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Strong phases and factorization for color suppressed decays
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We prove a factorization theorem in QCD for the color suppressed decaysB̄0→D0M0 and B̄0→D* 0M0

whereM is a light meson. Both the color-suppressed andW-exchange or annihilation amplitudes contribute at
lowest order inLQCD/Q whereQ5$mb ,mc ,Ep%, so no power suppression of annihilation contributions is
found. A new mechanism is given for generating nonperturbative strong phases in the factorization framework.

Model-independent predictions that follow from our results include the equality of theB̄0→D0M0 and B̄0

→D* 0M0 rates and the equality of nonperturbative strong phases between isospin amplitudes,d (DM )

5d (D* M ). Relations between amplitudes and phases forM5p,r are also derived. These results do not follow
from largeNc factorization with heavy quark symmetry.
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I. INTRODUCTION

Many of the most frequent hadronic decay channels oB

mesons are mediated by the quark level transitionb→cdū.
The same hadronic dynamics also governs the Cabibbo
pressedb→csū decays. Typical decays of this kind areB̄

→Dp, B̄→D* p, B̄→Dr, B̄→D* r, B̄→DK, B̄→D* K,
B̄→DK* , B̄→D* K* , B̄→DsK

2, B̄→DsK* 2, etc., and
will be generically referred to asB̄→Dp decays. Since thes
decays are the simplest of a complicated array of hadro
channels, a great deal of theoretical work has been dev
to their understanding@1–15#.

After integrating out theW boson the weak Hamiltonian
for B̄→Dp decays is

HW5
GF

A2
VcbVud* @C1~m!~ c̄b!V2A~ d̄u!V2A

1C2~m!~ c̄ibj !V2A~ d̄ jui !V2A#, ~1!

where i , j are color indices, and formb55 GeV, C1(mb)
51.072 andC2(mb)520.169 at next-to-leading-logarithm
order in the naive dimensional regularization l scheme@16#.
For the Cabibbo suppressedHW we replaced̄→ s̄ and Vud*
→Vus* . It is convenient to categorize the decays into th
classes@1#, depending on the role played by the spectato
the B meson~where ‘‘spectator’’ is a generic term for th
flavor structure carried by the light degrees of freedom inB).
Class-I decays receive contributions from graphs where
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pion is emitted at the weak vertex~Fig. 1T!, while in class-II
decays the spectator quark ends up in the pion~Figs. 1C,1E!.
Finally, class-III decays receive both types of contributio
Many of these channels have been well studied experim
tally @17–22#; see Table I. Another method to categori
these decays makes use of amplitudes corresponding to
different Wick contractions of flavor topologies. These c
be read off from Fig. 1 and are denoted asT ~tree!, C ~color
suppressed!, andE (W exchange or weak annihilation!.

Long ago, it was observed that approximating the ma
elements by the factorized product̂Du( c̄b)V2AuB&
3^pu(d̄u)V2Au0& gives an accurate prediction for th
branching fractions of type-I decays, and a fair prediction
type-III decays. For all class-I and -II amplitudes a simil
procedure was proposed@1#. In terms of two phenomenologi
cal parametersa1,2,

iA~B̄0→D1p2!5
GF

A2
VcbVud* a1~Dp!^D1u~ c̄b!V2AuB̄0&

3^p2u~ d̄u!V2Au0&,

iA~B̄0→D0p0!5
GF

A2
VcbVud* a2~Dp!^p0u~ d̄b!V2AuB̄0&

3^D0u~ c̄u!V2Au0&. ~2!

Type-III amplitudes are related by isospin to linear combin
tions of type-I and -II decays. Naive factorization1 predicts
the universal valuesa15C11C2 /Nc anda25C21C1 /Nc .

1In this paper we will use the phrase naive factorization to refe
factoring matrix elements of four quark operators even though
may not be a justified procedure, and will use the phrase factor
tion for results which follow from a well-defined limit of QCD.
©2003 The American Physical Society09-1
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FIG. 1. Decay topologies referred to as tre
(T), color suppressed (C), andW exchange~E!
and the corresponding hadronic channels
which they contribute.
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Phenomenological analyses testing the validity of the fac
ization hypothesis have been presented in@3#, where typi-
cally contributions fromE are not included. These contribu
tions can be modeled using the vacuum insert
approximation which gives theD→p form factor at a large
timelike momentum transferq25mB

2 . For this reason, they
are often estimated to be suppressed relative to theT ampli-
tudes byLQCD

2 /mb
2 @7#.

One rigorous method for investigating factorization
these decays is based on the largeNc limit of QCD. In this
limit the amplitudes for type-I decays start atO(Nc

1/2) while
type-II decays are suppressed by 1/Nc ~hence the name colo
suppressed!. The type-I amplitudes have a form similar
Eq. ~2! since nonfactorizable diagrams are suppressed, w
type-II decays simultaneously receive contributions fro
factorized and nonfactorizable diagrams. For a typi
class-II decay, a Fierz transformation puts the amplitude
the form

iA~B̄0→D0p0!5
GF

A2
VcbVud* H S C21

C1

Nc
D

3^D0p0u~ d̄b!~ c̄u!uB̄0&12C1

3^D0p0u~ d̄Tab!~ c̄Tau!uB̄0&J , ~3!

where the (V2A) ^ (V2A) structure is implicit. The two
matrix elements have expansions in 1/Nc which start with
terms of the order ofNc

1/2 andNc
21/2, respectively,
11400
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Nc
1/2^D (* )0p0u~ d̄b!~ c̄u!uB̄0&5F0

(* )1
1

Nc
2

F2
(* )1•••,

1

Nc
1/2^D (* )0p0u~ d̄Tab!~ c̄Tau!uB̄0&5

1

Nc
G1

(* )1
1

Nc
3

G3
(* )

1•••, ~4!

whereFi
(* );Nc

0 , Gi
(* );Nc

0 . The Wilson coefficients in Eq
~1! can be assigned scalings withNc following from their
perturbative expansionsC1;O(1), C2;Nc

21 , which
roughly corresponds to the hierarchy in their numerical v
ues atmb . The leading terms are the matrix elementsF0

(* ) ,
which factor in terms of largeNc form factors and decay
constants

Nc
1/2F0

(* );^D (* )0uc̄uu0&^p0ud̄buB̄0&1^D (* )0p0uc̄uu0&

3^0ud̄buB̄0& ~5!

plus the matrix elementsG1
(* ) which are nonfactorizable

The naive factorization assumption would keep onlyF0
(* )

and neglectG1
(* ) . This approximation is not justified in the

1/Nc expansion sinceG1
(* ) is enhanced by the large Wilso

coefficientC1. In either case, no prediction is obtained f
the ratio of theB̄→Dp and B̄→D* p amplitudes,
ted
TABLE I. Data onB→D (* )p andB→D (* )r decays from various references. If not otherwise indica
data are from Ref.@17#.
9-2
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STRONG PHASES AND FACTORIZATION FOR COLOR . . . PHYSICAL REVIEW D68, 114009 ~2003!
R0
p[

A~B̄0→D* 0p0!

A~B̄0→D0p0!
5

~C21C1 /Nc!F0* 1~2C1 /Nc!G1*

~C21C1 /Nc!F01~2C1 /Nc!G1
.

~6!

Heavy quark symmetry does not operate with largeNc fac-
torization because forC and E it is broken by the allowed
exchange of energetic hard gluons between the heavy qu
and the quarks in the pion. In contrast, we will show in th
paper that expanding about the limitEp@L this ratio is pre-
dicted to be 1 at leading order inL/Q. HereL;LQCD is a
typical hadronic scale.

Another rigorous approach to factorization becomes p
sible in the limit Ep@LQCD, which corresponds to havin
an energetic light hadron in the final state. In this paper
analyze type-II decays using QCD and an expansion
LQCD/mb , LQCD/mc , and LQCD/Ep ~or generically
LQCD/Q whereQ5$mb ,mc ,mb2mc%). We derive a factor-
ization theorem and show thatE and C appear at the sam
order in the power counting and are suppressed byLQCD/Q
relative to T. Arguments for the suppression ofC by
(LQCD/Q)1 and E by (LQCD/Q)1,2 appear in the literature
@7#, but we are unaware of a derivation that is model ind
pendent. Our leading order result disagrees with
a2-factorization result. Instead the amplitudes forB̄0

→D (* )0p0 andB̄0→D (* )0r0 are determined by the leadin
light-cone wave functionsfp,r and two new universalB̄
→D (* ) distribution functions. Long-distance contribution
also occur at this order inLQCD/Q, but are shown to be
suppressed relative to the short-distance contributions b
additionalas(Q)/p.

For type-I decays a color transparency@23# argument
given by Bjorken suggested A(B̄0→D1p2).(C1

1C2 /Nc) f pF0
BD(mp

2 )1O„as(Q)…. In Ref. @2# it was argued
that this factorization is the leading order prediction in t
large energy limitEp@LQCD, and in Refs.@6,7# that as
corrections can be rigorously included. This factorizati
was extended to all orders inas with the proof of a factor-
ization theorem using the soft-collinear effective theory@9#

A~B→D (* )p!5N(* )j~w0 ,m!E
0

1

dx T(* )~x,mc /mb ,m!

3fp~x,m!1 . . . , ~7!

where the ellipses denote power suppressed terms. Thi
sult is similar to predictions obtained from the hard exclus
scattering formalism of Brodsky-Lepage@24#, except for the
presence of the Isgur-Wise functionj(v0 ,m). The normal-
ization factor is given by2

N(* )5
GFVcbVud*

A2
Ep f pAmD(* )mBS 11

mB

mD(* )
D . ~8!

2Note for longitudinalD* , n•«D* 5n•v8. Production of trans-
verser ’s is suppressed byL/Q.
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The proof of Eq.~7! uses the heavy quark limit, somD

5mD* andN5N* . In Eq. ~7!, fp(x,m) is the nonperturba-
tive pion light-cone wave function andj(w0 ,m) is evaluated
at maximum recoilv•v8→w05(mB

21mD(* )
2 )/(2mBmD(* )).

The hard coefficientT(* )(x,m)5CL6R
(0) @(4x22)Ep ,m,mb#,

where 6 correspond to theD and D* respectively, and
CL6R

(0) 5CL
(0)6CR

(0) is the calculable Wilson coefficient of th
operators defined in Eq.~20! below. The renormalization
scale dependence of the hard scattering functionT(x,m) can-
cels them dependence in the Isgur-Wise function and pi
wave function. In this framework@7# there is no longer a
need to identify by hand a factorization scale.3 In the lan-
guage of soft-collinear effective theory~SCET! @9#, the scale
dependence is understood from the matching and runn
procedure.

Equation~7! implies equal rates forB̄0→D1p2 and B̄0

→D* 1p2 up to theas(mb) corrections inT(* ) and power
corrections. This prediction is in good agreement with t
observed data for type-I and -III decays top, r, K, andK*
as shown in Tables I and II. For two-body type-I decays b
the largeNc and large energy mechanisms make similar p
nomenological predictions. However, these mechanisms
be distinguished withB→DX decays whereX is a multihad-
ron state@12#.

So far, no results of comparable theoretical rigor exist
the color suppressed type-II decays. In fact existing result
B→Dp and B→cK (* ) do not support naive factorizatio
with a universal coefficienta2 @11#. Furthermore, it has bee
argued that in general factorization will not hold for type-
decays@7#.

Using the SCET@25,26#, we prove in this paper a factor
ization theorem for color suppressed~type-II! B̄→DM de-
cays,M5$p0,r0, . . . %. These decays are power suppress
relative to the type-I decays, and our results are valid
leading nonvanishing order inL/Q. The main results of our
paper are as follows.

~1! The color suppressed~C! and exchange~E! contribu-
tions toB0→D (* )0p0 are both suppressed byL/Q relative
to the amplitude (T). The C andE amplitudes are found to
be of comparable size since the factorization theorem rel
them to the same perturbative and nonperturbative quanti
Our result is incompatible with the naivea2-type factoriza-
tion.

~2! When our result is combined with heavy quark sym
metry it predicts the equality of the amplitudes forB̄0

→D0p0 and B̄0→D* 0p0 ~in fact for anyDM andD* M ).

3In naive factorization the hadronic matrix elements in Eq.~2! are
independent of the scale that separates hard and soft physics
scale dependence ina1 anda2 then causes the physical amplitud
to become scale dependent. The parametersa1 anda2 were there-
fore assumed to be evaluated at a specific scale called the ‘‘fa
ization scale.’’ In other words, the nonfactorizable effects were
counted for by allowinga1 anda2 to be free parameters that are
to data. The factorization scale can then be extracted from the s
dependence ofa1 anda2 @3#.
9-3
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MANTRY, PIRJOL, AND STEWART PHYSICAL REVIEW D68, 114009 ~2003!
This prediction is in good agreement with existing data a
will be tested by future measurements.

~3! Our result gives a new mechanism for generating n
perturbative strong phases for exclusive decays within
framework of factorization. ForDM andD* M it implies the
equality of the strong phasesd between isospin amplitudes
Furthermore, certain cases with different light mesonsM are
predicted to also have a universal nonperturbative str
phasef in their isospin triangle.

~4! The power suppressed amplitudes for all color s
pressedB̄→D (* )M decays are factorizable into two types
terms, which we refer to as short-distance (m2;EML) and
long-distance (m2;L2) contributions. The short-distanc
contributions depend on complex softB0→D (* )0 distribu-
tion functions,SL,R

(0,8)(k1 ,,1), which depend only on the di
rection of M ~the superscripts indicate that two color stru
tures contribute!. For M5p,r the long-distance
contributions vanish at lowest order inas(Q)/p.

Combined with Eq.~7! the results here give a comple
leading order description of theB→Dp isospin triangles.

In Sec. II we review the current data forB→Dp decays.
The derivation of a factorization theorem for the color su
pressed channelsB̄0→D (* )0p0 and B̄0→D (* )0r0 is carried
out in Sec. III using SCET. Then in Sec. IV the formalism
applied to decays with kaons,B̄0→D (* )0K0, B̄0

→D (* )0K* 0, B̄0→Ds
(* )K2, and B̄0→Ds

(* )K* 2. In Sec. V
we contrast our results with the largeNc limit of QCD and
prior theoretical expectations. Readers only interested in
nal results can safely skip Secs. III, IV, and V. In Sec. VI w
discuss the phenomenological predictions that follow fr
our new formalism for color-suppressed channels. Con
sions are given in Sec. VII. In Appendix A we prove that f
p0 and r0 the long-distance contributions are suppress
Finally in Appendices B and C we elaborate on the prop
ties of the jet functions and our new softB→D (* ) distribu-
tion functions, respectively.

II. DATA

We start by reviewing existing data on theB̄→D (* )p
decays. The branching ratios for most of these modes h
been measured and the existing results are collected in T
I. Taking into account that theD (* )p final state can have
isospinI 51/2,3/2, these decays can be parametrized by
isospin amplitudesA1/2, A3/2:

A125A~B̄0→D1p2!5
1

A3
A3/21A2

3
A1/25T1E,

A025A~B2→D0 p2!5A3A3/25T1C,

A005A~B̄0→D0 p0!5A2

3
A3/22

1

A3
A1/2

5
1

A2
~C2E!. ~9!
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Similar expressions can be written for the decay amplitu
of B→D* p, B→Dr, B→D* r with well-defined helicity
of the final state vector mesons. Equation~9! also gives the
alternative parametrization of these amplitudes in terms
the amplitudesT,C,E discussed in Sec. I.

Using the data in Table I, the individual isospin amp
tudes AI and their relative phased5arg(A1/2A3/2* ) can be
extracted using

Br~B̄→D (* )M !5tBG~B̄→D (* )M !

5
tBupu

8pmB
2 (

pol
uA~B̄→D (* )M !u2. ~10!

with t B̄052.34331012 GeV21 and tB252.543
31012 GeV21. We find

uA1/2
D u5~4.3360.47!31027 GeV, dDp530.5°213.8

17.8 ,

uA3/2
D u5~4.4560.17!31027 GeV,

uA1/2
D* u5~4.6060.36!31027 GeV, dD* p530.266.6°,

uA3/2
D* u5~4.3360.19!31027 GeV. ~11!

The ranges ford correspond to 1s uncertainties for the ex-
perimental branching ratios. A graphical representation
these results is given in Fig. 5, where we show contour p
for the ratios of isospin amplitudesRI5A1/2/(A2A3/2) for
both Dp and D* p final states. ForB̄→Dp an isospin
analysis was performed recently by CLEO@18# including
error correlations among the decay modes; we used t
analysis in quoting errors ondDp.

For later convenience we define the amplitude ratios

R0
M[

A~B̄0→D* 0M0!

A~B̄0→D0M0!
, R0

M /M8[
A~B̄0→D (* )0M0!

A~B̄0→D (* )0M 80!
,

RI[
A1/2

A2A3/2

512
3

2

C2E

T1C
,

Rc[
A~B̄0→D (* )1M 2!

A~B2→D (* )0M 2!
512

C2E

T1C
, ~12!

where the ratiosRI and Rc are defined for eachD (* )M
mode. Predictions are obtained for the ratios in Eq.~12!,
including the leading power corrections toRI and Rc . The
relationRI511O(L/Q) can be represented graphically b
a triangle with base normalized to 1~see Fig. 5 in Sec. VI!.
The two angles adjacent to the base are the strong iso
phased, and another strong phasef. The usual prediction is
that d;1/Qk @7,11#, and that there is no constraint on th
strong phasef which can be large. In Sec. VI we show th
at lowest order the anglef is predicted to be the same for a
channels in Table I, and thatd can be dominated by a con
strained nonperturbative strong phase. FromRI in Eq. ~12!
9-4
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TABLE II. Data on Cabibbo suppressedB̄→DK (* ) decays. Unless otherwise indicated, the data are taken from Ref.@17#.
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we note that for a leading order prediction ofd it is not
necessary to know the power corrections to theT amplitude.

A similar analysis can be given for the Cabibbo su
pressedB̄→DK (* ) decays. Although several of these mod
had been seen for some time, it is only recently that som
the corresponding class-II decays have been seen by
Belle Collaboration@27# ~see Table II!. For this case the fina
D (* )K (* ) states can have isospinsI 50,1, so these decay
are parametrized in terms of two isospin amplitudesAI 50,1
~for given spins of the final particles!,

A125A~B̄0→D1K2!5 1
2 A01 1

2 A15T,

A025A~B2→D0 K2!5A15T1C, ~13!

A005A~B̄0→D0 K0!5 1
2 A12 1

2 A05C.

Isospin symmetry implies the amplitude relation amo
these modesA121A005A02 , which can be used to extrac
the isospin amplitudesA0,1 and their relative phased
5arg(A0A1* ). Using Gaussian error propagation we obta

uA0
DKu5~1.4560.62!31027 GeV, dDK549.969.5°

uA1
DKu5~2.1060.17!31027 GeV,

uA0
DK* u5~1.9361.49!31027 GeV, dDK* 534.9619.4°

~14!

uA1
DK* u5~2.7660.52!31027 GeV. ~15!

However, note that scanning the amplitudesA12 , andA00,
A02 in their 1s allowed regions still allows a flat isospi
triangle @13#.

III. SOFT-COLLINEAR EFFECTIVE THEORY ANALYSIS

The key idea of the soft-collinear effective theory@25,26#
is to separate perturbative and nonperturbative scales dir
at the level of operators. The relevant scales have virtual
p2;mb

2 ,mc
2 ,EM

2 ~hard!, p2;EML ~intermediate!, and p2

.L2 ~soft!. The p2;L2 scales are described by so
(p1,p2,p');(L,L,L) and collinear (p1,p2,p')
;(L2/EM ,EM ,L) degrees of freedom. We follow the nota
tion in Refs.@9,28#.
11400
-
s
of
he

tly
s

The weak HamiltonianHW in Eq. ~1! is matched onto
effective operators containing soft and collinear fields.
exclusive processes this matching can be simplified b
two-stage procedure@29#. We first match QCD onto a theor
SCETI with ultrasoft fields withp2;L2, but intermediate-
collinear fields withp2;EML. This theory gives a simpli-
fied description of thep2;EML exchanges that necessari
mediate interactions between soft and collinear partic
Then at a scalem2;EML we match SCETI onto the final
theory SCETII which has only the propagating long-distan
soft and collinear particles. This procedure determines wh
factors ofas(m) belong4 at the hard scalem25Q2, which
belong at the intermediate scalem25EML, and what non-
perturbative matrix elements appear.

Since the collinear fields do not interact with soft fields
lowest order, if one can rearrange the fields in the SCEII
operator to express it as a product of collinear fields and
fields, the factorization of matrix elements is achieved. T
is precisely what happens in type-I decays, and as we
see also type-II decays, with operators of the form

Type I: @ h̄v8SGS†hv#@~ j̄nW!G8~W†jn!#

Type II: @~ h̄v8S!G~S†hv!~ q̄S!G9~S†q!#

3@~ j̄nW!G8~W†jn!#,

E d4x T@~ h̄v8S!G~S†hv!~ j̄nW!G8~W†jn!#~0!

3@~ q̄S!G9~S†q!~ j̄nW!G8~W†jn!#~x!. ~16!

In type-II decays the first and second SCETII operators give
short- and long-distance contributions, respectively. We
here the notation in Ref.@26# so thathv are HQET fields,jn
are collinear quark fields,q are soft quark fields, andS,W are
soft and collinear Wilson lines. Since collinear particles
not connect with the heavy meson states and soft particle
not connect with the collinear light meson state, the ma
elements of these operators factor into the product of a
B→D (* ) matrix element and a collinear matrix element i
volving M.

4A more accurate statement is that the scale dependence is d
mined by anomalous dimensions of operators in SCETI and
SCETII .
9-5
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We start by reviewing type-I decays. Using SCET, t
factorization of the leading amplitude for type-I decays h
been proven in Ref.@9# at leading order in 1/Q ~and nonper-
turbatively to all orders inas). The operators in Eq.~1! are
matched onto effective operators at a scalemQ.Q

(
1,2

CiOi→4 (
j 5L,R

E dt1dt2@Cj
(0)~t1 ,t2!Q j

(0)~t1 ,t2!

1Cj
(8)~t1 ,t2!Q j

(8)~t1 ,t2!#. ~17!

At leading order in SCETI there are four operators@ j
5L,R#

Q j
(0)~t1 ,t2!5@ h̄v8

(c)G j
hhv

(b)#@~ j̄n
(d)W!t1

Gn~W†jn
(u)!t2

#,

Q j
(8)~t1 ,t2!5@ h̄v8

(c)YG j
hTaY†hv

(b)#

3@~ j̄n
(d)W!t1

GnTa~W†jn
(u)!t2

#. ~18!

The superscript (0,8) denotes the 1^ 1 and Ta
^ Ta color

structures. The Dirac structures on the heavy side areGL,R
h

5n”PL,R with PR,L5 1
2 (16g5), while on the collinear side

we haveGn5n”̄PL/2. The momenta labels are defined
(W†jn)v2

5@d(v22P̄) W†jn#.
The matching conditions for the Wilson coefficients

tree level atm5Ep are

CL
(0)~t i !5C11

C2

Nc
, CL

(8)~t i !52C2 , CR
(0,8)~t i !50.

~19!

Matching corrections of orderO(as) can be found in Ref.
@7#.

The operators in Eq.~18! are written in terms of collinea
fields which do not couple to usoft particles at leading ord
This was achieved by a decoupling field redefinition@26# on
the collinear fieldsjn→Yjn , etc. The operators in Eq.~18!
are then matched onto SCETII to give @v i5t i #

Q j
(0)~v1 ,v2!5@ h̄v8

(c)G j
hhv

(b)#@~ j̄n
(d)W!v1

Gn~W†jn
(u)!v2

#,

Q j
(8)~v1 ,v2!5@ h̄v8

(c)SG j
hTaS†hv

(b)#

3@~ j̄n
(d)W!v1

GnTa~W†jn
(u)!v2

#, ~20!

where the collinear and soft Wilson linesW andSare defined
in Eq. ~C2! of Appendix C. At leading order in 1/Q only the
operatorsQ L,R

(0) and the leading order collinear and so
Lagrangians (L c

(0) , L s
(0)) contribute to theB2→D (* )0p2

andB̄0→D (* )1p2 matrix elements. The matrix elements
QL,R

(8) vanish because they factorize into a product of bilin
matrix elements and the octet currents give vanishing con
bution between color singlet states@9#.

Note that we take the pion state or interpolating field to
purely collinear and theB andD (* ) states to be purely soft
Power corrections to these states are included as t
ordered products. This includes asymmetric configurati
11400
s

t

r.

r
i-

e

e-
s

containing one soft and one collinear quark which involveT
products with subleading Lagrangians@29#.

Next we consider type-II decays. The matrix elements
the leading order operators vanish,^D0p0uQj

(0,8)uB̄0&50.
This occurs due to a mismatch between the type of qua
produced byQ j

(0,8) and those required for the light meso
state, where we need two collinear quarks of the same fla
The operatorQ j

(0,8) produces collinear quarks with (du) fla-
vor. Therefore it cannot produce ap0 since the leading orde
SCET Lagrangian only produces or annihilates colline
quark pairs of the same flavor. For this reason the lead
contributions toB̄0→D (* )0p0 are power suppressed.

In SCETI there are several sources of power suppres
contributions obtained by including higher order four-qua
operators, higher order contributions from the Lagrangia
or both. However, there is only asingle type ofSCETI op-

erator which contributes toB̄0→D (* )0M0 decays at leading
order. They are given byT-ordered products of the leadin
operators in Eq.~18! with two insertions of the usoft-
collinear LagrangianL jq

(1) :

Tj
(0,8)5

1

2E d4x d4y T$Q j
(0,8)~0!,iL jq

(1)~x!,iL jq
(1)~y!%.

~21!

Here the subleading Lagrangian is@30,29#

L jq
(1)5~ j̄nW!S 1

P̄W†igB”'
c WD qus2q̄usS W†ig B”'

c W
1

P̄†D
3~W†jn!, ~22!

whereigBA'
c 5@ i n̄•Dc,iD”'

c #. The two factors ofiL jq
(1) in Eq.

~21! are necessary to swap oneu quark and oned quark from
ultrasoft to collinear. In contrast to the tree amplitude,
this case both theQ j

(0) andQ j
(8) operators can contribute. B

power counting, theTj
(0,8)’s are suppressed byl25L/Q rela-

tive to the leading operators. They will give orderL/Q con-
tributions in SCETII , in agreement with our earlier state
ments.

In Fig. 2 we show graphs contributing to the matching
SCETI operators~a,b! onto operators in SCETII ~c,d,e!. In
Figs. 2~a,b! the gluon always has off shellnessp2;EML due
to momentum conservation, and is shrunk to a point
SCETII . However, the collinear quark propagator in~a,b!
can either havep2;EML, giving rise to the short-distanc
SCETII contribution in Fig. 2~e!, or it can havep2;L2,
which gives the long-distance SCETII contribution in Figs.
2~c,d!. To match onto the short-distance contribution in F
2~e! we subtract the SCETII diagrams~c,d!:

~a!1~b!2~c!2~d!5~e!. ~23!

The operators in Figs. 2~a,b! are from theT productsTj
(0,8) in

Eq. ~21!, while Figs. 2~c,d! involve the SCETII T-products
Ōj

( i ) in Eq. ~27!, and Fig. 2~e! involvesOj
( i ) in Eq. ~28!.

To generate connected SCETI diagrams from the time-
ordered product in Eq.~21! requires at least two contraction
9-6
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FIG. 2. Graphs for the tree level matching calculation from SCETI ~a,b! onto SCETII ~c,d,e!. The dashed lines are collinear qua
propagators and the spring with a line is a collinear gluon. Solid lines in~a,b! are ultrasoft and those in~c,d,e! are soft.̂ denotes an insertion
of the weak operator, given in Eq.~18! for ~a,b! and in Eq.~20! in ~c,d!. % in ~e! is a six-quark operator from Eq.~28!. The two solid dots
in ~a,b! denote insertions of the mixed usoft-collinear quark actionL jq

(1) . The boxes denote the SCETII operatorL jjqq
(1) in Eq. ~25!.
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of which the minimum basic possibilities can be grouped
follows. ~1! Contraction ofjn

(u) j̄n
(u) and the' gluon inB'

mB'
n

@C topology, Fig. 2~a!#, ~2! contraction ofjn
(d)j̄n

(d) and the'
gluon in B'

mB'
n @E topology, Fig. 2~b!#, and ~3! contraction

of jn
(u)j̄n

(u) andjn
(d)j̄n

(d) ~topology with two external collinea
gluons and no external collinear quarks, not shown!.

All more complicated contractions have one of these th
as a root. Case~3! only contributes for light mesons with a
isosinglet component (h, h8, v, f), which we will not
consider here.

Each of the SCETI T products is matched onto SCETII
operators at scalem5m0, and

E dt1 dt2 Cj
(0,8)Tj

(0,8)→@Tj
(0,8)#short1@Tj

(0,8)# long,

@TL,R
(0,8)#short5E dt i dk,

1 dvkCL,R
(0,8)~t i ,m0!

3J(0,8)~t i ,k,
1,vk ,m0 ,m!OL,R

(0,8)~k,
1,vk ,m!,

@TL,R
(0,8)# long5E dk1dv1 dv2 dv CL,R

(0,8)~v i ,m0!

3 J̄(0,8)~k1v,m0 ,m!ŌL,R
(0,8)~v i ,k1,v,m!,

~24!

where the subscriptsi ,,,k run over values 1,2. HereJ, J̄ are
jet functions containing effects at thep2;EML scale and are
Wilson coefficients for the SCETII operatorsO and Ō. The
@TL,R

(0,8)#short and @TL,R
(0,8)# long terms are, respectively, Fig. 2~e!

and Figs. 2~c,d! ~after they are dressed with all possible gl
ons!. The m0 and m dependence in Eq.~24! signifies the
scale dependence in SCETI and SCETII , respectively. The jet
functions are generated by the contraction of intermed
collinear fields with couplingsas(m0) ~wherem0

2;EpL). In
general the jet functions depend on the large light-cone
mentat i coming out of the hard vertex, the large light-co
momentavk of the external collinear SCETII fields, and the
kj

1 momenta of the external soft SCETII fields. No other soft
11400
s

e

te
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momentum dependence is possible since the leading SCI
collinear Lagrangian depends on onlyn•]us .

The difference between the time-ordered productsTL,R
(0,8)

and the time-ordered productsŌL,R
(0,8) gives the six-quark

SCETII operatorOL,R
(0,8) , whose coefficients are the jet func

tions J(0,8). In this SCETI -SCETII matching calculation the
ŌL,R

(0,8) graphs subtract long-distance contributions from
TL,R

(0,8) graphs so thatJ(0,8) are free from infrared singularities
In general the matrix elements for color suppressed dec
then include both short- and long-distance contributions
displayed in Eq.~24!. However, for the isotripletp andr a
dramatic simplification occurs at leading order inCJ

( i ) . In
this case it can be proven that the long-distance contribut
@Tj

( i )# long vanishto all orders in theas couplings in SCETI ,
and with theas couplings in SCETII treated nonperturba
tively. The proof of this fact uses theG-parity invariance of
QCD and is carried out in Appendix A. At leading order
the coefficientsCL,R

(0,8) the M5p,r factorization theorem is
therefore more predictive since possible long-distance c
tribution from Ōj

( i ) are absent. Most of the following discus

sion will focus onOj
( i ) , but Ōj

( i ) is fully included in the final
factorization theorem.

In the SCETII diagrams in Figs. 2~c,d! a power suppresse
four-quark Lagrangian appears. It is similar to an opera
introduced in Ref. @31#, and can be obtained from
T$ iL jq

(1) ,iL jq
(1)% in SCETI by a simple matching calculation

@32#. Summing over flavorsq,q8 we find

L jjqq
(1) 5 (

j 5L,R
(
v

(
k1

@ J̄(0)~vk1!L j
(0)~v,k1,x!

1 J̄(8)~vk1!L j
(8)~v,k1,x!#,

L j
(0)~v,k1,x!5 (

q,q8
@~ j̄n

(q)W!vn”̄Pj~W†jn
(q8)!v#

3@~ q̄8S!k1n”Pj~S†q!k1#~x!. ~25!
9-7
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FIG. 3. Tree level matching calculation fo
the LL,R

(0,8) operators, with~a! the T product in
SCETI and~b! the operator in SCETII . Hereq,q8
are flavor indices andv;l0 are minus-momenta
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In Eq. ~25! the soft momenta labels are defined by (S†q)k1

5@d(k12n•P)S†q#, and the positions (x1,x2,x')
;(1/L,Q/L2,1/L). For the soft fields thex2 coordinates
encode small residual plus-momenta, and for the collin
fields the x1 coordinates encode small residual minu
momenta. Thus, we used the summation/integration nota
for label/residual momenta from Ref.@33#. The operator
L j

(8)(v,k1,x) has the same form as Eq.~25! except with
color structureTa

^ Ta. At tree level the coefficient function
are given by the calculation in Fig. 3,

J̄(0)~vk1!52
CF

2Nc

4pas~m!

vk1
,

J̄(8)~vk1!5
1

2Nc

4pas~m!

vk1
. ~26!

Beyond tree level they obtain contributions from loop d
grams with additionalL jj

(0) vertices. In terms of the operato
in Eq. ~25! the SCETII operators that contribute to@Tj

( i )# long

in the factorization theorem are

Ōj
(0,8)~v i ,k1,v,m!

5E d4x TQ j
(0,8)~v i ,x50! iL (0,8)~v,k1,x!.

~27!

The operatorsŌ generate the diagrams~c! and~d! in Fig. 2.

FIG. 4. Nonperturbative structure of the soft operators in E
~29! which arise fromOj

(0,8) . Wilson lines are shown for the path
Sn(x,0), Sn(0,y), Sv(2`,0) and Sv8(0,̀ ), plus two interacting
QCD quark fields inserted at the locationsx andy. TheSv andSv8
Wilson lines are from interactions with the fieldshv andhv8 fields,

respectively. The nonperturbative structure of soft fields inŌj
(0,8) is

similar except that we separate the single and double Wilson l
by an amountx' .
11400
ar
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At any order in perturbation theory the jet functionsJ
from theC topology andE topology generate one spin stru
ture and two color structures for the SCETII operators. For
the six-quark operators we find

Oj
(0)~ki

1 ,vk!5@ h̄v8
(c)G j

hhv
(b)~ d̄ S!k

1
1n”PL~S†u!k

2
1#

3@~ j̄nW!v1
Gc~W†jn!v2

#,

Oj
(8)~ki

1 ,vk!5@~ h̄v8
(c)S!G j

h Ta ~S†hv
(b)!

3~ d̄ S!k
1
1n”PLTa~S†u!k

2
1#

3@~ j̄nW!v1
Gc~W†jn!v2

#, ~28!

where here thed, u, hv8
(c) , andhv

(b) fields are soft, and thejn

fields are collinear isospin doublets (jn
(u) ,jn

(d)). In Eq. ~28!
GL,R

h 5n”PL,R as in Eq.~18!, while for the collinear isospin

triplet Gc5t3n”̄PL/2.5 We do not list operators with aTa next
to Gc since they will give vanishing contribution in the co
linear matrix element. For light vector mesons the spin str
ture Gc only produces the longitudinal polarization. This r
sult follows from the quark helicity symmetry ofL jj

(0) and is
discussed in further detail in Appendix B.

In position space theOj
( i ) are bilocal operators, with the

two soft light quarks aligned on thenm light-cone direction
(x25 1

2 nmn̄•x,y25 1
2 nmn̄•y) passing through the pointx

50,

~ h̄v8
(c)S!Gh~S†hv

(b)!~ d̄ S!r 1Gq~S†u!,1

5E dx2dy2

~4p!2
ei /2(r 1x22,1y2)@ h̄v8

(c)Ghhv
(b)#~0!

3@ d̄~x2!Sn~x2,0!GqSn~0,y2!u~y2!#. ~29!

The gluon interactions contained in matrix elements ofOj
(0,8)

include attachments to the light quarksq, to the heavy quarks
hv,v8 , and to the Wilson linesSn as shown in Fig. 4. The
interactions withhv,v8 have been drawn as Wilson linesSv,v8
alongv,v8 @34#.

Even though we have factored the collinear and soft
grees of freedom in the two final state hadrons, the prese
of the soft Wilson lines bring in information about the vect

5There are also isosinglet contributions withGc5n”̄PL/2.

.

es
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STRONG PHASES AND FACTORIZATION FOR COLOR . . . PHYSICAL REVIEW D68, 114009 ~2003!
nm. This allows the soft operatorsOj
( i ) to be nontrivial func-

tions of n•kj , n•v, and n•v8, and this information gives
rise to acomplex phasein the soft functionsSL,R

(0,8) as shown
in Appendix C. Thus, theSn Wilson lines are directly respon
sible for producing final state interactions, and the soft fie
in Oj

(0,8) encode nonperturbative rescattering informatio6

This makes good sense, given that the soft gluons in theSn’s
were originally generated by integrating out attachments
the collinear quarks and gluons making up the light energ
hadron.

The above procedure provides anewmechanism for gen-
erating nonperturbative strong phases for exclusive dec
within factorization. In the softB→D (* ) matrix elements the
information about the light energetic meson is limited to
direction of motionnm. Since these matrix elements kno
nothing further about the nature of the light meson, th
strong phases are universal. In particular the same st
phase f is generated for the decaysB̄→D (* )p and B̄
→D (* )r. ~We caution that this is not the isospin stron
phase, but rather a different angle in the triangle.! The same
mechanism produces another universal strong phase for c
suppressed decays toDK̄ (* )0, and a third for decays to
DsK

(* )2. The different phases in the three classes arise
part due to the appearance of different moments of the ma
elements of the soft operators. However, for the kaons th
are additional long-distance contributions to the stro
phases from@T# long, which make the universality of the
phasef from @T#short hard to test. A more complete set o
phenomenological predictions is given in Sec. VI, includi
a comparison with existing data. Further details on the pr
erties of the soft functionsS(0,8) are given in Appendix C.

The matrix elements of the short-distance operatorsOj
( i )

in Eq. ~28! factor into products of soft and collinear part
respectively. The collinear part of the matrix elements
simply given in terms of the light-cone wave function of th
light meson. Forp and r the definitions are@we suppress
prefactors of*0

1dx d(v12x n̄•pM)d„v21(12x)n̄•pM… on
the right-hand side~RHS!#7

^pn
0u~ j̄nW!v1

n”̄g5t3~W†jn!v2
u0&

52 i A2 f pn̄•pp fp~m,x!,

^rn
0~«!u~ j̄nW!v1

n”̄ t3~W†jn!v2
u0&

5 i A2 f r mr n̄•«* fr~m,x!

5 i A2 f r n̄•pr fr~m,x!. ~30!

6Note that in semi-inclusive processes a different mechanism
responsible for the phases in single-spin asymmetries which ha
do with the boundary conditions on Wilson lines@35#.

7Our vector meson states are defined with an extra minus
relative to the standard convention.
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In the last equality we have used the fact that at this order
collinear operator only produces longitudinalr ’s, for which
mrn̄•«L* 5n̄•pr .

Since it no longer contains couplings to energetic gluo
the soft part of the matrix elements ofOj

(0,8) can be con-
strained using heavy quark symmetry. In other words, he
quark symmetry relations can be derived for matrix eleme
of soft fields. The constraints can be implemented most co
pactly using the trace formalism of the HQET@36#. First,
consider the matrix element of the soft fields inOj

(0,8) . For
Oj

(0) we have

^D (* )0~v8!u~ h̄v8
(c)S!G ~S†hv

(b)!~ d̄ S!k
1
1n”PL ~S†u!k

2
1uB̄0~v !&

AmBmD

5Tr@H̄v8
(c)GHv

(b)X(0)#, ~31!

whereX(0)5X(0)(kj
1 ,n,v,v8) and we use the standard rel

tivistic normalization for the states@and note that the left-
hand side~LHS! is independent ofmb,c in the heavy quark
limit #. An identical equation holds forOj

(8) with an X(8). In
writing the trace formula in Eq.~31! we have used the fac
that the d and u quarks must end up in theB̄ and D (* )

states.8 The heavy mesons (D,D* ) and (B,B* ) are grouped
together into superfields@36#, defined as

Hv5
11v”

2
~Pv*

mgm1Pvg5!. ~32!

Now X(0,8) are the most general structures compatible w
the symmetries of QCD. They involve four function
a124

(0,8)(k1
1 ,k2

1 ,v•v8,n•v,n•v8),

X(0,8)5a1
(0,8)n”PL1a2

(0,8)n”PR1a3
(0,8)PL1a4

(0,8)PR .
~33!

Structures proportional tov” and v” 8 can be eliminated by
usingHvv”52Hv , etc.

The presence of four functions in Eq.~33! would appear
to restrict the predictive power of heavy quark symmet
However, using the properties ofHv and H̄v8 and the fact
that the two-body kinematics relatesn to v andv8 via mBv
5mDv81EMn, it is easy to see that the four functionsai
appear only in two distinct combinations.~Note that we are
taking mM /mB;L/mB!1.! For GL,R

h they give soft func-
tions SL,R defined as SL5(n•v8)(a12a3/2)2a4/2,SR
5(n•v8)(a22a4/2)2a3/2 and

is
to

n

8The matrix element of the analogous soft operators with (ūu)

1(d̄d) would contain a second term in Eq.~31! of the form

Tr @H̄v8
(c)GHv

(b)X#Tr@Y#, which arises from contracting the ligh
quarks in the operator. These types of traces also show up for po

corrections toB̄0→D (* )1M 2 andB2→D (* )0M 2.
9-9
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^D0~v8!u~ h̄v8
(c)S!n”PL,R~S†hv

(b)!~ d̄S!k
1
1n”PL~S†u!k

2
1uB̄0~v !&

AmBmD

5SL,R
(0) ~kj

1!,

^D* 0~v8,«!u~ h̄v8
(c)S!n”PL,R~S†hv

(b)!~ d̄S!k
1
1n”PL~S†u!k

2
1uB̄0~v !&

AmBmD*
56

n•«*

n•v8
SL,R

(0) ~kj
1!, ~34!
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where6 for D* refers to the choice ofPL or PR . Identical
definitions hold for the matrix elements of the color-oc
operators which giveSL,R

(8) (kj
1). We will see in Sec. VI that

the result in Eq.~34! relates decay amplitudes and stro
phases forB̄0→D0M0 and B̄0→D* 0M0 at leading order in
the power expansion, and up to terms suppressed
as(Q)/p. If one takes n•v51, then n•v85mB /mD

(* ) ,
v•v85(mB

21mD(* )
2 )/(2mBmD(* )). The D,D* variables are

equal in the heavy quark limit.
For the long-distance operatorsŌj

( i ) the same set of argu
ments in Eqs.~31!–~34! can be applied except that now w
must add termsa5

(0,8)x”'PL1a6
(0,8)x”'PR to X(0,8), and theai ’s

can also depend onx'
2 . The functions analogous toSL,R

(0,8) are
defined asFL,R

(0,8)(k1,x' ,«D*
* ). In this case theD and D*

decompositions are no longer related since the matrix
ment involves bothn•«* and x'•«* terms forD* . Thus,
due to the long-distance contributions for light vector mes
we must restrict ourselves to the longitudinal polarization
order to have equality for theD andD* amplitudes. In the
case ofr this restriction is not important since the lon
distance contributions vanish~see Appendix A!. However
this observation does have phenomenological implicati
for decays toK* ’s.

We are now in a position to write down the most gene
factorized result for the amplitude for the decaysB̄0

→D (* )0M0. Combining all the factors, this formula contain
the soft functionsS(0,8)(k1

1 ,k2
1) from Eq. ~34!, the jet func-

tions J( i ) from Eq. ~24!, and the Wilson coefficientsCL,R
(0,8)

from Eq. ~17!. In J( i )(t i ,k,
1 ,vk) we can pull out a factor of

d(t12t22v11v2) by momentum conservation. Thi
leaves the variablest11t252EM(2z21) and v11v2
52EM(2x21) unconstrained, which give convolutions wi
the momentum fractionsz and x, respectively. In defining
J( i )(z,x,k,

1) we multiply J( i )(t i ,k,
1 ,vk) by v12v2

5n̄•pM . Altogether the result for theB̄0→D (* )0M0 ampli-
tude is

A00
D(* )

5N0
ME

0

1

dx dzE dk1
1dk2

1@CL
( i )~z!J( i )~z,x,k1

1 ,k2
1!

3SL
( i )~k1

1 ,k2
1!fM~x!6CR

( i )~z!J( i )~z,x,k1
1 ,k2

1!

3SR
( i )~k1

1 ,k2
1!fM~x!#1Along

D(* )M , ~35!

where we sum overi 50,8 and them0 ,m dependence is as i
11400
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Eq. ~24!. The Along
D(* )M in Eq. ~35! denotes the contribution

from the matrix elements of the SCETII time-ordered prod-
ucts @T# long. Also, 6 refer to D/D* , CL,R

( i ) (z)5CL,R
( i ) (t1

1t2 ,EM ,mb ,mc ,m), and

N0
M5

GFVcbVud*

2
f MAmBmD(* ). ~36!

The normalization factor is common sincemD5mD* and

n•« (D* )5n•v8. This follows since theM ’s produced by
Oj

(0,8) are longitudinally polarized.
The long-distance amplitudes also obey a factorizat

theorem which can be derived by examining the matrix e

ments of theŌL,R
(0,8) operators in Eq.~27!. First factorize the

collinear fields into the matrix element withM and the soft
fields into the matrix element withB,D (* ). The indepen-
dence of the collinear propagators on the residual soft min
momenta leads to ad(x1) and the independence of the so
propagators on the residual collinear plus-momenta lead
a d(x2) ~somewhat similar to the calculation forB→Xsg as
described in Ref.@26#!. The result is

Along
D(* )M5N0

ME
0

1

dzE dk1dvE d2x'@CL
( i )~z!J̄( i )~vk1!

3FL
( i )~k1,x' ,«D*

* !CM
( i )~z,v,x' ,«M* !

6CR
( i )~z!J̄( i )~vk1!FR

( i )~k1,x' ,«D*
* !

3CM
( i )~z,v,x' ,«M* !#, ~37!

where6 is for D andD* and we defined the nonperturbativ
functions in a way which gives the same prefactor as in
~35!. HereCL,R

( i ) are the Wilson coefficients of the weak op

erators in Eq.~20!, and the jet functionsJ̄(0,8) are the coef-
ficients of the SCETII Lagrangian in Eq.~25!. FL,R

( i ) andCM
( i )

are soft and collinear matrix elements from the operatorsŌ

and are given by@with prefactor*0
1dzd(v12zn̄•pM)d(v2

1(12z)n̄•pM) for CM
(0)]
9-10
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^M0~pM ,eM !u@~ j̄n
(d)W!v1

n”̄PL~W†jn
(u)!v2

#~0'!

3@~ j̄n
(u)W!vn”̄PL~W†jn

(d)!v#~x'!u0&

5 i f M /A2CM
(0)~z,v,x' ,«M* !,

^D (* )0~v8,eD* !u@~ h̄v8
(c)S!GL,R

h ~S†hv
(b)!#~0'!

3@~ d̄S!k1n”PL~S†u!k1#~x'!uB̄0&

56AmBmD(* )FL,R
(0) ~k1,x' ,«D*

* !, ~38!

andCM
(8) andFL,R

(8) are defined by analogous equations w
color structureTa

^ Ta. 6 are for PL and PR , respectively.

In a more traditional language theAlong
D(* )M contributions

might be referred to as ‘‘nonfactorizable’’ since they invol
a directx' convolution between nonperturbative function
Equations~35! and ~37! are the main results of our pape
Additional details about the derivation of Eq.~37! will be
presented in Ref.@37#.

Using the SCETII power counting inh5L/Q we can
verify that the short- and long-distance contributions to
factorization theorem are indeed of the same order. The
efficientsCL,R

( i ) ;h0. The results in Eqs.~26! and~42! for the

jet functions implyJ( i );1/L2 and J̄( i );1/(QL). Further-
more,fM;h0 from the definitions in Eq.~30!. For the soft
nd

11400
.

e
o-

function in Eq.~34! we get (h3/2)4 from the fields,h23 from
the states, timesh22 from the delta functions indicated b
the momentum subscripts. This givesS(k1

1 ,k2
1);h, i.e.,

S(k1
1 ,k2

1);L. A similar calculation for the collinear and
soft long-distance matrix elements in Eq.~38! gives CM

(0,8)

;L2/Q and FL,R
(0,8);L. In the factorization theorem the

measures have scaling (dk1
1dk2

1);L2 and (dk1d2x')
;1/L. Combining all the factors for the short-distance a
plitude gives (L)(L2)(1/L2)(L)(L0)5L2, while for the
long-distance amplitude we find (L)(1/L)(1/L)(L)(L2)

5L2 also. Therefore, both terms inA00
D(* )

are of the same
order in the power counting as expected. They also give
complete set of contributions at this order.

For numerical results withM5p,r the Along
D(* )M contribu-

tions are very small since takingCL,R
( i ) (z) independent ofz

givesAlong
D(* )M50, as shown in Appendix A. This implies tha

Along
D(* )M/A00;as(Q)/p, and together with the helicity struc

ture of the jet function discussed in Appendix B implies th
the production of transverser mesons is suppressed. In Se
VI we explore further phenomenological implications.

Next, tree level results are presented for the jet functio
J(0,8). The SCETI graphs in Fig. 2 are computed with inse
tions of Q j

(0,8) and taking momenta2k1 and 2k2 for the
initial and final light soft antiquarks, together with momen
p1 and p2 for the collinear quark and antiquark. The di
grams in Figs. 2~a,b! with insertions of$Q j

(0) ,Q j
(8)% are
C: g2
~ ūv8

(c)gnPL$1,TB%uv
(b)!~ ūn

(d)gnPLn” /2$1,TB%TAg'
mvs

(u)!~ v̄s
(d)TAgm

'vn
(d)!

@n•~k12k2!1 i e#@ n̄•p2 n•k11 i e#
,

E: 2g2
~ ūv8

(c)gnPL$1,TB%uv
(b)!~ ūn

(u)TAg'
mvs

(u)!~ v̄s
(d)TA$1,TB%gm

'n” /2gnPLvn
(u)!

@n•~k12k2!1 i e#@2n̄•p1 n•k21 i e#
. ~39!

Adding these contributions with factors ofCL
(0) andCL

(8) to distinguish the two color structures, and then Fierzing gives

CL
(0)@ ūv8

(c)n”PLuv
(b)v̄s

(d)n”PLvs
(u)#

2pasCF

Nc
S ūn

(d)n”̄PLvn
(d)

@n•~k12k2!1 i e#@ n̄•p2n•k11 i e#
2

ūn
(u)n

”̄
PLvn

(u)

@n•~k12k2!1 i e#@2n̄•p1n•k21 i e#
D

2CL
(8)@ ūv8

(c)n”PLTauv
(b)v̄s

(d)n”PLTavs
(u)#

pas

Nc
2 S ūn

(d)n”̄PLvn
(d)

@n•~k12k2!1 i e#@ n̄•p2n•k11 i e#
2

ūn
(u)n”̄PLvn

(u)

@n•~k12k2!1 i e#@2n̄•p1n•k21 i e#
D ,

~40!
nge

we
whereCF5(Nc
221)/(2Nc) and we setCR

(0,8)50. The first
term in each round bracket originates from theC-type graph
~Fig. 2a! and the second term from theE-type graph~Fig.
2b!. It is convenient to group the result into isosinglet a
isotriplet terms for the collinear spinors. Sincep0 and r0

have definite charge conjugation, we can freely intercha
the positive momentan̄•p1↔n̄•p2, so a factor of 1/n̄•p1
can be pulled out front. For the terms in round brackets
9-11
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find

S 1

2

@ ūn
(d)n”̄PLvn

(d)2ūn
(u)n”̄PLvn

(u)#

@n•k11 i e#@2n•k21 i e#

2
1

2

@ ūn
(d)n”̄PLvn

(d)1ūn
(u)n”̄PLvn

(u)#n•~k21k1!

@n•~k12k2!1 i e#@n•k11 i e#@2n•k21 i e#
D .

~41!

For B̄0→D (* )0p0 andB̄0→D (* )0r0 where we have isotrip-
let M0’s the contributions from the SCETII diagrams in Figs.
2~c,d! cancel. Thus, the denominator in Eq.~41! directly
gives the tree level isotriplet jet functions

J(0)~z,x,k1
1 ,k2

1!52
4pas~m!CF

Nc

3
d~z2x!

x @n•k11 i e#@2n•k21 i e#
,

J(8)~z,x,k1
1 ,k2

1!5
2pas~m!

Nc
2

3
d~z2x!

x @n•k11 i e#@2n•k21 i e#
, ~42!

where n̄•p15x n̄•pM . These jet functions are nonsingula
given that the nonperturbative soft functionS(k1

1 ,k2
1) van-

ishes fork1
150 or k2

150, and thatfp,r(x) vanishes atx
50 and x51. On the other hand for isosingletM0’s the
result in Eq. ~41! has a singular denominator 1/@n•(k1
2k2)1 i e#. The singularity occurs when the collinear qua
propagators in Figs. 2~a,b! get too close to their mass shell
ie. when n•(k12k2)&L2/Q. This singularity is exactly
what is canceled by subtracting the SCETII diagrams in Figs.
2~c,d!, which then gives a nonsingular isosinglet jet functio

Next we consider the result for the factorization theor
for M5p,r with these tree level jet functions. Taking th
matrix elements of theOL

(0,8) operators, the collinear par
factors from the soft operators as explained above. T
matrix elements are given in terms of theM0 light-cone
wave function and theS(0,8)(k1 ,l 1) functions. This gives
the explicit result for theB̄0→D (* )0p0 and B̄0→D (* )0r0

decay amplitudes, at lowest order in the matching forC and
J,

A~B̄0→D (* )0p0!5N0
pH 2

4pas~m0!CF

Nc
CL

(0)s(0)

1
2pas~m0!

Nc
2

CL
(8)s(8)J ^x21&p ,
11400
.

ir

A~B̄0→D (* )0r0!5N0
rH 2

4pas~m0!CF

Nc
CL

(0)s(0)

1
2pas~m0!

Nc
2

CL
(8)s(8)J ^x21&r .

~43!

We choose to evaluateCL
(0,8) , s(0,8), and ^x21& at the com-

mon scalesm5m0;AEpL since one of the hard scalesmc
2

is not much different fromEpL. In Eq. ~43! the convolu-
tions of the soft and collinear matrix elements are defined

s(0,8)5us(0,8)ueif(0,8)
5E dk1

1dk2
1

SL
(0,8)~k1

1 ,k2
1 ,m!

~k1
11 i e!~2k2

11 i e!
,

^x21&M5E
0

1

dx
fM~x,m!

x
. ~44!

From Eq.~44! we can immediately verify the result of th
power counting for operators described earlier. Sin
^x21&M;^x0&M;l0, comparing Eqs.~7! and ~8! and ~43!
we see that

A~B̄0→D0p0!

A~B̄0→D1p2!
;4pas~m0!

N0 s(0)

N Ep
;4pas~m0!

s(0)

Ep

;4pas~m0!
LQCD

Ep
, ~45!

where we have used the standard HQET power counting
the soft matrix elements to determine thats(0,8);LQCD.
Thus, the ratio of type-II to type-I amplitudes scales asL/Q
just as predicted. Due to the factor of 4p the suppression by
as does not have much effect numerically. 4p arises because
as is generated at tree level. It is expected that perturba
corrections to the matching forC andJ will be suppressed by
factors ofas(Q)/p and as(AEpL)/p, respectively. In Eq.
~45! grouping g2Nc;1 gives an extra factor of 1/Nc , so
with this counting the ratio is color suppressed as expec

IV. ADDING STRANGE QUARKS

In this section we consider how the factorization theor
derived in Sec. III is modified in the case of color suppress
decays involving kaons, which includeB̄0→Ds

(* )K2, B̄0

→Ds
(* )K* 2, as well as the Cabbibo suppressed decaysB̄0

→D (* )0K0 and B̄0→D (* )0K* 0.
If strange quarks are included in the final state, then

erators with different flavor structure appear. In the excha
topology we can have the production of anss̄pair ~as shown
by the s quarks in brackets in Fig. 2b!. This gives SCETII
six-quark operators
9-12
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Oj
(0)~ki

1 ,vk!5@ h̄v8
(c)G j

hhv
(b)~ d̄ S!k

1
1n”PL ~S†s!k

2
1#

3@~ j̄n
(s)W!v1

Gc~W†jn
(u)!v2

#,

Oj
(8)~ki

1 ,vk!5@~ h̄v8
(c)S!G j

hTa~S†hv
(b)!

3~ d̄ S!k
1
1n”PLTa~S†s!k

2
1#

3@~ j̄n
(s)W!v1

Gc~W†jn
(u)!v2

#, ~46!

which mediateB̄0→Ds
(* )K (* )2. For the long-distance con

tribution we take flavorsq85d andq5s in the Lagrangian
in Eq. ~25!, which leads tos,s̄ quarks replacingu, ū quarks in
ŌL,R

( i ) . The result for the factorization theorem is then ide
tical to Eqs.~35! and ~37!, except that only theE topology
contributes. For this case the long-distance contribution
not suppressed and serves to regulate the singularity w
matching onto theE-topology jet functionsJ(0,8)5JE

(0,8) .
Further discussion of the singularities is left to Ref.@37#. The
hard coefficientsCL,R

(0,8) are the same as in the previous se
tion.

The remaining difference forB̄0→Ds
(* )K (* )2 are the

nonperturbative functions. The light-cone wave functions
K2, K̄0, K* 2, andK̄* 0 are @with q5u,d, v15n̄•pxs , v2

52n̄•pxq , and a prefactor as in Eq.~30!#

^Knu~ j̄n
(s)W!v1

n”̄g5~W†jn
(q)!v2

u0&

522i f Kn̄•pK fK~m,xs!,

^Kn* ~e!u~ j̄n
(s)W!v1

n”̄ ~W†jn
(q)!v2

u0&

522i f K* mK* n̄•e* fK* ~m,xs!

522i f K* n̄•pK* fK* ~m,xs!. ~47!

The collinear functionsCM
(0,8) also depend on the light meso

M. The nonperturbative soft functions involve strange qua
and are also different from Sec. III,S→S̃L,R

( i ) and FL,R
(0,8)

→F̃L,R
(0,8) . The nonperturbative functions are related to tho

in the previous section in the SU~3! flavor symmetry limit.
However, the jet functions are not related in this limit, th
differ since different topologies contribute. This leads to d
ferent convolutions over the nonperturbative functions.

Next consider the Cabibbo suppressedb→csū transition
with the color suppressed topology~as shown by the bracket
in Fig. 2a!. For the six-quark operators we have9

9Note that the flavor structure was not distinguished in naming
operators in Eqs.~28!,~46!,~48!. This should not cause confusio
since they always contribute to different decays.
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Oj
(0)~ki

1 ,vk!5@ h̄v8
(c)G j

h hv
(b)~ d̄ S!k

1
1n”PL~S†u!k

2
1#

3@~ j̄n
(s)W!v1

Gc~W†jn
(d)!v2

#,

Oj
(8)~ki

1 ,vk!5@~ h̄v8
(c)S!G j

h Ta~S†hv
(b)!

3~ d̄ S!k
1
1n”PLTa~S†u!k

2
1#

3@~ j̄n
(s)W!v1

Gc~W†jn
(d)!v2

#, ~48!

which mediate the decaysB̄0→D (* )0K̄ (* )0. In this case the
SCETII Lagrangian in Eq.~25! has the same flavor structur
as in Sec. III. Since only theC topology contributes, the
long-distance contribution is not suppressed in the factor
tion theorem, and the jet functionJ(0,8)→JC

(0,8) . For both the
short- and long-distance nonperturbative functions
change of flavor appears only through the collinear quark
the weak operator, so the collinear functions depend on
K (* )0 but the soft functionsSL,R

(0,8) andFL,R
(0,8) are identical to

those in Sec. III.~However, nowJC
(0,8) appears, so the mo

ments over the soft functionSL,R
(0,8) will be different.! Finally

note that if we allow a strange quark in the initial state~for
Bs decays!, then theE topology can also contribute and mo
operators are generated.

Due to the non-negligible long-distance contributions t
number of model-independent phenomenological predicti
for kaons are more limited. The main predictions are
equality of branching fractions and strong phase shifts
decays toD versusD* . For M5K0,K2 an identical proof to
the one forp0 andr0 can be used. For the vector mesons t
proof can also be used if we restrict our attention to longi
dinal polarizations, so the final statesD (* )K i*

0 are related,
and so areD (* )K i*

2 . The factorization theorem allows fo
transversely polarized kaons at the same order in the po
counting, but only through the long-distance contribution

V. DISCUSSION AND COMPARISON WITH THE LARGE
Nc LIMIT

It is instructive to compare theNc scaling of the different
terms in the SCET result, Eq.~35! @or Eq. ~43!#, with that
expected from QCD before expanding in 1/Q given in Eq.
~3!. Combining the matrix elements in Eq.~3! written in a
form similar to Eq.~43! gives the decay amplitude at leadin
order in 1/Q as

A~B̄0→D0M0!5N0
MS C11

C2

Nc
D F 1

Nc
~F012G1!1•••G

1N0
M C2FF01

1

Nc
2 ~2F01F222G1!

1•••G1•••. ~49!
e
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The ellipses denote power suppressed terms. This reprod
the 1/Nc expansion of the SCET amplitude in Eq.~43! with
the identification

F050, G152pasCF s(0)uNc→` ,

F222G152pas s(8)uNc→` , ~50!

wheres(0);Nc
0 ands(8);Nc . This implies that the factoriz-

able termF0 is power suppressed in the limit of an energe
pion relative to the leading order amplitude in Eq.~43!.

The naive factorization approach in Eq.~2! keeps only the
F0 term, which is expressed in terms of theB̄→p form
factor in the largeNc limit. We comment here on the form o
this contribution in the effective theory. They appear in t
matching of the (d̄b)V-A( c̄u)V-A operator onto SCETI T prod-
ucts such as

T1
(4)5T$Q 0

(2) ,iL qj
(2)%, T2

(4)5T$Q 1a,1b
(3) ,iL qj

(1)%, ~51!

where the operatorsQ (2,3) contain one usoft light quark
From the leading order operators in Eq.~20! they can be
constructed by switchingjn→q to give Q (2), and adding a
furtherW†iD'W to getQ (3). Their precise form is differen
depending on whether they are introduced by matching fr
the color suppressed~C! or theW-exchange~E! graph. Sche-
matically

C-type Q 0
(2)5@~ j̄n

(d)W!vGchv
(b)#@ h̄v8

(c)Ghu#,

Q 1a
(3)5F S j̄n

(d) n”̄

2
iD”'c

† WD
v

1

n̄•P †
Gchv

(b)G @ h̄v8
(c)Ghu#,

Q 1b
(3)5

1

mc
@~ j̄n

(d)W!v1
Gchv

(b)#

3@ h̄v8
(c)

@W†iD”'cW#v2
Ghu#,

~52!

E-type Q 0
(2)5@ d̄Ghhv

(b)#@ h̄v8
(c)Gc~W†jn

(u)!v#,

Q 1a
(3)5@ d̄Ghhv

(b)#F h̄v8
(c)Gc

1

n̄•P S W†iD”'c

n”̄

2
jn

(u)D
v
G ,

Q 1b
(3)5

1

mc
@ d̄Ghhv

(b)#@ h̄v8
(c)

@W†iD”'cW#v1

3Gc~W†jn
(u)!v2

#. ~53!

The presence of the usoft quark fieldq in these operators
introduces an additional suppression factor ofl2, such that
the T productsT1,2

(4) areO(l4);L2/Q2 down relative to the
operatorsQL,R

(0,8) in Eq. ~20!. ~Note that since the form factor
enter as time-ordered products we do not expect a diffe
as suppression forT1,2

(4) relative to those in Eq.~21! @29#.!
This explains the absence of theF0 contributions at order
11400
ces

m

nt

L/Q, as noted in Eq.~50!. AlthoughF0 is part of the leading
order result in the largeNc limit, it is subleading in the 1/Q
expansion.

After soft-collinear factorization, theT products ~51!
match onto factorizable operators in SCETII . For example,
theC type time-ordered product containingQ1a

(3) gives~sche-
matically!

T2
(4)→E dv1dv2 J~v i ,k1

1!@~ d̄S!k1
G~S†hv

(b)!#@ h̄v8
(c)Ghu#

3@~ j̄n
(u)W!v1

Gc~W†jn
(u)!v2

#. ~54!

Apart from the (c̄u) soft bilinear, this is similar to a factor
izable operator contributing to theB→p form factor @29#.
The presence of theD meson in the final state implies tha
the matrix element of the soft operator in Eq.~54! is different
from that appearing inB̄→p. Therefore, naive factorization
of type-II decay amplitudes, as written in Eq.~2!, does not
follow in general from the large energy limit. Still, in th
large Nc limit, the matrix element ofT1

(4) above can be in-
deed expressed in terms of theB→p form factor, as required
by Eq. ~5!

Recently an analysis of color-suppressed decays was
formed using the ‘‘pQCD’’ approach working at leading o
der in an expansion inmD(* ) /mB andLQCD/mD(* ) @38#. This
differs from the expansion used here, in that we do not
pand in mD(* ) /mB . The nonperturbative functions in the
proposed factorization formula include the light-cone wa
functionsfp

(p)(x3), fD(x2) and aB light-cone wave func-
tion that depends on a transverse coordinatefB(x1 ,b1). This
differs from our result which involves aB→D function
S(k1

1 ,k2
1) and also has additional long-distance contrib

tions,Along
D(* )M , at the same order in our power counting. O

long-distance contributions are ‘‘non-factorizable’’ in th
sense that the nonperturbative functionsFL,R

( i ) (k1,x') and
CM

( i )(z,v,x') communicate directly through theirx' depen-
dence without going through a hard kernel. In Ref.@38#
strong phases only occur from the perturbativem0

2.EML
scale, whereas we also find nonperturbative strong ph
from the L2 scale @in S(k1

1 ,k2
1)]. The nonperturbative

phases are expected to dominate in our result. Finally,
results in Ref.@38# do not manifestly predict the equality o
theD andD* amplitudes since at the order they are worki
contributions from differentB→M form factors show up.
For example their pQCD prediction BR(B̄0

→D* 0r0)/BR(B̄0→D0r0)52.7 is much different from the
prediction of 1.0 that we obtain in the next section usi
heavy quark symmetry.

The time-ordered products presented in this paper in
~21! are only L/Q down from the class-IT amplitudes.
Therefore, they give the dominant contribution to the co
suppressed andW-exchange amplitudes in the limit of a
energetic pion (L/Q!1). This is a new result, not notice
previously in the literature. The power counting of factori
ableF0-type contributions are indeed suppressed byL2/Q2
9-14
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in our analysis in agreement with the literature. Howev
these terms do not give the dominant contribution.

VI. PHENOMENOLOGICAL PREDICTIONS

A factorization theorem for color suppressedB̄0→D0M0

decays was proven in Sec. III and extended to decay
kaons in Sec. IV. The amplitudes at leading order inLQCD/Q
with Q5$mb ,mc ,Ep% have the form

A005A~B̄0→D (* )0M0!

5N0
ME

0

1

dx dzE dk1
1dk2

1 (
i 50,8

@CL
( i )~z!SL

( i )~kj
1!

6CR
( i )~z! SR

( i )~kj
1!#J( i )~z,x,kj

1! fM~x!1Along
D(* )M ,

~55!

where the sign6 corresponds to aD0 or D* 0 meson in the
final state, respectively. In this section the implications of E
~55! for the phenomenology of color suppressed decays
discussed. One class of predictions follow without any
sumptions about the form ofJ:

~1! Heavy quark symmetry relates the nonperturbat
soft matrix elements appearing in theB̄0→D0M0 and B̄0

→D* 0M0 decays with the same light meson at leading or
in as(Q)/p. This implies relations among their branchin
fractions and equal strong phases in their isospin triang
These relations are encoded in the ratiosR0

M in Eq. ~12!.
A second class of predictions depend on using a pertu

tive expansion ofJ in as(m0) for m0
2;EML:

~2! Using a perturbative description ofJ the amplitudes
and strong phases for decays to different light mesonsM can
be related at leading order inas(m0)/p.

These predictions are encoded in the ratiosR0
M /M8 , Rc ,

and strong phasef in RI , as defined in Eq.~12!. We con-
sider the two classes of predictions in turn.

First, consider relations between color suppressedB̄

→DM andB̄→D* M decays with the same light meson. A
tree level in the matching at the hard scalem.Q, two of the
Wilson coefficients vanishCR

(0,8)50. Therefore both ampli-
tudes forD andD* contain only the soft functionsSL

(0,8)(kj
1)

appearing in the same linear combination. This impl
model-independent predictions, which can be made eve
the absence of any information about the jet functionsJ( i )

and the nonperturbative functionsSL
( i ) , fM , and without

knowing Along
D(* )M . For M5p0,r0, we haveAlong

D(* )M50 so
Eq. ~55! gives

R0
p[

A~B̄0→D* 0p0!

A~B̄0→D0p0!
51, R0

r[
A~B̄0→D* 0r0!

A~B̄0→D0r0!
51.

~56!

For decays toDs
(* )K2, Ds

(* )K i*
2 , D (* )0K̄0, andD (* )0K̄ i*

0

it was shown thatAlong
DM5Along

D* M and so
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R0
K2

5
A~B̄0→Ds* K2!

A~B̄0→DsK
2!

51, R
0
K i*

2

5
A~B̄0→Ds* K i*

2!

A~B̄0→DsK i*
2!

51,

R0
K0

5
A~B̄0→D* K̄0!

A~B̄0→DK̄0!
51, R

0
K i*

0

5
A~B̄0→D* K̄ i*

0!

A~B̄0→DK̄ i*
0!

51.

~57!

The ratios in Eqs.~56! and ~57! have calculable correction
of the order ofas(Q)/p and power corrections10 of the order
of L/Q, which can be expected to be;20%.

These amplitude relations imply the equality of th
branching fractions. They also imply the equality of the no
perturbative strong phases between isospin amplitu

namely, the phasesdD(* )M in the ratiosRI
D(* )M as shown in

Fig. 5. Thus for each ofM5p0,r0,K0,K i*
0 ,

BR~B̄0→D* 0M0!5BR~B̄0→D0M0!, dD* 0M0
5dD0M0

,

~58!

and forM5K2,K i*
2

BR~B̄0→Ds* M !5BR~B̄0→DsM !, dDs* M5dDsM.
~59!

The predictions in Eqs.~56! and ~58! agree well with the
data forD (* )p in Table I, which give

uR0
puexp50.9460.21, dDp530.3°213.8

17.8 ,

dD* p530.1°66.1°. ~60!

10Note that using the observedD and D* massesR0
M5N0* /N0

51.04. This small difference corresponds to keeping an incomp
set of higher order corrections.

FIG. 5. The ratio of isospin amplitudesRI5A1/2/(A2A3/2) and

strong phasesd andf in B̄→Dp andB̄→D* p. The central values
following from the D and D* data in Table I are denoted b
squares, and the shaded regions are the 1s ranges computed from
the branching ratios. The overlap of theD and D* regions show
that the two predictions embodied in Eq.~56! work well.
9-15
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MANTRY, PIRJOL, AND STEWART PHYSICAL REVIEW D68, 114009 ~2003!
This agreement is represented graphically by the overla
the 1s regions in Fig. 5, with small squares indicating t
central values. The dominant contribution to the phased is
generated by the (C2E) amplitudes which have comple
phases fromJ( i ) SL

(0,8) in Eq. ~55!. Since the phases inSL
(0,8)

are nonperturbative and can be large, it is expected that
will dominate. Note that with this choice of triangle th
power suppressed side in Fig. 5 is enlarged by a isos
prefactor of 3/A252.1.

For B̄0 decays to D (* )0r0, D (* )0K̄0, D (* )0K̄ i*
0 ,

Ds
(* )K2, andDs

(* )K i*
2 only upper bounds on the branchin

ratios exist, so our relation betweenD andD* triangles has
not yet been tested. For each of these channels similar
angles to the one in Fig. 5 can be constructed once
become available.

The results in Eqs.~56! and ~57! can be contrasted with
the absence of a definite prediction in the largeNc limit as in
Eq. ~6!. Even when only theF0 term is included~naive fac-
torization!, Rp is given by a ratio ofB→p form factors,
which for genericmb,c are not related by heavy quark sym
metry. Thus, one does not expect a relation between
branching fractions or strong phases unless the 1/Q expan-
sion is used.

Next consider the second class of predictions, which
low from the perturbative expansion of the jet function in E
~55!. We now assume thatas(m0) is perturbative and focus
on M5p,r since the kaons are contaminated by contrib

tions fromAlong
D(* )M . The tree level result forJ is given in Eq.

~42!, and was used to define the nonperturbative parame
s(0,8) through convolutions with the soft distribution func
tions SL

(0,8)(ki
1) as in Eq.~44!. It is convenient to introduce

an effective moment parameter

seff52s(0)1
1

2NcCF

CL
(8)

CL
(0)

s(8)5useffue2 if. ~61!

In terms of the effective moment the result in Eq.~55! at
lowest order inas(Q) andas(m0) becomes

A~B̄0→D (* )0M0!5N0
M CL

(0)16pas~m0!

9
seff~m0!^x21&M ,

~62!

whereN0
M is defined in Eq.~36!. Sinceseff is independent of

M5p,r the same phasef is predicted for these two ligh
mesons.

At leading order in 1/Q the type-I amplitudeA02

5A(B2→D0p2) factors as in Eq.~7! giving the product of
a form factor and decay constant, both of which are r
~with the usual phase conventions for the states, and neg
ing tiny as(mb) strong phases (;2°) generated by the co
efficientsCL,R

(0) at one loop@7#!. Therefore the amplitudeA02

is real at leading order in 1/Q up to calculable corrections o
the order ofas(Q). Choosing the orientation of the triang
so thatA02 lies on the real axis, the phasef can be directly
extracted as one of the angles in the isospin triangle
11400
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A2A001A125A02 . ~63!

This is shown in Fig. 6 where we divide byA02 to normalize
the base. The data onB̄0→D0r0 are not yet sensitive enoug
to test the prediction thatf is the same forp0 andr0.

Using Eqs.~7! and~62! it is possible to make a predictio
for the ratioRc in Eq. ~12! at next-to-leading order in the
power expansion. SinceRc5A12 /A02 contains only
charged light mesons, it is easier to measure than neu
pion channels. Data are available for all four of theD (* )p
and D (* )r channels. Using the triangle relation in Eq.~63!
one finds for the ratio of any two such modes@M5p,r#

Rc
D(* )M512A2

A00

A02

512
16pas~m0!mD(* )

9 EM~mB1mD(* )!

seff~m0!

j~w0 ,m0!
^x21&M .

~64!

It is easy to see that the ratio of amplitudes on the right-h
side is common to final states containing aD or D* , and has
only a mild dependence on the light meson, introduc
through the inverse moment^x21&M . In particular we note
that there is no dependence on the decay constantf M on the
RHS of Eq.~64!, since it cancels in the ratioA00/A02 . This
implies that the ratiosRc are comparable for all four chan
nels D (* )p and D (* )r, up to corrections introduced b
^x21&pÞ^x21&r . These corrections can be smaller than t
correction one might expect from the ratio of decay consta
f r / f p.1.6 ~which appear in the naivea2 factorization!. The
experimental values of these ratios can be extracted f
Table I and are in good agreement with a quasiunive
prediction,

FIG. 6. Fit to the soft parameterseff defined in the text, repre-
sented in the complex plane with the convention thatA02 is real.
The regions are derived by scanning the 1s errors on the branching
fractions ~which may slightly overestimate the uncertainty!. The

light gray area gives the constraint fromB̄→Dp and the dark gray

area gives the constraint fromB̄→D* p.
9-16
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STRONG PHASES AND FACTORIZATION FOR COLOR . . . PHYSICAL REVIEW D68, 114009 ~2003!
uRc
(Dp)u5

uA~B̄0→D1p2!u

uA~B̄2→D0p2!u
50.7760.05,

uRc
(D* p)u5

uA~B̄0→D* 1p2!u

uA~B̄2→D* 0p2!u
50.8160.05,

~65!

uRc
(Dr)u5

uA~B̄0→D1r2!u

uA~B̄2→D0r2!u
50.8060.09,

uR
c

(DL* rL)u5
uA~B̄0→D* 1r2!u

uA~B̄2→D* 0r2!u
50.8660.10.

This lends support to our prediction for the universality
the strong phasef in B̄→D (* )p and B̄→D (* )r decays
from the seff in Eq. ~64!. The central values ofRc.0.8 are
well described byseff of the expected size (;LQCD), as
discussed in the fit to the isospin triangle below. Further d
on these channels may expose other interesting quest

such as whetherRc
(D* M ) is closer toRc

(DM ) thanRc
(D(* )p) is to

Rc
(D(* )r) .
An alternative use of Eq.~64! and theRc amplitude ratios

is to give us a method for extracting the ratio ofr and p
moments. Using theDp andDr measurements which hav
smaller errors than forD* , we find

^x21&r

^x21&p

5
uRc

(Dr)u21

uRc
(Dp)u21

50.8760.42, ~66!

where only the experimental uncertainty is shown. The
traction in Eq.~66! is smaller, but still in agreement with th
ratio extracted from light-cone QCD sum rules. The best
from the g* g→p0 data performed in Ref.@39# gives
^x21&p53.260.4 in agreement with sum-rule estimates
the moment. The QCD sum-rule result^x21&r53.4860.27
@40# then implies

^x21&r

^x21&p
U

SR

51.1060.16. ~67!

The result that this ratio is close to unity is consistent w
the universality of the data in Eq.~65!. These data can b
contrasted with cases where the single light meson is
placed by a multibody state such as@17#

BR~B̄0→D* 1p2p2p1p0!

BR~B̄2→D* 0p1p2p2p0!
51.0260.27. ~68!

For the four pion final state our proof of the factorizatio
theorem does not work, since for many events one or m
of the pions will be slow. We therefore would expect le
universality in branching ratios involving more than o
light meson.~For these decays a different type of factoriz
tion involving largeNc works well for theq2 spectrum@8#.!
11400
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The result in Eq.~62! also leads to predictions for th
ratios of color-suppressed decay amplitudes to final st
containing different light mesonsM05p0,r0. We find

R0
r/p[

uA~B̄0→D0r0!u

uA~B̄0→D0p0!u
5

f r

f p

^x21&r

^x21&p

51.4060.77,

~69!

where we used f p65130.760.4 MeV and f r65210
610 MeV, and inserted the result in Eq.~66! for the mo-
ments. This can be compared with the experimental re
(Rr/p)exp51.0260.21. The large uncertainty in the ratio o
moments in Eq.~66! dominates the error in Eq.~69!. With
the QCD sum-rule result in Eq.~67! we find Rr/p51.64
60.35, a result whose central value is farther from the
perimental data, but still consistent with it.

In contrast to the first class of predictions, the predictio
for the ratios in Eqs.~64!, ~66!, and~69! and the prediction
for the universality off can receive corrections from ne
glected @as(m0)2/p# terms in J. The dominant theoretica
corrections to this extraction are expected to come ag
from these perturbative corrections toJ or from power cor-
rections, which we estimate may be at the;30% level. A
future study of the perturbative corrections is possible wit
the framework of our factorization theorem and SCET.
future data indicate large deviations from the predictions
our second class then this points to significant perturba
corrections to the jet functionJ. However, it would not indi-
cate anything about our first class of predictions which
independent of the functional form ofJ.

The result in Eq.~62! and the data onB→Dp and B
→D* p decays can be used to extract values of the mom
parametersuseffu and strong phasef. We present in Fig. 6 the
constraints on the parameterseff in the complex plane, ob-
tained fromDp ~light shaded region! andD* p data~darker
shaded area!. We used in this determinationm05Ep

52.31 GeV, and leading order running which giv
as(m0)50.25, C1(m5m0)51.15, and C2(m5m0)
520.32. The good agreement between theDp and D* p
1s regions marks a quantitative success of our factoriza
relation in Eq.~55!. Averaging over theDp and D* p re-
sults, we find the following values for the soft parameters
m5m0:

useffu5~4286486100 MeV!S 0.26

CL~m0!as~m0! D S 3.2

^x21&p
D ,

f544.0°66.5°. ~70!

In this determination the inverse moment of the pion wa
function was taken from the best fit to theg* g→p0 data
@39#, ^x21&p53.260.4. For useffu the first error is experi-
mental, while the second is our estimate of the theoret
uncertainty in the extraction from varyingm0 from Ep/2
to 2Ep . At the order we are working the extraction of th
phasef is independent of the scale, since the prefac
as(m0)^x21&p drops out. The result in Eq.~70! agrees well
with the dimensional analysis estimatesseff;s(0,8);LQCD.
9-17
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MANTRY, PIRJOL, AND STEWART PHYSICAL REVIEW D68, 114009 ~2003!
Sincef is nonperturbative its value is unconstrained, an
large value of this phase is allowed.

The recentB̄0→D0r0 data from Belle allow us to extrac
useffu and f in a manner independent of the above deter
nation. Keeping only experimental errors we find

useffu5~2596124 MeV!S 0.26

CL~m0!as~m0! D S 3.5

^x21&r
D ,

f517°670°. ~71!

The results agree with Eq.~70! within 1s, but currently have
errors that are too large to significantly test the factorizat
prediction of equality on the 20–30 % level of the para
eters extracted fromDr andDp.

The B̄0→Ds
(* )1K2 channels proceed exclusively throug

the W-exchange graph and have been the object of re
theoretical work@41#. For the result analogous to Eq.~62! we
would have@M5K,K* #

A~B̄0→Ds
(* )M !5A2N0

M CL
(0) 16pas~m0!

9
seff

E ~m0!^xs
21&M

1A
long
Ds

(* )M
. ~72!

Both theB̄0→Ds
(* )1K2 modes and the Cabibbo suppress

decays B̄→D (* )K̄ (* ) receive this additional contribution

from Along
D(* )M . This makes the factorization theorem less p

dictive, and so we do not attempt an analysis of rat

Rc
D(* )K(* )

, R0
M /M8 , or the universal phasesfE and fC that

are analogous tof in Eq. ~61!.
On the experimental side both Babar and Belle Colla

rations@42# recently observed theB̄0→Ds
1K2 decay, and se

an upper limit on the branching ratio ofB̄0→Ds*
1K2,

B~B̄0→Ds
1K2!

5H @3.261.0~stat!61.0~sys!#31025 ~Babar!

@4.621.1
11.2~stat!61.3~sys!#31025 ~Belle!,

B~B̄0→Ds*
1K2!<2.531025~90% C.L.! ~Babar!.

~73!

The branching fraction forB̄0→Ds
1K2 is an order of mag-

nitude smaller than that forB̄0→D0p0. This indicates that
the W-exchange amplitudeEDsK

2
is suppressed relative t

(C2E)Dp and (Vud /A2Vus) CD0K̄0
. In SCET the SU~3!

breaking betweenfp(x) andfK(x) is generated by masse
in the collinear quark Lagrangian@43#. This causes an asym
metry in the light-cone kaon wave function. This SU~3! vio-
lation can be expected to be at most a canonical;20–30 %
effect, which would not account for the observed suppr
sion.

However, there is one important source of potentia
larger SU~3! breaking from an enhancement in moments
the light-cone kaon wave function which appear in the sh
11400
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distance amplitude. This may account for the observed s
pression. Basically strange quark mass effects imply a la
SU~3! violation for inverse moments than expected forfp

versusfK alone, and implies that̂xs
21&K,^xd

21&K . Using
the result from QCD sum rules the ratio of moments@40# is
^xd

21&K /^xs
21&K;1.4. Furthermore, we anticipate a simila

large effect from the moments that appear in the soft ma
elements which again differ by factors of (kd

1)21 versus
(ks

1)21, and appear in a way that suppressesDsK
2. The

combination of these two suppression factors might acco
modate the observed factor of 3 suppression in theDsK

2

amplitudes.11 The long-distance amplitude also involves tw
inverse momentum fractions throughJ̄(0,8) in Eq. ~26!, al-
though admittedly much less is known about the nonper
bative functionsCM

(0,8) and FL,R
(0,8) . Thus, we find that the

suppression ofEDsK
2

may not imply much about the relativ
size ofCDp andEDp. Finally, we note that the suppressio
mechanism forss̄ creation that we have identified is particu
lar to problems involving large energies where light-co
wave functions arise.

Further information on the relative size of the short- a
long-distance contributions to the kaon factorization theor
is clearly desirable. In Sec. IV it was noted that in type
decays transverseK* ’s are produced only by the long
distance contribution at this order inLQCD/Q. Therefore,
measuring the polarization of theK* in both the B̄0

→Ds* K* 2 and B̄0→D* 0K* 0 decays can give us a direc
handle on whether there might be additional dynamical s
pression of either the long- or short-distance contributions
whether they are of similar in size as one might expeca
priori from the power counting.

VII. SUMMARY AND CONCLUSIONS

We presented in this paper the first model-independ
analysis of color suppressedB̄0→D0(* )M0 decays, in the
limit of an energetic light mesonM0. The soft-collinear ef-
fective theory ~SCET! was used to prove a factorizatio
theorem for these decay amplitudes at leading order
LQCD/Q, whereQ5$mb ,mc ,EM%. Compared with decays
into a charged pion these decays are suppressed by a f
LQCD/Q. Therefore, in the effective theory they are pr
duced exclusively by subleading operators.12

11In general this argument gives a dynamic explanation for

suppression ofss̄ popping at large energies which could be test

elsewhere. The production of anss̄ pair which end up in different
strange hadrons is likely to be accompanied by a suppression
inverse momentum fractions that arise from the gluon propag
that produced these quarks. This enhances the SU~3! violation in a

well-defined direction so that lessss̄pairs are produced. A factor o

3 suppression ofss̄ popping is implemented in JETSET@44#.
12In type-I decays, other subleading operators can compete

the time-ordered products we have identified at the same orde
L/Q. This makes a complete analysis of power corrections
type-I decays more complicated than our analysis of type-II dec
9-18
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STRONG PHASES AND FACTORIZATION FOR COLOR . . . PHYSICAL REVIEW D68, 114009 ~2003!
We have identified the complete set of subleading ope

tors which contribute toB̄0→D0(* )M0 decays with M

5p,r,K,K* , as well as for the decaysB̄0→Ds
(* )K (* )2.

After hard-soft-collinear factorization, their matrix elemen
are given by~i! a short-distance contribution involving a je
function convoluted with nonperturbative soft distributio
functions, and the nonperturbative light-cone meson w
function, and~ii ! a long-distance contribution involving an
other jet function and additionalx' dependent nonperturba
tive functions for the softB,D, and collinearM. The long-
distance contributions were shown to vanish forM5p,r at
lowest order inas(Q)/p.

The factorization formula is given in Eqs.~35! and~37!. It
may seem surprising that the type-II decays factor into a p
light-cone wave function and aB→D (* ) soft distribution
function rather than being like the naivea2 factorization in
Eq. ~2!. Our results indicate that factorization for type-II d
cays is similar to factorization for type-I decays~albeit with
new nonperturbative soft functions and additional lon
distance contributions for kaons!. To derive Eq.~35!, QCD
was first matched onto SCETI at the scalem25Q2. In SCETI
it is still possible for gluons to redistribute the quarks. Th
intermediate theory provides a mechanism for connecting
soft spectator quark inB to a quark in the pion and fo
connecting the energetic quark produced by the four-qu
operator with the soft spectator inD ~see Fig. 2!. This pro-
cess is achieved by the power suppressed time-ordered p
ucts given in Eq.~21!. SCETI is then matched onto SCETII at
a scalem0

25EML. In SCETII the collinear quarks and gluon
are nonperturbative and bind together to make the light
sonM. This second stage of matching introduces a new
efficient function~jet functions! as in Eq.~24!. The jet func-
tion J contains the information about the SCETI graphs that
move the spectator quarks into the pion. The physics at v
ous scales is neatly encoded in Eq.~35!. The Wilson coeffi-
cient C(z) from matching QCD onto SCETI depends on
physics at the scaleQ2, the jet functionsJ,J̄ from matching
SCETI onto SCETII depends onQL physics, which is where
quark redistribution occurs, and finally the soft distributi
functions S,F and the pion light-cone wave functio
fM ,CM depend on nonperturbative physics atL2 which is
where the binding of hadrons occur.

The soft functionsS are complex and encode informatio
about strong rescattering phases. This information is in
duced through Wilson lines along the light meson direct
of motion, which exchange soft gluons with the final sta
mesonD (* ). They provide a new mechanism which gen
ates nonperturbative strong phases. In the literature o
mechanisms which generate perturbative strong phases
been proposed. In particular in Refs.@7,45# a method for
identifying perturbative strong phases with an expansion
as(Q

2) was developed. In Refs.@38,46# it was pointed out
that strong phases can also be generated perturbatively a
intermediate scaleas(EML). In the language of our factor
ization theorem in Eq.~35! these phases roughly correspo
to imaginary parts in the hard coefficientsCL,R

(0,8) and jet func-
tions J, respectively. These phases exist, but for theB
→Dp channels they only show up at next-to-leading ord
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in the as(mb) or as(m0) expansion.~In type I B→D (* )p
decays the hard strong phase is very small,;2° @7#.! In
contrast, our new source of strong phases is entirely non
turbative in origin and can produce unconstrained pha
For the case ofB→D (* )M these phases show up in th
power suppressed class-II amplitudes.

The factorization theorem proven in this paper leads
predictions which were tested against existing experime
data on color suppressed decays. We derived two mo
independent relations, which related~1! the B̄0→D0M0 and
B̄0→D* 0M0 decay branching fractions and~2! the B̄

→DM and B̄→D* M strong phases.
Here M5p,r,K,K i* , and these relations are true to a

orders in the strong coupling at the collinear scale. The sa
predictions are also obtained forB̄0→Ds

(* )K2 and B̄0

→Ds
(* )K i*

2 . The good numerical agreement observed
tween the strong phases and branching fractions in theDp
andD* p channels gives strong backing to our results. T
prediction can be tested further since the equality of
strong phases for ther, K, and K i* channels have not ye
been tested experimentally.

Additional predictions followed from the factorizatio
theorem by using a perturbative expansion for the jet fu
tion, including (M5p,r):

~1! the ratios uRcu5uA(B̄0→D (* )1M 2)/A(B2→D (* )0

3M 2)u to subleading order,
~2! the ratiosuR0

r/pu5uA(B̄0→D (* )0r0)/A(B̄0→D (* )0p0)u
to subleading order

~3! universal parameters$useffu,f% which appear for both
D (* )p andD (* )r, and

~4! a mechanism for enhanced SU~3! violation in ss̄produc-
tion for the short-distance amplitude which might e
plain the suppression of theB̄0→Ds

(* )K2 rates relative
to B̄0→D0p0.

For uRcu taking different values ofM with the same isospin
the power corrections only differ by the moments^x21&M ,
giving an explanation for the observed quasiuniversality
these ratios. The isospin triangles for theseM ’s are predicted
to involve a universal anglef. The ratio of neutral modes
uR0

r/pu are determined by inverse moments of the light-co
wave functions and decay constants. Finally extractions
the nonperturbative soft moment parameterseff agrees with
the ;LQCD size estimated by dimensional analysis.

In the case ofB̄0→Ds
(* )K (* )2 an additional suppressio

mechanism was identified, which arises from enhan
SU~3! violation due to the asymmetry of nonperturbative d
tributions involving strange versus down quarks. The inve
moments that appear in the factorization theorem enhan
this difference, and can lead to a dynamic suppression oss̄
popping. Further information on the size of the short- a
long-distance amplitudes would help in clarifying this obs
vation.

A more detailed experimental study of the channels
Tables I and II is crucial to further test the accuracy of t
9-19
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factorization theorem and improve our understanding of
structure of power corrections. Work on extending these
sults to decays to isosinglet mesons is in progress. It sh
be evident thatBs decays could also be considered althou
we have not done so here.
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APPENDIX A: LONG-DISTANCE CONTRIBUTIONS
FOR p AND r

The factorization theorem derived in Sec. III for the col
suppressedB0→D0M0 amplitude contains both short- an
long-distance contributions. In this appendix we show th
working at lowest order in the Wilson coefficients at the ha
scaleQ, the long-distance amplitude vanishes for the case
an isotriplet light mesonsM5p,r.

We start by recalling the factorized form of the lon
distance amplitude, which is given by SCETII time-ordered
productsT̄L,R

(0,8)

Along
D(* )M5E

0

1

dzE dk1dvE d2x'@CL
( i )~z! J̄( i )~vk1!

3FL
( i )~k1,x' ,«D*

* !CM
( i )~z,v,x' ,«M* !

6CR
( i )~z! J̄( i )~vk1! FR

( i )~k1,x' ,«D*
* !

3CM
( i )~z,v,x' ,«M* !#. ~A1!

The functionsCM
( i ) andFL,R

( i ) are SCETII matrix elements of
collinear and soft fields, respectively, and their precise d
nitions are given in Eqs.~38!. The jet functionsJ̄( i )(vk1)
appear in the definition of the subleading soft-collinear L
grangianL jjqq

(1) and their lowest order expressions are giv
in Eq. ~26!.

In the following we derive a few general properties of t
functionsCM

( i ) andJ̄(0,8) following from isospin, charge con
jugation, parity, and time reversal. The collinear functi
CM

( i )(z,v,x' ,«M* ) is defined as the matrix element

^M0~«!u@~ j̄n
(d)W!t1

n”̄PL~W†jn
(u)!t2

#~0'!

3@~ j̄n
(u)W!vn”̄PL~W†jn

(d)!v#~x'!u0&. ~A2!

We will prove thatCM5p,r is even underv→2v and z
→12z. As motivation consider the first bilinear in Eq.~A2!,
which creates adū collinear quark pair. The second bilinea
in Eq. ~A2! must act at some point along the collinear qua
lines: it either takes ad→u ~for v.0) or takes aū→d̄ ~for
v,0). Examination of lowest order graphs contributing
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CM shows that these two types of contributions always
pear in pairs, such that the projection ofCM onto an isotrip-
let state is even underv→2v. This suggests the existenc
of a symmetry argument, valid to all orders in perturbati
theory.

We will prove thatCM
(0,8) is even, as a consequence ofG

parity. This is defined as usual byG5Cexp(2ipI2) whereC
is charge conjugation andI 2 is the isospin generator, and is
symmetry of the collinear Lagrangian in the limitmu,d
!LQCD. Its action on the collinear operators in Eq.~A2! can
be worked out from that of its componentsC andI 2 ~cf. Ref.
@28#! and is given by

G~ j̄n
(d)W!t1

n”̄PL~W†jn
(u)!t2

G†

5~ j̄n
(d)W!2t2

n”̄PR~W†jn
(u)!2t1

,

G~ j̄n
(u)W!vn”̄PL~W†jn

(d)!vG†

5~ j̄n
(u)W!2vn”̄PR~W†jn

(d)!2v . ~A3!

Taking into account theG parity of the states, Eq.~A2! is
equal to

6^M0~«!u@~ j̄n
(d)W!2t2

n”̄PR~W†jn
(u)!2t1

#~0'!

3@~ j̄n
(u)W!2vn”̄PR~W†jn

(d)!2v#~x'!u0&, ~A4!

where6 refer to ther0 andp0, respectively. Next, we apply
parity in the matrix element followed by switching our bas
vectorsn↔n̄. Acting on Eq.~A4! this gives

^M0~«P* !u@~ j̄n
(d)W!2t2

n”̄PL~W†jn
(u)!2t1

#~0'!

3@~ j̄n
(u)W!2vn”̄PL~W†jn

(d)!2v#~2x'!u0&, ~A5!

where the overall sign is now the same forM5r,p. Now
sinceCM

(0,8) is a scalar function the only allowed perpendic
lar dot products are (2x')25x'

2 and2x'•«P* 5x'•«* . Fi-
nally we note that the change int1,2 from Eqs.~A2! to ~A5!
is equivalentz→12z. Thus the invariance of SCETII under
G parity and regular parity has allowed us to prove that

Cp,r
( i ) ~z,v,x' ,«* !5Cp,r

( i ) ~12z,2v,x' ,«* !. ~A6!

Next we prove thatJ̄(0,8)(vk1) is odd underv→2v. By
reparametrization invariance type-III@47# only the product
vk1 will appear. Consider applying time reversal plus t
interchange (n↔n̄) to the SCETII Lagrangian. Since this
Lagrangian does not have coefficients that encode decay
highly virtual offshell states, it should be invariant under th
transformation. Acting on Eq.~25! this implies thatJ̄(0,8)

must be real,

@ J̄(0,8)~vk1!#* 5 J̄(0,8)~vk1!. ~A7!
9-20
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At tree level this implies that we should dropi e in the col-
linear gluon propagator in matching onto this operator. T
was done in arriving at the odd functionsJ(0,8)}1/(vk1) in
Eq. ~26!. The imaginary part would give ad(vk1) and cor-
responds to cases where the SCETI T product is reproduced
by a purely collinear SCETII T product (k150), or a purely
soft SCETII T product (v50). Thus droppingi e also saves
us from double counting.

Now consider what functions can be generated by co
puting loop corrections toJ̄(0,8). By dimensional analysis
J̄(0,8) must be proportional to 1/(vk1) times a dimensionles
function of vk1/m2. Since at any order in perturbatio
theory the matching calculation will involve only massle
quarks we can only generate logarithms. Therefore, we m
study functions of the form

1

vk1
lnnS vk16 i e

m2 D . ~A8!

To demand that only the real part of these functions ma
onto J̄(0,8) we average them with their conjugates. It
straightforward to check that only terms odd inv→2v sur-
vive. Thus, all the terms that can correct the form ofJ̄(0,8) at
higher orders inas are odd underv→2v.

Now in Eq.~A1! the integration overv is from 2` to `,
while z varies from 0 to 1. Consider the change of variab
v→2v andz→12z. If CL,R

( i ) (z)5CL,R
( i ) (12z), then under

this interchange one of the functions in the integrand is o
( J̄) and the other two are even (CL,R

( i ) and Cp,r
( i ) ), so the

integral would vanish.
Now if CL,R

( i ) (z) are kept only to leading order, then the
are independent ofz and thus unchanged underz→12z. So
at this order in theas(Q)/p expansion ofCL,R

( i ) (z) we find

Along
D(* )M50. This completes the proof of the assertion ab

the vanishing of the long-distance contributions forM
5p,r.

APPENDIX B: HELICITY SYMMETRY AND JET
FUNCTIONS

In this appendix we discuss the general structure of the
functionsJ(0,8)(z,x,kj

1) in Eq. ~35!, which are generated b
matching SCETI and SCETII at any order inas(m0). In Figs.
2~a,b! this means adding additional collinear gluons whi
generate loops by attaching to the collinear lines alre
present~as well as vacuum polarization-type collinear qua
gluon, and ghost loops!. Additional collinear loops should
also be added to Figs. 2~c,d,e!, and the difference at lowes
order inl givesJ. Throughout this appendix we continue
drop isosinglet combinations ofj̄n•••jn . These will also
have additional contributions from topologies where the o
going collinear quarks are replaced by outgoing gluo
~throughB'

m operators!.
The leading order collinear Lagrangian has a U~1! helicity

spin symmetry for the quarks, see the second referenc
@25#. It is defined by a generatorhn that has the quark spin
projection along then direction, which is different from
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usual definition of helicity as the projection of the spin alo
its momentum. Unlike QCD, the collinear fields in SCE
only allow quarks and antiquarks that move in then direc-
tion. Forhn we have

hn5 1
4 e'

mnsmn , hn
251, @hn ,n” #5@hn ,n”̄ #50,

$hn ,g'
s%50. ~B1!

After making a field redefinition@26# to decouple ultrasoft
gluons the leading order collinear quark Lagrangian is

L jj
(0)5 j̄n,p8H in•Dc1 iD” c

'
1

i n̄•Dc

iD” c
'J n”̄

2
jn,p , ~B2!

where iD c
m contains only collinearAn,q

m gluons.L jj
(0) is in-

variant under the transformationjn→exp(iuhn)jn , j̄n

→ j̄nexp(2iuhn). This means that any number of leading o
der collinear quark interactions preserve the quark helic
hn . The collinear gluon interactions takeun(↑)→un(↑),
un(↓)→un(↓), vn(↑)→vn(↑), vn(↓)→vn(↓), and can also
produce or annihilate the quark-antiquark combinatio
un(↑)vn(↓) or un(↓) vn(↑) ~the arrows refer to the helicity
of the antiparticles themselves rather than their spinors!. For
this reason we refer toL jj

(0) as aDhn50 operator.
The leading order SCETI operators in Eq.~18! are also

unchanged by thehn transformation and therefore does n
change collinear quark helicity. In contrast the operatorsL jq

(1)

do generate or annihilate a collinear quark givingDhn
561/2. However, at tree level we showed in Sec. III th
the two graphs in Figs. 2~a,b! match onto an overallDhn
50 operator in SCETII as given in Eqs.~28!. Since at higher
ordersL jj

(0) will not cause a change in the helicity, they als

match onto these same operators, so the structuren”̄g'
n will

not occur. At tree level only the structuren”PL ^ n”̄PL ap-
peared in Eq.~28!. To rule out the appearance ofPR beyond
tree level we note that the weak operator projects onto l
handed collinear fermions, and for the jet function the co
servation of helicity inL jj

(0) implies a conservation of chiral
ity. This leaves us with the desired result.

It is perhaps illustrative to see this more explicitly b
looking at the spin structure of the loop graphs. We begin
noting that the spin and color structure inh̄v8

(c)
•••hv

(b) is un-
affected by this second stage of matching. Adding additio
collinear attachments only can affect the spin and co
structure generated in putting the collinear quark fields a
light ultrasoft quark fields together.

Consider how additional gluon attachments effect the s
structures that appear in Figs. 2~a,b!. The leading order col-
linear quark Lagrangian isL jj

(0) in Eq. ~B2!. Each attachmen
of a collinear gluon to a collinear quark lines in the figur
generates an”̄ /2 from the vertex and an” /2 from the quark
propagator. These combine to a projector which can be el
nated by commuting them to the right or left to act on t
collinear quark spinors, via (n”n”̄ )/4 jn5jn . Therefore, at
most we have additional pairs ofg'’s that appear between
the light quark spinors. The aim is to show that just like t
9-21
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tree level calculation in Eq.~42! the resulting operators hav
spin structure (d̄n”PLu)( j̄nn”̄PLjn).

For the contraction ofTj
(0,8) which gives theC topology

the spin structure is

F ūn
(d)g

'

m1g
'

m2
•••g

'

m2k21g
'

m2kS n”̄

2
PLD g

'

n1
•••g

'

n2,S n”

2
g'

a Dus
(u)G

3@ ūs
(d)~g'

b !g
'

l1
•••g

'

l2 jun
(d)#

5@ ūn
(d)g

'

m1
•••g

'

m2k8g'
a PLus

(u)#

3@ ūs
(d)g'

bg
'

l1
•••g

'

l2 jun
(d)#. ~B3!

In the first line@(n”̄ /2)PL# comes fromQ L,R
(0,8) , theg'

a andg'
b

are terms generated by theL jq
(1) insertions, and then” /2 is

from the extra collinear quark propagator. In the second
thePL projector was moved next tous

(u) without a change of

sign ~for anticommutingg5), and the remainingn”̄ and n”

were then moved next to theūn
(d) and canceled. The remain

ing free' indices in the second line are contracted with ea
other in some manner. Fierzing the set ofg matrices in Eq.
~B3! by inserting 1̂ 1 next to the collinear spinors gives

@ ūn
(d)G1 un

(d)#@ ūs
(d)g'

bg
'

l1
•••g

'

l2 j G18g'

m1
•••g

'

m2k8g'
a PLus

(u)#,

~B4!

where

G1^ G185
n”̄

2
^ n”2

n”̄g5

2
^ n”g52

n”̄g'
n

2
^ n”gn

'

→ n”̄

2
~12g5! ^ n”2

n”̄g'
n

2
^ n”gn

' . ~B5!

In the second line of Eq.~B5! we have used the fact thatg5
in the bracket with soft quark spinors can be eliminated
moving it next toPL . To eliminate then”̄g'

n Dirac structure
we note that between the soft spinors in Eq.~B4! there are an
odd number ofg'’s to the left and right ofn”gn

' , and so at
least one set of indices are contracted between the
$b,l1 , . . . ,l2 j% and $m1 , . . . ,m2k8 ,a%. The identity
$g'

s ,g'
t %52g'

st can be used to move these matrices so t
they sandwichgn

' , and this gives the productg'
mgn

'gm
'

50. After these manipulations only the spin structu
(d̄n”PLu)( j̄nn”̄PLjn) remains. A similar argument can be a
plied to theE topology with the same result.

In several places in the above argument we made us
Dirac algebra that is particular to four dimensions~anticom-
mutingg5 and settingg'

mgn
'gm

'50). If the g'’s are taken in
full dimensional regulation, then it is nota priori clear if the
manipulations survive regulation. However, the original h
licity symmetry argument shows that as long as the the
can be regulated in a way that preserves this symmetry
will indeed be the case.
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APPENDIX C: PROPERTIES OF SOFT DISTRIBUTION
FUNCTIONS

In this appendix we derive some useful properties of
soft functionsS(0,8). In particular we show that these func
tions are complex. The imaginary parts have a direct in
pretation as nonperturbative contributions to final state r
cattering between theD (* ) and final energetic meson a
discussed in Sec. III.

To be definite we consider the functionSL
(0) and suppress

the indexL. The manipulations for the remaining soft fun
tionsSR

(0) andSL,R
(8) are identical. The definition in Eq.~34! is

^D0~v8!u~ h̄v8
(c)S!n”PL~S†hv

(b)!~ d̄S!k
1
1n”PL~S†u!k

2
1uB̄0~v !&

5S(0), ~C1!

where the Wilson lines are defined as

W5F (
perms

expS 2
g

P̄ n̄•An,q~x!D G ,

S5F (
perms

expS 2g
1

n•Pn•As,qD G . ~C2!

In generalS(0) is a dimensionless function ofv•v8, n•v,
n•v8, n•k1 , n•k2 , LQCD, and m. Since (S†q)k

2
15d(k2

1

2n•P)(S†q) the LHS is invariant under a type-III reparam
etrization transformation@47# (n→ean, n̄→e2an̄). There-
fore the RHS can only be a function ofw, t5n•v/n•v8,
z5n•k1 /n•k2 , K/m5@n•k1 n•k2 /(n•v n•v8m2)#1/2, and
LQCD/m.

Rather than studying the matrix element in Eq.~C1! di-
rectly it is useful to instead consider

^Hi~v8!u~ h̄v8S!n”PL~S†hv!~ q̄S!k
1
1n”PLta~S†q!k

2
1uH j~v !&

5S(0)S t,z,v•v8,
K

m
,
LQCD

m D ~ta! i j , ~C3!

wherehv are doublet fields under heavy quark flavor sy
metry, andq and uHi 51,2(v)& are isospin doublets of (u,d).
The last three variables in Eq.~C3! will not play a crucial
role, so we will suppress this dependence. Taking the c
plex conjugate of Eq.~C3! gives

^H j~v !u~ h̄vS!n”PL~S†hv8!~ q̄S!k
2
1n”PLta~S†q!k

1
1uHi~v8!&

5@S(0)~ t,z!#* ~ta! j i 5S(0)S 1

t
,
1

zD ~ta! j i . ~C4!

The dependence onw and K is unchanged since they ar
even under the interchangev↔v8, n•k1↔n•k2. Next, de-
compose the functionsS(0) in terms of even and odd func
tions undert→1/t, z→1/z:
9-22
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S(0)5SE
(0)1SO

(0) , ~C5!

whereSE,O
(0) 5@S(0)(t,z)6S(0)(1/t,1/z)#/2. Now Eq.~C4! im-

plies that

@SE
(0)~ t,z!#* 5SE

(0)~ t,z!, @SO
(0)~ t,z!#* 52SO

(0)~ t,z!
~C6!
da

s.

od

ion

.

11400
so SE
(0) is real andSO

(0) is imaginary. An identical argumen
for S(8) implies that it too is a complex function.

For the above analysis it is important to note thatn•v8
5mB /mD is not 1 in the heavy quark limit where we hav
new spin and flavor symmetries. These symmetries a
from taking mB@LQCD and mD@LQCD, not from having
mB5mD .
s.,
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