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Nucleon properties at finite lattice spacing in chiral perturbation theory
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Properties of the proton and neutron are studied in partially quenched chiral perturbation theory at finite
lattice spacing. Masses, magnetic moments, the matrix elements of isovector twist-2 operators and axial-vector
currents are examined at the one-loop level in a double expansion in the light-quark masses and the lattice
spacing. This work will be useful in extrapolating the results of simulations using Wilson valence and sea
quarks, as well as simulations using Wilson sea quarks and Ginsparg-Wilson valence quarks, to the continuum.
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[. INTRODUCTION [O(4) in Euclidean spadedown to the discrete symmetry
group of the lattice, which we will take to be the symmetry
Impressive progress is currently being made in undergroup H(4) of a hypercubic lattice. As first discussed by
standing properties and interactions of the low-lying hadronsSymanzik[17], the strong-interaction Lagrange densityaat
using lattice QCD. However, computational limitations ne-+# 0 will receive contributions from an infinite series of op-
cessitate the use of quark masseg that are significantly ~erators~=a*O “*¥). Therefore, the contribution from terms
larger than those of nature, lattice spacirmy¢hat are not of O(a") to a given strong-interaction observable will, ac-
significantly smaller than the physical scale of interest, andording to Eq.(1), be suppressed by factors efa”A;. For
lattice sized. that are not significantly larger than the physi- Wilson fermions[18], where chiral symmetry is not a good
cal scale of interest. In order to make a connection betweegymmetry, it is straightforward to show that@fa) the Sy-
lattice QCD calculations of the foreseeable future and naturemanzik Lagrange density has the form, once appropriate re-
extrapolations in the quark masses, lattice spacing and lattiagefinitions and renormalizations have been performed,
volume are required. Assuming a hierarchy of mass scales,
- - L= (D +my) p+acspo’G,,p+- - 2
L t<my<A <a !, 1)
wherec,,, is the Sheikholeslami-Wohlef19] coefficient that
whereA  is the scale of chiral symmetry breakit@typical ~must be determined numerically. For lattice fermions that
QCD scalg, and working in the infinite volume limit, the satisfy the Ginsparg-WilsoiGW) condition [20], such as
appropriate tool for incorporating the light quark masses andKaplan fermiong21] and overlap fermiong22], where chi-
the finite lattice spacing into hadronic observables is effecral symmetry is a good symmetry, the coefficient of the
tive field theory(EFT). Sheikholeslami-Wohler{19] term vanishescg,=0. The
Chiral perturbation theory XPT) provides a systematic power counting we will use in this work treats batly, and
description of low-energy QCD near the chiral limit and is the lattice spacin@ as small. The small dimensionless pa-
therefore an EFT which exploits the hierarany<A, . This  rameters that we will use in our low-energy EFT are
technology has been extended to describe both quenched
QCD [1-5] with quenched chiral perturbation theory
(QxPT) and partially quenched QCPQQCD [6-10] with
partially quenched chiral perturbation theory (F®X). It is
hoped that future lattice simulations can be performed withwhered represents the derivative operator.
sufficiently small quark masses where the chiral expansion is Following earlier work of Sharpe and Singletf?28] (see
convergent, and can be used to extrapolate down to the quadtso Ref[24]), Rupak and Shoredl25] have extendegPT
masses of nature. Recently, meson and baryon propertiégs O(p*) including the effects of a finite lattice spacing at
have been studied extensively in bothy®I [4,5] and O(a) for Wilson fermions and computed the Goldstone-
PQyPT [11-14. The EFT describing the low-energy dy- boson masses. Together with rB26] these same authors
namics of two-nucleon systems in PQQCD has also beehave generalized the results to “mixed” actions where dif-
explored[15,16]. ferent types of lattice fermions are used for the sea and va-
In order to construct the low-energy EFT at finite lattice lence quarks. Recently, this work was extended(a?) for
spacing, written in terms of the hadronic fields, one must firsboth Wilson and mixed actiori27,28. The pion decay con-
construct the underlying lattice theory, written in terms of thestant has also been computeda?) for Wilson fermions
quark and gluon fields. The lattice theory and the continuunin QCD by Aoki[28]. When considering the matrix elements
theory coincide in thee=0 limit, but away from this limit  of operators coupled to external sources, such as the axial-
the theories differ. The lattice breaks the Lorentz groupvector current matrix elements or the matrix elements of
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twist-2 operators, there are contributionsta) from the A. The pseudo-Goldstone bosons

operator itself, in addition to the Sheikholeslami-Wohlert |n order to construct the Lagrange density describing the
term in the Strong-lnteractlon sector. In this work we Con'dynamics of the pseudo_Go|dst0ne boson@@bz), we al-

sider the |eadin@)(a) corrections to nucleon prOpeI’tieS. We low m andAQ to transform under the graded chiral group
compute the contributions to the nucleon masse®(@?), [23,25,28. This leads to

to their magnetic moments &(p), to their isovector axial-

vector matrix elements &(p?) and to the matrix element of 2 t 2 N
the n=2 isovector twist-2 operator &b(p?). L=gst 2T, Z ] Ny 2 Stl Mo T+ mgX ]
f2
IIl. PQQCD AT FINITE LATTICE SPACING FAAZSIAQS T+ A ]+ agdt Bod, Po—mpP],
The Symanzik effective Lagrange density(agp) which (7)

describes the quark sector of PQQCD for two light flavors is
where str denotes a supertrace, andandmg are quantities
that do not vanish in the chiral limit. The meson field is

L£=Q[ID —mg]Q+ Qo™ G, AQQ, (4) incorporated in%, via
. . ; t
where the valence, sea, and ghost quarks are combined into s 20|, b= M X 8
the column vector —&x f =& - YR ®
M
X
Q=(u,d,j,1,0,d)7. (55 Wwhere M and M are matrices containing bosonic mesons
while y and y' are matrices containing fermionic mesons,
with
Theu andd are valence quarks, theandd are ghost quarks,
and thej and| are sea quarks. The mass matnig, is mq e wt 3% LY
=diag(m,,mg,m;,m;,m,,mg) and the Sheikholeslami- 7 qpg I L° P
Wohlert  coefficient matrix is Ag=adiag(cl}), M=| — M= u
V) (9 (9 (V) (V 0 i o 3" po Y| ~ = |
¢ ¢S e el cV)) [25,26. As mentioned previously, J 7 Tl T 7y
when both the valence and sea quarks are Wilson fermions L™ L° Y, =
ciW=c(Y), but when the valence quarks are GW fermions :
while the sea quarks are Wilson fermion§/)=0. X v s
The graded equal-time commutation relations for two x= o Xmto X0 XL ) (9)
fields are Xo= Xmg Xi=  XLO
Q?(X)QET(y) — (=) ”kQET(Y)Qi“(X): 585, S3(x—Y), The convention we use correspondd t0132 MeV, and the

6) charge assignments have been made using an electromag-
netic charge matrix ofQ(PQ=1ldiag(2-1,2-1,2-1).

The singlet field is defined to b®,=str(®)/y2, and its
where a, 8 are spin indices and k are flavor indices. The massm, can be taken to be of the order of the scale of chiral
objectsy, correspond to the parity of the componentQf, symmetry breakingn,— A, [10]. Hence the parametess;,
with 7,=+1 for k=1,2,3,4 andp,=0 for k=5,6, and the andm, decouple from the low-energy EFT in R®T [10].
graded commutation relations for tw@’s or two Qs are It is straightforward to show that the meson masses result-
analogous. The left- and right-handed quark fiel@g,r in ing from this Lagrange density are
Eq. (5), transform in the fundamental representation of
SU(4|2)_ g, respectively. The ground floor o, trans- m2,=Au(my+mg) +2xxacty)
forms as a 4,1) of SU(4)q.®SU(2)5. while the first floor
transforms as 1,2), and the right handed fiel®g trans-
forms analogously. In the absence of the quark mass and
Sheikholeslami-Wohlert termsno=Ao=0, the Lagrange 2 v S
density in Eq. (4) has a grgdedQ symmetnJ (4]2), mJU:)\M(mJ'JFmU)H‘A(anW)JFanVa)'
®U(4]|2)g, where the left- and right-handed quark fields 5 S
transform a®Q, — U, Q, andQr— URQg, respectively. The M3 = Ay (m;+m;) + 2\ pacs;) (10
strong anomaly reduces the symmetry of the theory to
SU(4|2) ®SU(4|2)g®@U(1)y [10]. It is assumed that this and so forth, wheren2, denotes the mass squared of a me-
symmetry is spontaneously broken according to the patteraon containing &anti-) quark of flavora and one of flavob
SU(4[2) @ SU(4|2)g®U(1)y,— SU(4]2)y®U(1)y so that (either valence, sea or ghppsThe meson masses have been
an identification with QCD can be made. computed out tcO(méa) in Refs.[25,26.

mﬁuz 2)\Mmu+ ZAAan\\f\/) y
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B. The nucleons andA resonances

The free Lagrange density for the 70-dimensional baryo
supermultiplet B;;, containing the nucleon and for the
44-dimensional baryon supermultipté;, containing theA
resonances igl1,12, at leading ordefO(p)],

L=i(Bv-DB)+2a{yABBM.)+2BFABM, B)
+20FABB) st M., ) +2aFABBA,)
+2BLUBA, B)+20TABB)st( A,)
—i(T*v-DT,) + A(T*T,) - 2§ A T* M, T,)

=20\ AT*T,)stM, )~ 2y AT* A, T,)

— 20 AT TSt A,), (11)
whereA is the mass splitting between the 70 and 44,,
=3(E'moe’+émgg),  E=VE, and A, =3(£'Age!
+EAQE). The terms that arise atO(p) from the

Sheikholeslami-Wohlert[19] operator have coefficients
P P 5 (PR (PO an o PR

The Lagrange density describing the interactions of the 70
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the mass ofy being of the order of~ A, , all expressions

gnust be independent of the couplimg. At the order we

work in this paper, higher-order interactions do not contrib-
ute.

IIl. NUCLEON MASSES

The mass of théth baryon in the 70-dimensional baryon
supermultiplet has an expansionrig, anda of the form

Mi=Mo(u) =MP () =MD )+, (16)

and we will be interested only in the proton and neutron
masses, i.ei,=p,n. The superscript denotes the order in the
expansion, i.e.M{?(u) denotes a contribution aP(p®).
The termM () is the same for all baryons in the supermul-
tiplet, and is non-zero in theng,a—0 limits. The a=0
values ofM () andM (1) can be found in Ref12]

for arbitrary quark masses. Far=0 we find thatM("(w)
becomes

1 1
MED =3 my(5aif @ +28(%) +3 ma(aly @ +455)

+205A(m;+m) +2ac)(a¥ 2+ L)

+40dact)

and 44 with the pseudo-Goldstone bosons at LO in the chiral sw

expansion i§4]

L=2a(BS"BA,)+2B(BS*A,B)+2H(T'S'A,T,)

+ \[gc [(T'A,B)+(BA,T")], (12)

where $* is the covariant spin vectdi29—31]. Restricting
ourselves to the valence sector, we can compare(ER).
with the LO interaction Lagrange density of QCD,

L£=2gaNS*A,N+g;NS*Nt[A ]
+gan[T2PS"AY Nyecq+H.Cl
+20)0T"SHA, T, +205T"S* T A, ], (19
and find that at tree level

4 1 2 1
a=30at3 01, ,3:§ 9173 %A, H=0aa,

C= —0aN>

(14

with gx=0. Considering only the nucleons, and decompos-

ing the Lagrange density in Eql3) into the mass eigen-
states of the isospin-symmetric limit,”, 7° and , we have

B _
EI29ANS"AMN+T(gA+g1)NS“N5M7], (15

Whereﬂﬂ is the axial-vector field of pions onlgexcluding
the isosinglet mesonIn the isospin-symmetric limit, with

1 1
MY =2 my(alf @ +4B79) + 2 my(5aly V+285 )

+20( (m;+my) +2acl)(af P+ L)
+40¥ac?). (17)

At this order, the finitea contributions are the same for the
proton and neutron. This has to be the case as the lattice
spacing, being the same for thendd quarks, transforms as

an isoscalar. Th1®() contributions, arising from one-
loop diagrams in PQPT, have exactly the same form as in
Eqgs.(38) and(40) of Ref.[12], however, it is understood that
the meson masses are evaluated with the relations in Eq.
(10), and hence have implicit dependence on the lattice spac-
ing. We see that this introduces non-analytic dependence on
the lattice spacing in the chiral limit.

As the explicit expressions for the loop contributions are
quite long, we will simply quote the results in the isospin
limit (i.e. the sea quarks are degenerate, but different in mass
from the degenerate valence quarks and ghosts

QA

(3/2) _
Ms ™ =512 ( 12

[9mEgmyy+ 16mg,— 7miy ]
2

91
+ 5 9MEgmyy+10mdy— 19my,

9A91
= —=[9mZdnyy+4md,—13m5, ]

gAN [Fvv+ Fsv]) (18)

whereS denotes a sea quark aNddenotes a valence quark.
The functionF,=F(m¢,A,u) is
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2

A—JA’—m’+ie 9a 29a9
F(m,A,u)=(m2—A2)| JAZ—- mzlog Bn= g [4msy+5myy]+ 3 = [mey—myy]
A’—m’+ie
m’ L2 m’ _&[msv myy]+ (g +d)[Msy—myy]
—Alog P —EAm log i (19 i
X= | 203+ 12g2
wherey is the renormalization scale, and the meson masses 3 9aT9a91 4 91
depend upon light-quark masses and the lattice spacing
through Eq.(10). Note that we use dimensional regulariza- gi

Bi=

3
N
tion with M S to regulate divergent integrals. Of course, all 9 | Fwt Fsvt E(qi+q')(fVV_fSV)}'

regulators must give equivalent results. (22
In the QCD and isospin limitm; ,m; ,m, ,mg—m, while . _ .
at finite a, the nucleon mass is where the functionf; = 7{m; A, ) is
_ — A2—m?+ie
My=Mo—2m(aff ¥+ B9+ 20(7Y) im0 = 5oy | =T
2
1 |3 2,3 495N £ m?

8’7Tf2 ng T 37 T —A |Og F . (23)

—2ac)(afQ+ ) —4acolP? . (20)

We have usecdeiag(Jr%,—%,qj ,d1,9;,q;) for the elec-

tromagnetic charge matrix in PQQQR1,12. The charges

of the sea quarks and ghostg,andq, , arise due to the fact

that their charge assignments are not unique, only con-
The most general analysis of the nucleon magnetic mostrained by the requirement that electromagnetic observables

ments requires us to determine the vector-current operat@omputed in PQQCD reproduce those of QCD in the QCD

out to the order in the lattice spacing that we are workinglimit [11,12,38. It is clear from the expressions in E@2)

IV. NUCLEON MAGNETIC MOMENTS

While theO(a) corrections are know82], in order to com-
pute the magnetic moments &(p) only the continuum
limit of the vector-current operator is required. Updgp),
it is convenient to write the magnetic moment of tha
nucleon as

(21)

My ,
mi=ait g [Bit B+,

where the constants;, 8; and 3/ in PQQCD are given in
Egs. (49—(51) in Ref.[12]. The only maodification required
at finite lattice spacing is to use E(LO) in evaluating the

that this is indeed the case.
In the isospin-symmetric QCD limit at finite lattice spac-
ing, the magnetic moments becoi83,34

_ My 2 2 2
Mp—ﬂo"‘ﬂl_m gam;+ §gAN‘7:7T

My 2 2 2
M= Ho~ M1T 72| GaMy+ §gAN}—7T (24)

The isoscalar and isovector magnetic moment contributions
from the LO dimension-5 operators aug and uq, respec-
tively, and are independent of the lattice spacing.

meson masses. Therefore, we see that the lattice spacing first

appears through the meson masse®gt), and hence the

leading contribution of the finite lattice spacing is non-

analytic in the lattice spacing in the chiral limit.
In the isospin limit one finds

2

A 49401

Bp=— g[smsv‘F Myy]— T[msv_ Myy]
91
18[msv myy]+ (dj+d)[Msy—myy]

2 S,
2g0p1+0a01+ 291
, giN 3
Bp= 9 _vav+§(Qj+Q|)(fvv_fsv) ,

V. NUCLEON AXIAL MATRIX ELEMENTS

The leading effects of a finite lattice spacing on the matrix
elements of the axial-vector current entet¥p?) from both
one-loop diagrams and from local counterterms. In addition
to the contribution from the Sheikholeslami-Wohlert term,
there is also a contribution from th@®(a) corrections to the
axial-current operator. As discussed in detail in R85,
there are only two operator structures that contribute to the
axial-current operator a®(a), using the notation of Ref.
[35],

(25

08 ,=ar?ys(iD,)a, 0§,=0ar%y,ysmqa,

in QCD, whereD DM— .- The appearance ahy in
g# renders |t(9(p4) in the power counting, and so we

neglect it, leaving the contribution fro(ﬁaﬂ The extension

to PQQCD is straightforward. In analogy with the electro-
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magnetic interaction, the isovector axial-charge matrix musand valence quarks, respectively. Under chiral transforma-
be extended to PQQCD and the axial charges of the segons the spurion field transforms ag ,— L 7a -R", like the
quarks and ghost must be defined as the extension is nguark mass matrix.
unique[11,12,36. Requiring the axial charge matrix to be  The leading-order contribution to the matrix elements of
supertraceless implies that the most general extension to thke axial current arises from the operatpt$,12)
leading operator is, e.g., - o

. (PQj2 ;=2a(BS,B7%,)+2B(BS,7:, B)

T3HT3=diag(1,—1,yj,y|,yj,y|). (26)

In order to construct the nucleon axial matrix element at

. . L 3 S
Ieach_r;g Torder_c;ne uifsTthe spurion corllstructlon in whith + \[EC (7,72, B)+ (B, T,)], (29
—L7L" and 7r—R7R', where the axial-current operator
is decomposed into contributions from the left- and right-
handed quark fields.

At subleading orde®(p?), the contribution to the axial
current in PQQCD is

+2H(T'S, 72, T,)

wherer?, =5 (£7°¢T+ £77%¢).

At (’)(pz) there are three different contributions, which
we denote asP@sj(1Le, (PQA5jCL2 and PAsjBL2. The
contribution from a smgle |nsert|on of the Ieadm(a) cor-

— L < rections to the axial-current operator is
SAL=Q7a77s(iD ,)Q, 27 - o
. (PR 5 042 =2yn1(BS,Bra7¢1) + 27a0(BS, 74 7. B),
where, for example, the matrﬁ,7 is
(30)
3 _ (V) (9) (9) (V) (V)
T adlagc ,—Ca7 ,YiCa7:YICA7YiCa7 :YICAT )
AT AT . ' . ' (28)  Where Tazer = 3(£TaE+ €T £T). The remaining two
contributions arise from a smgle insertion of the light-quark
for the charge matrix in Eq26), wherec$Y andcl) are the mass matrix and from the Sheikholeslami-Wohlert term,
coefficients of the axial-current corrections for the sea quarksvhich are of the form

(PQ)J'ELZ,'S)’a: Z[bl,rﬁji{?é L3S, Bjkt bop(—) it mdOnet ””)gqi{??r T 1kSuBijn
+g (=) MBI (72 (T L) 0SB+ bar(—) MBI (73,)[(T )]

+(C (T3NS, Bkt bsp(—) A W BYI (22 )T )S, B+ berBY (72,)1S,Bjst L)

+byp(—) MO BRI A B sti(T )+ bgpBY'S, Byst(73, T )], (3D)
|
wherel’= M and A. w, are understood to be evaluated at finite lattice spacing via
We write the axial matrix elements f%2] Eq. (10). The constantsl,, andd{{) arise from (P j{!)2
and ®sjBL2 and are
(PQj 1 1 Y
<Nb| J,u,5|Na>= Pab+m Wab_pabz[wa'l'wb] ac( )
dpp= —[- 2b; A+ 4Dy o= D3 A+ D4 a1 205 A]
+y Ry 8 |+ captyicR+yicl) 2acd ac(V)
+ [2b7A be,al+ ——(2¥a1= Va2,

+dgpt yjd§g+yldgg}2ﬁbsuua, (32
d=d{)=d{)=d{)=bg a(ack—acly)),

where the constants,,, 7.5, 759, Wa, Cap, C4J can be

- _ — (1) = q() =
found in Ref.[12] with bj—b; . In extending ther" Anp=~dnn=0pp, dnp=0yp=0. (33
isovector operator from QCD to PQQCD, one can simply
replace ther® in the upper %2 block of 7 with 7", as In the isospin-symmetric QCD limit at finite lattice spac-
described in Ref.12]. The meson masses iy, 7.5, 750,  ing, the proton isovector axial matrix element is
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1
(Pli%dP)=0a~ g2 | 9a(1+207)L,

50 |\, 16
+{209a+ 81924 gANJn_ggAQANKw

+

w| 3|

(=2byy+4byy—bgy+bam

9
[—2D; A

+ 2b5,M - 2b6,M + 4b7,M) +

(S)

+4b2,A_b3,A+ b4,A+2b5,A]+ [2b7A

A7
—bg al+ T(ZYAJ_

7A,2)
+(y;+y))bg, aacy)—acll)), (34)

wherel ,=m2log(m?/u?), J,=J(m, A, u) is
m2
J(M,A, )= (m2—2A2)Iog(F)

—JAZ—m?+ie

AZ—m2+ie/’

+2AJA?— Iog(

(35
andK . =K(m_,A,u) is

2 m?
K(m,A, )= ( m?— §A2) Iog(F)

A—JA2—mi+ie
A+ JA%2—mP+ie
2 m?

3| T VAZ—m?

A—JAZ—mZ+ie
A+A2—mP+ie

2
+ §A JAZ— mzlog(

X log (36)

PHYSICAL REVIEW D68, 114502 (2003

from both quenched and unquenched lattice daw, with
interesting results. Further, the analogous contributions in
QxPT and PQPT have been computed in Ref41,12,4].

In QCD, in the continuum limit the twist-2 operators are

(n).,b —q-b D
O ity -y = AT Yy (1D )

'(iDﬂn)q—traces, (37)
where it is understood that the operator is symmetrized on its
Lorentz indices. For the forward matrix elements in the pro-
ton and neutron, as are relevant for deep inelastic scattering,
we only need to considdr=3. The extension to PQQCD is
straightforward,

(PQ e (Mb

_Ab g g
Hiko - _QT 7,u1('DM2)' : '(IDMH)Q—traceS,

(38)

where® has the same form as that in Eg6), and we will
use the same charges, but it should be remembered that they
are unrelated to those of the axial-current operators.

The higher-dimensional operators that enter at finite lat-
tice spacing are, in general, quite complicated. This is due to
the fact that the operators must be classified not only by
charge conjugation, parity and so forth, but also by the rep-
resentation theory of the hypercubic grot(4). Such a
classification has been performed upnte 4 [42], but asn
increases the number and complexity of the operator basis
increase significantly.

Then=1 opera‘ror(’)fil)'3 is the isovector vector-current
operator withO(a) correctiong 32]

a,(qro*"q). (39)

The forward matrix element of the second operator vanishes
for obvious reasons and the first operatordgp*) in the
expansion, and thus there are no operator corrections to
0{P:3 10 the order we are working. Therefore, there are no
modifications to the matrix element (2.

By contrast, the forward matrix element of the=2 op-
erator,

573 y mqya,

0@3=qr3y,(iD,)q, (40)

does receive corrections &(p?) [32]. The correction to
0?2 atO(p?) in QCD is

wherepu is the renormalization scale. The last contribution in (2) 3_ ac(z) iD iD JraC(z) 3D D
Eq. (34) is somewhat interesting as it depends upon the ex- a70,[D,.ID,]q 74D, 1D ..
tension from QCD to PQQCD and also upon the choice of (41)

lattice fermions and does not vanish in the isospin-symmetric

QCD limit.

VI. MATRIX ELEMENTS OF THE ISOVECTOR
TWIST-2 OPERATORS

The forward matrix elements of twist-2 operators play an

When extended to PQQCD, this correction becomes

(PQ)5O,EL23'3: ai,lo-p)\[i 51} !is)\]Q—’_ @,Z{iDH,U, ,iSV}Q,

(42)

important role in hadronic structure as they are directly rewhere the charge matrices are

lated to the moments of the parton distribution functions. In
QCD the long-distance contributions to these matrix ele-

= adlach.Z)(V) ' CEZ)(V) vyJCEZ)(S) 1

ments have been computed order by order in the chiral ex-

pansion using/PT[37—-4Q and have been applied to results

2)(S 2 2

114502-6



NUCLEON PROPERTIES AT FINITE LATTIE . .. PHYSICAL REVIEW D 68, 114502 (2003

2 ,—adiag ¢, — ¢V y DO, and in PQQCD this becomes
Ve y,cPy P 2

PRO 2= afPv v (BB, ) + BPv v (Bri, B)
for the charge matrix given in Eq26). The coefficients o 1 _
cB™ andc{?)® are the valence- and sea-quark coefficients, + 90,0 (T78, T) + 095 [(T,78.T,)
respectively. In order to construct the nucleon matrix ele- 2

ments we define the fields +(ﬁ7§ﬂ;)]—traces. (46)

1
(2)3 _ -3 1.3 ¢t
T =— (&7 +&'T , . . .
ATgr =5 (ETaad+ & TRl The O(a) corrections to the operator give rise &(p?)
corrections to the nucleon matrix elements of the form

1
b =5 (Emaatt €. )
Q50 wv U= aqu 0 (BBTR )+ BiTY b0 (BTR 1 B)
(2) RBRA2).3
In QCD, the matrix elements of the continuum operator + 50,0 (BTG
(2).3 i
O, are reproduced at leading order by +,8(122’va V(ES@%B)—traces, 47
OELZV)'S—> p(z)vﬂv ,,NT§+ N+ @y ul ,,?“T;Ta

while the contributions from a single insertion of the light-

1 — : . :
) = 3 3 _ quark mass matrix and from the Sheikholeslami-Wohlert
+0 5 [T,7e T, +T,7¢, T,]—traces, (45) term atO(p?) are

PRS0, 3=2[bFBI 72, T 1Byt b(—) 7 it BN 72 T 1B,
(=) O B2 (T ) Byt bE(—) 1 B (72T )]

+ (T )73 M Baic+ DG —) Ot mBR(72 )L (T ) Byt bEBH (72 )1 ByjystT' )

+ @)+ nctm BRI(73 ) B, st L) + bR B By str( 73, T4 ) v v, — traces, (48)
|
wherel’= M and A. (V) acd\

. 1 %)
The forward matrix elements between nucleon states cand? = —>—(2a{7 - Bi7) + —5— (217~ B2)
be written ad12]

1
+ Zack¥)(~ 202+ 4D~ b+ bZ)+ 202

i 3
(P02, = o+ Tz (1P pPwity; )
. 2 (S) (2) (2)
+y, 77i(2),|)+ci(2),o+yjci(2),1+ylci(2),|+di(2),o +§acsw(—b6’A+2b7'A ,

+y;d@ 4y d®! U 0 U~ traces, (49)

dP =dP = (ac) - act)b), (50)

where expressions fgr?), 720 w;, 52 ¢ 9and the

c(@* can be found in Ref{12] with the understanding that

the meson masses are evaluated at finite lattice spacing a@ad those for the neutron are relateddf§’°= —d{?° and
cording to Eq(10). The constantd(?° andd(®* arise from  d{?=d?/=d{®"'.

the operators”250 (%3, PRs0 14 (2)3 and PR30 71193, In the isospin-symmetric QCD limit at finite lattice spac-
and are found to be ing these expressions reduce to
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(3ga+1)
8mef?

_ giN
47%f?

(0@,=| o 1- S

(2
3,

)
M

(2
4,

)

m
3 M

+ 5 (—2byy+4b +b

M
ac®V

3

2
+ §an%3

3

+2b
1

(203 B3) + gaci)(-

(—b@&h+2b%0) + (y;+y) (ack) —acty)) b

PHYSICAL REVIEW D68, 114502 (2003

5
(2), =
p +97

5

(2)_ — (2)
277

,

(2)(V)
@ acy
5,

)
M

(2
6,

)
M

(2
7,

)
M

—2b@) +ab@)) + (22— B2)

)

2bP,+4b8, —bZh+bh+2b%))

Upv,v,Up—traces. (51

Like the matrix elements of the axial current, the choice ofOne source of this dependence is the leadif@) correc-

charges in the sea quark and ghost sectors remain at fini
lattice spacing through the last term in E§1) with coeffi-
cientb$) .

VIl. CONCLUSIONS

As lattice QCD moves closer to its ultimate goal of com-
puting strong-interaction observables directly from first prin-

tns to the strong-interaction Lagrange density, i.e. the
Sheikholeslami-Wohlert term. However, when considering
matrix elements of operators, there are additional contribu-
tions from the®(a) corrections to the operators themselves.
If the lattice calculations are performed with lattice fermions
that respect chiral symmetry, then all the finite lattice spacing
contributions we have computed in this work will vanish.

This will also be the case fap(a)-improved lattice simula-

ciples, effective field theory calculations must be developediqng The continuum extrapolation of unimproved simula-
in parallel in order to facilitate comparison with data and t04jons of nucleon properties with Wilson quarks or mixed

make rigorous predictions. Significant attention has beegarks e.g. Ginsparg-Wilson valence quarks and Wilson sea
paid to the chiral extrapolation of existing quenched and un; uarks, can be performed with the expressions we have de-
quenched data with the goal of making a connection betweeg},ined in this work.

lattice calculations performed at unphysically large quark
masses and nature. With this program maturing pleasantly,
the time is ripe to address other extrapolations that need to be
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