
PHYSICAL REVIEW D 68, 114010 ~2003!
Analytic structure in the coupling constant plane in perturbative QCD
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We investigate the analytic structure of the Borel-summed perturbative QCD amplitudes in the complex
plane of the coupling constant. Using the method of inverse Mellin transform, we show that the prescription
dependent Borel-Laplace integral can be cast, under some conditions, into the form of a dispersion relation in
the a plane. We also discuss some recent works relating resummation prescriptions, renormalons and nonper-
turbative effects, and show that a method proposed recently for obtaining QCD nonperturbative condensates
from perturbation theory is based on special assumptions about the analytic structure in the coupling plane that
are not valid in QCD.
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I. INTRODUCTION

The QCD amplitudes have a complicated analytic str
ture in the complex plane of the coupling constant,as5g2.
As proved in@1,2#, the infinitely many multiparticle branch
points at large energies result, via renormalization group
variance, in an accumulation of essential singularities n
the origin as50. Since in massless QCD the multipartic
hadronic states are generated only by a nonperturbative
finement mechanism, these singularities can show up o
beyond perturbation theory. However, the perturbative a
plitudes themselves are expected to have a complic
structure of singularities, due to the fact that the perturba
series is divergent and Borel nonsummable. The presenc
the renormalons on the real axis of the Borel plane indu
singularities of the amplitudes as functions of the coupl
constant.

In a recent paper@3#, arguments based on analyticity
the coupling complex plane were used to suggest the po
bility of calculating genuine nonperturbative quantities, su
as QCD condensates, from pure perturbation theory.
analytic structure and its connection with infrared renorm
lons were further discussed in@4,5#. Motivated by this recent
interest in the problem, we investigate in the present w
the analytic structure in the complex coupling plane of
Borel-summed amplitudes in perturbative QCD. We use
mathematical techniques applied in@6–8#, which allow us to
express the Borel integral as a dispersion relation in the c
pling plane. In the last section we shall make a few co
ments on the papers@3–5#.

We consider for illustration the Adler function in massle
QCD:

D52Q2
dP~Q2!

dQ2 21, ~1!

whereP(Q2) is the current-current correlation function ca
culated for Euclidian argumentsQ2.0. It is known that the
perturbation expansion ofDPT(a) in powers of the renormal
ized couplinga5as(Q

2)/p is divergent and not Borel sum
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mable~see@9# and references therein!. The attempts in per-
forming the summation by a formal Borel-Laplace integ
@10# encounter the difficulty that this integral is not we
defined. We consider the Borel transformB(u) defined in the
standard way in terms of the perturbative coefficientsdn of
D:

B~u!5 (
n50

`
dn

n! S u

b0
D n

, ~2!

whereb05(3322nf)/12 is the first QCD beta-function co
efficient withnf the number of flavors. It is known, from th
n! large order growth ofdn , thatB(u) has singularities~ul-
traviolet and infrared renormalons! on the real axis of theu
plane@9#. For the Adler function, the ultraviolet renormalon
are placed along the rangeu<21 and the infrared renorma
lons alongu>2 ~see Fig. 1!. Due to the infrared renorma
lons, the usual Borel-Laplace integral is not well defined a
requires an integration prescription. Defining

D PT
(6)~a!5

1

b0
E

C 6

e2u/b0aB~u!du

5
1

b0
lim
e→0

E
06 i e

`6 i e

e2u/b0aB~u!du, ~3!

FIG. 1. The Borel plane for the Adler function.
©2003 The American Physical Society10-1
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one can adopt as prescription, for each value ofa with
Rea.0, eitherD PT

(1)(a) or D PT
(2)(a), or a linear combina-

tion of them, with coefficientsj and 12j such as to cor-
rectly reproduce the known low-order expansion ofDPT(a)
@which is obtained by truncating the Taylor expansion~2! at
a finite orderN]. We consider in particular the principa
value (PV) prescription

D PT
(PV)~a!5

1

2
@D PT

(1)~a!1D PT
(2)~a!#. ~4!

Once a prescription is adopted, one has a well-defined fu
tion of a, different prescriptions yielding different function
In the next section we shall study the analytic properties
these functions in the complexa plane.

II. DISPERSION RELATIONS FOR THE BOREL SUMMED
AMPLITUDE

The analytic properties of the integrals~3! with respect to
the variablea can be studied with standard mathemati
techniques. In the present work, we use the method of
verse Mellin transform, applied for the first time in the co
text of Borel summation in QCD in@11,12#. For details of the
mathematical procedure used below, we refer to@6#, where
the same method was applied for investigating
momentum-plane analyticity structure of the Adler functi
in the large-b0 limit.

The inverse Mellin transform of the functionB(u) is de-
fined by @13#

ŵ~t!5
1

2p i Eu02 i`

u01 i`

B~u!tu21du ~5!

and admits the inverse relation

B~u!5E
0

`

ŵ~t!t2udt, ~6!

which givesB(u) in the strip21,Reu,2 parallel to the
imaginary axis@13#. The above relations are valid if th
Borel transform satisfies the condition@13#

1

2p i Eu02 i`

u01 i`

uB~u!u2du,`, ~7!

where u0 is a point located on the real axis, between t
branch points,21,u0,2 ~see Fig. 1!. This condition
strongly restricts the asymptotic behavior of the Borel tra
form, and it is not known whether it is obeyed or not
QCD. The condition~7! is however satisfied in some particu
lar cases of physical interest. One example is the summa
of a chain of diagrams in the large-b0 ~or large-nf limit !,
which leads to the Borel transform@14,15#:

B~u!5
128

3~22u! (
k52

`
~21!kk

@k22~12u!2#2
, ~8!
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working in theV scheme, where all the exponential facto
are included in the definition of the coupling. As a seco
example we take the case of a finite number of renormal
with branch-point singularities, in particular the contributio
to B(u) of the leading infrared and ultraviolet renormalon

B~u!5
K

~12u/p!n11
1

K8

~11u/p8!n811
, ~9!

wherep.0, p8.0 and the constantsK andK8 represent the
strength of the corresponding singularities. We note that
the Adler functionp52, p851, and the exponentsn andn8
were calculated in@16# and @17#, respectively.

The functionŵ(t) defined in Eq.~5! can be calculated by
closing the integration contour along a semicircle at infin
in the u plane and applying the theorem of residues. F
utu,1 the contribution of the semicircle at infinity vanishe
if the contour is closed in the right half of theu plane, while
for utu.1 the contour must be closed in the left half plan
Therefore one obtains different expressions for the distri
tion function at utu,1 and utu.1. By Cauchy’s theorem
these functions, which we denote byŵ,(t) and ŵ.(t),
have the representations

ŵ,~t!5
1

2p i ECIR

B~u!tu21du,

~10!

ŵ.~t!5
1

2p i ECUV

B~u!tu21du,

the integration~Hankel! contoursCIR and CUV being indi-
cated in Fig. 1.

The inverse Mellin transformŵ was calculated in Ref.
@11# for the Adler function in the large-b0 limit, when the
Borel transform has the expression~8!. In this case

ŵ,~t!5
32

3 H tS 7

4
2 ln t D1~11t!@L2~2t!

1 ln t ln~11t!#J ,

~11!

ŵ.~t!5
32

3 H 11 ln t1S 3

4
1

1

2
ln t D1

t

1~11t!@L2~2t21!2 ln t ln~11t21!#J ,

where L2(x)52*0
x(dt/t)ln(12t) is the dilogarithm. The

physical interpretation ofŵ as the distribution of the interna
gluon virtualities in Feynman diagrams was also pointed
in @11#.

The function ŵ can be also calculated explicitly for
finite number of renormalons with branch-point singularitie
For instance, for the Borel transform written in Eq.~9! we
obtain @18#:
0-2
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ŵ,~t!5
K

G~n11!
pn11tp21~2 ln t!n,

~12!

ŵ.~t!5
K8

G~n811!
~p8!n811

1

tp811
~ ln t!n8.

We now proceed to the evaluation of the integrals~3!,
taking a in the right half plane, Rea.0, where we assume
that they converge. Our aim is to obtain a representation
D PT

(6)(a) in terms of the inverse Mellin transformŵ. To this
end we rotate the integration contoursC6 , without crossing
singularities, up to a line parallel to the imaginary ax
where the representation~6! is valid. It is easy to check tha
for a in the upper half plane (Ima.0), the contribution of
the quarter of the circle at infinity vanishes if the rotation
performed in the upper half of theu plane. Using the repre
sentation~6!, valid along the imaginary axis, and performin
the integral with respect tou ~for details see@6#!, we obtain

D PT
(1)~a!5

1

b0
E

0

` ŵ~t!

1

b0a
1 ln t

dt, Im a.0. ~13!

Similarly, for a in the lower half plane (Ima,0) the inte-
gration axis in the expression ofD PT

(2)(a) can be rotated in
the lower half of theu plane, up to the negative imaginar
axis, leading to

D PT
(2)~a!5

1

b0
E

0

` ŵ~t!

1

b0a
1 ln t

dt, Im a,0. ~14!

We notice further, recalling the definition~3!, that the first
relation ~10! can be expressed as

D PT
(1)~a!5D PT

(2)~a!12is,~a!, ~15!

where we introduced the notation

s~a!5
p

b0
@tŵ~t!#t5e21/b0a . ~16!

In particular, using the expression~12! of ŵ, we obtain for
the leading renormalons

s,~a!5K
2n11

G~n11!

p

b0
e22/b0a~b0a!2n,

~17!

s.~a!5K8
1

G~n811!

p

b0
e1/b0a~2b0a!2n8.

It is important to emphasize that the relation~15! is valid for
Rea.0 ~or equivalently forutu,1), i.e., in the whole right
half of thea plane.

The relations~13!, ~14! and~15! are the basis the deriva
tion of the dispersion relations given below. We first no
that, unlike the original representations~3! which converge
11401
of

,

only for Rea.0, the representations~13! and ~14! can be
analytically continued in the corresponding upper~lower!
half of the complexa plane, outside the real axis. Moreove
it is easy to convert them into a dispersion representatio
the variablea. We first split the integral in two integrals, on
from 0 to 1 ~where ŵ5ŵ,), and the other from 1 tò
~whereŵ5ŵ.), and perform in each interval the change
variable

ln t52
1

b0a8
,

dt

t
5

da8

b0~a8!2
. ~18!

Using the relations~13!,~14! thus transformed, together wit
Eqs.~15! and ~16!, we finally expressD PT

(1)(a) as

D PT
(1)~a!5

a

pE0

` s,~a8!da8

a8~a82a!
1

a

pE2`

0 s.~a8!da8

a8~a82a!
,

Im a.0, ~19!

D PT
(1)~a!5

a

pE0

` s,~a8!da8

a8~a82a!
1

a

pE2`

0 s.~a8!da8

a8~a82a!

12is,~a!, Im a,0.

From the definition~16! and the properties of the invers
Mellin transformŵ, it follows that the functions,(a) can
be analytically continued in the complexa plane. This prop-
erty is seen explicitly in the case of one infrared renorma
in Eq. ~17!. Thus the expressions~19! are analytic functions
in the upper~lower! half of the complexa plane, outside the
real axis. From Eq.~17! it is seen thats.(a) is real for a
,0, while s,(a) is real for a.0. Therefore, the spectra
functions of the dispersion integrals are real.

Taken together, the dispersion relations~19! define a
single analytic function,D PT

(1)(a), in the whole cuta plane.
This function may have a discontinuity across the posit
axis, due the Cauchy dispersion integral alonga.0 and the
additional term 2is,(a) in the second relation. A simple
calculation shows however that

lim
e→01

D PT
(1)~a6 i e!5

a

p
PE

0

` s,~a8!da8

a8~a82a!

1
a

pE2`

0 s.~a8!da8

a8~a82a!
1 is,~a!,a.0,

~20!

where P denotes the Cauchy principal value. This relat
shows that the functionD PT

(1)(a) is well defined along the
positive axis, but has there an unphysical imaginary p
equal to

Im D PT
(1)~a!5s,~a!, a.0. ~21!

From Eq.~19! it follows thatD PT
(1)(a) has actually a discon

tinuity along the negative axis, given by
0-3
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D PT
(1)~a1 i e!2D PT

(1)~a2 i e!52i @s.~a!2s,~a2 i e!#,

a,0, ~22!

in terms of the real spectral functions. and the analytic
continuation ofs, up to the lower edge of the negativ
semiaxis@where, as seen from Eq.~17!, it is complex#.

The functionD PT
(2)(a) satisfies a dispersion relation sim

lar to Eq. ~19!, with an additional term22is,(a) in the
right-hand side, as follows from Eq.~15!. As above, one can
show thatD PT

(2)(a) is well defined fora.0, but it assumes
complex values there. The unphysical imaginary part
eliminated if we adopt the principal value prescription d
fined in Eq.~4!, for which we obtain

D PT
(PV)~a!5

a

pE0

` s,~a8!da8

a8~a82a!
1

a

pE2`

0 s.~a8!da8

a8~a82a!

2 is,~a!, Im a.0,
~23!

D PT
(PV)~a!5

a

pE0

` s,~a8!da8

a8~a82a!
1

a

pE2`

0 s.~a8!da8

a8~a82a!

1 is,~a!, Im a,0.

For a on the positive semiaxis, it is easy to check that

lim
e→01

D PT
(PV)~a1 i e!5

a

p
PE

0

` s,~a8!da8

a8~a82a!

1
a

pE2`

0 s.~a8!da8

a8~a82a!
, a.0.

~24!

Therefore,D PT
(PV)(a) is well defined and real on the positiv

real semiaxis, as required by general principles. The exp
sions~23! define an analytic function which satisfies the r
ality conditionD PT

(PV)(a* )5@D PT
(PV)(a)#* in the whole com-

plex a plane cut along the negative semiaxis, where it ha
discontinuity

D PT
(PV)~a1 i e!2D PT

(PV)~a2 i e!52i @s.~a!2Res.~a!#,

a,0. ~25!

As argued in @6#, this discontinuity vanishes only unde
strong restrictions on the asymptotic behavior ofB(u),
which are satisfied neither in the simple cases conside
here, nor, most probably, in full QCD: namely, theL2 con-
dition ~7! must be satisfied not only byB(u), but also by the
productB(u)sinpu ~for technical details, see Ref.@6#!.

We point out that the imaginary part ofD PT
(PV)(a) along

the positive semiaxis vanished due to a precise cancella
of the imaginary part of the integrals and the last terms
Eqs. ~23!. It is easy to check that for a general linear co
bination ofD PT

(6) , with coefficientsj and 12j as discussed
above Eq.~4!, this cancellation no longer holds. Therefor
11401
s
-

s-
-

a

ed

on
n
-

,

the principal value prescription is the most suitable choice
one wants to preserve in perturbative QCD the analytic pr
erties of the true amplitudes.

In this section, we obtained the nontrivial result that t
inverse Mellin transform can be used to derive from Eq.~3!
dispersion relations for the perturbative amplitudesD PT

(6)(a),
which allow an analytic continuation of the Borel integr
into the left-hand half-plane Rea,0 and explicitly exhibit
the singularities and the discontinuities across the cuts.

The results obtained here, besides expressing the B
integral~3! in the more suitable form of a dispersion relatio
will be useful in discussing the validity of some assumptio
on analyticity in thea plane made in the literature, as w
show in the next section.

III. COMMENTS

In this section we shall make a few comments on
recent papers@3–5# related to the present work.

In Ref. @4# the author considers, in the case of a sing
infrared renormalon, the problem of removing the unphysi
imaginary part ofD PT

(1)(a) by subtracting a suitable regula
ization function from it. Our results in this particular case a
consistent with@4#. Indeed, Eqs.~19! and~23! show that the
function D PT

(PV)(a) is obtained by subtracting fromD PT
(1)(a)

the function

D~a!5 is,~a!, ~26!

which, using Eq.~17!, can be written fora5uaueic as

D~a!5K
2n11

G~n11! S p

b0
De22/b0aub0au2n@sincn1 i coscn#.

~27!

This expression coincides with Eq.~17! of @4#, derived using
arguments based on regularity with respect to the param
n.

The analytic structure in the coupling constant plane w
recently considered also in Ref.@3#, where arguments base
on analyticity were used in support of the claim that t
QCD condensates can be determined using the coeffici
of the perturbation series. In what follows we shall brie
analyze the validity of this claim.

The author of@3# uses the analogy with some semiclas
cal models@19#, where a specific contribution~for instance,
multi-instantons! is regular for negative couplings and can
obtained for positive couplings by analytic continuation. H
invokes the heuristic argument according to which a per
bation series with a sign-nonalternatingn! large order behav-
ior can be summed ata,0 by a Borel integral along the
negative axis in theu plane, where it becomes sign alterna
ing. We note however that sign alternation does not nec
sarily imply Borel summability: this property is violated if
nonalternating component is present, however negligibl
may be in comparison with a strong sign-alternating com
nent of the series. This is exactly the situation in QCD: d
to the ultraviolet renormalons, the Borel integral along t
negativeu axis is not well defined.
0-4
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Another conjecture adopted in@3# is related to the non-
perturbative amplitudeDNP(a), which must be added to
DPT(a) in order to compensate its unphysical imagina
part:

Im DNP~a1 i e!1Im DPT~a1 i e!50, a.0. ~28!

According to current interpretations@9#, the cancellation is
expected to occur if both terms in the above relation
calculated with the same prescription. In@3# the author
supplements Eq.~28! by a specific assumption about th
nonperturbative amplitude, taking it of the form

DNP~a!5Ce22/b0a~2b0a!2n, ~29!

wheren is the branch-point exponent of the infrared ren
malon in Eq.~9! andC is related to the gluon condensate~we
use the parametrization given in@5#, with our notationa
5as /p). This expression is regular for negativea, having a
discontinuity only on the positive semiaxis in thea plane,
where

DNP~a6 i e!5Ce22/b0a~b0a!2n@cospn7 i sinpn#, a.0.
~30!

Using this relation and the imaginary part of the perturbat
amplitude given in Eqs.~21! and ~17!, condition ~28! gives
the relation

K5C
1

2n11

b0

G~2n!
, ~31!

from which, according to@3#, one could obtain the nonpe
turbative parameterC ~the gluon condensate!, using the
strengthK of the infrared renormalon computed from th
perturbation series.

The relation~31! implies thatK vanishes for non-negativ
integer n, when the renormalon 1/(12u/2)11n becomes a
pole. It is known however that poles are actually obtain
from some chains of Feynman diagrams, in the large-b0 ~or
large-nf) limit @14,15#. In @5# the author discusses this limi
taking the exponentn of the formn5k1x/b01•••, with k
an integer. In this limit, the factorG(2n);b0 /x in the de-
nominator of Eq.~31! is compensated by the factorb0 in the
numerator, leading to a finite nonzero limit forK, if C tends
to a nonzero constant in the large-b0 limit. But then Eq.~30!
implies that the real part of the nonperturbative amplitu
DNP is nonvanishing in this limit@we keep, following@5#,
the productb0a constant, which is legitimate, as seen
particular in the one-loop expressiona51/(b0ln Q2/L2)]. On
the other hand, the perturbative amplitudeDPT is subleading
for largeb0, due to the factor 1/b0 in front of the Laplace-
Borel integral~3!. A choice of the constantC of the same
order, i.e.,C;c/b0, would imply from Eq.~31! that K van-
ishes whenb0→`. So, it follows from @3,5# that in the
large-b0 limit either the total Adler function is dominated b
the real part of the nonperturbative amplitude, or the ren
malon residue vanishes.

The above implications depend however, in a crucial w
on the conjecture made in@3# that the only singularities o
11401
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the nonperturbative amplitude are along the positive se
axis. Actually, singularities along the negative semiaxis~pro-
duced by the ultraviolet renormalons in the OPE coefficien!
cannot be excluded. In@3# it is claimed that the influence o
the ultraviolet renormalons can be suppressed by an ap
priate conformal mapping@16#. A numerical suppression
however, does not imply removal of the corresponding s
gularities. As is shown in@8#, even if B(u) is expanded in
powers of the optimal conformal mapping of the Borel pla
@20#, the functionDPT(a) does have singularities along th
negative semiaxis. Therefore, the general expression
DNP(a) may have singularities both fora.0 and for a
,0. To give an example, we add to Eq.~30! the analogous
branch-point term suggested by Eq.~26!, taking

DNP~a!5Ce22/b0a~2b0a!2n1C8e22/b0a~b0a!2n, ~32!

whereC andC8 depend in general onn andC85CR81 iCI8 is
complex@as the condition~28! holds in a definite prescrip
tion, we specifically refer here to the prescription leading
D PT

(1)] . Then condition~28! gives

2C sinpn1CI81K
2n11

G~n11!

p

b0
50, ~33!

which does not necessarily imply thatK vanishes whenn is
a nonnegative integer. Moreover, the real part of the nonp
turbative amplitude~32! contains the additional paramete
CR8 not specified by the condition~33!, which, combined
with the first term in the expression~32! can make ReDNP
subleading in the large-b0 limit. This counterexample dis-
proves the conclusions~that appear to be inherent in th
method of@3,5#! that the renormalon residue vanishes wh
the singularity is a pole, or the amplitude is dominated in
large-b0 limit by the nonperturbative part. Even more impo
tant, however, is the fact that the real part of the nonper
bative amplitude cannot be determined from the requirem
~28! and analyticity arguments. The possibility, advocated
@3#, of obtaining the gluon condensate from the perturbat
series fails to work here.

In the present paper, by using the inverse Mellin tra
form, we showed that the Borel-summed QCD perturbat
amplitudes~3! satisfy dispersion relations which explicitl
exhibit the singularities in the complexa plane and the dis-
continuities across the cuts, and also allow the analytic c
tinuation of the Borel integral into the left-hand half-plan
Rea,0. We saw that the derivation relies on some spec
hypotheses about the properties of the Borel transform
perturbative QCD: we namely assumed that the Borel tra
form has no singularities in the complexu plane except for
branch points on the real axis, with a holomorphy gap arou
the origin, its asymptotic behavior being such that the
equality ~7! holds and the inverse Mellin transform~5! ex-
ists. We point out that the holomorphy ofB(u) in the double-
cut u plane is expected on general grounds to hold
renormalizable field theories@21,22#. The validity of this
condition in QCD is presently almost universally adopted
a plausible assumption. As for the asymptotic condition,
validity in full QCD is not guaranteed, but it is satisfied
0-5
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the large-b0 limit and for a finite number of renormalon
with branch-point singularities.

In the second part of the paper we made some comm
on the papers@3–5#, where arguments based on analytic
were used to discuss the connection between renorma
and nonperturbative quantities in QCD. We investiga
some specific conjectures made in@3,5# and showed that they
are in conflict with the analyticity properties related to t
ultraviolet and infrared renormalons, which throws doubts
the method of calculating QCD condensates from pertur
tive expansions.
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