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Nucleon properties at finite lattice spacing in chiral perturbation theory
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Properties of the proton and neutron are studied in partially quenched chiral perturbation theory at finite
lattice spacing. Masses, magnetic moments, the matrix elements of isovector twist-2 operators and axial-vector
currents are examined at the one-loop level in a double expansion in the light-quark masses and the lattice
spacing. This work will be useful in extrapolating the results of simulations using Wilson valence and sea
quarks, as well as simulations using Wilson sea quarks and Ginsparg-Wilson valence quarks, to the continuum.
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I. INTRODUCTION

Impressive progress is currently being made in und
standing properties and interactions of the low-lying hadr
using lattice QCD. However, computational limitations n
cessitate the use of quark massesmq that are significantly
larger than those of nature, lattice spacingsa that are not
significantly smaller than the physical scale of interest, a
lattice sizesL that are not significantly larger than the phys
cal scale of interest. In order to make a connection betw
lattice QCD calculations of the foreseeable future and nat
extrapolations in the quark masses, lattice spacing and la
volume are required. Assuming a hierarchy of mass scal

L21!mq!Lx!a21, ~1!

whereLx is the scale of chiral symmetry breaking~a typical
QCD scale!, and working in the infinite volume limit, the
appropriate tool for incorporating the light quark masses
the finite lattice spacing into hadronic observables is eff
tive field theory~EFT!.

Chiral perturbation theory (xPT) provides a systemati
description of low-energy QCD near the chiral limit and
therefore an EFT which exploits the hierarchymq!Lx . This
technology has been extended to describe both quen
QCD @1–5# with quenched chiral perturbation theo
(QxPT) and partially quenched QCD~PQQCD! @6–10# with
partially quenched chiral perturbation theory (PQxPT). It is
hoped that future lattice simulations can be performed w
sufficiently small quark masses where the chiral expansio
convergent, and can be used to extrapolate down to the q
masses of nature. Recently, meson and baryon prope
have been studied extensively in both QxPT @4,5# and
PQxPT @11–14#. The EFT describing the low-energy dy
namics of two-nucleon systems in PQQCD has also b
explored@15,16#.

In order to construct the low-energy EFT at finite latti
spacing, written in terms of the hadronic fields, one must fi
construct the underlying lattice theory, written in terms of t
quark and gluon fields. The lattice theory and the continu
theory coincide in thea50 limit, but away from this limit
the theories differ. The lattice breaks the Lorentz gro
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@O(4) in Euclidean space# down to the discrete symmetr
group of the lattice, which we will take to be the symmet
group H(4) of a hypercubic lattice. As first discussed b
Symanzik@17#, the strong-interaction Lagrange density ata
Þ0 will receive contributions from an infinite series of op
erators;(akO (41k). Therefore, the contribution from term
of O(an) to a given strong-interaction observable will, a
cording to Eq.~1!, be suppressed by factors of;anLx

n . For
Wilson fermions@18#, where chiral symmetry is not a goo
symmetry, it is straightforward to show that atO(a) the Sy-
manzik Lagrange density has the form, once appropriate
definitions and renormalizations have been performed,

L5c̄~D” 1mq!c1acswc̄smnGmnc1••• ~2!

wherecsw is the Sheikholeslami-Wohlert@19# coefficient that
must be determined numerically. For lattice fermions th
satisfy the Ginsparg-Wilson~GW! condition @20#, such as
Kaplan fermions@21# and overlap fermions@22#, where chi-
ral symmetry is a good symmetry, the coefficient of t
Sheikholeslami-Wohlert@19# term vanishes,csw50. The
power counting we will use in this work treats bothmq and
the lattice spacinga as small. The small dimensionless p
rameters that we will use in our low-energy EFT are

p2;
mq

Lx
;aLx;

]2

Lx
2 , ~3!

where] represents the derivative operator.
Following earlier work of Sharpe and Singleton@23# ~see

also Ref.@24#!, Rupak and Shoresh@25# have extendedxPT
to O(p4) including the effects of a finite lattice spacing
O(a) for Wilson fermions and computed the Goldston
boson masses. Together with Ba¨r @26# these same author
have generalized the results to ‘‘mixed’’ actions where d
ferent types of lattice fermions are used for the sea and
lence quarks. Recently, this work was extended toO(a2) for
both Wilson and mixed actions@27,28#. The pion decay con-
stant has also been computed toO(a2) for Wilson fermions
in QCD by Aoki @28#. When considering the matrix elemen
of operators coupled to external sources, such as the a
vector current matrix elements or the matrix elements
©2003 The American Physical Society02-1
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twist-2 operators, there are contributions atO(a) from the
operator itself, in addition to the Sheikholeslami-Wohle
term in the strong-interaction sector. In this work we co
sider the leadingO(a) corrections to nucleon properties. W
compute the contributions to the nucleon masses atO(p3),
to their magnetic moments atO(p), to their isovector axial-
vector matrix elements atO(p2) and to the matrix element o
the n52 isovector twist-2 operator atO(p2).

II. PQQCD AT FINITE LATTICE SPACING

The Symanzik effective Lagrange density atO(p) which
describes the quark sector of PQQCD for two light flavors

L5Q̄@ iD” 2mQ#Q1Q̄smnGmn AQQ, ~4!

where the valence, sea, and ghost quarks are combined
the column vector

Q5~u,d, j ,l ,ũ,d̃!T. ~5!

Theu andd are valence quarks, theũ andd̃ are ghost quarks
and thej and l are sea quarks. The mass matrixmQ is mQ
5diag(mu ,md ,mj ,ml ,mu ,md) and the Sheikholeslami
Wohlert coefficient matrix is AQ5a diag(csw

(V) ,
csw

(V) ,csw
(S) ,csw

(S) ,csw
(V) ,csw

(V)) @25,26#. As mentioned previously
when both the valence and sea quarks are Wilson ferm
csw

(V)5csw
(S) , but when the valence quarks are GW fermio

while the sea quarks are Wilson fermions,csw
(V)50.

The graded equal-time commutation relations for t
fields are

Qi
a~x!Qk

b†~y!2~2 !h ihkQk
b†~y!Qi

a~x!5dabd ikd3~x2y!,
~6!

wherea,b are spin indices andi ,k are flavor indices. The
objectshk correspond to the parity of the component ofQk ,
with hk511 for k51,2,3,4 andhk50 for k55,6, and the
graded commutation relations for twoQ’s or two Q†’s are
analogous. The left- and right-handed quark fields,QL,R in
Eq. ~5!, transform in the fundamental representation
SU(4u2)L,R , respectively. The ground floor ofQL trans-
forms as a (4,1) of SU(4)qL^ SU(2)q̃L while the first floor
transforms as (1,2), and the right handed fieldQR trans-
forms analogously. In the absence of the quark mass
Sheikholeslami-Wohlert terms,mQ5AQ50, the Lagrange
density in Eq. ~4! has a graded symmetryU(4u2)L
^ U(4u2)R , where the left- and right-handed quark fiel
transform asQL→ULQL andQR→URQR , respectively. The
strong anomaly reduces the symmetry of the theory
SU(4u2)L ^ SU(4u2)R^ U(1)V @10#. It is assumed that this
symmetry is spontaneously broken according to the pat
SU(4u2)L ^ SU(4u2)R^ U(1)V→SU(4u2)V^ U(1)V so that
an identification with QCD can be made.
11450
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A. The pseudo-Goldstone bosons

In order to construct the Lagrange density describing
dynamics of the pseudo-Goldstone bosons atO(p2), we al-
low mQ andAQ to transform under the graded chiral grou
@23,25,26#. This leads to

L5
f 2

8
str@]mS†]mS#1lM

f 2

4
str@mQS†1mQS#

1lA

f 2

4
str@AQS†1AQS#1aF]m F0]m F02m0

2F0
2 ,

~7!

where str denotes a supertrace, andaF andm0 are quantities
that do not vanish in the chiral limit. The meson field
incorporated inS via

S5expS 2iF

f D5j2, F5S M x†

x M̃
D , ~8!

where M and M̃ are matrices containing bosonic meso
while x and x† are matrices containing fermionic meson
with

M5S hu p1 J0 L1

p2 hd J2 L0

J̄0 J1 h j Yjl
1

L2 L̄0 Yjl
2 h l

D , M̃5S h̃u p̃1

p̃2 h̃d
D ,

x5S xhu
xp1 xJ0 xL1

xp2 xhd
xJ2 xL0

D . ~9!

The convention we use corresponds tof ;132 MeV, and the
charge assignments have been made using an electro
netic charge matrix ofQ (PQ)5 1

3 diag(2,21,2,21,2,21).
The singlet field is defined to beF05str(F)/A2, and its
massm0 can be taken to be of the order of the scale of ch
symmetry breaking,m0→Lx @10#. Hence the parametersaF

andm0 decouple from the low-energy EFT in PQxPT @10#.
It is straightforward to show that the meson masses res

ing from this Lagrange density are

mud
2 5lM~mu1md!12lAacsw

(V) ,

muu
2 52lMmu12lAacsw

(V) ,

mju
2 5lM~mj1mu!1lA~acsw

(V)1acsw
(S)!,

mjl
2 5lM~mj1ml !12lAacsw

(S) , ~10!

and so forth, wheremab
2 denotes the mass squared of a m

son containing a~anti-! quark of flavora and one of flavorb
~either valence, sea or ghost!. The meson masses have be
computed out toO(mq

2a) in Refs.@25,26#.
2-2



o
e

s

7
ir

os
-

ib-

n

on
he

l-

e
ttice

-
in
t
Eq.
ac-
on

re
in
ass

.

NUCLEON PROPERTIES AT FINITE LATTICE . . . PHYSICAL REVIEW D 68, 114502 ~2003!
B. The nucleons andD resonances

The free Lagrange density for the 70-dimensional bary
supermultiplet Bi jk containing the nucleon and for th
44-dimensional baryon supermultipletT i jk

m containing theD
resonances is@11,12#, at leading order@O(p)#,

L5 i ~B̄v•DB!12aM
(PQ)~B̄BM1!12bM

(PQ)~B̄M1B!

12sM
(PQ)~B̄B!str~M1!12aA

(PQ)~B̄BA1!

12bA
(PQ)~B̄A1B!12sA

(PQ)~B̄B!str~A1!

2 i ~ T̄mv•DTm!1D~ T̄mTm!22gM
(PQ)~ T̄mM1Tm!

22s̄M
(PQ)~ T̄mTm!str~M1!22gA

(PQ)~ T̄mA1Tm!

22s̄A
(PQ)~ T̄mTm!str~A1!, ~11!

whereD is the mass splitting between the 70 and 44,M1

5 1
2 (j†mQj†1jmQj), j5AS, and A15 1

2 (j†AQj†

1jAQj). The terms that arise atO(p) from the
Sheikholeslami-Wohlert @19# operator have coefficient
aA

(PQ), bA
(PQ), sA

(PQ), gA
(PQ), ands̄A

(PQ).
The Lagrange density describing the interactions of the

and 44 with the pseudo-Goldstone bosons at LO in the ch
expansion is@4#

L52a~B̄SmBAm!12b~B̄SmAmB!12H~ T̄ nSmAmTn!

1A3

2
C @~ T̄nAnB!1~B̄AnT n!#, ~12!

whereSm is the covariant spin vector@29–31#. Restricting
ourselves to the valence sector, we can compare Eq.~12!
with the LO interaction Lagrange density of QCD,

L52gAN̄SmAmN1g1N̄SmNtr@Am#

1gDN@ T̄abc,nAa,n
d Nbecd1H.c.#

12gDDT̄nSmAmTn12gXT̄nSmTntr@Am#, ~13!

and find that at tree level

a5
4

3
gA1

1

3
g1 , b5

2

3
g12

1

3
gA , H5gDD ,

C52gDN ,

~14!

with gX50. Considering only the nucleons, and decomp
ing the Lagrange density in Eq.~13! into the mass eigen
states of the isospin-symmetric limit,p6,p0 andh, we have

L52gAN̄SmÃmN1
A2

f
~gA1g1!N̄SmN]mh, ~15!

where Ãm is the axial-vector field of pions only~excluding
the isosinglet meson!. In the isospin-symmetric limit, with
11450
n

0
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the mass ofh being of the order of;Lx , all expressions
must be independent of the couplingg1. At the order we
work in this paper, higher-order interactions do not contr
ute.

III. NUCLEON MASSES

The mass of thei th baryon in the 70-dimensional baryo
supermultiplet has an expansion inmq anda of the form

Mi5M0~m!2Mi
(1)~m!2Mi

(3/2)~m!1•••, ~16!

and we will be interested only in the proton and neutr
masses, i.e.,i 5p,n. The superscript denotes the order in t
expansion, i.e.,M p

(3/2)(m) denotes a contribution ofO(p3).
The termM0(m) is the same for all baryons in the supermu
tiplet, and is non-zero in themQ ,a→0 limits. The a50
values ofMi

(1)(m) andMi
(3/2)(m) can be found in Ref.@12#

for arbitrary quark masses. ForaÞ0 we find thatMi
(1)(m)

becomes

M p
(1)5

1

3
mu~5aM

(PQ)12bM
(PQ)!1

1

3
md~aM

(PQ)14bM
(PQ)!

12sM
(PQ)~mj1ml !12acsw

(V)~aA
(PQ)1bA

(PQ)!

14sA
(PQ)acsw

(S) ,

Mn
(1)5

1

3
mu~aM

(PQ)14bM
(PQ)!1

1

3
md~5aM

(PQ)12bM
(PQ)!

12sM
(PQ)~mj1ml !12acsw

(V)~aA
(PQ)1bA

(PQ)!

14sA
(PQ)acsw

(S) . ~17!

At this order, the finitea contributions are the same for th
proton and neutron. This has to be the case as the la
spacing, being the same for theu andd quarks, transforms as
an isoscalar. TheMi

(3/2)(m) contributions, arising from one
loop diagrams in PQxPT, have exactly the same form as
Eqs.~38! and~40! of Ref. @12#, however, it is understood tha
the meson masses are evaluated with the relations in
~10!, and hence have implicit dependence on the lattice sp
ing. We see that this introduces non-analytic dependence
the lattice spacing in the chiral limit.

As the explicit expressions for the loop contributions a
quite long, we will simply quote the results in the isosp
limit ~i.e. the sea quarks are degenerate, but different in m
from the degenerate valence quarks and ghosts!,

M p
(3/2)5

1

8p f 2 S gA
2

12
@9mSS

2 mVV116mSV
3 27mVV

3 #

1
g1

2

12
@9mSS

2 mVV110mSV
3 219mVV

3 #

1
gAg1

6
@9mSS

2 mVV14mSV
3 213mVV

3 #

1
2gDN

2

3p
@FVV1FSV# D , ~18!

whereS denotes a sea quark andV denotes a valence quark
The functionFc5F(mc ,D,m) is
2-3
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F~m,D,m!5~m22D2!FAD22m2logS D2AD22m21 i e

D1AD22m21 i e
D

2D logS m2

m2D G2
1

2
Dm2logS m2

m2D , ~19!

wherem is the renormalization scale, and the meson mas
depend upon light-quark masses and the lattice spa
through Eq.~10!. Note that we use dimensional regulariz
tion with MS to regulate divergent integrals. Of course,
regulators must give equivalent results.

In the QCD and isospin limit,mj ,ml ,mu ,md→m̄, while
at finite a, the nucleon mass is

MN5M022m̄~aM
(PQ)1bM

(PQ)12sM
(PQ)!

2
1

8p f 2 F3

2
gA

2mp
3 1

4gDN
2

3p
FpG

22acsw
(V)~aA

(PQ)1bA
(PQ)!24acsw

(S)sA
(PQ) . ~20!

IV. NUCLEON MAGNETIC MOMENTS

The most general analysis of the nucleon magnetic m
ments requires us to determine the vector-current oper
out to the order in the lattice spacing that we are worki
While theO(a) corrections are known@32#, in order to com-
pute the magnetic moments atO(p) only the continuum
limit of the vector-current operator is required. Up toO(p),
it is convenient to write the magnetic moment of thei th
nucleon as

m i5a i1
MN

4p f 2 @b i1b i8#1•••, ~21!

where the constantsa i , b i andb i8 in PQQCD are given in
Eqs.~49!–~51! in Ref. @12#. The only modification required
at finite lattice spacing is to use Eq.~10! in evaluating the
meson masses. Therefore, we see that the lattice spacing
appears through the meson masses atO(p), and hence the
leading contribution of the finite lattice spacing is no
analytic in the lattice spacing in the chiral limit.

In the isospin limit one finds

bp52
gA

2

9
@8mSV1mVV#2

4gAg1

9
@mSV2mVV#

2
g1

2

18
@mSV2mVV#1~qj1ql !@mSV2mVV#

3
1

3 S 2gA
21gAg11

5

4
g1

2D ,

bp85
gDN

2

9 F22FVV1
3

2
~qj1ql !~FVV2FSV!G ,
11450
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bn5
gA

2

9
@4mSV15mVV#1

2gAg1

9
@mSV2mVV#

2
2g1

2

9
@mSV2mVV#1~qj1ql !@mSV2mVV#

3
1

3 S 2gA
21gAg11

5

4
g1

2D ,

bn85
gDN

2

9 FFVV1FSV1
3

2
~qj1ql !~FVV2FSV!G ,

~22!

where the functionFi5F(mi ,D,m) is

pF~m,D,m!5AD22m2logS D2AD22m21 i e

D1AD22m21 i e
D

2D logS m2

m2D . ~23!

We have usedQ5diag(1 2
3 ,2 1

3 ,qj ,ql ,qj ,ql) for the elec-
tromagnetic charge matrix in PQQCD@11,12#. The charges
of the sea quarks and ghosts,qj andql , arise due to the fac
that their charge assignments are not unique, only c
strained by the requirement that electromagnetic observa
computed in PQQCD reproduce those of QCD in the QC
limit @11,12,36#. It is clear from the expressions in Eq.~22!
that this is indeed the case.

In the isospin-symmetric QCD limit at finite lattice spa
ing, the magnetic moments become@33,34#

mp5m01m12
MN

4p f 2 FgA
2mp1

2

9
gDN

2 FpG ,
mn5m02m11

MN

4p f 2 FgA
2mp1

2

9
gDN

2 FpG . ~24!

The isoscalar and isovector magnetic moment contributi
from the LO dimension-5 operators arem0 andm1, respec-
tively, and are independent of the lattice spacing.

V. NUCLEON AXIAL MATRIX ELEMENTS

The leading effects of a finite lattice spacing on the mat
elements of the axial-vector current enter atO(p2) from both
one-loop diagrams and from local counterterms. In addit
to the contribution from the Sheikholeslami-Wohlert term
there is also a contribution from theO(a) corrections to the
axial-current operator. As discussed in detail in Ref.@35#,
there are only two operator structures that contribute to
axial-current operator atO(a), using the notation of Ref
@35#,

O7,m
a 5q̄t ag5~ iDJ m!q, O8,m

a 5q̄t agmg5mqq, ~25!

in QCD, whereDJ m5DW m2DQ m . The appearance ofmq in
O8,m

a renders itO(p4) in the power counting, and so w
neglect it, leaving the contribution fromO7,m

a . The extension
to PQQCD is straightforward. In analogy with the electr
2-4
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magnetic interaction, the isovector axial-charge matrix m
be extended to PQQCD and the axial charges of the
quarks and ghost must be defined as the extension is
unique @11,12,36#. Requiring the axial charge matrix to b
supertraceless implies that the most general extension to
leading operator is, e.g.,

t3→ t̄35diag~1,21,yj ,yl ,yj ,yl !. ~26!

In order to construct the nucleon axial matrix element
leading order one uses the spurion construction in whicht̄L

a

→L t̄L
aL† and t̄R

a→Rt̄L
aR†, where the axial-current operato

is decomposed into contributions from the left- and rig
handed quark fields.

At subleading orderO(p2), the contribution to the axia
current in PQQCD is

dAm
a 5Q̄t̄A,7

a g5~ iDJ m!Q, ~27!

where, for example, the matrixt̄A,7
3 is

t̄A,7
3 5adiag~cA7

(V) ,2cA7
(V) ,yjcA7

(S) ,ylcA7
(S) ,yjcA7

(V) ,ylcA7
(V)!,

~28!

for the charge matrix in Eq.~26!, wherecA7
(S) andcA7

(V) are the
coefficients of the axial-current corrections for the sea qua
pl

11450
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and valence quarks, respectively. Under chiral transform
tions the spurion field transforms ast̄A,7

3 →L t̄A,7
3 R†, like the

quark mass matrix.
The leading-order contribution to the matrix elements

the axial current arises from the operators@11,12#

(PQ) j m,5
a 52a~B̄SmBt̄ j1

a !12b~B̄Smt̄j1
a B!

12H~ T̄nSmt̄j1
a Tn!

1A3

2
C @~ T̄mt̄j1

a B!1~B̄t̄ j1
a Tm!#, ~29!

wheret̄ j1
a 5 1

2 (jt̄aj†1j†t̄aj).
At O(p2) there are three different contributions, whic

we denote as(PQ)d j m,5
(1),a , (PQ)d j m,5

(2),a and (PQ)d j m,5
(3),a . The

contribution from a single insertion of the leadingO(a) cor-
rections to the axial-current operator is

(PQ)d j m,5
(1),a52gA1~B̄SmBt̄A,7,j1

a !12gA2~B̄Smt̄A,7,j1
a B!,

~30!

where t̄A,7,j1
a 5 1

2 (jt̄A,7
a j1j†t̄A,7

a j†). The remaining two
contributions arise from a single insertion of the light-qua
mass matrix and from the Sheikholeslami-Wohlert ter
which are of the form
(PQ) j m,5
(2,3),a52@b1,GB̄k j i$t̄j1

a ,G1% i
nSmBn jk1b2,G~2 !(h i1h j )(hk1hn)B̄k j i$t̄j1

a ,G1%k
nSmBi jn

1b3,G~2 !h l (h j 1hn)B̄k j i~ t̄j1
a ! i

l~G1! j
nSmBlnk1b4,G~2 !h lh j 11B̄k j i

„~ t̄j1
a ! i

l~G1! j
n

1~G1! i
l~ t̄j1

a ! j
n
…SmBnlk1b5,G~2 !h i (h l1h j )B̄k j i~ t̄j1

a ! j
l ~G1! i

nSmBnlk1b6,GB̄k j i~ t̄j1
a ! i

lSmBl jkstr~G1!

1b7,G~2 !(h i1h j )(hk1hn)B̄k j i~ t̄j1
a !k

nSmBi jnstr~G1!1b8,GB̄k j iSmBi jkstr~ t̄j1
a G1!#, ~31!
via

c-
whereG5M andA.
We write the axial matrix elements as@12#

^Nbu(PQ) j m,5uNa&5Frab1
1

16p2f 2 S hab2rab

1

2
@wa1wb#

1yjhab
( j )1ylhab

( l )D1cab1yjcab
( j )1ylcab

( l )

1dab1yjdab
( j )1yldab

( l )G2ŪbSmUa , ~32!

where the constantsrab , hab , hab
(k) , wa , cab , cab

(k) can be
found in Ref. @12# with bj→bj ,M . In extending thet1

isovector operator from QCD to PQQCD, one can sim
replace thet3 in the upper 232 block of t̄3 with t1, as
described in Ref.@12#. The meson masses inrab , hab , hab

(k) ,
y

wa are understood to be evaluated at finite lattice spacing
Eq. ~10!. The constantsdab and dab

(k) arise from (PQ)d j m,5
(1),a

and (PQ)d j m,5
(3),a , and are

dpp5
acsw

(V)

3
@22b1, A14b2, A2b3, A1b4, A12b5, A#

1
2acsw

(S)

3
@2b7, A2b6, A#1

acA7
(V)

3
~2gA,12gA,2!,

dpp
( j )5dpp

( l )5dnn
( j )5dnn

( l )5b8, A~acsw
(S)2acsw

(V)!,

dnp52dnn5dpp , dnp
( j )5dnp

( l )50. ~33!

In the isospin-symmetric QCD limit at finite lattice spa
ing, the proton isovector axial matrix element is
2-5
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^pu j m,5
3 up&5gA2

1

8p2f 2 FgA~112gA
2 !Lp

1S 2gA1
50

81
gDDDgDN

2 Jp2
16

9
gAgDN

2 KpG
1

m̄

3
~22b1,M14b2,M2b3,M1b4,M

12b5,M22b6,M14b7,M !1
acsw

(V)

3
@22b1, A

14b2, A2b3, A1b4, A12b5, A#1
2acsw

(S)

3
@2b7, A

2b6, A#1
acA7

(V)

3
~2gA,12gA,2!

1~yj1yl !b8, A~acsw
(S)2acsw

(V)!, ~34!

whereLp5mp
2 log(mp

2/m2), Jp5J(mp ,D,m) is

J~m,D,m!5~m222D2!logS m2

m2D
12DAD22m2logS D2AD22m21 i e

D1AD22m21 i e
D ,

~35!

andKp5K(mp ,D,m) is

K~m,D,m!5S m22
2

3
D2D logS m2

m2D
1

2

3
DAD22m2logS D2AD22m21 i e

D1AD22m21 i e
D

1
2

3

m2

D Fpm2AD22m2

3 logS D2AD22m21 i e

D1AD22m21 i e
D G , ~36!

wherem is the renormalization scale. The last contribution
Eq. ~34! is somewhat interesting as it depends upon the
tension from QCD to PQQCD and also upon the choice
lattice fermions and does not vanish in the isospin-symme
QCD limit.

VI. MATRIX ELEMENTS OF THE ISOVECTOR
TWIST-2 OPERATORS

The forward matrix elements of twist-2 operators play
important role in hadronic structure as they are directly
lated to the moments of the parton distribution functions.
QCD the long-distance contributions to these matrix e
ments have been computed order by order in the chiral
pansion usingxPT @37–40# and have been applied to resu
11450
x-
f
ic

-
n
-
x-

from both quenched and unquenched lattice data@37#, with
interesting results. Further, the analogous contributions
QxPT and PQxPT have been computed in Refs.@11,12,41#.

In QCD, in the continuum limit the twist-2 operators ar

O m1m2•••mn

(n),b 5q̄tbgm1
~ iDJ m2

!•••~ iDJ mn
!q2traces, ~37!

where it is understood that the operator is symmetrized on
Lorentz indices. For the forward matrix elements in the p
ton and neutron, as are relevant for deep inelastic scatte
we only need to considerb53. The extension to PQQCD i
straightforward,

(PQ)O m1m2•••mn

(n),b 5Q̄t̄bgm1
~ iDJ m2

!•••~ iDJ mn
!Q2traces,

~38!

wheret̄b has the same form as that in Eq.~26!, and we will
use the same charges, but it should be remembered that
are unrelated to those of the axial-current operators.

The higher-dimensional operators that enter at finite
tice spacing are, in general, quite complicated. This is du
the fact that the operators must be classified not only
charge conjugation, parity and so forth, but also by the r
resentation theory of the hypercubic group,H(4). Such a
classification has been performed up ton54 @42#, but asn
increases the number and complexity of the operator b
increase significantly.

The n51 operatorO m
(1),3 is the isovector vector-curren

operator withO(a) corrections@32#

q̄t3gmmqq, ]n~ q̄t3smnq!. ~39!

The forward matrix element of the second operator vanis
for obvious reasons and the first operator isO(p4) in the
expansion, and thus there are no operator correction
O m

(1),3 to the order we are working. Therefore, there are
modifications to the matrix element ofO m

(1),3 .
By contrast, the forward matrix element of then52 op-

erator,

O mn
(2),35q̄t3gm~ iDJ n!q, ~40!

does receive corrections atO(p2) @32#. The correction to
O mn

(2),3 at O(p2) in QCD is

dO mn
(2),35ac1

(2)q̄t3sml@ iDJ n ,iDJ l#q1ac2
(2)q̄t3$ iDJ m ,iDJ n%q.

~41!

When extended to PQQCD, this correction becomes

(PQ)dO mn
(2),35Q̄t̄A,1

3 sml@ iDJ n ,iDJ l#Q1Q̄t̄A,2
3 $ iDJ m ,iDJ n%Q,

~42!

where the charge matrices are

t̄A,1
3 5adiag~c1

(2)(V) ,2c1
(2)(V) ,yjc1

(2)(S) ,

ylc1
(2)(S) ,yjc1

(2)(V) ,ylc1
(2)(V)!,
2-6
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t̄A,2
3 5adiag~c2

(2)(V) ,2c2
(2)(V) ,yjc2

(2)(S) ,

ylc2
(2)(S) ,yjc2

(2)(V) ,ylc2
(2)(V)! ~43!

for the charge matrix given in Eq.~26!. The coefficients
c1,2

(2)(V) andc1,2
(2)(S) are the valence- and sea-quark coefficien

respectively. In order to construct the nucleon matrix e
ments we define the fields

t̄A,1,j1
(2),3 5

1

2
~jt̄A,1

3 j1j†t̄A,1
3 j†!,

t̄A,2,j1
(2),3 5

1

2
~jt̄A,2

3 j1j†t̄A,2
3 j†!. ~44!

In QCD, the matrix elements of the continuum opera
O mn

(2),3 are reproduced at leading order by

O mn
(2),3→r (2)vmvnN̄tj1

3 N1g (2)vmvnT̄atj1
3 Ta

1s (2)
1

2
@ T̄mtj1

3 Tn1T̄ntj1
3 Tm#2traces, ~45!
ca

t

11450
,
-

r

and in PQQCD this becomes

PQO mn
(2),3→a0

(2)vmvn~B̄Bt̄ j1
3 !1b0

(2)vmvn~B̄t̄ j1
3 B!

1g0
(2)vmvn~ T̄ at̄j1

3 Ta!1s0
(2)1

2
@~ T̄mt̄j1

3 Tn!

1~ T̄nt̄j1
3 Tm!#2traces. ~46!

The O(a) corrections to the operator give rise toO(p2)
corrections to the nucleon matrix elements of the form

PQdO mn
O,(2),35a11

(2)vmvn~B̄Bt̄A,1,j1
(2),3 !1b11

(2)vmvn~B̄t̄A,1,j1
(2),3 B!

1a12
(2)vmvn~B̄Bt̄A,2,j1

(2),3 !

1b12
(2)vmvn~B̄t̄A,2,j1

(2),3 B!2traces, ~47!

while the contributions from a single insertion of the ligh
quark mass matrix and from the Sheikholeslami-Wohl
term atO(p2) are
PQdO mn
G,(2),352@b1,G

(2)B̄k j i$t̄j1
a ,G1% i

nBn jk1b2,G
(2)~2 !(h i1h j )(hk1hn)B̄k j i$t̄j1

a ,G1%k
nBi jn

1b3,G
(2)~2 !h l (h j 1hn)B̄k j i~ t̄j1

a ! i
l~G1! j

nBlnk1b4,G
(2)~2 !h lh j 11B̄k j i

„~ t̄j1
a ! i

l~G1! j
n

1~G1! i
l~ t̄j1

a ! j
n
…Bnlk1b5,G

(2)~2 !h i (h l1h j )B̄k j i~ t̄j1
a ! j

l ~G1! i
nBnlk1b6,G

(2)B̄k j i~ t̄j1
a ! i

lBl jkstr~G1!

1b7,G
(2)~2 !(h i1h j )(hk1hn)B̄k j i~ t̄j1

a !k
nBi jnstr~G1!1b8,G

(2)B̄k j iBi jkstr~ t̄j1
a G1!#vmvn2traces, ~48!
c-
whereG5M andA.
The forward matrix elements between nucleon states

be written as@12#

^PQO mn
(2),3& i5Fr i

(2)1
1

16p2f 2 ~h i
(2),02r i

(2)wi1yjh i
(2),j

1ylh i
(2),l !1ci

(2),01yjci
(2),j1ylci

(2),l1di
(2),0

1yjdi
(2),j1yldi

(2),l GŪ ivmvnUi2traces, ~49!

where expressions forr i
(2) , h i

(2),0 , wi , h i
(2),k , ci

(2),0 and the
ci

(2),k can be found in Ref.@12# with the understanding tha
the meson masses are evaluated at finite lattice spacing
cording to Eq.~10!. The constantsdi

(2),0 anddi
(2),k arise from

the operatorsPQdO mn
O,(2),3, PQdO mn

M,(2),3 and PQdO mn
A,(2),3,

and are found to be
n

ac-

dp
(2),05

ac1
(2)(V)

3
~2a11

(2)2b11
(2)!1

ac2
(2)(V)

3
~2a12

(2)2b12
(2)!

1
1

3
acsw

(V)~22b1, A
(2) 14b2, A

(2) 2b3, A
(2) 1b4, A

(2) 12b5, A
(2) !

1
2

3
acsw

(S)~2b6, A
(2) 12b7, A

(2) !,

dp
(2),j5dp

(2),l5~acsw
(S)2acsw

(V)!b8, A
(2) , ~50!

and those for the neutron are related bydn
(2),052dp

(2),0 and
dp

(2),j5dn
(2),j5dn

(2),l .
In the isospin-symmetric QCD limit at finite lattice spa

ing these expressions reduce to
2-7
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^PQO mn
(2),3&p5F rp

(2)S 12
~3gA

211!

8p2f 2 LpD 2
gDN

2

4p2f 2
JpFrp

(2)1
5

9
g (2)2

5

27
s (2)G

1
m̄

3
~22b1,M

(2) 14b2,M
(2) 2b3,M

(2) 1b4,M
(2) 12b5,M

(2) 22b6,M
(2) 14b7,M

(2) !1
ac1

(2)(V)

3
~2a11

(2)2b11
(2)!

1
ac2

(2)(V)

3
~2a12

(2)2b12
(2)!1

1

3
acsw

(V)~22b1, A
(2) 14b2, A

(2) 2b3, A
(2) 1b4, A

(2) 12b5, A
(2) !

1
2

3
acsw

(S)~2b6, A
(2) 12b7, A

(2) !1~yj1yl !~acsw
(S)2acsw

(V)!b8, A
(2) G ŪpvmvnUp2traces. ~51!
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Like the matrix elements of the axial current, the choice
charges in the sea quark and ghost sectors remain at
lattice spacing through the last term in Eq.~51! with coeffi-
cient b8, A

(2) .

VII. CONCLUSIONS

As lattice QCD moves closer to its ultimate goal of com
puting strong-interaction observables directly from first pr
ciples, effective field theory calculations must be develop
in parallel in order to facilitate comparison with data and
make rigorous predictions. Significant attention has b
paid to the chiral extrapolation of existing quenched and
quenched data with the goal of making a connection betw
lattice calculations performed at unphysically large qu
masses and nature. With this program maturing pleasa
the time is ripe to address other extrapolations that need t
performed in order to make a rigorous connection with da
the continuum extrapolation,a→0, and the infinite volume
extrapolation.

In this work we have computed the leading effects o
finite lattice spacing, atO(a), on some nucleon propertie
v.

11450
f
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-
d

n
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k
ly,
be
:

One source of this dependence is the leadingO(a) correc-
tions to the strong-interaction Lagrange density, i.e.
Sheikholeslami-Wohlert term. However, when consider
matrix elements of operators, there are additional contri
tions from theO(a) corrections to the operators themselve
If the lattice calculations are performed with lattice fermio
that respect chiral symmetry, then all the finite lattice spac
contributions we have computed in this work will vanis
This will also be the case forO(a)-improved lattice simula-
tions. The continuum extrapolation of unimproved simu
tions of nucleon properties with Wilson quarks or mixe
quarks, e.g. Ginsparg-Wilson valence quarks and Wilson
quarks, can be performed with the expressions we have
termined in this work.
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