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Analytic structure in the coupling constant plane in perturbative QCD
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We investigate the analytic structure of the Borel-summed perturbative QCD amplitudes in the complex
plane of the coupling constant. Using the method of inverse Mellin transform, we show that the prescription
dependent Borel-Laplace integral can be cast, under some conditions, into the form of a dispersion relation in
thea plane. We also discuss some recent works relating resummation prescriptions, renormalons and nonper-
turbative effects, and show that a method proposed recently for obtaining QCD nonperturbative condensates
from perturbation theory is based on special assumptions about the analytic structure in the coupling plane that
are not valid in QCD.
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I. INTRODUCTION mable (see[9] and references thersginThe attempts in per-
forming the summation by a formal Borel-Laplace integral
The QCD amplitudes have a complicated analytic struc{10] encounter the difficulty that this integral is not well
ture in the Comp|ex p|ane of the Coup”ng Constafg,: gz_ defined. We consider the Borel tranSfOB'(lJ) defined in the
As proved in[1,2], the infinitely many multiparticle branch Standard way in terms of the perturbative coefficietysof
points at large energies result, via renormalization group inL:

variance, in an accumulation of essential singularities near AL
the origin «;=0. Since in massless QCD the multiparticle B(u)= >, _“(_) , 2
hadronic states are generated only by a nonperturbative con- n=0 N\ Bo

finement mechanism, these singularities can show up onl
beyond perturbation theory. However, the perturbative am
plitudes themselves are expected to have a complicat

structure of singularities, due to the fact that the perturbatioqr violet and infrared renormalonen the real axis of the

series is divergent and Borel nonsummable. The presence gfane[g]. For the Adler function, the ultraviolet renormalons
the renormalons on the real axis of the Borel plane induceg,¢ placed along the range< — 1 and the infrared renorma-
singularities of the amplitudes as functions of the couplinggng alongu=2 (see Fig. 1 Due to the infrared renorma-

constant. ~__ lons, the usual Borel-Laplace integral is not well defined and
In a recent papef3], arguments based on analyticity in yequires an integration prescription. Defining
the coupling complex plane were used to suggest the possi-

bility of calculating genuine nonperturbative quantities, such DL (a)= if e~ WAog(u)du

as QCD condensates, from pure perturbation theory. The PT Bolc.

analytic structure and its connection with infrared renorma- -

lons were further discussed [i4,5]. Motivated by this recent 1 wxie ~uiga

interest in the problem, we investigate in the present work = B_olml,fmie e B(u)du, &)

the analytic structure in the complex coupling plane of the -

Borel-summed amplitudes in perturbative QCD. We use the

mathematical techniques applied[8+8], which allow us to ar

express the Borel integral as a dispersion relation in the cou

pling plane. In the last section we shall make a few com-  ,|

ments on the papef8-5].
We consider for illustration the Adler function in massless Cuv

QCD: g0

%/hereﬁo:(33—2nf)/12 is the first QCD beta-function co-
efficient withn; the number of flavors. It is known, from the
! large order growth ofl,, thatB(u) has singularitiegul-

Cr

g

1/

dIn(Q? -2

D=—Q2d—Qz—l, (1)

_4_

wherell(Q?) is the current-current correlation function cal-
culated for Euclidian argumen@2>0. It is known that the -6 -4 -2 0 2 4 6 8
perturbation expansion @p(a) in powers of the renormal-
ized couplinga= a4(Q?)/ is divergent and not Borel sum- FIG. 1. The Borel plane for the Adler function.
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one can adopt as prescription, for each valueaofvith ~ working in theV scheme, where all the exponential factors
Rea>0, eitherD{?(a) or DS (a), or a linear combina- are included in the definition of the coupling. As a second
tion of them, with coefficients and 1— ¢ such as to cor- example we take the case of a finite number of renormalons
rectly reproduce the known low-order expansiorigfr(a)  with branch-point singularities, in particular the contribution
[which is obtained by truncating the Taylor expansi@hat to B(u) of the leading infrared and ultraviolet renormalons

a finite orderN]. We consider in particular the principal

value (PV) prescription K K’

B u)= + i 1]
() (1—u/p)”*t (1+u/p)” 1t

(©)

1
DEY(@)=3[DE(2)+ D (@), (@)
wherep>0, p’ >0 and the constants andK' represent the

o ] strength of the corresponding singularities. We note that for
Once a prescription is adopted, one has a well-defined fungne adler functionp=2, p’ =1, and the exponentsand »’

tion of a, different prescriptions yielding different functions. were calculated ifi16] and[17], respectively.
In the next section we shall study the analytic properties of The functionw() defined in Eq(5) can be calculated by

these functions in the complexplane. closing the integration contour along a semicircle at infinity
in the u plane and applying the theorem of residues. For

IIl. DISPERSION RELATIONS FOR THE BOREL SUMMED |7]<1 the contribution of the semicircle at infinity vanishes
AMPLITUDE if the contour is closed in the right half of theplane, while

for |7]>1 the contour must be closed in the left half plane.

the variablea can be studied with standard mathematicaITherefore. one abtains different expressions foyr the distribu-

techniques. In the present work, we use the method of intion function at|7|<1 and|7|>1. By Cauchy's theorem

verse Mellin transform, applied for the first time in the con- these functions, which we denote by_(7) and w-(7),

text of Borel summation in QCD ifl1,12. For details of the have the representations

mathematical procedure used below, we refef@l where

the same method was applied for investigating the

momentum-plane analyticity structure of the Adler function

The analytic properties of the integrd® with respect to

- 1
— u—1
W_o(1)= oy LIRB(U)T du,

in the largeB, limit. (10)
The inverse Mellin transform of the functid®(u) is de- A 1
fined by[13] W (7)= —j B(u)7 du,
27i Cuv
- 1 [(upti=
w( T):T B(u)7'~du (5) the integration(Hanke) contoursCr and Cyy being indi-
T Jug—ie cated in Fig. 1.

The inverse Mellin transformv was calculated in Ref.
[11] for the Adler function in the largg, limit, when the
Borel transform has the expressi@). In this case

and admits the inverse relation

B(u)= J w(r) 7 Udr, (6)
0 R 32( (7
W<(7')=§ 7l Z_InT +(1+7)[Ly(—17)
which givesB(u) in the strip—1<Reu<?2 parallel to the
imaginary axis[13]. The above relations are valid if the
Borel transform satisfies the conditiph3] +inzin(l+7)]p,
1 ugtio (11)
5o |B(u)|2du<e, Y V()= O2 SR
27 Jug-ioe W~ (7)= 3 1+In7+ 4+2Inr .

where u, is a point located on the real axis, between the
branch points,—1<uy<2 (see Fig. 1L This condition
strongly restricts the asymptotic behavior of the Borel trans-

form, and it is not known whether it is obeyed or not in \yhere Lo(x)=—[§(dt/t)In(1—t) is the dilogarithm. The

QCD. The conditior(7) is however satisfied in some particu- Ophysical interpretation ov as the distribution of the internal

lar cases of phygcal |nte.rest. One example is the ?“F“ma“ &uon virtualities in Feynman diagrams was also pointed out
of a chain of diagrams in the larg@; (or largen; limit), in [11]

which leads to the Borel transforfi4,15:

+(1+ T)[LZ(—T_l)—ln 7In(1+ 7_1)]],

The functionw can be also calculated explicitly for a
(= 1)K finite number of renormalons with branch-point singularities.

' (8) For instance, for the Borel transform written in E§) we
k?—(1—u)?]? obtain[18]:

128 o
B~ 32— & |

114010-2



ANALYTIC STRUCTURE IN THE COUPLING CONSTAN . ..

\AN<(T): F(V+l)pv+1Tp_l(_ln T)Vu

(12
" )_ K’ r)v'+l In )v'
R eETAL R  E

We now proceed to the evaluation of the integreds
taking a in the right half plane, Ra>0, where we assume

that they converge. Our aim is to obtain a representation of

DE(a) in terms of the inverse Mellin transform. To this
end we rotate the integration contoudrs, without crossing
singularities, up to a line parallel to the imaginary axis,
where the representatidf) is valid. It is easy to check that
for a in the upper half plane (Im>0), the contribution of
the quarter of the circle at infinity vanishes if the rotation is
performed in the upper half of the plane. Using the repre-
sentation(6), valid along the imaginary axis, and performing
the integral with respect to (for details se¢6]), we obtain

D 1F&dr, Ima>0. (13

" Bolo

Boa

Similarly, for a in the lower half plane (Ina<0) the inte-
gration axis in the expression @Tfj}’(a) can be rotated in
the lower half of theu plane, up to the negative imaginary
axis, leading to

nr

w(7)
1
% Int

We notice further, recalling the definitiof8), that the first
relation(10) can be expressed as

1 0
DED—T)(a):_f dr, Ima<o. (14
BoJo

DEP(a)=D5(a)+2i0-(a), (15)
where we introduced the notation
o ~
(@)= [ TW(7)] ;=150 (16)

Bo

In particular, using the expressidh2) of w, we obtain for
the leading renormalons

2v+1

a
_efﬂﬁoa(ﬂoa) — V'

7<@)=KF051 5,

17

o
_el/ﬁoa

I'(v'+1) Bo (=Boa) "

o-(a)=K’

It is important to emphasize that the relatidr®) is valid for
Rea>0 (or equivalently for|7|<1), i.e., in the whole right
half of thea plane.

The relationg13), (14) and(15) are the basis the deriva-
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only for Rea>0, the representationd3) and (14) can be
analytically continued in the corresponding uppéower)

half of the complexa plane, outside the real axis. Moreover,
it is easy to convert them into a dispersion representation in
the variablea. We first split the integral in two integrals, one
from 0 to 1 (wherew=w_), and the other from 1 too

(Wherew=w.), and perform in each interval the change of
variable

1 dr  da’
B T Bo(a)?
Using the relation$13),(14) thus transformed, together with
Egs.(15) and(16), we finally expres® ) (a) as

Inr=— (18

DE(a)= 2 = o<(a’)da’ EJO o-(a’)da’
P mlo a'(a’—a) 7J-= a'(a’—a)’
Ima>0, (19
D)= a(~o-(a’)da’ a0 o-(a’')da’
PT - _ T - -

mJo a'(a’—a) TJ-= a'(a’'—a)

+2io-(a), Ima<Qo.

From the definition(16) and the properties of the inverse

Mellin transformw, it follows that the functions_(a) can

be analytically continued in the compl@xplane. This prop-
erty is seen explicitly in the case of one infrared renormalon
in Eqg. (17). Thus the expression49) are analytic functions

in the upper(lower) half of the complexa plane, outside the
real axis. From Eq(17) it is seen thatr-(a) is real fora
<0, while o_(a) is real fora>0. Therefore, the spectral
functions of the dispersion integrals are real.

Taken together, the dispersion relatiofik9) define a
single analytic functionP )(a), in the whole cuta plane.
This function may have a discontinuity across the positive
axis, due the Cauchy dispersion integral ala¥g0 and the
additional term 20 _(a) in the second relation. A simple
calculation shows however that

a_ (»o-(a’)da’

lim D(;T)(aiie)z—Pf o<(@)da’

0, ™ Jo a'(a'-a)
a (o o-(a')da’

+io-(a),a>0,
T)-» a'(a'—a) <

(20

where P denotes the Cauchy principal value. This relation
shows that the functio () (a) is well defined along the
positive axis, but has there an unphysical imaginary part
equal to

a>0.

ImDEY(a)=0_(a), (21)

tion of the dispersion relations given below. We first noteFrom Eq.(19) it follows thath;rT)(a) has actually a discon-

that, unlike the original representatio(® which converge

tinuity along the negative axis, given by
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D (a+ie)-DE(a—ie)=2i[o-(a)—o_(a—ie)], the principal value prescription is the most suitable choice if
one wants to preserve in perturbative QCD the analytic prop-
a<o, (22)  erties of the true amplitudes.

In this section, we obtained the nontrivial result that the
in terms of the real spectral functiom. and the analytic inverse Mellin transform can be used to derive from Ej.
continuation ofo— up to the lower edge of the negative dispersion relations for the perturbative amplituds;(a),
semiaxis[where, as seen from E¢L7), it is compleX. which allow an analytic continuation of the Borel integral

The functionD - (a) satisfies a dispersion relation simi- into the left-hand half-plane Re<0 and explicitly exhibit
lar to Eq. (19), with an additional term—2io_(a) in the the singularities and the discontinuities across the cuts.
right-hand side, as follows from E@L5). As above, one can  The results obtained here, besides expressing the Borel
show thatD (P_T)(a) is well defined fora>0, but it assumes integral(3) in the more suitable form of a dispersion relation,
complex values there. The unphysical imaginary part iswill be useful in discussing the validity of some assumptions
eliminated if we adopt the principal value prescription de-on analyticity in thea plane made in the literature, as we

fined in Eq.(4), for which we obtain show in the next section.
a(»o-(a’)da’ a0 o-(a’)da’
D(PPTW(a):_f f( ,) L2 T( ,) Ill. COMMENTS
mJo a'(a’-a) TJ-= a'(a'-a) In this section we shall make a few comments on the

recent paperg3-5] related to the present work.

—i a), Ima>o0, . ) .
o<(3) In Ref. [4] the author considers, in the case of a single

o o o 23 infrared renormalon, the problem of removing the unphysical
DV (a)= a (= o-(a’')da L2 o-(a’)da imaginary part ofp 7 (a) by subtracting a suitable regular-
P mJo a'(a’-a) 7TJ-» a'(a’'—a) ization function from it. Our results in this particular case are

consistent witH4]. Indeed, Eqs(19) and(23) show that the
function D7¥)(a) is obtained by subtracting from ) (a)
the function

+io-(a), Ima<Q.

For a on the positive semiaxis, it is easy to check that

(ad A(a)=io(a), (26)
a » g_(a')da’
i (PV) Pe) = — =\ )
elln(lDPT (atie) WPJO a'(a'—a) which, using Eq(17), can be written fom=|ale'” as
v+1
a (o o.(a')da _ 77) 2Bga| g a— v :
_ e Ald)=K=——=| = |e “Fo a singv+i cosyv].
+7T . a’(a’_a) y a>0. ( ) F(V+1) BO |BO | [ lﬂ (/l ]

(27)

This expression coincides with E@.7) of [4], derived using
Therefore,D(PPTV)(a) is well defined and real on the positive arguments based on regularity with respect to the parameter
real semiaxis, as required by general principles. The expres-.
sions(23) define an analytic function which satisfies the re-  The analytic structure in the coupling constant plane was
ality conditionD ") (a*)=[D V) (a)]* in the whole com-  recently considered also in R¢B], where arguments based
plex a plane cut along the negative semiaxis, where it has ®n analyticity were used in support of the claim that the

(29)

discontinuity QCD condensates can be determined using the coefficients
of the perturbation series. In what follows we shall briefly
DPEV(a+ie)-DEV(a—ie)=2i[o-(a)—Reo-(a)], analyze the validity of this claim.
The author of 3] uses the analogy with some semiclassi-
a<o. (25 cal modelg19], where a specific contributioffor instance,

multi-instantongis regular for negative couplings and can be

As argued in[6], this discontinuity vanishes only under obtained for positive couplings by analytic continuation. He
strong restrictions on the asymptotic behavior Bu),  invokes the heuristic argument according to which a pertur-
which are satisfied neither in the simple cases consideregation series with a sign-nonalternatinglarge order behav-
here, nor, most probably, in full QCD: namely, thé con-  jor can be summed a<0 by a Borel integral along the
dition (7) must be satisfied not only B(u), but also by the  negative axis in the plane, where it becomes sign alternat-
productB(u)sinu (for technical details, see Ré®]). ing. We note however that sign alternation does not neces-

We point out that the imaginary part @4")(a) along  sarily imply Borel summability: this property is violated if a
the positive semiaxis vanished due to a precise cancellationonalternating component is present, however negligible it
of the imaginary part of the integrals and the last terms inmay be in comparison with a strong sign-alternating compo-
Egs.(23). It is easy to check that for a general linear com-nent of the series. This is exactly the situation in QCD: due
bination ofD(PiT), with coefficientsé and 1— ¢ as discussed to the ultraviolet renormalons, the Borel integral along the
above Eq.(4), this cancellation no longer holds. Therefore, negativeu axis is not well defined.
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Another conjecture adopted 8] is related to the non- the nonperturbative amplitude are along the positive semi-
perturbative amplitudeDyp(a), which must be added to axis. Actually, singularities along the negative semidgi®-
De1(a) in order to compensate its unphysical imaginaryduced by the ultraviolet renormalons in the OPE coefficjents
part: cannot be excluded. If8] it is claimed that the influence of

the ultraviolet renormalons can be suppressed by an appro-
ImDyp(a+ie)+ImDpr(atie)=0, a>0. (28  priate conformal mapping16]. A numerical suppression,
however, does not imply removal of the corresponding sin-
gularities. As is shown i8], even if B(u) is expanded in
E'powers of the optimal conformal mapping of the Borel plane
[20], the functionDpr(a) does have singularities along the
negative semiaxis. Therefore, the general expression of
Dyp(a) may have singularities both foa>0 and for a
—a—2Boa _ - <0. To give an example, we add to E8O) the analogous
Dyp(a)=Ce "%~ Boa) ", 29 branch-point term suggested by Eg86), taking
where v is the branch-point exponent of the infrared renor- e 2pa _ )~ 2Bea _
malon in Eq.(9) andC is related to the gluon condensétee Dyp(a)=Ce “Fo%(—pBpa) "+ C'e “Fo%(Boa)~ ", (32
use the parametrization given [5], with our notationa ) _ st i
= a¢/ ). This expression is regular for negati@ehaving a whereC andC’ depend in general onandC’ =Cg+iC; is

discontinuity only on the positive semiaxis in the plane, ~CcOMPlex[as the conditior(28) holds in a definite prescrip-
where tion, we specifically refer here to the prescription leading to

D], Then condition(28) gives

According to current interpretatiori®], the cancellation is
expected to occur if both terms in the above relation ar
calculated with the same prescription. [8] the author
supplements Eq(28) by a specific assumption about the
nonperturbative amplitude, taking it of the form

Dyp(a*ie)=Ce ?Po3(Boa) "[cosmrvFisinmr], a>0.

30 . 2v+l a
(30 —CSIn7TV+C|'+KmIB—=0, (33
Using this relation and the imaginary part of the perturbative v 0
amplitude given in Egs(21) and (17), condition(28) gives

) which does not necessarily imply thidtvanishes when is
the relation

a nonnegative integer. Moreover, the real part of the nonper-
turbative amplitude(32) contains the additional parameter
1 Po , (31) Cr not specified by the conditio33), which, combined
2vt1 I (—v) with the first term in the expressia82) can make R®yp
subleading in the larg@y limit. This counterexample dis-
from which, according t¢3], one could obtain the nonper- proves the conclusionéhat appear to be inherent in the
turbative parameteC (the gluon condensateusing the method of[3,5]) that the renormalon residue vanishes when
strengthK of the infrared renormalon computed from the the singularity is a pole, or the amplitude is dominated in the
perturbation series. large B, limit by the nonperturbative part. Even more impor-
The relation(31) implies thatK vanishes for non-negative tant, however, is the fact that the real part of the nonpertur-
integer », when the renormalon 1/(1u/2)**” becomes a pative amplitude cannot be determined from the requirement
pole. It is known however that poles are actually obtained28) and analyticity arguments. The possibility, advocated in
from some chains of Feynman diagrams, in the Ig8geor  [3], of obtaining the gluon condensate from the perturbation
largeny) limit [14,15. In [5] the author discusses this limit, series fails to work here.
taking the exponent of the formv=k+ x/Bo+ - - -, with « In the present paper, by using the inverse Mellin trans-
an integer. In this limit, the factdr(—»)~Bo/x in the de-  form, we showed that the Borel-summed QCD perturbative
nominator of Eq(31) is compensated by the fact@p inthe  amplitudes(3) satisfy dispersion relations which explicitly
numerator, leading to a finite nonzero limit fst if C tends  exhibit the singularities in the complexplane and the dis-
to a nonzero constant in the largi-limit. But then Eq.(30)  continuities across the cuts, and also allow the analytic con-
implies that the real part of the nonperturbative amplitudetinuation of the Borel integral into the left-hand half-plane
Dyp is nonvanishing in this limifwe keep, following[5],  Rea<0. We saw that the derivation relies on some special
the productBya constant, which is legitimate, as seen in hypotheses about the properties of the Borel transform in
particular in the one-loop expressiam 1/(B8oIn Q%/A?)]. On  perturbative QCD: we namely assumed that the Borel trans-
the other hand, the perturbative amplituigy is subleading  form has no singularities in the complexplane except for
for large By, due to the factor H, in front of the Laplace- branch points on the real axis, with a holomorphy gap around
Borel integral(3). A choice of the constant of the same the origin, its asymptotic behavior being such that the in-
order, i.e.,C~c/ By, would imply from Eq.(31) thatK van-  equality (7) holds and the inverse Mellin transfor() ex-
ishes whenBy—=. So, it follows from[3,5] that in the ists. We point out that the holomorphy Bfu) in the double-
largeB, limit either the total Adler function is dominated by cut u plane is expected on general grounds to hold in
the real part of the nonperturbative amplitude, or the renorrenormalizable field theorief21,22. The validity of this
malon residue vanishes. condition in QCD is presently almost universally adopted as
The above implications depend however, in a crucial waya plausible assumption. As for the asymptotic condition, its
on the conjecture made i8] that the only singularities of validity in full QCD is not guaranteed, but it is satisfied in

K=
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