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Low-dimensional long-range topological charge structure in the QCD vacuum
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While sign-coherent 4-dimensional structures cannot dominate topological charge fluctuations in the QCD
vacuum at all scales due to reflection positivity, it is possible that enhanced coherence exists over extended
space-time regions of lower dimension. Using the overlap Dirac operator to calculate topological charge
density, we present evidence for such structure in pure-glue SU~3! lattice gauge theory. It is found that a typical
equilibrium configuration is dominated by two oppositely charged sign-coherentconnectedstructures
~‘‘ sheets’’ ! covering about 80% of space-time. Each sheet is built from elementary 3D cubes connected through
2D faces, and approximates a low-dimensional curved manifold~or possibly a fractal structure! embedded in
the 4D space. At the heart of the sheet is a ‘‘skeleton’’ formed by about 18% of the most intense space-time
points organized into a globallong-rangestructure, involving connected parts spreading over maximal possible
distances. We find that the skeleton is locally 1-dimensional and propose that its geometrical properties might
be relevant for understanding the possible role of topological charge fluctuations in the physics of chiral
symmetry breaking.
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de
a
o
a
ch

ice
n
th
io
de
io
je
b
th
he
di

try
o
y

si

i
he
of
l

fied

on-

sion

of
gy
n-
ot
ps

n-

e
ith
l
ge
o
in-

r
toff
ave
One of the important goals in hadronic physics is a
tailed understanding of vacuum structure in QCD. Local p
terns in topological charge fluctuations represent an imp
tant aspect of this structure. Indeed, phenomena such
largeh8 mass,u dependence, and possibly spontaneous
ral symmetry breaking (SxSB) are directly related to
vacuum fluctuations of the topological charge. While latt
gauge theory provides a framework for first-principles no
perturbative studies of topological charge fluctuations,
extraction of meaningful and unbiased structural informat
has long been a difficult problem. However, the recent
velopment of fermionic methods has improved this situat
considerably and it is no longer necessary to rely on sub
tive procedures to smooth out the rough short-distance
havior of gauge fields. One way to proceed is to study
structure of low-lying Dirac eigenmodes and to infer t
properties of underlying topological charge fluctuations in
rectly. This was advocated in Ref.@1#, developed in Ref.@2#,
and used in many recent studies~see e.g. Refs.@3,4#!.

The advances in implementing lattice chiral symme
~for reviews see e.g. Ref.@5#! have also made it possible t
pursue adirect approach to this problem. Indeed, with an
g5-Hermitian lattice Dirac operatorD satisfying the
Ginsparg-Wilson relation$D,g5%5Dg5D ~e.g. the overlap
operator@6#!, one can associate a topological charge den
operator@7#

qx52tr g5S 12
1

2
Dx,xD . ~1!

The global charge associated with this lattice density
strictly stable with respect to generic local variations of t
gauge field@8#, thus fully respecting the topological nature
this quantity. In addition, the aboveqx is special in severa
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ways. For example, the index theorem is exactly satis
with respect to the associated Dirac operator@7#, and its
renormalization properties are analogous to those in the c
tinuum @9#. An important virtue ofqx is that it can be natu-
rally eigenmode expanded. Whileqx contains all fluctuations
up to the lattice cutoff, one can use the eigenmode expan
up to scaleL to define aneffective density@10#, qx

(L)

[2( ulu<La(12 l
2 )cx

l , where cx
l5cx

l †g5cx
l is the local

chirality of the mode with eigenvaluel. The ultraviolet fluc-
tuations are naturally filtered out inqx

(L) ~eigenmode filtering
@2#!, and this density can be used to study the structure
topological charge fluctuations at an arbitrary low-ener
scaleL. By studying the effective densities, it was demo
strated@10# that topological charge at a low energy is n
locally concentrated in sign-coherent unit-quantized lum
~e.g. instantons!. This was first predicted by Witten@11# and
emphasized recently in Ref.@2#, where the first lattice evi-
dence was presented.

In this work, we initiate the investigation of possible no
trivial structure~order! in the full topological charge density
Eq. ~1! for typical configurations contributing to the pur
glue QCD path integral. This is a qualitatively new step w
some aspects worth emphasizing.~a! We evaluate the loca
operatorqx at every space-time point, thus producing gau
invariant ‘‘configurations’’ of topological charge density. N
processing of the underlying gauge configurations is
volved and no bias is imposed.~b! Assuming that the well-
defined space-time structure inqx exists, it has to be viewed
as fundamental~rather than of low energy! since, unlike the
case of effective densitiesqx

(L) , the use of a local operato
does not introduce a new scale apart from the lattice cu
already in place. Consequently, such a structure could h
both short and long-distance manifestations.~c! A fundamen-
©2003 The American Physical Society05-1
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tal structure of this type has not been observed before in
unbiased setting. Indeed, using the conventional opera
the resulting space-time distributions of topological cha
can hardly be distinguished from complete disorder. T
common interpretation of this is that the physically releva
fluctuations might be obscured by the structureless ultra
let noise arising due to entropy considerations~the problem
of ultraviolet dominance!.

In what follows, we will present evidence for the exi
tence of fundamental structure in topological charge den
and demonstrate some of its basic geometric features. N
less to say, we do this with the aim that some of these pr
erties might help to advance our understanding of the Q
vacuum, and hence of the basic features of hadronic phy
With regard to the problem of ultraviolet dominance, w
were motivated by the fact that, apart from beautiful prop
ties mentioned above, the operatorqx of Eq. ~1! differs from
standard lattice discretizations in a very qualitative mann
In particular, it is well known that a lattice chiral symmet
implies a nonultralocality of the lattice Dirac kernelD, i.e. a
nonzero coupling among fermionic variables at arbitrar
large distances@12#. Similarly, it is believed that anyDxy
involves gauge paths~from x to y) running arbitrarily far
from x and y. As a result,qx will receive ~small! contribu-
tions from arbitrarily extended gauge loops~chiral smooth-
ing @2#! and is expected to be much less sensitive to
ultraviolet noise than typical ultralocal operators. We fi
that chiral smoothing indeed provides enough suppressio
ultraviolet noise for the underlying coherent structure to
revealed.

As a guide to identifying this structure, we note the fa
that ^q(x)q(0)&<0,uxu.0, in the continuum@13#. This im-
plies that the topological charge cannot be predomina
concentrated in 4-dimensional sign-coherent structures o
nite physical size@10#. However, one cannot conclude th
the local behavior of topological charge density is stric
disordered. Indeed, the negativity of the correlator does
exclude enhanced sign-coherence present onlower-
dimensionalsubsets of 4D space-time. In that case the str
ture could respect the negativity of the correlator by app
priate embedding of subsets with alternating sign into spa
time. Consequently, we focus our search on the level of s
coherence, and how it changes when concentrating on sp
time subregions containing strong fields. In what follows
will refer to sign coherence inqx simply as coherence.

For the numerical study we useqx associated with the
overlap Dirac operator@6#, whose suitability for this purpose
was confirmed in Ref.@14#. To sample the QCD vacuum, w
work with Wilson gauge backgrounds as summarized
Table I. Configurations are separated by 20 000 sweeps
the Sommer parameter serves to set the scale using the
polation formula of Ref.@15#. Since the computation is ex
tremely time consuming, the ensembles are small. Howe
the attempts to understand QCD vacuum structure in the
integral framework implicitly rely on the expectation th
relevant individual configurations exhibit common qualit
tive properties that are ‘‘typical’’ of the QCD vacuum, so th
interesting results should be obtainable from even a few c
figurations. In our case, we found that for the aspects
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cussed below, the behavior is remarkably stable from c
figuration to configuration ~both qualitatively and
quantitatively!. In fact, one could infer the main results pr
sented here by studying just a single configuration from e
ensemble. We are thus confident that our conclusions are
affected by low statistics. Some preliminary results related
this work were presented in Ref.@16#. Details of the fermion
implementation can be found in Ref.@2#.

~1! We start by verifying thatqx is indeed not dominated
by coherent 4D structures, as argued above. Regardles
their shapes, the possible candidates for such structures
be built of elementary lattice 4D cubes@17# that are them-
selves coherent~their sites have the same sign ofqx). In fact,
we can define the coherent regions on the lattice by find
all coherent 4D cubesCx ~labeled by originx) and identify-
ing maximal connectedregions built from such cubes. W
will say that lattice regionR5$Cxi

; i 51, . . . ,N% is con-

nected, if for arbitraryCxi
,Cxj

PR there is a sequenceCyk
,k

51, . . . ,n, such that~a! Cyk
PR, ~b! y15xi , yn5xj , and

~c! Cyk
andCyk11

share a common face~3D cube!.

We have determined all such regions~‘‘ structures’’ ! Rk
present in a given configuration, and ordered them by
number of lattice sites in the structure,Nk . If there are 4D
structures of finite physical size dominating in the continuu
limit, then at least the largest of these coherent regi
should exhibit scaling behavior when the lattice spacing
changed. Since the ensemblesE1 ,E2 have the same physica
volumes, the ratiosNk /V (V is the number of lattice points!
for typical largest structures should not depend on the lat
spacing. In Fig. 1~top! we show these ratios for a configu
ration from both ensembles. Rather than being similar,
ratios drop dramatically at the smaller lattice spacing. To
this on average, we compute the mean value of the r
including the 5 largest structures per configuration. Figur
reveals that the ratio not only drops, but it drops by a fac
larger than the ratio of lattice volumes. This is confirmed
the fact that the average number of 4D cubes per large st
ture is about 35.3 ata50.110, and is about 29.4 ata
50.082. The volume of structures thus decreases eve
lattice units. These considerations not only confirm that
structures do not dominate topological charge fluctuatio
but also suggest that such structures might not occur in
continuum at all. Indeed, in physical units, structuresRk
observed on the lattice appear to shrink to mere points in
continuum limit.

~2! We now concentrate on the possibility thatqx exhibits
coherence on lower-dimensional subsets of 4D space-t
As a first step, we search for maximal coherent regions b

TABLE I. Ensembles of Wilson gauge configurations. The g
bal topological charges are (3,0,22,0,2,21,21,3) for E1 and~2,1!
for E2.

ensemble b a @fm# V Vp @ fm4# configs

E1 5.91 0.110 124 3.0 8
E2 6.07 0.082 164 3.0 2
5-2
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FIG. 1. Top: The fraction of space-time points occupied by the largest 20 structures built of 4D cubes on a typical configurati
ensembleE1 ~left! andE2 ~middle!. The average fraction from the 5 largest structures is also shown~right!. Bottom: The same as top but fo
structures built of 3D cubes. There are error bars on the rhs plots.
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from elementary 3D cubes connected through 2D faces. S
regions define connected 3D lattice hypersurfaces embe
in the 4D space-time. We find that all of the configuratio
studied~see Table I! exhibit a remarkably similar coheren
behavior. The typical situation for a configuration from e
semblesE1 ,E2 is shown in Fig. 1~bottom!. Contrary to the
case of 4D cubes, there are only two~oppositely charged!
coherent regions dominating the behavior ofqx . Together,
these folded lattice ‘‘sheets’’ cover about 80% of sites a
practically fill the space-time. This situation is insensitive
the change of the lattice spacing and our data indicate th
will survive the continuum limit~bottom right of Fig. 1!.

We wish to emphasize two points. First, we have tes
whether the existence of the 2-sheet structure reflects a
cific order present inqx , or if it could occur in a random
situation as well. To do that, we have performed a rand
permutation of sitesp(x) on our lattices and looked for th
11450
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coherent behavior inqp(x) . The typical result of such a test i
shown in Fig. 2. The 2-sheet structure disappears and
fractions involved are almost invisible on the scale of t
original plot. Secondly, the existence of~almost! space-
filling 3D lattice sheets is not sufficient to conclude that t
local dimension of maximal coherent regions in the co
tinuum limit is three. The determination of this dimensio
requires a scaling analysis which is in preparation. Wh
possibly less than three, the dimension is at least one@see
part ~4! below#. Note that this issue is not addressed by t
lower right-hand plot of Fig. 1. There the implied scalin
relates to the fact that the sheets occupy a macroscopic
tion of space-time and hence involve an infinitely lar
lower-dimensional manifold in the continuum limit~in the
4D volume of finite physical size!.

~3! Since the 2-sheet structure almost fills the space-ti
it is expected that for a generic pointx on a given sheet, there
-
e
n
y

FIG. 2. A typical coherent
structure before and after the ran
dom permutation of sites. On th
common scale, the fractions o
the right-hand side plot are barel
visible. Configuration fromE2.
5-3
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FIG. 3. The f-dependence of
r d

0.01,f for ensemble E1 ~upper
curves of each plot! and after ran-
dom permutation of sites~lower
curves of each plot!. Results using
1-, 2-, 3-, and 4-dimensional hy
percubes are shown.
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are pointsy on the same sheet separated fromx by maximal
space-time distances possible. Because the sheet is path
nected, such points can be connected by paths within
sheet. Thus, from the geometric point of view there is
specific long-distance scale~other than infrared cutoff! asso-
ciated with global behavior of the sheet. We will refer
such a situation occurring in the coherent structure as
super-long-distanceproperty@18#.

The super-long-distance property might be relevant to
physics of the QCD vacuum, e.g. to Goldstone boson pro
gation, if it remains true also if one concentrates on regi
with largest topological charge density. Indeed, the phys
of the vacuum is expected to be mostly driven by fluctu
tions with intense fields. For a given configuration, letS f

(0, f <1) be the subset of the lattice containing thefV most
intense sitesx, as ranked byuqxu. Within S f , there are maxi-
mal coherent regionsR k

d, f,S f , k51,2, . . . ,Nd, f , built from
d-dimensional cubes connected through (d21)-dimensional
faces. ForxPS f one can find a maximal Euclidean distan
r d,x

f reachable fromx by traveling on a path within a singl
structureR k

d, f{x. Note thatr d,x
f 50 for points that do not

belong to any structure. Considering a fixed small fract
f 0, f , we calculate the average ofr d,x

f over xPS f 0, i.e.
r d

f 0 , f
[^r d,x

f &S f 0 . This provides us with the measure~scale! of
how extended the coherent structure typically is. In Fig. 3
show thef dependence ofr d

0.01,f measured in units of the
largest Euclidean distance (( i 51

4 Li
2)1/2/2 (Li are the sizes of

the lattice box!. The average is taken over the ensembleE1
and the observed behavior is typical~and stable! for f 0 of a
few percent. Also shown is the result after performing t
random permutation of sites for every configuration.
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Note that in the case of 4D cubes the structure ne
becomes super-long-distance. In fact, we expect that
maximal distance will approach zero in the continuum lim
at arbitraryf. For d53,2, and 1, we observe a well-define
transition to a super-long-distance state which is certa
present atf '0.8,0.4, and 0.2 respectively (r d

0.01,f'0.9 at
those fractions!. These values are insensitive to the change
the lattice spacing. We thus see that after removing the l
intensity points, the super-long-distance structure remain
the core if lower-dimensional elementary cubes are used.
minimal structure with this property is exposed with 1
cubes~links! and we will refer to it as theskeleton. In our
numerical experiments, the maximal space-time distan
start occurring already at aboutf 50.16 while the average
saturates at aboutf 50.20. We thus takef 50.18 as our ini-
tial reference value for the skeleton. As further evidence t
the observed structure carries a significant amount of or
we note that atf 50.18 ~with the skeleton already formed!
one is still confined to average maximal distances of a sin
lattice spacing when random permutation of sites is p
formed.

~4! Even without an extensive scaling analysis, it is po
sible to obtain useful insight into the question of the act
space-time dimension involved in the skeleton. More p
cisely, we will discuss thelocal dimension. To appreciate th
difference, consider e.g. a network built from 1D lines, b
organized globally into a 2D structure~‘‘mesh’’ ! with a typi-
cal physical distancel among the nodes. Locally, such
manifold is 1 dimensional, but on the scales larger thanl it
will appear 2 dimensional. We will consider the global stru
ture from this point of view elsewhere.
5-4
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Our tool here will be thelattice local dimension dL(S)
which we define for an arbitrary subsetS of the lattice. For
xPS let dx

L be the maximal dimensiond of the elementary
cubeC y

d such thatxPC y
d andC y

d,S, i.e. the maximal dimen-
sion of the cube withinS containingx. ThendL(S)[^dx

L&S is
the average of this local dimension overS. While dL(S) is
strictly a lattice notion, it can still be quite useful. In partic
lar, if there is an underlying setS c in the continuum charac
terized by a single local dimensiond(S c),4, then the con-
tinuum limit of dL(S) typically provides an upper bound fo
d(S c). For example, consider a line of non-zero physi
length in the continuum. At sufficiently small lattice spacin
this might appear as the connected structure built predo
nantly of bonds, in which case the continuum limit ofdL(S)
coincides withd(S c). However, it might also come as
string of mainly 4D cubes at arbitrarily small lattice spacin
and then the limit ofdL(S) will be significantly larger than
d(S c). At the same time,dL(S)>1 for theconnectedlattice
structures and the physical dimension will not be undere
mated.

Since the super-long-distance property involves conne
parts spreading over maximal distances, and since it is in
sitive to the change of lattice spacing, we can conclude
the skeleton is at least 1-dimensional. To see whether hig
dimensions~less than four! could be relevant we conside
sets S f and their partitionsS f5S f 1øS f 2 into coherent
subsets containing sites with positive and negative sign
qx . In Fig. 4 we show thef dependence of the averagelattice
coherence dimension̂dL(S f 6)& for ensemblesE1 ~I! andE2
~II !. We see that the dimension slightlydecreasesas we ap-
proach the continuum limit. The naive linear extrapolati
for the skeleton value f50.18 ~pentagon! gives ^dL(S f 6)&
'1.5 in the continuum limit and we thus conclude that t
physical local dimension associated with the skeleton i
<d&1.5. Assuming that the local structure is not fractal~an
option to be investigated! we are thus led to the conclusio
that the skeleton is locally 1-dimensional.

For comparison, in Fig. 4 we also show^dL(S f 6)& for E2
after random permutation of sites~III !, and the result for
effective densityqx

(L5750 MeV) at the same lattice spacin
~IV !. As expected, curve~III ! lies lower and tends to zer
smoothly at small fractions. On the other hand, for the eff
tive density one naively expects 4D coherence on the s
1/L in the continuum limit, and thus the lattice coheren
dimension is much higher.

~5! Finally, to start developing a visual intuition for th
kind of structure we are observing, we now proceed
graphically verify the existence of the coherent sheets
scribed in part~2!. To do that, we have studied the graphs
qx on 2D sections of the underlying space-time torus. T
genericbehavior ofqx is shown in Fig. 5~configuration from
ensembleE1). One can clearly observe the enhancemen
the structure with linear ‘‘ridges’’ spreading over the who
system. It is easy to see that this is precisely the beha
expected from the~almost! space-filling super-long-distanc
sheets. Indeed, recall that ifV is an arbitrary base manifold
and V1 ,V2,V, then dim(V1ùV2)5dim(V1)1dim(V2)
2dim(V) generically. If we identifyV with the 4D space-
11450
l

i-

,

i-

d
n-
at
er

of

1

-
le

o
e-
f
e

f

or

time torus,V1 with the 2D torus of the section plane, andV2
with the manifold of the structure, we get

dim~V1ùV2!5dim~V2!22. ~2!

Thus if V2 is a 3D super-long-distance hypersurface,
should generically see very extended 1D regions of si
coherence, which is precisely what is observed. Thus, at
lattice cutoff of about 2 GeV the sheets behave as 3D hyp
surfaces. The precise local dimension of maximal coher
regions in the continuum limit will be studied elsewhere.

In this work we have addressed the following questio
Can we identify a fundamental~incorporating all scales! or-
dered structure in topological charge density for typical co
figurations contributing to the pure-glue QCD path integr
In other words, using nothing more than alocal operatorqx
to calculate the space-time distribution of the topologi
charge, can one detect well-defined patterns in these di
butions? While such a structure has not been observed
fore, we have argued that the special properties of the ne
available topological charge densities associated w
Ginsparg-Wilson fermions give reasons to re-examine
question in detail. In particular, the suppression of ultravio
noise bychiral smoothingsuggests that the problem of ultra
violet dominance might be solved and the underlying or
could be revealed. Performing numerical experiments,
have then provided evidence for the existence of a fun
mental structure of this type by showing that the topologi
charge exhibits a long-range order~sign-coherence! on
lower-dimensional subsets of the 4D Euclidean space. In
initial study we have concentrated on certain geometr
properties of this structure. Indeed, if topological char
fluctuations play a role in important aspects of the QC
vacuum ~such as SxSB!, then some geometrical feature
should reflect that. While it is not clear yet which structur
aspects are physically most relevant, we emphasize two
we find most intriguing:~i! Space-time regions with an

FIG. 4. Lattice coherence dimension. Explanation in the text.
5-5
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FIG. 5. Generic behavior ofqx on a 2D sec-
tion of space-time~configuration fromE1).
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intense topological charge density are organized into a m
mally extended~super-long-distance! structure~‘‘ skeleton’’ !.
This suggests that there is no specific long-distance s
associated withindividual geometrical objects. Rather, the
is a global low-dimensional structure that might have to
considered as a whole.~Distance scales associated wi
LQCD could be reflected by local features of such a glo
structure.! We speculate that the super-long-distance cha
ter of the skeleton might be naturally associated with
long-range propagation of Goldstone pions. It will be de
ev

u,
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onstrated elsewhere that the super-long-distance proper
inherited andenhancedat low energy.~ii ! Our data indicate
that the skeleton is a locally linear folded structure, mu
like a protein or a neural network in three dimensions. O
aspect that might be significant about this result is that
propagation of massless quarks on a 1D manifold natur
leads to a nonzero density of Dirac eigenvalues around z
and hence SxSB ~see e.g. Ref.@19# for discussion of similar
issues!. The possibility that such a scenario might be relev
for QCD is being studied.
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