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Low-dimensional long-range topological charge structure in the QCD vacuum
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While sign-coherent 4-dimensional structures cannot dominate topological charge fluctuations in the QCD
vacuum at all scales due to reflection positivity, it is possible that enhanced coherence exists over extended
space-time regions of lower dimension. Using the overlap Dirac operator to calculate topological charge
density, we present evidence for such structure in pure-gly8)3aitice gauge theory. It is found that a typical
equilibrium configuration is dominated by two oppositely charged sign-coherenhectedstructures
(“ sheet’) covering about 80% of space-time. Each sheet is built from elementary 3D cubes connected through
2D faces, and approximates a low-dimensional curved manffwighossibly a fractal structurembedded in
the 4D space. At the heart of the sheet isskéletori formed by about 18% of the most intense space-time
points organized into a glob&ing-rangestructure, involving connected parts spreading over maximal possible
distances. We find that the skeleton is locally 1-dimensional and propose that its geometrical properties might
be relevant for understanding the possible role of topological charge fluctuations in the physics of chiral
symmetry breaking.
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One of the important goals in hadronic physics is a deways. For example, the index theorem is exactly satisfied
tailed understanding of vacuum structure in QCD. Local patwith respect to the associated Dirac operdtéf, and its
terns in topological charge fluctuations represent an imporrenormalization properties are analogous to those in the con-
tant aspect of this structure. Indeed, phenomena such astiguum[9]. An important virtue ofg, is that it can be natu-
large »" mass,¢ dependence, and possibly spontaneous chirglly eigenmode expanded. Whig contains all fluctuations
ral symr;?et;y tk')reaki?%h CﬁtSB)I are IdirheCtly r\/?/lﬁ'tIGdl :? up to the lattice cutoff, one can use the eigenmode expansion
vacuum fluctuations of the topological charge. ile lattice i i i (A)
gauge theory provides a framework for first-principles non-Lip o scaleA t? (1ef|ne anefkfectnieT derA13|.t 10, o
perturbative studies of topological charge fluctuations, thé= ~ >=Aa(1=2)Cy, where c;=4 "ysyy is the local
extraction of meaningful and unbiased structural informatior¢hirality of the mode with eigenvalue. The ultraviolet fluc-
has long been a difficult problem. However, the recent detuations are naturally filtered out o (eigenmode filtering
velopment of fermionic methods has improved this situatior{2]), and this density can be used to study the structure of
considerably and it is no longer necessary to rely on subjedopological charge fluctuations at an arbitrary low-energy
tive procedures to smooth out the rough short-distance bescaleA. By studying the effective densities, it was demon-
havior of gauge fields. One way to proceed is to study thestrated[10] that topological charge at a low energy is not
structure of low-lying Dirac eigenmodes and to infer thelocally concentrated in sign-coherent unit-quantized lumps
properties of underlying topological charge fluctuations indi-(e.g. instantons This was first predicted by Witteli1] and
rectly. This was advocated in R¢f], developed in Ref.2], emphasized recently in Rdf2], where the first lattice evi-
and used in many recent studiege e.g. Refd.3,4]). dence was presented.

The advances in implementing lattice chiral symmetry In this work, we initiate the investigation of possible non-
(for reviews see e.g. Reff5]) have also made it possible to trivial structure(orden in the full topological charge density
pursue adirect approach to this problem. Indeed, with any Eq. (1) for typical configurations contributing to the pure
vs-Hermitian lattice Dirac operatorD satisfying the glue QCD path integral. This is a qualitatively new step with
Ginsparg-Wilson relatio{D,ys} =D ysD (e.g. the overlap some aspects worth emphasizirtg). We evaluate the local
operator{6]), one can associate a topological charge densitpperatorg, at every space-time point, thus producing gauge
operator{ 7] invariant “configurations” of topological charge density. No

processing of the underlying gauge configurations is in-
volved and no bias is imposeth) Assuming that the well-
1- EDX'X ) @) defined space-time structure g exists, it has to be viewed
asfundamentalrather than of low energysince, unlike the
The global charge associated with this lattice density iase of effective densitieqfo), the use of a local operator
strictly stable with respect to generic local variations of thedoes not introduce a new scale apart from the lattice cutoff
gauge field 8], thus fully respecting the topological nature of already in place. Consequently, such a structure could have
this quantity. In addition, the abowg, is special in several both short and long-distance manifestatidigs A fundamen-
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tal structure of this type has not been observed before in an TABLE I. Ensembles of Wilson gauge configurations. The glo-
unbiased setting. Indeed, using the conventional operatorgal topological charges are (3;62,0,2-1,—1,3) for&; and(2,1)
the resulting space-time distributions of topological charg€or &-

can hardly be distinguished from complete disorder. The

4 .
common interpretation of this is that the physically relevant €"s€mple A alfm] vV V,[fm"]  configs
fluctuations might be obscured by the structureless ultravio- ¢, 5.91 0.110 1% 3.0 8
let noise arising due to entropy consideratidtie problem & 6.07 0.082 16 3.0 2

of ultraviolet dominance

In what follows, we will present evidence for the exis-
tence of fundamental structure in topological charge density,
and demonstrate some of its basic geometric features. Needussed below, the behavior is remarkably stable from con-
less to say, we do this with the aim that some of these propfiguration to configuration (both qualitatively and
erties might help to advance our understanding of the QCRuantitatively. In fact, one could infer the main results pre-
vacuum, and hence of the basic features of hadronic physicsented here by studying just a single configuration from each
With regard to the problem of ultraviolet dominance, we ensemble. We are thus confident that our conclusions are not
were motivated by the fact that, apart from beautiful proper-affected by low statistics. Some preliminary results related to
ties mentioned above, the operatgrof Eq. (1) differs from  this work were presented in RgfL6]. Details of the fermion
standard lattice discretizations in a very qualitative mannerimplementation can be found in R¢2].
In particular, it is well known that a lattice chiral symmetry (1) We start by verifying that), is indeed not dominated
implies a nonultralocality of the lattice Dirac kerrig| i.e. a by coherent 4D structures, as argued above. Regardless of
nonzero coupling among fermionic variables at arbitrarilytheir shapes, the possible candidates for such structures must
large distance$12]. Similarly, it is believed that anp,,  be built of elementary lattice 4D cubg$7] that are them-
involves gauge path§rom x to y) running arbitrarily far  selves coherertheir sites have the same signagj. In fact,
from x andy. As a result,q, will receive (smal) contribu-  we can define the coherent regions on the lattice by finding
tions from arbitrarily extended gauge loofishiral smooth-  all coherent 4D cube§, (labeled by originx) and identify-
ing [2]) and is expected to be much less sensitive to théng maximal connectedregions built from such cubes. We
ultraviolet noise than typical ultralocal operators. We findwill say that lattice regionR={Cy;i=1,... N} is con-

that chiral smoothing indeed provides enough suppression Qfected, if for arbitraryC, ,Cx € R there is a sequendg, ,k
ultraviolet noise for the underlying coherent structure to be_ n such that(a)IC eR, (b) y1=X;, Yn=X aknd
— 4y el Yk ] 1= Ay n— ] [}

revealed.
As a guide to identifying this structure, we note the fact(¢) Cy, andCy, . share a common fad@D cube.
that (q(x)q(0))<0,|x|>0, in the continuunj13]. This im- We have determined all such regiofisstructure$) Ry

plies that the topological charge cannot be predominantipresent in a given configuration, and ordered them by the
concentrated in 4-dimensional sign-coherent structures of flaumber of lattice sites in the structurg, . If there are 4D
nite physical sizg10]. However, one cannot conclude that structures of finite physical size dominating in the continuum
the local behavior of topological charge density is strictlylimit, then at least the largest of these coherent regions
disordered. Indeed, the negativity of the correlator does naghould exhibit scaling behavior when the lattice spacing is
exclude enhanced sign-coherence present lower- changed. Since the ensemblgsé, have the same physical
dimensionakubsets of 4D space-time. In that case the strucvolumes, the ratiodl, /V (V is the number of lattice poinks
ture could respect the negativity of the correlator by approfor typical largest structures should not depend on the lattice
priate embedding of subsets with alternating sign into spacespacing. In Fig. 1(top) we show these ratios for a configu-
time. Consequently, we focus our search on the level of signation from both ensembles. Rather than being similar, the
coherence, and how it changes when concentrating on spac&tios drop dramatically at the smaller lattice spacing. To see
time subregions containing strong fields. In what follows wethis on average, we compute the mean value of the ratio
will refer to sign coherence i, simply as coherence. including the 5 largest structures per configuration. Figure 1
For the numerical study we us®, associated with the reveals that the ratio not only drops, but it drops by a factor
overlap Dirac operatdi6], whose suitability for this purpose larger than the ratio of lattice volumes. This is confirmed by
was confirmed in Ref.14]. To sample the QCD vacuum, we the fact that the average number of 4D cubes per large struc-
work with Wilson gauge backgrounds as summarized irture is about 35.3 aa=0.110, and is about 29.4 &
Table |. Configurations are separated by 20 000 sweeps and0.082. The volume of structures thus decreases even in
the Sommer parameter serves to set the scale using the intdattice units. These considerations not only confirm that 4D
polation formula of Ref[15]. Since the computation is ex- structures do not dominate topological charge fluctuations,
tremely time consuming, the ensembles are small. Howevehut also suggest that such structures might not occur in the
the attempts to understand QCD vacuum structure in the pattontinuum at all. Indeed, in physical units, structuf@g
integral framework implicitly rely on the expectation that observed on the lattice appear to shrink to mere points in the
relevant individual configurations exhibit common qualita- continuum limit.
tive properties that are “typical” of the QCD vacuum, so that  (2) We now concentrate on the possibility tltgtexhibits
interesting results should be obtainable from even a few consoherence on lower-dimensional subsets of 4D space-time.
figurations. In our case, we found that for the aspects disAs a first step, we search for maximal coherent regions built
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FIG. 1. Top: The fraction of space-time points occupied by the largest 20 structures built of 4D cubes on a typical configuration from
ensemblef; (left) and&, (middle). The average fraction from the 5 largest structures is also skiaght). Bottom: The same as top but for
structures built of 3D cubes. There are error bars on the rhs plots.

from elementary 3D cubes connected through 2D faces. Suatoherent behavior ig, () . The typical result of such a test is
regions define connected 3D lattice hypersurfaces embeddetiown in Fig. 2. The 2-sheet structure disappears and the
in the 4D space-time. We find that all of the configurationsfractions involved are almost invisible on the scale of the
studied(see Table )l exhibit a remarkably similar coherent original plot. Secondly, the existence ¢&lmos) space-
behavior. The typical situation for a configuration from en-filling 3D lattice sheets is not sufficient to conclude that the
semblest, &, is shown in Fig. 1(bottom). Contrary to the local dimension of maximal coherent regions in the con-
case of 4D cubes, there are only tMappositely charged tinuum limit is three. The determination of this dimension
coherent regions dominating the behaviorogf. Together, requires a scaling analysis which is in preparation. While
these folded lattice “sheets” cover about 80% of sites andpossibly less than three, the dimension is at least|[sre
practically fill the space-time. This situation is insensitive topart (4) below]. Note that this issue is not addressed by the
the change of the lattice spacing and our data indicate that ibwer right-hand plot of Fig. 1. There the implied scaling
will survive the continuum limit(bottom right of Fig. 1. relates to the fact that the sheets occupy a macroscopic frac-
We wish to emphasize two points. First, we have testedion of space-time and hence involve an infinitely large
whether the existence of the 2-sheet structure reflects a spwwer-dimensional manifold in the continuum limin the
cific order present irg,, or if it could occur in a random 4D volume of finite physical size
situation as well. To do that, we have performed a random (3) Since the 2-sheet structure almost fills the space-time,
permutation of sitep(x) on our lattices and looked for the it is expected that for a generic poixbn a given sheet, there
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b2} 4 4 £ _ph 4
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o i
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r“_’ ,—‘f | dom permutation of sites. On the
50.2 50.2 .
c p common scale, the fractions on
2 2 the right-hand side plot are barely
$0.1 ©0.1 visible. Configuration frone,.
[T [T
0 5 10 15 20 20 5 10 15 20
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are pointsy on the same sheet separated frofmy maximal Note that in the case of 4D cubes the structure never

space-time distances possible. Because the sheet is path cwecomes super-long-distance. In fact, we expect that the
nected, such points can be connected by paths within theaximal distance will approach zero in the continuum limit
sheet. Thus, from the geometric point of view there is noat arbitraryf. For d=3,2, and 1, we observe a well-defined
specific long-distance scalether than infrared cutoffasso-  transition to a super-long-distance state which is certainly
ciated Wi_th gI_obaI beha_vior_ of the sheet. We will refer to present atf~0.8,0.4, and 0.2 respectively('i(o”mo.g at
such a situation occurring in the coherent structure as thg,ose fractions These values are insensitive to the change of
super—Iong—dlstance_roperty[18]. . the lattice spacing. We thus see that after removing the low-
The super-long-distance property might be relevant to th(?ntensity points, the super-long-distance structure remains at

physms.of the Q.CD vacuum, €.g. to Goldstone boson ProPdne core if lower-dimensional elementary cubes are used. The
gation, if it remains true also if one concentrates on regions

with largest topological charge density. Indeed, the physicgmmmal structure with this property is exposed with 1D

of the vacuum is expected to be mostly driven by quCtua_cubes(links) and we will refer to it as theskeleton In our

tions with intense fields. For a given configuration, &kt numerical gxperiments, the maximal spgce—time distances
(0<f<1) be the subset of the lattice containing flemost ~ Start occurring already at abofit=0.16 while the average

intense sites, as ranked bya,|. Within Sf there are maxi- ;aturates at abodt=0.20. We thus také=0.18 as _our ini-
mal coherent regiomg,fcsf k=1,2,...N% built from tial reference value for the skeleton. As further evidence that

d-dimensional cubes connected through-(1)-dimensional the observed structure carries a significant amount of order,
faces. Foxe S' one can find a maximal Euclidean distance W€ note that af =0.18 (with the skeleton already formgd

reachable fromx by traveling on a path within a single ©"€ is still confined to average maximal distances of a single

f
Fd,x : : : : :
structureR "> x. Note thatr{,=0 for points that do not :%trt:ggdspacmg when random permutation of sites is per-

belong to any structure. Considering a fixed small fraction . . . L
9 Y J (4) Even without an extensive scaling analysis, it is pos-

PR
f?:ff’ V\ie calculat_e the .average .Oﬂ,x overxe S, ie. sible to obtain useful insight into the question of the actual
rq =(raxsf- This provides us with the measuiale of  gnace.time dimension involved in the skeleton. More pre-
how extended the coherent structure typically is. In Fig. 3 wesisely, we will discuss théocal dimension. To appreciate the
show thef dependence of 3% measured in units of the difference, consider e.g. a network built from 1D lines, but
largest Euclidean distanc&{_;L?)Y42 (L; are the sizes of organized globally into a 2D structutémesh”) with a typi-

the lattice box The average is taken over the ensemfjle cal physical distancé among the nodes. Locally, such a
and the observed behavior is typi¢ahd stablgfor fo of a  manifold is 1 dimensional, but on the scales larger than
few percent. Also shown is the result after performing thewill appear 2 dimensional. We will consider the global struc-

random permutation of sites for every configuration. ture from this point of view elsewhere.
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Our tool here will be thdattice local dimension HS) time torus (), with the 2D torus of the section plane, afig
which we define for an arbitrary subsstof the lattice. For ~ with the manifold of the structure, we get
xe S let ds be the maximal dimensiod of the elementary
cubeC such thak e C§ andC{CS, i.e. the maximal dimen-
sion of the cube withirs containingx. Thend-(S)=(d%)sis dim(Q2;NQ5)=dim(Q;) - 2. 2
the average of this local dimension ougr While d-(S) is

strigtly a IatFice notion, it.can stilcl .be quite us_eful. In particu- Thus if Q, is a 3D super-long-distance hypersurface, we
Iar,_ if there is an underlym_g st in thce continuum charac-  ¢p5u1d generically see very extended 1D regions of sign-
terized by a sm%le local dimensia(S®) <4, then the con-  conerence, which is precisely what is observed. Thus, at the
tinuum limit of d~(5) typically provides an upper bound for |attice cutoff of about 2 GeV the sheets behave as 3D hyper-
d(S°). For example, consider a line of non-zero physicalsyrfaces. The precise local dimension of maximal coherent
length in the continuum. At sufficiently small lattice spacing regions in the continuum limit will be studied elsewhere.

this might appear as the connected structure built predomi- |n this work we have addressed the following question.
nantly of bonds, in which case the continuum limitdf(S) Can we identify a fundamentéincorporating all scalgsor-
coincides withd(S€). However, it might also come as a dered structure in topological charge density for typical con-
string of mainly 4D cubes at arbitrarily small lattice spacing, figurations contributing to the pure-glue QCD path integral?
and then the limit ofd“(S) will be significantly larger than In other words, using nothing more tharozal operatorg,
d(S°). At the same timeg-(S)=1 for theconnectedattice ~ to calculate the space-time distribution of the topological
structures and the physical dimension will not be underestieharge, can one detect well-defined patterns in these distri-
mated. butions? While such a structure has not been observed be-

Since the super-long-distance property involves connectefbre, we have argued that the special properties of the newly
parts spreading over maximal distances, and since it is insemvailable topological charge densities associated with
sitive to the change of lattice spacing, we can conclude thaBinsparg-Wilson fermions give reasons to re-examine this
the skeleton is at least 1-dimensional. To see whether higheuestion in detail. In particular, the suppression of ultraviolet
dimensions(less than four could be relevant we consider noise bychiral smoothingsuggests that the problem of ultra-
sets S’ and their partitionsS'=8""US'~ into coherent violet dominance might be solved and the underlying order
subsets containing sites with positive and negative sign ofould be revealed. Performing numerical experiments, we
gy - In Fig. 4 we show thé dependence of the averalgdtice =~ have then provided evidence for the existence of a funda-
coherence dimensiofd-(S*)) for ensembles; (1) and&, mental structure of this type by showing that the topological
(I1). We see that the dimension slightigcreasess we ap- charge exhibits a long-range ordésign-coherende on
proach the continuum limit. The naive linear extrapolationlower-dimensional subsets of the 4D Euclidean space. In this
for the skeleton value=f0.18 (pentagoh gives (d-(S™*))  initial study we have concentrated on certain geometrical
~1.5 in the continuum limit and we thus conclude that theproperties of this structure. Indeed, if topological charge
physical local dimension associated with the skeleton is Tfluctuations play a role in important aspects of the QCD
<d=1.5. Assuming that the local structure is not fra¢@i  vacuum (such as $SB), then some geometrical features
option to be investigateédve are thus led to the conclusion should reflect that. While it is not clear yet which structural
that the skeleton is locally 1-dimensional. aspects are physically most relevant, we emphasize two that

For comparison, in Fig. 4 we also shdot(S*)) for &,  we find most intriguing:(i) Space-time regions with an
after random permutation of sitegdll), and the result for
effective densityq{*="°Me¥) at the same lattice spacing 4 - - :
(IV). As expected, curvélll) lies lower and tends to zero 5
smoothly at small fractions. On the other hand, for the effec- _
tive density one naively expects 4D coherence on the scalt
1/A in the continuum limit, and thus the lattice coherence &
dimension is much higher.

(5) Finally, to start developing a visual intuition for the
kind of structure we are observing, we now proceed tog 2
graphically verify the existence of the coherent sheets de-@
scribed in part2). To do that, we have studied the graphs of § 1-5
0y on 2D sections of the underlying space-time torus. The
genericbehavior ofg, is shown in Fig. 5configuration from § 1
ensemblef;). One can clearly observe the enhancement of ¢
the structure with linear “ridges” spreading over the whole

35

3

ce Dim
N
[¢)]

system. It is easy to see that this is precisely the behaviol 0 i

expected from théalmos) space-filling super-long-distance 0 0.2 0.4 0.6 0.8 1
sheets. Indeed, recall that(f is an arbitrary base manifold Fraction

and Q,,Q,CQ, then dimQ;NQ,)=dim(Q;)+dim(Q,)

—dim(Q) generically. If we identifyQ) with the 4D space- FIG. 4. Lattice coherence dimension. Explanation in the text.
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124 lattice, a = 0.110 fm

FIG. 5. Generic behavior af, on a 2D sec-
tion of space-timdconfiguration from&,).

intense topological charge density are organized into a maxbnstrated elsewhere that the super-long-distance property is
mally extendedsuper-long-distangestructure(* skeletori). inherited andenhancedat low energy.ii) Our data indicate
This suggests that there is no specific long-distance scalbat the skeleton is a locally linear folded structure, much
associated withindividual geometrical objects. Rather, there like a protein or a neural network in three dimensions. One
is a global low-dimensional structure that might have to beaspect that might be significant about this result is that the
considered as a wholgDistance scales associated with propagation of massless quarks on a 1D manifold naturally
Aqgcp could be reflected by local features of such a globaleads to a nonzero density of Dirac eigenvalues around zero,
structure) We speculate that the super-long-distance characand hence $SB (see e.g. Ref.19] for discussion of similar

ter of the skeleton might be naturally associated with thdssue$. The possibility that such a scenario might be relevant
long-range propagation of Goldstone pions. It will be dem-for QCD is being studied.
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