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Deep inelastic scattering asx\1 using soft-collinear effective theory

Aneesh V. Manohar
Department of Physics, University of California at San Diego, La Jolla, California 92093, USA

~Received 17 September 2003; published 30 December 2003!

Soft-collinear effective theory~SCET! is used to sum Sudakov double logarithms in thex→1 end point
region for the deep inelastic scattering structure function. The calculations are done in both the target rest frame
and the Breit frame. The separation of scales in the effective theory implies that the anomalous dimension of
the SCET current is linear in lnm, and the anomalous dimension for theNth moment of the structure function
is linear in lnN, to all orders in perturbation theory. The SCET formulation is shown to be free of Landau pole
singularities. Some important differences between the deep inelastic structure function and the shape function
in B decay are discussed.
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I. INTRODUCTION

The deep inelastic scattering cross section is the inclu
cross section for lepton scattering off a hadronic targe
large momentum transfer. The cross section is convention
written in terms of structure functions of the momentu
transfer Q2 and a dimensionless variable 0<x<1. The
structure function~s! F(x,Q2) cannot be computed in pertu
bation theory, but itsQ2 dependence can. The structure fun
tion contains large logarithms of the form (asln Q2/LQCD

2 )n,
which can be summed by evolvingF(x,Q2) from the large
scaleQ2 to a lower scalem using the renormalization grou
equations.m is chosen to be a few GeV, parametrically of t
order ofLQCD, but still large enough that perturbation theo
is valid.

As x→1, there are additional large logarithms that ne
to be summed to get a reliable evaluation of the scatte
cross section. The invariant mass of the final hadronic sta

MX
25

Q2~12x!

x
, ~1!

and MX
2→0 asx→1. The total cross section is infrared fi

nite, even though the real and virtual emission processes
separately infrared divergent. In the regionx→1, real gluon
emission is suppressed, and the cancellation between
and virtual emission becomes more delicate, leading to la
corrections to the cross section. The form of the perturba
series is most conveniently described in moment spa
wherex→1 corresponds to large moments,N→`, with the
heuristic rule 12x;1/N. As N→`, the structure function
moments contain terms of the formas

r lnsN with s<2r .
These Sudakov double logarithms are important in the
point region. The summation of these terms is well know
and has been discussed extensively in the literature@1#. The
general result is that theNth moment of the structure func
tion at Q2, FN(Q2) can be written as@1,2#

ln FN~Q2!5 f 0~asln N!ln N1 f 1~asln N!1asf 2~asln N!

1 . . . . ~2!
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The exponential off 0(asln N) ln N gives the leading Sudako
double-logarithmic series.

In this paper, Sudakov double logarithms in the end po
region are calculated using soft-collinear effective theo
~SCET! @3,4#. SCET allows one to compute the cross sect
in the end point region in a systematic expansion to a
desired accuracy. The results are free of Landau pole sin
larities. The calculations are described in detail in both
target rest frame and the Breit frame, and give an instruc
example of the use of SCET. There are several unusua
pects of SCET which are discussed here; the frame de
dence of the way in which infrared divergences cancel
tween the soft and collinear modes, and the relation betw
structure functions and local operators which is different
deep inelastic scattering andB decays. Consistency of th
effective theory implies that the SCET anomalous dimens
is linear in lnm, which leads to the form Eq.~2! of the
perturbation series. The SCET calculation to the accur
presented here gives the moments of the structure func
including the first two exponentiated seriesf 0,1 in Eq. ~2!, as
well as all terms of orderas which do not vanish asN
→`. The method used parallels that forB→Xsg in Ref. @3#.
Deep inelastic scattering structure functions in the Br
frame ~but not in the end point region! were considered in
Ref. @5#. The SCET formalism used in this paper is describ
in Refs.@4#.

II. OUTLINE OF CALCULATION

The calculation of the deep inelastic scattering cross s
tion will be performed using a sequence of effective fie
theories. The scattering amplitude involves the interaction
a lepton beam with a hadron target via a virtual photon. T
leptonic interactions are calculable using QED, and will n
be discussed here. The quantity of interest is the interac
of the virtual photon with the hadronic target.

At scales much larger thanQ2, the interaction of photons
with hadrons is described using the electromagnetic cur
of quarks interacting via the full QCD Lagrangian. The ha
ronic scattering amplitude is the matrix element of the el
tromagnetic current between the initial and final hadro
states~see Fig. 1!,

Am5^Xu j muP&. ~3!
©2003 The American Physical Society19-1
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The cross section involves the square of the scattering
plitude, and can be written in terms of the product of tw
currents, summed over intermediate states,

(
X

^Pu j muX&^Xu j nuP&. ~4!

The invariant mass of the final hadronic state for gene
values ofx is of orderQ2. The final hadronic stateX can be
integrated out at the scaleQ2, and the product of currents i
Eq. ~4! is replaced by a sum over local twist-two operato
when one takes moments of the cross section. This is
conventional method of computing the deep inelastic sca
ing cross section.

As x→1, the invariant mass of the final hadronic sta
tends to zero. The invariant mass of the final hadronic sta
taken to be of orderQ2l, with Q2@Q2l@LQCD

2 , and all
results are computed in an expansion inl. More details
about this power counting scheme are given in Sec. III
The scaleQ2l is an infrared scale for the theory atQ, and
can be set to zero at leading order in an expansion inl. In
this limit, the final hadronic state is massless, and canno
integrated out. Instead, the final hadronic state can be tre
as a massless light-like jet, and is described by a collin
quark in SCET. Thus forx→1, the QCD current at scaleQ
is matched onto an SCET current at scaleQ. The coordinate
axes are chosen so that the outgoing quark travels in
nm5(1,0,0,1) direction, and is described by the colline
field jn of SCET. In the target rest frame, the incoming qua
has momentum of order the hadron target momentumLQCD,
and is an ultrasoft quark. In the Breit frame, the struck qu
is back-scattered, so the incoming quark is ann̄ collinear
quark, and is described by the fieldj n̄ , where n̄5(1,0,0,
21). The first step of the calculation is the matching of t
electromagnetic currentc̄gmc onto the SCET currentj̄ngmc

or j̄ngmj n̄ in the target or Breit frame, respectively. Th
matching coefficient is evaluated in Sec. IV.

The next scale in the problem is the invariant mass of
hadronic state,pX

2;Q2l;Q2(12x). The SCET current is

FIG. 1. The deep inelastic scattering process. The incoming
ton with energyE scatters off a hadronic target with momentump to
produce the final hadronic stateX.
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run fromm5Q to this scale using the anomalous dimensio
which is computed in Sec. V in both the target and Br
frames.

At the scaleQ2(12x);Q2l, pX
2 is treated as large, an

so the final state can be integrated out. The time-orde
product of two SCET currents can be replaced by a bilo
light-cone operator whose target matrix element is the pa
distribution function. This is done by integrating out thejn
field in SCET; the resulting operator is written in terms
ultrasoft quark fieldscu in the target frame, and in terms o
n̄-collinear quark fields in the Breit frame. The bilocal o
erator is closely related to the Collins-Soper operator@6#.
The matching at scaleQ2l is discussed in Sec. VI.

The last step, discussed in Sec. VII, is to run the bilo
operators fromQ2(12x) to some low scalem, and match
onto local twist-two operators which give the moment su
rules for the deep inelastic structure functions.

The computations in this paper are given in the Feynm
gauge. The results, however, are gauge invariant, and val
any gauge. In the effective theory, one has separate ga
invariance for the ultrasoft,n-collinear andn̄-collinear glu-
ons. This has been checked by explicit computation.

The entire analysis is presented for QCD with a sin
quark flavor of unit charge, to avoid unnecessary indic
The final answer is given by summing the results of t
paper over all flavors weighted with the square of their el
tromagnetic charges. In addition to the currentsj̄ngmc and
j̄ngmj n̄ , one also has the Hermitian conjugate curre
c̄gmjn and j̄ n̄gmjn , which give the antiquark contribution
or equivalently, the crossed-graph contributions. By cha
conjugation invariance, the matching coefficients a
anomalous dimensions are the same for quarks and
quarks. The final result thus has a sum over both quark
antiquark distributions.

III. KINEMATICS

The scattering process ise21p→e21X. The proton
momentum isP, the incoming momentum of the virtual pho
ton is q, the momentum transfer isQ252q2@0, andx is
defined by

x52
q2

2P•q
5

Q2

2P•q
. ~5!

The coordinate axes are chosen so that the virtual photo
in the z direction. It is useful to introduce the null vector
nm5(1,0,0,1) andn̄m5(1,0,0,21) which point in theẑ and
2 ẑ direction, respectively. They satisfy the relationsn2

50, n̄250, n̄•n52. Any four-vectoram can be written as

am5
1

2
a1n̄m1

1

2
a2nm1a'

m , ~6!

where

a1[n•a, a2[n̄•a, ~7!

p-
9-2
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DEEP INELASTIC SCATTERING ASx→1 USING . . . PHYSICAL REVIEW D68, 114019 ~2003!
and a' is in the x-y plane. The dot product of two four
vectors is

a•b5
1

2
a1b21

1

2
a2b12a'•b' , ~8!

and the integration measure can be written in light-cone
ordinates as

ddk5
1

2
dk1dk2dd22k' . ~9!

A. Target rest frame

In the target rest frame,q'50, and Q252q2

52q1q2. The deep inelastic limitQ2→` with x fixed is
given by takingq2→` at fixedq1, so thatq2@q1. Then

x52
q1q2

P1q21P2q1 '2
q1

P1 , ~10!

whereP15MT is the target mass, so that

q152xP1,

q25
Q2

xP1 ,

pX
15P1~12x!,

pX
25P21q2;q2,

pX
25Q2

12x

x
, ~11!

where pX5P1q is the momentum of the final hadron
state.

B. Breit frame

The virtual photon carries only momentum, and no ene
in the Breit frame. The Breit frame is obtained from th
target rest frame by boosting along thez-axis, so that the
proton and virtual photon have no' component of momen
tum in either frame. The momentum components in the B
frame are

q152Q,

q25Q,

p15Q1 l 1,

p25 l 2,

pX
15 l 1,

pX
25Q1 l 2, ~12!

wherel 6 are fixed by settingP2'Ql25MT and
11401
-
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x5
Q

Q1 l 12MT /Q
'

Q

Q1 l 1 , ~13!

so that

12x5
l 1

Q
, ~14!

and

pX
25Ql1. ~15!

The 6 components of momentum in the Breit frame a
given by multiplying the6 components of momentum in th
target rest frame by (Q/xP1)6;(Q/P1)6 for x'1.

C. Power counting

The end-point region ispX
2;Q2(12x);Q2l, with Q2

@Q2l@LQCD
2 . In this region, the final state still involves

sum over many hadronic states, but has small invariant m
and is jet-like. The dimensionless power counting parame
l!1 is introduced as the expansion parameter, and 12x
;l.

The power counting is simplest in the Breit frame, whe
,1;Ql and ,2;LQCD, so thatP1;Q, P2;LQCD, pX

1

;Ql, pX
2;Q, q1;Q, q2;Q. There are three importan

scales:~i! Q2, the invariant mass of the virtual photon,~ii !
Q2l, the invariant mass of the final state hadronic jet, a
~iii ! MT

2;LQCD
2 , the invariant mass of the target. The sca

Q2l2 does not play an important role in deep inelastic sc
tering; it does for the shape function inB decays@7#.

Particles withp2;Q, p1;Ql2 and p';Ql travel in
the n direction, and are described byn-collinear fields
jn,p2,p'

1 (x) in SCET. The large components of momentu

p2 andp' are explicit labels on the field, and momentum
orderQl2 is the Fourier transform of the coordinatex. This
is analogous to the use of label-momentum for nonrelativ
tic quarks in NRQCD@8#. Similarly, particles with momenta
p1;Q, p2;Ql2 andp';Ql travel in then̄ direction, and
are described byn̄-collinear fieldsj n̄,p1,p'

1 . Particles with

momenta of orderQl2 are described by ultrasoft fields. I
the Breit frame, the outgoing quark is described by
n-collinear field, and the incoming quark is described by
n̄-collinear field. The choice of coordinate axes is such t
the' components of label momentum are zero. The fie
will be referred to asjn , j n̄ for simplicity.

The Breit frame is the natural frame to use to descr
deep inelastic scattering nearx51. The power counting au
tomatically implies that 12x→0, by Eq.~14!. Nevertheless,
it is instructive to also give results in the target rest fram
The target frame is the best frame to compare deep inela
scattering withB→Xsg. The target rest frame is also th
natural frame to use for generic values ofx, and is an
x-independent frame. The boost to the Breit frame depe
on x, though for x'1, the boost factor is approximatel
constant. In the target rest frame, the incoming quark
momentum of orderLQCD, and is described by an ultraso
9-3
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ANEESH V. MANOHAR PHYSICAL REVIEW D68, 114019 ~2003!
field. The outgoing quark has momentum componentspX
1

;lLQCD/Q, pX
2;Q2/LQCD, pX

';Ql. The outgoing quark
turns into a jet moving in then direction, and so the outgoin
particle can be described by ann-collinear field.

IV. MATCHING THE CURRENT AT Q2

FROM QCD TO SCET

The electromagnetic current in QCD is matched onto
SCET current at the scaleQ. The QCD current is the opera
tor c̄gmc, and the SCET current isj̄nWngmWn̄

†
j n̄ in the

Breit frame, andj̄nWngmc in the target rest frame. Her
Wn,n̄ are collinear Wilson lines which are required by colli
ear gauge invariance. The matching condition will be co
puted in ~a! pure dimensional regularization, i.e. using d
mensional regularization to regulate both the ultraviolet a
infrared divergences, and~b! by using dimensional regular
ization for the ultraviolet divergences and off-shellness
the infrared divergences.

The one-loop vertex graph for the electromagnetic curr
in QCD is shown in Fig. 2, wherep1 is the incoming quark
momentum, andp25p11q is the outgoing quark momen
tum. The QCD one-loop graph gives

V52 ig2CFm2eE ddk

~2p!d
ga

p” 22k”

~k2p2!2
gm

3
p” 12k”

~k2p1!2
ga

1

k2 , ~16!

whereCF54/3 is the Casimir of the fundamental represe
tation.

We first consider the computation in pure dimensio
regularization, which greatly simplifies the computation
matching conditions in effective field theories. In pure d
mensional regularization, the matching coefficient is o
tained by computing the finite parts of on-shell diagrams a
dropping all the 1/e terms, regardless of whether they ari
from ultraviolet or infrared divergences@9#. The reason this
procedure works is that the ultraviolet divergences in the
and effective theories are canceled by the counterterms in
respective theories. The remaining 1/e terms are infrared di-
vergences, which must agree between the full and effec
theory. The 1/e terms cancel in the matching conditio
which is the difference between the full and effective theo
Thus the matching condition is the difference of the fin
parts of the full and effective theory computation. There

FIG. 2. One-loop vertex correction to the electromagnetic c
rent in QCD.
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one additional simplification—on-shell graphs in the effe
tive theory are usually scaleless integrals, which vanish
pure dimensional regularization, and so have no finite p
@9#. This eliminates the need to compute the effective the
graphs to determine the matching condition, which is giv
by the finite part of the full theory graphs.

We will compute Eq.~16! keeping the 1/e terms to com-
pare with the matching computation using an infrared re
lator. The incoming and outgoing quarks in Fig. 2 have
variant masses that vanish in the limitl→0, so the matching
coefficient is obtained by evaluating the graph on-shell w
p1

25p2
250. Evaluating the integral ind5422e dimensions

gives

V5
as

4p
CFgmF 1

eUV
2

2

e IR
2

2

2 ln
m2

Q2 14

e IR
2 ln2

m2

Q2

23 ln
m2

Q2 281
p2

6
G , ~17!

where we have distinguished the infrared and ultraviolet
vergences by the subscript one. However, it is important to
keep in mind that alle ’s are equal. The integral has a 1/e IR

2

infrared divergence arising from a combination of soft a
collinear divergences. It is this double divergence that le
to the Sudakov double-logarithmic behavior in the end-po
region. In pure dimensional regularization, the wav
function graphs are scaleless,

I w5
as

4p
CFip” F 1

eUV
2

1

e IR
G , ~18!

and vanish. The net on-shell matrix element of the elec
magnetic current in the full theory is the difference of Eq
~17!,~18! plus the counterterms, which gives~including the
tree-graph!

^p2u j mup1&5gmF 11
as

4p
CF
S 2

2

e IR
2

2

2 ln
m2

Q2 13

e IR

2 ln2
m2

Q2 23 ln
m2

Q2 281
p2

6
D G1c.t. ~19!

The 1/eUV terms cancel, so there is no counterterm. T
cancellation is required, since the electromagnetic curren
a conserved current and has no anomalous dimensio
QCD. The graphs in the effective theory are all scaleless,
vanish in dimensional regularization. The matching coe
cient of the current in the effective theory is the finite part
Eq. ~19!,

-

9-4
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FIG. 3. One loop correction to
the electromagnetic vertex in th
Breit frame from~a! ultrasoft,~b!

n-collinear and ~c! n̄-collinear
gluons.
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C~m!511
as~m!

4p
CFF2 ln2

m2

Q223 ln
m2

Q2281
p2

6 G . ~20!

The 1/e IR terms in Eq.~19!, which are the negative of th
1/eUV terms in the effective theory, give the anomalous
mension of the current in the effective theory, as we will s
in the next section.

The logarithms in the matching coefficientC(m) can be
minimized by choosing the matching scalem5Q, at which

C~Q!511
as~Q!

4p
CFF281

p2

6 G . ~21!

The matching computation can be repeated by regula
the infrared divergence by using off-shell initial and fin
states, withp1

25p2
25” 0. The graph in Fig. 2 gives

V5
as

4p
CFgmF 1

eUV
2 ln

Q2

m2 22 ln
p1

2

Q2 ln
p2

2

Q222 ln
p1

2

Q2

22 ln
p2

2

Q2 2
2p2

3 G , ~22!

where the 1/e term is purely an ultraviolet divergence, sinc
the infrared divergences have been regulated by the
shellness. The evaluation of Eq.~22! is considerably more
complicated than that of Eq.~17!. The wave-function graph
is

I w5
as

4p
CFip” F 1

eUV
112 ln

2p2

m2 G , ~23!

so that the matrix element in the full theory including t
tree-graph is

^p2u j mup1&5gmF11CF

as

4pS 2 ln
Q2

m2 22 ln
p1

2

Q2 ln
p2

2

Q2

22 ln
p1

2

Q2 22 ln
p2

2

Q2 1
1

2
ln

2p1
2

m2 1
1

2
ln

2p2
2

m2

212
2p2

3 D G1c.t. ~24!

The ultraviolet counterterm vanishes as before, as it m
since it does not depend on the choice of infrared regula
The matching condition is given by subtracting from E
~24! the matrix element in the effective theory. The effecti
theory integrals are no longer scaleless, since they depen
pi

2 , and must be evaluated to obtain the matching condi
if an off-shellness is used to regulate the infrared divergen
11401
-
e

g

ff-

t,
r.

.
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n
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The matrix element in the effective theory with an of
shellness is given in the next section, where the anoma
dimension of the SCET current is computed. Taking the d
ference of the result, Eq.~34!, and Eq.~24! gives the same
matching condition as before, Eq.~20!. The computation of
Eq. ~20! is clearly simpler using dimensional regularizatio
to regulate the infrared divergence, since it does not req
the effective theory computation at this stage, leaving it
the next section where it properly belongs.

V. ANOMALOUS DIMENSION OF THE SCET CURRENT

The electromagnetic current in QCD is matched at
scaleQ onto the SCET current. In the Breit frame, the cu
rent is

j m5C~Q!j̄n,QWngmWn̄
†
j n̄,Q , ~25!

where then-collinear quark has label momentumn̄•p5Q,
p'50, and then̄-collinear quark has label momentumn•p
5Q, p'50. C(Q) is the matching coefficient computed i
Eq. ~21!.

In the target rest frame, the current is

j m5C~Q!j̄n,q2Wngmcu , ~26!

wherecu is an ultrasoft quark,Wn is a collinear Wilson line,
and jn,q2 is an n-collinear quark field with labelsn̄•p
5q2, p'50.

A. Breit frame

The one-loop anomalous dimension of the SCET curr
in the Breit frame is given by the graphs in Fig. 3, as well
wave-function renormalization graphs.

The ultrasoft graph, Fig. 3~a!, gives

I s52 ig2CFm2eE ddk

~2p!d
na

1

n•~p22k!1 i01 gm

3
1

n̄•~p12k!1 i01
n̄a

1

k21 i01 . ~27!

Doing thek1 integral by contours and using the substituti
k25xp1

2 gives
9-5



he
a-

as
D,

rks

ry

ul-
q.
re

t
the

i-
g.
the

he
nts

he
ive

ANEESH V. MANOHAR PHYSICAL REVIEW D68, 114019 ~2003!
I s52g2CFm2eE
0

` dx

2pE dd22k'

~2p!d22

3
gm

@12x1 i01#@p2
1p1

2x2k'
2 1 i01#

5
g2

8p2 CFgmm2eE
0

`

dx
G~e!@2p2

1p1
2x#2e

@12x1 i01#

52
g2

8p2 CFgmm2eG~e!@p2
1p1

2#2ep cscep

52
g2

8p2 CFF 1

e2 2
1

e
ln

p2
1p1

2

m2 1
1

2
ln2

p2
1p1

2

m2 1
p2

4 G .
~28!

The n-collinear gluon graph Fig. 3~b! gives

I n52 ig2CFm2eE ddk

~2p!d

n”̄na

2

n” n̄•~p22k!

2~p22k!21 i01
gm

3
1

2n̄•k1 i01
n̄a

1

k21 i01

522ig2CFm2eE ddk

~2p!d

n̄•~p22k!

~p22k!21 i01 gm

3
1

2n̄•k1 i01

1

k21 i01 . ~29!

Evaluating thek1 integral by contours, and lettingk2

5zp2
2 gives

I n5g2CFm2egmE
0

1 dz

2pE dd22k'

~2p!d22

~12z!

z@z~12z!p2
22k'

2 #

52
g2

8p2 m2egmE
0

1

dzG~e!
~12z!@2p2

2z~12z!#2e

z

52
g2

8p2 CFm2egm
G~e!G~2e!G~22e!

G~222e!
@2p2

2#2e

52
g2

8p2 CFgmF2
1

e22
1

e
1

1

e
ln

2p2
2

m2 2
1

2
ln2

2p2
2

m2

1 ln
2p2

2

m2 221
p2

12G . ~30!

The n̄-collinear gluon graph Fig. 3~c! gives
11401
I n̄52 ig2CFm2eE ddk

~2p!d
na

1

2n•k1 i01
gm

3
n”̄n•~p12k!

2~p12k!21 i01

n” n̄a

2

1

k21 i01
, ~31!

which is Eq.~30! with p2
2→p1

2,

I n̄52
g2

8p2 CFgmF2
1

e22
1

e
1

1

e
ln

2p1
2

m2 2
1

2
ln2

2p1
2

m2

1 ln
2p1

2

m2 221
p2

12G . ~32!

The remaining graphs are the wave-function graphs. T
ultrasoft gluon contribution to wave-function renormaliz
tion vanishes in the Feynman gauge, sincen25n̄250. The
collinear wave-function renormalization graph is the same
the massless quark wave-function renormalization in QC
Eq. ~23!, since the interaction ofn-collinear quarks with
n-collinear gluons is the same as the interaction of qua
with gluons in full QCD.

The matrix element of the current in the effective theo
is given by the sum of Eqs.~28!,~30!,~32! and subtracting
half the wave-function renormalization Eq.~23! for each ex-
ternal quark. The net result is

^p2u j mup1&bare5
as

4p
CFF 2

e2 1
3

e
2

2

e
ln

Q2

m2 2 ln2
Q2

m2

12 ln
2p1

2

m2 ln
Q2

m212 ln
2p2

2

m2 ln
Q2

m2

22 ln
2p1

2

m2 ln
2p2

2

m2 2
3

2
ln

2p1
2

m2

2
3

2
ln

2p2
2

m2 172
5p2

6 G . ~33!

The ultraviolet divergence of this result agrees with the
traviolet divergence in the effective theory inferred from E
~19!. Exactly on-shell, the effective theory integrals a
scaleless and vanish because the 1/eUV ultraviolet diver-
gences cancel the 1/e IR infrared divergences. The ultraviole
divergence in the effective theory should therefore be
negative of the 1/e IR terms in Eq.~19!, which agrees with the
divergence in Eq.~33!. The SCET current operator is mult
plicatively renormalized, and there is no operator mixin
This allows one to compute the anomalous dimension of
SCET current directly from the 1/e IR terms in the full theory
matrix element. In cases with operator mixing, the 1/e IR
terms in the full theory matrix element give the value of t
anomalous dimension matrix times the operator coefficie
evaluated at the matching scale.

The infinite part of the matrix element is canceled by t
vertex and wave-function counterterms in the effect
theory so that the renormalized matrix element is
9-6
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^p2u j mup1& ren5
as

4p
CFF2 ln2

Q2

m2 12 ln
2p1

2

m2 ln
Q2

m2

12 ln
2p2

2

m2 ln
Q2

m222 ln
2p1

2

m2 ln
2p2

2

m2

2
3

2
ln

2p1
2

m2 2
3

2
ln

2p2
2

m2 172
5p2

6 G .
~34!

The infrared divergence aspi
2→0 in the full theory calcula-

tion, Eq. ~24! agrees with the infrared divergence of the e
fective theory calculation, Eq.~34!, and the difference gives
the matching condition, Eq.~20!, which is free of infrared
divergences, and depends only onQ2, not onpi

2 .
The ultraviolet counterterm for the ultrasoft graph F

3~a!, n-collinear graph Fig. 3~b! and n̄-collinear graph Fig.
3~c! and wave-function graph are from Eq
~28!,~30!,~32!,~23!

ultrasoft:
as

4p
CFF 2

e22
2

e
ln

p2
1p1

2

m2 G ,
n-collinear:

as

4p
CFF2

2

e22
2

e
1

2

e
ln

2p2
2

m2 G ,
n̄-collinear:

as

4p
CFF2

2

e22
2

e
1

2

e
ln

2p1
2

m2 G ,
wave function:

as

4p
CFF1

e G , ~35!

respectively. The individual counterterms are sensitive to
infrared through their dependence on the small compon
of momentum,p1

2 andp2
1 . The total counterterm is the sum

of the four terms above,

c.t.5
as

4p
CFF2

2

e22
3

e
2

2

e
ln

p2
1p1

2m2

p1
2p2

2 G ,
5

as

4p
CFF2

2

e2 2
3

e
2

2

e
ln

m2

p2
2p1

1G ,
5

as

4p
CFF2

2

e2 2
3

e
2

2

e
ln

m2

Q2G , ~36!

and depends only on the label momentap2
2 and p1

1 which
are bothQ. The counterterms Eq.~36! give the anomalous
dimension for the coefficient of the current in the effecti
theory,

m
dC~m!

dm
5g1~m!C~m!,

g1~m!52CF

as~m!

4p F4 ln
m2

Q2 16G . ~37!
11401
.

e
ts

The SCET current anomalous dimension depends onm,
because the one-loop diagrams have 1/e2 terms from com-
bined collinear and soft divergences. Consistency of the
fective theory implies that to all orders, the anomalous
mension is at most linear in lnm, as will be shown in Sec
IX.

The cancellation of 1/e ln p1
2 and 1/e ln p2

1 between the
soft and collinear graphs might suggest that the coefficie
in the two sectors must be the same, i.e. that the two con
butions must have the same value ofas . This suggests tha
SCET should use two-stage running, in which all coupli
constants are evaluated at a single scalem, unlike NRQCD,
which requires one-stage running using the velocity ren
malization group@8,10#. In NRQCD, there is a cancellatio
of infrared divergences between the soft and ultrasoft sec
that naively suggests that both should have the same valu
as . However, this is not the case, and a proper treatmen
NRQCD has the soft coupling constant evaluated at the s
mn and ultrasoft coupling constant evaluated at the sc
mn2 @8,10#. It has been pointed out that one-stage and tw
stage running give the same result in SCET for quanti
which have been computed so far@11#. In NRQCD, the dif-
ference between one-and two-stage running first occur
order v2 in the power counting. SCET anomalous dime
sions have so far been computed only to leading order inl,
and do not distinguish between one-stage and two-stage
ning.

B. Target rest frame

In the target rest frame, the electromagnetic current in
effective theory contains ann-collinear quark and an ultra
soft quark. The diagrams in the effective theory in the tar
rest frame are those in Fig. 4 and wave-function graphs.

Note that there is non̄-collinear graph, since the curren
Eq. ~25! does not containWn̄ in the target rest frame.

Then-collinear graph Fig. 4~b! is the same as in the Bre
frame, and is given by Eq.~30!. The result is frame-
independent, since the final expression only depends onp2

2,
not on the individual componentsp2

6 or the momentump1 of
the incoming quark. The nonzero wave-function renorm
ization graphs also agree between the two theories.
n-collinear wave-function renormalization is the same as
corresponding graph in the Breit frame, and the ultras
wave-function renormalization of the ultrasoft quark is t
same as then̄-collinear wave-function renormalization of th
n̄ quark, since both are equal to wave-function renormali

FIG. 4. One loop correction to the electromagnetic vertex in
target rest frame from~a! ultrasoft and~b! n-collinear gluons.
9-7
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tion of a massless quark in QCD. Each wave-function gra
depends only onp2 for a single particle.

The remaining graph is the ultrasoft graph Fig. 4~a!. The
ultrasoft graph in the target rest frame must contain the c
tributions of both the ultrasoft andn̄-collinear graphs in the
Breit frame. The ultrasoft graph in the target rest frame i

I 52 ig2CFm2eE ddk

~2p!d
na

1

n•~p22k!1 i01
gm

3
p” 12k”

~p12k!21 i01
ga

1

k21 i01

52 ig2CFm2eE ddk

~2p!d

3
gm~p” 12k” !n”

@n•~p22k!1 i01#~p12k!21 i01

1

k21 i01
.

~38!

Doing thek1 integral, and usingk15zp1
1 gives

I 52g2CFm2egmE
0

1 dz

2pE dd22k'

~2p!d22

3
p1

1~12z!

~p2
12p1

1z!@z~12z!p1
22k'

2 #

5
g2

8p2 CFm2egmG~e!E
0

1

dz
p1

1~12z!

~p2
12p1

1z!
@2p1

2z~12z!#2e.

~39!

The ratiop2
1/p1

1 is

p2
1

p1
1 512x5

p2
2

p1
1p2

2 5
xp2

2

Q2 '
p2

2

Q2 5O~l!. ~40!

In SCET, terms of order 12x are of order the expansio
parameterl in the power counting. Equation~39! can be
evaluated in the limitp2

1/p1
1→0, which simplifies the com-

putation, and gives

I 5
g2

8p2 CFgmH F1

e
2 ln

2p1
2

m2 G S 11 ln
2p2

1

p1
1 D

1S 22
p2

3
2

1

2
ln2

2p2
1

p1
1 D J . ~41!

This result is identical to the sum of the ultrasoft a
n̄-collinear graphs in the Breit frame, given in Eq
~28!,~32!.1 The ultrasoft graph in the target rest frame has

1The components ofpi have different values in the two frame
11401
h

n-

o

1/e2 divergence. Since it is the sum of the ultrasoft a
n̄-collinear graphs in the Breit frame, these graphs must h
1/e2 terms of opposite sign, which agrees with the expli
one-loop computation in Eqs.~28!,~32!. This cancellation is
expected to persist at higher orders.

The 1/e term in Eq.~41! depends on the infrared regulato
throughp2

2, using Eq.~40!. This infrared dependence is can
celed by then-collinear graph, which can only depend onp2

2.
The analog of Eq.~35! is

ultrasoft:
as

4p
CFF2

2

e
2

2

e
ln

2p2
1

p1
1 G ,

n-collinear:
as

4p
CFF2

2

e22
2

e
1

2

e
ln

2p2
2

m2 G ,
wave function:

as

4p
CFF1

e G , ~42!

so that the total counterterm is

c.t.5
as

4p
CFF2

2

e22
3

e
2

2

e
ln

p2
1m2

p1
1p2

2 G ,
5

as

4p
CFF2

2

e2 2
3

e
2

2

e
ln

m2

p1
1p2

2G , ~43!

which is the same as Eq.~36!, and leads to the same anom
lous dimension, Eq.~37!.

The on-shell matrix element in the target rest frame h
the same value as in the Breit frame, and leads to the s
matching condition Eq.~20!.

VI. MATCHING AT Q2
„1Àx… ONTO THE PARTON

DISTRIBUTION FUNCTION

At the scaleQ2(12x), the invariant mass of the fina
hadronic statepX

2 can be treated as large, and the final st
can be integrated out. This is done by integrating out
n-collinear modes from the effective theory. Since the c
rent Eqs.~25!,~26! containsjn fields which are integrated
out, one matches the product of two currents, rather tha
single current, onto the effective theory belowQ2(12x).
The matching coefficients are determined by computing
matrix elements of

Wmn5
1

2pE d4xeiq•xj m~x! j n~0!, ~44!

at fixed x and q2. Note that we have a product of current
rather than a time-ordered product. The matrix element of
product of currents is given by the discontinuity in the mat
element of the time-ordered product.2 We will use this pro-

but pi
2 andp2

1/p1
1 are equal, since the Breit frame is obtained fro

the target frame by a boost along thez axis.
2The discontinuity of a diagram containingi01 terms is defined

by taking the difference of the diagram, and the diagram withi01

→ i02.
9-8
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cedure, since time-ordered products can be computed u
conventional Feynman diagram perturbation theory.

A. Target rest frame

The tree graph for the product of two currents withjn
integrated out is shown in Fig. 5. The spin averaged ma
element of the tree level graph is

Disc
1

2p

1

2
Tr p”gn

in”

2

n̄•~p1q!

~p1q!21 i01 gm

5Disc
i

2p
Tmn

p1~p21q2!

~p1q!21 i01

'Tmnd~11q1/p1!, ~45!

where

Tmn52gmn1
pmnn1pnnm

n•p
. ~46!

Sincep is at rest,pm}vm5(1,0,0,0)

Tmn52gmn1vmnn1vnnm, ~47!

independent of the momentum of the target.
Define the quark distribution operator by@6#

Oq~r 1!5
1

4pE2`

`

dje2 i jr 1
c̄u~nj!n”Y~nj,0!cu~0!,

~48!

whereY is an eikonal Wilson line from 0 tonj containing
ultrasoft gluonsAu ,

Y~nj,0!5P expF2 igE
0

j

n•Au~nz!dzG ~49!

and cu are ultrasoft quark fields. The Feynman rules a
given by taking the discontinuity of the diagram, since t
operator is a product, not a time-ordered product. The qu
distribution in a targetT with momentumP is defined by@6#

f q/T~x!5^T,PuOq~xP1!uT,P&. ~50!

The only difference between the quark distribution opera
Eq. ~48! and the conventional Collins-Soper definition is t
replacement of the full theory quark field by the ultras
quark field in SCET.

The spin-averaged tree-level matrix element of the qu
distribution operator~see Fig. 6! is

FIG. 5. Tree graph for the product of two currents in the tar
rest frame.
11401
ing

ix

e

rk

r

t

k

Disc
1

4p

i

n•~p2r !

1

2
Tr n” p”

Disc
1

4p

2ip1

p12r 11 i01

5d~12r 1/p1!, ~51!

so the tree level relation is

Wmn5TmnOq~2q1!. ~52!

This is an operator relation independent of the matrix e
ment sinceTmn in Eq. ~47! can be written in a form indepen
dent of the target state. The minus sign in the argument ofOq
arises becauseq is an incoming momentum andr is an out-
going momentum. Equation~52! can also be written as a
convolution

Wmn5TmnE dr 1

r 1
dS 12

2q1

r 1 DOq~r 1!. ~53!

It is convenient to writeq152yp1, andr 15wp1 so that
Eq. ~53! becomes

Wmn~q152yp1!5TmnE dw

w
dS 12

y

wDOq~wp1!.

~54!

Note thaty andw in this equation are defined with respect
the parton momentump rather than the hadron momentumP.

The analysis has been restricted to spin-independ
structure functions for simplicity. It is straightforward to ge
eralize this to spin-dependent structure functions, which
volve spin-dependent quark distribution operators@12#.

The one-loop graphs for the matrix element of the curr
product are shown in Fig. 7. Graphs of Figs. 7~a!–~d! have
the same value in the theories above and belowQ2(12x),
since the interaction of an ultrasoft gluon with a colline
quark is the same as the vertex generated by the Wilson
Y in the operatorOq , and the external ultrasoft quark field
are unchanged at the matching scale. The matching cor
tion is given by Figs. 7~e!–~g!; these graphs are absent belo
Q2(12x) since then-collinear modes have been integrat
out.

The collinear graph Fig. 7~e! gives for the spin-average
matrix element

t FIG. 6. Quark matrix element of the quark distribution operat
9-9
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FIG. 7. One loop correction to the electromagnetic current product in the target rest frame. Graphs~a!, ~b! and~e! also have mirror image
graphs where the gluon attaches to the other side.
a
on
Eq.

,

n

s.
I c,15Disc
g2

2pE ddk

~2p!d
Tr

1

2
p”gn

3
n” n̄•~p1q!

2~p1q!2

n”̄na

2

n” n̄•~p1q2k!

2~p1q2k!2
gm

1

2n̄•k
n̄a

1

k2

5Disc
g2

2p
Tmnp1E ddk

~2p!d

n̄•~p1q!

~p1q!2

3
n̄•~p1q2k!

~p1q2k!2

1

2n̄•k

1

k2 . ~55!

Comparing with Eq.~29! gives

I c,15Disc
i

2p S 2g2

8p2 D p1Tmn
n̄•~p1q!

~p1q!2

3F2
1

e2 2
1

e
1

1

e
ln

2~p1q!2

m2

2
1

2
ln2

2~p1q!2

m2 1 ln
2~p1q!2

m2 221
p2

12G
'Disc

i

2p S 2g2

8p2 DTmn
1

~12y!1 i01

3F2
1

e2 2
1

e
1

1

e
ln

Q2~y21!2 i01

ym2

2
1

2
ln2

Q2~y21!2 i01

ym2

1 ln
Q2~y21!2 i01

ym2 221
p2

12Gu~y!, ~56!
11401
wherey>0 sinceq1,0, andq252Q2/q1.0. The kine-
matic region whereq2,0 is infinitely far away in the effec-
tive theory, and is described by the effective theory with
different value of the label momentum. The graph with glu
attached to the other vertex gives the same contribution,
~56!.

The collinear graph Fig. 7~f! is given by the tree diagram
times the negative of the wave-function diagram Eq.~23!
evaluated withp2→(p1q)2, and gives

I c,25Disc
i

2p S 2
g2

8p2DTmn
p1~p21q2!

~p1q!21 i01

3F 1

2e
1

1

2
2

1

2
ln

2~p1q!2

m2 G
'Disc

i

2p S 2
g2

8p2DTmn
1

~12y!1 i01

3F 1

2e
1

1

2
2

1

2
ln

Q2~y21!2 i01

ym2 Gu~y!. ~57!

The graph Fig. 7~g! vanishes, since the collinear gluo
emission vertex is proportional ton̄a, andn̄250.

The total collinear contribution is the sum of twice Eq
~55! and Eq.~57!,

I c5Disc
i

2p S 2g2

8p2 DTmn
1

~12y!1 i01F2
2

e2 2
3

2e

1
2

e
ln

Q2~y21!2 i01

ym2 2 ln2
Q2~y21!2 i01

ym2

1
3

2
ln

Q2~y21!2 i01

ym2 2
7

2
1

p2

6 G . ~58!
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The collinear counterterms cancel the 1/e terms, so that the
remaining matching contribution is finite. The colline
counterterm contribution (ln2p2)/e5@ln Q2(y21)#/e is no
longer infrared sensitive, since the scaleQ2(12y) is now
considered a large scale.

The discontinuity of the remaining terms can be written
terms of1 distributions. The distribution 1/(12y)1 is de-
fined by

E
0

1

dy f~y!
1

~12y!1
[E

0

1

dy
f ~y!2 f ~1!

~12y!1
, ~59!

so that

E
0

1

dy
1

~12y!1
50. ~60!

The discontinuity of

i

2p

ln~y212 ih!

12y1 ih
u~y! ~61!

is given by the difference of the expression forh→01 and
h→02,

Disc
i

2p

ln~y212 ih!

12y1 ih
u~y!5

1

12y
u~0<y,1!. ~62!

The singular terms aty51 can be obtained by integratin
Eq. ~59! over 0<y<L, whereL.1. Then

i

2pE0

L

dy
ln~y212 ih!

12y1 ih
52

i

4p
@ ln2L2~2 ip!2#,

~63!

irrespective of the sign ofh. This has no discontinuous par
so the integral of the discontinuity is zero. This gives

Disc
i

2p

ln~y212 ih!

12y1 ih
u~y!5

1

~12y!1
. ~64!

Similarly,

i

2pE0

L

dy
ln2~y212 ih!

12y1 ih

52
i

6p
@ ln3L2~2 ip!3sgnh#, ~65!

so that

Disc
i

2pE0

L

dy
ln2~y212 ih!

12y1 ih
52

p2

3
, ~66!

and
11401
Disc
i

2p

ln2~y212 ih!

12y1 ih
u~y!

52
p2

3
d~12y!1F2 ln~12y!

12y G
1

. ~67!

Using the above results gives for Eq.~58!,

Disc[TmnM~y!,

M~y!5
as

2p
u~0<y<1!

3H 2F ln~12y!

(12y) G
1

1F2 ln
Q2

m2 2
3

2G 1

(12y)1

1F ln2
Q2

m2 2
3

2
ln

Q2

m21
7

2
2

p2

2 Gd~12y!J , ~68!

which defines the matching functionM(y). Formally, 1
2y;l is the expansion parameter so lny5ln@11(12y)#
→0, which was used to simplify Eq.~68!. The matching
condition at one-loop is therefore

Wmn5TmnE dr 1

r 1 FdS 12
2q1

r 1 D
1MS 2q1

r 1 D GOq~r 1!. ~69!

The moments of this expression are~see the Appendix!

MN~M!5
as

2p F S 3

2
22 ln

Q2

m2D (
j 51

N21
1

j
12 (

j 51

N21
H j

j
1 ln2

Q2

m2

2
3

2
ln

Q2

m21
7

2
2

p2

2 G , ~70!

which asN→` is

MN~M!→ as

2p
CFF S 3

2
22 ln

Q2

m2D ~ ln N1gE!1~ ln N1gE!2

1
p2

6
1 ln2

Q2

m22
3

2
ln

Q2

m2 1
7

2
2

p2

2 G . ~71!

We have dropped terms of order 12y times the terms re-
tained in Eq.~68!. All such terms have moments which van
ish asN→`, so Eq.~71! is valid up to corrections which
vanish asN→`. Letting

N̄5NegE, ~72!

one finds
9-11
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MN~M!→ as~m!

2p
CFF ln2

Q2

N̄m2
2

3

2
ln

Q2

N̄m2

1
7

2
2

p2

3 G . ~73!

The logarithms are minimized ifm5Q2/N̄, so one can
match from currents onto the bilocal operator at this sc
using

MN~M!5
as~Q/AN̄!

2p
CFF7

2
2

p2

3 G . ~74!

The matching condition has no large logarithms, and so d
not depend onN̄ in the N̄→` limit, except through the ar-
gument ofas .

FIG. 8. Tree graph for the product of currents in the Breit fram
11401
le

es

B. Breit frame

The computation of the matching condition in the Bre
frame is similar to that in the target rest frame. The tree-le
graph is given in Fig. 8.

It gives the matching relation Eq.~53! where the quark
distribution operator in the effective theory is now

Oq~r 1!5
1

4pE2`

`

dze2 izr1
@ j̄ n̄Wn̄#~nz!

3n”Yn~z,0!@Wn̄
†
j n̄#~0! ~75!

which has the same form as Eq.~48!, except the externa

fields aren̄-collinear quarks instead of ultrasoft quarks. T
collinear Wilson lines are required by collinear gauge inva
ance.

The one-loop graphs in the Breit frame are given in F
9. All the graphs except Figs. 9~e!–~g! are also present in the
effective theory, so only these graphs need to be compu
for the matching condition. The graphs are identical to
corresponding graphs in the target rest frame, so the ma
ing condition is the same, Eqs.~68!,~69!, with the replace-
ment of Eq.~48! by Eq. ~75!.

.

FIG. 9. One loop correction to the electromagnetic current product in the Breit frame. Graphs~a!, ~b!, ~e! and ~h–j! also have mirror
image graphs where the gluon attaches to the other side.
9-12
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FIG. 10. One loop correction to the quark distribution function. The double line is the ultrasoft Wilson lineY.
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VII. RENORMALIZATION OF PARTON DISTRIBUTIONS

Parton operator renormalization gives the standard D
LAP evolution for parton distribution functions. The comp
tation of the anomalous dimension in the target rest fram
identical to the computation using QCD quarks in Ref.@6#.
This calculation is sketched here, so that results can be c
pared with the computation in the Breit frame. We will on
discuss renormalization of quark operators, which gives
evolution of the flavor nonsinglet quark distribution. Sing
evolution mixes quark and gluon operators. This compli
tion does not shed additional light on SCET, and will
omitted here.

A. Target rest frame

The renormalization of the~nonsinglet! quark operator
can be determined by evaluating its matrix element in a f
quark state of momentump. The spin-averaged tree-leve
matrix element ofOq(wp1) is given by Fig. 6, and is

^puOq~wp1!up&5d~12w!. ~76!

The one loop graphs are those of Fig. 10, as well as wa
function graphs.

To compute the anomalous dimensions, we only need
divergent parts of the diagrams. Figure 10~a! is the disconti-
nuity of

I 15
g2CF

4p E ddk

~2p!d

1

2
Tr p”

3
1

n•~p2r !1 i01 nm
1

n•~p2k2r !1 i01 n”

3
p”2k”

~p2k!21 i01
gm

1

k21 i01 . ~77!

Evaluating thek2 integral by contours, doing thek' inte-
gral, and using the substitutingk15zp1 gives for the infi-
nite part

I 15 i
g2CF

16p3eE0

1

dz
~12z!

~12w1 i01!~12z2w1 i01!
.

~78!

The integral has a discontinuity for 0<w<1. As long asw
51, the discontinuity is
11401
-

is

m-

e
t
-

e

e-

e

DiscI 15
g2CF

8p2e

1

12wE0

1

dz~12z!

3d~12z2w1 i01!

5
g2CF

8p2e

w

12w
u~0<w<1!. ~79!

The singular terms asw→1 can be evaluated by a metho
similar to that used for Eqs.~64,67! to give

DiscI 15
g2CF

8p2e S w

12wD
1

u~0<w<1!. ~80!

Figure 10~b! is the discontinuity of

I 25
g2CF

4p E ddk

~2p!d

1

2
Tr p”gm

3
p”2k”

~p2k!21 i01

n”

n•~p2k2r !1 i01

3
p”2k”

~p2k!21 i01
gm

1

k21 i01 . ~81!

The same manipulations as the previous case give

I 25 i
g2CF

16p3eE0

1

dz
z

12z2w1 i01 , ~82!

so that

DiscI 25 i
g2CF

16p3eE0

1

dzz~22p i !

3d~12z2w1 i01!

5
g2CF

8p2e
~12w!u~0<w<1!.

~83!

Figure 10~c! vanishes, sincen250. Subtracting half the
wave-function graph for each external quark line gives

2
1

2
I w52

g2CF

16p2e
d~12w!. ~84!

The infinite part of the matrix element is the sum of twi
Eq. ~80!, Eq. ~83!, and Eq.~84!,
9-13
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g2CF

8p2e
u~0<w<1!F2S w

12wD
1

112w2
1

2
d~12w!G

5
g2CF

8p2e F 11w2

~12w!1
1

3

2
d~12w!Gu~0<w<1!

5
as

2pe
Pq←q~w!, ~85!

in terms of the standard Altarelli-Parisi splitting kernel

Pq←q~w!5CFF 11w2

~12w!1
1

3

2
d~12w!Gu~0<w<1!.

~86!

Equation~85! gives the operator renormalization equati

Oq
(0)~yp1!5E dw

w
ZS y

wDOq~wp1!, ~87!

with

Z~z!5d~12z!1
g2

8p2e
Pq←q~z!. ~88!

If one writesyp15k1 andwp15,1, then

Oq
(0)~k1!5E

2`

` d,1

,1
ZS k1

,1D Oq~,1!, ~89!

which makes no reference to the quark momentump used to
compute the renormalization factor. The renormalization
invariant under boosts in thez direction, under which1
components of momentum all get rescaled by a comm
factor,p1→lp1. Equation~89! is valid for k1.0. One can
derive a similar expression fork1,0. The two expressions
can be combined into

Oq
(0)~k1!5E

2`

` d~,1/k1!

,1/k1
ZS k1

,1D Oq~,1!

5E
2`

` d,1

u,1u
ZS k1

,1D Oq~,1!, ~90!

which is valid for either sign ofk1.
Differentiating Eq.~90! with respect tom gives the renor-

malization group equation for the quark distribution opera

m
d

dm
Oq~k1!5

as

p E
2`

` d~,1/k1!

,1/k1

3Pq←qS k1

,1D Oq~,1!. ~91!

Taking moments~see the Appendix for the definitions! gives

m
d

dm
MN

(6,`)@Oq~k1!#52g2,NMN
(6,`)@Oq~k1!#, ~92!
11401
s

n

r

where

g2,N52
as~m!

p
MN@Pq←q~z!#

5
as~m!

2p
CFF4(

j 52

N
1

j
2

2

N~N11!
11G , ~93!

is the anomalous dimension. For large values ofN,

g2,N→ as~m!

2p
CF@4 ln N̄23#. ~94!

The infinite momentsMN
`@Oq(k1)# are local twist-two

quark operatorsc̄un” ( in•DJ )N21cu/2N, so the target matrix
elements ofMN

`@Oq(k1)# give the familiar moment sum
rules for deep inelastic scattering. The momentsMN

` are de-
fined by integratingk1 over @2`,`#, whereas the moment
of quark distribution functions are over 0<x<1, i.e.
0<k1<P1. The matrix element Eq.~50! vanishes foruxu
.1, and its value for negative values ofx is related to the
antiquark distribution,

f q/T~2x!52 f q̄/T~x!. ~95!

Thus the matrix elements ofMN
` for evenn, which are the

target matrix element of local twist-two operators, are eq
to the even moments of the structure function, which su
over quarks and antiquarks. The matrix elements ofMN

` for
odd n vanish, and do not imply any sum rule for the od
moments of the structure function. The anomalous dim
sions of the local twist two operators agree with the mome
of the Altarelli-Parisi kernel, Eq.~93!.

In dimensional regularization, the finite parts of the on
loop quark distribution operator matrix element vanish o
shell, sincep'50, p250, and the loop integrals are scal
less. The matrix element is therefore given by its tree-le
value d(12x). The matrix elements of the twist-two loca
operators also vanish on-shell, for the same reason. This
shows that the quark distribution operator is equivalent to
moments~this is not true for theB decay shape function@7#!.
The matrix element for off-shell quarks contains logarithm
of p2/m2, so the structure function should be evolved dow
to some hadronic scale before taking the target matrix
ment so that there are no large logarithms in the matrix e
ment. An important difference from theB→Xsg shape func-
tion @3,7# is that there is no additional matching that has to
performed at the scaleQ2l2, i.e. Q2/N̄2.

The moment analysis for deep inelastic scattering
been discussed in detail, even though it may be familiar
many readers. The reason is that there are important di
ences between the structure functions in deep inelastic s
tering and the shape function in the decay of heavy mes
having to do with the range of thek1 integration in the
moment of the quark distribution operator. The results foB
decays will be presented elsewhere@7#.
9-14
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B. Breit frame

Structure function evolution in the Breit frame is given b
the graphs in Figs. 9~a–d!,~h–j!. Many graphs vanish using
n25n̄250. The only nonzero graphs are Figs. 9~b,h–j!.

The ultrasoft graph, Fig. 9~b!, appears to have the form o
the ultrasoft vertex correction Eq.~27! with an additional
propagator for the intermediatejn propagator. There is on
very important difference, however. At scales belowQ2(1
2x), the momentump2

1 of the intermediate quark is of or
der Ql, whereas the momentum of the ultrasoft gluon is
order Ql2. Thus the power counting rules of the effectiv
theory imply that thejn propagator denominator in Eq.~27!,
1/@n•(p22k)# must be expanded in a power series ink, the
momentum space analog of the multipole expansion.3 The
resulting integral vanishes, so Fig. 9~b! is zero.

The collinear graph Fig. 9~i! gives

g2CF

4p

1

2
Tr

1

2
p1n”̄gn

n”

n•~p2r !1 i01

3E ddk

~2p!d
na

1

n•~2k!
gm

3
n”̄n•~p2k!

2~p2k!21 i01

n” n̄a

2

1

k21 i01 , ~96!

and Fig. 9~j! gives

g2CF

4p

1

2
Tr

1

2
p1n”̄gn

n”

n•~p2r 2k!1 i01

3E ddk

~2p!d
na

1

n•k
gm

3
n”̄n•~p2k!

2~p2k!21 i01

n” n̄a

2

1

k21 i01 , ~97!

where the relative minus sign inn̄•k is because the vertex i
from W† rather thanW. The sum of the two graphs has

1

n•~p2r !1 i01 2
1

n•~p2r 2k!1 i01

52
n•k

@n•~p2r !1 i01#@n•~p2r 2k!1 i01#
, ~98!

and gives the integral

3This is analogous to the multipole expansion for the ultras
fields in NRQCD@8,13#. The multipole expansion is automatic
one makes an additional field redefinition; see the discussion
Eq. ~101!.
11401
f

4g2CFTmnp1
1

n•~p2r !1 i01

3E ddk

~2p!d

1

n•~p2k2r !1 i01

3
n•~p2k!

~p2k!21 i01

1

k21 i01 , ~99!

which is the same asI 1 in Eq. ~77!, and so gives Eq.~80! for
the running of the structure function.

There is no analog of graph Fig. 10~b!, so its contribution
Eq. ~83! is missing. It is proportional to 12w;l, and so is
of the same order as higher order terms in the power co
ing which we have dropped.

The wave-function contribution from the collinear grap
is the same as the full theory wave-function contribution, a
gives Eq.~84!. The structure function evolution kernel in th
Breit frame is

Pq←q~w!2CF~12w!. ~100!

The moments of (12w) vanish as 1/N2 for largeN. One can
use Pq←q(w) for the evolution kernel in the Breit frame
since the difference from Eq.~100! is higher order inl.4

The entire running of the structure function in the Bre
frame is from collinear graphs. The ultrasoft graphs vani
This same result has also been obtained in studying
renormalization of event shape variables using SCET@14#.

In SCET, one usually makes an additional field redefi
tion

j n̄~x!5Yn̄~x,2`!j n̄
(0)

~x! ~101!

where Yn̄ is an ultrasoft Wilson line. The newn̄-collinear

fields j n̄
(0) no longer interact with ultrasoft gluons. In term

of these fields, Eq.~75! becomes

Oq~k1!5
1

4pE2`

`

dze2 izk1
@ j̄ n̄

(0)
Wn̄#~nz!Yn̄~nz,2`!†

3Yn~z,0!n”Yn̄~0,2`!@Wn̄
†
j n̄

(0)
#~0!. ~102!

After the field redefinition, the collinear graphs are the sa
as before. The ultrasoft graphs have propagators which
independent of the collinear quark momentump, since the
collinear quark momentump does not enter into the Wilson
line. This automatically enforces the multipole expansio
The ultrasoft graphs vanish, since they are scaleless and
entire running of the structure function is from the colline
graphs. This is precisely what we found above.

ft

er

4Consistent power counting in the Breit frame automatically i
plies that 12x;l!1, so the Breit frame anomalous dimension E
~100! is not valid away fromx→1. The target rest frame, howeve
can also be used forx far from 1.
9-15
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VIII. DEEP INELASTIC SCATTERING AT ONE LOOP

The deep inelastic scattering structure function to o
loop has been computed in Ref.@15#. The moments of the
nonsinglet structure functionF2/(2x) are

MN5F11
as

4p
B2,N

NS1gNln
m

QGAN~m!, ~103!

whereAN(m) are the matrix elements of the twist-two o
erators renormalized atm. The anomalous dimensiongN is
equal tog2,N in Eq. ~93!, and

B2,N
NS5CFF3(

j 51

N
1

j
24(

j 51

N
1

j 2 2
2

N~N11! (
j 51

N
1

j

14(
s51

N
1

s (
j 51

s
1

j
1

3

N
1

4

N11
1

2

N2 29G , ~104!

in the MS scheme. ForN→`,

B2,N
NS→CFF2 ln2N̄13 ln N̄2

p2

3
29G . ~105!

Moments of the longitudinal structure functionFL vanish
as 1/N asN→`.

These results can be compared with the calculation
this paper. The tensor structure in Eq.~47! shows thatFL
50. The result forF15F2/(2x) is the product of the squar
of the matching coefficient atQ, Eq. ~21!, twice the running
from Q2 to Q2/N̄ using Eq.~37!, the matching coefficient a
Q2/N̄, Eq. ~73!, and the running fromQ2/n̄ to m using Eq.
~93!:

MN

AN~m!
5C2~Q!e2g1ln[(Q/AN̄)/Q]@11MN~M!#

3eg2 ln[m/(Q/AN̄]1O~as
2!

511CF

as

2p F281
p2

6 G
2CF

as

2p F ln2
Q2/N̄

Q2
13 ln

Q2/N̄

Q2 G
1

as

2p
CFF7

2
2

p2

3 G1
1

2
gNln

m2

Q2/N̄
1O~as

2!

511CF

as

4p
@292p2/322 ln2N̄16 ln N̄#

1gNln
m

Q
1

1

2
gNln N̄. ~106!

Using Eq. ~94! for the anomalous dimension, Eq.~106!
agrees with Eqs.~103!,~105!.
11401
-

in

IX. SCET ANOMALOUS DIMENSIONS

There is a nontrivial relation between the anomalous
mensions and the matching conditions in the effective the
The anomalous dimension for scaling the current betw
Q2 andQ2/N̄ has the form

g1~m!5AS as~m!, ln
m

QD . ~107!

The anomalous dimension can depend onQ since that is a
label on the SCET fields. It does not depend onN̄, since at
this stage, a single current is being renormalized, which
no information about 12x. The anomalous dimension fo
scaling the structure function betweenQ2/N̄ andm2 has the
form

g2~m!5B„as~m!, ln N̄…, ~108!

where the second argument has been chosen to be lnN̄ rather
thanN̄ for later convenience. The anomalous dimension c
no longer depend onQ, since it has been integrated out of th
effective theory. It can depend onN̄, since the parton distri-
bution operators know about 12x. At the matching scale
between the two regimes, one has the matching coeffic
for the structure function

CS as~m!, ln
N̄m2

Q2 D . ~109!

The matching coefficient can only depend on the relev
mass scale at that point, which is the invariant mass of
hadronic jet,Q2/N̄.

The final answer for the structure function is given
taking the square of the matching coefficient atQ, running it
using twice Eq.~107! to m2;Q2/N̄, multiplying by C ~note
that the matching factor is multiplicative!, scaling by Eq.
~108! to a low scale, and then taking the target matrix e
ment. The result must be independent of the choice of ma
ing scalem. This gives

1

C
m

d

dm
CS as~m!, ln

N̄m2

Q2 D 5g2~m!22g1~m!. ~110!

Let D1,2C be the derivatives ofC with respect to the first and
second argument. Equation~110! gives

@b~as!D112D2# ln C5g222g1 , ~111!

where

m
d

dm
as~m!5b~as!. ~112!

Letting @b(as)D112D2# ln C[F, one gets

FS as , ln N̄1 ln
m2

Q2D5B~as , ln N̄!22AS as , ln
m

QD . ~113!

Equation~113! implies thatA, B andF are at most linear in
their second arguments to all orders inas . This has been
shown previously@16# by analyzing the momentum integra
of the Feynman graphs. Letting
9-16
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DEEP INELASTIC SCATTERING ASx→1 USING . . . PHYSICAL REVIEW D68, 114019 ~2003!
g15A1~as!ln
m2

Q21A0~as!,

g25B1~as!ln N̄1B0~as!,

F5F1~as!ln
m2N̄

Q2 1F0~as!,

ln C5(
r 50

`

Cr~as!ln
r
m2N̄

Q2 , ~114!

gives

2A1~as!52B1~as!52F1~as!,

F0~as!5B0~as!22A0~as!,

b~as!C18~as!14C2~as!5F1 ,

b~as!C08~as!12C1~as!5F0 ~115!

and

b~as!Cr8~as!12~r 11!Cr 11~as!50 ~116!

if r .1, where the prime denotes a derivative with respec
as .

The conditions onCi are the usual relations that the log
rithms in the matching condition are the difference of t
anomalous dimensions of the theories on either side. H
however, we have the additional constraint 2A152B1 relat-
ing the two anomalous dimensions. Equations~37!,~73!,~94!
give for the one-loop values

A0~as!52
3as

2p
CF ,

A1~as!52
as

p
CF ,

B0~as!52
3as

2p
CF ,

B1~as!5
2as

p
CF ,

C2~as!5
as

2p
CF ,

C1~as!5
3as

4p
CF , ~117!

and Ar5Br50, r .1 and Cr50, r .2, which satisfy Eq.
~115!, sinceb(as) starts at orderas

2 .
11401
o

e,

X. EXPONENTIATION

The final result for the moments of the structure functi
computed using SCET is

FN~Q2!5C2~Q!e2I 1@11MN~M!#e2I 2AN~m0!,
~118!

with

I 15E
Q/AN̄

Q dm

m
2g1~m!,

I 25E
m0

Q/AN̄ dm

m
g2~m!, ~119!

wherem0 is some reference scale of order a few GeV, a
C(Q) M, g1 and g2 are given in Eqs.~21!,~74!,~37!,~94!,
and AN is the target matrix element of the local twist-tw
operator. All the large logarithms are contained in the ex
nent I 5I 11I 2. Comparing with Eq.~2!, we see thatf 0 is
obtained by integrating the anomalous dimension using
one-loop values forA1 andB1 , f 1 is obtained by integrating
the two-loop values forA1 , B1 and the one-loop values fo
A0 , B0, etc.

In deriving Eq.~118!, we have assumed thatQ2.Q2/N̄
.m0

2. For fixedQ2 andN̄*Q2/m0
2, this inequality no longer

holds. The effective theory result for such large moments
be computed as follows. Match the current atQ and evolve
usingg1 from Q to m0. At the scalem0, one computes the
matrix element of the time-ordered product of two curre
in the target hadron. This is a nonperturbative computat
sincem0;LQCD is a hadronic scale. For moments withN̄
;Q2/m0

2, the scattering process is in the resonance reg
sincepX

2;m0
2;LQCD

2 , and is described by exclusive form
factors rather than the deep inelastic structure function
equations, the result is

FN~Q2!5C2~Q!e2I 18AN8 ~m0!, ~120!

where

I 185E
m0

Q dm

m
2g1~m!, ~121!

andAN8 (m0) is theNth moment of the matrix element of th
time-ordered product of two SCET currents at the scalem0.

The computation of moments is not uniformly converge
over the parameter range. One can formally take the li
Q2→` first, and then study arbitrarily large moments, sin
Q2/N̄ is now always much greater thanm0

2. However, if one

takesQ2 large but finite, then for large enoughN̄, Q2/N̄ can
become smaller thanm0

2. The relevant limit for fixed target
experiments is to keep the beam energy fixed, in which c
the maximum value ofQ2 is 2MTEx, and depends onx.
9-17
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A. Landau pole5

The anomalous dimension integrals in Eq.~118! contain
as(m) wherem varies betweenQ and m0. As discussed in
the preceding paragraph, this is true even forN̄→` where
formula Eq.~118! must be modified. The SCET computatio
therefore does not suffer from any Landau pole singulari
@17#. For large enough moments, or equivalently, for 12x
;LQCD

2 /Q2, the scattering cross-section depends on re
nance physics; this is a true nonperturbative contribution,
a breakdown of the perturbation series.

The relation 2A152B1 allows us to write the renormal
ization group integration as a double integral@2#. It is easier
to derive the result starting from the answer. Consider
integral

I c5E
1/N̄

1 dy

y F E
m0

AyQ
2G1„as~m!…

dm

m

1G2„as~AyQ!…G . ~122!

Changing the order of the integrals gives

I c5E
Q/AN̄

Q dm

m F2G1„as~m!…ln
Q2

m212G2„as~m!…G
1E

m0

Q/AN̄ dm

m
@2G1„as~m!…ln N̄#, ~123!

which has the same form as the integration of anomal

dimensions fromQ→Q/AN̄ and fromQ/AN̄→m0. Let

I 11I 25I c1E
m0

Q dm

m
G3~as~m!!. ~124!

Comparing with Eqs.~114!,~117!,~119! gives

2g152G1ln
Q2

m2 12G21G3 ,

g252G1ln N̄1G3 , ~125!

so that

G152A15
1

2
B15

as

p
CF ,

G25A02
1

2
B052

3as

4p
CF ,

G35B052
3as

2p
CF , ~126!

5I would like to thank I. Z. Rothstein for discussions on this se
tion.
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where the last entry on each line is the one-loop value. Eq
tion ~122! can also be written as

I c5E
0

1

dz
zN2121

12z F E
m0

2/(12z)

Q2

G1„as@~12z!k2#…
dk2

k2

1G2„as@~12z!Q2#…G . ~127!

The equality between Eq.~122! and Eq.~127! is derived in
Sec. 5 of Ref.@2#. The usual expressions for the resumm
structure function derived using factorization methods ha
the form Eq. ~122! with m0→m0Ay or Eq. ~127! with
m0

2/(12z)→m0
2 @2#, and both suffer from Landau pole sin

gularities@16#, as does the ratio of the moments of the Dre
Yan cross-section to the square of the moments of the d
inelastic cross-section,DN , which is independent of the had
ron structure function@2#,

2
1

2
ln DN5E

0

1

dz
zN2121

12z F E
Q2(12z)

Q2

G1„as@~12z!k2#…
dk2

k2

1G2„as@~12z!Q2#…G . ~128!

However, the corresponding SCET computation does
have any Landau pole singularities. The Landau pole sin
larity arises on converting the SCET anomalous dimens
integration to the form Eq.~122!. The conversion is only
valid for Q2/N̄.m0

2 in deep inelastic scattering, andQ2/N̄2

.m0
2 in the Drell-Yan cross section.6 The factorization form,

Eqs.~127!,~128! introduces a spurious Landau pole singula
ity, because it is equivalent to using Eq.~118! for large mo-
ments, where it is no longer valid, rather than replacing it
the correct expression, Eq.~120!, discussed earlier.

The SCET form forDN does not have a Landau po
singularity, but instead contains a nonperturbative resona
contribution. The resonance contributions enterDN for large
moments even thoughDN does not depend on the structu
function, because non-perturbative effects enter the Dr

Yan cross section atN̄;Q/m0 before they enter deep inelas

tic scattering atN̄;Q2/m0
2, so they appear inDN beginning

at N̄;Q/m0.
The SCET form for the shape function inB decays also

does not have a Landau pole singularity.

B. Cusp anomalous dimension

G1 is known as the cusp anomalous dimension, becau
can be computed from the anomalous dimension of a Wil
line with a cusp@16# ~see Fig. 11!.

The anomalous dimension of the Wilson line in Fig.
has the form

- 6The extraN̄ for the Drell-Yan cross section arises because of
difference in kinematics.
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gW~as ,h!, h25
~2n1•n2!2

n1
2n2

2 , ~129!

since it must be Lorentz invariant, and invariant under r
caling of the vectorsni . As h→`,

gW~as ,h!→ ln hGc~as!, ~130!

which defines the cusp anomalous dimensionGc @16#. To two
loop order@16#

Gc5
as

p
CF1S as

p D 2

CFFCAS 67

36
2

p2

12D2
5

9
TFNFG . ~131!

We have seen earlier that the equality of the anomal
dimensions in the target rest frame and Breit frame imp
that the lnm terms in the anomalous dimension from the
trasoft and collinear graphs are related, so thatA152G1 can
be determined from the ultrasoft graph alone. The anoma
dimension Eq.~129! is computed with two Wilson lines with
ni

25” 0. The ultrasoft anomalous dimension computed ear

is obtained by taking the limitn1→n, n2→n̄, which are
both null vectors. Usingp1}n1 andp2}n2, one has

h25
~2n1•n2!2

n1
2n2

2 5
Q4

p1
2p2

2 , ~132!

and

ln h5
1

2
ln

Q4

p1
2p2

2 . ~133!

The graph withpi
2→0 in pure dimensional regularizatio

replacespi
2 by m2, so that

ln h5 ln
Q2

m2 . ~134!

Comparing Eqs.~130!,~134! with Eq. ~114! gives

Gc~as!52A1~as!5G1~as!5
1

2
B1~as!. ~135!

Using Eq.~135! for A1 , B1, and Eq.~117! for A0 , B0 in Eq.
~118! gives FN including all terms of orderas that do not
vanish asN→`, and including the first two seriesf 0,1 in Eq.
~2!.

FIG. 11. Wilson line along then1 andn2 directions.
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XI. CONCLUSIONS

The deep inelastic structure function was computed in
x→1 end-point region using SCET. The effective theo
properly separates the scaleQ2, Q2(12x) and LQCD

2 , and
allows the problem to be analyzed one scale at a time.
structure function is equivalent to local twist-two operato
below the scaleQ2(12x). The scaleQ2(12x)2 does not
play a special role in the analysis of structure functions. T
is very different from the case ofB→Xsg decay, where the
shape function has an anomalous dimension betweenQ2(1
2x) and Q2(12x)2, and stops running belowQ2(12x)2

@3,7#. Consistency of the effective theory implies that t
SCET anomalous dimensions are linear in lnm to all orders
in perturbation theory. The SCET formulation also avoids
Landau pole singularity in the resummed cross-section.
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APPENDIX: MOMENTS

Let f (z), g(z) and h(z) be functions defined for 0<z
<1. The convolution off andg, h5 f !g5g! f is defined by

h~z!5E
0

1

dxE
0

1

dyd~z2xy! f ~x!g~y!

5E
z

1dy

y
f S z

yDg~y!

5E
z

1dx

x
f ~x!gS z

xD . ~A1!

The moments of a function are defined by

MN@ f ~z!#5E
0

1

dzzN21f ~z!, ~A2!

and satisfy the relation

MN@ f !g#5MN@ f #MN@g#. ~A3!

The moments we need are
9-19



ANEESH V. MANOHAR PHYSICAL REVIEW D68, 114019 ~2003!
MN@d~12z!#51,

MN@1#5
1

N
,

MN@12z#5
1

N~N11!
,

MNF S zr

12zD
1
G52 (

j 511r

N211r
1

j

5Hr2HN211r ,

MNF S ln~12z!

12z D
1
G5 (

j 51

N21
H j

j
, ~A4!

where the harmonic numberHr is defined by

Hr5(
j 51

r
1

j
. ~A5!

The largeN limits of the moments are (N̄5NegE) @2#
te

s
.

-

.

;

B

11401
MN@d~12z!#→1,

MN@1#→0,

MN@12z#→0,

MNF S zr

12zD
1
G→Hr2 ln N̄,

MNF S ln~12z!

12z D
1
G→ 1

2
ln2N̄1

1

2
z~2!.

~A6!

For functions defined on (2`,`), one can define the
moments over@0,1# as in Eq.~A2! as well as the half-infinite
and infinite moments

MN
1@ f ~z!#5E

0

`

dzzN21f ~z!,

MN
2@ f ~z!#5E

2`

0

dzzN21f ~z!,

MN
`@ f ~z!#5E

2`

`

dzzN21f ~z!

5MN
2@ f ~z!#1MN

1@ f ~z!#.
~A7!
tt.
d

s.

cl.
.

@1# For a review, see, e.g., C.F. Berger, hep-ph/0305076; G. S
man, hep-ph/9606312.

@2# S. Catani and L. Trentadue, Nucl. Phys.B327, 323 ~1989!.
@3# C.W. Bauer, S. Fleming, and M.E. Luke, Phys. Rev. D63,

014006~2001!.
@4# C.W. Bauer, S. Fleming, D. Pirjol, and I.W. Stewart, Phy

Rev. D63, 114020~2001!; C.W. Bauer and I.W. Stewart, Phys
Lett. B 516, 134~2001!; C.W. Bauer, D. Pirjol, and I.W. Stew
art, Phys. Rev. D65, 054022~2002!.

@5# C.W. Bauer, S. Fleming, D. Pirjol, I.Z. Rothstein, and I.W
Stewart, Phys. Rev. D66, 014017~2002!.

@6# J.C. Collins and D.E. Soper, Nucl. Phys.B194, 445 ~1982!.
@7# C. Bauer and A.V. Manohar, in preparation.
@8# M.E. Luke, A.V. Manohar, and I.Z. Rothstein, Phys. Rev. D61,

074025~2000!.
@9# A.V. Manohar, ‘‘Effective Field Theories,’’ hep-ph/9606222

Phys. Rev. D56, 230 ~1997!.
@10# A.V. Manohar and I.W. Stewart, Phys. Rev. Lett.85, 2248

~2000!; A.V. Manohar, J. Soto, and I.W. Stewart, Phys. Lett.
r-

.

486, 400 ~2000!; A.H. Hoang, A.V. Manohar, and I.W.
Stewart, Phys. Rev. D64, 014033 ~2001!; A.H. Hoang,
hep-ph/0307376.

@11# S. Fleming, A.K. Leibovich, and T. Mehen, Phys. Rev. D68,
094011~2003!.

@12# A.V. Manohar, Phys. Rev. Lett.65, 2511 ~1990!; 66, 289
~1991!.

@13# B. Grinstein and I.Z. Rothstein, Phys. Rev. D57, 78 ~1998!.
@14# C.W. Bauer, A.V. Manohar, and M.B. Wise, Phys. Rev. Le

91, 122001~2003!; C.W. Bauer, C. Lee, A.V. Manohar, an
M.B. Wise, hep-ph/0309278.

@15# W.A. Bardeen, A.J. Buras, D.W. Duke, and T. Muta, Phy
Rev. D18, 3998~1978!.

@16# G.P. Korchemsky and A.V. Radyushkin, Nucl. Phys.B283, 342
~1987!.

@17# S. Catani, M.L. Mangano, P. Nason, and L. Trentadue, Nu
Phys.B478, 273 ~1996!; R. Akhoury and I.Z. Rothstein, Phys
Rev. D54, 2349~1996!.
9-20


