
the approximations described below, that determines the anmions do provide a remnant chiral symmetry on the lattice
plitudesA, andA, which describe two pion decays of kaons, and a calculation of the matrix elements studied here has
both their magnitudes, and the@P-violating phases. We been dong¢10]. To match continuum and lattice operators for
also calculate the kaoB parameteBy which enters stan- staggered fermions, perturbation theory was ugdd. Be-
dard model predictions for th@P violation effects first seen cause of the large size of the one-loop perturbative correc-
by Cronin and FitcH1]. tions for unimproved staggered fermions, the matching intro-
A major approximation made in this work is the use of duces large uncertainties. The current calculation uses
domain wall fermions, which have controllable chiral sym-
metry breaking at finite lattice spacing, and a nonperturbative
*Present address: Physics Department, The Ohio State Universitfenormalization technique to relate lattice quantities to the
Columbus, OH 43210. continuum.
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The electroweak physics responsible o 77 decays gent operators and the topological near-zero modes present
is readily described by an effective weak Hamiltonian, validin quenched calculations at finite volume. This discussion
for low energy processes, which is given by four-quark op-will be important for understanding the chiral limit of our
erators multiplied by perturbatively calculable Wilson coef- matrix elements and in the subtraction of power divergent
ficients. In Sec. Il, we give our notation for the effective terms from them.

Hamiltonian and the operator basis we will use. We discuss In Sec. V we discuss the basic parameters of our numeri-
both the three-quark effective Hamiltonian, wheral, ands  cal calculations. Then in Sec. VI we present further tests of
quarks can appear, and the four-quark Hamiltonian, whictihe chiral properties of domain wall fermions, in particular
includes thec quark. The Wilson coefficients are known in extending the results d21] to the case of Ward-Takahashi
both cases, although the three-quark case requires using cddentities involving power divergent operators. Here we also
tinuum perturbation theory down to a scale below the charntletermine the size of quenched chiral logarithm effects in
quark massm.~1.3 GeV. The SU(3)® SU(3)z quantum our simulations. The numerical examples in this section
numbers of the operators are given, since these determir@mplement the theoretical explanations in Sec. IV.

their mixing under renormalization and their behavior in the The continuum perturbation theory calculations of the
chiral limit. In this section we also give the relations betweenWilson coefficients for the low energy effective Hamiltonian
the matrix elements we calculate and the quantiieande. have been done to next-to-leading ordi28,24. Using the

A second approximation made in this work is the use ofresults from these calculations, we must evolve the Wilson
primarily lowest order chiral perturbation theory in the de- coefficients to the scale where we have renormalized our
termination of the desirell — 7 matrix element$12]. We lattice operators. This is discussed in Sec. VIl and involves
evaluateK — 7 and K—|0) matrix elements in quenched some subtlety due to the matching between the Wilson coef-
lattice QCD and then use lowest-order, full QCD chiral per-ficients calculated in full QCD and our quenched operators.
turbation theory to determiné— 77 matrix elements. This In addition, we must also incorporate perturbatively calcu-
is reviewed in Sec. Ill. Thus our calculation is strictly an lated matching factors to move from the modified minimal
evaluation of the relevant matrix elements for small quarksubtraction S) scheme used in the continuum to the regu-
masses. The effects of quenching on lowest order full QCDarization independent scheme used for our lattice operators.
chiral perturbation theory and the chiral limit of quenched To handle the renormalization of lattice operators, we em-
QCD are still subjects where analytic understanding is limploy another major theoretical advance of recent years, the
ited. We address quenching effects in our results where an@onperturbative renormalizatiotNPR) technique. In this
lytic calculations offer guidance as to the mass dependenamethod one adopts a renormalization scheme for defining
expected in quenched amplitudes. However, in general, sualenormalized operators that is independent of the regulariza-
phenomena are neglected in the quenched approximation atidn. Such a scheme can then be implemented in both pertur-
their presence serves as a measure of the size of systemadbiation theory(where dimensional regularization is typically
error. Once we have determined values for khe w7 ma-  used and in a nonperturbative lattice calculation. This NPR
trix elements valid in the region of small quark mass, weapproach avoids the use of lattice perturbation theory and the
then use the known chiral logarithms in full QCD to extrapo-attendant worries about its accuracy. In principle, NPR per-
late to the physical kaon mass. The size of these next-tamits the use of perturbation theory to be restricted to short
leading-order, chiral logarithms provides an indication of thedistances where its validity is more certain. Of the two most
importance of the other next-to-leading-order terms whichdeveloped approaches to NPR, the Schroedinger functional
we do not include in our extrapolation. Terms of this type,[25] and momentum-space based Rl metfi26], we have
i.e.,m? In(m?) wherem is a pseudoscalar mass, we will refer adopted the latter method since much important analytical
to as conventional chiral logarithms. Simila? In(n?) terms ~ work for the kaon system has already been done supporting
also occur in the quenched theory, along with the morghis approach. In Sec. VIII, we discuss in some detail how
singular quenched chiral logarithni43—159 discussed in we have implemented this technique for th8=1 operators
Sec. Ill. of primary interest in this paper. This represents one of the

To employ chiral perturbation theory as discussed in thenost complicated cases where this technique has been used
previous paragraph, it is important to use a lattice fermiorto date and we have only removed mixings with the domi-
formulation which preserves chiral symmetry for the low en-nant lower-dimensional operators. It is worth noting that this
ergy physics(The presence of chiral symmetry also simpli- technique is particularly well suited for use with domain wall
fies operator mixing and renormalization, which we discusgermions, since the definition of the regularization indepen-
shortly) A major theoretical advance in this argkb] is pro-  dent scheme involves off-shell quark fields. For domain wall
vided by the domain wall[16—18and overlap fermion fermions the suppression of explicit chiral symmetry break-
[19,20 formulations of lattice fermions. Here we use theing and the consequent elimination of or@elattice spacing
domain wall fermion formulation, which has been shown,errors occurs both on- and off-shell.
even for the quenched theory, to have small chiral symmetry In Sec. IX, we discuss the precise quantities that we mea-
breaking effects for currently accessible values for the lengtisure on the lattice to determié— 7 and K—|0) matrix
of the introduced fifth dimensiof21,22. In Sec. IV we dis- elements. We have used standard ratios of lattice Green'’s
cuss the features of domain wall fermions relevant for thifunctions to measure these matrix elements, but the presence
calculation, paying particular attention to the nonuniversalof topological near-zero modes leads to preferred choices for
character of the chiral symmetry breaking for power diver-the factors in the ratio to minimize the effects of zero modes.
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The tables referred to in Sec. IX report our bare lattice valueRe(e'/¢), a large cancellation is occurring between individual
for these quantities. isospin contributions, as can be seen in Fig. 39. It is impor-
We can now use our lattice results for the bere- 7w and  tant to note that the magnitudes of each of the two individual
K—|0) matrix elements to evaluate the chiral perturbationisospin terms are very similar to the experimental value for
theory constants which determie— 77 matrix elements. Re(e'/e). We would like to point out that even though in
In Sec. X we discuss th&l = 3/2 matrix elements, where the principle lattice techniques allow a calculation&f e, here
chiral perturbation theory constants come directly fr&m we have used experimental information regarding the phases
—ar matrix elements. Depending on the operator involvedof €' and e in our calculation of Re{/e).
these operators can vanish or be nonzero in the chiral limit. Table XLIX gives our final values for the physical quan-
We find that it is important to know the coefficients of the tities Refy), Re@,), Redy)/Re@,), and Re€'/€). Our con-
conventional chiral logarithm terms from analytic calcula- clusions are given in Sec. XV and the five Appendixes con-
tions in order to determine the chiral perturbation theory con4ain further details about our conventions, the decomposition
stants. of operators into irreducible representations of SU(3)
In Sec. XI, we perform a similar analysis of our lattice ® SU(3)g, and other definitions used in the text.
data to determine the chiral perturbation theory constants for

Al=1/2 matrix elements. This case is more subtle numeri- Il. GENERAL ANALYTIC FRAMEWORK
cally, since it involves the cancellation of unphysical, power )
divergent effects betweeK— 7 and K—|0) matrix ele- A. K—arm in the standard model

ments in the determination of the desired physical chiral per- At energies below the electroweak scale, the weak inter-
turbation theory constants. For one group of operators, w@ctions can be described by local four-fermion operators due
can check this cancellation by using the Wigner-Eckart theoto the essentially point-like character of the vector boson
rem to relateA | = 1/2 constants, which involve subtractions, interactions for low energies. Simple charged vector boson
to Al=3/2 constants, which do not. We find the agreementxchange produces current—current operators, with both cur-
expected. The end result of our numerical determinations argents left-handed, of the forng§’) v—a) (4"9")v-a) . Ad-

the values given in Table XXXVIII. These are lattice values ditional low-energy four-fermion operators arise from more
from a quenched calculation, using the formulas from chirakomplicated standard model processes involving loops with
perturbation theory for full QCD. heavy particles, including the vector bosons and the top

In Sec. XIl we discuss how to take these final latticequark. The naive suppression of these nonexchange opera-
values and calculate physical quantities. In the spirit of theors, due to the large masses in the loop propagators and
quenched approximation we take these quenched results agditional powers of the couplings, is offset somewhat by the
an approximation for the desired full QCD quantities. In par-large phase space for the loop integrals and the large loga-
ticular, for K— 7o matrix elements which vanish in the chi- rithms which appear due to the disparity between GeV scale
ral limit, we take our quenched values for the slope withhadronic physics and these heavy masses. The operator prod-
respect to quark mass of these matrix elements as the valugt expansion and the renormalization group provide the
for the slope for the full QCD matrix elements. F&  framework for understanding such logarithmic enhancements
— arar matrix elements which are nonzero in the chiral limit, and, coupled with continuum perturbation theory, provide a
the chiral limit value in the quenched theory is used as thavay to calculate these logarithmic effects. Such calculations
chiral limit value in the full theory. We can then determine yield the low-energy four-fermion operators’ Wilson coeffi-
physical matrix elements at the kaon mass by extrapolatingients, which encapsulate the high energy physics in the low-
in lowest order chiral perturbation theory. Since the chiralenergy effective theory.
logarithms are known, we can also extrapolate including the Thus for energies well below the electroweak scale but
effects of the logarithms. This is not a complete higher ordeabove the bottom quark mass, we have an effective weak
chiral perturbation theory calculation, but gives an indicationHamiltonian with four-fermion interactions, where the coef-
of the size of the effects entering at next order. ficients of a given operator depend pnm,, my, mz, as,

In Sec. XlIl we combine the matrix elements, Wilson co- o, and the elements of the Cabibbo-Kobayashi-Maskawa
efficients, nonperturbative renormalization, and central val{CKM) matrix, V,,. The four-fermion interactions can in-
ues for standard model parameters to give physical values fafolve all quark fields, except the top, giving the Hamiltonian
Re@p), Re@,) and their ratio, which reflects th&l=1/2  the generic form
rule. Figures 29, 30, and 31 show our results for the various

extrapolations, along with the physical values. The general Ge

agreement with the experimental values is quite good, in Heﬁzin Ai(p,mg, My, Mz, as, @, Vi)

spite of the many approximations in the calculation. We also

report our results for the kad® parameterB , at the end of X (a9 )(@'T/q)"). )
this section.

Section XIV also combines matrix elements, Wilson co-The scalex which appears in this equation is introduced
efficients, nonperturbative renormalization, and central valthrough the normalization condition required to define the
ues for standard model parameters, but now the values faomposite four-fermion operators, whose dependengeisn
Im(Ag), Im(Ay), and Reé€'/€) are the focus. Figures 35 and 36 not shown. The expliciiz dependence of the coefficiems
show Im@,) and Im@,) and Fig. 38 shows Re(e). For  cancels thex dependence implicit in these operators. In

114506-3



BLUM et al. PHYSICAL REVIEW D 68, 114506 (2003

studying physics at energy scales well below the bottom

quark mass, we can remove the bottom quark from the op-  HES™ V= "y v*
erators that appear i, renormalizing at a scalg which V2

is generally chosen near the scale of the physics under con- 10
sideration. Of course, the Wilson coefficiems must now + 72 Ci(n)P;
depend explicitly on the bottom quark mass,. A similar =3
elimination of the charm degrees of freedom can be achieved
if He IS Specialized to a form valid for energies well below
the charm quark mass.

Following the general discussion above, one can deter-
mine the terms in the low-energy effective Hamiltonian rel-
evant to particular processes, such asAtg=1, AD=-1
case of primary interest in this study. The terms arising fromHere G is the Fermi coupling constan¥,,, are elements of
simple vector boson exchange, which should play a domithe CKM matrix, \ =V,qVis for k=u, ¢, t, and 7=
nant role in theAl=1/2 rule because of their large Wilson —\,/\,. For the four-flavor theory, we denote the Wilson
coefficients, were first discussed[®7,28, where it was also  coefficients by real number§;(«) and the four-quark op-
found that theA; coefficients for these terms could explain erators byP; and P{. In general, charm quark fields will
some of the enhancement given by thie=1/2 rule. Subse- appear in the operatoR as well asP; . For the three-flavor
quently, additional low-energy terms arising from standardtheory, we denote the Wilson coefficients by the real num-
model graphs involving loops were identifi¢d9,30 and  bersy;(«) andz(x) and useQ; to represent the four-quark
their importance for CP violation in the full six-quark stan- operators, which are made of up, down, and strange quark
dard model emphasized in Ref81-33. These additional fields only. The dependence of the Wilson coefficients on the
low-energy four-quark operators are referred to as penguiAther parameters shown in Ed) is suppressed.
operators and are further refined into QCD and electroweak Before describing the operator basis in detail, a few im-
penguin operators. Historically attention was first focused orPortant features of the effectiveS=1 Hamiltonians should
the QCD penguins, since the electroweak penguins are sup€ noted. o o .
pressed by a power of the electroweak couplinglowever, (1) In these Ham|lton.|ans, CP violation enters entirely
as reviewed below, the electroweak penguins are importarifrough the parameter, since we choose the standard rep-
for CP violation in the standard model since they are nonzerg€Sentation of the CKM matrix of Ref34] whereV,q, and
to lowest order in the light quark masses, are enhanced bSF‘”S 7, is complex.

. o . ; (AS=1) ;
the Al =1/2 rule, and enter with coefficients that increase. (2 Of the 12 operators entering;™>""’, only nine are
with the top quark mass linearly independent in a regularization that preserves Fierz

For our calculations, the energy scale that can be used i“ansformations. Similarly, for the ten operators entering

(AS=1) i i -
the effective theory must be well belom,, since we will H ' only_seven are [lnearly independent. The calcula
. ) tions of the Wilson coefficients most commonly use an over-

work on a lattice witha™*~2 GeV. We do, however, have

. . . . complete basis, since this allows one to transparently see
the ap|I|ty to work both with an effective theory V"%hd for how the original physics is inherited by the operators in the
energies at or above, (a four-flavor theory and with a

. . ) low-energy effective theory.
three-flavor theory that is only valid for energies below. (3) The Wilson coefficients, which can be thought of as

Thus we will actually deal with. two eﬁeptive Hamiltonians he couplings for the low-energy theory, vary markedly in
for AS=1 processes. For clarity, we will denote the four- gjze. The Wilson coefficient for the vector boson exchange
flavor AS=1 effective Hamiltonian valid for energies below term is of ®(1). The QCD penguin terms are naively of
my, by H{*5™1) and useH(*S=1) for the three-flavor theory  (O(a) while the electroweak penguins are naively(@fa).
valid only for energies belown.. Note, the renormalization This simple counting is influenced by the large logarithms
scale u that appears irHEASZl) is conventionally chosen generated from QCD running, which we will discuss further
well abovem, while the u that appears ifit(*S=%) should be  in Sec. VII.

chosen aboven. (Of course, in both cases we would like to ~ The numerical results reported here are for the three-
chooseu in a region where perturbation theory can be used.flavor theory, where the charm quark mass has been inte-
In the notation of Ref[32], operators in the effective theory grated out. In the remainder of this section we summarize the
are given byO; for the five-quark theory which includes the relevant low-energy four-fermion operators for the three- and
up, down, strange, charm, and bottom quarksPbyor the  four-flavor theories and establish notation for both cases.
effective four-quark theory, and hy; for the effective three- As mentioned above, charged vector boson exchange
quark theory including only the up, down, and strange quark@gives rise to left-left current interactions, with a particular
explicitly. We follow this notation, but since we will not deal color trace structure@,, P,, andP3 below). Mixing under

with the effective five-quark theory, we also uSg to rep-  renormalization produces a left-left operator with the other
resent a generic operator. Using the operator basis defingubssible color trace@,, P,, andPj below. Letting (L, R)
below and following Refs[32,23,24 the effective Hamilto- denote the SU(3)® SU(3)g representation of an operator
nians can be written as andl its isospin, we give the quantum numbers of the opera-

2
21 Ci(w)[Pi+(7—1)Pf]

, @

10

G
H<A8-1>=72Fvudvjs[ i; [Zi(pw)+7yi(w)]Qif. (3
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tors adlL, R) I. Then witha and 8 denoting color indices, the -
charged vector boson exchange operators in our basis ar€s=(Sudplv-a > (AQedalvea (8D 172, (14
[32,24 g=u,d,s

Current—current operators:

Q1=P1=(S,d)v-a(Uglg)y_n

(81 V2 (27,) 12 (21.) 32, (4 Here the subscript\(+A) refers to a quark bilinear of the
form gv,(1+ vs)q. As the list above shows, the QCD pen-

Po=Galphv-n 2 (Glalvea (8D V2. (19

PI=(Sodu)v-a(Cslplv-a (81 172, (5) guin operators all havd=1/2 and are singlets under
o SU(3)g, even though they contain right-handed quark fields.
Q2=P,=(Sadp)v-a(UgUa)v-a The electroweak penguin operators have the same quark

81 12 (27,0 12 (27,0 32, (6) f!a\_/ors as_the QC[_) penguins, but each quark bilinear is mul-
tiplied by its electric charge, .

PEZ@dﬂ)va(@Ca)va 8.1 1/2. 7) Electroweak penguin operators:

Here E]e subscript(—A) refers tq a quark bilinear of the Q,= g(gada)V—A E eq(TpUp)vsa
form gy,(1—vs)q. Operators with color trace structure q=u,d,s
similar to Q, are referred to as color diagonal operators
while Q, is an example of a color mixed operator. Note that
the exchange operators in E¢4) and(6) get a contribution 3
from more than one representation of SU(8BU(3);z and =_ .
contain bothl =1/2 and 3/2 parts. Pr 2 @da)vaqwz,d,s,c CalAgp)v+a

In addition to the simple exchange diagrams which lead to
the operators of Eq$4)—(7), loop diagrams in the standard
model (the penguin diagramsproduce additional four- 3
fermion terms in the effective theory. In the penguin dia- _° =
grams relevant to this paper, a top quark loop appears in the Qs 2 @dﬁ)V7Aq—§u: s B(Aa)v-ea
full electroweak theory. QCD penguins involve gluon ex-
change with this top quark loop, while electroweak penguins
involve Z° and photon exchange with the top quark loop.
The resulting four-fermion operators in the effective theory
include interactions between left-handed and right-handed
currents and both color diagonal and color mixed operators
arise. For effective operators generated by the QCD penguin (8,8 1/2 (8,8 3/2 (8,1 1/2, (19
diagrams, all quarks which are present in the effective theory
enter with equal weight, since the strong interactions couple
equally to each flavor.

QCD penguin operators:

(8,9 12 (8,8 3/2, (16)
(8,9 1/2 (8,8 3/2 (8,1 1/2, (17)

(8,89 1/2 (8,8 3/2, (18)

3 _
Pg= E(gadﬂ)vaq=u§(; e €q(Agda)via

3 _
Qo= E(Sada)V*A 2 €q(dgdp)v-a
g=u,d,s

(8,1) 1/2 (27, 1/2 (27,1 32, (20
Qa=(udav-a 2 (@Qpyv-a (8D 12, (® 3 B
amuas szz@da)v—qugsc €q(Agdp)v-a

Ps=(S,d,)v_a Zd (@Opv-n (8D 172, (9) (8,1 12 (27,1 1/2 (27,) 3/2, (21
g=u,d,s,c

3 _
Q=G S ([@Odv-a (8D 12, (10 Qu 3 (Sudphvn 2, eo(@dalv-a

g=u,d,s
(8,1 1/2 (27,1) 12 (27,1 3/2, (22

Ps=(S.dg)v-a > (dpda)v-a (8,1 1/2, (11

=u 3 q,
q=lds.c P10=§(§adg)v_A > eg(Upla)v-a
g=u,d,s,c
Q=(v-n 3 @gven (8D 12 (12 (8 V2 (279 12 (210 32 (23

Note that Q; and Qg are in a single representation of

_ = SU(3).®SU(3)g, so theirl =1/2 and 3/2 matrix elements
Ps=(s,d,)v_ 8,1) 1/2, (13 L R _ S
5= (Sadav AqZUE,d,s,c (Ggds)v--a @ (13 can be related by the Wigner-Eckert theorem. This is not true
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for P; andPg, since the addition of the charm quark brings where

in a contribution from a different SU(3® SU(3) represen-

tation. QAS™2=(s,d,)v-a(Spdplv-a (27.) 1, (26)
These operators can also be decomposed into irreducible .

representations of isospin and SU(8)SU(3)s and the de- Xq:mS/,M\%V and the functionsSy(x;) and Sp(x; ,x;) are the

tails are given in Appendix B. For the left-left operators 'n@mi-Lim functions[41]. J; is defined as

made ofu, d, ands quarks, there is a singl27,1) and two

(0) (1)
(8,1) irreducible representations. Thus there are only three Ja= 7_'3_1_ 7_' (27)
matrix elements needed to determi@g, Q,, Qz, Q4, Qg, 285 2Bo

and . .
W?t?\othese definitions and knowledge of the Wilson coef-Where (" is theith-order contribution to the anomalous di-
ficients,K — m processes in the standard model can be exMension forQ{45=2) and3; are thejth-order coefficients for

pressed in terms of the matrix elemefitse|P;(1)|K) de- th(g)QCD_ beta function in gthree fla_lvor theory. In addition,
fined in the four-quark effective theory or the three-quark@s (#) is the QCD running coupling for a three flavor
effective theory matrix elementsrr|Q;()|K). Notice that ~ theory. o

here we have shown explicitly the dependence of the opera- The coefficientsy; are known to NLO[39,40 and have
tor on the scaleu, which cancels thex dependence of the the values

Wilson coefficients. Since the Wilson coefficients are calcu-

lated in continuum perturbation theory using dimensional 71~ 1.38+0.20, #,;=0.57£0.01, 73=0.37+0.04.
regularization and we will calculate the hadronic matrix ele- (28)
ments using a lattice regularization, we must relate, or
match, operators normalized on the lattice and the continuu
operators. This matching will also involve operator mixing,
so in general one has

P violating processes involving°-K° mixing in the stan-

ard model are then known if the CKM matrix elements are

known and the matrix elemerK? Q“S=2)|KO) is known.

Since for three degenerate quark3{*S=?) is part of the
OFO“KM)=Zij(M,a)O}at(a), (24)  same(27,)) irreducible representation &3; and Q,, one

can relate the (K°|Q“S=2)|K% matrix element to

wherea is the lattice spacing. In this work, we employ a (7" |Q|K™) and(m"|Q,/K™).

relatively new technique, nonperturbative renormalization, as

part of the calculation of thé;;’s. This is explained in detail C. Connecting experiment and theory

in Sec. VIII. Before turning to our lattice determination of

(m|Oj(w)|K) matrix elements, we summarize the effective

Hamiltonian forAS=2 transitions in the standard model.

The previous two sections have given th&=1 and
AS=2 effective Hamiltonians in the notation we will use in
this paper. To further establish our notation and conventions,
. we now collect the relevant formulas to connect these Hamil-
B. K®-K°® mixing in the standard model tonians with the experimentally measured quantities. For a

70 e, More comprehensive review, the reader is referrg¢d2043.
In the development of the standard model, feK® sys Considering only the strong Hamiltonian, a neutral kaon,

tem _has played an Important role. The_GIM mechanii8s] the K°, containing an antistrange and down quark and its
provided a natural theoretical explanation for the small mass =~ ' = o ]
difference between th&, and Ks and was subsequently antiparticle, theK®, containing an antidown and strange
used to give an estimate for the charm quark m&si. quark are energy eigenstates. We adopt the conventional
These calculations were done for the case of only foufefinitions of parityP and charge conjugatiof for quark

quarks, where there is no imaginary part to KR K° mass ~ fields in the standard model, givirgP|K®) = — |KO). While
matrix and noCP violation. For the six-quark standard Charge conjugation and parity are valid symmetries of the

model, this system should in general exhiBiP violation strong interactions, they are violated by the weak interac-

and the low energy theory describing these effects, includingons- Allowing for the weak interactions to also viola®®,

QCD corrections to leading logarithm order, was first givenlOF the neutral kaons seen in nature one writes
in [37,38. Subsequent work has determined the Wilson co-

efficients to next-to-leading ord€89,40. [Ks)=pIK®) —q[K®), (29
We write theAS=2 Hamiltonian for the effective three- _
flavor theory to NLO a$39] [KL)=pIK®+q[K®), (30
O Gt L, ., ) with p2+g?=1. CPis not a valid symmetry if the resulting
HAST ):W ML AE71S0(Xe) + N 72S0(X¢) physical states have# q. ProvidedCP violating effects are
small,Kg, being predominantlCP even, has a much shorter
+ 2N A 73S0 (Xe  X0) ] lifetime thanK, , sinceKg decay to two pions, where more

phase space is available, conser@s
The quantities measured experimentally to detern@ife

(AS=2)
Q +Hc., (29 violation are

(3)
_ as’ ()
X[a(ss)] 2/9[14- 2 Js
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, AK —7mt77)
_ i, LT T
N+ - |77+*|e * A(KS—>7T+777)' (31)
: A(K_ — 7070)
700= 7700/ € 0= A(Kom 7070 (32

The current values for these quantities d84] |7, _|
~|10d =2.28<107° and| ¢, _|~|pog =44°.

It is important to distinguish betweddP violation due to
mixing, also known as indiredCP violation, andCP viola-
tion in decays, also referred to as dir€Zl violation. CP
violation due to mixing refers t&, < Kg transitions(or al-

ternatelyK%—K?®) and if all CP violation came from this
source, one would findy, = 5. The initial states would
mix and the decay processes would presdéb® Allowing
for CP violation in decays, one defines

N, _=€te, mny=e—2€ (33
and a nonzero value fag’ signalsCP violation in decays.
The current value fore is (2.271-0.017)x10 3 and for

€'leis (2.1+0.5)x 1073 [34].

PHYSICAL REVIEW D 68, 114506 (2003

_ReA )
“~ ReA,’
_ ImA, 42)
" ReA,’
_ ImA, 43)
27 ReA,’
and simplify Egs(39) and(40) to
e=e+i PO y (44)
iei(82— )
€'=——— [P~ Pq. (45)
" [P2—Po]

The equations above assume that betlhnd w are small
quantities, which is true for the physical values of quark
masses. In particular, the small value ©f(0.049 is the
quantitative expression of the\l=1/2 rule. For our
quenched QCD simulations, we must be careful to only use

To relate the experimental quantities to the theoretical mathese formulas for situations where battand w are small.
trix elements calculated here, it is conventional to define the There are corrections to E¢45) from isospin violations.

isospin amplitudes by

AKO— 7ar(1))=Ae'%, (34)

A(K'— 7ar(l))=—Ake?, (35)

where| gives the isospin state of the pions aAdis the
final-state phase shift determined framr scattering. In gen-

eral, A[K°—zma(1)]=(7w(1)|—iH|K®. Defining €
through

p (1+e)

4 19 36

and using the isospin decomposition

2 1
| 700y = \/;|7T7T(|:2)>— \/;|'n"n'(|=0)>,

(37)

1
Vet
1 2
=\/;|7T7T(|:2)>+ \[§|7T7T(|=0)) (39
one can shovy42]

. [ImAg 39
e=e€+i ReA, (39
. ie!®27%) ReA[ImA, ImAg 20
3 ReAp|ReA, ReAy| (40

We define

These will not be included in our current calculation but
have been estimated h%4,45.

From Eq.(45) one sees thaEP violation in decays comes
from a nonzero value d?,— P,. This in turn arises through
isospin-dependent imaginary parts Af. In the standard
model, CP-violating imaginary contributions té\, and A,
enter only through the CKM matrix elemevit, . The effects
of V4 enter through the penguin operators and in particular,
the major contribution to InA, is expected to come from the
electroweak penguin operators, while the QCD penguin op-
erators should produce most of By. Given thatP,— P,
determines the size of dire@P violation effects, estimates
of the generic size dPy and P, do not tightly constraire’.

Since a nonperturbative lattice calculationkof> 7 ma-
trix elements yield#\, andA,, the calculation also produces
a value forw. The value ofw is an interesting quantity in its
own right and because of its dependence only on the real
parts of the amplitudes, it probes standard model physics that
is quite different fromCP violation.

To determinee, one needs the value fer which in turn
comes from a determination of the off-diagonal elements of

the two by two matrix governing the evolution of tH&-K°
system[43]. These off-diagonal contributions are commonly
parameterized by defininB,(x) through

— 8
(KIQUS™2(w)|K)=3Be(w)fkmk  (46)

and the renormalization group invariant paramdigrby

ad(p)

Bx=Bx(w)[aP(w)] 291+ J|. @D

With these definitions, one finds that

114506-7
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G2f2m. M2 Our use of chiral perturbation theory in the calculation of

A FlkMk . :

e=BxImA——— the K— 77 weak matrix elements requires that we address a
1227 AMg number of issues. We cannot currently calculate lattice ma-

trix elements for arbitrarily small quark mass, where the

X {REN L 71S0(Xo) = 73S0(Xe %) ] = RN 72S0(x0)} quark mass dependence is linear, since such small masses

X exp(iml4), (48) require large volumes and computer resources beyond those
currently available. Since our quark masses will be as large
whereAMy is the mass difference betwe&h andKs. as the strange quark mass, we must understand the nonlinear

Thus a determination from lattice QCD simulations of dependence expected from continuum chiral perturbation
(7| Qi(w)|K) and<K°|Q(AS=2)(M)|K°) matrix elements, theory forK— a7 andK—|0) matrix elements. Such an un-

coupled with experimental measurementsebfand e, gives ~ derstanding will allow us to see if our data matches these
constraints on the elements of the CKM matrix in the stan-expectations and to permit us to accurately extract the low-
dard model. Additionally, the lattice calculations should also€nergy chiral perturbation theory parameters needed to make
yield a value forw which is expected to be essentially inde- the connection to the desired two pion decéys we will
pendent of the elements of the CKM matrix. We now turn todiscuss in Sec. IV we can also get nonlinearities from a

some of the issues faced in the lattice determinations of thgttice effect, domain wall fermion zero modes in quenched
matrix elements. QCD for finite volume). Since our calculation is done in the

quenched approximation, we must also look for the patholo-
gies expected from quenched chiral perturbation theory. Fi-
nally, our results forK — 777 weak matrix elements in the
chiral limit must be compared with the physical values mea-
The calculation of decay amplitudes with multiparticle fi- sured for nonzero quark mass. Estimates of the effects of
nal states presents a challenge to the Euclidean-space tedhgher order terms in chiral perturbation theory are crucial to
niques of lattice QCD. In a general field-theoretic context,estimating the systematic errors in extrapolating to the physi-
Euclidean space and Minkowski space are related by an anaal kaon mass. We now turn to the results from chiral per-
lytic continuation. Such an analytic continuation in a numeri-turbation theory relevant to our determination of weak ma-
cal calculation is extremely difficult, given that a discrete settrix elements.
of data points with statistical errors does not define an ana-
lytic function. Fortunately, there are matrix elements we can A. Lowest order chiral perturbation theory
calculate directly from lattice QCD using the usual lattice
projection technique of evaluating the large time limit of the

operatorel~Hocot!, For single particle matrix elements, we . . .
directly achieve the matrix element at the desired kinematitgnUSt represent _the various operators listed n E4s-(23)
in terms of the fields used in chiral perturbation theory. One

values. However, for multiparticle states with nonzero rela- tarts with a unitary chiral matrix field, defined b
tive momentum, the state will not be the lowest energy statg'@ts Wi unitary chi Ix hiel, defl y
with a specific set of quantum numbers and, therefore, can- 2i p3t2

III. CONTINUUM CHIRAL PERTURBATION THEORY
AND KAON MATRIX ELEMENTS

Following [12] and adopting their conventions for states
and normalizationgsee Appendix A for a summayyone

not be isolated by the large time limit of the operator -
et~Haco!, the Maiani-Testa theorerf¥6]. As a result,K

—arar transition amplitudes with physical masses cannot b‘?/vhere(ba are the real pseudo-Goldstone boson fiefdisre
directly measured on the lattice with current teChniqueSproportionaI to the Gell-Mann matrices, with Ts(,)

(There is a recent promising propogal] to tune the finite  _ ab, andf is the pion decay constant. In chiral perturbation

volume of a Euclidean-space simulation so that the physica{,neory the lowest order Lagrangian for QCD,®¢p?), is
multiparticle final state corresponds to a next-lowest energy, ' ' '

finite-volume eigenstate dfiocp—a state that might be ex- §2
tracted from the time dependence givenddyocott) L‘S&D:§Tr(aﬂ2&“y)+v TIMI +(M3)T].  (50)
Even before the formalization of the Maiani-Testa theo-
rem, it was realizel12] that chiral perturbation theory could
be used to relat&€ — 77 amplitudes toK — 7 and K—|0)
amplitudes(here |0) is the vacuum In addition to circum-
venting the Maiani-Testa theorem, these amplitudes should = —
be easier to measure numerically, since they involve fewer 4(my+mg)
interpolating operators to produce the mesons. Chiral pertur- ) )
bation theory uses the effective Lagrangian representing thEhusv is the chiral condensate at zero quark mass and, as
pseudo-Goldstone boson degrees of freedom for QCD to d&hown in Appendix A(uu)(my=0)=—2v. Note that the
termine relations between the desired matrix elements. Inatrix field % has SU(3)®SU(3): quantum numbers
should be noted that the chiral effective Lagrangian auto{L,R)=(3,3). Heref is the pion decay constant in the limit
matically satisfies the relevant Ward-Takahashi identities ofn,—0 and we use a normalization whefrg is 131 MeV.
QCD, in the limit when these identities are dominated by Working to lowest order in chiral perturbation theory, one
arbitrarily light pseudo-Goldstone bosons. finds [12] that there are two possibi@, 1) operators with

(49

HereM is the quark mass matrix and

fzmi+
(51
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AS=1 andAD=—1, denoted by®®Y and®®V, and a
single (27, 1) operator®(?”-), These three operators are all
that is required to represent the matrix elements of the op-
erators in Eqs(4)—(23), exceptQ,, Qg, P, andPg. Other ~ Wherem,, is the common meson mass of the andK™.
work [33] showed that there is a singl®, 8 operator. Thus ~Following [12], one then finds that the desiréd— 7 ma-
the correspondence between an oper#@ér® given in (M elements are given by

terms of quark fields and its representation in chiral pertur-

12
(m'0BIK") = a®?, (64)

bation theory is given by (w7 |0®V|KO = ?—;(mio—mi+)a§8'l), (65)
OB BIPED 4 oBIHED (52) i 2
0270_, (210 @70 (53 (mm |OFAKE) =~ 73 (Mico— m_.)a?"Y, (66)
OB _, 488§ (BY (54) (7wt 7 |©B3|KO) = jflaaaa 8 (67)

where thea’s are constants and Since the(27,1) and (8,8) operators contain botA|l=1/2

5 (8.0 _ ase and Al =3/2 parts, which we will need to measure to deter-
01 THA(9,2) (2], (59 mine K— 77 amplitudes of definite isospin, we give the
80 isospin decomposition of Eq$63), (64), (66), and (67) in
BPY= S TIHASM+A(SM)™, (56)  Appendix D. , _
f These simple relations form the heart of the calculation
we have performed and a few important points are worth

B@=T) (24,32, (57 highlighting.
(1) The current calculation is a determination of the physi-
BHEI=T[ASTS . 58  cal parameters:®V, o®"Y, and «®? for a fixed lattice

spacing and volume in the quenched approximation. As such,
HereA;j= 6352, -rikiI is symmetric ini, j andk, | and trace- K—mm a_mplitudes are determined to Iowest orc_jer in chiral
less on any pair of upper and lower indices, amg perturbation theory in the quenched approximation.
=diag(2—1,—1). Further detail is given in Appendixes B (2) TheK" — " matrix elements of8,1) and (27,1 op-

and D, along with precise values fdij, for both theA|  €rators vanish in the chiral limit, while f@B,8) operators the
—1/2 andAl =3/2 components. matrix element is nonzero. Thus, for small enough quark

masses, the electroweak penguin operators will dominate all
amplitudes. Since the electroweak penguin operators are sup-

®SU(3)z. The operators in Eqg4)—(23) are generally in pressed by the electroweak coupling constant, the quark

reducible representations, so we will determine ttfor ~ Mass where they(gtl))minate is quite small. o
each operator individually. The matrix elements of the effec- (3) The termay™" is determined by the unphysicél

tive operators® given in Egs.(55—(58) between states —0 matrix element and in general is quadratically divergent
composed of pions and kaons can be easily evaluated in Chl_r regularizations which preserve chiral symmetry. To deter-

(8,1) -
ral perturbation theory. For th&—0 matrix elements one Min€ i, and hence the physic&l— =z amplitude, re
finds quires cancelmg this quadratic divergence against the qua-

dratic divergence i7" |@®@YK™). This first-principles
16iv cancellation arises in the relevant Ward-Takahashi identities
(0|0® 1)|KO>— —z(m{—mp PP, (590 of QCD and is reflected in chiral perturbation theory, which
respects these identities. For the most extreme cases, the
physical result is only 5% of the size of the divergent terms.
This oY subtraction will be extensively discussed in Sec.
XIA.

(4) The «®V) subtraction is determined by matrix ele-
ments of four -quark operators in hadronic states. As part of
the renormalization of lattice four-quark operators, a related
subtraction must be done for matrix elements of these opera-

4m2 tors in off-shell Green’s functions involving quark fields.
(|0 81>|K+>— > (a{8Y— a8y, (620  Only the momentum independent divergent parts of these
two subtractions are the same. This issue is discussed further
in Sec. VIILI.

(5) In these lowest order chiral perturbation theory ex-
pressions, onlya'®? is divergent. However, higher order

There is a unique set af's for each four-quark operator
that is in an irreducible representation of SU(3)

(0]®@"PIK% =0, (60)
(0|@®F[K) =0, (61)

wherem, andm/, are the quark masses used in the construc:
tion of the K. Similarly

2

am
(mH @Ky = — —M o271, (63)
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terms in chiral perturbation theory can be multiplied by di- .
vergent coefficients, as happens (818) operators. Thus Eq.  (fi)* P =f

3 3 3
1- ZL)((mﬂ')_ EL)((mK)_ ZLx(mn)
(64) is modified at next order by the addition of a divergent

term of the form
+eeet, (73
(mT|@BI|K )= 12{a(8’8)+ mZaBd+--1, (69
2 M dv ' where
where the dots represent possible nondivergent higher order m? m2
terms. Even though the matrix element is nonzero wingn L (m)= (477—1‘)2"] A (74
xPT

=0, the finite quark mass corrections enter with a power

divergent coefficient. One way to find timg,=0 value is to .
extrapolate in quark mass. For domain wall fermions at finiteand the dots represent terms quadratic in the pseudoscalar

Ls, the zero quark mass limit is not precisely known for Masses. The (E%eﬁlments of these terms depend on param-
power divergent operators. This, coupled with the power di£€'S enternocp. o _
vergent slope, makes the extrapolation problematic. One can 10 Study matrix elements in chiral perturbation theory,
use a subtraction to remove the divergent slope. However, &€ Starts from the lowest order QCD Lagrangian in 65Q)
even simpler approach is to use the=23/2 part of the(8,8) and adds terms rgpresent|rwzg thg effecnve four-fermion opera-
operator, which does not have divergent coefficients, to delors at low energies. TO(p®) this yields
termine a(89), .
L9 = ot L0+ LR+ LR, (79

B. Full QCD one loop chiral perturbation theory: K—mw
for the AS=1 andAS=2 processes of interest here. Note
that there are terms 6(p°) that enter the\S=1 part of the
chiral Lagrangian. These are tt®&8) operators mentioned in
the previous section which represent the electroweak pen-

uinsQ,; and Qg for u<m,, or a part ofP; and Pg for u

m.. The term £{2_, depends on the single parameter

An important early calculation in QCD revealed that in
the small quark mass Iim'nnfT deviates from simple linear
dependence on the quark masg,, due to chiral logarithm
terms of the formmgInm, [48]. In the language of chiral
perturbation theory such logarithms arise from higher orde
Ioop effects_, wr(lzu):h fom:. come from cglculatlng Iopp Cor- 88 for each operator, whilez2_, depends ona®?,
rections usingCs¢p. To work to a consistent order in chiral = (g1)  (27,1) - :

. Q . . . 5 ay ™, o' and the coefficients for higher ordés,8) op-
perturbation theory requires that if loop effects in thép©) t The sinal ¢ . @ t ith
effective Lagrangian are included, one must also include th&'aors. The E'nﬁ € opira or: appear;)ng: I:Z ;n({gyrs with a
effects of theO(p?) terms in the effective Lagrangian, de- par_lc?rl;net?]r_wl IIC c%r: ets OW,?At(S)_le re 3t§S—2 ot
noted L5, Unfortunately,L5d, introduces new, unknown € chiral logariihm terms 1 ) andas=< matrix
parameters, but for on-shell particles at rest these paramete%emeggs can be calculated usifg o Amphtu((g)es involv-
are multiplied bymZ. Thus the general form for a quantity ing ©®9, which are nonzero ab(p°) due toL{2_;, have

like m2 in full QCD is chiral logarithms atO(p?) due to interaction terms in
™ 2
i , , L&P) . These chiral logarithms have not yet been calculated
mZ=a;Mqy+amg In mg+a,mg. (69 explicitly, but should modify Eq(68) to the form

Systematic calculations of higher loop effects in chiral 12
perturbation theory49,50 have been done including the up, (") @BIKTy= f_2{a(8,8)[1+ EBIL (my)+---]
down, and strange quarks. We will give these results in terms
of the Iowest_order chlr_al perturbation theory, or bare, meson +mi a4 (76)
masses, which are given, for example, b;fr+=4v(mu
+my)/f? wheref andv are constants. We will seh,=my  \yhere £®8) is a calculable coefficient anahy, is the com-
and denote the subtraction point for chiral perturbationnon mass for ther™ andK™* in this matrix element(For
theory by A,pr. Calculating the one-loop terms 655 full QCD, these terms were calculated after this paper was
gives[50] finished in[51].) As previously mentioned, unless only the
Al1=3/2 amplitude is considered, there are higher order
terms in chiral perturbation theory with power divergent co-

efficients, given collectively in Eq76) by a&9.

The effective Lagrangian to the next orde}fép“), in-
cludes all possibled(p*) terms and introduces many un-
' (71 known coefficients. This Lagrangian takes the form

1
(M) 0P =mi 1L (my) = ZLy(my) 4

, (70

21(1 100p) — 2
(m2)(1 1oon = m2

2
L+ g Ly(m,)+ -

4 2
(F,)( 100D = £11-2L (m)—L (mg)+--}, (72) Lot =L+ LGAot L+ L8, (77)
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For AS=1 processes aP(p*), amplitudes will include loop The power divergent part of the four-quark operators can
effects coming fromc@, and£@_, . There are als@(p*) ~ be written as a quark bilinear times a momentum-
contributions from two-loop corrections T@(Aos)=1- independent coefficient. Thus the chiral logarithm correc-

For ®®Y and ®") AS=1 operators, the chiral loga- tions to the power divergent parts of four-quark operators
rithm corrections to the matrix elements of interest in thismust be the same as the chiral logarithm corrections to the
work have been calculatef52—56. The results fork*  corresponding quark bilinears. That this is indeed the case
at are for full QCD can be seen explicitly, since the chiral loga-

rithms for the bilinears are known and can be compared with
2 Egs.(78)—(81). Following [53], we define

4m
<7T+|®(8,1)|K+>: M[a(ls,l)

1
1+ zL(my)

5 _ _
f OBI=5(1- y5)d=a®ITr(AS) (83
- a(28,l)[1+2LX(mM)]]’ (78)  tolowestorder in chiral perturbation theory. Hévés a three
by three matrix withA; ;= J; 36; , and with our conventions,

) a®3=—2iy. Then the chiral logarithm corrections for the

(7@ YKy = - 4”;'\" [a(zm[l_ 3_4|-X(mvv|) _ matrix elements of 7" |©@CGI|K*) and (0|0 EI|KO) are
f s given in [53]. We will use the value fo{7*|@CI|K™)
from [53], since here there is a single meson masg, For
Similarly for K—|0) one finds (0]©@@I|K®), where the meson masses are not degenerate,
the formula in[53] does not include separate chiral loga-

(79

i 8 3 rithms for each of the possible meson masses, my, and
(0|@BI|KOY = —2—(m2—m2){ 1— =L (m,) m, . Thus, for this matrix element, we make use of the fact
f i that
3 . (3.3) 100 2\(1 loop (1 loop
_ELX(mK)_]__ZLX(mn) (0|®@=K) ~ (my) (fx) Imy (84)
4i o8 and use Eqgs(71) and (73) to determine the chiral loga-
fl (m2—m2) rithms. This gives
— 2 —
1 @B K+ — — (3.3
X §Lx<mn,mK>—2LX(mn,m,T>], (80 (rlOFFIKD =fa™ 2 s 2l (m}, (89
oo Aia?t <O|(3'3)|K0>:$a(3’3)k1_2|‘)((m77)
(0]@@7 KO = (mig—m?2)
3 1
x{—2L(m,,mg)+2L,(m,,m,)}, _iLx(mK)_l_ZLX(m”)]' (86)
(81
Thus we have
where

(0[0YK) _af™®

1 1 (0]OBIIKY) ¢33
E(M M) = 0432 e

(mg—m2){L+:}

(8,1)
2 2 128
m m
4 1 4 2 (33)
my In -m5In| —|]|. 82 a
! (A)Z(PT) 2 (A)Z(PT>} ( )

(mz—m?){chiral logst---},

X

87

One of the most important aspects of using these formulaghere the dots represent nonlogarithmic higher order terms.
to determine&K — 77 matrix elements is the determination of The “chiral logs” in Eq. (87) are those given in the second

the coefficientsx$>, which are in general quadratically di- |ine of Eq. (80) and in Eq.(86). As expected, the chiral
vergent in a regularization which preserves chiral symmetryjogarithms from the power divergent part of the four-quark
[Since (8,1) operators are pural=1/2, we cannot avoid operator are the same as for the corresponding quark bilinear.
oY by measuring onlyAl=3/2 amplitudes, as we can The logarithms in ther®? term in Eq.(87) are higher order
avoid a&®.] However, as the equations above sha§*” in chiral perturbation theory and are suppressed by the rela-
is multiplied by chiral logarithm corrections at subleading tive sizes Ofa(l8’l) and a(z&l)_ For m? corrections which
order. Given the large difference possibleif?" anda®”,  come from loops in th€(p?) Lagrangian, one also expects
a®Y can be much smaller thagl®" L (m,). a cancellation between the bilinears and the four-quark op-
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erators. This analysis leads us to expect that the ratio in Edactor of mi. Such effects may also appear in the matrix
(87) is a linear function ofnz —m?2 with very small correc-  elements studied in this paper and in this section we discuss

tions. We will investigate this numerically in Sec. XIA. the current state of analytic results and how we will handle
It is also important to note that oneg®™) has been de- these effects in our simulation data.
termined, we must numerically evaluate For quenched chiral perturbation theory, a Lagrangian
framework has been developEglb] and two new parameters

mf,, enter,« and my. Calculating one-loop effects for the pion

iz [1+2L,(mw] (88  mass gives

4
<7T+|(8'l)| K+>+ a(28,1)

) . . ) ) ) 24(1 loop)
to determinea{®? if we are not working with arbitrarily (mz)

small quark masses. If we could work close enough to the 1
chiral limit, the chiral logarithm terms in Eq88) would =mf,[1+w
make an arbitrarily small contribution. This is not the case 8
for the data presented here, where the minimum pseudoscalar

mass is 390 MeV. Equatiof88) involves large cancellations X In(me/AéXpT)“, (90
between divergent quantities. Notice that the chiral loga-

rithms are very important in this determination, since the . .
multiply the di\yergepnt coefficiemz(zg'l). A simple way to do ywhereAQXpT is the scale used to renormalize the quenched

S % theory. From loops in th&)(p?) Lagrangian, one gets an
this is to recall that the power divergent part of four-quarko(mi) term of ami/24772f2, which is not shown in Eq.

operators should also have the same chiral logarithms as t . ' .
corresponding quark bilinear. Equati@®b) shows this to be rish?:élltl(;Sg::;tr;nr?%r;;ovsﬁgpee the coefficient of the quenched

the case. Thus the combination

@ 5 mg mg 2
3wt 3

2
> 3 o= T (93)
(7T |@@IK Y+ 2my——— (7" |0CI|K™) 247%F2"
a3d

It is important to note that, in addition to the appearance of
(89) the m3Inm2 term, the only conventional chiral logarithm
appears multiplied byr. In Sec. VI we discuss the determi-
nation of my and « from our measurements of the depen-
yields a result only involving the physical coefficien®?),  dence of pion mass squared on the quark mass for quenched
with corrections in chiral perturbation theory that do not in- domain wall fermion simulations.
volve the power divergent coefficient. The chiral logarithms ~For the kaon matrix elements of primary interest in this
which multiply power divergent coefficients have been re-work, quenching is also expected to modify the quark mass
moved, without having to know their precise valu¢shis  dependence from the full QCD forms given in the previous
subtraction technique was originally discussed in R&7], section. A recent calculation of the quenched chiral loga-
although its ability to remove power divergent terms multi- rithms for the(8,1) and (27,1) operators has been presented
plied by chiral logarithm corrections was not discussed. in Ref. [55]. Calculations of this type, including thé3,8)
Note, this complete cancellation of the quadratic divergenc@perators, are very useful in the analysis of matrix elements
will hold as well in the quenched theory. This is important, from QCD simulations. Unfortunately, the currently avail-
since our actual calculation is done in the quenched approx@ble calculations completely remove all quark loops, includ-
mation where the coefficients of the chiral logarithms are noing those in the effective low energy four-quark operators.
known. For theO(p?) AS=1 Lagrangian of quenched chiral pertur-
bation theory, Eq(2.2) of [55] shows that the authors have
C. Quenched one-loop chiral perturbation theory: used a supertrace to represent the operators in chiral pertur-
K—m and K—0 bation theory. The supertrace introduces ghost quarks to can-
cel loop effects of real quarks, which is an unconventional
The discussion in the previous section focused on the chigefinition of the quenched approximation.
ral |Ogarithm5 present in various full QCD masses and matrix However, for actual numerical QCD calculations, quark
elements. Similar teChniqueS can be used to calculate thgops which can be made through self-contractions of the
nonanalytic dependence on the quark mass for quenchqgw_energy four-quark operators of Eq&l)—(23) are in-
simulations[13-15. A surprising aspect of these calcula- cluded. Only disconnected quark loops, generated through
tions is the appearance of quenched chiral logarithms, wherge quark determinant in QCD and connected solely by gluon
in addition to them?Inn?’, form of a conventional QCD exchange with the four-quark operators, are discarded. The
chiral logarithm, terms of the form In m2 also appear. Here numerical simulations correspond to evaluating all relevant
6 is a constant given in terms of the parameters which entefiour-quark operators, at low energies, in background gluon
the low-energy effective Lagrangian for quenched QCD fields generated without explicit vacuum polarization quark
These effects are larger for small quark masses than the cdpops. In the quenched approximation these vacuum quark
responding conventional QCD logarithms, since they lack doop effects are partially included by using an appropriately

2
_ 4my, LB
f2 1

1
l+ ELX(mM)
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shifted value of the bare QCD couplirgy The existing ana- It is important to stress that this cancellation of the qua-
lytic calculations for the quenched theory correspond tadratic divergence in the logarithmic corrections to the chiral
evaluating all relevant four-quark operators, including ghostimit discussed above provides a concrete example of the
quark self-contractions, in a quenched gluon backgroundgeneral cancellation of quadratic divergences implied by the
Since these situations are quite distinct, formula presented iform of the subtraction term which we adopt. As will be
[55] are not generally applicable to our simulation results. discussed in Sec. XI A, we choose to implement the subtrac-
There is one result fronf55] and earlier calculations tion required by chiral perturbation theory in a fashion which
which is applicable to our simulations, the amplitude forremoves the quadratic divergence completely from the re-
K*—a" for the (27,1 operators. Since there are no self- sulting (7*|®®D|K*) amplitude in the limitm,,s—0. The
contractions of the four-quark operators in this amplitude, itcancellation of the quadratic divergence is guaranteed by
is unaffected by the ghost-quark loops discussed in the prestandard renormalization arguments and does not rely on chi-
vious paragraphs. Quenched chiral perturbation theory preal perturbation theory.
dicts that this amplitude has the form

> (2 IV. DOMAIN WALL FERMION MODIFICATIONS
M a2 TO CHIRAL PERTURBATION THEORY

(wOF K )= —

1-6Lo,(My)

In the previous section, results relevant to the current cal-
(M2—2am?) culation from both quenched and full QCD continuum chiral
By perturbation theory were discussed. In addition to the basic
lowest order relations, chiral perturbation theory gives the
+0o(miy), (920  logarithmic corrections for both full and quenched QCD. For
domain wall fermions with finite extent in the fifth dimen-
sion, exact chiral symmetry does not exist, even if only the
whereL o, (m) is the same ak, defined in Eq(82) except  fermionic modes relevant for low-energy QCD physics are
that A, pt is replaced by\ o, p7. Note that Eq(92) contains  studied, due to the mixing between the left- and right-handed
both a conventional chiral logarithm and a quenched chirafermion surface states that form at the boundaries of the fifth
logarithm. The conventional chiral logarithm is quite large dimension. However, for low energy physics this mixing ap-
(its coefficient is 6 but markedly smaller than the conven- pears as an additional contribution to the fermion mass, the
tional chiral logarithm in full QCD, Eq(79) (its coefficient  residual massn,.s, in the low-energy effective Lagrangian
is 34/3. It is fortunate that this quenched formula is known, describing domain wall fermion QCD at finite values for the
since, as we will discuss in Sec. X, the valuedf”Y we fifth dimension[21,22.
can determine from our data is strongly dependent on the For the calculation at hand, we must include power diver-
known analytic value for the coefficient of the conventionalgent operators, which are also affected by the residual chiral
chiral logarithm in quenched QCD. symmetry breaking. However, due to their dependence on
For our quenched simulations, we must still perform ascales up to the cutoff, chiral symmetry breaking effects here
subtraction of power divergent quantities to get the quenchedannot be precisely described in terms of an extra additional
values fora{®V). As we discussed in the previous section formass in the low-energy effective Lagrangian. As we will see
full QCD, it is vital to do the subtraction in a way which in Sec. IV A below, these effects modify the formula in Egs.
correctly removes power divergent coefficients times both52)—(67). These modifications will be important in the
conventional and quenched logarithms. If the quenched foranalysis of our numerical data.
mula analogous to Eq§78)—(81) existed, one could in prin- A second modification to the chiral perturbation theory
ciple fit individual amplitudes to the formulas, including formula of the previous section comes from the presence of
logarithms, and extract the desired coefficients. Even withunsuppressed topological near-zero modes in our quenched
the formula, such a process could prove difficult due to theQCD calculation. Without the fermionic determinant, these
statistical errors on the data. modes need not occur with the distribution of full QCD and
However, we can make use of the fact that in chiral perthe light-quark mass limit of quenched QCD has been seen
turbation theory, the power divergent parts of operators apto be pathological21]. The effects of such modes are sup-
pear as lower dimensional operators. Thus the logarithmipressed for large volumes, but can be important for the vol-
corrections, both conventional and quenched, should be th@mes used in the matrix element calculations discussed here.
same for the power divergent parts of a four-quark operatoBince the zero modes can lead to nonlinear dependence on
and the appropriate quark bilinear. This is the basis for théhe input quark mass, just as the chiral logarithms can, it is
cancellation of the chiral logarithms in Eq®7) and (89). important to quantify their effects. We do this through a dis-
Thus for the subtractions of power divergent operators, theussion of some of the relevant Ward-Takahashi identities in
analytic coefficients of the logarithms are not needed. IiSec. IV B.
would, however, be useful to know the coefficients of the The notation we use for domain wall fermions is given in
logarithms for the remaining finite term@As this paper was [21]. In particular, we useW;(x,s) to represent a five-
being completed, such a calculation was reported for some afimensional fermion field with four spin components and
the operators of interest hefg8].) We will have to rely on  flavori. A generic four-dimensional fermion field with four
the behavior of our data to estimate the size of these effectspin components and flavomwill be given by ¢;(x), while

In(Miy/ AG,p7)
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the specific four-dimensional field defined frok(x,s) will high momentum and is thus not simply equalcton,es. In
be given byg;(x). For quark fields of specific flavon, d, s particular,c; ~exp(—aLg/a®. For the case with S@3) flavor
andc will be used to represent four-dimensional fields de-symmetry and the conventional choif¥,,= 8,5, the chiral
fined fromW;(x,s). condensate for domain wall fermions should have the form

A. Residual mass effects (qay(m¢,Ls)=(qQq)o+cim¢+cy . (99

Residual chiral symmetry breaking effects for domain
wall fermions at finiteL can be easily discussed by intro- equal to(qa)(m;=0L.=2) since there is no simple rela-

ducing a new term into the action containing a Spemal'tion betweenc, andc;. Thus the residual chiral symmetry

u_nltary_ﬂavor matrix () [59.]' T.h's term _connects _four- reaking effects in a power divergent quantity are small for
dimensional planes at the midpoint of the fifth dimension an . .
argel, but they cannot be cancelled by a simple choice for

has the form ;
the input quark mass.
The presence of the new parameferfor domain wall

Notice that the value ofqq)(m;,Ls) for m¢= —m,esis not

So=-> {lFX,LSIZ—lPL(QT_ DWWy fermions means that there is an additional operator needed to
X represent® @Y in chiral perturbation theory. In particular,
+‘1’x,LS/2PR(Q—1)‘I’X,LS/2—1}- (93) replacingM in Eq. (56) by m,.{) yields the operator
~ 8
If we let Q transform as BEY= f—lz)mresTr[/\EQJrA(EQ)T] (99)
Q—UgQU! (94)

and the representation 6f®% in Eq. (52) is modified to

under SU(3)®SU(3)gz, then the domain wall fermion
Dirac operator possesses exact chiral symmetry. When 0BV aBVPEY+ o BVH R+ oBVEEY . (100
— o0, this extra midpoint term in the action should not matter
for low-energy physics, so any Green'’s function that containgAs mentioned in the previous section, the coefficieﬁtl) is
a power of() should also contain a factor of expely).  power divergent and consequently soaig™”). Because we
(Here we assume that in the—ce limit the residual chiral have used an explicit factor af, in the definition of
symmetry _vanishes.exponentially.. For the_queqched theor;@(se,l)’ which involves power divergenceszg&l)aé a(28’1).
the numerical datg is not_concluswe on this point, but doesimilar to the behavior ofq) at finite L, the chiral limit
show that the_: residual ghlral sy_mmetﬂ/ breaking effects cans @@ s not given by settingn,= — M.
be made quite small.Since ) is a (33) under SU(3) The presence of this additional term in the representation
®SU(3), it transforms “like a mass term.” ~ of ®®Y does not change Eq59), since) is flavor sym-

Consider a continuum effective Lagrangian description ofyatric anda(sg'l) is defined in the zero quark mass limit.

QCD with domain wall fermions at finites. The presence (There can be quark mass dependence in the residual chiral
of the parametef) implies the mass term in this Lagrangian symmetry breaking effects, but this is a higher order effect.

will be Such quark mass dependence has been seen in quenched
— Z0t 70 simulations, but is a small effe¢R1,22.) This new term
ZoMi i+ C{PQ Pry+ QP LY, 99 does change Eq62) for finite L to
to leading order. Her&,, is a mass renormalization constant 2

and ¢ is a constant with dimensions of mass that is <7T+|®(8‘1)|K+>=4—?17M(a(18’1)—a(28'1))—?}—ivm,esag&l)

Ol exp(—aLg/a] wherea is the lattice spacing. With the con-
ventional choice), ,=d, ,, EQ.(95) reduces to the form (101

where we have also takef),,=d,,. Thus we see that

+ Mg ; :
Zu( M+ Mred) Y (96) (w|O@@Y K™Y will not vanish atm;=0, nor atm;=
where m,~10"3 for quenched lattices witl '~2 GeV ~ —Myes, Since there is no simple relation betwee§?" and
andL¢=16. a(38'1). However, since all we require from simulations is the

A simple case where power divergences are involved ivalue of a(l&l), we see that it can be determined from the
given by the determination dfgg) on the lattice with do-  slope of(7*|®®Y|K ™) with respect tan; and the value of

main wall fermions. Since this transforms as a3i3plus  «$*? from (0|@EY|KO),

(3,3) in chiral perturbation theory, its dependence on explicit It is true that( " |@ YK *) should reach its chiral limit

chiral symmetry breaking terms is given by atmy=O(—mJ, since the residual chiral symmetry break-
ing effects still depend on the overlap between the surface

@Qq)(m;,Lo)~cy(M+MYH+ci(Q+Q%  (97)  states at the ends of the fifth dimension. We will be able to

check that our numerical results show this behavior. In gen-

wherec, andc; are two constants. Sinag depends on high eral, the chiral limit for any divergent quantity is uncertain at
momentum scales and behaves @ 1¢] also depends on finite L. As previously mentioned, this directly impacts the
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determination ofx(®® from the Al =1/2 matrix elements of Here AZ is the conserved axial current which involves all

(w10 @8K*). Fortunately, here we can use the finké  points in the fifth dimension]i=qt®ysq and\]gq is a similar

=3/2 matrix elements and the Wigner-Eckart theorem to depseudoscalar density defined at the midpoint of the fifth di-

termine a(89), mension. Summing ovex yields the integrated form of this
identity

B. Topological near-zero modes and Ward-Takahashi identities a a .
_ _ _ _ 2 [([2med3(0 +238,0010(y)) +i(8°0(y))]=0
In the previous section we discussed how residual chiral x

symmetry breaking effects from finite, values can enter the (103

operators of interest in this work. These effects make the

chiral limit uncertain for divergent operators. A second diffi- which we will use extensively.

culty with the chiral limit arises for quenched domain wall ~ We first consider the simple case wheDgy)=J5(y).

simulations in finite volumes from fermionic topological Then Eq.(103 becomes

near-zero modes which are unsuppressed due to neglecting

the fermionic determinant. The presence of these zero modei

is an important feature of domain wall fermions, but it does

lead to additional complications in the quenched simulations

reported here. Since these modes distort the chiral limit, they = (uu(y))=12uu(y))at norm (N0 sum on & (104

can produce nonlinear behavior in Green’s functions that

may, in a range of small quark masses, be difficult to distinwwhere the factor of 12 is needed since we normalize

gUiSh from the chiral Iogarithm effects discussed earlier. FO(UU(y»Iat norm Per spin and Co|or[We are Considering the

the remainder of this section, we will refer to the topological case with SI(B) flavor symmetry, making the chiral conden-

near-zero modes as zero modes, with the understanding th&dte foru, d, ands quarks the samgWorking in Euclidean

their eigenvalues are not precisely zero for firite space with correlators evaluated through the Feynman path
The presence of zero modes in quenched simulations hagtegral, we break the sum ovarinto the points withx#y

been extensively discussed [Iﬁl], where their effects were and the point W|th>(:y For the points Withx # Y, the cor-

seen in the chiral condensate and hadronic masses. In thiglator is a sum of exponentials, with the overlap between the

calculation we will be subtracting large, power divergent |at-operator3]g(x) andJZ,(x) and the different mass states con-

tice quantities to achieve our final physical results; it is im-yentionally represented as a matrix element. Kery a

portant that the zero mode effects be well understood for theggntact” term is generated. Using the normalizations for the
subtraction process. Since zero mode effects are suppressg@ies given in Appendix A gives

as the volume increases, naively down by a factor gfvi/

relative to the fermionic modes responsible for chiral sym- ex

metry breaking and low energy QCD physics, their effects >, (0] m¢JZ(x,0) + J54(x,0)[n)

are not included in the infinite volume chiral perturbation xn

theory results of Sec. Ill. < (nlJ2v.00)+ C(v) — (T -0 10
To gain a quantitative understanding of the zero mode (nlJ5(.0)]0)+ C(y) ~(uu(y)) =0, (109

effects, we will use the Ward-Takahashi identities of domain . . .
wall fermion QCD. Since these identities are true in theWereVs is the spatial volume an@(y) is the contact term

quenched theory for any quark mass and volume, they mu&enerated wher=y. The pseudo-Goldstone boson term in

include the effects of zero modes. Continuum chiral perturi€ SUm oven gives
bation theory is the simplest way to represent the Ward-
Takahashi identities in the infinite volume limit with arbi-

trarily small quark masses. In this limit, where zero modes
do not enter, saturating intermediate states with light pseudo-
scalars gives the relations of lowest order chiral perturbation
theory. Thus the Ward-Takahashi identities can detail how
zero mode effects alter the lowest order chiral perturbation

theory we are using to determiné— 77 matrix elements.  since for the low energy physics described by the gtafé
Of_ course, the _chlral logarithm corrections to_lowest orderye have]§q=mres]§- This term in the sum is not suppressed
chiral perturbation theory are also included in the Ward-]c

o . . r light quark masses due to tlmaf, term which appears in
Takahashi identities, but these are more easily handlefge denominator. For a general integrated Ward-Takahashi
through chiral perturbation theory techniques.

. ; . . identity, keeping only the leading terms in thg—0 limit,
The Ward-Takahashi identity for domain wall fermions . . ~. i P -
with SU(3) flavor symmetry i18,21] which includes such “pion pole saturation” contributions,

leads to the relations of lowest order chiral perturbation

([meJ5(x) +354(x) 135(Y))

X

i —En(|Xo—Yol)]
2VE,

1
(0Im(IB(0) +3,(0)|7%) — (| 35(0)]0)

_ mg + Mres
2

{0]32(0)| )|? (106

w

A (A2 (0)0(V)) = 2me( JA()O (V) + 2(J2 (x)O theory[49]. To apply this procedure here, we must first note
w{AL0)) (IO +2(Isq(x)O(Y)) that the other states in the sum and the contact term give a
+i(8%0(y)). (102 contribution of O(m¢)/a2+ O(m,9d/a2. Here high momen-
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tum modes can enter and the midpoint pseudoscalar density (0]32(0)| |2
2q is not simply related td5. Thus, without any effects of —my] ———5——
zero modes, we have M
M+ Mhes O(my) . O(Mreg IO e 0w (] Omy)
0]J2(0)|m)|?+ + MNITTA A f
_2_|< 95(0)} )| a? a’ * MS;O M= m  vem, iy
— A'=0
=(uu)(my,Ly). (107) i} )
— AY) oy
This relation is the same as E@8) and once again demon- :<l/f¢>(mf)—zo Tf( W) (111

strates that the chiral limit cannot be achieved at fihi{dy

setting m; = —myes when divergent quantities are involved. For finite Ly, the modifications to Eq111) come from in-
However, since the Ward-Takahashi identities include zero, s’ ' .
cluding the midpoint terndg q @nd a residual chiral symmetry

mode effects, we can investigate their contributions to th'%reaklng term for each elgenvector referred todas in

relation. . . m
To simplify the discussion of zero modes, we consider thézﬂ In [21] it was found that a histogram values for
modes with eigenvalues below Aocp Was peaked very

Ls—o limit where the contribution of théZ, term to the
- . . ; close tomys. It is certainly possible that as—0 the low
Ward-Takahashl identity vanishes. Followifig/l] we work . ; . ;
: . . . - lying eigenvalues all show a common residual chiral symme-
with generic fermion fields ¢, the continuum four- . .
dimensional Dirac operatd*) with eigenvalues and eigen- try breaking of My, although this has not been demon-
ectors given by D@+m) i, = (ix+m) g, and write the strated. To proceed with our general analysis including finite
Vuark rglva atoyr a5 =0 12\ wri L, effects, we make this reasonable assumption and in the
q propag sums over eigenvalues replaog by m;+m for modes
with eigenvalues below= A ocp. For such terms, the factor
i ) (108) of m; multiplying the quantity in braces on the left-hand side
IN+m is also modified tom;+m. For terms with eigenvalues
o . above~Aqcp, such a simple modification does not seem
[Here we are considering a particular gauge fldl{x) and  Jikely. However, these terms do not produce any effects
the eigenvalues, eigenvectors), (x), and quark propagator which diverge asn;—0 since the i from the zero mode
are functions ol ,(x). Green’s functions result from aver- is cancelled by the explicim; multiplying the terms in

aging over an appropriate distribution of gauge figld$ie  praces on the left-hand side of E@.11). This gives us the
integrated Ward-Takahashi identity, H404), then becomes finite L result

Y

— Mg 2

XN\

;
(V)P (X) P (X) ¢x'(y)) |(0]J2 O)|’7T>|2

—in+me IN+my —(Mf+ Mgy

m?

m

()l (y ))
+2, Tr 109 '
)y ( ix+my (109 L iAQCD . ( BP0 (YY)
. . . . X,A=0 ' —IN+Mit Mg I +Ms+ Mg
Performing the sum ovex in the first term givess, ,, and or M =0

we are left with

L O O(Mred
t T 2 2
S Tr( 'ﬂx()’)%(Y))_FE Tr( lﬂx(Y)%\(Y)):O. a a

A2+ m¢ \ ix+m;

n(Y) i (y) S)

N+ M+ My (112

(110 =(uu)(my, L E Tr
This relation is easily seen to be true, sinceXet 0, there is
also an eigenvalue-\. Also, the zero mode contributions ~ When (0[J2(0)|7) and m, are measured from the cor-
cancel between the two terms. Zero modes in the left termelator(iJ&(x)iJE(y)) in a numerical simulation, some zero
will alter numerical measurements of pion properties in mod-mode effects can be present depending on the range of
erate volumes, while the right term contains the zero modes-y used. The effects of zero modghe second term in
which enter in the chiral condensate. braces in Eq.(112)] will enter in the measured values
Consider working in moderate sized volumes where zerq0|J2(0)|#’) andm,., where the primes indicate quantities

mode effects may be present but enter only as small corregteviating slightly from their infinite volume values. We can
tions to the infinite volume results. We decompose the sumgeplace the quantity in braces in E412) by

in Eq. (109 into terms without zero modes and terms with

zero modes. The terms without zero modes will give Eg. 1(0]32(0)| 7")|2
(107). Including zero mode effects changes Ef07) for 5—2 (113
smallm; in the Lg—oe limit to m.
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which is bounded by the values f¢uu)(m;,Ls) measured We now consider the modifications to Eq15) from zero

with and without zero mode effects. modes, whe7"|S|K™) is measured on the lattice from the
We can now do a similar analysis for the matrix elementcorrelator (P .+(x)S(y) Px-(z)), with x>y>z. Provided

(7 *[sd|K™). This is an instructive example since we want the zero modes are localized, their effects will predominantly

to use measured values of*|Q;|K ™) matrix elements on enter the quark propagatoBs *(x,y) andD ~(y,z), since

the lattice to determine physical quantities and we seek some—z can exceed the size of the zero mode. Thus our mea-

understanding of the role of zero modes in matrix elementsured quantities will not include the’ =0 term in the first

of this form. We start from Eq.(103 taking J&(x) summation of Eq(116). Separating out this term and again

=[dysu](x) and lettingO(y)—[sd](y)[iUyss](z). We de-  letting primes denote states where some zero mode contami-

fine the pseudoscalar densitid®-(x)=[iuyss](x) and nation is possible gives the following result for the Ward-

P.+(X)=[idysu](x) and the scalar density S(x) Takahashi identity whem;—0:

=[sd](x). [We adopt the notatioPx-(x) to distinguish m

these pseudoscalar operators from the operatorKlikex)  ——(O0|P+|(7 )" }(7")'|S(y)Pk-(2))

of chiral perturbation theory, as in EqéA9) and (A10), M=

\(/\féig))haf;ave a different normalizatigiVe can then write Eq. = (Pe+(Y)Pe-(2))—(S(y)S'(2))
t t
S ([2miP, (0 +2PYT(01S(Y) Py -(2) ‘220“<%W2W1'(X) %ﬁnfw))
(P (y)P-(2)+(Sy)S'(2)=0 (114 :<prf(';;pK(z)>_<s(y)§(z)>
MP : Gyt P . .
he = “qvantom numbtrs formed ok (9 for & —2 3T HOACLIERON g
=L4/2—1 andL42. Considering the case whekg—x, y N'=0A f f

—zis large, there are no zero modes present ameb0 11 combination(Py+(y) Px-(2))—(S(y)S'(z)) has zero
gives mode effects. These arise from a zero mode in either one or

om both quark propagators. The=0 term in the sum cancels

—2f<77+|§j||<+>—1=o_ (115  the contribution from(Py+(y)Px-(2))—(S(y)S'(2)) when

mz both quark propagators have a zero mode. Wker0, the
additional term cancels half of the zero mode contribution
from (Py+(y)Pk-(2))—(S(y)S'(z)) due to a zero mode in
only one propagator. Since zero mode effects enter
(Px+(Y)Px-(2)) and (S(y)S'(2)) identically, the right-
Ol?and side of Eq(118 becomes

The term(S(y)S'(z)) plays no role in this case, since it does
not contain any contribution from the massless pseudosc
lars.

We now consider the role of zero modes for thg=
case. We start with the complete spectral decomposition

Eq' (114)’ which is <PK+(y)PK*(Z)>no zero+<PK+(Y) PK*(Z)>one zero
o S Tr( (Y BL(2) (D), (0 l//m(X)deu(y)> ~(S(Y)S"(2))no zer0 (119
f ; RN N
XA I\ my I\ my I\ my Here “no zero” means no zero modes included in the spec-
+ , t tral sum and “one zero” means one of the two quark propa-
- Tr( zp)\.(y)%(z) o ?Z),%'(y) gators is a zero mode. For smatdl, (S(y)S'(2) )no zeroPlays
AN IN+me — Iy no role leaving us with
t
(V) P(2) o (D), (Y) 2m
‘% Tf( rm im0 A9 OIP () ) [S(y)Pe-(2)
The sum ove allows this to be written as =(Px+(Y)Px-(2))no zergt (Pk+(Y)Pk-(2))one zero
> Tr( POAE gl ) 9
Y IN+my » M For finite Lg, Eq. (120 is modified by replacing &y with
2(m;+m,e9 since no divergent terms appear.
2 1 1
« me _ —0. (117 For the range oy —z where our matrix elements calcula-
(N)24+m? —iN+me DN +my ' tions are done, we have explicit results {6y +(y) Px-(2))

and(S(y)S'(z)). Since
The term in brackets is easily seen to be zero. As must be the
case, the zero modes entering the spectral decomposition Px+(Y)Px-(2))no zerg={Pr+(Y)Pk-(2))+(S(y)S'(2))
also satisfy the Ward-Takahashi identity. (121)
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we can estimate the effects of the one zero mode term on thgauge coupling corresponds to a lattice cutoff af?!
right side of Eq.(120). We can compare our numerical data =1.922 GeV set by the mass[21]. The domain wall fer-
to the Ward-Takahashi identity with no zero mod€s).  mjon fifth dimension wad (=16 sites with a domain wall

(115] and with zero modefEq. (120]. We will discuss our  pejght Mg=1.8. These parameters yield a residual quark

numerical results for the Gell-Mann—Oakes—Renner,
i mass of about 3% of the strange quark .
(GMOR) relation in Sec. VIB and for thesd Ward- ° 9e M

i o The light quark masses in units of the lattice spacing were
Takahashi identity in Sec. VIC. taken to bem;=0.01, 0.02, 0.03, 0.04, and 0.05. The value
of m; corresponding to a pseudoscalar state made of degen-
erate quarks with mass equal to the physical kaorpat

A final part of this calculation where the features of do- =6.0 is 0.018[21]. Heavier quarks were also included to
main wall fermions in quenched QCD are important is theallow matrix elements to be calculated in the 4-flavor case
role of zero modes in the subtraction of power divergencavhere a charm quark is present. These heavy masses, with
operators required to determie— 77 matrix elements us- values ofm;=0.1, 0.2, 0.3, and 0.4 will not be discussed in
ing chiral perturbation theory. As discussed in Sec. lll B andthis paper but rather in a subsequent publication. Quark

C. Topological near-zero modes and operator subtraction

shown in Eq.(87), the ratio propagators were calculated using the conjugate gradient
method with a stopping residua&10"8.
(0|®@®I|KO) Quark propagators were calculated from Coulomb gauge

(122 fixed wall sources at time slicdg=5 andt,=27. The re-
sulting propagators were fixed to lattice Coulomb ga(me
the “sink” end) to reduce fluctuations in gauge averages and
to allow construction of wall-wall correlators. Forward and
backward in time propagators were constructed from linear
ombinations of propagators computed with periodic and an-
iperiodic boundary conditions. This amounts to using an un-
é)hysical doubled lattice in the time direction with periodicity
64. The random wall sources used to calculate eye diagrams
were spread over times=14—17, and the corresponding

(0]©3I|K?)

has no chiral logarithms multiplying power divergent quan-
tities. This is due to the locality of the power divergent part
of the operato® &Y. The situation for zero mode effects is

identical since in the denominator they only enter the quar
propagators connecting the to the operator. For the power
divergent part of the numerator, zero modes also only ent
the propagators connecting th€ to the operator and their

effects., cancel in the ratio. Thus the "”ea{g% imy—m?) propagators had periodic boundary conditions.
given in Eq.(87) should also be true for the,"™ term when Before starting the production simulation, all correlation
zero mode effects are included. This linearity will make theg,nctions were computed for a single common configuration
determination ofa(28'l) much more accurate and our results gn each of the QCDSP machines that were to be used in the
will not be influenced by a small zero mode effect times acalculation. They agreed bit by bit. During the production
power divergent contribution. simulation, we checkpointed every tenth configuration. All
Oncea®" is known, we can use the combination of ma- quark propagators and contractions were calculated twice on
trix elements given on the left-hand side of E§9) to de-  this checkpointed configuration in order to detect any hard-
terminea(ls'l). Here we take a linear combination of tWo  ware errors. If the output from the repeated calculation did
— matrix elements and zero modes may enter in bothnot agree with the original, the node responsible for the fail-
However, once again the power divergent part ofure was tracked down and replaced. The process was re-
(m*|®CYK*) and a(2811)<7.,+|®(3,§)|K+> are altered iden- Peated until bit by bit agreement was obtained. Such hard-
tically by zero mode effects in the quark propagators beWare errors occurred very infrequentiiess than 1% of the
tween the operators creating the pion and kaon an®tee  configurationg
Thus our results will not be altered by small zero mode ef-
fects multiplied by power divergent terms. There can, how- B. Computer code details

ever, b_e zero mode effects left in the ﬂm_te_part of the left-  \we have written two completely separate production com-
hand side of Eq(89). These should be similar to the zero nter programs to calculate weak matrix elements. The first
mode effects discussed in the preceding section fofg pased on the general purpose QCD code written by the
(m"[sd|K™), whose size we will estimate from our data in columbia University lattice group and runs primarily on the

Sec. VIC. QCDSP supercomputers at the RIKEN-BNL Research Cen-
ter and Columbia University. The second program is based
V. BASIC FEATURES OF NUMERICAL SIMULATIONS on the general purpose QCD code written by the MILC Col-

laboration which was extended by us to use domain wall
fermions. We only have a single code which calculates the

The quenched gauge field ensemble used to calculate egropagators necessary to compute renormalizaf@nfac-
pectation values in this study was generated at gauge coters, which is part of the QCDSP version. In addition we
pling 8=6.0 with lattice four-volume 1¥x32 (space have three independently written analysis packages that run
Xtime). The ensemble comprises 400 configurations sepan workstations which take the raw matrix elements and
rated by 10000 sweeps, with each sweep consisting of aombine them witlZ factors and Wilson coefficients to yield
simple two-subgroup heat-bath update of each link. Thehysical amplitudes.

A. Simulation parameters
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We have performed several checks of these codes. Mos! o717 T 1 T T T T
importantly, a completely independent check code was writ- L _
ten to compare with the two production versiqisis does
not include theZ factorg. Output generated on the same
configuration from each code was compared for several test - 1
cases. In each case one code was run on a scalar workstatic o5
and the other on a parallel machine. The expected agreemer~;~=
was obtained in each test. We also checked the productior =
simulation by calculating all of the required correlation func- «_-0.075- —
tions with the check code on a single common gauge field
configuration. All of the production simulation parameters
(volume, gauge coupling, quark masses, sources, \ware 01
used in this test. Th& factor code, which runs on a work- : .
station, has not been exhaustively checked by second inde PV N H I S EE B B
pendent code. 7o 0.01 0.02 0.03 0.04 0.05 0.06

As a final useful check, note that we work explicitly with m
the operators defined in Eq#$4)—(23). The (V—A) X (V
—A) operators go into themselves under a Fierz transforma- FIG. 1. The value ofnZ In(mZ/A%,pr) vs m; for the range of
tion. Thus color-mixed contractions can be compared to corduark masses used in our simulations. The dashed lines have
responding color-diagonal ones. We find perfect agreemen® IN(M/A%, pr)=—0.0938 and—0.0996. For 0.02m;=<0.04 the

-0.025— =

f

in all cases. variation inm?2 In(m2/A% ) is about 5%.
VI. BASIC TESTS OF THE CHIRAL PROPERTIES In our earlier work on the chiral limit of domain wall
OF DOMAIN WALL EERMIONS fermions, we found that by working on large enough vol-

umes to suppress the effects of topological near-zero modes,

In the earlier sections we have discussed the changes §lr data was consistent with the presence of a quenched
full QCD, chiral perturbation theory relations due to quench-chjra| logarithm and that the point whers? vanished for
ing and using domain wall fermions at finites. In this  gch a fit was also in agreement with our valuenof, de-
section, we will present our numerical results for simpleiarmined independently. For our current simulations, where
cases and check their consistency with the theoretical expegse volumes are not as large, we will use the previously
tations. The cases we con§|d2er afe) the presence of measyred valum,.=0.00124(5) as an input and neglect the
quenched chiral logarithms im7, (2) tests of the Gell- m —0.01 point in our analysis. This should exclude the
Mann-Oakes—Renner relation for finitg domain wall fer-  gqominant effects of topological near-zero modes and will
mions, and3) the Ward identity satisfied by the matrix ele- z1sg allow us to determine a value fér
ment of (" [sd|K™). In fitting to the general form of Eq90) we must decide
how to handle the presence of the parametas well asé.

We first note an important consequence of our range of pion

Numerous simulations have looked for the presence ofmasses, which is thamf,ln(nﬁjAéxpT) only varies by 5% for
guenched chiral logarithms ime versusm; of the form  0.02<m;<0.04 with Aq,pr=1 GeV. This is shown in Fig.
given in Eq.(90). Recent values fop are ~0.1[60] using 1 where we have useth?=0.0098(20) 3.14(9)m; from
Wilson fermions, the Wilson gauge action, and lattice spacf21]. Thus the termzmzw |n(mzﬂ/A<23XpT) will be approximately
ings in the range 0.1-0.05 fm, 0.069.013 [61] using  constant over our range of quark masses and we cannot ex-
clover-improved Wilson fermions, the modified quenchedpect to resolve it with our data. The small variation in
approximation, and a lattice Spacing of 0.17 fm, and 007m§r |n(m2ﬂjAéXPT) over our pion mass range will be an impor-
+0.04[21] using domain wall fermions, the Wilson action, tant point in fits to much of our data.
and a lattice spacing of 0.2 fm. Singkis a parameter of Thus we fit our lattice data to the form
low-energy quenched QCD, the general agreement between
the results from the different lattice formulations quoted
above is encouraging and expected.

All the values for § are below the initial estimates of
~0.2, based on the value for thg mass in full QCD. This
suggests that the effects of quenched chiral logarithms willVe have used this functional form to it from the 85
only be evident at quite small quark masses. In this sectiogonfigurations used if21], where quark masses 0.015, 0.02,
we want to revisit the determination éffrom me Versusrnf 0025, 003, 0035, a.nd 0.04 were Used fOI‘ the fItS. These
for domain wall fermions, but at a smaller lattice spacingvalues for m> come from the axial current correlator
(0.104 fm than our earlier determination at 0.197 f@1].  (A§(x)A§(0)) to reduce the effects of topological near-zero
We will then be able to assess the importance of quencheghodes. We have also done fits for the 400 configuration data
chiral logarithms in our determination of kaon matrix ele-set generated for this matrix elements calculation, where
ments. quark masses 0.02, 0.03, 0.04, and 0.05 were used in the fits.

A. Quenched chiral logarithms in m?%

a_ (m;+m
(m2)R=a_(m+ mres)[l—ﬁln 3n(My+ Mred

A(ZQ)(PT ) } (123)
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FIG. 3. The ratio—(S"(0)S'(t))/(PL(0)Pk-(t)) of the

FIG. 2. The data fomfT from 85 configurations and 400 con- scalar and pseudoscalar correlators, as a function of temporal sepa-
figurations. The line is a fit to the 85 configuration data, excludingration. Without zero mode effects the ratio should be zeronfer
the m;=0.01 point, and give$=0.052). small, since the pseudoscalar mass is vanishing. Zero mode effects
are present at the-10% level fort=9-12. This is the separation

. . a used in our evaluation of lattice matrix elements.
The pion masses for this data set come fromi(x)Ag(0))

correlators, since we only have pseudoscalar sinks in our Thus we have consistency with other measurement® of

matrix elements programs. We choose to quote results foand will use a value of 0.05 for the remainder of this work.

Aq,pr=1 GeV and have also done fits far, pr=0.77 and The fact that this value is small means the effects are not

1.2 GeV. pronounced for the scales of masses where we are currently
Figure 2 shows the data for both data sets and the curve fimulating.

the fit to the 85 configuration set. For the 400 configuration

data set we finda,=3.27(2) and §=0.029(7) with B. Gell-Mann—Oakes-Renner relation for domain wall
x%/DOF= 2.3, while for the earlier 85 configuration data set fermions
we find a,=3.18(6) ands=0.05(2) with y2/DOF=0.3. In Secs. IVA and IV B we discussed the role of residual

Since these are uncorrelated fits to correlated data, the valugsass and zero mode effects in the Ward-Takahashi identity
of x? are of limited validity, but, particularly for the 85 con- which is the basis for the Gell-Mann—Oakes—Renner
figuration data set, show the data is consistent with dGMOR) relation. The result is given by Eq112. In this
quenched chiral logarithm form. Varying\g et only section we show our numerical results for the quantities in
changesa, by +2% and does not changgwithin errors. ~ this equation. _ _ _

The difference in the value of between the two data setsis __1he Z€ro moge effects in E¢112) are associated with
due to them;=0.015 point only being present in the 85 (UU) and(Js(x)Js(y)). For(uu), the effects produce ariy
configuration set. Without this point a smaller curvature isP0!€, as shown ih21], which can be separated out by doing
needed, and hence a smallgrto makem? vanish atm;= ana extrgpolatlon tam;=0 from_ heavy quark masses. For
M. Also notice that then;=0.05 value form? lies sub- (J5(x)J2(y)), we can see the size of the zero mode effects as

: _ ; +
stantially above the fit line, which neglects this point. Since,f1 f?gctl(();)(;fxi (Z) >b yvflgrg?gt”&?stczti%oirr:elligilsis(yl)Jiir%)ihe
we are interested in quencheq pathologies appezaring at Sm\"}ﬁjall sKource Kpoint .sink propagators fraral]. in t’he figure
quark masses, we have not includ&fi(m;+Med“] terms ;1o seag that this ratio is essentially zeroxery>8 and

in our fit. Given thatm_=790 MeV for this heaviest quark m=0.02, as it should be since the pseudoscalar mass is

mass, such higher order terms are expected to be important, ,ch smaller than the scalar mass. However Mipr=0.01
Notice that we cannot determine the one loop effects oRy g 015, the scalar correlator changes sign and is a measur-
the value ofa, . The combination of constants in the bracesgp|e fraction of the pseudoscalar correlator even Xery

n Er?? (90), the almost ~ precise constancy of g \ve attribute this effect to zero modes and note that zero
mZ In(M2/Ag,p7), @and the uncertainty ik, pr provide 100 mode effects are identical in the two correlators. Thus, in
many similar effects to be distinguished in our data. Sifice discussing the GMOR relation, we can easily remove the
is small, it is reasonable to expect that ignoring these terms isffects of zero modes iiau), but zero modes in the pseu-
a good approximation. Also note that a large value dor  doscalar correlator become5% effects only for separations
should make theem? term give a noticeable nonlinearity for greater than 12.

Iargermi. This is not seen, implying either a small value for  Since many of the terms in E{L12) have been measured

« or a cancellation with terms from th@(p*) Lagrangian.  in [21] for two different values ofLs with the quenched
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00006 ' ] for ms has a large effect. Any zero mode effects for small
’ m; are not visible within our statistical errors. Since y in
i | the range 7-16 has been used in determining the quantities
0.0005 7] in Eq. (124), Fig. 3 shows that the effects should be at the
i i few percent level. FolLs=24 the residual mass is much
0.0004 = 7 smaller, and them;=0 extrapolation from heavy quark
i ] masses agrees quite well with (UUY a3 norn{M;=0,Ls).
0.0003 — - Some nonlinearity at small quark masses is seen, but the
! errors are too large for a definite conclusion.
Thus we see that fdrg= 16, the naive GMOR relation is
o e noticeably modified by the presence wf., while for L
0.0006 ; . : :
i / | =24 them,¢ effects for this power divergent case appear to
0.0005 '," ] be smaller than 10%. It is important to note thatsis small
' / for Lg=16, butm,./a? effects are not. We now turn to a
o ) similar comparison of our numerical results with the Ward-
R 7 Takahashi identity fof 7" [sd|K *).
| X i
0.0003 N T T T T C. Ward-Takahashi identity for sd
0 0ot 002 0.3 0.04 0.05 In contrast to the GMOR relation discussed in the previ-

ous section, the Ward-Takahashi identity $drdoes not con-
FIG. 4. The GMOR relation fot.— 16 (upper paneland L tain any power divergent terms. Thus we can work in the
—24 (lower panel. The open symbols are mg largeL limit and then replacen; with Mg + Myes at the end.

a INE) 2 We can use Eq120) to understand the size of the zero mode
+myed|(0]JZ(0)|7')|*/(12m?,) and the closed symbols are ff . TsdIK*Y. Such de eff il
—(UU)jatnom{M;=0,L¢). The prime on the states and masses indi-& eCFS |n<7?- [Sd|K™). uch zero mode & fCts WJIr appear
cates that zero mode effects may be present. The dashed line giv@sent'ca”y in the power dlverger_lt part ¢fr |Qi|K_ ) a_”d
them; /a? dependence of (UU) . nor(Mr ;L<) as determined from will be remove_d_m the_ subtract|_on procedure given in Eq.
large quark masses where zero mode effects are absent. The sofid®- 1he remaining finite terms in the subtracted matrix el-
line includes the effects of quenched chiral logarithmsnfn ement will have zero mode effects, whose source we will

understand more clearly after investigatifwg™[sd|K ™).

e K+ ; ;
Wilson gauge action 8= 6.0, we can discuss how well the 10 measurg7"[sd|K™), one can start with the ratio

GMOR relation is satisfied. Figure 4 shows the terms in the wall wall
GMOR relation using these measured values. The upper R.= (Po+ (x0)[sdN(Y) P~ (20))
panel is forL¢= 16 and the lower is fot..=24. The closed L (P (x0) P - (V)P +(Y) PR (29))

symbols are the values for (UU) 4 nom{M;=0,Ls) and the
dashed line gives they /a® dependence of this quantity. The \here P"¥(x), etc. are Coulomb gauge fixed, pseudoscalar

zero mode ternithe sum on the right-hand side of H412] | sources and, is the time coordinate at the poixt(For
has been excluded by extrapolatinge=0 from large val- e details on the measurement of three-point correlators,
ues ofm; where zero mode effects play no role. The openyiease see Sec. IXWe plot this ratio in Fig. 5 where we

(125

circles are take xo="5, zo=27, and average over ¥y,<17. For x
>y>z and without zero-mode effects, this ratio should be
a N2 Mg+ Mies
[€0195(0) [ 7" )| —5—=— (124 _
Lomi, (m7[sd[K™)
R (126)

L (7T [P-[0)(0[P¢+[KT)
as measured from pseudoscalar correlatBrs: (y)P .- (z))
using values ofy—z| from 7 to 16. Since this ratio contains which is finite and nonzero in the chiral limit. From the
zero mode effects, some of the zero mode terms fronward-Takahashi identity, without zero modes and chiral
(J5(x)J5(y)) are included. The solid lines are the samejogarithms, this ratio is & /(m>f2), which is~120 in lat-
quantity where a quenched chiral logarithm is included intice units.[In this section, we consider the case of (3U

- flavor symmetry so tham,=mg=m,,, wherem,, is the
For theL =16 case, we expect the quantity in Ej24  common meson mass first used in E6R).] One sees from
to differ from — (Uu) a4 nomfMs=0,L¢) due to the presence of the figure that for smallem; the points actually are decreas-
zero modes in this quantity and time..s terms on the left- ing, rather than increasing towardsl 20.
hand side of Eq(112). In Fig. 4 one sees that the;—0 Since our measurements are made witiXx@—y,<12
extrapolation of the heavier mass points lies considerablynd 16<y,—2z,=<13, zero mode effects do enter the terms in
above — (UU) iz oM =0,L¢), revealing the size of the the denominator. Consider a zero mode with suppaoxtaatd
O(m9/a® term. Since the slope of (UU)at nom(Ms,Ls) y. It produces a power of @i in the numerator oR,; and
with m; is power divergentthe dashed ling a small value contributions of order Ihfz and 1fn; in the first term in the

2
m_,.
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FIG. 5. A plot of Ry, the ratio of a three point correlator to two, FIG. 6. A plot of &/(m;+MegdR,/m, vs my, whereR; is

two-point correlators, defined in E¢L25). The larger zero mode defined in Eq(127). The Ward-Takahashi identity determines that

effects in the two-point correlators should make this quantity vamisi‘}hIS value should.bg 1 fan—0 if there are no zero mod_e effec_:ts
in them;— 0 limit, a marked change from the chiral limit value of present. The d_eV|at|on from_ 1 for smali; is consistent with _estl_-
~120 expected without these chiral pathologies mates of the different effective pseudoscalar masses entering in the

Green’s functions in the numerator and denominatoRef The
different effective pseudoscalar masses arise through zero mode ef-

denominator ofR;. A similar argument is also true for a . )
1 9 fects, as discussed in Secs. IVB and VIC.

quark propagator containing a zero modeyatnd z. Thus,
for very smallmg, the ratioR; will go to zero due to zero )
modes. We believe this to be the source of the turnover in my , = ,
Fig. 5 for small values ofn . i, COIP-| (™) )(( ) [sall (K™)")
One can also determirier*[sd|K ™) from the ratio

!

—mg(Y—2p)
(P (xo)[Sd1(y) Pe(20)) XD TP 0 g
2= wall wall . (127)
<P +(XO)P *(ZO)> olP__ +y7\|2
w (0P HOPT oy s
In the denominator oR,, zero modes should be negligible, 2m; Vs '
sinceXo—2zp=22 and the lattice has been doubled to make
propagation around the ends unimportant. Thus we are nathich reduces to
introducing zero mode effects into the ratio through the de-
nominator. Zero modes in the numerator enter through the 2m; B
propagatord ~1(x—y) andD ~}(y—z). Without zero mode ——{(w")'[sd|(K*)")=1. (131)
effects, we have M
(m*[sd|K™) We now letL ¢ be finite and changen;— m;+ m,.. We are
S VIR (128 |eft with
m's

where Vs is the spatial volume. To precisely describe our gy (mi+m,9 [(O|P, |7*)|?
numerical situation, we again use primes to describe stateR, N
and masses which can have zero mode effects. For the cur- Mo KOIPA=|(™)")] (132
rent case, only one of the quark propagators in the pseudos-

calars in the numerator can have a zero mode. With thi

; : : When there are no zero mode effeats,=m,, and|7*)
notation, we insert complete sets of states in @27 and . e
find P 7 =|(m")") leaving R,4V¢{(m;+m,d/m_.=1. Notice that a

small difference inm_, and m_. is multiplied by Xy—z,,

[(O|P,+|(=*)")? 2m, Vs which can lead to larger effects R,. This is a result of the
(0[P |72 (2m. V)2 simple fact that zero modes effect the pseudoscalar propaga-
g s tors in the numerator oR, differently than they effect the
x @(Mz=Mmz)(Xo=20) (129 propagators in the denominator.

Figure 6 is a plot of the value of R,V (m;+m,g9/m,.
The Ward-Takahashi identity result given in E§j20) can  versus quark mass. We use a valuerfgrthat is not effected
be similarly written as by zero modes. One sees that for the smaller valuam;of

e(mﬂ" —mz)(Xo~2o) = 1.

Ro=((7")"[sd|(K™)")
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this ratio deviates substantially from 1, being 16% below 1 18 I I e o LA R E— m—
for m{=0.01. We would like to see if this is consistent with
the prediction of Eq(132). We do not have direct measure-
ments ofm_,, since this is a mass which comes from corr- 7l |
elators with at most one zero mode. However, the effective L i
mass plots shown in Fig. 21 §21] give values fom_», the L ©) .
mass from the pseudoscalar correlator where any number '+ .
zero modes is allowed, fan;=0.01. In the range of separa- ~, 16|~ i) 7
tions 9-12m_»=0.2116), compared withm_=0.199, our & T T
best estimate form, without zero mode effects fom | §_5 ]
=0.01. This givesm_»—m_=0.014 and eXgm_»—m_)(X 15k % _
—25)]=1.36 forx—z=22. L 4

We do not know the relative contributions of one and two - .

zero mode terms tan,». However, the zero modes have - T

. . . 1 I 1 I 1 I 1 I 1 I 1
eigenvectors where the produgt(x) ¢ (y) is going to zero L4g 0.01 0.02 0.03 0.04 0.05 0.06

in the range of separations we are considering. It is reason m;

able tolargue that the falloff in the eigenvectors vw'fhy is FIG. 7. Agraph of 2n_VR, vs m; . Without zero mode effects,
produ0|ngm7u'>mw, since the two zero mode co!']tr|but|on this quantity is(zr*[sd|K ™). In the operator subtraction, any non-
ShOU|d2 dom|r21ate for small m¢, they involve jinearities in the power divergent parts @ |Q;|K *) will exactly

[ (x)[*#\(y)|* and the pseudoscalar correlator is positivematch the nonlinearities in this plot. The resulting subtracted opera-

definite. Form,., only terms with at most one zero mode tor will not have chiral logarithm and zero mode effects multiplied
contribution are included. In this cagg(x) ¢, (y) enters not by power divergent terms.

|, (X)|?| 4, (y)|? and there is no positivity for the one zero
mode contribution alone. However, naively one could expect
m_»>m_.>m_. Thus it is reasonable that<lexg(m,.
—m,)(%—2Zy)]<1.36. From the determination df, in [21]
using pseudoscalar and axial vector correlators, the ze

Figure 7 shows &1,V R, versusm; . With no zero mode
effects this equalg 7" [sd|K"). For m;{=0.01, the zero
r@odes should produce the same relative distortions in this

mode effects ifO|P,—|(7*)") are at the few percent level. quantity as are shown i|j Fig. 6. This_matrix elemept is used
Thus the deviation of B,V(m;+m,d/m,, from 1 in Fig. 6 N the operator su.btract|on. and as dlsguss_ed prey|ously any
is consistent with the estimates based on the difference in tHe€r© mode and chiral logarithm effects in this matrix element
mass of the pseudoscalar states relevant to the numerator afyll match those in the power divergent parts of
denominator oR,. From Eq.(131), the zero mode effects in (7 [Qi|[K™). Since the plot is not obviously linear, it is
((=*)'[sd|(K")") are at most a few percent. The small dif- important to subtract the two matrix elements to take full
ferences in the “massesrh’.—m,, indicate a substantial ef- advantage of the correlation of zero mode and chiral loga-
fect of zero modes for time separations of the order of 10fithm effects between them.
We believe that these effects are responsible for the large
deviation seen from the predictions of chiral symmetry for
thesesd matrix elementgFig. 6). VII. WILSON COEFFICIENTS

We now turn to the question of the extraction of matrix . . ) o
elements from our lattice correlators. As we have discussed, "€ twelve-dimensional vector of Wilson coefficients
in the subtraction of divergent terms zero mode effects canc(#) has been calculated at next to leading or@rO) in
cel. In the ratioR;, large zero mode effects are introduced QCD and QED by the Municli62-64 and Rome[65]
into the denominator through the pseudoscalar correlatorgroups. In those calculations the Callan-Symanzik equations
acting over moderate distances. This produces a different efire solved to determine the Wilson coefficients at an energy
fective pseudoscalar mass in the numerator and denominat&¢alex~1 GeV, appropriate for lattice calculations, starting
In the ratioR,, no zero modes are introduced in the denomi-from their values at the weak scale,My,. The solution is
nator, but there is a similar mismatch in pseudoscalar mass@tained within the approximation that the parametegs
since the numerator can contain zero modes. However, th@&nd « (the fine structure constant of electromagnetisme
mismatch is most pronounced for the power divergent termssmall but that the productsx(t)" are of order one, where
which behave like thed matrix element above. In the finite, =IN(Mw/u). According to this reasoning, in leading order
subtracted operator, a similar mass mismatch can occur fdkO) one sums all terms of the formgt” and aagt"™ ™.
eye type diagrams, but will not in general occur for figure These terms are identified &3(1) and O(a/as), respec-
eight diagrams due to the way gamma matrices enter thévely. In the next to leading order approximati@dLO) one
traces and the fact that all zero modes have the same chiraso includes all terms of the fora{ " 't" and aalt", iden-
ity. Thus the ratidR, will not eliminate all the effects of zero tified asO(as) andO(«), respectively. Terms of order” for
modes in the desired physical quantities, but it minimizesn=2 are not included.
them. We will useR, for the determination of our desired In the notation of Ref{64] the NLO evolution ofC(u) to
K— 7 matrix elements. a value ofu below the charm threshold is given by
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TABLE |. Decomposition of the next-to-leading ord@MLO) Wilson coefficients into contributions of a
given order. The coefficientgs at u=1.3 GeV(the charm quark magare given in the NDR scheme for the
3-flavor case where the charm quark has been integrated out.

i O(1) O(ay) O(e) O(al ag) Total
1 -0517171 0.119 497 0.001 60768  —0.00393867 —0.400 005

2 1.26603  —0.0670242  —0.002 53 0.009 641 83 1.206 12

3 0.0 0.004 210 37 0.000 032 065 3 0.0 0.004 242 43

4 0.0 ~0.0126311  —0.000 096 1959 0.0 ~0.012727 3

5 0.0 0.004 210 37 0.000 032 065 3 0.0 0.004 242 43

6 0.0 ~0.0126311  —0.000 096 1959 0.0 ~0.012727 3

7 0.0 0.0 0.000 052 588 2 0.0 0.000 052 588 2
8 0.0 0.0 0.0 0.0 0.0

9 0.0 0.0 0.000 052 588 2 0.0 0.000 052 588 2
10 0.0 0.0 0.0 0.0 0.0

matches to the 3-flavor, charm-out effective theory. Since,
with our standard choice of phase conventions, the CP vio-
X MgUg(my,My,a@)C(My), (133 lating phase is contained in the CKM parametgthe larger,
7-independent terms coming from will provide the domi-
whereU (1,15, ) is the renormalization group improved, nant contribution to the CP conserving ampl_ltudesAage
evolution matrix from the scalg, down to the scalg, ina  While y; must appear in the CP violating amplitudesAgy,

. . . [see Eq(3)].
theory with f quark flavors. The matri}J¢(wq,u2,a) is a . - . .
12 12 matrix forf=4 and 5 while it reduces o a QL0 We calculate these Wilson coefficients in two steps. First

. ) T we determineC(u) in the NDR scheme using exactly the
matrix for f=_3_. The flavor matchlng matrid¢ relates the  formulas and procedures given in Rd[3,64. In particular,
W|I§on coeﬁ_|C|ent§ that appear in thieand f — 1 flavqr ef-  \when using Eq(133), all O(ag,asa) and higher order terms
fective theories. It is naturally written as aX422 matrix for  \\hich are generated by multiplication of the evolution and

f=4 and 5, while forf =3 itis a 10<12 array. Her&&(My,)  matching matrices are dropped so that the final Wilson coef-
are the 12 coefficients of the effective theory calculated afjcients at scalg: contain all contributions up to and includ-

the scaleMy, by matching to the full theory. E\_/olu_tion down ing O(as,al as,e) and no more. An example of the break-
to a value ofu above the charm threshold is given by an gown of z andy, at =1.3GeV in the NDR scheme is
obvious truncation of Eq(133. The matrix U¢(x,m,@)  given in Tables | and Il. In the second step, we transform
contains terms of orde©(1) and O(as) in QCD and in-  these coefficients, obtained in the NDR scheme, into the co-
cludes terms of0(a/as) and O(a) when QED effects are efficients of operators defined according to the RI scHéme
included. Following convention, we fixxe=1/128 at x  Landau gauge using
=M,y and do not include its running in the evolution of the
Wilson coefficients.

Following Ref.[23], we express the contributions arising ag(w) NDR T
from chargedV exchange as the sum of two terms. The first, Crilp)=| 1= ———(Ar\x o) |Cror(p), (136
which evolves with Wilson coefficients defined agu),
contains the difference of charm and up quark fields and
carries the CKM coefficients (7). The second evolves Where the matching matrisr},® | is given in Table VIII of
with Wilson coefficients defined ag(u), contains the dif- Ref.[24].
ference of the top and up quark fields, and carries the CKM
coefficientsr [see Ref[23], Eq. (4.4)]. For the three-flavor,
“charm-out” case, only the ten operato@ appear and their  This matching requires a careful definition of our basis of opera-

C(w)=Us(u,me,@)MU4(me,my, @)

Wilson coefficients are given by tors in the NDR scheme associated with the difficulties of defining
v® in dimensional regularization. While in the RI scheme, Fierz
Ci=m;+(1- 1)z (134) rearrangement of the fermion fields has no effect, this is not true in

the NDR scheme. In fact, for the NDR calculation and matching to
RI to be described correctly, we should follow RE#4] and write
=1Yitz, (139 our operator9), , in a Fierz rearranged fashion. This is the form

that is used in the NDR calculatidi64] we are following and in
wherey;=v;—z;. With this separation, the evolution of the determining the matching coefficientsr\.~ in Refs. [65,24).
coefficientsz; is particularly simple: The cancellation be- However, in our own matrix element and NPR calculations, where
tween the charm and up quark loofteke GIM mechanisin  the Fierz ordering is immaterial, we find the Fierz structure shown
prevents the appearance of penguin contributions until on& Egs.(4)—(7) to be more convenient.
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TABLE Il. Decomposition of the next-to-leading ord@LO) Wilson coefficients into contributions of a
given order. The coefficientg at u=1.3 GeV(the charm quark magare given in the NDR scheme for the
3-flavor case where the charm quark has been integrated out.

i O(1) () (e O(al ag) Total
1 0.0 0.0 0.0 0.0 0.0

2 0.0 0.0 0.0 0.0 0.0

3 0.026 6933 —0.000 750 255 0.001 433 01 0.000 130 383 0.027 506 5
4  —0051399 —0.00254918 —0.0010719  —0.000277595  —0.055297 6

5 0.0132739 —0.007 886 98 0.000 117 102 0.000 077 474 6 0.005 581 51
6 —00775222 -0.00534437 —0.000868366 —0.000372801  —0.0841077

7 0.0 0.0 0.000 700 858 —0.000 878 706  —0.000 177 847

8 0.0 0.0 0.0012366  —0.000 180 252 0.001 056 34

9 0.0 0.0 ~0.0107664  —0.000999 603  —0.011 766

10 0.0 0.0 0.004 061 02 0.000 173 261 0.004 234 29

In this paper we discuss only the three-flavor, charm-ouspacing errors to enter our nonperturbative normalization of
case. Thus we naturally deal with an effective theory thathese operators.
describes physics at energy scales below the charm mass— In order that the product of the RI Wilson coefficients
the scales that dominate the matrix elements we are compuiimes the RI operators be independent of the sgalihey
ing. However, we are concerned about potential errors thanust both be computed in the full or the quenched theory.
come from using perturbation theory so close to the nonSince our nonperturbative normalization is determined in the
perturbative region. We cannot avoid the use of perturbativeuenched approximation, the-dependence of the Wilson
matching to connect the four-flavdcharm-in and three- coefficients should be determined in the quenched theory.
flavor (charm-out theories since in the lattice calculations Therefore we adopt the following transition to our quenched
presented in this paper we do not include a propagatingpproximation. In evolving the effective weak Hamiltonian
charm quark. However, the connection between the NDRrom the W mass scale down to a form valid in the three-
and RI Wilson coefficients, also done in perturbation theoryquark, charm-out theory, we include all required quark loop
can be done at a scale above the charm quark mass, theredifects. Making a “quenched” approximation here is not
reducing the perturbative uncertainties. Note, in these discustecessary and would leave out physically important phenom-
sions the energy specifies the energy scale that appearena. We then interpret the resulting NDR scheme, 3-flavor
in the normalization condition that defines the operatorseffective weak Hamiltonian with operators and coefficients
that appear in our effective theory. For the case at hand, wdefined atu=m; as our quenched approximation Hamil-
are free to choose this scale to be well abawg where tonian. Thus we use the Wilson coefficients without change
perturbation theory may be more reliable. Of course, oubut interpret the operators as defined in the quenched ap-
effective theory will not describe processes in nature in thigroximation. We are then free to vary the renormalization
region of energies £m;), but only processes involving scaleu, increasing it aboven, if we choose. However, we
lower energy scales. Note, we are prevented from using eust normalize the operators by evaluating quenched
very large value foru since we do not want large lattice Green’s functions and evolve the Wilson coefficients from

TABLE Ill. The Wilson coefficientsz(x) in the Rl scheme for the 3-flavor case. Starting from the
3-flavor, NDR scheme Wilson coefficients in full QCD at the charm mass, the Wilson coefficients are evolved
to the u values in this table using the quenched three-loop valudfgy and the two-loop quenched . At
this u they are converted to the RI scheme.

i 151 2.13 2.39 3.02GeV)

1 —0.346 301 —0.304 999 —0.292 757 —0.269 806

2 1.173 84 1.14951 1.142 47 1.129 47

3 0.004 048 56 0.001 813 46 0.001 214 41 0.000 164 314

4 —0.0129397 —0.005 736 13 —0.003 686 11 0.000 066 681 1

5 0.004 763 83 0.002 815 54 0.002 223 81 0.001 098 64

6 —0.0146471 —0.006 561 06 —0.004 404 76 —0.000 612 69

7 0.000 053 034 8 0.000 066 681 1 0.000 073936 1 0.000 092 251 2
8 —0.000 022 3135 —0.000 062572 4 —0.000 072154 2 —0.000 087 598 8

9 0.000 041 580 3 0.000 034 0103 0.000 035681 3 0.000 044 365 3
10 0.000 015928 9 0.000 042 263 6 0.000 049 3559 0.000 061 744 2
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TABLE V. The Wilson coefficientsy;(x) in the Rl scheme for the 3-flavor case. Starting from the
3-flavor, NDR scheme Wilson coefficients in full QCD at the charm mass, the Wilson coefficients are evolved
to the u values in this table using the quenched three-loop valué fgy and the two-loop quenched, . At
this u they are converted to the RI scheme.

i 151 2.13 2.39 3.02GeV)

1 0.0 0.0 0.0 0.0

2 0.0 0.0 0.0 0.0

3 0.023 894 3 0.022 464 4 0.0220211 0.021 168 5
4 —0.0505155 —0.0511484 —0.051301 4 —0.051 553 6

5 0.005 832 45 0.007 190 03 0.007 560 92 0.008 223

6 —0.091 2935 —0.0817901 —0.079 2629 —0.0748307

7 —0.000 176 754 —0.000 155 239 —0.000 148 013 —0.000 133 228

8 0.001 156 08 0.000 971 975 0.000 921 86 0.000 832 504
9 —0.011 4196 —0.011 1436 —0.011 064 9 —0.010921

10 0.003 684 73 0.003 25191 0.003 127 29 0.002 897 85

their u=m; values using quenched evolution equatibns.  term which is itself anomalously |argeA(§lEEO)s,8~ 10.

Our results in the RI scheme for the three-flavor theory  thg ghove discussion may lead the reader to conclude that
are given in Tables Il and IV. The scalgs=1.51, 2.13, e s g significant uncertainty @, an important quantity
2.39, and 3.02 GeV correspond to those where the nonpefs ' | fact, we believe that this is not the case. The large
turbative, operator renormalizatiahfactors were calculated. ,rrections which arise from the matching calculation must
The standard model parameters used to obtain these nUMbgJS jncluded as complete factors in the Wilson coefficients to
are given in Table V. Two-loop running Oirs is used  aintain the scheme independence of the weak Hamiltonian.
throughout. We .have performed several checks of our _a”alyArbitrarin dropping these higher order terms could poten-
sis. Our numerical values dEypr(x) agree exactly with ig|ly increase the scheme dependence of our final réset
those reported i}64] when their values for the standard ¢q),0w the general argument given in R§67] for the NDR
model parameters are used. We also agree within 20%, QJ,q HV schemes which applies to the RI scheme as wall
much better in most cases, with the Wilson coefficients give'bractice, the scheme and scale dependence of the Wilson

in [24] for the NDR and RI schemes. These differences arisgqefficients and the renormalized operators cancel when they
because the treatment of terms beyond NLO differs betweefa combined in the weak Hamiltonian. Schematically

that adopted in Ref.64], which we follow, and that of24].
We note that there is a potential ambiguity which arises H,,=Q'C= qucm
when using the one-loop matching given by HEG36).

Straight multiplication ofCypr(x) by the one-loop match- _or |14 as( ) ArNOR T

ing matrix generates af¥( asar) contribution which is large. = Qnor 47 (Afw—o

After matching we findCgg(u~2 GeV)~0.0006 if we ()

drop this term, or 0.0009 if we do not. Thus tHi¥ as«) «|1- QAs\ NDR T, —AT

term increase€g g, by 50%. The origin of this large correc- 1= (Ane=o) Cor=QuorCror-

tion is easily understood by examining thf®(a/«g) and (137
O(a) terms inCg \pr. The subleading(a) term is roughly

seven times the leading ordél a/as) term and they have By far the largest contribution to th@(«) part of the weak
opposite signs. The origin of this reversal is well known; theHamiltonian isCgQg which then, by itself, must be scheme
O(a) term is dominated by the contribution proportional to jndependent. As we saw, th@(aag) contribution to the
m? which is quite large. This sum of leadingmal) and

subleadinglarge terms is then to be multiplied by the one-  TABLE V. Standard model parameters used to generate the Wil-
loop matching forCg which is dominated by the diagonal son coefficients. Dimensionful parameters are in GeV.

Parameter Value
2In the results described below, we carry out this prescription only M 80.419
) W )

approximately. For thew dependence ofrg we use thef=0 g m(My) 175.5
function and the value oA 5cp=238 MeV from the quenched cal- Rw '
culation of Ref.[66]. However, we still use the 3-flavor, two-loop My (M) 4.4
anomalous dimension matrix rather than the O-flavor matrix as re- me(me) 13
quired by the above discussion. Since the resulting evolution only a 1/128
corresponds to scale changes on the order of a factor of 2, there are Aﬁﬂf—gs) 0.208+0.025
no large logarithms and it is appropriate to neglect such two-loop Sir? Gy 0.23117

effects in our NLO calculation.
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matching matrix(which by definition is scheme dependent in our calculation with domain wall fermions chiral symme-
was quite large. In our calculation, the renormalization of thetry breaking effects are small, this problem becomes trac-
operators is done to all orders in QCD in the RI schemetable.
Thus the producCgQg could implicitly contain a compen-
sating large0(aag) scheme dependent contribution coming A. Mixing for AS=1 operators
from the O(a) term inCg and theO(«) term implicit in the
nonperturbative renormalization Qfg. Thus it is natural to
include the full matching coefficient in the RI value G so
that these compensating terms will both be present in th
productCgQg. _

Recently, partial next-next-to-leading ord@®NLO) cal- O™ p) = > Zjj(w)| O+ Cﬂ(M)BLatiJFO(a)-
culations have been performggB,67. We only examine the ! k 138
latter case where the complete set @(aag) and (138

Ol aassin?(By)nE] corrections to the Wilson coefficients We have introduced the scateused to define the renormal-
C-_19 0f the electroweak penguins have been calculated. liyed operators. Her®* is also a four-quark dimension-six
Ref. [67] it is argued that these are the dominant NNLO gperator and th@®[*s are operators that contain only two
contributions. We simply take the values in RE§7] for u quark fields. Due to thaS=1, AD=—1 nature of the op-

=1.4 GeV to estimate the change@_,,in the RI scheme, grators we are considering, tB€°s must have thad flavor

and use these values in conjunction with the ones in Tab|e§tructure These operators can mix with coefficierLtshat

Il and IV to estimate the effects of these corrections on thediverge as the lattice spacing tends to zero.

{E_) T:T ampI!tuShengz\j;i/en n Ia:cfgr .SG(:‘['[IOI’]Sd i{\i{;aaﬁonclude that™ \ne will consider here the renormalization of the parity
€ changes In the VWiison coetlicients and i mm am- conserving part of th S=1 effective Hamiltonian assum-

plitudes are F”OdeSt- i . ing, as in the rest of this work, that chiral symmetry is re-
. We epr|C|tIy_ tabulate the values of th_e Wilson coeffi- spgected(We have investigated this question ?;1 detailyfor the
clents at four d'ffefe”t SC?'%- In later sections ihese coel: renormalization of quark bilinear operators and found no sig-
ficients ?jre C%mbmed W't? the rionpertturzauZechtori, nificant effects due to explicit chiral symmetry breaking by
?orrllpui:e 'atlt eseltsage outrh va U?.S”? 0 ekt)ermlnﬁ t IZ bdomain wall fermions at finité ¢ [59].) The renormalization
final physical results. since these final numbers shou €onditions will be imposed in the massless limit and as such
m_depende_nt .O.f this ren_orm_allzanon scalethis comparison operators in different multiplets of SU(3% SU(3) or isos-
gives a significant indication of how well our method s pin do not mix under renormalization. This imposes strong
working. constraints on the allowed operator mixing, and in particular
on the number of quark bilinear operators that need to be
Vill. OPERATOR RENORMALIZATION USING NPR considered. The latter may be split into three cla§60%52.

As is well known, in using the lattice to calculate matrix (1) Operators that vanish on shell by the equations of mo-
elements, one cannot simply transcribe the operators of the tjon.
Continuum theory to the Iattice. The Iattice OperatOI’S aan) Gauge invariant operators that do not Vanish by the
continuum operators have to be properly renormalized and equations of motion.
the relationship between them explicitly known. For this We(3) Nongauge, but BRST, invariant operators.
use a two step process to take advantage of existing con-

tinuum calculations for the Wilson coefficients. Operators of types one and three do not contribute to physi-

(1) We use a renormalization schertfeere the Rl or regu-  ca| processes and so do not have to be considered in the
larization independent scheirte define renormalized opera- ca|culation of hadronic matrix elements. However, they do
tors which is independent of the underlying regulator. Thishaye to be taken into account in operator renormalization,
ensures a common definition of renormalized operators oyhere amplitudes with off-shell gauge-fixed external fields
the lattice and in the continuum. are used.

(2) We also need the relationship between operators renor- The pilinear operatorB, in Eqg. (138 must contain ars
malized in the RI scheme and those in & scheme since and d quark and conserve parity. Thus their general form
the existing perturbative calculations of the Wilson coeffi-must be one of the following:
cients are done in this scheme. The matching between RI and

For theAS=1 Hamiltonian, the continuum renormalized
dimension-six operators can be written in terms of bare lat-
gce operators as

MS with naive dimensional regularizatigiiDR) is known sxXMd, (139
at one loop65,24]. - 2

An additional complication in the renormalization of the op- SUﬂvxﬁwd, (140
erators in theAS=1 Hamiltonian is the mixing between

these operators and lower dimensional operators. This is due 5y, X¥d, (141

to the presence of quark and antiquark fields of the same 5 3 ) N )
flavor in theAS=1 operators. Since this mixing in general WhereX®?, X2), andx(?) are flavor singlet quantities which

involves power divergent coefficients, it can be quite large ifmay include gluon, ghost, and derivative terms. It is simple
the lattice formulation badly breaks chiral symmetry. Sinceto see that Eq(139 is in a (3,3 +(3,3) representation of
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SU(3),®SU(3); and so may not mix with any of the ticular gauge, and in this work we only use Landau gauge.
dimension-six operators we are considering in the massleddfe note that renormalization coefficients in the RI scheme
limit. can be gauge dependent. Schematically, we have

In fact, the only operator that is allowed to mix by @) o K — —
SU(3)|_®SU(3)R is Eq (141), which transforms as an G (plipl=p21p2)_<qa(pl)qy(pl)omqﬁ(pZ)qﬁ(p2)>
(8,1)+(1,8). This gives one dimension-four operator, (143

S(—D+D)d, (142)  and, as we will discuss in more detail later, we work with
|p1|=|p2|=|p1—p2|. This Green’s function is then ampu-
with a mixing coefficientcL that may behave asd? asa tated using the fuII_qugrk propag_ators galcu_lated in the same
—.0, which we must consider. BRST noninvariant operatord@uge. A renormalization condition which fixes g and
are allowed to mix only if they vanish by the equations of Ck factors in Eq.(138 may then be applied by requiring that
motion[69]. This forbids the second possible dimension fourthe amputated Green's function 6f°""*"take on its free
operatorgﬁd, from appearing_ This argument allows Opera-fiE'd value for all spin and color indices on these quark
tors of dimension-five to appear. However, these operator§e|d5- This defines the RI scheme. Its relationship to other
break chiral symmetry and are therefore forbidden. Severdlenormalization schemes requires only continuum perturba-
dimension-six operatoréor example, those involving three tion theory, which is better behaved than lattice perturbation
D operation$ can also occur, although their mixing coeffi- theory at the low scalesu(~2 GeV) used in the present
cients diverge at most logarithmically. calculations.
The arguments above rely on the fact the renormalization The success of this method requires two important condi-
conditions that we will be imposing are defined in the chiraltions to be satisfied.
limit. The numerical simulations that we have done to evalu- (1) A suitable “window” of momenta must exist. The
ate them, however, were performed at multiple, finite valuegvindow must include momenta which are large enough to
of the quark mass and the results extrapolated to the massle¥&gke nonperturbativieondensateeffects small. It must also
limit. As this is the case, it is also important to study opera-include momenta which are small enough to avoid artifacts
tors that may be present due to the breaking of chiral symdue to finite lattice spacing. Such a window was seen for
metry by the quark mass and also the explicit chiral symmeguark bilinears ir[59].
try breaking from finite L. This allows many more (2) Since the method of nonperturbative renormalization
operators to mix. We will focus on the most divergent onemust eventually make a connection with continuum pertur-
(which diverges as &) given by Eq.(139 with X(D=1 bation theory, our approach which uses Landau gauge is po-

and show that its contributions are negligible in the chiralténtially vulnerable to the presence of Gribov gauge copies.
limit. Such multiple gauge copies, present in Landau gauge lattice

simulations, invalidate a comparison of gauge-variant quan-
tities with perturbation theory, even when our calculations
are performed at increasingly weak coupling. For the success
Although, in principle, the renormalization of lattice op- of our method the effects of Gribov copies must therefore be
erators can be done by using lattice perturbation theory, ismall.
practice simple uses of lattice perturbation theory suffer fromin principle, the Gribov copy problem can be avoided by a
poor convergence for currently accessible gauge couplingsiore complete gauge fixing procedure. For example, we
(B~6.0). Use of renormalized or boosted couplifig®] could begin with a gauge transformation to a completely
improves the perturbative behavior in many cases of interedixed axial gauge and then follow with the usual Landau
but considerable arbitrariness remadjii4]. Furthermore, for gauge fixing. Such a procedure would guarantee that in the
domain wall fermions lattice perturbation theory has theweak coupling, small volume regime, a comparison with
added complication that the renormalization coefficients caontinuum perturbation theory would be accurate. While we
depend sensitively oM, the domain-wall heighf59,72—  have not implemented this more sophisticated gauge choice
74]. The nonperturbative renormalization technique pio-for the NPR calculations described here, we have made a
neered by the Rome-Southampton grd®6] provides a nontrivial test. We have carried out a companion calculation
method for removing the uncertainties associated with perfor both 8" and 16 lattices of the renormalization factors for
turbation theory. (Another approach to nonperturbative both the dimension-three quark bilinear operators and the
renormalization has been developed B%|.) The use of this  single four-quark operator that enters the calculatiorBpf
technique here represents one of the most complicated sitand found no meaningful difference between our usual Lan-
ations where it has been applied. We now give a brief overdau gauge fixing determination of the renormalization factors
view of the method and elaborate on its use for Af&=1  and the same determination using the more elaborate two-
case. step procedure described abdwi]. Thus we believe that
The NPR method starts with the computation of Green’she presence of Gribov copies is not a cause of difficulty for
functions of the bare operators in question. The Green'she work presented here.
function is calculated using off-shell external quark fields at With this overview of NPR, we now turn to the specific
large Euclidean momentum. This momentum defines théssues and conventions we use in the application of this tech-
renormalization scalg.. The quark fields must be in a par- nique toAS=1 operators. We first consider the type of quark

B. Nonperturbative renormalization
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contractions that can occur in Ed43 and see that there are coefficients may be power divergent as the lattice spacing
two types. The first has each quark field in the operator contends to zero. This means we must always consider the op-
tracted with an external quark field, which we will call tree erator given in Eq(142), and away from the massless limit it
contractions in this section, and the second, which we calinay be useful to subtract the operator given in @39, the

eye contractions, have quark propagators that begin and emdibtraction coefficient of which has the leading behavior
on the operator. This second class of contractions are botim/a?. Now we have to consider various dimension-six op-
theoretically and numerically challenging. They are theoretierators. AtO(g°) there are no dimension-six bilinear opera-
cally challenging because it is through these diagrams thabrs that mix. At one loop, heré&(g), there is a single op-
the mixing with lower dimensional operators occurs. Theyerator that can mix62]:

are numerically challenging because they involve the evalu-

ation of a spectator quark propagat®fp,q) with p#q. sy,dD,F,,. (146
These numerical issues will be discussed later, after the the- . .
oretical issues are outlined. To be consistent we should subtract this operator. However,

_In the RI scheme, the standard condition for determiningds We will argue later, the numerical effect of neglecting this
cl(u) is the requirement that the renormalized four-quarkSubtraction is small. At two loops additional gauge invariant
operator vanish when evaluated in a Green’s function witfPPerators which vanish by virtue of the equations of motion

two external quark fields. In particular and possible gauge noninvariant operators must also be in-
cluded[62]. However, as explained earlier, we can consis-
G(2>(p,p)=<SL(p)0md'[g(p)) (144)  tently ignore such ordeg” effects in the present calculation.

We will therefore consider the subtraction of only two
should be zero. As such, it is convenient when calculatindilinear operators
Zjj(un) to use a two step process where first a subtracted -
operator is defined by evaluating tlg(w) in Eq. (138 Bi=sd,
through

. B,=5s(— D+ D +mg+my)d
Of*™= 0"+ >} ciB. (145 ) .
K =s(—D+mg)d-+s(D+my)d. (147

The second _stepzA)consists of evaluating the four-quarlg, s a modification of Eq(142 with additional mass de-
Green’s functionGg,, for the subtracted operator using the pendent terms added such that the operator vanishes on-shell
external quark fields in Eq(143. We now discuss which poth in and out of the chiral limit, anB; is the operator in

quark bilinears we will subtract. Eq. (139 with X®M=1. The two subtraction coefficients}
A full subtraction of all the bilinear operators that could 54 Ci2 should have leading behavior

potentially mix with the four-quark operators in question

would be challenging and prone to numerical error due to mg+my

their large number. However, in the context of the current Ciot ———+-+, (148
study our accuracy is limited by the existing one-loop per-

turbative calculations of the matching coefficients between 1

the Rl andMS schemes and the current Wilson coefficients, Cizoc — (149
for which the finite terms are also known only to one-loop a

accuracy. Therefore it is not necessary to subtract operato'rE tioned ous| biract th tors b
that affect the renormalization factors at ordérand above S mentioned previously, we subtract these operators by re-

in perturbation theory, provided we have acriori reason quiring thatsggreen’s functions for the subtracted four-qua_\rk

to expect them to give anomalously large contributions. ~ CPeratorsO;™" vanish between external quarks states with
Consequently, we neglect the subtraction of any bilineaflavor structuresd. To determine both coefficients we need

operator that is not power divergent and which mixes withto impose two linearly independent conditions which we

the four-quark operators at ordgf and above. The expla- choose as

nation for this is straightforward. Consider the Green’s func-

tion of a generic subtracted operatG{'}(p;,p1,p2.P2). Tr(S(P) 0" (P)) ampl = O, (150
evaluated in the free case. The bilinear operator will give no -
contribution to this Green’s function, due to the choice of Tr[ips(s(p)of“bd(p))amp]:O, (151

momenta. For interacting theories, gluon exchange can trans-

fer momenta, allowing a nonzero contribution of the bilinearwhere “amp” denotes the amputated vertex. The momentum

operator to this Green’s function. Such effects occur at ordep where the condition is enforced is explained in detail be-

g. If the lowest order contribution afl(u) begins aig? the  low.

total contribution will be of higher order and may be ne- In QCD, the operator®; mix under renormalization. To

glected. account for this mixing we define a set of suitable color, spin,
This counting is clearly not relevant for the bilinear op- and flavor projectors which we use to implement our renor-

erators of dimension below six as the needed subtractiomalization conditions and thus yield thg; in the RI
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scheme. First, to distinguish the flavor structure of the operafl) The propagator from the position of the operator to a
tors we define a set of external quark fields, denoted by general sitex on the lattice transformed into momentum

El g, as space Orx.
‘ . (2) The propagator from the position of the operator back to
Elgys= 2030 a%(P2)aS(P)AS(P2), (152 that position.

(3) A spectator propagator transformed into momentum

whereq is a generic quark field; the subscripts representing  space on both source and sink indices with distinct mo-
spin and color and the superscripts representing the flavor. menta,S(p,q) with p#q.

Herefl:ab¢djs 3 set of constants defining the flavor structure

of the jth set of e>,<ternal quark fisgds. We then construct therpe first two of these require a single inversion of the Dirac
amputated Green’s functions 6f™ between these external gperator for each mass. However, to calculate the last of

quark fields these we inverted the Dirac operator using a fixed momen-
. b tum source, which costs an inversion for every momeqta,
Alsy5= (0T EL 5, 5)amp (153 needed. For this reason we calculate this propagator for only
_ . , four fixed momenta and a limited range of masses.
and trace the result with a chosen set of projectbrs, As we are working on a finite lattice with periodic bound-
o ‘ - ary conditions, the possible values of the momenta for a
PHAY=TY 5 sA 5 s, (154  given directioni e {x,y,z,t} are
whereT'l is a rank-four tensor in spin and color space that 21n;
defines the projector, and there is no sum qvarthe above ap;= L (157)

equation. The renormalization factarg; are then fixed by
requiring that, for renormalized operators with a specificyynereL, is the lattice size in direction
choice of the momenta appearing in Eq52), this set of

quantities be equal to its free case value, Ly=L,=L,=16, L;=32 (158
.. )
2 Z9PIAM}=F¥, (155 and
q
e . P Li Li
Here Fll is the free case limit oP! {A'1} and ZY? is the TS5 (159

guark wave function renormalization factor frd9]. This

may be conveniently be written in matrix form 1. Bilinear operator subtractions

. To evaluate the subtraction coefficient$ and c;, the
ZZZZ FM (156 spectator propagator is not needed, a single momentum space
q propagator from a point being sufficient. As this is the case
with Mi=PI{A "1}, Z, M, andF are all realNx N matrices we have used a separate data set from that used for the full
whereN is the numbér (’)f operators in our basis. " four-quarkZ-factor calculation. We used an ensemble of 50

. uge configurations for which we calculated the quark
As long as the external states and projectors are choself:
such that a linearly independent set of conditions is applie ropagators for bare quark masses=0.02, 0.03, 0.04, and

. ) ; : e .05.
(F is invertible, this completely and uniquely specifies the .
renormalization coefficients for any such choice of the flavor From Eqs.(150 and(151) we obtain
structure of the external quark field&2°°d and projectors

[lgye- PSR L e () I Tr(s(p)Oid(P)) amyl
2 — - —
5 TS (S A e THL(S(P) (S A(P) Y]

C. Numerical implementation

We now move to a discussion of the numerics of our =k, (160
calculation. All the results presented were measured on

guenched gauge configurations generated using the Wilson ; - ; ey
gauge action for a lattice of size 1632 with 8=6.0. These —¢l TrLiB(s(p)SDA(P))amel 5 _ THLIHSPIOIA(P)) aml

configurations were then fixed into Landau gausee[59]). ! 2TipS *(p)] 2 2TipsS 4(p)]
On these Landau gauge-fixed configurations we then calcu- _
lated the needed quark propagators using the domain wall =\, (161

fermion action withL = 16.

To construct the quark contractions that arise in Eqswhere we have explicitly taken the degenerate linnit
(150, (151, and (153 three distinct quark propagators are =my=m;. These two relations may be simplified by noting
needed for a fixed mass. that
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TABLE VI. The O(a)? errors in the lower dimensional operator
subtractions are eliminated by fitting the coefficiént(p) in Eq.
(163 to the formA..i(p) =Af(?)+Af§)(ap)2. This table gives results
for A andA®) .

PHYSICAL REVIEW D 68, 114506 (2003

TABLE VIII. The O(a)? errors in the lower dimensional opera-
tor subtractions are eliminated by fitting the coefficiént(p) in
Eq. (164 to the formAAi(p)=A§?)+A(fi)(ap)2. This table gives
results forAlY and A%

i A AD i AD AD

1 2.2(16)x 1073 —7.2(54)x 104 1 7(64)<10°° 1(21)x10°°
2 8.3(89)x 102 —1.3(30)x 102 2 —1.03(29)x 102 2.93(98)x 103
3 2.3(19)x 102 —4.6(65)x10 2 3 —1.97(60)x 102 5.7(20)x 103
4 2.9(27)x 102 —5.2(92)x10 3 4 —3.02(87)x10 2 8.6(30)x 103
5 6.73(12)x 10! 1.9(31)x 102 5 —3.62(34)x 10 2 8.85(96)< 102
6 2.03744) 1.3(97)x 10 2 6 —1.32(12)x10°* 3.36(34)x 102
7 —3.330(73)x 10! —1.7(13)x 102 7 1.60(14)< 102 —3.85(39)x 103
8 —9.95(20x 10! —5.6(33)x10°3 8 4.59(41)x 102 —1.10(11)x 10 2
9 —8.3(89)x 102 1.3(30)x 102 9 1.03(29)< 10?2 —2.93(98)x 1073

TS Y(p)] _
Tr(s(p)(Sd)d(P))ampl

to within the statistical errors given [59]. It was also found
in [59] that Tfip(s(p)(sd)d(p))ampl=0 up toO(a?) con-

tributions. As this is the case, we extrastfrom Eq.(161) in

the chiral limit. We then substitute this value into E460)

to givec). .

It is instructive to investigate the mass dependence, of
since ¢} should vanish in the chiral limit. In addition, as
shown in Eqs.(148 and (149, the dominant H? diver-
gences inc} andc), are momentum independent, although
subleading terms are expected to depend gua)n(Thus the
dominant contributions t@)} andc, as determined through

m (162)

N(p)=2m¢A,i(p)+B,i(p), (164
where we have used notation that explicitly allow/s \',
A, B, A, andB,i to depend on the momenturtiThe
parameters) andc), are given in terms of\,i, B,i, A,i, and
B,i.) Thus, for each momentum, we fit our data férand\'
to a linear function oim; .

Having determinedh,i(p), B.i(p), A\i(p), andB,i(p),
we can now remove the dominant effects of discretization

errors. For the momenta we are using, these enter as

O[ (ap)?] effects, which we can determine by fittidg.i(p),
B.i(p), A,i(p), and B,i(p) to the form AKi(p):Ai?)
+Af(2i)(ap)2, etc. Momenta are used in the fits such that

0.8<(ap)?<2.0. Tables VI and VIl summarize the results of
the fits forA,i andB,.i, respectively, while Tables VIl and

Egs.(160 and(161) are momentum independent as 1ong as)y give the same information for the fits @, andB, . Al
we are in the required “window;” however, experience hasjis"se 50 configurations, with jackknife blocks of size one.

shown that at the momenta accessible for the lattice param-
eters we are using, discretization errors may be important. To

check for the above features of andc),, we first rewrite
Egs.(160 and(161) as
K'(p)=2m¢A,u(p)+B,(p), (163
TABLE VII. The O(a)? errors in the lower dimensional opera-
tor subtractions are eliminated by fitting the coeffici@i(p) in
Eqg. (163 to the form BKi(p)=BE(? +B(K2i)(ap)2. This table gives
results forB? andB? .

Tables VI and VII show thaAf(zi) and Bffi) are generally
zero within our statistical errors, so discretization errors for
A,i(p) andB,i(p) are not resolved. In addition, the statisti-
cal errors onAf(Zi) and Bffi) for i=5, 6, 7, and 8 are small

compared toA(K?) and Bf{?), so any discretization errors are a
TABLE IX. The O(a)? errors in the lower dimensional operator

subtractions are eliminated by fitting the coeffici@)i(p) in Eq.

(164) to the formB,i(p) = Bg? + B(fi)(ap)z. This table gives results

for Bi?) and Bizi).

B© B®

(0) (2)
B,i B,i

—1.6(21)x10° 4
—8(13)x10°*4
—2.0(29)x 1073
—2.7(41)x 102
1.05(19)x 1072
2.49(62)< 10?2
—5.4(11)x 1078
—1.52(30)x 102
8(13)x10 *

1.02(72)x 104
3.5(43)x 104
9.8(93)x10™4
1.2(13)x 102

—7.3(47)x10° 4
1(13)x 1074
4.1(21)x10°4
9.4(46)x 104
—3.5(43)x10 4

© 00 ~NO UL WNPR

—2.02(48)x 103
1.14(14)< 1072
1.67(32)x 102
3.01(44)< 10?2

4(14)x 1074
4.26(45)% 102

—5.95(95)x 10 *

—1.82(28)x 103

—1.14(14)x 10 2

2.06(69)x 10 4
—2.31(36)x 103
—4.02(79x 103

—6.5(11)x 102
—5.3(23)x10
—8.8(12)x 1073

1.32(26)x 10 *

4.13(78)< 104

2.31(36)x 10 3

© 0O ~NO UL WN P
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TABLE X. The lower dimensional operator subtraction coeffi- ~ TABLE XI. The discrete Euclidean four-momenta used in the
cientsc) used in them;=0.04 subtraction. four-quark operator renormalization calculation. Values are given in
_ the orderx, v, z, 1.
i 1
ap)? n n
1 1.2(12)x 10°4 (ap) - -
2 —8.0(77)x10°4 1.23
3 —-1.2(17)x10°2 [0,2 2,0 (2.2,0,0
4 —2.2(24)x10°3 [0, 2, 2,q [-2,2,0,0
5 —6.42(13)< 102 [0,2, 2,0 (20,20
6 —1.916(34)x10°* [0,2 2,0 [-2,0,2 0
7 3.204(65)< 10 2 [0,2,2,0 [0,2,0,4
8 9.49(17) 1072 [0.2, 2,4 [0, 2,0,~4]
9 8.0(77)x 10 [0,2,2 0 [0,0, 2, 4
[0,2,2,0 (0,0, 2,—-4]
small effect forA,i(p) andB,i(p). For A,i(p) andB,i(p), 154
the discretization errors are statistically resolved and, for :
(ap)?=2, aIterAg\?) and Bi?), by ~30%. Given these fits to (1,1,2,4 1,-2,1,4
(ap)?, we can determine) and c, from c,= —Bi?) and [1.1,2,4 [1.2,-1.4
from ¢ = —2m;(c,+A'Y) —B%. Note that the combination E i 2 j% %2_21 b llg
2mfASi))+ Bgi enteringc} is «'(0), ie., the_value of Eq. [1, 1’ 2, 4 [—,2 ’1 2’ 2
(163) for p=0. In our final determination of; this combi- (1.1 2 4 (2.1, 2,-2]
nation is found directly from fitting «'(p) to «'(® [1’ 190 4 [1’ 2.2 2
+ k")(ap)? and using the value of"(%). This reduces any [1,1,2 4 [1,2,2,-2]

possible numerical imprecision from fitting both; depen-

dence andy dependence separately. Our data is well fit by

the various relations given above, which shows that the data The operators below the charm threshol®; (i

has mass dependence predicteddprandc}, in Egs.(148)  =1,...,10), are not linearly independent. As can be seen from

and(149. Eq. (156 the method we use to calculaferequires the in-
Sincec), shows no visible mass dependence, we have chorerse of M, which is singular in this case. Therefore we

sen to use its value in the chiral limit, as just described, foractually calculat& from Eq.(156) for a linearly independent

the final computation of th& factors at nonzero quark mass. subset of these operators.

(If mass dependence were visibledh, our entire approach This subset was defined by eliminati@g, Qg, andQ1y,

would be suspedt.On the other hand, sincg, is strongly  through the identities

mass dependent, we extract it at nonzero mass from Eg.

(160. The values OfCil used for them;=0.04 subtractions Qu=~Qu+Q2+Qs,
are given in Table X. The quoted error is only a statistical
error, which comes from the jackknife procedure s 1

! ] P ’ Qo= EQl_ EQs:

2. Four-quark operator renormalization

For the extraction of the four-quark renormalization fac- Q1= 1Q1+ Q,— 1Q3_ (166)
tors we have 100 configurations with two values of the quark 2 2

mass,m;=0.02 andm;=0.04 and a further 390 configura- _. . S .
tions for the second mass value. The extra configurations fopInce conventlt_)nally thaS=1 Hamlltonlan IS given In the
the heavier mass were obtained to gain increased statistics $¢Pendent basis, after calculating the 7 matrix Z in the
a reasonable cost after the subtracted renormalization factoféduced basis, we reconstructed &M matrixZ in the full
had been found to be mass independent to a good degree Rasis using the relations

accuracy on the first 100 configurations.

The renormalization condition we apply is such that all Z;=Zj, 1,j€{1,2,356,7,3, (167
the momentum scales in the problem should be the same, R
ie., Z;;=0, ie{1,2,3,4,5,6,7,8,9,10 (168

pi=p5=(p1—p2)?=pu?. (165 i <14,9,10, (169

The values oh; corresponding to the momenta that we used ~ , _
are given in Table XI. The results are averaged over equiva- Zj=TZy, i{4,910, (170
lent orientations, and denoted by the corresponding Euclid-
ean squared momentag)?. j€{1,2,3,5,6,7,8, a7y
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TABLE XIlI. The inverse of the four-quark renormalization ma- TABLE XIII. The same as Table XIl except the renormalization
trix, MF 1, in the block diagonal basis of irreducible representa-point is (ap)?=(ap)3x=1.54.
tions of SU(3) X SU(3)g. Qg is in the(27,1) representationQ;,
Q3, Qs5, andQg are in(8,1) representations, an@; g belong to 1 2 3
(8,9 representations. Note that entries connecting the various rep-

— 6 — 6
resentations are either zero within statistical errors or very small: 1'15163_63 —5(99)x10 5(59)x 10_2
The renormalization point isa(p)?= (ap)3x=1.23. 2 2(235)¢10 1.066395) 8.95(76)< 10
3 —4(353)x10°8 7.3(15)x 10?2 1.06618)
1 2 3 5 1(13)x 1020 —8(23)x 103 -9(21)x 1073
—~ —~ 6 5(68)x10° 2%  —4.8(53)x10° %2 —1.5(61)x10 ?
1 1.138039 3(11)x10 2.1(70<10° %5 75(31<10°5  —19(25)x10°°  —4(33)x10°*
2 6(245)< 10 L0512 7.03(98)<10 8  —10(15)x10°° —6.1(76)x10°3 —2.1(97)x10°3
3  —8(368)x10° 8 8.0(19)x 10 1.08622)
5 —6(45)x10 % 4.8(32)x 10?2 1.8(24)x 1072 5 6 7
_ —20 _ -2 -2
6 1(112)x 1074 2.1(60)X 1073 1.3(73)X 1073 1 10(78<10°°  — 22523105 1.02(32)<10 °
7 1.11(37)%10 5.1(41)x 10 9.9(50)x 10 5 C3(28)x10°4  —1.8(13)x 10" 1.6(11)< 104
_ —5 -2 -2 : :
8 1.5(20)x 10 1.6(12)x 10 3.0(15)x 10 3 —9.6(63)x 10°° 320(77K107  —2.4(41)< 10"
5 6 7 5 1.068482) 8.65(67x10°2  —3.1(10)x10°®
— — - 6 4.7(21)x 1072 1.24626) —8.8(31)x10°3
1 1.52(80) 1073 —2.87(33)¥ 1074 1.71(36)x 1074 7 —6(11)x10%  —2.0(18)x10°3 1.062626)
2 9.7(38K107 —8(21)x10™  —2.3(18x107 8  —18(33)x10% -58(52x10°°  7.57(18)x 102
3 —22(61)x10°° 2.1(11)X10°2  —1.08(77)x10°3
5 1.03912) 9.00(77)< 102 1.1(16)x 1078 8
6 3.2(23)x10°2 1.21835) —2.2(50)x 1078 .
- X
7 —4(15)x10°* —1.8(22)x 108 1.056229) ; %ﬁ))x 18,5
_ —3 _ —3 —2
8 1.3(45)x 10 5.1(64)x 10 6.10(25)x 10 3 21(62)< 10"
8 5 8(10)x 104
— 6 2.6(40)x 1073
2 8(16)x 10 8 1.123441)
3 7.3(65)x 104
5 1.2(18)x 103
6 8.5(55)x 10 2 ' B
7 83117102 Q1=3Q1+2Q>—Qs3, (172
8 1.135443) 1
Q= §(2Q1_2Q2+ Q3), (173

where T}, encodes Eq(166) as Q'=T,Q, for k=4, 9, and 1

10. | | Q4= 5 (~3Q:+3Q,+Qg), (174
As enumerated in Appendix B, the four-quark operators

we are considering are composed of elements transforming

according to the8,1), (27,1, and (8,8 representations of Qi=Qi; i1{56,7.8. (179
SU(3),®SU(3)z. There are four distinct8,1) representa- . L . )
tions, two distinct(8,8) representations and a sing27,). N this new basiQ; is in the (27,1) representation an@,

Since we renormalize in the massless limit, Gufactors ~andQg are in the(8,1) representation. To display the chiral
should not have mixings between tt&1), (27,1, and(8,8  Symmetry properties we tabulate elementsVbfF ~* in this
representations, but there can be mixings between the fol@sis in Tables X and XIIl. We tabulatél F ~* rather than
distinct (8,1) representations and also between the (%8 FM ~1 because the former is linear in the quark contractions,
representa’[ions_ In particu|ar, the calculated valuesZor SO individual contributions are more eaSin diStingUiShEd. In
should be block diagonal in an operator basis where eactgrms of the elements dfiF ~* in the Q' basis, the restric-
operator is purely ar8,1), (27,1, or (8,8. This is already tion that operators in different multiplets cannot mix may be
the case foQs andQg, which are in distinct8,1) represen- ~ Written

tations, andQ; andQg, which are in distinct8,8) represen-

tations. HoweverQ;, Q,, andQ are mixtures of twa8,1) (MF™H;=(MF™1);;=0; i{2,356,7,8
representations and a sind7,1). To check the chiral struc-

ture of the renormalization factors it is convenient to con- (MF™H7=(MF™1);,=0; ie{2,35,8,

sider a basis with operator®/ in distinct SU(3)

®SU(3)g representations, given by (MF Lg=(MF 1)3=0; i{2,3,5,6. (176
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TABLE XIV. The four-quark operator renormalization factors

Zij /Zﬁ at the renormalization pointa@)?=1.23 (u=2.13 GeV)
for the 3-flavor case. Values are given in the full overcomplete basis

of operators as explained in the text.

PHYSICAL REVIEW D 68, 114506 (2003

TABLE XV. The same as Table XIV except the renormalization
point is (@p)?=1.54 (u=2.39 GeV).

1

2

3

1

2

3

1 9.466(27x 10!
2 —5.65(72)x10 ?
3 9.1(14)x 10 2
4 —9.13(20)x 10!
5 —1.03(51)x10 2
6 1.4(21)x 10 ?
7 0.00)

8 0.00)

9 1.374673

10 3.715(35x 107!

—6.79(26)x 10 2
9.353(70)x 107 ¢
—9.1(14)x 102

9.13(20)x 10 *
1.03(51)x 102
—1.4(21)x10°2
0.0(0)
0.0(0)

—5.65(72)x 102

9.466(27)< 107 ¢

3.1(35)x 1072
—4.7(59)x 1073
8.79(16)x 10!
8.71(19)x 10 *
—1.13(92)x 10 2
2(18)x 1073
0.000)
0.000)
—4.347(61)x 1071
—4.424(40)x 1071

1 9.458(23)x10°*
2 —7.14(57)x102
3 9.0(10)x 102
4 —9.28(16)x 107!
5 —2.4(33)x10°°3
6 9(17)x 1073
7 0.00)

8 0.00)

9

—7.74(22)x 10 2
9.397(60) 10!
—9.0(10)x 10°?

9.28(16)x 107!
2.4(33)x 102
-9(17)x 1073

0.000)
0.000)

—9(26)x10 4
1.9(48)x 10 2
8.70(12)x 10°*
8.72(15x 10°*
1.9(70)x 1072
9(15)x 1073
0.0(0)
0.0(0)

5 6 7
1 —9.2(37)x10°3 2.4(19)x 1073 0.000)
2 3.1(53)x 10 % —1.61(85x 10 ? 0.000)
3 —21(12)x10°2 —2.5(15)x10 2 0.000)
4 —9(15)x10° % —4.3(24)x10°? 0.000)
5 9.65(11)x10° 1 —7.11(64)x10 2 0.000)
6 —2.6(18)x10°2  8.23(24x 10! 0.000)
7 0.00) 0.0(0) 9.508(25)x 10 *
8 0.00) 0.000) —5.11(20)x 102
9 —3.1(53)x10°°%  1.61(85)x 10 2 0.0(0)
10 9.2(37x10°%  —2.4(19)x10°3 0.000)
8
1 0.00)
2 0.00)
3 0.00)
4 0.00)
5 0.00)
6 0.00)
7 —6.96(12)x10°2
8  8.845(34x 10!
9 0.00)
10 0.q0)

1.373965) —7.14(57)X10°2 —4.361(49)x 10!

10 3.567(31x10° ' 9.458(23x10 ' —4.333(31)x 10!
5 6 7

1 —6(25)x10°4 3.5(11)x10°3 0.00)

2 9.6(53)x 10 % —2.57(54)x 10 ? 0.000)

3 1.7(12)x10° 2  —4.1(10)x 10 ? 0.000)

4 2.8(16)x 102 —7.0(15)x 10 ? 0.000)

5 9.389(70K 10! —6.54(47)x10 2 0.00)

6 —3.5(16)x10 2  8.05(17)x10 ! 0.00)

7 0.00) 0.000) 9.464(22)x 1071

8 0.00) 0.000) —6.38(14)x 102

9  —9.6(53)x10°%  2.57(54)x10 2 0.000)

10 6(25)x10°%  —3.5(11)x 103 0.00)
8

1 0.00)

2 0.00)

3 0.00)

4 0.00)

5 0.00)

6 0.00)

7 —7.42(12)x10°2

8 8.951(32x10?

9 0.00)

10 0.q0)

for the calculation of the final renormalization factors we
will set these elements to be exactly zeroMrF ~*, before

result.

The final values foiZ;; /Z; are given in Tables XIV-XIX

the lower dimensional operatofBables XVIII and XIX). All
values given are witin;=0.04 for 490 configurations. The
As can be seen from Tables XlI and XlII, these relations arequoted error is statistical, and was calculated by jackknifing
satisfied to a good degree of accuracy by our data. As suclhe data in blocks of 10. To obtain we useZ,=0.808(3)
(15) [59] at 2 GeV. In principleZ, should be run to the exact

. - 1y > scale at which we are working, however, this is a very small
inverting to getZ to reduce the statistical error on the final effect (see Ref[59], Fig. 17).

where @p)? is the square of the Euclidean momenta for the

external legs andapgi)? is the transferred momenta. To

D. Discussion

Having completed the renormalization of our four-quark

display the numerical importance of the various componentsperators, we now turn to a discussion of the size of various
of the calculation, three sets of renormalization coefficientxontributions, the effects of discretization errors, and the role
are given:(1) The full renormalization coefficientéTables of the dimension six bilinear operators which were not in-
XIV and XV), (2) those calculated without the eye-diagram cluded in our present work. Turning first to the size of effects
contributions(Tables XVI and XVI), and (3) those calcu- from our calculation, the numerical results show that the eye-
lated with the eye-diagrams but without the subtraction ofdiagrams, even though they have a?fependence in the
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TABLE XVII. The same as Table XVI except the renormaliza-

TABLE XVI. The four-quark operator renormalization factors
tion point is @p)2=1.54 (u=2.39 GeV).

Zij /Zﬁ at the renormalization pointa@)?=1.23 (u=2.13 GeV)
for the 3-flavor case except that the eye diagréansl consequently
the lower dimensional operator subtractiphsve been omitted in

1 2 3

the calculation ofZ; /Z¢. 1 9.465(23)K10 1 —7.81(16)x10 2 1(47)x 1077
1 ) 3 2  —7.81(16)X10°2 9.465(23)x 10! 1(47)x10°7
3 7.81(16)x10°2 —7.81(16)x10°2  8.684(27)x 10!
1 9.484(26)< 107 —6.96(16)x 10 2 9(380)x 1078 4 —9.465(23)x10°1 9.465(23)x10°!  8.684(27)x 10!
2 —6.96(16)x10°2 9.484(26)x 10! 9(380)x 1078 5 3.3(36)x10°° —3.3(36)x10°° —2.07(84)x10™*
3 6.96(16)x10°2 —6.96(16)x10°2  8.787(27)x 10 * 6 —1.47(52)x10*  1.47(52)x10°* 3.8(35)x10°°
4 —9.484(26)x10° 1 9.484(26)x10° '  8.787(27)x 107! 7 0.00) 0.0(0) 0.000)
5 3.3(54)x10°° —3.3(54)x10°°  —3.1(10)x10 4 8 0.00) 0.000) 0.000)
6 —4.72(71x10°4  4.72(71)x 104 5.6(48)x 10 ° 9  1.380734) —7.81(16)x10 2 —4.342(13%x 10 *
7 0.00) 0.0(0) 0.0(0) 10  3.560(26)x10 ! 9.465(23)x10 ! —4.342(13)x 10!
8 0.00) 0.0(0) 0.0(0) s 5 .
9  1.387739 —6.96(16)x 102 —4.394(13)x 10 ¢
10  3.698(24x 10! 9.484(26)< 10! —4.394(13)x 107! 1 —8.4(33)x10°° —1.1(10)x10°° 0.000)
5 5 . 2 —5.7(14)x10°° 3.0(12)x10°° 0.000)
3 —3.6(12)x10 4 2.6(45)x10°° 0.000)
1 —1.29(38%x10*% —1.7(13)x10°° 0.0(0) 4 —3.4(10)x 104 6.7(47)<10°° 0.0(0)
2 —1.14(18x10*  1.05(16)x10 * 0.000) 5  9.474(22x10° ' —7.45(11)x10 2 0.000)
3 —6.1(14)x10°*  1.58(50x 10 * 0.0(0) 6 —6.07(11)X10°2 8.943(29)x 10 * 0.000)
4 —6.0(12)x10°%  2.80(55x 10 * 0.0(0) 7 0.00) 0.000) 9.474(22)< 107t
5 9.510(23x 10! —7.03(11)x10 ? 0.0(0) 8 0.00) 0.000) —6.07(11)x 102
6 —5.108(98x10 2 8.823(31)x10*? 0.00) 9 5.7(14)<10°° —3.0(12)x10°° 0.000)
7 0.00) 0.00) 9.509(23)x 10! 10 8.4(33x10°° 1.1(10)x10°3 0.000)
8 0.00) 0.0(0) —5.103(98)x 1072 5
9 1.14(18x 104 —1.05(16)<10 4 0.000)
10 1.29(38)x 104 1.7(13)x10°° 0.000) 1 0.00)
5 2 0.00)
3 0.00)
1 0.00) 4 0.00)
2 0.00) 5 0.00)
3 0.00) 6 0.00)
4 0.00) 7 —7.45(11)}10°2
5 0.00) 8  8.942(29)K 10!
6 0.00) 9 0.00)
7 —7.02(11)x10°? 10 0.q0)
8  8.823(31x10°!
9 0.00)
10 0.00) are studying high energy quantities, so the relevant scale is

a l~pu. Thus eye-graphs involving powers af ! have a
much smaller effect on the renormalization factors than cor-
continuum limit, are small compared to the other graphsresponding eye-graphs have on physical hadronic matrix el-
This is in stark contrast to the matrix element case, where a@ments. In addition, the eye-graphs are suppressed as they
we will see in Sec. XI, such divergent graphs overshadow thare zero in the free case, with the nonzero signal being due to
physical signal by approximately two orders of magnitude,gauge interactions. The numerical evidence in Tables XIV—
and their subtraction is an extremely delicate operation thaXIX shows that inclusion of the divergent eye graphs affects
must be performed with great precision. the renormalization factors on the order of a few percent.

In the matrix element study, when considering dimension- As we are studying high energy quantities, we must also
ful quantities, an order of magnitude estimate of the size of avorry about the effect of discretization errors. If the mo-
physical signal may be made by takifg,cp to the relevant menta, although large, still allow lattice artifacts to be treated
number of powers. If the quantity is divergent, however, theas small corrections, it is possible to describe them as
dimensions may also be made up with inverse powers of th&(ap?) and (’)(apgiﬁ) terms. Then, with a sufficient number
lattice spacing. As~1~10x Aqcp at the lattice spacing we of different momentum configurations, they can be isolated
are working, the physical signal may be much smaller tharand removed. A naive estimate of the scale at which these
the subtraction. For the renormalization factors, however, weffects become large ip~1/a. This is only a rough esti-
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TABLE XVIII. The four-quark operator renormalization factors

Zij /Zﬁ at the renormalization pointa@)?=1.23 (u=2.13 GeV)
for the 3-flavor case except that lower dimensional operator sub

PHYSICAL REVIEW D 68, 114506 (2003

tion point is @p)2=1.54 (u=2.39 GeV).

TABLE XIX. The same as Table XVIII except the renormaliza-

tractions have been omitted in the calculatiorﬁqflzg. 1 2 3
1 9.451(24x 10! —7.67(22)x10 2 —8(24)x10°*4
L 2 3 2  —6.86(59x10°2 9.370(62)x10 ! 1.7(48)x 10 2
1 9.463(28K10°1 —6.75(26)<10 2 42(35x10% 3 9.3(11)x10°%  —9.3(11)x10? 8.69(13)< 10 *
2 —552(73X10°2 9.340(71) 107!  —9.0(66)x10°3 4 —9.21(16)x10°'  9.21(16)x10°* 8.72(16)< 10!
3 9.2(14)x10°2  —9.2(14)x10°2  873(17)x10* 5  —3.6(29x10°°  3.6(29)x10? 3.0(67)x10°2
4 —9.09(21)x10°!  9.09(21)x10°!  8.60(21)x10°! 6 1.7(18)x 1072 —1.7(18)x 10 2 1.2(15)x 1072
5  —9.0(49x10°°  9.0(49)x10 3 —-1.06(93)x10°2 7 0.00) 0.000) 0.000)
6 2.4(21)x10°2  -24(21)<10%  —1.6(19)x10°2 8 0.00) 0.000) 0.000)
7 0.00) 0.000) 0.000) 9  1.371269 —6.86(59)X 10 2 —4.359(49)x 10 *
) 0.00) 0.00) 0.000) 10  3.575(31x10° ' 9.451(24%x10 ' —4.333(30)x10 !
9  1.373375 —5.52(73)X 1072 —4.303(67)x10°* 5 6 .
10  3.719(34x 10! 9.463(28)x 10! —4.436(41)x10*
1 —4(24)x10°4 1.1(11)x 1073 0.00)
5 6 ! 2 8.7(51)<10°% —1.68(57)<10 2 0.00)
1 —75(36)x10%  —3(19)x10°* 0.000) 3 1.6(12)x10°2  —3.0(11)x 10 2 0.00)
2 —3.8(60)x10°3 —5.1(88)x10° 3 0.000) 4 25(15)x10 2 —4.8(16)x10 2 0.00)
3 —3.0(13)x102 —1.1(16)x10 2 0.00) 5  9.407(67)K10° ' —6.79(53)<10 ? 0.00)
4 —26(17)X10°2  —1.6(25)x10 2 0.0(0) 6  —33(15)x10°*  8.34(18x10°* 0.00)
5 9.70(11)x10° 1  —7.99(75)x 10 2 0.000) 7 0.00) 0.0(0) 9.475(23)<10°*
6 —4.1(17)x10°2  8.42(23)x 107! 0.0(0) 8 0.00) 0.000) —5.98(17)< 1072
7 0.00) 0.0(0) 9.521(24)x10°* 9 —8.7(51)x107°  1.68(57)<10 ? 0.000)
8 0.00) 0.0(0) —4.67(17)x10°2 10 4(24<107%  —-1.1(11)x10°° 0.00)
9 3.8(60)< 102 5.1(88)x 10 3 0.000) 8
10 7.5(36)x 1073 3(19)x 104 0.0(0)
1 0.00)
8 2 0.00)
1 0.00) 3 0.00)
2 0.00) 4 0.00)
3 0.00) 5 0.00)
4 0.00) 6 0.00)
5 0.00) 7  —7.48(18)x10?
6 0.00) 8 8.927(58)x 10!
7 —7.32(25)x10°? 9 0.00)
8 8.720(73x 107 * 10 0.00)
9 0.00)
10 0.00) (2) The operator in Eq(146) mixes at®(g) in perturba-

tion theory and so should be subtracted to the order at which

mate, however, and previous studies have shown that for tHi€ are working. Such a subtraction was not attempted in this

lattice parameters we are using, momenta as largepi ( first work, since it involves explicit external gluons.

=2 produce discretization errors of a few percfsfl]. As _ BEAP 1g OnHANe - 2 - \ 3
such in this preliminary study, for which we have only a few simplified situation involving a single dimension-six opera-
momenta configurations, all of which have a momenta scale ag|E xx. Values for m.. versusm, from 85 configurations
of ~1/a, we will ignore these effects. _using(A%(x)A2(0)) and from the 400 configurations of this work
Next we consider the effect of neglecting the subtractlorhsing<Wa(X)AS(O)>_
of the dimension six quark bilinear operators. These subtrac-
tions are needed for two reasons.
(1) Discretization errors in our expressions ®y andB,

m; m,, (85 configurations m,, (400 configurations

are of O(a?) and may be written in terms of the dimension 0.01 0.2083) 0.205217)
six quark bilinear operators we are considering. When the 0.02 0.2703) 0.269914)
Green’s functions of these operators are multiplied by the 0.03 0.3242) 0.323112)
subtraction coefficients} andc’,, which have leading be-  0.04 0.3712) 0.370Qq12)
havior 142, this can lead to errors in the final results that are 0.05 0.412911)

of O(1) in the lattice spacing.
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tor in the continuumB$°™. Then we can write, for example, ground states and the spatial average over the operator time
slice enhances the statistical average. For fixed valuég of

B2'=BS"+ O(a?)BS™. (177 andt,, a “plateau” in G ok (t) emerges wheh,>t>ty as
_ then the lowest energy statdsr(") and|K*)) dominate the
When B'2at is multiplied by ch(u), which behaves as 47, correlation function. The correlation function becomes time
thenBS°™is multiplied by a coefficient o©)(1) in the lattice ~ independent since the meson masses are equal. Up to source
spacing. As we have just discussed, discretization effects afgatrix elements and kinematical factoS,ok(t) then di-
small, and so is the contribution Gj(aZ)Bgont to Eq. (177). rectly yields the desired matrix element
In addition, as we have noted, the contributionc{g@,u)B'lflt lim G, ox(t)
to the four-quark renormalization factors is also small. Hence t,>tsty
we expect any effects due to these discretization errors to be N 4
negligibl {(m"|OIK™)
gligible. -
A similar argument may be put forward for case two. N(2m_Vs)(2mg V)

While this operator should be subtracted at the order in per- . . . ; . .
turbation theory in which we are working, the subtractionWhICh Is easily seen by inserting two complete sets of rela

- . . . . tivistically normalized states between the operator and each
coefficient associated with this operator will be only loga- y b

A . . . ) source. The factoN represents an unknown normalization
rithmically divergent in the lattice spacing, rather than powerisctor introduced by the wall sources.

divergent. Our data from the extraction of the subtraction ope way to remove the kinematic factors and the un-

coefficients supports the numerical dominanc®ofandB,  known normalization of our wall sources is to divide by the
[Egs. (148 and (149] very well. This suggests that the pseudoscalar two-point correlation function from each
power divergent terms are much more important, for this sesource. For example, with the wall-poifgpatially extended
of lattice parameters, than the logarithmically divergentsource-local sinktwo-point correlation function

terms that would multiply the dimension-six operators.

Again this indicates that we are correctly treating the domi-G (t)EiE [iT(x,) ysd(x t)]E [id_(z’ t ) ysu(zt)]
nant part of the subtractions, which themselves amount to " Vs % R 72 ) VSRSt
only a small correction to the final renormalization factors. (180

e_mK(t_tK)e_mv(tv_t), (179)

and similarly forGg(t), we can form a ratio of the desired
matrix element to known factors.

G ok(t) _ (m*|O|K™)
G,(1)Gk(t) (7 "|P,-[0)(0[Py+|K™)"

IX. LATTICE CALCULATION OF K—a AND K—|0)
MATRIX ELEMENTS

In this section we present the lattice calculation of khe lim
—a and K—|0) matrix elements. In the first two sections >t
the lattice method and basic contractions are briefly de- R T
scribed. Results fok — 7 and K—|0) matrix elements ob- _[WesusePlvl(aﬁ)TA[llu;/Ss](x)l and Pﬂ+(xl).=['%7?£g) t?s
tained by using this methodology, which form the basis of N S€cC. 4 W€ can also normalizé Eq y
our calculation, are given in the last section. We continue t&seudoscalar-axml vector correlators, which changes the de-

; nominator in Eq.(181) to (7" |Uyyysd|0){0[SyeysulK™).
Ie}bel pseudoscalar states whhand 7T+t° malie the discus- The axial current matrix elements have the normalization
sion clear, but the matrix elementsr™|Q;|K™) are calcu-

i i given in Eq.(A12). These axial current matrix elements have
lated with degeneratequarks and haven,-=mg-+. SinC€  heen calculated using point-point correlation functions in
K—0) matrix elements vanish in this limit, we use nonde- Ref.[21] and can also be extracted from a simultaneous fit to
generate quark propagators for this case. It is useful to keefye wall-point and wall-wall two-point functions calculated
in mind that when the quarks are degenerate, flavor is specin the present study. As discussed in Sec. VIC, zero mode

(181)

fied by the type of quark contraction. effects are introduced through,.(t) and Gg(t) since such
effects are seen in scalar correlators at a separative also
A. Lattice method of matrix element calculation determine the pion mass from pseudoscalar-axial vector cor-

relators(wall-point) for the 400 configurations used in this

In order to obtain the desired matrix elements, we work inWork and the results are given in Table XX and plotted in
Euclidean space-time and calculate correlation functions. quig_ 2.

example, a typicaK— 7 correlation function is Another possibility is to divide the three-point function by

1 a different three-point function. In particular

GwOKu)EE V.2 E ([id(2’,t,) ysu(z,t,)]O(y, ) i Soox0_ (IO _amy
X[Liu(x',tg) yss(X,t) 1), (178 tw>t>tKGW§dK(t) (7" [sd[K™) me '

(182

where() denotes an average over gauge field configurationsyhere we have used the Ward-Takahashi identity (Egj5),
t,>t>t, with t, andty fixed, Vs is the three-dimensional neglecting zero mode effects, in the last step. Since as we
spatial volume and the factors ofmake the pseudoscalar have seen, zero modes have a noticeable effect on this Ward-
correlator positive. We employ Coulomb gauge fixed wall Takahashi identity, we do not divide by this three-point func-
sources which have significant overlap with the pseudoscalaion to extract{7*|O|K™").
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Our preferred approach is to dividg, ok (t) by the wall- S
wall two-point function computed from the correlator from
t, toty,
1 HEY !
Guanltr i) =~ 2 { [IUX) y5d(X,t1)]
Sx,x"

d
u
d

7] ]

<

X2 [id_(Z',tK)y5u(Z,tK)]>. (183 (b)

Since we work with degenerate quarks, we have

Grok(t) (7 |O[K")

lim = (184) S
tK>t>tﬂGWW(tfrrrtK) 2m7r
where we determine,. from a covariant fit to the wall- q
point two-point function in the rangé=12-20 for each
guark mass. As discussed in Sec. VIC this normalization il

wnl

minimizes the effects of zero modes. u
We have tested the various methods described above fo
extractingK— 7r matrix elements from three-point correla- (C) (d)

tion functions and find the results generally consistent,

within errors. We give results for the last method since itis  FiG. 8. The quark contractions needed far*|Q;|K*) matrix

the simplest, requiring only the value for,,, does not rely  elements are the figure eigtd) and eye(b) contractions. If the

on chiral perturbation theory, and minimizes zero mode efquark loop in(b) contains a or s quark, there are two different eye

fects. In addition, we have used two types of wall sources t@ontractions possible. This is the case @y—Q1o. For(0|Q;|K°)

create and destroy pseudoscalar mesons: the usual pseudwtrix elements, the annihilation contractitm is needed. For the

scalar sourcéqyst,q and an axial-vector sour@y,yst,q.  determination of(7*|Q;|K™ )y, the contraction shown irfd) is

They give statistically equivalent results, but the pseudofneeded, where the cross is an insertion of the quark bilistkaThe

scalar source yields somewhat smaller errors; we will alwaysglosed boxes represent insertions of a generic four-fermion opera-

quote the former unless otherwise specified. tor, and the closed dots the creation and annhilation of the pseudo-
As mentioned earlier, fok —|0) matrix elements we ex- scalar states. Depending on the particular weak operator, the quark

tract the needed power divergent coefficient from the ratio '00Ps in(b) and(c) may containg=u, d, s quarks(andc if charm
is an active flavor.

Gok(t) _ (0|O[K®)

lim == , 18 ihilati - - in Fi -
« sor, Gk(D)  (0[Sysd[KO) (185 the ann|h|Iat|o+n_contfract|on.g|v§n in Fig(@. The matrix
K element of(7"[sd|K™), which is needed to subtract the
where power divergent contribution, is shown in Figd3

The figure eight diagrams are constructed from quark

1 — propagators from the wall sources tat andt,. to a point
Gok(t)= V—E E, (O(y,lid(x",t) yss(x,t)1). (186 (xt). Propagators fromx(t) to t.. andt, are obtained from

s Y oxx the Hermiticity of the quark propagatorsG(x,y)
The ratio in Eq.(185 is just the parity-odd analogue of Eq. = ¥sG'(Y.X) ys. After the appropriate propagators are com-
(182 if we recognize the denominator of each ratio as thebined at a pointX,t) where the weak operator is inserted, an
parity even or odd component, respectively, of the subtracaverage ovek is done- _ _
tion operator® ¥ discussed in Secs. Il and XI. However, __ 7" the eye diagramfFig. 8b)] and K—[0) diagrams
in Eq. (185 the ratio immediately gives the needé1/a?) [Fig. 8c)] we also need an additional propagator fraxt]

coefficient without relying on the Ward-Takahashi identity. to itself, since two fields in the Weak_ operator are contracted
together. To efficiently calculate this propagator we use a

common technique in lattice simulations, calculating a
propagator from a complex Gaussian random wall source.
To compute theK— 7 correlation function in Eq(178), Since we only want the loop propagator for the weak opera-
the quark fields are Wick contracted into propagators whichor in meson states, we choose the random source to be non-
are calculated by inverting the five-dimensional domain wallzero on time slices with 14t<17. When the propagators
fermion Dirac matrix on an external source and projecting toare assembled to form a particular contraction, we include
four dimensions in the usual wagee[21]). Two types of the complex conjugate of the random source at each sink
diagrams emerge: figure eight diagrams as shown in E&. 8 point (x,t) and average over random sources and gauge con-
and eye diagrams as shown in FigbB TheK—|0) matrix  figurations to project out the desired diagonal contribution.
elements are computed in an analogous fashion and requifiéhis allows the spatial average of the correlation function

B. Contractions
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FIG. 9. (7*|Q¥2|K ™) for each Euclidean time slicewhere

the four quark operator was inserted. The differapalues shown FIG. 11. The same as in Fig. 10, except that |Qg o{K ") is
are: 0.01(V), 0.02 (A), 0.03(<), 0.04 (), and 0.05(O). The shown. Again values agree on different time slices within errors.
matrix element is time-independent for the range<14 17 for

each masgvertical dashed lings showing that only the lowest C. Lattice values for K— and K—0 matrix elements

energy pseudoscalar states are contributing. We first demonstrate that fdr,=27, t=14—17, andty
=5 the ratio 2n_ G ok(t,,t,tk)/Guuw(t tk) is t indepen-

over the operator time slice for any number of time slices tadent. If this is the case, then from Ed.84) this ratio is the
be done with only ondor a few quark propagator inver- desired matrix element. In Fig. 9 we shdw ™ |Q32|K*) as
sion(s) on each gauge field configuration. We have chosen t@ function oft for m¢=0.01, 0.02, 0.03, 0.04, and 0.05.
calculate two independent, random source quark propagatoftere is no visible time dependence in the range<tlO
on each configuration, corresponding to 1/3 of the computek 20, demonstrating that only the lowest energy pseudo-
time spent calculating propagators. The same randomdcalar state is contributing to the matrix element and justify-
sources are used for all quark masses on a giVen Conﬁgurﬁ]’g our choice of 14&t<17 for the range over which eye
tion. The last part of the eye diagrams is the spectator quarkontractions are calculated. The =3/2 parts of operators
propagator fronty to t, . This is constructed using the wall do not involve any eye contractions and are easier to deter-
source propagator frotx and using a wall sink dt, where  mine with small statistical errors.
the spatial coordinates of the propagator are summed over Haying established that a plateau exists tfidrom 14 to
before inserting the propagator into the contraction. 17, we plot the dependence a@nof the Al=1/2 parts of

operators, where random noise sources are used in the calcu-
— ; lation of the eye diagrams. Figure 10 shofvs"| Q35K *)
as a function of for the values ofn; used and Fig. 11 is the
X same for(7"|Q§2{K™). Note the large difference in the
T vertical scale between Figs. 10 and 11, which is due to the
% larger divergent contribution iQg. One sees appreciable

=l
== |

&
=3
(=}
—_
I
TN N
T

B HEeH

. fluctuations between different times slices, but they agree
= within errors. This is the expectation from using a noisy
1 A - estimator for the quark loops. Figures 12 and 13 show the
+ data for the annihilation contractions needed (0Q;|K°)
A N4 matrix elements. These also involve random sources in the
calculation of the quark loops and we see again that the
1 v results on different time slices agree within errors.
- 1 - The results for(m"[(50){K™), (7"|QIEIK"), and
o (m*|QBAIK™) are tabulated in Tables XXI, XXII, and
00043 14 15 16 17 18 XXII, respectively. Results for the ratio
t (0]Qi|K®)/(0[sysd|K® are given in Tables XXIV and
FIG. 10. (7" |QY2|K*) for the time slices 14t<17. This  XXV. In each case the matrix elements have been averaged
matrix element involves a noisy estimator for the fermion loop inOVer time slices 14—17. The relative statistical error for the
the eye contractions. The symbols denote different valuesnfor A1 =1/2 matrix elements is almost 100% for matrix elements
as in Fig. 9, and the lines are the average over time slices for #1at are quite small (compatible with zerp e,
single m;. The values on different time slices agree within the (7" |Q|K ™). For the left-left operators k€, the statisti-
guoted statistical errors. cal errors are 10%—-20% and the errors fall to 0.5%—-3% for

1]
L Lz L]

o
(=
f=3
w
I
—t
<
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0.04 . | . | T I . I . TABLE XXI. The values for{7"[sd,|K ") for each light quark
_ mass studied. These matrix elements are used in the subtraction
r - b needed in the determination &f— 77 matrix elements fronK
—a andK—|0) matrix elements.
0.035— —
| [0) T ] my (7 |(5d) o K™)
. l o 0.01 1.51025)
s 003 & m 0.02 1.54816)
i 1 | 0.03 1.59912)
0.04 1.66010)
0.025 — - — 0.05 1.72m)
| | | | values for the(8,8) operators arise since Fierz transforma-
00— 15 1 17 1z tions do not relate the electroweak operators with and with-

t out color-mixed indice3. The constants a2 (32,

8,8),(3/2 8,8),(3/2 o T

FIG. 12. A graph oN,=(0]Qy,uK%)/[ (ms—mq)(0[Sysd|K)] iR "), and afiy) (4 are all finite and no subtraction is
for each Euclidean time slice where the operator was inserted. Theeéeded to determine the corresponditg: 7 matrix ele-
data is formy=0.01 andm,=0.02. A noisy estimator is used for the ments. In addition, since there is a sing#,1) representa-

closed fermion loop and the values on each time slice agree withition for left-left operators, the value fog’l)’(?’lz) also pro-
errors. The line is the average over vides a determination C(ﬂZ0|Q(AS=2)| K°>.
the color-mixed left-right operators. Farl = 3/2 matrix ele- A. The lattice value of /27032

lat

We start with a determination af{Z"?"'?. From Egs.

X. Al =3/2 MATRIX ELEMENTS (B6), (B7), (B10), and(B11) of Appendix B, we see that we
need the matrix element anffz,l(%%’i ,_3}2 defined in Eq.

In this section we discuss the lattige"— = matrix el-  (B2), which is theAl =3/2 part of® "1, To follow more

ements for theAl =3/2 parts of the operators listed in Egs. closely the notation of Sec. Ill A, in Appendix C we define

(4)—(23). In lowest order chiral perturbation theory, three @(27,1),(3/2)5fo’:&légz)’—g}z Then a{27Y-(32) is defined by

constants serve to determine all of these matrix elements. &g (D11), the generalization of Eq63) for a particular

single value ofa(3"(*?fixes theAl =3/2 parts 0fQ;, Q,,  isospin.[For the (27,1 operator the generalization is trivial
Qg, Qi0, P1, P2, Py, andPy,. For the electroweak pen- and in facta(2’V 2= 2"V but we will usea2’ C?to

ments the relative statistical error is 2% to 3%.

. . al
guin operatorse'&2)¥2)is needed for the\l =3/2 part of  make it clear that this is determined from thé=23/2 am-

Q; andP; andafY) ®is needed foQg andPg. [The two  plitude] The dependence of this matrix element on the pa-
rameters of low-energy quenched QCD is given in £3).
18 —————1—— Table XXVI gives our values fo 7" |@2"D (2K )
versus quark mass. The function we fit to is E@2) with
- T a=0. For our particular lattice spacing this takes the form

_1.85F - <7T+|®I(§t7,l),(3/2)| K+>
| [ o I —
_ 27D 2|1 2
. T b{?"mz | 1—| 5+ @t )2)|n(3.6941nM)
> -19F J_ T J_ —
- _ +b" (187
195 . with mZ,=3.18(m;+ M, and 1/(4rf)2=1.246. Here we

have used the result férfrom [21], which is 13710) MeV,
- T rather than the physical value, since we do not assume that
. | . | . | . [ . quenched QCD at our fixed lattice spacing agrees with the
23 14 15 16 17 18 physical world. The factor of 3.6941 in the logarithm is
t AéxpT=1 Ge\? in lattice units. Figure 14 is a plot of the

FIG. 13. A graph ofVg=(0| Qg a] K°)/[ (Ms—mMg)(0[Sysd|K)] data and the solid line shows the result of a fit to Bd7).
for each Euclidean time slice where the operator was inserted. Thehe fit uses all five values for the quark mass and gets
data is formy=0.01 andm¢=0.02. A noisy estimator is used for the =0.05. The fit is again an uncorrelated fit to our correlated
closed fermion loop and the values on each time slice agree withidlata, which results in a value gf?/DOF=1.9. The other
errors. The line is the average over lines in the figure give the contribution to the total of the
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TABLE XXII. The values for(7"|QY2|K*)x 17 for each light quark mass studied.

i,latl

i m;=0.01 m;=0.02 m;=0.03 m;=0.04 m;=0.05
1 0.03024) 0.02426) 0.00727) —0.01228) —0.03229)
2 —0.05812) ~0.11713) ~0.17614) —0.23314) ~0.29015)
3 —0.038) -0.189) —0.3710) —0.56(10) —0.7510)
4 ~0.127) -0.328) —0.558) -0.798) -1.019)

5 2.108) 4.129) 6.29110) 8.61(10) 11.0911)
6 5.9212) 11.7914) 18.0716) 24.8418) 32.0319)
7 —1.80534) —2.98934) —4.22736) —5.55338) —6.95540)
8 —5.5610) ~9.1611) —12.9311) -16.9812) —21.2612)
9 0.06312) 0.12713) 0.19414) 0.261(14) 0.32915)
10 —0.02624) —0.01326) 0.01127) 0.04028) 0.07129)

various terms in Eq(92). Of particular importance is the this light quark mass is the most susceptible to the effects of
chiral logarithm term(the dot-dash ling ~m4MLQX(mM) finite volume and topological near-zero modes. It is worth
which is very nearly linear imm; up to m;=0.035. Numeri- reemphasizing that even fon;=0.01, the chiral logarithm

cally, this term cannot be distinguished from the simpfg  contributions are about 25% of the total value and must be

term and, as the graph shows, the term proportionahjp  included. o _

and the chiral logarithm term are of roughly equal size. Thus_ 10 test for sensitivity to the quark mass range used in the
our value forb{®"? is strongly dependent on the known co- fit, we have done fits with different ranges and give the re-
efficient. —6 fér the chiral logarithm in Eq92). In particu- sults in Table XXVII. One sees essentially no difference be-

lar, leaving out the chiral logarithm term makes the value offW€en the fits tan;=0.02 to 0.04 andn;=0.01 and 0.05. On.
b(127,1) almost a factor of 2 larger. this basis, we choose to fit to all five quark masses and find

In contrast to the chiral logarithm, the quenched chiral
logarithm, shown by the short dashed line in Fig. 14 is con-
tributing very little to the final result. This appears to be a
consequence of the small value ®and the fact that we are B. The lattice value of 52-®? and {522
working with pseudoscalar masses above 390 MeV. This par- . . . .
ticular Al =3/2 amplitude has quite small statistical errors Q.,;Jr;;]zeptge tf]E%IgIg?a]i)a Oc?r?arﬂag(g (\;vr:l'g; gmeri?an ;r:]z:\jny
and the one-loop quenched chiral perturbation theory for-P' and thé éolor mixeds 8£):] enter,s only inQ a?l\dP 7 We
mula is known. Since we see very little effects of the  ’ (8.8).(3)  1(32) Y INls 8
guenched chiral logarithms here, we expect them to hav&herefor_e define®; o =[Qi] . for i=7 and 8, as
little effect on other amplitudes where the explicit coefficientSOWn in more detail in Appendixes C and D. Equations
of the quenched chiral logarithm is not known. (B14), (B17), and(B18) give the isospin decomposition of

The full range of quark mass€8.01—0.05 has been used Q'7 in termsiof qgark fields. The result.s fQrg are similar,
in the fit shown in Fig. 14. The range of pseudoscalar massa¥ith color mixed indices on the quark fields. In lowest order

H H 8,8),(3/2 8,8),(3/2
covered by this quark mass range is 390—790 MeV and fronghiral perturbation theoryy(32 " andaf} ¥ are deter-

the fit it appears that one-loop quenched chiral perturbatiomined from (7 *|@9¥2K*) and (7 'O 2K *)
theory is working reasonably well over this range. Thethrough Eq(D4), which is Eq.(64) decomposed into opera-
X*/DOF is somewhat large for an uncorrelated fit, with thetors of definite isospin. Unlike the27,1) operator, the chiral
m;=0.05 point lying somewhat above the curve from the fit.logarithm corrections for the8,8) operator in quenched
This point may be showing the limitations of one-loop chiral QCD are not currently known.

perturbation theory. At the other extreme, the=0.01 point Table XXVIII gives our values for(7*|@S 2 K *)

is where chiral perturbation theory should work the best, buaind Table XXIX gives them fofm*|® 2 ¥2)K*). Since

a2 B2 = — 41318 x107°, (188

TABLE XXIII. The values for(="|Q¥2|K*)x 10* for each light quark mass studied.

i,latl

1 0.91430) 2.10645) 3.647) 5.559) 7.8512)
2 0.91430) 2.10645) 3.647) 5.559) 7.8512)
7 —44.7(12) —54.311) —-64.012) ~74.913 —86.914)
8 —137.939) —162.135) —185.835) —211.937) —240.140)
9 1.37044) 3.167) 5.4610) 8.3314) 11.7818)
10 1.37044) 3.167) 5.4610) 8.3314) 11.7818)
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TABLE XXIV. The values for the ratiq0|Q; ;o K°)/(0| (S¥sd) o K®) for i =1-6 for each nondegenerate
pair of light quark masses. These ratios are used in the determination of the subtraction coefficient required
to relateK— 7 matrix elements t&k — 77 matrix elements.

i mg my=0.01 my=0.02 my=0.03 my=0.04

1 0.02 —0.009(43)x10 3

0.03 —0.056(50)x10°%  —0.013(40)< 103

0.04 —0.098(56)x10 %  —0.053(43)x10 %  —0.019(39)x10 3

0.05 —0.138(62)x10 %  —0.090(47)x10 %  —0.054(40x10 %  —0.026(38)x 10 3
2 0.02 0.338(22x 103

0.03 0.663(26x 103 0.323(20)x 103

0.04 0.979(29x 1073 0.634(22)x 1073 0.331(20)x 1073

0.05 1.287(32x 103 0.938(24)< 103 0.612(21)x 103 0.301(19)x 103
3 0.02 0.065(15x 10 ?

0.03 0.116(18x 10 2 0.061(14)x10°2

0.04 0.166(21x 10 2 0.111(16)< 102 0.056(14)<10 2

0.05 0.215(23x 10 2 0.160(17)x 10 ? 0.106(15)x 10 ? 0.052(14)< 10 ?
4 0.02 0.100(13x 10 ?

0.03 0.187(15x 10 2 0.094(12)x 102

0.04 0.273(17x 10 2 0.179(13)x 102 0.089(12)x 10" 2

0.05 0.357(19% 102 0.263(15)x 102 0.172(13)x 102 0.085(12)< 102
5 0.02 -0.635(13)x 10 ?

0.03 —1.293(15x10° 2  —0.644(12)x10 2

0.04 —1.950(18)x10°2  —1.302(13)x10°2  —0.647(12)x10°2

0.05 —2.605(19)x10 2  —1.958(15x10 2  —1.303(12)x102  —0.648(11)x10 ?
6 0.02 —1.870(1)x10°2

0.03 —3.775(13x10 2 —1.8956(88) 10 2

0.04 —5.680(15x10°2  —3.803(10)x10 2 —1.8970(80)% 10 2

0.05 —7.576(17)x10 2  —5.700(12)x10 2 —3.7962(90X10 2 —1.8900(74)X10 ?

TABLE XXV. The values for the ratia0|Q; 1{ K°)/(0|(Sysd) o] K°) matrix elements foi=7-10 for
each nondegenerate pair of light quark masses.

i mg my=0.01 my=0.02 my=0.03 my=0.04

7 0.02 3.4616(68%x10 3

0.03 6.911(11x10° %  3.4359(47)x 10 %

0.04  10.333(15x10°°  6.8498(86)10 3  3.4074(40)% 103

0.05  13.723(19x10°%  10.235(12x10° %  6.7876(77x 10 %  3.3762(37)x 103
8 0.02  10.402(20x10°3

0.03  20.759(34x10°°®  10.316(14)x10 3

0.04  31.031(45x10° %  20.563(26%x10 %  10.226(12)x 103

0.05  41.207(55x10°%  30.722(37x10° %  20.370(23x10°°  10.131(11)x 103
9 002 —0.338(22x10°°3

0.03 —0.662(26)x10"%  —0.323(20)x 1073

0.04 —0.976(29x10°°% —0.632(22)x10° %  —0.311(20)x 102

0.05 —1.281(32)x10°°%  —0.934(24)x10° % —0.610(21)x10° —0.301(19)x 103
10 0.02 0.010(43x 103

0.03 0.057(50x 10" %  0.014(40)x 103

0.04 0.101(57x10 %  0.055(43)x 10 3 0.020(39)< 103

0.05 0.144(62x10 % 0.094(47)x10 3 0.056(40)< 103 0.026(38)x 103
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TABLE XXVI. Values for (7" |@2"YG2|K+) versusm; . TABLE XXVII. The dependence of the fit parameters in Eq.
(187) on the range of quark masses used.
m <7T+|®I(a2t7,]),(3/2)|K+>

m; range b{z"? b$2"Y Xx*/DOF

0.01 0.000 2749)

0.02 0.000 63214) 0.01-0.04 0.003 436) 0.049 722 1.1(4)

0.03 0.001 09220) 0.01-0.05 0.003 234) 0.054 218) 1.96)

0.04 0.001 665%27) 0.02-0.04 0.003 204) 0.053 718 0.4(1)

0.05 0.002 35636) 0.02-0.05 0.003 013 0.057 §15) 0.72)

the one-loop corrections are not known, but the general fornmust extrapolate to the chiral limity; = —m,. Since there
should be as in Eq76), except that then?, term has a finite are no power divergences involved in these operators, their
coefficient for theAl=3/2 amplitudes, we will try fitting chiral limit, up to O(a?), corrections should be determined
with and without a conventional chiral logarithm term. We by m,.s. Table XXX gives the results of fits to Eq189),

will not include any quenched chiral logarithm effects, sincewhere£(®® is held to zerdsimple linear fif and allowed to

these were seen to be small for t&7,1), Al=3/2 ampli- be a free parametédchiral logarithm fi}. In Fig. 15 and 16
tudes discussed in the previous section. Thus we will fit outhe solid lines are the linear fits and the dashed lines include
data to the form the chiral logarithm term with a free parameter.

One sees that the value bf%® changes by about 15%
S m with the inclusion of a chiral logarithm term, while{s”
(4f)? moves by about 8%. Knowing(®® analytically would de-
+bE8m2 (189  crease the uncertainty in our extrapolation. Without this

hL Ty knowledge, we will take the chiral logarithm fits to deter-
mine the intercepts, with the difference between the two fit
choices giving an indication of our systematic uncertainty.
Thus we find

(88,2
<ﬂ_+|(8,8),(3/2)|K+>:bi(%8) &77m

ilat

1+

) In(3.6941m2)

wherei =7, 8, m=3.18(m;+m,sd, 1/(4=f)?=1.246, and
3.6941 is the value oAéXPT=l Ge\? in lattice units. Since
£®8 is not known, we will do fits where it is zero and where

it is a free parameter. @883 = _ 1 618)x107° (190
Figure 15 is a plot of the values fgrr"|@ 58 (K ™) ot '
) . 1@ (8.8),(32) 1 + i
and Fig. 16 is the same f¢rr " |© 59 ¥2)K *). An obvious a8 32 = _ 4.927)x 107, (191)

feature of the graphs is the nearly linear behavior of the
matrix elements. To determingl58 " and o8 ), we
Xl. Al=1/2 MATRIX ELEMENTS

0009 i et ) In this section, we turn to the determination of the lattice
K*— " matrix elements for the\l =1/2 parts of the op-
0.0025 = — it 7 erators listed in Eqs4)—(23). The numerical evaluation of
- quadratic term T these matrix elements is much more involved, since the
A 0002 === Quenched chiral log term — physical quantities are found from the difference of two lat-
e --- conventional chiral log term . L. K . . .
& L —— Tfinear term . tice quantities which contain power divergences. The basic
2 00015 _ idea behind the subtraction of the unphysical effects was
8 8 discussed in Sec. Il A and it is important to recall that this
o] . - . . .
o subtraction is done for matrix elements in hadronic states. A
Vo 0001 7 related subtraction was discussed in Sec. VIII, which is done
T in Landau gauge fixed quark states and is used for matching
00005 - LT e — operator normalizations between the lattice and continuum
RS R ] perturbation theory. An important check of our calculation is
0 . R T R the consistency of these two subtractions, which should
0 001 002 003 004 005
m, TABLE XXVIII. Values for (7*|0%232|K*) versusm; .
FIG. 14. The matrix element fo®{Z?¥3 | which shows no- m (m*|@FIEAK+y
ticeable nonlinearity as a function of quark mass. The solid line is a
fit to Eq. (187), using all five quark masses. The contributions from 0.01 —0.004 4712
the various terms in Eq(187) are shown, with the conventional 0.02 —0.005 4311
chiral logarithm term(the dot-dashed lineof particular importance 0.03 —0.006 4@12)
due to its essential linearity over most of our quark mass range. To 0.04 —0.007 4813)
extract a value ofr{2"¥ ' from this data, we rely on the known 0.05 —0.008 6813)

analytic value for the conventional chiral logarithm.
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TABLE XXIX. Values for (7 *|@$2 2|k *) versusm. -0.01 :
m (7 [OFR 2K - :
0.01 —0.01374) 0.015- -
0.02 —0.01623) A I |
0.03 —0.01864) &
0.04 —0.02124) 3 00| _
0.05 —0.024Q4) :9”

5 r 4
receive the same contribution from the leading momentum- ~ -00251 . -
independent power-divergent terms. I ;gglog ]

i i | 1 | 1 | 1 | 1 | 1 | 1
A. Subtraction of power divergent operators 0.03— ool YR o o5 o6

All the operators in Eq94)—(23) have unphysical contri-
butions to theirAl=1/2, K* — 7+ matrix elements at finite
quark mass, since &®,1) or (8,8 representation appears in  FIG. 16. The lattice matrix element fa2 2, fit to Eq.
eachQ; . For the(8,1) parts of the operators, the formulas in (189. All five quark masses are used in the fit and there is little
Sec. Il A show how these unphysical contributions are re-nonlinearity in the data. The vertical dashed line is drawmgat
moved. For the operatof®; andQg, naively more options —mys. Both linear fits ¢£¥=0) and fits where the chiral loga-
exist since they are in a single irreducible representation ofithm is included with a free coefficient are shown. The linearity of
SU(3),®SU(3)g. One can(1) find the Al =1/2 matrix ele- the data shows that the chiral logarithm is not nearly as important

(8,8),(32) i i here as for the fits t@ (27332

ments from the value fow; |, of the previous section, lat

(2) extrapolate the divergent| = 1/2 matrix elements to the

chiral limit, or (3) perform a subtraction as for th@,1) achieved by settingiy= —O(m,.9. For completeness and to

operators at finite quark mass and then extrapolate the retudy the effects o©O(m,.g errors, we will include the sub-

maining, nondivergent matrix element to the chiral limit. For traction of theAl=1/2 (8,8) operators in this section, but

domain wall fermions at finitd_g, only the first option is  will use the values oS8 ®'? and o &8)¥? found previ-

precisely defined, since at finites the value of the input ously to determine our final value for thel =1/2 parts of

quark mass yielding the chiral limit is not well defined for Q, andQg.

divergent operators. One only knows that the chiral limit is  |n Sec. Ill B we have argued that a particular combination
of matrix elementgEgs. (87) and (89)] will not involve

my

-0.003 ' power divergent coefficients times higher order logarithmic
i T terms in chiral perturbation theory. This is extremely impor-
-0.0041= 71 tant for our numerical subtraction, since such higher order
i i logarithmic terms in chiral perturbation theory are not small
N 7| for the pseudoscalar masses we can currently use. In addi-
) i T tion, there is a great benefit numerically to dealing with
g 008 7|  quantities where such effects cancel, rather than canceling
23 i T them through the explicit determination of extra fit param-
& 0007 1 eters. We will also apply the same subtractiorQpandQg
v i 1 that we apply to the other operators. This will remove the
0008~ . 7 divergent termm? a8, given in Eq.(76), since any diver-
0000 - ~_, linear log | gent term looks like® 9. The finite term proportional to
I | mi that is left will not be related to theny, dependence of
Py T N R T E B

0 oor 00z 003 004 005 TABLE XXX. The results for fits to{ 7|08 (2K *) using

m; the parametrization of Eq189. The data give®©(1) coefficients

for the chiral logarithm term, which are not currently known ana-
FIG. 15. The lattice matrix element f®®3-G? , fit to Eq.  |ytically.

(189. All five quark masses are used in the fit and any nonlinearity.
in the data is small. The vertical dashed line is drawnmmat i b(&d b(&d £89 2/DOF
— M. There is no analytic result for the coefficient of the conven- . .
tional chiral logarithm in the quenched theory for this matrix ele- 7 —0.0032313)  —0.03289) setto 0 0.62)
ment, so we have done both simple linear figg*®=0) and fits 7  —0.0038@020) —0.03349) 1.52) 0.1(3)
where the chiral logarithm is included with a free coefficient. The 8 —0.01084) —0.080127) setto O 0.71)
linearity of the data shows the chiral logarithm is not nearly as g8 —0.01176) —0.080925) 0.83) 0.1(2)
important here as for the fits @ 2”932
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K— 7r7r matrix elements, since this subtraction has not prop-
erly handled such finite corrections. However for these op-
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erators the physical value we seek is the extrapolation to the FIG. 19. The ratio(0|Q;|K®)/(0[Sysd|K® vs m,—m for i
chiral limit, not the coefficient of thmf,, term, and the sub- =1, 3, 4, and 5. The line is a linear fit of the form given in Eq.
traction will only impact our ability to extrapolate to the (192. The symbols have the same meaning as in Fig. 18.
(approximately known for finitd.g) chiral limit.
While a general approach to subtracting the power diverues fora{®% and «{®V). For each operatd®;, we will de-
gences is dictated by the requirement that we obtainermine a subtraction coefficient,;, following the form of
(m|Oj|K) to leading order in chiral perturbation theory, the Eq. (87), through
specific subtraction procedure that we describe below is cho-
sen so that all quadratic divergence is removed from the
subtracted amplitude iin,.s=0. This ensures that our result
will not be polluted by possibly large 47 terms entering at
higher order in chiral perturbation theory.

(0]Qj 1adK®)
(0[(sysd)1ad K°)

=710+ 71,(Mg—my),

(192

wherem; andmy are the nondegenerate quark masses used
In this section, we will not report our results in terms of in the calculation o&°—0 matrix elements. Corrections to
the various parameterg®? anda®?, since there are many  this formula from higher order effects in chiral perturbation
different(8,1) representations present in the operators in Eqstheory are free of power divergences. We expect that
(4)—(23) and each irreducible representation has its own valshould be zero, but we add this free parameter to the fit to

0 — T 0.05
A o m=0.02 A 0.04
o%-o.oz — O m=0.03 7 Y
= & m=0.04 =
e A m=0.05 1 % 0.03
) )
Y004 — v
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2 z
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FIG. 18. The ratio{0|Qg|K®/(0[sysd|K®) vs m,—m/. The

mg

line is a linear fit of the form given in Eq192).
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line is a linear fit of the form given in Eq192).
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02 T T T T T T 0S5 T o TABLE XXXI. Results for uncorrelated fits of
- R S (01Qi 1ad K°)/(0[(S75d) 1o K®) to the form 7g;+ 771, (mg—mg).
0015 _| 004 - For Q; and Qg the value forzg; is very small, but statistically
r 1 nonzero.
B 1 003 —
o1 7 i i i 7o, 71
L 4 002 —
. _ 1 0.024(35)K 102 —0.040(12)x 10 ?
00051~ 7 ool _ 2 —0.005(18)< 10" 3 3.220(59) 102
" iy - . 3 0.006(13)x 1072 0.521(42)x 10 *
1 I 1 I 1 I 1 I 1 1 I 1 I 1 I 1 I 1 — —
%0 001 002 005 004 o005 "0 001 002 003 004 005 4 0.004(11)<10"? 0.883(36)<10 *
5 0.010(10%x 1072 —6.543(37)x 107!
N L o L I B 6 0.077(71)x 1073 —18.978(36)% 107!
- O B R 7 —1.285(74)< 105 34.326(46)< 102
-0.0005 —{2x10* - 8 —0.401(19)x 10°4 10.307(14x 107!
L - - 9 0.004(18)x 103 —3.203(59)x 102
0001 - ix10* i 10 —0.025(35)x 103 0.042(12)x 107!
oots = B 7] properties of the operators in hadronic states, with the sub-
i ] i T traction coefficients determined by the NPR procedure of
[ TR NI NI B . AT I T I N imi i i
0002 2 0 Sec. \_/I_II. A similar subtraction is performed there to remove
the mixing between four quark operators and quark bilinears.
FIG. 21. The ratio(0|Q;|K®)/(0[sysd|K® vs m{—m for i This subtraction is done in Landau gauge fixed quark states
=7, 8,9, and 10. The line is a linear fit of the form given in Eq. at momentum scales1.5 GeV. Thus the two subtraction
(192. The symbols have the same meaning as in Fig. 18. coefficients should not be identical. Only the power diver-

gent parts should agree, since these are independent of exter-
test that expectation. The arguments leading to(&f.show  nal momenta. For the operators with the largest subtraction
that when, for example, o®Y is very large, coefficients, the agreement should be quite close, since the

<O|Qi,|at|KO>/<O|(§75d)Iat|KO> should not show the presence Iargg su_btraction comes from the power divergent pieces
of chiral logarithms, since such terms appear only througtlominating.
a$®Y . Thus, for largea®?, where the subtraction is more _ Table XXXII gives a comparison of the subtraction coef-

delicate, the determination of the subtraction coefficient idicients as determined from nonperturbative renormalization
easier since the linearity is better. and the values from Table XXXI, which were determined

Starting from the values for (0|Q; K®/  from chiral perturbation theory in hadronic states. The non-

(0](Sysd) .l K given in Tables XXIV and XXV, we have Perturbative renormalization subtraction coefficients are the
plotted this ratio versusn,—m in Figs. 17-21. FoiQ, values in the second column of Table IX minus the values in
S . . ’

Qs, andQs, graphs are shown with better resolution. Notethe second column of Table VI. The results in Table XXXII

that for Qs and Qg the'y axis is a much larger scale than for &€ also plotted in Fig. 22. For th&/¢-A) X (V+A) opera-
Q.. ForQ,, there is some deviation for different values of
m¢ andmy with the same value fom,—mj, but within our
statistics no clear conclusion can be drawn. @grandQg,

TABLE XXXII. A comparison of the subtraction coefficients in
hadronic statesy;;, with those found from Landau gauge-fixed

anv such deviation is much smaller. as would be expected f C}uark states. Divergent contributions, which are independent of ex-
y ; P ernal momenta, should give the same contribution to the two coef-

thes'e ope'rat'ors with 'a.rg‘? power d".’e.rge”t contributions, b cients. For operators with large power divergent subtractions, like
again deviations are within our statistical error. Qs andQs, the two coefficients are very similar.
The results for uncorrelated fits to this data are given in '

Table XXXI. One sees thap, s is the largest subtraction i i NPR
coefficient and has a statistical error of about 0.2%. The :

other operators with large subtraction coefficients Qg 1 —0.004Q12) —0.004217)
Q,, and Qg, which have comparable statistical precision. 2 0.032 2059 0.003197)
The good linearity of the data makes quoting such small 3 0.052142) —0.00620)
statistical errors sensible. It is also vital that we know these 4 0.088336) 0.00128)
subtraction coefficients to this accuracy, since there are 5 —0.654337) —0.67412)
O(a"?) divergences to cancel through this subtraction. Ex- 6 —1.897836) —1.99545)
cept forQ; andQg, 7o, is zero within statistical errors. For 7 0.343 2646) 0.3327)
Q; and Qg, 7; is statistically nonzero, but very small in 8 1.030714) 0.99320)
magnitude. 9 —0.032 0359) —0.003191)

An important cross-check of our calculation is the com- 10 0.004212)

parison of the subtraction coefficients; , determined from
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FIG. 22. The subtraction coefficients determined in hadronic
states(O) compared with those determined in Landau gauge fixe

quark states ap=2.13 GeV (L)). For the operators with large the noticeable, and very similar, nonlinearity in the first two quan-

ower divergences, the subtraction coefficients agree well since the. . . . )
P 9 ’ 29 o ?tles and the size of the subtraction for this left-right operator. The
external momentum does not enter the power divergent coefficient.

slope of the subtracted matrix element determines the de@&l?g]ﬁ

. . for Qg and is about 30 times smaller than the slope of the unsub-
tors Qs, Qe, Q7, andQg) where the subtraction coeffi- racted operator, and of opposite sign. Note that the subtracted op-
cients are the largest, the agreement between the two tec rator does not vanish at; = —msSince the divergent parts of the

niques is very good. This gives us confidence in the&perator do not see only the chiral symmetry breaking of the low
subtraction procedure, since the comparison is betweeghergy theory.

guantities determined in entirely different ways using differ-

ent computer programs for data generation and analysis.

Note that the errors from the hadronic state calculation areffects will also enter the divergent part of*|QU/2|K ™)

FIG. 23. The matrix elements(7"|QgK™) (O),
d2mf|771,6|<77+|(§j)lat|K+> (©), and (7" |Qg|K ™ )syp (©) showing

considerably smaller. matrix elements. In particular, recalling Fig. 7, we are re-
minded that this matrix element is not well represented by a
B. Subtracted Al =1/2 matrix elements simple linear dependence an;. Again it is simpler to let

the subtraction of matrix elements in EG93 remove these

The combination of terms on the left-hand side of EQ.ngnjinear terms. Any remaining nonlinearities should be as-
(89) that removes chiral logarithm effects from the divergentsqciated with the chiral logarithms on the right-hand side of

parts of the operators can be written as Eq. (89) and near-zero mode effects in the finite terms. One

<7T+|Q-(1/2)|K+> once again avoids the possibility of failing to remove a di-
I lat sub vergent term which is multiplied by a higher order term in
=(m " |QUIZIK )+ nyj(mg+mg) (7| (5U) od K ). chiral perturbation theory.

With the values for the subtraction coefficients, , from
(193 the previous section, we have calculated the subtracted ma-
) ) S trix elements. To see the extent of the subtraction, in Fig. 23
It is easy to see that when written in this form, the subtracye piot (7*|Qq KT, 2mg| 71 d (] (5d) K *), and

tion required by chiral perturbation theory removes the entirq7.r+|Q6 al K sup. The first two quantities show very similar
1/a? divergence present in the origingd*|Q{?[K™) ma-  nonlinearity and produce a subtracted matrix element which
trix element if m=0. Usual power counting arguments, js much smaller. Given the large cancellation involved, the
combined with exact chiral symmetry and the CPS symmetrymportance of removing divergence terms times higher order
of Ref.[12], dictate that all 1 divergences which appear in terms in chiral perturbation theory is clear.
the matrix elements of the operaQf|;’ can be writen asa  The complete results for the subtracted matrix elements
divergent coefficient times matrix elements of theare given in Table XXXIIl and are plotted versog in Figs.
dimension-three  operator mg+mg)sd-+ (my—mg)sysd. 24-28. The subtraction is done under a jack-knife error loop,
Equation (192 determines this coefficient ag,; ensuring to make maximum use of any correlations in the values of
that the subtraction in Eq(193 removes the entire a7 (7 |Q\Y2|K*), 5,;, and(7*|(5d){K ™). The subtracted
divergent piece from th@{}2’ matrix element. matrix elements foQ,, Qg, and Qg are shown on an ex-

In addition to chiral logarithm effects, we saw in Sec. panded scale. Concentrating for a moment@n(Fig. 25,
VIC that the matrix element7*|(sd),{K*) is altered by the graph for the subtracted operator reveals a number of

zero modes for light quark masses. These same zero modimportant features.
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TABLE XXXIII. Values of the Al =1/2 matrix elements of the subtracted operat¢rs; | Q{2 |K *)sup
X 107. This subtraction is done in hadronic states and removes the unphysical contribution to this matrix
element fori #7 and 8. ForQ,; and Qg, the subtraction leaves a finite matrix element, whose value in the
chiral limit is related to physical quantities.

i m;=0.01 m;=0.02 m;=0.03 m;=0.04 m;=0.05
1 0.01824) —0.00127) —0.03129) —0.06532) —0.10136)
2 0.03911) 0.08213) 0.13314) 0.19416) 0.26517)
3 0.12384) 0.13996) 0.1310) 0.1311) 0.1413)
4 0.14470) 0.22280) 0.29887) 0.39396) 0.51(11)
5 0.12774) 0.06785) —0.001(93) —0.0910) -0.1811)
6 0.19375) 0.03781) —0.14189) —0.36297) —0.6511)
7 —0.76820) —0.86416) —0.93415) —0.99515) —1.04616)
8 —2.45063) —2.78453) —3.04550) —3.29251) —3.52053
9 ~0.03411) ~0.07413 ~0.11314) —0.16416) -0.22317)
10 -0.01324) 0.01327) 0.05129) 0.09532) 0.14336)

(1) The presence of finiteg and power divergent opera- (4) Qg is a pure(8,1) operator, but folQ;, Q,, Qq, and
tors means thatm"|Qgal K" )sup N€ed not vanish an;=0  Qy,, which contain a27,1) for which the chiral logarithm
or m;= —M,e. This is obvious in the graph, where the ma- coefficient is known and large, fits could be done to incor-
trix element vanishes around; of 0.02. porate this effect. However, th&l=1/2 part of the(27,1)

(2) For Q; containing an(8,1) representation, only the enters the total operator with a small coefficiéttl0 or
slope of the subtracted matrix element is needed, so the an/15). Also, sincea2"? (2= ¢(27:D:(32) gnd o271 (32 jg
biguities of O(m,.g in the chiral limit are unimportant. For small, this particular chiral logarithm contribution should not
(8,9) parts of an operator, such ambiguities prohibit a precisée visible in our data.
determination of the desired’s from the Al =1/2 ampli- (5) The lower points in the figure<® ) are the result if the
tudes. subtraction in Eq(193) has (ns+my) changed to i+ my

(3) The subtracted values fd@pg (and alsoQ, and Q) +2m,.d. This subtraction will also not exactly remove the
show some nonlinearity, although the effect is not conclusived(m,../a?) term, but the two subtractions show that chiral
given the statistical errors. We have not fit to the nonlineari-
ties, since the coefficients of the chiral logarithms are not

known for the(8,1) operators in quenched QCD. For the full i
QCD case, where they are known, the coefficient is 1/3,
compared to 34/3 for th€27,1) operators. Thus we use 0 7
simple linear fits and expect the corrections in the slope we .
seek, due to logarithms, to be small. & 0008 |
0.003 ————1— — T 2 _
i | o
e -001 .
0.0025 - —
0.002 — _ -0.015 _
é L i L i
s «~ 0.0015 — I | L | L | 1 | L | 1
e 0025 0.01 0.02 0.03 0.04 0.05 0.06
5 I | m,
0.001 — f
i 1 FIG. 25. The matrix elementr*|QSL2|K *)sup which has the
0.0005 - — divergent contribution remove@). The subtraction does not re-
L 4 move theO(m,s/a?) divergent term, so the matrix element does
0 I R T R not vanish atm;=0. The line is a linear fit to the data, since the
0 0.01 0.02 0.03 0.04 0.05 0.06 chiral logarithm corrections are not known, and the slope of this
m line is related to physical matrix elements. From the data, nonlinear

' effects appear small. The lower point®) are the result if the

FIG. 24. The matrix elementm " |QS 2|K ") sy, Which has the  subtraction in Eq.(193 has (ns+mg) changed to ifis+my
divergent contribution removed. Due to the contact term in the+2m,J. This subtraction will also not exactly remove the
Ward-Takahashi identity the matrix element does not vanighat  O(m,.s/a?) term, but the two subtractions show that chiral symme-
= —mes. The slope is related to the matrix elements we seek.  try breaking from finitel 5 is quantitativelyO(m,.s/a?).
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0 001 002 003 0.04 005 0.06 0 001 002 0.03 004 0.05 0.06 0 001 002 003 004 005 006 0 001 002 003 004 005 0.06
0.007 LI L L LI WL 0.003 — L L L L 0.001 — L LA L L 0.002 — | L L L L
- Q -1 - QS -
0.006 - 4T o o000 - - Q . i
0.005 - — i 0 ]
| | 0.001 — 0.001 —
0.004 [~ — . T
r 1 ¢ m -0.001 — .
0.003 — — -
I 1-0.001 — T ]
0.002 - — i 0
L - -0.002 =
0.001 — _{-0.002 — 4
PO RPN RO O cl b d
-0.003
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FIG. 26. The matrix elemedtw+|ijé%)|K+>subv fori=1,3, 4, FIG. 28. The matrix elemer(r | Q2 |K ¥ )gyp, fori=7, 8, 9,
and 5, which has the divergent contribution removed. Due to the\ng 10, which has the divergent contribution removed. Ggand
contact term in the Ward-Takahashi identity the matrix elemenblo the slope is needed to determine s matrix elements.

does not vanish ah;= — M. Q- and Qg are shown for completeness.

symmetry breaking from finiteL; is quantitatively ~With the results given in Table XXXIV. These are uncorre-

O(Myes/@?). lated linear fits to all five quark masses. We see that)gr
We have fitted the subtracted operators to a linear functiof? spite of the very large subtraction involved, the slope of
parametrized by (| QUAIK )y is determined with a statistical error of

about 10%.
For Q; andQg, we can start from the fits given in Table
(7| QA K ™) gup=Coj + C1 My (1949  XXXIV and compare the value for thal=1/2 matrix ele-
ments with the value expected from thé = 3/2 matrix ele-
ments. Sincexr}9 2=2439- 2 for i=7 and 8, we can

-0.02 T T T T T T T T T I T

| TABLE XXXIV. Results for linear fits of(7 " |QU2|K ),y to
the form of Eq.(194). The slope of the fit, given by, , is related

= to the low energy constant needed to deternthe 7 matrix
elements foii #7 and 8. Foii=7 and 8, the matrix element in the
chiral limit is the physical quantity we seek, but the chiral limit is
uncertain for these power divergent operators at finjteFor these
operators, we use thel =3/2 part of the operator to determine the

-0.025

] Al=1/2 part.
-0.035 - [ Coj Cy, x*/DOF
L ] 1 0.000 5327) —0.029778) 0.0598)
2 —0.000 2413 0.055%40) 0.6(3)
1 I 1 I 1 I 1 I 1 I 1
~0.045 0.01 0.02 0.03 0.04 005 006 3 0.001 2897) 0.0036284) 0.00412)
m 4 0.000 4780) 0.08924) 0.04(6)
f 5 0.002 1084) —0.07425) 0.024)
FIG. 27. The matrix elemer(tm " |QS/2|K *)s,p which has the 6 0.004 2684) —0.20325) 0.32)
divergent contribution removed. Due to the power divergence of 7 —0.007 2@21) —0.067537) 0.8(3)
this operator, the value ofi; needed to cancel the chiral symmetry 8 —0.02237) —0.26212 0.4(2)
breaking effects of finité ¢ is not precisely known. Thus we do not 9 0.000 1813) —0.046440) 0.4(2)

know where to evaluate this matrix element to gé?g’ and must 10 —0.000 5927) 0.038979) 0.0910)
rely on theAl=3/2 amplitude to determine this quantity.
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TABLE XXXV. The lattice values for the low energy, chiral TABLE XXXVII. Central values for standard model parameters
perturbation theory constants fad =1/2 amplitudes foi#7 and  and experimental results relevant to the calculations presented in
8. These were determined from subtractéd— 7% matrix ele-  this paper. All values are from the 2000 Particle Data Book unless
ments. otherwise noted. The central values f#ogcy, Ackms Pckm» and
nckm are taken, without errors. Current errors on all quantities in
i a2 the table which enter as inputs in our calculation have virtually no

effect on our results.

1 —1.19(31)x 10" ®
2 2.22(16)<10°° Quantity Central value Comments and references
3 0.15(113K 10°°
4 3.55(96)x 10 ° Mg+ 139.57 MeV
5 —2.97(100)x 10 ° mo 134.98 MeV
6 —8.12(98)< 10°° fre 130.7 MeV
9 —1.85(16)< 10 ° M+ 493.68 MeV
10 1.55(31)x 10 ° Mo 497.67 MeV
f+ 159.8 MeV
Gk 1.166x10°° GeV 2
use the values foa{§3®? given in Sec. X B to find Y 0.2237 [89]
Ackm 0.819 [89]
a%ﬁft)’(l/z) =—3.2216)x 10 ¢, (199  pekm 0.222 [89]
Tckm 0.316 [89]
a8 2= —9.9254)x10°°. (196 pokm 0.228 From\ciw » Pekw» and 7
7ckm 0.324 Fromhckm » pokm» andzciwm
The unsubtracted | =1/2 matrix elements should have the |v, 0.2237 N
form IVudl 0.9747
i \Y 0.0410 — A\ 2
(7 |QUTZIK ™) = Coj+Cqj(My+Myeg + Y[ Me+O(Myed 1. |\/t§b| 0.007 08—0.002 97 CKMA CKM
(197 T 0.001 33-0.000 559
From Table XXII and Eq(193 one sees that}y~-1.3and € 2.271x10 :
c{¥~—3.9. Using these values antj,c=0.00124 gives an; ReAo 3.33<10 " Gev
independent contribution to the=7 and 8 matrix elements , 0.045 .
of (¥(0.0016 and®(0.0044 from contact terms in the Ward- Re('/e)  (20.7=2.8)X 1074 KTEV [3]
Takahashi identities. The values fog; for i=7 and 8 are (15.32.6)x10 NA48 [5]

given in Table XXXIV and are —0.0072@21) and

—0.02237), respectively. Th“(ggt;‘ ((:"1,%)(%“Gd uncertainty due=3/2 fits include chiral logarithm corrections which change

to finite Ls n determlnlng Yijat from the subtr'acted the results by 15% foi=7 and 8% fori=8. The change

Al =1/2 amplitudes is about 20% in both cases. Using thesg,ans 1o improve the agreement with the values from the
values forcy; yields subtracted operators. However, this general agreement does
demonstrate the reliability of the subtraction of the power

8),(1/2) _ -
iR = —3.059) X 10°°, (198 jivergent operators.
g, (12) r i
agﬁg’é&fE —9.4430)%10°°. (199 Defining constantsy; o’ for i #7,8 through
. . amé
The agreement with the results from thé=3/2 matrix el- (7 QIR IK Y eu= -z alt? (200

ements is better than might be expected. However,Athe

. 2 _ . .
TABLE XXXVI. The lattice values for theAl=1/2 andal ~ @nd usingmy,=3.18(m;+mJ gives the values in Table
=3/2 low energy, chiral perturbation theory constants determined<XXV. We collect thea’s determined without requiring sub-

from K*— " matrix elements not requiring subtraction. tractions in Table XXXVI. Finally Table XXXV gives the
Al1=1/2 andAl=3/2 values fore; for the ten operators in
Parameter Value the basis used in the three-quark effective theory. These are
27012 . our results for the lattice values for the constants determining
ag” —4.13(18)x10 kaon matrix elements in lowest order chiral perturbation
a2 —3.22(16)<10°° theory from quenched QCD and domain wall fermions. In
P Y —9.92(54)<10"° the next two sections we will combine these values with the
a279.(32) —4.13(18)x10°® Wilson coefficients of Sec. VII, th& factors from Sec. VIII,
a3 2 —1.61(8)x10°° and known experimental quantities to give physical values
agg,(slz) —4.96(27)x 1078 for the real and imaginary parts of isospin zero and two

amplitudes forK — 7.
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The physical values foK— 77 amplitudes can now be

PHYSICAL REVIEW D 68, 114506 (2003

and XV, the valueZ,=0.80§3)(15) from Table I of[59],
the chiral perturbation theory formulas in E¢85) and(67),

calculated from the effective Hamiltonian in E€) using the central values for standard model parameters in Table

the Wilson coefficients in Tables Il and IV, the\"¥z2 ~ XXXVII, and the values fora{}/? and o7 from Table
values from nonperturbative renormalization in Tables XIVXXXVIIIl. The explicit formula is
|
3 10 8
(| —THESTHIKE) = —i \[Zepvudv:si_El 2, [ 2w
[ 4i (1/2) f 2 2 -4 ;
ﬁa’j’lat(mKo—mWQa | :0, J - 1,2,3,5,6
—4v2i
—rafid(me-miat 1=2, j=12356
X : , 201
< —12 (112 ~.—6 ; (200
f3 a’“ata IIO, J:7,8
—12v2i
| T a3qa"® 1=2,j=78

wherea™!, the inverse lattice spacing, is 1.922 GEX]. linear quark mass behavior seen #1] in the determination
Before discussing the numerical values produced from ouof f. In relating latticeK— 7 matrix elements to latticé
data, we will outline our strategy for making the transition — 77+ matrix elements, one should use tHisFor small
from the quenched QCD matrix elements we have calculateguark masses, the resulting lattise— 777 matrix elements

to the full QCD matrix elements needed for comparison withshould be equal to those explicitly calculated via a technique
the physical world. We can then assess the impact of thgych as has been proposed by Lellouch and Lusphsy
known chiral logarithms in full QCD on our results and also ygvided the quenched theory does not corrupt the full QCD
discuss how sensitive our results are to the values of thgations betweel — 7 and K — 1t

standard mod.el parameters given in Table XXXVII. We will make the transition from the quenched theory to
For our lattice calculation we have used a quenched vaIUﬁJII QCD at the level of the matrix elementar|Q;|K°)
I

for f, W.hiCh is defined in th? chiral limit, of 137 Mg{/Zl]. r’;\nd not at the level of the lattice constaats,;. Since the
There is no reason why this value must agree with the fulai .. factors in Eq.(201) are multiplied byf’—3 changing
QCD value Oflf,QCDm 120 l;/llev. In quenched chiral perturba- 60, ¢4, focp Would be a large effect and a factor of has
tion theory, f{*'°°P and f{* '°® do not contain any conven-

X ) | _ i already entered in the calculation of the,, from our lattice
tlorjal chiral logarithms, only quenqhgd ch|re_1l Iogarl_thmsdata_ For the( | Q;|K®) matrix elements which vanish in
which we have argued are small. This is consistent with th

®he chiral limit, we have actually only determined the slope
of the matrix element. The matrix element itself involves
using chiral perturbation theory to extrapolate to the kaon
mass. This extrapolation introduces an additional choice in

TABLE XXXVIII. The lattice values for the low energy, chiral
perturbation theory constants decomposed by isospinQfprto

Quo- relating quenched matrix elements to those in full QCD.

i (12 232 With this strategy of using the values for quenched
it et — 7 matrix elements as estimates for full QCD, we con-

1 —1.19(31)x10°° —1.38(6)x10°® sider two choices for the extrapolation to the kaon scale. The
2 2.22(16)x10°° —1.38(6)x 10 © first choice involves extrapolating to the kaon mass(&#)
3 0.15(113)x 10 ° 0.0 and (27,1) operators using lowest order chiral perturbation
4 3.55(96)< 10°° 0.0 theory in the quenched theory. The second extrapolates to the
5 —2.97(100)< 1075 0.0 kaon scale in the full theory and incorporates the known and
6 —8.12(98)x 1075 0.0 estimated chiral logarithms for thé— 77 matrix elements
7 —3.22(16)x10°® —1.61(8)x10°° in full QCD. We now discuss these choices in detail.
8 —9.92(54)< 10 ° —4.96(27)<10°® (1) Physical values formio and mi+ are used in Eq.
9 —1.85(16)x 10 ° —2.07(9)x 1078 (201). For (8,2) and (27,1 operators, this can be thought of
10 1.55(31) 10 ° —2.07(9)x10°° as an extrapolation to the physical kaon mass in quenched

QCD using lowest order chiral perturbation theory, since we
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TABLE XXXIX. The contribution in GeV from the renormalized continuum opera@r.,, to the real
parts of ()| —iHAS=D|KO) for u=1.51 GeV. The central values for the standard model parameters
given in Table XXXVII have been used.

Real Ay Real A,
i choice 1 choice 2 choice 1 choice 2
1 3.02(68)x 108 4.28(97)<10°8 —4.11(18)x10°° —4.82(22)x10°°
2 2.00(18)x 107 2.83(25x 107 1.392(62)< 108 1.635(73)x 108
3 1.4(29)x 10 10 2.0(41)x 10710 0.0 0.0
4 —3.80(84)x10°° —5.4(12)x107° 0.0 0.0
5 —6.9(29)x 10710 —9.8(41)x 10710 0.0 0.0
6 4.99(77)x10°° 7.1(11)x107° 0.0 0.0
7 4.04(21)x 10 1 8.00(42)x 10 * 2.86(15)x 10! 3.63(19x 10 **
8 —5.74(32)x 10" 11 —1.137(63)x 10710 —4.06(22)x 10" 1 —5.15(28)x 10" *
9 —3.91(39)x 10 12 —5.54(56x 10" 12 4.69(21)x 10713 5.51(25)x 10 2
10 2.27(41x 10 *? 3.23(59)x 10 *? 3.70(17)x 10 3 4.35(20)x 1013

have found the quenched chiral logarithms to be small anipgarithms in full QCD[53,76 are used in the extrapolation.
there are no conventional chiral logarithms in these masse]llzsr‘;r (8,8 operators, the nonzero value in the quenched chiral

; ' al it is taken directly to full QCD. Recent work on the elec-
in the quenched theory. These quenched mm matrix el troweak penguing77] allows us to estimate the coefficients

2 2 . . .
ements withmo andm . taking their physical values are ¢ o chiral logarithm term. These authors write the matrix
taken as the matrix elements for full QCD. The same resultg|ements for the electroweak penguins @(p?) as M,
would be achieved by a lowest order extrapolation in fu"zM,(O)(lJrA,) where Ml(O) is the lowest order value as
QCD, expept that the use of the physical kgon and piorbiven in Eq.(67). They findA,=0.98+0.55 andA,=0.27
masses is somewhat ambiguous, since physical masses i 27 and state that, only includes the contributions from
clude chiral logarithm corrections if the quark masses arghiral logarithms. The errors they quote come from varying
taken as known input parameters. This ambiguity would, ... If we assume the correction is all from a chiral
change the matrix elements at the 10% level. logarithm termL (mg), then the coefficient of this term

(2) We extrapolate to the physical kaon mass in full QCD,would be~—8.4 for|=0 and~—2.3 for1 =2.
including the chiral logarithm corrections. For ti&1) and  Thus, for our second extrapolation choice, where chiral loga-
Al=3/2 part of the(27,1) operators the quenched slope is rithms are included, we modify the second line of E201)
taken for the full QCD value and the known chiral to

[ 4i 97 .
f—ga,(ﬁg?(mio—mf,+)a“‘ {1_ 2_7|—x(mK)} =0, j=1,2,3,5,6
—4V2i 3 .
f3 a}ﬁ/azt)(mio_ m121_+)a.74 1_ ELX(mK) I = 21 ] = 112131516
X 4 19 . (202
3 aﬁ{fga‘G [1-8.4L,(my)] 1=0, j=7,8
—12V2i .
k—fg—aﬁ@a‘e [1-2.3,(my)] 1=2, =78

In these equations, the physical values mio and m72_r+ (27,1 operator contributes very little here as can be seen
should be used. We use our quenched valueffor the  from the size ofafZ (2,
1/(4=f)? factor in the chiral logarithms. In addition to esti-
mating the coefficient of the chiral logarithm term for the
(8,8 operators, we have also used {8el) chiral logarithm

for all of the nonelectroweald| =1/2 matrix elements. This Following the procedure of the previous section, we now

is a very good approximation, since theé =1/2 part of the proceed to our results for R&) and Ref,) and theAl

XIll. REAL A, A,, AND By
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TABLE XL. The contribution in GeV from the renormalized continuum oper&pg, to the imaginary
parts of ()| —iHAS=D|KO) for u=1.51 GeV. The central values for the standard model parameters
given in Table XXXVII have been used.

ImaginaryA, ImaginaryA,

i choice 1 choice 2 choice 1 choice 2

1 0.0 0.0 0.0 0.0

2 0.0 0.0 0.0 0.0

3 —4.7(94)x 1013 —7.(13)x10 % 0.0 0.0

4 8.2(18)x 10 *2 1.17(26)x 10" 11 0.0 0.0

5 4.7(20x 10713 6.7(28)x 10713 0.0 0.0

6 —1.72(27)x 10" 11 —2.45(38)x 10™ 11 0.0 0.0

7 7.57(39)x 10" 14 1.498(78)< 10713 5.35(28)x 10~ 6.78(35)x 10~ 4
8 —1.787(98)x 1012 —3.54(19)x 10 12 —1.263(70)x 1012 —1.602(88)x 1012
9 —9.45(95)x 10 2 —1.34(14)x 1012 1.135(51)x 10713 1.334(60)x 10713
10 —2.25(41)x 10" 2 —3.19(58)x 10 13 —3.66(16)x 10 —4.30(19)x 10" 4

=1/2 rule. These amplitudes are expected to come predomi/ll. The matching scalex is 1.51 GeV for Tables XXXIX
nantly from the current—current operato®@y and Q,, as and XL, 2.13 GeV for Tables XLI and XLII, 2.39 GeV for
seen in the relative sizes of the Wilson coefficien{g.) and  Tables XLIII and XLIV, and 3.02 GeV for Tables XLV and
Yi(w) given in Tables Il and IV (Such a statement depends XLVI. It should be noted that the continuum operators mix
on the scaleu under consideration, since the operators mixwhen this scale is changed, so the decomposition of the
under renormalizatiopAs such, they are quite independent physical amplitudes into particul&; .., contributions will
of Viq and CP violation effects in the standard model andchange. Only the complete amplitude should be insensitive
provide an independent forum for comparison between outo scale and this will only occur if the Wilson coefficients
quenched lattice QCD calculations and experimental results&and nonperturbative renormalization factors are known to all
We conclude with our results fd8y, since it is determined orders in as. In addition, we always us&(u) for u
by the matrix elements of the sani27, 1) operator that =2.0GeV in the matching, since in the determination of
determines R&Y(). Z4(w) the running effects were found to be quite snjaB].
Using our data and Eq$201) and (202 produces the (The one-loop anomalous dimension #y vanishes in Lan-
values for Refy), Re@,), Im(Ay), and Im@,) in Tables dau gauge.The scale dependence of our results will be an
XXXIX=XLVI.  Here the contribution to (m() important test of our calculation.
|-iHAS=D|KO is decomposed into contributions for each  Results for the two choices for extrapolation discussed in
value of the index in Egs.(201) and(202). We will referto  Sec. Xll are given in Tables XXXIX-XLVI. The first choice,
this as the full contribution tdm )| —iH(4S=1|K® from  a zero-loop extrapolation in quenched QCD, and the second,
the continuum operatd®; ... These tables use the central a one-loop extrapolation in full QCD, differ by no more than
values for standard model parameters given in Table XXX-~40%, except for the contributions t8, coming from

TABLE XLI. The contribution in GeV from the renormalized continuum oper&dg, to the real parts
of ((mr),|—iHAS=D|KO) for u=2.13 GeV. The central values for the standard model parameters given in
Table XXXVII have been used.

Real Aq Real A,
i choice 1 choice 2 choice 1 choice 2
1 2.69(61)< 108 3.82(87)x10°8 —3.64(16)x 10 ° —4.27(19x 10" °
2 1.81(12)x 107 2.57(17)x10° 7 1.371(61)x 1078 1.610(72)x 108
3 1.(13)x 107 2.(18)x 107 0.0 0.0
4 —1.46(33)x10°° —2.07(47x10°° 0.0 0.0
5 —4.4(18)x 10 1° —6.3(26)x 10 1° 0.0 0.0
6 3.09(38x10°° 4.38(54)<10°° 0.0 0.0
7 5.32(27)x 1011 1.054(54)< 1010 3.76(19)x 10 1 4.77(24)< 1071
8 —1.785(97)x 10" 10 —3.53(19)x 10 %0 —1.262(68)< 10710 —1.601(87)x10 10
9 —2.59(20)x 10" *2 —3.68(28)x 10 *2 3.43(15)x 10 = 4.03(18)x 10 13
10 5.14(94)x 10 *? 7.3(13)x 1012 8.33(37x 10 = 9.79(44)< 10 13
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TABLE XLII. The contribution in GeV from the renormalized continuum oper#&Qg,.to the imaginary
parts of ()| —iHAS=D|KO) for u=2.13 GeV. The central values for the standard model parameters
given in Table XXXVII have been used.

ImaginaryA, ImaginaryA,
i choice 1 choice 2 choice 1 choice 2
1 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0
3 —7.(87)x10 4 —1.(12)x10 3 0.0 0.0
4 7.2(16)x 10 *? 1.02(23)x 10 11 0.0 0.0
5 6.3(26)x 10 2 9.0(36)x 10 13 0.0 0.0
6 —2.12(26x 10 —3.00(37)x 10" * 0.0 0.0
7 6.95(36)x 10 14 1.376(70)x 1013 4.91(25)x 1014 6.23(32)x 104
8 —1.583(86)< 1012 —3.13(17)x10 2 —1.119(61)x 101>  —1.419(77)x10 *?
9 —8.43(64)x10 ¥ —1.196(91)x 10 12 1.114(50)x 1013 1.309(59)x 10713
10 —2.01(37)x 10 = —2.85(52)x 10 2 —3.25(15)x 10" ¥ —3.82(17)x 10" ¥

TABLE XLIII. The contribution in GeV from the renormalized continuum opera@yr,.to the real parts
of ()| —iHAS=D|KO) for u=2.39 GeV. The central values for the standard model parameters given in
Table XXXVII have been used.

Real Aq Real A,
i choice 1 choice 2 choice 1 choice 2
1 2.69(59)x 108 3.82(84)< 108 —3.45(15)x 10" ° —4.05(18)x 10 °
2 1.87(11)x 1077 2.65(16)<10 7 1.346(60)< 108 1.582(71)x 108
3 9.(87)x10 2 1.(12)x10 % 0.0 0.0
4 —9.9(22)x 10710 —1.40(31)x10°° 0.0 0.0
5 —3.5(14)x 10710 —5.0(20yx 10" 1° 0.0 0.0
6 2.03(25)x10°° 2.88(35)x 107° 0.0 0.0
7 5.76(29)x 10" ! 1.140(58)x 10 1° 4.07(21)< 10" 5.16(26)x 10 1!
8 —2.08(11)x 10" *° —4.12(22)x10 %0 —1.472(80) 1010 —1.87(10)x 10 *°
9 —2.97(21)x 10 *? —4.21(30)x 10" *2 3.70(17)x 10 13 4.35(20)< 1013
10 6.1(11)x 10 12 8.7(15)x 10 12 9.46(42)< 10 13 1.111(50)x 1012

TABLE XLIV. The contribution in GeV from the renormalized continuum opera@Qr,, to the imagi-
nary parts of( ()| —iH®S=Y|K®) for u=2.39 GeV. The central values for the standard model param-
eters given in Table XXXVII have been used.

ImaginaryAq ImaginaryA,
i choice 1 choice 2 choice 1 choice 2
1 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0
3 —9.(86)x10™ —1.(12)x10 0.0 0.0
4 7.5(17)x 10 12 1.07(23)x 10 ¢ 0.0 0.0
5 6.6(27)x 10 =2 9.4(38)x 10713 0.0 0.0
6 —1.99(24x 10 1! —2.83(34)x10 1! 0.0 0.0
7 6.46(33)x 1014 1.279(65)x 1013 4.57(23)< 101 5.79(30)x 10
8 —1.512(82)< 1012 —2.99(16)x 10 *2 —1.069(58)x 1012 —1.356(74)< 1012
9 —8.76(61)x 10 13 —1.243(87)x 1012 1.093(49)x 1013 1.285(58)x 10713
10 —1.99(35x 10 13 —2.83(50x 10 2 —3.09(14x 10" ¥ —3.63(16)x 10"
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TABLE XLV. The contribution in GeV from the renormalized continuum opera&og,to the real parts
of {(mar),|—iHAS=D|KO) for 4 =3.02 GeV. The central values for the standard model parameters given in

Table XXXVII have been used.

Real A, Real A,
i choice 1 choice 2 choice 1 choice 2
1 2.46(54)< 108 3.48(77)x 1078 —3.09(14)x10°° —3.63(16)x10°°
2 1.72(12)x10°7 2.45(16)x 107”7 1.294(58)< 108 1.520(68)< 108
3 —2.(13)x10 *? —3.(18)x10 *? 0.0 0.0
4 —4.5(11)x 103 —6.4(15)x 1013 0.0 0.0
5 —1.64(69)x 10 1© —2.33(98)x 10" %0 0.0 0.0
6 3.51(42)x10 10 4.98(60)< 10710 0.0 0.0
7 6.79(35)x 10 * 1.344(69)x 10 1° 4.80(25)< 101 6.09(31)x 10 **
8 —2.58(14)x 1010 —5.10(28)x 10" 10 —1.821(99)x 1010 —2.31(13x 10 %0
9 —3.92(30)x 10 *? —5.56(43)x 10 12 5.12(23)x 10 3 6.02(27)x 10 =
10 7.4(13)x 10712 1.05(19)x 10~ 1 1.127(51)x 1012 1.324(59)x 1012

Q7.cont@nd Qg con- These contributions change by almost a  Starting with Regy) and its dependence as a functionfof

factor of 2, due to the large coefficient of the chiral logarithmshown in Fig. 29, we see that the chiral logarithms are pro-

term. As we will see, these play no role in our final results,ducing a 42% change in the value at the physical point.

due to the small size ol =1/2 effects from electroweak Civen this large correction, the close agreement between our
3 - 77 .

penguin operators compared to thé=1/2 effects from ex- choice 2 value of 2.96(1% 10™ * GeV and the experimental

_7 . . .
change and gluon penguin operators. Table XLVII shows th%alue of 3.3%10 " GeV must be viewed as coincidental,

_ ut it is encouraging that the chiral logarithms move the
Yv?l)uZit:g;)olT;t(i\g)r; Sheo%é’sa;gszl?zef%)“g:& Z)In ;/c(jl:jiiicz)rnthv?/e quenched theoretical prediction closer to the experimental

_ value. Similar consideration of R&{) and Fig. 30 shows that
Elc;t 13R(§€€/)’in Eizg‘az’g %%d arlijegq)/sse?%;clt/ign ;?; paramindusmn of the chiral logarithms only changes the extrapo-
o . DT O € Tated value by 18%, also in the direction of the experimental
eter & which we introduce into Egs(201) and (202 by y o b

. 5 value. Our choice 2 extrapolation value of 1.172(53)
replacing all the squared pseudoscalar masgasby émzs.  x 1078 GeV is 22% below the experimental value of 1.50
The chiral limit is given byé=0 and the physical point

X 1078 GeV.
corresponds td=1. The experimental values are given by  For Re@)/Re(d,), the differences in the extrapolations
the closed triangles. The difference between the two extrapare smaller. The chiral logarithms for t8,1) and (27,1)
lations gives an indication of the contribution expected fromoperators which dominate R%{) and Ref,), respectively,
including all theO(p?) terms, rather than just the logarithms. have the same sign but different amplitudes. From Fig. 31, it
We comment that the dependence of the chiral logarithms ois readily apparent that the logarithms have little effect on the
the scaleA ot must be canceled by a similar dependence inanswer and it is in good agreement with the experimental

the O(p*) coefficients. value of 22.2.

TABLE XLVI. The contribution in GeV from the renormalized continuum opera@Qr,, to the imagi-
nary parts of( ()| —iH®S=Y|K®) for u=3.02 GeV. The central values for the standard model param-
eters given in Table XXXVII have been used.

ImaginaryAq ImaginaryA,

i choice 1 choice 2 choice 1 choice 2

1 0.0 0.0 0.0 0.0

2 0.0 0.0 0.0 0.0

3 1.2(80)x 10 3 2.(11)x10 = 0.0 0.0

4 6.7(16)x 1012 9.5(23)x 10712 0.0 0.0

5 6.8(29)x 1013 9.6(41)x 10713 0.0 0.0

6 —2.06(25)x 10" 1 —2.93(35x10™ ¢ 0.0 0.0

7 5.49(28)< 1014 1.087(56)< 10713 3.88(20)x 10~ * 4.92(25)< 10"
8 —1.386(75)x 10 12 —2.74(15x10° 12  —9.80(53x10° ¥ —1.243(67)x10 *2
9 —8.01(62)x 10 2 —1.137(88)x 1012 1.049(47)x 10713 1.232(55)x 1013
10 —1.82(33)x10 2 —2.58(46x 10 13 —2.78(12)x 10" * —3.27(15)x 10" ¥
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TABLE XLVII. The dependence of physical quantities on the 2x10°°

extrapolation choice fop=2.13 GeV. T
Choice 1 Choice 2
Quantity (zero-loop quenched (one-loop fulh 1.5x10°1 A —
ReA, 2.09(12)x 10/ 2.96(17)X10° 7 _ | i
ReA, 9.98(45)< 107 ° 1.172(53)x 1078 >
Im A, —1.60(28)< 10" 1 —235(40x10° 1 2 ix10%k -
ImA, —9.91(56)x 1013 —1.264(72)x10 12 ;
ReAq/ReA, 2.09(15)x 10 2.53(18)x 10 i iy
(€'1€) y exp —3.2(22)x 104 —4.0(23)x10 4 sx10°k
(€'1€)yin —3.4(23)x 104 —3.5(19)x 10 O—© Lloop yPT full QCD
<3>—& 0loop xPT quench QCD
- A physical amplitude b
We choose to quote as our best estimates forARe( ih 02 04 o ol.s ' '1 '
Re(,), and Refy)/Re(A,) the values using the choice 2 ex- 3

trapolation(one-loop full QCD. This extrapolation includes
the most information currently available for corrections to  FIG. 30. As in Fig. 29, except that R&{ is plotted vs¢. Here
lowest order chiral perturbation theory, but is not a completdh® one-loop chiral perturbation theory extrapolation in full QCD
higher order calculation. The value pfto use for our final differs from the expe_rlmental _result by 18%. Thls_ls wc_ell within
answer should, in principle, not matter. However, far t_he general expectation for higher order_effects in chiral perturba-
=1.51 GeV, nonperturbative low-energy QCD effects could!™®" theory at scales arount . The data s fop.=2.13 GeV.

be causing a systematic shift in the values Z§f~. For u
=3.02 GeV, finite lattice spacing effects could begin to play
a role. In Table XLVIIl we give thex dependence of our
results. For Re¥p) and Ref,), the u dependence is plotted
in Fig. 32, while for Refy)/Re(A,) the n dependence is plot-
ted in Fig. 40. No statistically significani dependence is
seen, so choosing to quote resultspat 2.13 GeV, where

systematic effects should be smallest, does not alter the
quoted values

Our final results for Réyy), Re®,), and Refy)/Re(A,)
for the choice 2 extrapolatiofone-loop full QCD chiral per-
turbation theory with ©=2.13 GeV are given in Table
XLIX. Figure 33 shows a breakdown of the contribution of
Qi contto Re@y) (upper pangland Ref,) (lower panel. The
solid filled bars in the graph denote positive quantities and

4x107 ——— e IS the hashed represent negative quantities. One clearly sees
that the dominant contributions are froQ) con for i=1, 2.
i A ] The good agreement with experiment is very encouraging,
31071 | although better than might be expected given the approxima-
- L d 30 T I T I T | T | T I T
>
3
= 2x107 . i i
< -
L
&~ L ]
. 25 /./——O -
1x107" = G—O 11oop ¥PT full QCD T < 1
—< 01loop ¥PT quench QCD &
r A physical amplitude B ~ o e _
<
o0 1+ 1 v 1 1 1o & |
0 0.2 0.4 0.6 0.8 1 20k .
g 4
L G—© 1loop ¥PT full QCD
FIG. 29. Ref) plotted vs¢, where ¢ multiplies the pseudo- L 3—£] 0loopxPT quench QCD
scalar masses appearing in E01) and(202). The chiral limit is A experiment
£=0 and the physical point corresponds §e-1. Two ways of | | | | |
extrapolating to the physical point are showh) zero-loop chiral 150 : 02 : 04 : 06 : 08 : 1 :
perturbation theory in quenched QCD af&l one-loop chiral per- 3
turbation theory in full QCD. The difference between them gives an
indication of the contribution expected from including &(p*) FIG. 31. As in Fig. 29, except that R&{)/Re(d,) is plotted vsé.

terms in chiral perturbation theory. Since @{p*) terms are not The two extrapolations are only slightly different due to the chiral
included in our results, the close agreement with the experimentdbgarithms having coefficients with the same sign for the dominant
value should be regarded as fortuitous. The data is fior operators contributing to R&¢ and Ref,). The data is foru
=2.13 GeV. =2.13 GeV.
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TABLE XLVIIl. The dependence of the physical quantities we have calculated on the scale used to match from continuum perturbation
theory to the lattice calculation for extrapolation choice 2. The dependenqge iodicates the reliability of the combination of using
continuum perturbation theory below 1.3 Géweeded to define the three-quark effective thigaspe-loop matching from the NDR to Rl
schemes, and our implementation of nonperturbative renormalization.

Quantity u=1.51GeV n=2.13 GeV u=2.39 GeV u=3.02 GeV

ReA, 3.27(25)x 1077 2.96(17)x10°7 3.04(16)< 1077 2.79(17)x 1077
ReA, 1.151(52)x 1078 1.172(53)x 1078 1.163(52)x 1078 1.140(51)x10°8

Im Aq —1.78(44x 10" 11 —2.35(40x 10" 11 —2.12(37x 10 % —2.26(39)x 10" 11
ImA, —1.444(83)x 10712 —1.264(72)< 10712 —1.206(68)< 1012 —1.103(63)x 10712
ReAq/ReA, 2.84(24x 10 2.53(18)x 10* 2.61(17)x 10 2.45(18)x 10t
(€'1€) 4y exp —9.9(23)x 104 —4.0(23)x 104 —4.8(20)x10°* —2.2(24)x10° 4
(€'1€)yn —7.8(16)x 104 —3.5(19)x 1074 —4.1(16)x 10" 4 —2.0(21)x 104

tions inherent in the current calculation. ization we UseZqas-2(2 GeV)/Z,§=O.928[78], Z,=0.7555

We end thi_s section 'with our results for. the _kaBr'pa— [21], and the one-loop matching between the Rl a8
rameter,By , discussed in Sec. IIC and defined in B46).  gchemes fronf79]. This one-loop matching has a value of

In the SU3) flavor limit, one has 1.02 in this case.
o Ase To complete the determination 8, values form, and
(KYQIa> 2 KO =3(7"|[Q1+ Q7K ™) f are neededEq. (46)]. Although f andmy are given in

Tables XIX and XXXI in[21], the current calculation con-
tains 400 configurations compared to the 8%2if|, produc-
ing a reduced statistical error. To extragt and my, we
For the determination By, we need =" |@Z ) GAK*)  simultaneously fit wall-wall pseudoscalar correlators and
at m;=0.018, a quark mass which gives a kaon made fronwall-point pseudoscalar axial-current correlators to deter-
degenerate quarks its physical mass. This matrix element hasine the pseudoscalar mass(0|Py+ walK*™) and
been fit to the form given in Eq187) with the fit parameters  (0|A, ,{K ). The fits use correlators a distante 12—19
given in the second line of Table XXVII. To convert from the from the wall source and, as can be seen in Fig. 3, in this
lattice matrix element to one with a continuutS normal-  range zero mode effects should be small.

From the 400 configuration data set of this work, the val-
4 T T T T T ues we find formpg and fpg are given in Table L form;
L . =0.01-0.05.(Here the subscripPS added to the mass, de-
cay constant, an8 parameter is a label for a generic pseu-
doscalar meson which could be theK, etc) Including the
determinations of mpg, fpg and the fit to
i % 1 (w0 C2)K ") under a jackknife loop produces the

values forB%" in the fifth column of Table L. Adding an

=2(7t|OF KT, (203

(Real Aj) * 10’ (GeV)

w

w W

T

o

HoH
HeH
L.

25 -
| i interpolation tom;=0.018 in the jackknife loop, we find
) N e ng?;ALs(z GeV)=0.532(11) where the error is statistical only.

We can also calculate the value in the chiral limit;=

L5 N L L B —Mes, and this gives BVFYQ',\A—S(Z GeV) (M= —Myed
= r y =0.267(14). This method of extractiry using wall-wall
QL
2 oast .
= i @ ﬁ @ % i TABLE XLIX. Our final values for physical quantities using
*AN one-loop full QCD extrapolations to the physical kaon matwice
é 1~ — 2) and a value ofu=2.13 GeV for the matching between the lattice
& | i and continuum. The errors for our calculation are statistical only.
I ] I ] I ] I ] I I i i i
0.75 Quantity Experiment This calculation
1 15 2 23 3 35 (statistical errors only
1 (GeV) ReA(GeV) 3.3%10°7 (2.96+0.17)x 10" 7
FIG. 32. A plot of Ref,) (upper panéland Red,) (lower  ReAy(GeV) 1.50<10°® (1.172+0.053)x 10°®
pane) vs u for the physical values obtained using one-loop full @ * 22.2 (25.31.8)
QCD chiral perturbation theory for the extrapolation to the physicalRe(€'/¢) (15.3+2.6)x 10" 4(NA 48) (—4.0=2.3)x10°4
kaon mass. The results show no statistically signifigardepen- (20.7+2.8)x 10" 4KTEV)

dence. We choose to quote final values witk 2.13 GeV.
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~ 1x107 —: r 1
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6] - - 0.6 —
) C ] r ]
G 1x10°E 4 ]
= E 3 S 05 —
< . 1 < | ]
° - - ' | O AA normalization i
E 1x10°F % < @ 04f- O wall normalization .
E N I 1
1 2 3 4 5 6 7 8 9 10 a3l _
. T T I T | T I T | T I T I T | T | T b b |
1x10°L - i 1
- E 3 | . | . | . L . | . |
% o ] 02 0 0.01 0.02 0.03 0.04 0.05
O i ] m,
i -9
9 1x10 E 3 FIG. 34. Values foBpswys(2 GeV) vsm;. The points labeled
2 E 3 AA normalization (O) are determined by normalizing with two-
< L - point functions which may introduce zero mode effects for small
& 1e_1010=_ - quark mass. The wall normalization poirifS) determineBpg from
- E 3 a K— a7 matrix element, where a wall normalization is used, and
. Sl Ll I . L ] zero mode effects should not be introduced through the normaliza-
0O 1 2 3 4 5 6 7 8 9 10 tion. Some difference can be seen for the smaller quark masses. The
wall normalization point am;= —m,e is the value ofBpg in the
Operator # chiral limit. The solid line is the result of fitting the AA norm points

to the form given in Eq(204). Since the fit goes below the AA

W Fle?' 231921 nbdreslggf)\,\(lrov?/ferchr?:a))nt‘lr'lr?gtls%Ti dgiilylceo(;t kt)(;rE?r(lA(t%e norm point atm;=0.01, the extrapolated value agrees with the wall
PPer p P ) normalization value. The dashed line hag=0.018 and marks the

graph denote positive quantities and the hashed represent negative. . .
quantities. The data is for=2.13 GeV. point where a kaon made of degenerate quarks has its physical

mass. Using the value @ps at this point, we findBy ys(2 GeV)

_ o _ =0.532(11).

correlators for the matrix element avoids introducing zero

mode effects through normalization factors in a similar fashcylating B, was used, where AS=2 Green’s function is

ion to the techniques we have used in the analysis&of normalized with axial current-pseudoscalar correlators. This
— matrix elements. ratio of Green’s functions should be free of quenched chiral
This result agrees within errors with the value 0.888 |ogarithms, but the axial current correlator can introduce zero
that we obtained on a subset of 200 configurations from thenodes for small quark masses. We revisit this earlier deter-
present ensemble80]. There the traditional method of cal- mination here with the full 400 configuration data set and use
Bps to denote the result from this method. To get the value

TABLE L. Values for the pseudoscalar masws and decay in the MS scheme aju=2 GeV, the latticeAS=2 matrix

constantsfpg (both in lattice units versus the quark mass, element must be multiplied by the vaIueZ)(gas:z/Zi given
along with the pseudoscal@® parameterBps, determined from o6 and a factor of 1.02, which is the value for the one-

two different normalizationsB473 is found by normalizing the de- . —
siredAS=2 Green’s function by axial current-pseudoscalar Green’sIOOp matching between the Rl aME schemes. In the fourth

functions, which may introduce zero mode effe@®a! is deter- ~ column of Table L, our values fdBps in the MS scheme at
mined by normalizing with the wall-wall correlators used for the #=2 GeV are given fom;=0.01-0.05. Fitting this data to
K — 7 matrix elements, which we have argued should not introducdhe form given by one-loop quenched chiral perturbation
zero modes through the normalization. ValuesBax are given in  theory for degenerate mesof&l,55,

the MS scheme gt=2 GeV. The results for each value ok are

averaged over the time-slice range<l4<17. The physical value AA LAA 1 2 més AA L2
Bx=0.532(11) is found by choosingy=0.018 so that a kaon Bps=hp"| 1.0—- (47t )2 6mPs|097_A +b1"mpg,
made with degenerate quarks has its physical mass. QxPT (204)

My Mpg fps Béé B‘Q"g' we find

0.01 0.207819) 0.07697) 0.47810) 0.46614) AA

0.02 0.271816)  0.07976)  0.5546)  0.54711) By ws(2 GeV)=0.53G6) (205
0.03 0.324815) 0.08376) 0.6025) 0.60Q10) o . )

0.04 0.371614  0.08766)  0.6364) 0.6359) which is in very good agreement with our earlier result on
0.05 0.414713) 0_09157) 0.6633) 0.6639) 200 Configurations. The fit gIVGBSA:OZSS(ﬁl) andb/i\A

=1.44(6) and we note thmfg’A is the chiral limit value for
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the unrenormalize® parameter using this method. Including chiral and continuum limit. The continuum limit extrapola-
renormalization factors yie|d§§gM_s(2 GeV) (M= —Med tion in Ref.[82] is likely not responsible for this difference;

—0.27Q4). Thedetails of the fit are the same as those fol-Tather, it is the form of the extrapolation to the chiral limit.
lowing Eg. (187 in Sec. X where the extraction of Our data uses the analytically calculated coefficient of the

al(gtm),(s/z) was discussed. The one difference is that nochlral logarithm term as a fixed input parameter, whereas

quenched chiral logarithm appears in B804, since they Ref. [82] fits for this coefficient, using data with the AA

Lin th tio of th trix_ el t and it normalization. Their fit results in a coefficient3 times
cancel in the ratio of the matrix element and 1S VaCulMgajier than the analytic result, which will have a pro-
saturation approximation.

_ _hounced effect on the chiral limit and explains much of the
~ The two methods described above have produced Quitgigterence in the two results. We find that our data is well fit
similar results forBy ; 0.53G6) using the axial current- sing the analytically known coefficient, provided zero mode
pseudoscalar normalization and 0.8BR using the wall-  effects are minimized, and have used this coefficient consis-

wall correlator normalization. The results given in Table '—tently in both the determination of th€7,1) Al=3/2 K

and plotted in Fig. 34 show very good agreemerBf§ and ., 7 matrix elements and the extrapolation Bfs to the

B for m;=0.03, 0.04, and 0.05. For smaller quark masseschiral limit.

differences at the one standard deviation level occur. Since Our domain wall fermion result is more than one standard

both analysis methods use the same raw data, the differencieviation lower than the continuum limit quenched value of

may be correlated and have statistical significance, but we.62842) [83] computed with Kogut-Susskind fermions. For

have not pursued this question. The solid line in Fig. 34 is &ogut-Susskind fermions, larg@(a?) effects are seen. Our

fit of B’S’g to the form given in Eq(204). This fit goes below result does not include an extrapolation to the continuum, but

the m;=0.01 data point and agrees well in the chiral limit in Ref. [82] this extrapolation is done for domain wall fer-

with the value determined from the wall normalization. Sincemions, yielding 0.574@1) [Eq. (191)]. Thus it appears that

the nonlinearity due to the chiral logarithm is quite pro- domain wall fermions are giving a quenched valueBgf

nounced near the chiral limit, the extrapolation to this limitabout 10% smaller than the quenched value computed with

likely requires further study to understand all the systematid<ogut-Susskind fermions and slightly more than one stan-

effects. dard deviation away. Given the relatively small statistical
Because the wall-wall normalization does not introduceerrors currently possible, these systematic differences need to

additional zero mode effects and it is the technique we havée reconciled.

used for all theK— 7 matrix elements, we will use the re-

sults from this approach for our final values. Therefore for XIV. IMAGINARY Ag AND A,
our single lattice spacinfa”1=1.922(40) GeVY and vol- . ,
ume (16x32) we find By ws(2 GeV)=0.532(11) and the In the previous section, we saw that the results for the real

K—a77 amplitudes from this single lattice spacing,
quenched calculation were quite consistent with the known
gexperimental values. We now present our results for the
imaginary K— 77 amplitudes and Rel/e). These are all
girectly proportional to the parameterin the CKM matrix
and we will use the central value farfrom Table XXXVII.
Values for Im@,) and Im@,) are given in Tables XL,

value forBpg in the chiral limit is 0.26714). Our value for
Bk is smaller than that found in Ref82] using the RG-
improved gauge action of lwasaki at a similar lattice spacin
and volume. In theMS scheme at 2 GeV they finBx(q*
=1/a)=0.564(14), where perturbation theory has been use
to determine the renormalization factofEhe dependence of

. .
their result ong* is smaller than the error quoted abgve. XLII, XLIV, and XLVI for u—1.51, 2.13, 2.39, and 3.02

The two central values differ by about 6%, while the quoted ) ) ;
errors are about 2% to 3%. The difference between the caﬁe\./’ respectively. The tables include both extrapolathn
choices. The values in the tables reflect the long-standing

culations is small and could be merely a statistical fluctua- tation that the dominant part of i duced b
tion. However, there are also systematic differences betwee pecta Il(t)r? ah € 9m|n3:a5rl y pafrtho M.m IS produce d fy
the two calculations that are not reflected in the statisticaf¢6.cont 3tNoug Q4,contlS ~ 2700 0 € size 0Rs coniand 0
errors; the gauge actions are different and R82] uses the opposite sign anQg con IS ~10% qf Q6’°°m.and of the
perturbation theory to calculat&factors, whereas this work same sign. Since we choose to work in a basis Wi

has used NPR. The smaller value fof for the Iwasaki |sNFI>|Qea+rIy g%)erldent, mostNF%f s vz(illg)e 1S coming from
action seems unlikely to effeddy, given that no power Z41 (7 |Q1,Iat|Kl/2>sub andl/§4? (7" 1Qzatl K Ysup- Since
divergent operators are involved and the large mass of th&ie values fora{'j and a%;2) in Table XXXVIIl have op-
kaon. ForZ factors for this four-quark operator, a direct com- posite sign an@j; andz)sRalso have opposite sign, these
parison has not been done due to the difference in gaugeontributions add irQ ¢on. Finally we note thay,(u) and
actions. A direct comparison of perturbative and nonperturye(w) are of similar size, resulting in the sizable contribution
bative Z factors for quark bilinears was given in R¢89]  0f Qg contt0 IM(Ag). IM(Ay) is dominated byQg ¢oneand re-
where agreement at the 5% level was found between meareives only ~10% contributions from the next largest
field perturbative results and NPR. This could be responsiblsource Qg cont-
for much of the difference in the central values &y with The values for Img,) and Im@,) and their dependence
domain wall fermions. on the choice of extrapolation to the physical kaon mass is
Our value forBpg in the chiral limit, 0.26714), is mark-  given in Table XLVII for u=2.13 GeV. Figures 35 and 36

edly lower than the value of 0.412 given in RE82] for the  show Im@y) and Im@,), respectively, as a function @ffor
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FIG. 35. As in Fig. 29, except that Iif) is plotted vs¢. Here

(Imag A,) * 10" (GeV)

175+ ]
a physical value is not directly known. The one-loop chiral pertur- | i
bation extrapolation in full QCD is a 47% correction to the zero- 5 . I . [ . I . I .
loop extrapolation. The data is fat=2.13 GeV. 1 1.5 2 2.5 3 35

1 (GeV)
u=2.13 GeV. We note that In) does not vanish ag ot of | |
—.0, due to the contribution from the electroweak penguins, /G- 37- A plot of Im@) (upper panel and Im@,) (lower

. . ane) vs u for the physical values obtained using one-loop full
The chiral logarithms change the extrapolated value o CD chiral perturbation theory for the extrapolation to the physical

Im(A) by 47% and l_mA2) by 28%'_ Thep _depen_den_ce O_f kaon mass. The results for IA&yY) show no statistically significant
Im(Ag) and Im@y), using extrapolation choice 2, is given in gependence, while 1) varies by 25% over this range pf We
Table XLVIII and plotted in Flg 37. The results for |M choose to quote final values wigh=2.13 GeV.
show no statistically significant dependence, while 1Mg)

varies by about 25% over this range of

We can now discuss our results for Ré€). Considering Re(el/e):( w ) [ Xw
2
exp

} (312

2
awa8+ ameog

(1/2)
J , (206

whereay, is the electroweak fine structure constant ards
for QCD. Here we take» and|¢ from experiment, since we
will concentrate on the mass dependenc®f P,. Recall-
ing the Al =1/2 rule gives

only the contribution from the dominant operat@s, Qg,
and Qg (represented b3Q2~a2mﬁo§, Qg aemﬁog, and
Qs~ ag) and assuming{'| "~ has small off-diagonal elements
yields a schematic formula for Ré(e) giving the rough size

and mass dependence of the various contributions.

2
awagt asaﬁmKof

2
awa8+ amegf

sx10 - [aamyoé]*? = wf apmyoé] 2, (207)

g - which makes thd =3/2 contribution at the physical point
& -lxio G N (é=1) O(ay!w) rather tharD(a\y). Equation(206) shows
8 | | that in the chiral limit ¢=0), the electroweak penguins
dominate Ref,), Re@,), Im(Ay), and Im@,) and produce
1.5x102 - Re(€'/€)=0. Since in this limit, both thé =1/2 andl =3/2
G—©) 1 loop %PT full QCD . X
&—& 0laop PT quench QCD amplitudes come from the same source, there is no phase
i | difference between them. This limit is quite different from
Pyt I T B R S N the case with physical quark masses, where the source of
0 02 04 0-56 08 1 Im(A) is primarily the gluonic penguins, IrA§) the elec-

troweak penguins, and R&f) and Ref,) the exchange op-
FIG. 36. As in Fig. 29, except that If) is plotted vs¢. Here ~ erators. .

a physical value is not directly known. The one-loop chiral pertur-  To examine the dependence dP,— P, when the opera-

bation extrapolation in full QCD is a 28% correction to the zero-tors important to the physically relevant case are noticeable,

loop extrapolation. The data is far=2.13 GeV. we plot in Fig. 38 the quantity

114506-60



KAON MATRIX ELEMENTS AND CP VIOLATION FROM . .. PHYSICAL REVIEW D 68, 114506 (2003

20 T | T I T I T | T I T 20
0 0
"o L ] "o L 4
n x
~ | _ < _20 | —
a2 20 i
A i i < L J

exp

I
2
lel-N2
5
]

60 - (G—O 11oop %PT full QCD _ -60 —
- 0loop ¥PT quench QCD

FIG. 39. The values for-[ w/(vV2|€]) JexpPo, [ @/ (V2] €]) TexpP2.

FIG. 38. A plot of[ w/(v2| €]) JoxPo—Po) VS & Where£=0 is and their sum, using the one-loop chiral perturbation theory ex-
the chiral limit andé=1 is the physical point. We only plot points trapolation in full QCD, are plotted v& The contribution propor-
for £=0.2, since in the chiral limit only the electrowe&,8) op- tional to P, is going to zero with increasingdue to the increase in
erators contribute an®,— P,=0. As masses increase from zero, Re(,). — Py is constant in lowest order chiral perturbation theory,
the contributions td®,— P, of current—current, gluon penguin, and °nceé is large enough that the electroweak penguins play no role,
electroweak penguin operators 61 0.2 are quite different from @nd has no chiral logarithm corrections. At the physical pgint
the physical world. As explained in the text, for 8:2<0.5, the =1, the two terms are almost canceling, producing the small value
electroweak penguins continue to dominate by makmg large. ~ for Re(€'/e). The data is fopu=2.13 GeV.
As one approaches the physical point, the electroweak and gluonic
penguins are canceling almost completely. Higher order terms ifh On the matrix element in the numerator means that only the
chiral perturbation theory could be expected to alter this large caneontribution from the renormalized continuum operator
cellation. The data is for=2.13 GeV. Qi contiS included. Figure 41 shows a breakdown of the con-
tributions  of —[w/(v2|€|)]exPo (upper panel and

o [m/(\ﬁ|'s|)]ex,[,Pi2 (lower panel to Re'/e) and Table LI
— | [P2(&)—Py(&)] (208 gives the numerical values. The solid filled bars in the graph
V2|e| exp denote positive quantities and the hashed bars represent

negative quantities. This figure shows the importance of

starting at¢=0.2. The data is fo=2.13 GeV and we re- Qacont @d Qgeont 10 —[w/(v2]€])]ePo and  that
mark that foré= 1, the quantity in Eq(208) is Ref'/e). One [ @/(V2|€])JeP2 comes primarily fromQgcon.

sees that for both extrapolation choices, E208) starts out In spite of the near cancellation P, — P, visible in Fig.
large and negative and becomes very small ferl. The 39, the statistical error on the final answer2.3x 10°* is
large negative value arises when Rg(is receiving very duite encouraging. The figure also shows that the'magnltude
little contribution from the exchange operators and this di-of the contribution to R&(/e) from the term proportional to
minishes as Ré() grows with& For the one-loop full QCD P2 is about the magnitude of the experimental value, as is
extrapolation, we show the individual contributions @ISO true forPq. In Table XLIX we give our final values for
[w/(‘/j|6|)]expp2 and _[w/(‘/j|6|)]expp0 in Fig. 39 for u thg main physical quantities calculated in this Worl_<. Whether
=2.13 GeV. The contribution proportional ®, is going to @ iS taken from experiment or from this calculation is not
zero with increasingt due to the increase in R&y). The  Very significant in Re{/e), as can be seen from Table
term proportional to- P, is constant in lowest order chiral XLVIIl. Given the general agreement with the experimental
perturbation theory, oncé is large enough that the elec- Values for reaK— a7 amplitudes and the relatively small
troweak penguins play no role, and has no chiral logarithnftatistical error on Re(/e), the difference between the cur-
corrections. At the physical poirg=1, the two terms are rent calculation for Re{/e) and experiment is surprising.
largely canceling. Thew dependence of Reé(e) is given in

Table XLVIII and plotted in Fig. 40. Thex dependence is XV. CONCLUSIONS

coming largely from theu dependence of Ind;). We will

take the value for Re(/e) at u=2.13 GeV for our final re- A. Summary

sult. We have reported the details and results of our calculation

We can also study the contribution of the individual of the K— 7r7 matrix elements relevant for thl = 1/2 rule
continuum operators to the imaginary amplitudesande’/e in quenched lattice QCD using domain wall fermi-
entering Re¢'/e). To do this, we defineP, by P, ons. In addition, we have also reported a value By,
=Im({(7m),| —iHAS=D|KO),; /Re@), where the subscript which is needed to determirerom the standard model. Our
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FIG. 40. A plot of Refy)/Re,)=1/w (upper panél and Operator #
Re('/€) (lower panel vs w for the physical values obtained using
one-loop full QCD chiral perturbation theory for the extrapolation
to the physical kaon mass. The results fap $how someu depen-

FIG. 41. A breakdown of the contribution &f; ;o t0 the imagi-
nary amplitudes entering-[ w/(v2|e€|)]exPo (upper panel and

T [/ (V2|€])]expP2 (lower pane). The solid filled bars in the graph
dence beyond the statistical errors. For & the u dependence is denote positive quantities and the hashed bars represent negative

noticeable, reflec_ting the V‘S‘F"W dependence in Img). We quantities. The experimental values forand|e| are used here and
choose to quote final values wigh=2.13 GeV. the data is foru=2.13 GeV.

value for By is slightly smaller than with other approaches, with their small chiral symmetry breaking for finite lattice
but the differences are at the 10% percent level. Our resultspacing, have removed the problems found in earlier at-
for Re(Ap) and Ref,) are 10%-20% smaller than experi- tempts where chiral symmetry breaking effects were large.
mental values, but our value for their ratio is within 10% of = The many approximations in this calculation could affect
the experimental value. This is a very encouraging resultthe real and imaginary amplitudes in different ways, al-
since a large enhancement of the 0 amplitude is being though at present we have no insight into how this might
seen from the nonperturbative hadronic matrix elements, cabccur. We can estimate the size of the effects introduced by
culated using a technigue where the current approximationthe approximations acting singly. The quenched approxima-
can be reduced in the futur€fhe perturbative enhancement tion has been generally found to agree with experimental
through the QCD running of the=0 andl =2 Wilson co- results at the 10%—20% level, except for QCD near the finite
efficients is almost an order of magnitude smaller than theéemperature phase transition where light quarks play a large
experimentally observed enhancemgritnprovements of role. The lowest order chiral perturbation theory results for
these calculations will provide reliable systematic errors andhe K— 77 matrix elements are altered at the80% level
fewer approximations, leading to a more precise test of thisvhen the extrapolation to the physical kaon mass includes
initial agreement between theory and experiment. the known chiral logarithms. We see-a25% variation in

For €'/ e, the situation is more complex and more inter- Im(A;) with the scaleu, which indicates the reliability of the
esting. Our results quantitatively support the long standingombination of: using continuum perturbation theory below
expectation from simple estimates that the two isospin coni.3 GeV, one-loop matching from the NDR to RI schemes,
tributions toe'/ e are of the same order and opposite sign. Ofand our implementation of nonperturbative renormalization
course, such a large cancellation may be dramatically alteresthere some operators, of ordg§ which are argued to be
by removing the approximations in the current calculation.small, are neglected. We have used linear fits to our lattice
While a subtraction of power divergences is needed fodata in many cases, since analytic results for the chiral loga-
Re(Ay), it is quantitatively much smaller than the subtractionrithm terms are not known, and this could easily contribute
for Qg, which is the major contribution to IMAg). [No sub-  errors on the 10% scale. We have not included any effects of
traction is required for the contributions to 1A.] As we  isospin breaking in our results. Finally, we have only worked
have shown, the dominant term in the subtraction procedurat one lattice spacing, but our experience with hadron masses
is not affected by chiral logarithm and zero mode effectscalculated with domain wall fermions makes it likely that
making the subtraction seem quite robust given our currenthanges of no more than 10% will be encountered in taking
understanding. Thus it appears that domain wall fermionsthe continuum limit.
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TABLE LI. The contribution from the renormalized continuum opera@i.,; to the imaginary parts of
((ma) [iHAS=DIKO) is used to calculateP|=Im(((mm)|—iHAS=D|K); /Re@). Here we tabulate
—[w/ (V2] €]) ]expPo and[ w/ (v2| €]) 1exP, for our two extrapolation choices far=2.13 GeV. One sees that
the largest contribution to the=0 channel is fronQg .,n;and the largest contribution to the=2 channel is
from Qg con. The very small errors for the contribution Qfg cone@Nd Q1 contt0 [ @/ (V2| €])JexP is due to
the fact that th&27,1) operator is dominating the numerator and denominator. Since the errors@ the
are correlated, the error for Re(e) is not simply related to the errors from the individual contributions in
this table. The experimental values ferand|e| are used here.

_[w/(‘/i|€|)]expplo [w/(‘/ﬂE')]expPIZ

i choice 1 choice 2 choice 1 choice 2

1 0.0 0.0 0.0 0.0

2 0.0 0.0 0.0 0.0

3 5.(58)x 10 ¢ 5.(58)x 10 © 0.0 0.0

4 —4.8(11)x 10 * —4.8(11)x 104 0.0 0.0

5 —4.2(17)x10°° —4.2(17)x10°5 0.0 0.0

6 1.42(19)x 1073 1.42(19)x 1073 0.0 0.0

7 —4.66(36)x 10 © —6.50(50)x 10 © 6.90(33)x 10 ° 7.45(35)x 10 °
8 1.061(84x 10 4 1.48(12)x 10" * —1.571(77)x 103 —1.697(84)x 103
9 5.65(23)x 10 ° 5.65(23)x 10 ° 1.563 83(69x 10 * 1.564 93(75x 10 *
10 1.35(24)x 10°° 1.35(24)x 10°° —4.5635(20)x 10 ° —4.5668(22)x 10 °

Each of these approximations could individually produceson coefficients. However, the quenched lattice calculation is
a ~25% change in Ré(), Re@,), Im(Ay), or Im(A,). Cu-  now required to well approximate full QCD running between
mulatively, these approximations could markedly alter ourthe scales of 2 GeV and500 MeV, the scale of the kaon
result for €'/, but there is currently no identified single physics we are studying. This will clearly be a worse ap-
approximation that could easily explain the discrepancy beproximation than in the current calculation where the
tween our results and the experimental value. Lacking uenched running must approximate full QCD only between
single “worst” approximation to focus on we do not have 1 3 Gev and~500 MeV. Finally, in the four-flavor theory,
enough information at present to even estimate how thesgperators with dimension greater than six in the effective
effects act in concert for a quantity lik€'/e, which is the Lagrangian are suppressed by powers-ef0.5 GeV/5.0
difference of thg ratig of a_mplitudes. With fqrthgr work, im- GeV) compared to powers of-(0.5 GeV/1.3 GeV in the
proved calculations involving fewer approximations and ré-q, rent calculation. The different systematic errors inherent

Ilat;Le syst_e;] ma;tlhceerrﬁgsor\]/\;lrl(l)ﬁee dpgifselstle. introduced b thein the use of the four-flavor theory will provide insight into
emoving _une ned etiects |1 uced by the stability of our current results from the three-flavor
guenched approximation will simplify the calculation in ad- theory

dition to deleting a significant possible systematic error. The
simplification comes from the removal of the effects of un-
suppressed zero modes present in quenched QCD and the B. Outlook
change from quenched chiral perturbation theory, where new We would like to close by discussing the prospects for
free parameters appear in the Lagrangian, to full or partiallimproving this calculation in the immediate future. It is im-
quenched chiral perturbation theory. A recent calculation irportant to note that attempts to use lattice QCD to calculate
quenched chiral perturbation theof§8] has shown that a K— 77 matrix elements have been ongoing for almost 20
quenched chiral logarithm appears in the determination ofears and without at least some chiral symmetry on the lat-
the subtraction coefficient!®V, multiplied by a new free tice these calculations were not successful. The current cal-
parameter. From the linearity of our data with—my, we  culation demonstrates that all the theoretical tools are in
conclude that this parameter is small, but the presence gflace for these first-principles calculations and that reason-
such terms makes fitting to numerical results less precise arable statistical accuracy can be achieved in the quenched
offers new ways in which the quenched approximation carapproximation. One consequence of the statistical accuracy
exhibit pathologies. achieved is increased interest in the unknown systematic er-
We have also calculated all the lattice matrix elements andors in the calculation. We would like to address the outlook
renormalization coefficients necessary to repeat the curreifior improving the calculation by determining, and reducing,
calculation in the context of the four-flavor effective low- these systematic errors.
energy theory, where the charm quark is not integrated out. In addition to the results in this paper, the CP-PACS Col-
For the four-flavor theory, continuum perturbation theorylaboration has also reported results for the same observables
need only be used to a scale 62 GeV to match to our using domain wall fermiong84]. There is general agreement
lattice. This should decrease the errors coming from the Wilin the results fore’/e, while our value for Re4y)/Re®,) is
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about a factor of 2 larger than their result. For both quanti- To improve beyond lowest order chiral perturbation
ties, there are differences in the details of the analysis stefgheory requires either the calculation of the higher order co-
leading from the unrenormalized lattice matrix elements tcefficients in the chiral expansion, and/or the direct calcula-
the physical results[A large part of the difference in tion of K— 7o matrix element$47]. Both are the subject of
Re)/Re(,) is due to our use of the analytically known active research in the field and require considerable numeri-
coefficient for the chiral logarithm in the fits for R&j.] cal and analytical work to implement. While we have made
There are also differences in the gauge actions and volumestensive use of known chiral perturbation theory expres-
used and the general agreement &fe indicates that the sions in fitting our data, with generally good agreement, the
systematic errors from such effects are not large. In particudata is too correlated and over too limited a range of quark
lar, the CP-PACS calculations have a smaties;, due to the masses to determine the coefficients of the chiral logarithms.
different gauge actions used, but, as we have arguednthe An important aspect of trying to incorporate higher orders in
effects should be under good control. This seems to be sughiral perturbation theory into this calculation is to have suf-
ported by comparing the work of the two groups. The roughficient data to allow extraction of the additional low energy
agreement between the groups indicates that this complicatemnstants of chiral perturbation theory. Additionally, doing
calculation is tractable and that subsequent calculationgither higher order chiral perturbation theory or a direct cal-
should be able to refine these results. culation of K— 7r7 in quenched QCD may be problematic
In the previous section, we have mentioned estimates fodue to the pathologies of the quenched approximation. Of
the systematic errors in a single amplitude course, for the long run, both of these methods hold promise
[Re(A).Re(,),Im(Ay),Im(A)] due to the approximations for full QCD calculations. _
employed, when each approximation is considered singly. We conclude by reiterating that the entire framework for

These are only estimates, based on calculations of other ofuccessful calculations is in place and all the current approxi-

servables using quenched lattice QCD, and there is no the&lations can be steadily improved. Accompanying this im-

retical framework for addressing how these approximationsf’rovemer‘t will be a more quantitative un(_jer_standmg of our
taken together, affect'/e. We also do not know how a Systematic errors, allowing for greater clarity in the compari-

sinale aoproximation. i.e.. auenchina. impacts the combinaSO" of these first principles calculations with experiment.
INGI€ appro - 1€, d , 9. Imp Starting from continuum calculations of the Wilson coeffi-
tion of amplitudes that yields’'/e. However, near-term cal-

cients, a very substantial effort, the lattice is used to calculate

cuIanr(;s, some alrgaciy underway, can shov\\//V.hr?v_v Iarge_th%W energy matrix elements and the matching between the
errors due to any single approximation are. Wit INCréasiN,uice and continuum normalizations. The current calcula-

computer power, the desired full-QCD calculations in 1arg&jo, demonstrates that: statistical errors are not a limiting

vol%rrefq\éwclzl tée IF0§3|bl_e. . | . h | factor; the domain wall fermion formulation, in addition to
e olfaboration is currently repeating the ca Cu'being a major theoretical advance, can be used in practical
simulations; and that the complicated matching of continuum

. ; ! %nd latticeAS=1 operators can be done with nonperturba-
pi(for]rmtletlj with an improved gafuge ac;miBWZ [85) " {ive renormalization and domain wall fermions. This presents
which will reducem; by about a factor of 10 compared 10 , \ery exciting future for precise calculations of experimen-

the calculation presented here. This will allow a determinay, v jmportant quantities using analytic techniques and lat-
tion of how the quenched calculation depends on the latticg.4 QCD

spacing and allow a check that we have correctly handled the
Myes affects in the current calculation. In addition, at this
weaker coupling the domain wall formulation may be sen-
sible for a quark as heavy as the charm quark. This allows us The authors would like to thank Andrzej Buras, Mike
the possibility of also calculating — 77 matrix elements in  Creutz, Maarten Golterman, and Yigal Shamir for useful dis-
a four-flavor effective theory, which includes internal charmcussions. We also acknowledge use of the MILC Collabora-
quark loops. If possible, this would check another importantion software (http:/physics.indiana.edsg/milc.html) for
systematic uncertainty, the use of the three-flavor effectivgome of the tests we performed on our computer programs.
theory and continuum perturbation theory down to a scale of\le would like to thank T. D. Lee for valuable scientific
~1.3 GeV. discussions and his support in all phases of this work. The
We are also generating full QCD lattices, with 2 flavors of calculations reported hetevere done on the 400 Gflops
dynamical domain wall quarks, at a lattice spacingaoft QCDSP computef86] at Columbia University and the 600
~1.7 GeV, with physical volumes similar to those used hereGflops QCDSP computgB7] at the RIKEN-BNL Research
MeasuringK— o matrix elements on these lattices will Center. We thank the Information Technology Division at
give some indication about the size of quenching effects. Th&NL for their support, particularly the technical support staff
volumes will not be asymptotically large and the input dy-
namical quark masses will be around half the strange quark———
mass, but these calculations should provide direct informa- 3a preliminary report of this calculation contained serious errors
tion about the importance of quenching. Larger volumes anevhich we subsequently found and corrected. Those errors were in
smaller quark masses will be achieved with the next generaanalysis and codes and not related to the QCDSP computer and do
tion of computers. not affect the present paper.
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APPENDIX A: CONVENTIONS FOR STATES

AND OPERATORS StatesK ™) created by the operatdt™(x) therefore have

Comparing the Lagrangian of chiral perturbation theory _ 4v
described in Sec. Ill A with the Lagrangian of QCD defines (OfisysulK™)=— - (A11)
the relationship between quantities expressed in terms of the
pseudoscalar fields of chiral perturbation theory and thend to lowest order in chiral perturbation theory
quark fields used in our simulations. Our conventions follow
[88], where more details can be found. We start with the (0]d(x) " ysu(x)|*)= —ifpre P (A12)

Lagrangian given in Eq50) and the Minkowski space QCD

Lagrangian

1 —
LQCD:_Z(Fiv)2+ p(id —m) . (A1)

We use the conventional assignment of pseudoscalars to the

chiral perturbation theory fields

FE d)ata
7OIV2+ 9l \6 ot K*
= T — 72+l 6 KO
K- KO —2q16.
(A2)
We work with relativistically normalized states
(m(p)|7°(p') = 6*°(2Ep)(2m)°6°(p—p')

——— (2B Vs - (A3)

lattice

By considering global axial transformations witd,
=exp(—iasty) andUg=-exp(a,t,), we find for the axial cur-
rentsA%,

Ab= IT[Tr(Etaa“ET)—Tr(ETtaa"E)], xPT, (A4

AL=yylysta,  QCD. (A5)
The divergence of the axial currents is

J,AL=iv Tit,({M, 3} —{MT,2™)], xPT, (A6)

3, AL=2m[i gystaih], QCD. (A7)

For degenerate quark masses, Ef) becomes

wheref>0.
We define a pseudoscalar density in chiral perturbation
theory by

4y
Y=+ ¢a (AL3)

and a corresponding QCD pseudoscalar density as

PEC=iyystay. (A14)
Then for degenerate quark masses, the Minkowski space
Ward-Takahashi identity governing the pseudoscalar masses
is

19, (AL (X)Py(y))=2mi(Pa(X)Ps(y))

— 40 85,84 (x—Y), xPT, (A15)

19, (AR (X)Py(y)) = 2mi(Pa(X)Py(Y))

+2(Uu(x)) 8,,p8%(x—y), QCD,

(Al6)

where the chiral perturbation theory result is valid in lowest
order. Here we see the relati¢nu) = — 2v between the chi-
ral condensate in QCD and in chiral perturbation theory.

APPENDIX B: FLAVOR AND ISOSPIN DECOMPOSITION
OF FOUR-QUARK OPERATORS

As discussed if88], one can apply the tensor method for
finding irreducible representations of groups to the operators
in Egs.(4)—(23). We start first with the left-left operators and
note the general termy_; ,qy j,d. .0, Wherei, j, k, andl
are flavor indices, is a member of a representation of SJ(3)
with dimension 81. Denoting this term by (), , the irre-
ducible representations are found by appropriately symme-
trizing T, .
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. . - - Qéf,:s,l(’g,ci):,ﬂzl:(gd)va(UU)vfM' (Su)y-a(ud)y_a
symmetry of Te ()R (TORY (TORY  (TORY _
Dimension 36 18 18 9 +2(sd)y_a(dd)y_a+2(sd)y_a(SS)y_a-
Irep. dimension 27,81 8811 8811 81 (B4)

The final(8,1) comes from T)}}}, which is antisymmetric
n pairs of upper and lower indices, and is easily seen to be

The irreducible representations in the last line are found b
tracing on pairs of upper and lower indices. For example, the
27 representation is completely symmetric in all indices and QASSLAd=—1_ () (Tl a— (SU)y_a(Ud)y 4.

traceless on any pair of upper and lower indices, while the ~*--A(8D.172 (B5)
completely symmetric representation, which has a nonzero
trace, is dimension 8. Thus, we have found that there are three irreducible rep-

We can now determine the number of irreducible repreresentations of left-leftAs=1, Ad=—1 four-quark opera-
sentations thaQ;=(sd)y—_a(uu)y-a enters. Here we will  tors under SU(3)®SU(3)g; a (27,1 and two(8,1) repre-
suppress the color indices and only consider the color unsentations. Thé27,1) contains botH = 1/2 andl = 3/2 parts.
mixed case, so the terms in parentheses will have their colafe can writeQ;, Q,, Qs, Q,, Qy, and Qg in terms of

indices contracted together. Sinced}y_a and Uu)y-a  these representations, yielding
commute with each other, left-left four quark current opera-

tors are symmetric under simultaneous exchange of quark 1 aeciad=—1. 1 As—1ad=—1
and antiquark indices. Thus, left-left operators must beIongQ1: EQLL,S,(S,l),l/z + §Q (
to (T)}i}} or (T[] and they have eithei(R)=(8,1) or
(L,R)=(27,1). We will also want to simultaneously separate I EQAS: 1Ad=-1 (B6)
the operators into representations of definite isospin. 3 <LLS@rD.82

The operator

L~ phAs=1Ad=-1
LLA(8 D12 T 75 ¥LL,S,(27,9,1/2

_ _ _i As:l,Adzfl_l As=1,Ad=71+i As=1Ad=-1
(sd)y_aluu)y_a+(su)y_a(ud)y_a (B1) Q2= 1OQLL,S,(8,1),1/2 2 <LL,A(81),1/2 15QLL,S,(27,1),1/2

is completely symmetric on all indices. To get2v,1) with N 1 As—1ad=-1 B7
| =3/2, we must add terms so it is simultaneously traceless in 3 ©LL,S(27,),3/2 (B7)

SU(3). and isospin. Equatior(B1) has (I )31=(T.)33

=(TD23=(TD13=1/2, so if we add T1)35=(T)33= 1 asm1ad=-1, 1 as—1ad-1

—1/2 with all other elements zero, we have tracelessness i3~ EQLL,S,('&l),l/z + EQLL,A,('&D,M' (B8)
SU(3). and isospin. Thus, we have for left-left operators,

symmetric in all indices, a27,1) representation withl 1 1 .

=3/2 given by Qu=5 QUm0 ~ 5 Qi aan e (B9)

As=1Ad=—1_ — —

QL s(27..3i2= (8d)y - a(UU)y_ o+ (SU)y_a(Ud)y A 1 1
T OAs=1Ad=-1, T jAs=1Ad=-1

Qo= 1OQLL,S,(8,1),1/2 2QLL,A,(8,1),1/2

—(5d)y-a(dd)y-a- (82)
. . , 1 —1Ad= 1 e qiade
Returning again to EqB1) we can find the = 1/2 operator + EQﬁf st EQﬁf"S'lé%]‘)’g,lz, (B10)

by making Eq.(B1) symmetric undeu«d and then making
the results traceless on pairs of upper and lower indices. This
gives Qo= — — As=1Ad=-1_ 1 As=1Ad=-1
10 1OQLL,S,(8,1),1/2 2 LL,A,(8,1),1/2
fﬁ?{%&’,iﬁff@)va(UU)vfﬁ (su)y_a(ud)y_n

+2(5d)y_a(dd)y_a—3(5d)y_a(SS)y-a

(B3) For left-right operators, we can perform a similar con-
struction. For the gluonic penguins, the right-handed currents
corresponding to T)31=(T)33=(T)33=(T)15=1/2,  are singlets under SU(8)due to the sum oven, d, ands
(TD35=(TD33=1, and (T)33=(T.)33=—3/2, with other  quarks, with equal weight for each quark. Including the

1 1
As=1Ad=-1 As=1Ad=-1
+ 1_OQLE,S,(27,]),1/2+ EQLE,S,(27,]),3/2’ (B1D

elements zero. N charm quark still produces &8,1) since the charm quark is
For the(8,1) from (T,_)}L’f,}} we start again from EqB1),  also an SU(3} singlet.
again symmetrizing Eq(B1) under u«d to get|=1/2. For the left-right electroweak penguins, a bit more work is

However, demanding that the operator not be traceless oi¢quired. Now we have three representation matrices for
contraction of upper and lower indices while still being sym-each operator, T,);, (Tg){, and (T))f,, for SU(3),
metric on exchange of upper or lower indices gives SU(3)g, and isospin, respectively. For the isospin case, we
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restrictj, k, and| to be 1 or 2. Notice that both left- and tors defined in Appendix B. We define
right-handed quarks appear in thdor isospin and to get the
desired isospin decomposition we will have to symmetrize, ®(27.0.(3/2 = ﬁleégzgllz [Eq(B2)], (CD
antisymmetrize, and trace on these indices. To(§@ rep- e
resentations, we must havé ();=0 and (FR)E=0.

We start with a part of; and see how many irreducible
representations it enters by appropriate symmetrizations, etc.
on the quarks. The first term Q- is

M R=gfs A s [Eq(B3)],  (C2

1 asc1ad--
0= QR assa [Eq(B1],  (C3

(sd)y—a(Ut)y+a- (B12)
To make anl =3/2 operator 7(])}‘,I must be symmetric op 1 aeeiade-
and| and traceless okand eithejj or |. Symmetrizing gives 0P 2= §QL§,<81,'8),A,1/21 [Eq(B17)]. (C4

(sd)y-a(Ul)ysat(SU)y-a(Ud)y:a (B13)
' . The definitions for® &) 2 and @ $#-( gre the same as

and tracelessness in both isospin and SWY(@yes in Egs. (C3) and (C4), except that the four-quark operator
As=1Ad=—1 _ _ has color mixed indices. Far7, 8 this gives
QLR (89.532= (SA)yv_a(Ul)yat (SU)y_a(Ud)y A

_ —@(88_(88.32, (88.12

~ (5d)y-(dd)y.sa- (B14) QEOFT=07TEEA O €9
From Eq.(B12) we can make ah=1/2 operator by putting In terms of the parameters®”-Y) and «®® defined in Egs.
the quarks in arl =1 state and then adding the antiquark (52), (53), and(54) we have

such that the total isospin is 1/2. We symmetriﬂ;s){I onj

andl and require that'mjlvl: (T|)J-2'2 to get isospin 1/2. This ©27.0.(112) = (27,03 (27.0,(1/2) (C6)
yields
(SU)y— A(UU)y s a+ (SU)y— a(Ud)y s o+ 2(SU)y— a(dd)y s a - O 27052 = o (270G (27 1.(312) (C
(B15) ~
The last step requires tracelessness on only the SUi(B) 089.(12=(89¢ (88,112, (Cy
dex, to give an 8. Thus we get
_ __ _ o @(8,8),(3/2): (8,8)@(8,8),(3/2)_ c9
Qﬁpsg,(éfé)(,js,l/zlz@)V—A(UU)V+A+ (su)y—a(ud)ya « (C9
+2(sd)v-a(dd)v+a=3(Sd)v-a(SS)v+a- APPENDIX D: ISOSPIN DECOMPOSITION OF
(B16) OPERATORS IN CHIRAL PERTURBATION THEORY
From Eq.(B12) we can make a second- 1/2 operator by In Appendix B we have given the decomposition of our

putting the quarks in ah=0 state and then adding the anti- AS=1, AD=—1 four-quark operators into irreducible rep-
quark_ We antisymmetrize'r()}(’l Onj and!| and require that resentations of SU(%@ SU(S)R with well-defined ISOspin.

(T)¥=0 to produce an 8. This yields In this section, we give the explicit decomposition of the
chiral perturbation theory operatof3?”1 and ®(®9 into
Qi e Az = (SU)y_a(UU)ysp— (SU)y_a(T)y definite isospin components. From this one can easily work
out the relations between thel =1/2 andAl =3/2 parts of
—(Sd)y-a(SS)v+a- (B17) matrix elements.

‘:' 8'8 . . . .
With these isospin representations of @®8) color un- For ®®9, we use the definition ifi33] and write

mixed operator, we can write

0O 0 O 2 0 0
1 1 ~
_ As=1Ad=— =1Ad=— (8,8 — — t
Q7—§ L;,(sl,s),s,3/21+EQfé,(é,g,A,l/zl- (818) 0 T 0 0 0]x}0 1 0 [21.
0 1 0 0 0 -1

The result forQg is identical, except the color indices are (D1)

mixed.
The nonzero element of the first matrix in the equation above
APPENDIX C: DEFINITIONS OF ©® OPERATORS _reproduces thed fac.tor in Eq.(16) while the d[agonal terms
in the second matrix represent the terms in the sum over
In this section we give the relations between @epera- quarks in Eq(16). The isospin decomposition can be imme-
tors of chiral perturbation theory and the four-quark operadiately read off from Eqs(B14) and (B17) giving
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0 0O 1 0 O |
(88(3/2)_Tr (0 00 s 0o -1 O)ET
01 0 0O 0 O i
0 0 O 0O 1 0 |
[(o 00 z(o 0 o)zT . (D2)
1 00 0 0 O i
0 0 O 1 0 O
(88(1/2) (0 0 0|30 O 0 ET
0 1 0 0 0 -1 ]
0 0 O 0O -1 0
[(0 0 O 2(0 0 0|3t
1 00 0O 0 O

(D3)

where® 8= §(8.8).(121 §(88).(3/2)
With this explicit isospin decomposition, one finds

12

<7T+ | @(8,8),(3/2)| K+>E ?2_ a(8,8),(3/2)

4
=7 a®® (D4

12 8
(m+]|@#8.12|K )= ﬁa(&a)'(“z):pa(&s), (D5)

which  yields &8 (12=2488).G2)  \yhere (8
= (®8.(121 ,,(88).(32) gGimilarly one finds
12 —4i
B(B8.(32) K0y = — == (88.(32) 88,
(m"77|0 |K?) 3 a' o«
(D6)
—12i —8i
9 (88,12 0y — (8.8,(1/2) _ 88
(m*7m7|O |K% = aoa o«
(D7)
For ®@71, we use the definition if12] and write
B (270,32
0 0 O 1 0 O
=Tr| {0 0 O|sg, 3T |0 -1 O|zgest
0 1 O 0O O O
[/0 O O /0 1 O
+Tr| [0 0 0]sg, 3" T {0 O O|sarst|,
L\1 0 O L\0 0 O
(D8)
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@(27,1),(1/2)
000 10 0
=Tr| |0 0 0]sg,sT{Tr| [0 2 0 |3gust
010 0 0 -3
000 010
+Tr| [0 0 0|3g,3"|Tr|| O 0 O|xgext|.
100 000

(D9)

Working in lowest order chiral perturbation theory then gives

2 2
(@273 Ky = — 4my Q270,32 — _ 4$M NeEy
(D10)

2 2

4m
<7T+|®(27’1)’(1/2)|K+>_ (27,),(1/2) — —sza(27’l),

_2_f o
(D11)

and

<’7T+ W*|®(27,l)y(3/2)| K0>_ _ 4_(mK0 m2 )a(27*])'(3/2)

4i

=~ 3 (mfo—m2,)al?’,

(D12

(27,1(112)

A
(w020 = — 2 (mEo— e

4i
2 2
=~ g3 (Mo m-.)a@?,

(D13

APPENDIX E: DEFINITIONS FOR STANDARD MODEL
PARAMETERS

We follow [34] and define the Cabibbo-Kobayashi-
Maskawa matrix as

Vud Vus Vub
V= Vcd Vcs Vcb
Vie Vis Vi
1-\?/2 A AN3(p—in)
~ -\ 1-N\%12 AN?
AN3(1—p—in) —AN? 1

(ED
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KAON MATRIX ELEMENTS AND CP VIOLATION FROM . ..

Outside of this section, we uSecxm=A\, Ackm=A, and

pckm=p to avoid confusion. Recent reviews have quoted

values for

)\2
FEP(1—7>, (E2

PHYSICAL REVIEW D 68, 114506 (2003

)\2
7= 7}( 1- 7). (E3)
Our values foV,4 are determined from
Vig=AN3(1—p—in). (E4)
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