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We prove a factorization theorem in QCD for the color suppressed d&%y<D°M® and B®— D*°M°
whereM is a light meson. Both the color-suppressed ®Widxchange or annihilation amplitudes contribute at
lowest order inAocp/Q whereQ={m,,m.,E,}, so no power suppression of annihilation contributions is
found. A new mechanism is given for generating nonperturbative strong phases in the factorization framework.
Model-independent predictions that follow from our results include the equality oBtheD°M® and B°
—D*°MP° rates and the equality of nonperturbative strong phases between isospin ampli{itiés,
= 5(0*M)_ Relations between amplitudes and phasedfer ,p are also derived. These results do not follow
from largeN, factorization with heavy quark symmetry.
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[. INTRODUCTION pion is emitted at the weak vertékig. 1T), while in class-II
decays the spectator quark ends up in the (kigs. 1C,1E
Many of the most frequent hadronic decay channelB of Finally, class-Ill decays receive both types of_contributi_ons.
mesons are mediated by the quark level transitioncdu. Many of these channels have been well studied experimen-

The same hadronic dynamics also governs the Cabibbo su lly [17-22; see Taple |. Anothgr method to cat(_agorize
ese decays makes use of amplitudes corresponding to the

pressech— csu decays. Typical decays of this kind aBe gfferent Wick contractions of flavor topologies. These can
—Dar, B—D*m, B—>Dp, B—>D*p B—DK, B—D*K, be read off from Fig. 1 and are denotedTaéree), C (color
B—DK*, B—D*K*, B—D K=, BoDK*, etc., and suppressed andE (W exchange or weak annihilatipn

will be generically referred to @— D decays. Since these  -0N9 ago, it was observed that approximating the matrix
decays are the simplest of a complicated array of hadronigléments by the factorized productD|(cb)y4/B)
channels, a great deal of theoretical work has been devoted(|(du)y_a|0) gives an accurate prediction for the

to their understandinfil—15|. branching fractions of type-I decays, and a fair prediction for
After integrating out théV boson the weak Hamiltonian type-lll decays. For all class-lI and -1l amplitudes a similar
for B—D decays is procedure was proposétl]. In terms of two phenomenologi-
cal parameters, ,,
H —&v V* [Cy(p)(ch)y_a(du) Gr
w— \/5 cbVud C1(m)(cb)y_a(du)y-a IA(BO—>D+’7T )= — \/5 VepVH dal(DW)<D+|(Cb)V A|B°>
+Co(p)(Cibj)v-aldjui)y-als D X (| (dU)y_ |0,

wherei,j are color indices, and fop,=5 GeV, Cq(up) G

=1.072 andC,(up)=—0.169 at next-to-leading-logarithm iA(B°—DO%70) = —FVcbV’Jdaz(D7-r)<7r°|(Eb)V,A|§°>
order in the naive dimensional regularization | schdii@. \/_

For the Cabibbo suppresséd,, we replaced—s and V¥ o —
— V. It is convenient to categorize the decays into three X(D(cu)y-a|0). @
classeg1], depending on the role played by the spectator inType-Iil amplitudes are related by isospin to linear combina-
the B meson(where “spectator” is a generic term for the tions of type-l and -Il decays. Naive factorizatiopredicts

flavor structure carried by the light degrees of freedoB)n  the universal valuea;=C;+C,/N, anda,=C,+C;/N,.
Class-I decays receive contributions from graphs where the

Lin this paper we will use the phrase naive factorization to refer to

*Electronic address: mantry@mit.edu factoring matrix elements of four quark operators even though this
"Electronic address: dpirjol@pha.jhu.edu may not be a justified procedure, and will use the phrase factoriza-
*Electronic address: iains@mit.edu tion for results which follow from a well-defined limit of QCD.
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FIG. 1. Decay topologies referred to as tree
(T), color suppressedd), andW exchange(E)
and the corresponding hadronic channels to
which they contribute.
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Phenomenological analyses testing the validity of the factor- o 1
ization hypothesis have been presented3h where typi- —1/2<D(*)°7r°|(db)(cu)|B°>=Fg*)+ —2F(2*)+ oo,
cally contributions fromE are not included. These contribu- Ng Ng
tions can be modeled using the vacuum insertion _ _ _ 1 1
approximation which gives thB— 7 form factor at a large —1,2<D(*)07TO|(dTab)(CTaU)|BO>=N—G(1*)+ — G
timelike momentum transfeq?=m3. For this reason, they c ¢ Ne
are often estimated to be suppressed relative td tampli- o )
tudes byA3cp/m? [71. ’
One rigorous method for investigating factorization in % 0 * 0 , - .
these decays is based on the laigelimit of QCD. In this whereFi( )NNC_’ Gi( )MNC_' The W|Ison cogfﬁments n Eq'
limit the amplitudes for type-I decays start@{NZ?) while (1) can be assigned scalings wibl, foIIowmgﬁIrom their
type-Il decays are suppressed bi1(hence the name color Perturbative — expansionsC;~0(1), Cp~Nc*, which
suppressed The type-I amplitudes have a form similar to roughly corresponds to the hierarchy in their numerical val-
Eq. (2) since nonfactorizable diagrams are suppressed, whildes atuy . The leading terms are the matrix elemeRfs’,
type-Il decays simultaneously receive contributions fromwhich factor in terms of large\. form factors and decay
factorized and nonfactorizable diagrams. For a typicalconstants
class-1l decay, a Fierz transformation puts the amplitude into
the form
A(BO— DOn0) = o
V2

X (D%7|(db)(cu)|B% +2C,

C L&
2 Nc

N2~ (D()9[cu|0) (w°|db|B®) +(D*0x°lcul0)

VeoVid

%(0|db|B®) (5)

plus the matrix element&{*) which are nonfactorizable.
><<D07T0|(ETab)(ETau)|§0>], (3)  The naive factorization assumption would keep oy
and negIeCG(l*). This approximation is not justified in the
_ _ . 1/N, expansion sinc&{*) is enhanced by the large Wilson
where the ¥—A)®(V—A) structure is implicit. The two c €Xp 1 y g
matrix elements have expansions ilN1/which start with ~ coefficientC,. In either case, no prediction is obtained for
terms of the order oN2? andN_ ', respectively, the ratio of theB— D7 andB— D* - amplitudes,

TABLE I. Data onB—D™) 7 andB—D®*)p decays from various references. If not otherwise indicated
data are from Ref.17].

Type Decay BR (107%) Al (1077 GeV) Decay BR (107 [4] 1077 GeV)
1 B LDt 268x029° 5.89+0.32 BO Lp*tnp— 276x021 6.05£0.23
I B~ —D%r~  497+0.38% 7.70=0.29 B —D*07"  46*04 7.49+0.33
I jo_po,0 0292%+0045°  194+0.15 30, p#0,0b 0255007  1.82%0.25
1 EO*}Der* 7814 10209 EO*}D*er* 6.8*+1.0° 9.08+0.68°
M B —D% 134=18 12.8+09 B~ —D*%~  98+18° 10.5+097°
I BOpO0 0290118 1972037 BO D00 <056 <277

zReference [18].
References [19,20].
“Reference [21].
Reference [22].

°*For B— D*p the amplitudes for longitudinally polarized p’s are displayed.
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A(§°—>D*°w0) (Cp+C1/NFE +(2C, IN,)G* The proof of Eq.(7) uses the heavy quark limit, smp
=—— oo = (C,7C.INJFo+ (2C, /NG, - =mp+ andN=N*. In Eq. (7), ¢.(x,u) is the nonperturba-
A(B"—D ") 27 21/t o 1= tive pion light-cone wave function aré{w,, ) is evaluated
(6) . . , — (2 2
at maximum recoil - v’ —wgy=(Mg+ My))/(2MgMp ).

Heavy quark symmetry does not operate with lakgefac-  1he hard coefficient *)(x, u) = C{% RL(AX—2)E, pt,mp],
torization because fo€ andE it is broken by the allowed Where = correspond to theD and D* respectively, and
exchange of energetic hard gluons between the heavy quark 2= C{”= C{” is the calculable Wilson coefficient of the
and the quarks in the pion. In contrast, we will show in thisoperators defined in Eq20) below. The renormalization
paper that expanding about the lirkit > A this ratio is pre- scale dependence of the hard scattering funclipnu) can-
dicted to be 1 at leading order ih/Q. HereA~Aqcpis a  cels theu dependence in the Isgur-Wise function and pion
typical hadronic scale. wave function. In this framework7] there is no longer a
Another rigorous approach to factorization becomes posneed to identify by hand a factorization sclen the lan-
sible in the limit E7T>AQCD7 which corresponds to having guage of soft-collinear effective thedBCET) [9], the scale
an energetic light hadron in the final state. In this paper wejependence is understood from the matching and running
analyze type-ll decays using QCD and an expansion itprocedure.
Agco/mMy, Agep/Me, and Aqcp/E,  (or generically
Aqcp/Q whereQ={m,,m;,m,—m¢}). We derive a factor-
ization theorem and show th&t and C appear at the same
order in the power counting and are suppressed gyp/Q

relative to T. Arguments for the suppression @& by .
(AQCD/Q)l and Egby (AQCD/Q)l,Z appgrfr in the literature S shown in Tables | and Il. For two-body type-I decays both

[7], but we are unaware of a derivation that is model inde"€ largeN. and large energy mechanisms make similar phe-

pendent. Our leading order result disagrees with th&1omenological predictions. However, these mechanisms can
a,-factorization result. Instead the amplitudes f&@° be distinguished wittB— DX decays wher& is a multihad-

— ) . ron statg12].
()00 0 (*)0 0
— D andB"—D S opare determined by the leading 54 far, no results of comparable theoretical rigor exist for
light-cone wave functionsp,, , and two new universaB  the color suppressed type-Il decays. In fact existing results in
—D®) distribution functions. Long-distance contributions g_,p .+ and B— yK*) do not support naive factorization
also occur at this order i ocp/Q, but are shown to be i 5 universal coefficiert, [11]. Furthermore, it has been
suppressed relative to the short-distance contributions by atgued that in general factorization will not hold for type-Ii
additional ag(Q)/ 7. decayd7].
_For type-l decays a color transngoenﬁze] argument Using the SCET25,26], we prove in this paper a factor-
given by Bjorken suggested A(B°—D 7 )=(C1  jzation theorem for color supprességpe-Il) B—~DM de-
+C, /N FEP(m2) +0O( ). In Ref.[2] it was argued 0 0
2/Nc)f7Fo"(m7) +O(as(Q)). : S argued  cays M={x°,p°, ...}. These decays are power suppressed
that this factorization is the leading order prediction in thepg|ative to the type-l decays, and our results are valid at
large energy limitE;>Aqcp, and in Refs[6,7] that s |eading nonvanishing order ih/Q. The main results of our
corrections can be rigorously included. This factonzanonpaloer are as follows.
was extended to all orders ims with the proof of a factor- (1) The color suppresseC) and exchangéE) contribu-
ization theorem using the soft-collinear effective the[®y tions toB°—D®*)°70 are both suppressed by/Q relative
to the amplitude 7). The C andE amplitudes are found to
be of comparable size since the factorization theorem relates
them to the same perturbative and nonperturbative quantities.
Our result is incompatible with the naig-type factoriza-
Xpa(X,u)+ ..o, (7)  tion.
(2) When our result is combined with heavy quark sym-
where the ellipses denote power suppressed terms. This reretry it predicts the equality of the amplitudes f&°
sult is similar to predictions obtained from the hard exclusive_, yo,_0 4 qB0_, p* 00 (in fact for anyDM andD* M)
scattering formalism of Brodsky-Lepa24], except for the '
presence of the Isgur-Wise functi@fwg,x). The normal-
ization factor is given

Ro

Equation(7) implies equal rates foB°—D* 7~ andB°
—D* "7 up to theag(m,) corrections inT*) and power
corrections. This prediction is in good agreement with the
observed data for type-l and -lll decays#9 p, K, andK*

1
A(BHD(”w):N(*)g(wO,mf dx T)(x,mg /my, 1)
0

3In naive factorization the hadronic matrix elements in &y.are
independent of the scale that separates hard and soft physics. The
scale dependence @ anda, then causes the physical amplitudes
(8 to become scale dependent. The parameteranda, were there-
fore assumed to be evaluated at a specific scale called the “factor-
ization scale.” In other words, the nonfactorizable effects were ac-
counted for by allowing; anda, to be free parameters that are fit
Note for longitudinalD*, n-ep«=n-v’. Production of trans- to data. The factorization scale can then be extracted from the scale
versep’s is suppressed byx/Q. dependence odi; anda, [3].

_ GEVepVig Mg

NG)
V2

Eﬂ.f VN mD(*)mB

1+

Mp ()
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This prediction is in good agreement with existing data andSimilar expressions can be written for the decay amplitudes
will be tested by future measurements. of B—D*w, B—Dp, B—D*p with well-defined helicity

(3) Our result gives a new mechanism for generating nonef the final state vector mesons. Equati® also gives the
perturbative strong phases for exclusive decays within thalternative parametrization of these amplitudes in terms of
framework of factorization. FODPM andD* M it implies the  the amplitudesl,C,E discussed in Sec. I.
equality of the strong phasesbetween isospin amplitudes. Using the data in Table I, the individual isospin ampli-
Furthermore, certain cases with different light mesbhare  tudesA, and their relative phasé=arg(A;,A%,) can be
predicted to also have a universal nonperturbative strongxtracted using
phase¢ in their isospin triangle.

(4) The power suppressed amplitudes for all color sup- Br(B—D®*)M)=7s['(B—D™*)M)
pressedB— D*)M decays are factorizable into two types of ol
terms, which we refer to as short-distange? ¢ E,,A) and _7elP R OIVNE
long-distance 2~ A?) contributions. The short-distance 8m? % [A(B—D™M)I%. (10
contributions depend on complex s@&P— D®)° distribu-
(0,8),

tion functions,S°%(k. ,€.), which depend only on the di- with T50=2.343< 10" GeV ! and  75-=2.543
rection of M (the superscripts indicate that two color struc- x 10'? GeV~*. We find
tures contribute For M=,p the long-distance

contributions vanish at lowest order in(Q)/ . |AD,|=(4.33:0.47)x 1077 GeV, 6°"=30.57"12,
Combined with Eq.(7) the results here give a complete
leading order description of thB— D 7 isospin triangles. |AD.|=(4.45-0.17) X107 GeV,

In Sec. Il we review the current data fB— D 7 decays.
The derivation of a factorization theorem for the color sup- | AD*| _ ~7 D* 7 _ °
5 ()00 0 ()00 : |AT,|=(4.60£0.39 10" GeV, &° "=30.2-6.6°,
pressed channeB”— DY /"7* andB”"—D'*’"p" is carried
out in Sec. Il using SCET. Then in Sec. IV the formalism is
applied to decays with kaons,B°—D®*)°K% BO
—D®)OK*0 BO DK~ andB°—D{*)K* . In Sec. V. The ranges fo correspond to & uncertainties for the ex-
we contrast our results with the lar@&. limit of QCD and  perimental branching ratios. A graphical representation of
prior theoretical expectations. Readers only interested in fithese results is given in Fig. 5, where we show contour plots
nal results can safely skip Secs. lll, IV, and V. In Sec. VI wefor the ratios of isospin amplitudeR,=A,,/(\2As,) for

our new formalism for color-suppressed channels. Conclugnglysis was performed recently by CLE®8] including

7% and p° the long-distance contributions are suppressedanalysis in quoting errors 0P~

Finally in Appendices B and C we elaborate on the proper-  For |ater convenience we define the amplitude ratios
ties of the jet functions and our new s@t—D®*) distribu-

|AD;|=(4.33:0.19x1077 GeV. (12)

tion functions, respectively. i A(B°—D*°M0) i A(B—D*)0\M0)
0™ 5RO Opg0y 0 7 A/RO %)Opg 70y’
| DATA A(B°—D°M?) A(B°—D®)O\’0)
We start by reviewing existing data on tie—D®*) 7 _ Ap 3C-E
decays. The branching ratios for most of these modes have R=Gr ~1 27+C
o i V2A5)
been measured and the eX|st|ng( rgasults are collected in Table
I. Taking into account that th®'*’# final state can have =0 W)br g —
isospinl =1/2,3/2, these decays can be parametrized by two R.= A(B°—D™)"M") —1_ C-E (12)
isospin amplitude®\;j,, Aspy: © A(B —=D®)0M") T+C’
_ 1 2 where the ratiosR, and R, are defined for eactd®*)M
A, _=AB =D "7 )= ——=Ag,+ \[§A1,2=T+ E, mode. Predictions are obtained for the ratios in E),
3 including the leading power corrections & andR;. The
relationR, =1+ O(A/Q) can be represented graphically by
Ag-=A(B~—D°7")=3A3,=T+C, a triangle with base normalized to(4ee Fig. 5 in Sec. VI
The two angles adjacent to the base are the strong isospin
o 2 1 phases, and another strong phage The usual prediction is
Ago=A(B°—D° 7% = \@Ag,z——Al,z that 5~1/QX [7,11], and that there is no constraint on the
V3 strong phaseb which can be large. In Sec. VI we show that
1 at lowest order the anglé is predicted to be the same for all
=—(C—E). (99  channels in Table |, and tha can be dominated by a con-
2 strained nonperturbative strong phase. Figmin Eq. (12

114009-4
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TABLE Il. Data on Cabibbo suppressgjaDK(*) decays. Unless otherwise indicated, the data are taken fron{ Hef.

Type Decay BR (107%) |A] (1077 GeV) Decay BR (107 |A] (1077 GeV)
I BO D K- 20.0%+6.0 1.62£0.24 BO_ L, p¥tE- 205 1.64+0.20
I B~ —DYK~ 37.0%6.0 2.11+0.17 B~ —D*°K~ 36+10 2.11+0.29
I B, pORO 5.0713+0.6 [27] 0.810.11 BO_, D*ORO
I BO D K* 37.0+18.0 2.24+0.54 LN 38+15 2.30+0.452
m B~ —DOK*~ 61.0=23.0 2.76+0.52 B~ —D*0K*~ 72+34 3.03x0.72°
i BO_, DO 0 4.8°14+0.5 [27] 0.81+0.11 BO_, p#O*0

Since no helicity measurements for D*K* are available we show effective amplitudes which include contributions from all three helicities.

we note that for a leading order prediction éfit is not The weak Hamiltoniari+,, in Eq. (1) is matched onto
necessary to know the power corrections to Themplitude.  effective operators containing soft and collinear fields. In
A similar analysis can be given for the Cabibbo sup-exclusive processes this matching can be simplified by a
pressed— DK ™) decays. Although several of these modestW0-Stage procedurk9]. We first match QCD onto a theory
had been seen for some time, it is only recently that some gpCE Tl With ultrasoft fields withp®~A®, but intermediate-
the corresponding class-Il decays have been seen by tlflé’"'near fields withp"™~EyA. This theory gives a simpli-

. . 2~ .
Belle Collaboratiorf27] (see Table Ii. For this case the final €d description of thep™~EyA exchanges that necessarily
DK ™) states can have isospilis-0,1, so these decays mediate interactions between soft and collinear particles.

2~ .
are parametrized in terms of two isospin amplitudgs ; Then at a scalg.”~EyA we match SCEfonto the final

. . : X theory SCET, which has only the propagating long-distance
(for given spins of the final particlgs soft and collinear particles. This procedure determines which

factors of ag(u) belond at the hard scale.?=Q?, which
belong at the intermediate scgl€=E\A, and what non-
perturbative matrix elements appear.
Since the collinear fields do not interact with soft fields at
_— 0uon 1 L lowest order, if one can rearrange the fields in the SCET
Ag=A(B"—=D"K")=2A;1—3A,=C. operator to express it as a product of collinear fields and soft
) . ) ) fields, the factorization of matrix elements is achieved. This
Isospin symmetry implies the .amplltude relation amongg precisely what happens in type-l decays, and as we will
these modes., _ +Agp=Ao , which can be used to extract see also type-Il decays, with operators of the form
the isospin amplitudesA,; and their relative phases

A,_=AB°-D*K )=1A,+1A,=T,

A,-=A(B~"—D°K")=A,=T+C, (13

=arg(ApAT). Using Gaussian error propagation we obtain Type I: [E,SFSThv][(EnW)F’(WTgn)]
|ADK|=(1.45+0.62 1077 GeV, °X=49.9+9.5° Type ll:  [(h,,S)T'(S'h,)(qS)T"(S'q)]
|APK|=(2.10+0.17)x 1077 GeV, X[(EMW)T(W'g)T,
|ADK*|=(1.93£1.49 %107 GeV, o°K =34.9+19.4° f d*x T[(h,,S)T'(STh,)(£;W)I'" (W'¢,)](0)
(14
DKk . X[(@S)T"(S'q)(&W)T" (WTE)1(X). (16)
|ADK"|=(2.76+0.52 x 1077 GeV. (15)

In type-Il decays the first and second SGEJperators give
However, note that scanning the amplitudes_, andAy, short- and long-distance contributions, respectively. We use
Ay_ in their 1o allowed regions still allows a flat isospin here the notation in Ref26] so thath, are HQET fields¢,

triangle[13]. are collinear quark fieldsy are soft quark fields, ang,W are
soft and collinear Wilson lines. Since collinear particles do
Ill. SOFT-COLLINEAR EFFECTIVE THEORY ANALYSIS not connect with the heavy meson states and soft particles do

not connect with the collinear light meson state, the matrix

~ The key idea of the soft-collinear effective the®5,26  elements of these operators factor into the product of a soft
is to separate perturbative and nonperturbative scales directly _, p*) matrix element and a collinear matrix element in-

at the level of operators. The relevant scales have virtualitiegolyving M.
p?~mg,m2,EZ (hard, p>~EyA (intermediatg and p?
=A? (soft). The p?>~A? scales are described by soft

(p*.p~.p")~(A,A,A) and collinear p*,p~,p") 4A more accurate statement is that the scale dependence is deter-
~(A?/Ey; ,Ey,A) degrees of freedom. We follow the nota- mined by anomalous dimensions of operators in SCEMd
tion in Refs.[9,28]. SCET, .
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We start by reviewing type-l decays. Using SCET, thecontaining one soft and one collinear quark which involve
factorization of the leading amplitude for type-lI decays hasproducts with subleading Lagrangiar9].

been proven in Ref9] at leading order in I (and nonper- Next we consider type-ll decays. The matrix elements of
turbatively to all orders inxs). The operators in Eql) are  the leading order operators vanis{D°w°|Q§°'8)|§°>=0.
matched onto effective operators at a sqajg=Q This occurs due to a mismatch between the type of quarks
produced byQ{*? and those required for the light meson
> C0—4 >, J dr,d TZ[CJ(O)(TlaTZ)QJ(O)(T]_:TZ) state, where we need two collinear quarks of the same flavor.
12 i=L.R The operatorQ (*¥ produces collinear quarks witi () fla-
+CJ(8)(71,TZ)QI(8)(7_1,TZ)]. 17) vor. Therefore it cannot producer since the leading order

SCET Lagrangian only produces or annihilates collinear
At leading order in SCETthere are four operator§j quark pairs of the same flavor. For this reason the leading

=L,R] contributions toB®—D®*)%7° are power suppressed.
In SCET, there are several sources of power suppressed
Q}O)(Tl,72)=[Fis)rfhgb)][(gd)W)Tan(W*gg”))Tz], contributions obtained by including higher order four-quark
operators, higher order contributions from the Lagrangians,
Q,(S)(Tl,Tz):[Hf,c,)YFFTaYTh(Ub)] or both. However, there is_only gingle type ofSCET op-
erator which contributes t@°—D®*)°M° decays at leading
x[(g,d)W)TlI“nTa(WTgﬁ,“))TZ]. (19 order. They are given by-ordered products of the leading

operators in EQ.(18) with two insertions of the usoft-
The superscript (0,8) denotes the&1 and T?® T color  collinear LagrangianC &) :
structures. The Dirac structures on the heavy sidel“@yg 1
~ . 1 . . ! _ _
=AP_r with ER"- 5(1* y5), while on the coIImear side TJ(O’B):EJ d*x dy T{Q}O'B)(O),l.Cffa)(x),lﬁg])(y)}.
we havel' ,=hP_ /2. The momenta labels are defined by
(W&, =[8(w,—P) W]
The matching conditions for the Wilson coefficients atHere the subleading Lagrangian[20,29
tree level atu=E_, are

(21)

_ 1 1
C £M= W(:WTi B°W | gus— 0. (wTi BSW—
C(LO)(Ti):C1+N_2: C(LS)(Ti):ZCQ, C%O'S)(Ti)zo. £q (gn )P gn; Qus™ Qus gb; PT
c

(19 X(W'Ep), (22)

Matching corrections of ordeD(«) can be found in Ref.
[7].

The operators in Eq18) are written in terms of collinear
fields which do not couple to usoft particles at leading order
This was achieved by a decoupling field redefinitj@é] on
the collinear fieldst,— Y&, , etc. The operators in E18)

whereigB¢ =[in-D®,iB¢]. The two factors of £} in Eq.
(21) are necessary to swap onguark and onel quark from
ultrasoft to collinear. In contrast to the tree amplitude, for
this case both th@ {*) andQ {¥) operators can contribute. By
power counting, thd{®®s are suppressed by?= A/Q rela-

are then matched onto SCETo give[w;= 7] tive to the leading operators. They will give ordefQ con-
b tributions in SCET,, in agreement with our earlier state-
Q[ w1, 02) =[NIT AP (EFW)  Fa(WTE),, ], MeNts:

In Fig. 2 we show graphs contributing to the matching of
SCET, operators(a,b onto operators in SCET(c,d,8. In
Figs. Aa,b the gluon always has off shellnegé~E A due
to momentum conservation, and is shrunk to a point in
SCET, . However, the collinear quark propagator (a,b
can either havg?~Ey A, giving rise to the short-distance
SCET, contribution in Fig. 2e), or it can havep?~A?,

Qf(w1,05) =[)STTS"h{P]
XLEOW), TrTAW'ED),, 1, (20

where the collinear and soft Wilson lind¢andS are defined
in Eq. (C2) of Appendix C. At leading order in {J only the which gives the long-distance SCfTontribution in Figs.

O . .
operator_sQ,(_}{ (‘?nd tge leading order collinear agd Soft 5(c,d). To match onto the short-distance contribution in Fig.
Lagrangians Lg ), Lg )) contribute to theB™—D®*)07~ 2(e) we subtract the SCETdiagrams(c,d):
andB’—D™)* 7~ matrix elements. The matrix elements of

Q8 vanish because they factorize into a product of bilinear (a)+(b)=(c)—(d)=(e). (23)
matrix elements and the octet currents give vanishing contri- o 0.8) :
bution between color singlet statfg. The operators in Figs.(a,b are from theT productsT;™™in

Note that we take the pion state or interpolating field to beEd- (21), while Figs. 2c,d) involve the SCET T-products
purely collinear and th& and D) states to be purely soft. O](') in Eq. (27), and Fig. 2e) invoIvesO](') in Eq. (28).
Power corrections to these states are included as time- To generate connected SCEdiagrams from the time-
ordered products. This includes asymmetric configurationsrdered product in Eq21) requires at least two contractions,
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/
A
’

A
d(s)\ AN q q

FIG. 2. Graphs for the tree level matching calculation from SC&Jb onto SCET, (c,d,e. The dashed lines are collinear quark
propagators and the spring with a line is a collinear gluon. Solid linés,bhare ultrasoft and those ife,d,8 are soft.® denotes an insertion
of the weak operator, given in EGL8) for (a,b and in Eq.(20) in (c,d. & in (e) is a six-quark operator from E¢28). The two solid dots

in (a,b denote insertions of the mixed usoft-collinear quark actil(ﬁa). The boxes denote the SCEdperatorl %{m in Eq. (25).

of which the minimum basic possibilities can be grouped asnomentum dependence is possible since the leading SCET
follows. (1) Contraction ofg(“)?“) and theL gluon inB/'BY collinear Lagrangian depends on omlyd,.

[C topology, Fig. 2a)], (2) contraction of¢W&® and thel The difference between the time-ordered produk%;
gluon in B“B” [E topology, Fig. 2b)], and(3) contraction and the time-ordered producB{’® gives the six-quark
of £WEW and D9 (topology with two external collinear SCET; operatorO(LORS), whose coefficients are the jet func-
gluons and no external collinear quarks, not shpwn tions J®®. In this SCET -SCET, matching calculation the

All more complicated contractions have one of these threeé)(0 5 graphs subtract long-distance contributions from the
as a root. Casé3) only contrlbutes for light mesons with an T(0 5 graphs so thal(®® are free from infrared singularities.
isosinglet component#, »', w, ¢), which we will not In general the matrix elements for color suppressed decays

consider here. then include both short- and long-distance contributions as
Each of the SCETT products is matched onto SCET displayed in Eq(24). However, for the isotripletr andp a
operators at scalg = uo, and dramatic simplification occurs at leading order@j’. In
this case it can be proven that the long-distance contributions
f dr; dr, COOTOE L [TOB L [TOB] 0, [T{"]iong vanishto all orders in thexs couplings in SCET,

and with theag couplings in SCE] treated nonperturba-
tively. The proof of this fact uses the-parity invariance of

[T(Loi‘\?)]short:f dr; dk; de CO9( 7, 1o) QCD and is carried out in Appendix A. At leading order in
’ ' the coefﬂmenti:,_ %8 the M=r,p factorization theorem is
X JO8) 7 ki wy o, ) OLCDK, i ), therefore more predictive since possible long-distance con-

tribution from 5}” are absent. Most of the following discus-

sion will focus onO{", butOf" is fully included in the final
factorization theorem.
In the SCET, diagrams in Figs. @,d) a power suppressed
xJOA(k* v, Mo, /—L)O(O 8)(‘U| K w,u), four-quark La-grangian appea?s. It is sirglilar to alor|1O operator
(24)  introduced in Ref.[31], and can be obtained from
B TicE) icl)} in SCET by a simple matching calculation
where the subscripis¢,k run over values 1,2. Herg J are  [32]. Summing over flavors),q" we find
jet functions containing effects at tipg~ Ey A scale and are
Wilson coefficients for the SCE,ToperatorsO andO. The

[T shorn and [ T 1ong terms are, respectively, Fig(el L D 2 [Tk )LO(w,k* %)
R it

(TR Nong [ A" deoy doy deo COo 0

and Figs. 2c,d) (after they are dressed with all possible glu- £ éaa™ j=L

ons. The uy and . dependence in Eq24) signifies the -

scale dependence in SCEahd SCET,, respectively. The jet +IB(wk )L (w,k* )],
functions are generated by the contraction of intermediate
collinear fields with couplingse( ) (where,ug~ E,A). In
general the jet functions depend on the large light-cone mo-
mentar; coming out of the hard vertex, the large light-cone
momentaw, of the external collinear SCETfields, and the .
kf momenta of the external soft SCfTields. No other soft x[(q’S)kMPj(STq)w](x). (25)

LO(w,k* %)= 2 [(€DW),AP;(W'ed)), ]
q,9’
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In Eq. (25) the soft momenta labels are defined 18/ d),+
=[8(k"—n-P)S'q], and the positions X ,x",x,)
~(1/A,Q/A?1/A). For the soft fields thex” coordinates

PHYSICAL REVIEW D68, 114009 (2003

FIG. 3. Tree level matching calculation for
the L{°Y operators, with(a) the T product in
SCET, and(b) the operator in SCEJT. Hereq,q’
are flavor indices ané~\° are minus-momenta.

At any order in perturbation theory the jet functiods
from theC topology andE topology generate one spin struc-
ture and two color structures for the SGE®perators. For

encode small residual plus-momenta, and for the collineathe six-quark operators we find

fields the x* coordinates encode small residual minus-

momenta. Thus, we used the summation/integration notation

for label/residual momenta from Ref33]. The operator
L}B)(w,k+,x) has the same form as E5) except with

color structureT?® T2. At tree level the coefficient functions
are given by the calculation in Fig. 3,

TO okt = — —F AT
2Ne  wk*
— 1 4mayw)
B pkt)= — —— 577
J¥(wk™) N, orr (26)

Beyond tree level they obtain contributions from loop dia-

grams with additional (gg’ vertices. In terms of the operator

in Eq. (25) the SCET, operators that contribute {"]5n,
in the factorization theorem are

6}0'8)((1% ,k+,(1),,LL)
=f d*x TQ (¥ w; x=0)iL 8w k" x).
(27)

The operator5 generate the diagrants) and(d) in Fig. 2.

o0

FIG. 4. Nonperturbative structure of the soft operators in Eq.
(29) which arise fromO{®®. Wilson lines are shown for the paths
Sh(x,0), Sy(0y), S,(—=»,0) andS,:(0,), plus two interacting
QCD quark fields inserted at the locationsndy. The S, andS,:
Wilson lines are from interactions with the fields andh,,, fields,
respectively. The nonperturbative structure of soft field®jA® is
similar except that we separate the single and double Wilson line
by an amounk; .

Of(K" i) =[NITTn{(d )y hPL(STu); ]

X[(EaW) o, Te(W'€n) o, ],

Ok, =[ (79T T2 (')
X(d S) P T(STu);]

XL(EW) o, T (W&, ], (28)

where here the, u, h{?, andh(" fields are soft, and thg,
fields are collinear isospin doubletg{,£?). In Eq. (28
FE'R=VIPL'R as in Eq.(18), while for the collinear isospin
triplet ' .= 73R P, /2.°> We do not list operators with & next

to I'; since they will give vanishing contribution in the col-
linear matrix element. For light vector mesons the spin struc-
ture ', only produces the longitudinal polarization. This re-
sult follows from the quark helicity symmetry aﬁé%) and is
discussed in further detail in Appendix B.

In position space théDJ(') are bilocal operators, with the
two soft light quarks aligned on the, light-cone direction
(x“=3n,n-x,y"=3n,n-y) passing through the point
:0’

(99T (STh®)(d'S),+T(Stu) .+
dx dy~

j (4m)2

X[d(X7)Sa(x",0)T (Sy(0y Hu(y )]

ei/2(r+x’ —e*y*)[ﬁgg)rhhgb)](o)
(29

The gluon interactions contained in matrix eIementﬁ){ﬁS)
include attachments to the light quaridso the heavy quarks
h, ., and to the Wilson liness, as shown in Fig. 4. The
interactions withh,, ,» have been drawn as Wilson lin8g
alongv,v’ [34].

Even though we have factored the collinear and soft de-
grees of freedom in the two final state hadrons, the presence
of the soft Wilson lines bring in information about the vector

s
SThere are also isosinglet contributions with=#P, /2.
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n*. This allows the soft operato®{" to be nontrivial func-  In the last equality we have used the fact that at this order the
tions of n-k;, n-v, andn-v’, and this information gives collinear operator only produces longitudings, for which
rise to acomplex phasén the soft functionsS(°8’ as shown m,n-ef=n-p,.
in Appendix C. Thus, th&, Wilson lines are directly respon- Since it no longer contains couplings to energetic gluons,
sible for producing final state interactions, and the soft fieldghe soft part of the matrix elements 61}0'8) can be con-
in 01(0'8) encode nonperturbative rescattering informafion. strained using heavy quark symmetry. In other words, heavy
This makes good sense, given that the soft gluons irSilee  quark symmetry relations can be derived for matrix elements
were originally generated by integrating out attachments t®f soft fields. The constraints can be implemented most com-
the collinear quarks and gluons making up the light energetigactly using the trace formalism of the HQHE3J6]. First,
hadron. consider the matrix element of the soft fieIds@rJﬁO'B). For

The above procedure providesiawmechanism for gen- O}O) we have
erating nonperturbative strong phases for exclusive decays
within factorization. In the sofB— D*) matrix elements the

*)0(, [ (h(© ONCTS t R0
information about the light energetic meson is limited to its (D™P(")[(h,’S)T (S'h,”)(d S)kl AP (S U)k§|B (v))

direction of motionn*. Since these matrix elements know ame
. . B'''D
nothing further about the nature of the light meson, these
strong phases are universal. In particular the same strong =Tr[ﬁ(°,)FH,(jb)X(°)], (32)

phase ¢ is generated for the decay—D™*)7 and B
—D®)p. (We caution that this is not the isospin strong
phase, but rather a different angle in the trianglde same
mechanism produces another universal strong phase for col

whereX®=X(k" ,n,v,v") and we use the standard rela-
Eyistic normalization for the stateland note that the left-
— ) and side(LHS) is independent ofn, .. in the heavy quark
()0 c

suppressed decays ©K™”, and a third for decays to _limit]. An identical equation holds fc@fs) with an X®). In

(x)— i i i
DK - The different phases.ln the three classes arise '.'Uvriting the trace formula in Eq(31) we have used the fact
part due to the appearance of different moments of the matri =
at thed and u quarks must end up in thB and D*)

elements of the soft operators. However, for the kaons ther 8 . .
are additional long-distance contributions to the strong>tates: The heavy mesond),D*) and (B8,B*) are grouped
phases from[T]j,ng, Which make the universality of the together into superfields36], defined as

phase¢ from [T]go hard to test. A more complete set of

phenomenological predictions is given in Sec. VI, including 1+ .

a comparison with existing data. Further details on the prop- Hy=——(Py vt Pyys). (32)
erties of the soft function§(®® are given in Appendix C.

The matrix elements of the short-distance opera@j$ 08) _ _
I Now X' are the most general structures compatible with

in Eq. (28) factor into products of soft and collinear parts, X . .
respectively. The collinear part of the matrix elements arérlgg)(s‘lzf]ffmes, (r)1f QnCD;) They involve four  functions
‘ Ky v-v,n-v,n-v’),

simply given in terms of the light-cone wave function of the ai-4
light meson. Forr and p the definitions ardwe suppress
prefactors off3dx 6(w,—x n-py) 8w, + (1—X)N-py) on X©8=a®np, +al’ P+ al P +aloPg.

the right-hand sidéRHS)]’ (33

Structures proportional t@ and 4’ can be eliminated by
o1 = — T usingH,#=—H,, etc.
(7l (6W) o, Y5 T3(W'én) | O) The presence of four functions in E(R3) would appear
i 2t (%) to restrict the predictive power of heavy quark symmetry.
B NP bl pt,X), However, using the properties &f, andH,, and the fact
that the two-body kinematics relateso v andv’ via mgv
=mpv’ +Eyn, it is easy to see that the four functioas

<p(r)1(8)|(€FIW)w1WTB(WT§n)w2|O> appear only in two distinct combinationdlote that we are
_ _ taking my, /mg~A/mg<<1.) For FE’R they give soft func-
=iV2f,mn-e* ¢,(n,x) tions S g defined as S =(n-v')(a;—as/2)—a,/2,Sg
. — =(n-v')(a,—a4/2)—as/2 and
=i \21,1p, (%), @o ~(MedRTaRm

8 . by
Note that in semi-inclusive processes a different mechanism is '@e matrix element of the analogous soft operators with)(

responsible for the phases in single-spin asymmetries which has 6 (dd) would contain a second term in E¢31) of the form

do with the boundary conditions on Wilson ling35]. TF[W,(,C,)FH,(,b)X]Tf[Y], which arises from contracting the light
"Our vector meson states are defined with an extra minus sigAuarks in the operator. These types of traces also show up for power
relative to the standard convention. corrections toB°—D®)*M~ andB~—D®*)OM .
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(D) (NP (ST (AS); APL(STu)is [BO(v))

m _S(LOI)Q(k;r),

(D*%v",8)|(N)S) AP (ST (dS),+APL(STU)[BO(0)) . o
— - 2 = = ——S{%(k"), (34)
mBmD* n-v

\é\'hf?r?.i foth|; :{eferf] to the _cho:ce oPL OrfPRh' Ider|1tical Eq. (24). The AB:;)M in Eq. (35) denotes the contributions
efinitions ol for t(g) miltnx € ements 0 the color-octet.,, the matrix elements of the SCETime-ordered prod-
operators which giveS z(k;). We will see in Sec. VI that

* I — I
the result in Eq.(34) relates decay amplitudes and strong Ucts [T]ong- Also, = refer to D/D*, C(L')R(Z)_C(L')R(Tl
=0 opg0 RO *0p /0 ; : +72,Ep My, M, 1), and
phases foB*—D"M" andB*—D*"M" at leading order in
the power expansion, and up to terms suppressed by
ag(Q)/m. If one takesn-v=1, then n-v'=mg/m{), GV V*
vov'=(m3+ sz(*))/(ZmBmD(*)). The D,D* variables are Ng":%fw/mBmD(*). (36)
equal in the heavy quark limit.

For the long-distance operata@y” the same set of argu-
ments in Egqs(31)—(34) can be applied except that now we
must add terma’®%, P_ +a{>®x, P to X(®®, and thea;’s
can also depend oxf . The functions analogous &°% are

. . 0(°® are longitudinally polarized.
defined asfl?ﬁ?g)(k+’xi ). I this case thed and Df ]The Iong—gistance yarF:1pIitudes also obey a factorization
decompositions are no longer related since the matrix ele- . . . )
ment involves botm-e* andx, -&* terms forD*. Thus theorem which can be derived by examining the matrix ele-
. T i ,

due to the long-distance contributions for light vector mesorments of theO{°%’ operators in Eq(27). First factorize the
we must restrict ourselves to the longitudinal polarization incollinear fields into the matrix element witd and the soft
order to have equality for thB andD* amplitudes. In the fields into the matrix element witl,D™). The indepen-
case ofp this restriction is not important since the long- dence of the collinear propagators on the residual soft minus-
distance contributions vanistsee Appendix A However momenta leads to & x*) and the independence of the soft
this observation does have phenomenological implicationgropagators on the residual collinear plus-momenta leads to
for decays toK*’s. a 8(x~) (somewhat similar to the calculation f8— X;y as

We are now in a position to write down the most generaldescribed in Ref[26]). The result is
factorized result for the amplitude for the deca@®
—D®)OMC, Combining all the factors, this formula contains
the soft functionsS®®)(k; ,k3) from Eq.(34), the jet func-
tions J© from Eg. (24), and the Wilson coefficient€{’%
from Eq.(17). In (7 ,k{ , @) we can pull out a factor of
8(ti— 1~ witwy) by momentum conservation. This

The normalization factor is common sinegey,=mg and
n-e®)=n.y’. This follows since theM’s produced by

« 1 . —.
A;g;g)M:Ngﬂfodzf dk*dwf d?x, [C(2)3D (wk™)

leaves the variablesr;+ 7,=2Ey(2z—1) and w;+ w, XOO(k*x, ,en )V (z,0,%, ,e)
=2E\(2x—1) unconstrained, which give convolutions with o _ .
the momentum fractiong and x, respectively. In defining +CR(2) IV (k") PY (K" X, e54)
JD(z,x,k;) we multiply JV(7 .k ,0) by w;— .
Lzxko) Py 977K By i 2 KU (zw0x o], 37
=n-py . Altogether the result for thB*—D'*’*M* ampli-
tude is
where= is for D andD* and we defined the nonperturbative
o) 1 (D) _ - functions in a way which gives the same prefactor as in Eq.
A =No fo dxdz| dkjdk;[C{"(2)I0(z,xk{ k3 ) (35). HereC{'); are the Wilson coefficients of the weak op-
- 0 _ L. erators in Eq(20), and the jet functiond®® are the coef-
X S(ky Ky ) () = CR(2)ID(z,x,k; k7)) ficients of the SCE][ Lagrangian in Eq(25). ®{) and¥{)
i (*) are soft and collinear matrix elements from the opera@rs
XSk k3 01+ ARng ™, (35 $

and are given bywith prefactorf})dzﬁ(wl—zﬁ- pm) 8(w-
where we sum over=0,8 and theuy,u dependenceis asin +(1—2z)n-py) for \If,(\jf)]
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(M(pw e [L(EP W), APL(WTER),, 1(0,)
X[(EW) AP (WTED) ,1(x,)|0)
=ity /12U (z,0,x, &%),

(D*0(u" ) [(NS)T] o(STh)](0,)
X[(dS),+hP(STu)+1(x, )| B

=+ mgmp @O (k" X, 854, (38)

and ¥y and®(®) are defined by analogous equations with
color structureT?®T2. + are forP, and Pg, respectively.
In a more traditional language thAD(Z)M

ong | contributions
might be referred to as “nonfactorizable” since they involve

PHYSICAL REVIEW 68, 114009 (2003

function in Eq.(34) we get (°)* from the fields,» 2 from
the states, timesy” 2 from the delta functions indicated by
the momentum subscripts. This giv&kk, k)~ 7, i.e.,
S(ky ,k3)~A. A similar calculation for the collinear and
soft long-distance matrix elements in E§8) gives ¥({%®
~A%Q and ®°P~A. In the factorization theorem the
measures have scalingdK; dk;)~A? and dk*d?x,)
~1/A. Combining all the factors for the short-distance am-
plitude gives (\)(A?)(1/A?)(A)(A®)=A?, while for the
long-distance amplitude we findAQ(1/A)(1/A)(A)(A?)
=A? also. Therefore, both terms ihgé*) are of the same
order in the power counting as expected. They also give the
complete set of contributions at this order.

: : (*) :
For numerical results with =, p the AR, ™ contribu-

tions are very small since takir@‘Li’)R(z) independent ok

glvesA,'?Jf:;)M =0, as shown in Appendix A. This implies that

a directx, convolution between nonperturbative functions.AE):;)M/Aoo~ as(Q)/, and together with the helicity struc-
Equations(35) and (37) are the main results of our paper. ture of the jet function discussed in Appendix B implies that

Additional details about the derivation of E(7) will be
presented in Ref37].
Using the SCE] power counting inp=A/Q we can

the production of transvergemesons is suppressed. In Sec.
VI we explore further phenomenological implications.

Next, tree level results are presented for the jet functions

verify that the short- and long-distance contributions to thej(®8) The SCET graphs in Fig. 2 are computed with inser-
factorization theorem are indeed of the same order. The cajons of Q(®® and taking momenta-k, and —k, for the

eﬁicientsC(Li?R~ 7°. The results in Eqg26) and(42) for the
jet functions implyJ®~1/A2 and J~1/(QA). Further-

initial and final light soft antiquarks, together with momenta

p, and p, for the collinear quark and antiquark. The dia-

more, ¢~ 7° from the definitions in Eq(30). For the soft ~ grams in Figs. @a,b with insertions off Q(*, 0 ®)} are

gz(ﬁ;?y”PL{l,TB}ugbh@n‘”nPL

WL TB TAY 0 () (0D TAy L0 (D)

n

[n-(ki—kp)+

E:

_gz(ﬁv‘?y”PL{l,TB}uSP’>(U&”TAyfvg“’)(z?;‘)TA{l,TB}y,tmzyymva“))

ie][n-pn-ky+ie

[n-(k;—ky)+ie][—n-pyn-ko+ie]

(39

Adding these contributions with factors 6{*) andC(®) to distinguish the two color structures, and then Fierzing gives

2maCr Ugd)WPngd)

LU MPLUPo{ P o ()]

WP

Nc

Tag

[n-(Ky—Kky) +ie][n-pon-ky+iel _[n-(kl—k2)+ie][—ﬁ- pin-ko+ie]

disp ,(d
U%)”PLU%)

|

Uf,”)mPLv &

—COUwP TP DhP T2 W
L [ v L v s L s ]N(z: [n~(k1

—ky) +ie][n-pon-ky+iel _[n-(kl—k2)+ie][—ﬁ- pin-ko+ie]

|

(40)

where Ce=(N2-1)/(2N,) and we selCP®=0. The first
term in each round bracket originates from tBxype graph
(Fig. 29 and the second term from tHetype graph(Fig.

isotriplet terms for the collinear spinors. Sine€ and p°
have definite charge conjugation, we can freely interchange

the positive momenta- p,<n-p,, so a factor of I-p;

2b). It is convenient to group the result into isosinglet andcan be pulled out front. For the terms in round brackets we
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find
_ Ao C
A( BOHD(*)OPO) — Ng[ _ %C{O)S(O)
C

1 [P v —ulaP v ()]
2 [nketiel[-n-kotie] 4 Mc‘8>s,<8>}<xl>

2 L P

C

1 [u%P @+ u AP v W ]n- (ko +ky)

—— . : — . (43
2N (Ki—Ky) +i€l[n-ky+iel[—n-Ko+ie€]

(4)  We choose to evalua®®®, s®®, and(x 1) at the com-
mon scalesu= uo~ VE A since one of the hard scalm%
is not much different fronE_A. In Eq. (43) the convolu-

"0 (¥)0.-0 "0 (%)0 .0 ; .
ForB —D™ " andB™— D™ p" where we have isotrip tions of the soft and collinear matrix elements are defined by

let M%s the contributions from the SCETdiagrams in Figs.
2(c,d) cancel. Thus, the denominator in E@1) directly
gives the tree level isotriplet jet functions

(08)— | &(0.8) ol $°8)_ e SO )
sl08)=1509) ¢ = | dkqydk; ——— —,
(ky +ie)(—k; +ie)
Amay(pu)Ce
Ne (x~1) :fldxM (44)
85(z—x) Mo X
X[n'k1+i€][_n'k2+i€],

JO(z,x,ki ky)=—

From Eq.(44) we can immediately verify the result of the
power counting for operators described earlier. Since
2mag( ) (X" Hy~(x®%u~\° comparing Egs(7) and (8) and (43)

2 we see that
NC

J®(z,x,ki ky)=

8(z—X)
XInKtie][—n-kptie]’

RO 0,0 (0) (0)
(42) A(B"—D"m) Nos™ s+
A(§O*>D+7T_) 477&3(#0) N E/n' 47TaS(M0) E

w

wheren-p;=xn-py . These jet functions are nonsingular, ~4waS(M0)ALCD' (45)
given that the nonperturbative soft functi®k; ,k;) van- Ex
ishes fork; =0 or k; =0, and thatg,, ,(x) vanishes ak
=0 andx=1. On the other hand for isosingl®1®s the = where we have used the standard HQET power counting for
result in Eq.(41) has a singular denominator[f/(k;  the soft matrix elements to determine thaf®~Aqcp.
—k,) +ie€]. The singularity occurs when the collinear quark Thus, the ratio of type-Il to type-l amplitudes scales\d€)
propagators in Figs.(a,b get too close to their mass shells, just as predicted. Due to the factor ofr4he suppression by
ie. when n-(k;—k,)<A?Q. This singularity is exactly «g does not have much effect numericallyr 4rises because
what is canceled by subtracting the SGHEiiagrams in Figs. a is generated at tree level. It is expected that perturbative
2(c,d), which then gives a nonsingular isosinglet jet function.corrections to the matching f@ andJ will be suppressed by
Next we consider the result for the factorization theoremfactors of a(Q)/7 and ag(\E,A)/m, respectively. In Eq.
for M=,p with these tree level jet functions. Taking the (45) grouping g?N.~1 gives an extra factor of M, so
matrix elements of theD(,_O*s) operators, the collinear part with this counting the ratio is color suppressed as expected.
factors from the soft operators as explained above. Their
matrix elements are given in terms of th° light-cone
wave function and the®8)(k_ ,I,) functions. This gives
the explicit result for theB—D®*)%7% and B®—D*)0,° In this section we consider how the factorization theorem
decay amplitudes, at lowest order in the matching@and  derived in Sec. Ill is modified in the case of color suppressed

J, decays involving kaons, which includ@®—D{*)K~, B®
—D{*)K*~, as well as the Cabbibo suppressed ded®s
4mag#o)Cr o) o —D™*)OKO andB®— D*)OK *©,
Ct s© If strange quarks are included in the final state, then op-
erators with different flavor structure appear. In the exchange
2may wo) topology we can have the production of espair (as shown
+ +C{8)s(8) x N, by the s quarks in brackets in Fig. 2bThis gives SCE]
N six-quark operators

IV. ADDING STRANGE QUARKS

c

A(BO—D*)070) = Ng{ -

c
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Ok @) =TT Th{(d S): P (STs);] Ok ) =[] hP(d S APL(STu)i; ]
XL(EPW),, T(W'EW),, ], X[(EPW), To(W'ED), 1,

Ok, w ) =[ (N9 IT2(STh(?) OF(k" ) =[(NIS)I TA(STh(")
X(d S) hPLT(S"S);] X (d S)i hPLT(STu) ]
XLEPW), T(WTED),, 1, (46) X[(EPW),, To(WTED), 1, (48

which mediateB®—D$)K®*)~. For the long-distance con- Which mediate the decayB’—D*)9K*)0_ |n this case the
tribution we take flavorg)’ =d andq=s in the Lagrangian SCET, Lagrangian in Eq(25) has the same flavor structure

in Eq. (25), which leads t(sgquarks replacing Uquarks in @as in Sec. lll. Since only th&€ topology contributes, the
P~ ' ’ L T . long-distance contribution is not suppressed in the factoriza-
O{’k- The result for the factorization theorem is then 'den'tion theorem, and the jet functiQ],iO,B)_)Jg),S) For both the
t'CaIt tg Iqu.(ES) st‘rr]‘.d (37), e)t(ﬁeﬂt tha:j_o?ly thée tOFt)(_)t')O%}’ .short- and long-distance nonperturbative functions the
contributes. For this case the fong-distance contribution I%hange of flavor appears only through the collinear quarks in

not su_ppressed and serves o regulate_ the (%'ggm%g}’ Whetﬂe weak operator, so the collinear functions depend on the
matching onto theE-topology jet functionsJ™™=Jg™". (+)0 pyt the soft functions{®®) and ®{°® are identical to

Further discussion of the singularities is left to H&f7]. The those in Sec. Ill(However, nowJ(CO'g’ appears, so the mo-

. . (0’8) . . _
hard coefficient<Ci " are the same as in the previous sec- o o ger the soft functio (8 will be different) Finally

tion. . ) —5 (6 )1 (%) — note that if we allow a strange quark in the initial stéfer
The remaining difference foB"—Dg"™'K are the  g_decays, then theE topology can also contribute and more
noanrturbatlve furEtlons. The light-cone WavEfunctlons foroperators are generated.
K™, K° K*~, andK*® are[with g=u,d, w;=n-pXs, ; Due to the non-negligible long-distance contributions the
=—n- pXq, and a prefactor as in EG30)] number of model-independent phenomenological predictions
for kaons are more limited. The main predictions are the
equality of branching fractions and strong phase shifts for

(Kol (€PwW),, Ays(WTED),, |0) decays td versusD*. ForM =KK™~ an identical proof to
_ the one form® andp® can be used. For the vector mesons the
=—=2ifyn-px dx(m,Xs), proof can also be used if we restrict our attention to longitu-

dinal polarizations, so the final states*)K+® are related,
. —9 — ot Q) and so areD(*)Kﬁ‘_ . The factorization theorem allows for
(KR (] (EW), AW &P, |0) transversely polarized kaons at the same order in the power

_ counting, but only through the long-distance contribution.
= _2ifK*mK*n' €* ¢K*(M’XS)

= —2ifgx N Prx Prx (0, Xg)- (47 V. DISCUSSION AND COMPARISON WITH THE LARGE
N, LIMIT

The collinear function® **®) also depend on the light meson It is instructive to compare thid,, scaling of the different
M. The nonperturbative soft functions involve strange quarkgerms in the SCET result, EG35) [or Eq. (43)], with that
and are also different from Sec. I15—S(; and ®{%%  expected from QCD before expanding irQlgiven in Eg.
—®%®  The nonperturbative functions are related to those§3)' Combining the matrix elements in E(E) written in a

. : . S - orm similar to Eq.(43) gives the decay amplitude at leading
in the previous section in the $8) flavor symmetry limit.

However, the jet functions are not related in this limit, theyOrder in 1Q as
differ since different topologies contribute. This leads to dif-

ferent convolutions over the nonperturbative functions. —  ~0na0 M Co\l1
Next consider the Cabibbo suppressed csu transition A(B"=D M7 =Ng| C1+ N, |\1_C(F0+261)jL o
with the color suppressed topolo¢gs shown by the brackets
in Fig. 2a. For the six-quark operators we hdve M 1
+Npj Cy| Fo+ —(—Fo+F,—2G,)
0 0 N2 0
Cc

Note that the flavor structure was not distinguished in naming the
operators in Eqs(28),(46),(48). This should not cause confusion + ..
since they always contribute to different decays.

+oen (49)
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The ellipses denote power suppressed terms. This reproducagQ, as noted in E¢(50). AlthoughF is part of the leading
the 1N, expansion of the SCET amplitude in Ed.3) with order result in the larg®l, limit, it is subleading in the 1)

the identification expansion.
After soft-collinear factorization, thel products (51)
Fo=0, Gi=-maCesOy .-, match onto factorizable operators in SGETFor example,
the C type time-ordered product containi®) gives(sche-
F2—2G;=2mass®|y ., (500  matically)

wheres®©~N? ands®~N, . This implies that the factoriz- _
able termF is power suppressed in the limit of an energetic T(24)—>f doidw; T w; ,kl*)[(dS)kll“(SThgb))][Fﬁc,)Fhu]
pion relative to the leading order amplitude in E43).
The naive factorization approach in E8) keeps only the x[(a“)w)wlrc(wfggu))wz]_ (54)
Fo term, which is expressed in terms of tlBe— 7 form
factor in the largeN, limit. We comment here on the form of o
this contribution in the effective theory. They appear in theApart from the €u) soft bilinear, this is similar to a factor-
matching of the @b).4(cu)y.» operator onto SCETT prod-  izable operator contributing to th@— s form factor [29)].
ucts such as The presence of thB meson in the final state implies that
the matrix element of the soft operator in E§4) is different
TO=T{aP,ic@}, TV=T{Q¥,.ic{P}, (51) from that appearing iB— . Therefore, naive factorization
of type-1l decay amplitudes, as written in E@), does not
where the operator® (¥ contain one usoft light quark. follow in general from the large energy limit. Still, in the
From the leading order operators in EQO) they can be large N, limit, the matrix element ofl'(l“) above can be in-
constructed by switching,—q to give Q(?, and adding a deed expressed in terms of tBe- 7 form factor, as required
furtherW'iD , W to getQ ). Their precise form is different by Eq. (5)
depending on whether they are introduced by matching from Recently an analysis of color-suppressed decays was per-
the color suppressd() or theW-exchangdE) graph. Sche- formed using the “pQCD” approach working at leading or-

matically der in an expansion impx)/mg andA gcp/Mp+) [38]. This
differs from the expansion used here, in that we do not ex-
C-type Q82)=[(Ef]d)W)chhf,b)][ﬁgc,)FhU], pand inmp)/mg. The nonperturbative functions in their

proposed factorization formula include the light-cone wave
ry 1 functions ¢P(x3), ¢p(x,) and aB light-cone wave func-
0= { (ad)_imicw) _—Fchﬁb)] [h9T,ul, tion that depends on a transverse coordimsiéx, ,b,). This
2 n-pt ’ differs from our result which involves 8—D function

S(k;y ,k;) and also has additional long-distance contribu-

(3)_ i 2D T .h® tions,AE):;)M , at the same order in our power counting. Our
le [(gn )(l) c''v ] H H H “ : n o
me 1 long-distance contributions are “non-factorizable” in the

sense that the nonperturbative functioh§’z(k*,x,) and
v {(z,w,x,) communicate directly through thei;, depen-
(520  dence without going through a hard kernel. In REg8]
E-type QP=[dl,hPI[hIT (WTeW),], strong phases only occur from the perturbatpvg=EyA
scale, whereas we also find nonperturbative strong phases
1 r from the A? scale [in S(k; ,k3)]. The nonperturbative
F(C,)FC_—<WTich—§E1“)) 1 phases are expected to dominate in our result. Finally, the
© n.p 2 o results in Ref[38] do not manifestly predict the equality of
theD andD* amplitudes since at the order they are working
contributions from differenB— M form factors show up.
For example their pQCD prediction BRY
—D*%%/BR(B°—D%"°) =2.7 is much different from the
prediction of 1.0 that we obtain in the next section using
. heavy quark symmetry.

The presence of the usoft quark figldn these operators  The time-ordered products presented in this paper in Eq.
introduces an additional suppression factoméf such that (21) are only A/Q down from the class-IT amplitudes.
the T productsT{*) areO(\*)~ A?/Q? down relative to the  Therefore, they give the dominant contribution to the color
operatorsQ{°% in Eq. (20). (Note that since the form factors suppressed ant\-exchange amplitudes in the limit of an
enter as time-ordered products we do not expect a differergnergetic pion £/Q<1). This is a new result, not noticed
ag suppression forT(l‘g relative to those in Eq(21) [29].)  previously in the literature. The power counting of factoriz-
This explains the absence of tiig contributions at order ableFo-type contributions are indeed suppressed\ByQ?

X[ TWID W, Ihu],

Q®=[dr,h{®]

1 |
Q)= —[dluhI[h{ WD, W,
C

XT((WTER),, 1. (53)
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in our analysis in agreement with the literature. However, 0.8
these terms do not give the dominant contribution. [+]=D=n
D'n

VI. PHENOMENOLOGICAL PREDICTIONS

A factorization theorem for color suppressti—DM? 0.4
decays was proven in Sec. lll and extended to decays to
kaons in Sec. IV. The amplitudes at leading ordeA .p/Q
with Q={m,,m.,E_} have the form

Ago=A(B°—D*)0M0)

1 . .
_ Ngnf dx dz dkfdk;Z [C(,_')(Z)Sf_')(k;r) FIG. 5. The ratio of isospin ampLHtud§$=A1,2/(\/§A3,2) and
0 1=08 strong phases and¢ in B— D andB— D* 7. The central values
(i) () 1+1110) + DM following from the D and D* data in Table | are denoted by
+CRr'(2) Sg (kj )3 (Z'X’kj ) ¢M(X)+Along ' squares, and the shaded regions are #hednges computed from
(55) the branching ratios. The overlap of tReand D* regions show
that the two predictions embodied in E&6) work well.

where the sign+ corresponds to ®° or D*° meson in the

final state, respectively. In this section the implications of Eq. . A(§°HD;‘ K™) . A(EO—)D: Kt ™)
(55) for the phenomenology of color suppressed decays ar®), = ————=1, I =— —=1,

: ot : A(B*> DK ") AB°-DKIF)
discussed. One class of predictions follow without any as- —Ys THsY
sumptions about the form &k

(1) Heavy quark symmetry relate_s the nonpertur_bative i A(goﬂD*Eo) RK‘TO A(goﬁD*Eﬂeo

soft matrix elements appearing in tf8°—D°M? and B 0 T A 30 mwoy 7 N0 TR0 mwer0
—D*°MO decays with the same light meson at leading order A(B"—DKY) AB™=DK[) 57)

in ag(Q)/m. This implies relations among their branching

fractions aqd equal strong ph_ases in thei_r Isospin triangleseyq ratios in Eqs(56) and (57) have calculable corrections
These relations are encoded in the rafgS in Eq. (12). of the order ofag(Q)/ and power correctiori8of the order
A second class of predictions depend on using a perturbas; A/Q, which can be expected to be20%
. . . 2 . ’ .
tive expansion of) in ag(4o) for uo~EpA: _ These amplitude relations imply the equality of the
(2) Using a perturbative description dfthe amplitudes pranching fractions. They also imply the equality of the non-
and strong phases for decays to different light meddrzn perturbative strong phases between isospin amplitudes,
be related at "?""f’“”g order mS(’“O)/.W' " namely, the phases®*’ in the ratiosRP"*’™ as shown in
These predictions are encoded in the ramé‘ﬁ , Re, Fig. 5. Thus for each okl = 7%, p° KO K*°
and strong phase in R,, as defined in Eq(12). We con- SR
sider the two classes of predictions in turn. - o o oo oo
First, consider relations between color suppres@ed BR(B°—D*°M%=BR(B°~D°M?), & M'=s"M""
—DM andB—D*M decays with the same light meson. At (58)
tree level in the matching at the hard scale-Q, two of the
Wilson coefficients vanisit®®=0. Therefore both ampli-
tudes forD andD* contain only the soft functions{®®(k;")
appearing in the same linear combination. This implies BR(§°—>D*M)=BR(§°—>D M) SDEM = sDM
model-independent predictions, which can be made even in s s '(59)

the absence of any information about the jet functiohs
and the no(rlp))erturbatlve functior®”, ¢, a(rl‘)j without  The predictions in Eqs(56) and (58) agree well with the
knowing Agy, ™. For M=°° we haveA? "=0 so data forD®*)= in Table I, which give

Eq. (55) gives

and fOI’M:Ki,KH B

|R7|®P=0.94+0.21, &°"=30.3"18;,
A(B°—D*7°)
A(B°—D%79)

A(§O—>D*Op0) .
=1, Rl=——————=1. 8P ™=30.1°+6.1°. (60)

RI= —
0 A(B°— D)
(56)

— — 1ONote that using the observed and D* massesRY =N%/N
(k- pEIk*— ()0 0 (%)0p %0 0 o/No
For decays td KDM' DSD*KNI|| » DPKE, and D K| =1.04. This small difference corresponds to keeping an incomplete
=A

it was shown that\gh,=Ajgng and so set of higher order corrections.
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This agreement is represented graphically by the overlap of 0.5F T y ' '

the 1o regions in Fig. 5, with small squares indicating the -

central values. The dominant contribution to the phédse 0.4} = .

generated by theG—E) amplitudes which have complex ]

phases from)) S(°® in Eq. (55). Since the phases ig%® 0.3 F .

are nonperturbative and can be large, it is expected that they Im Ser 1

will dominate. Note that with this choice of triangle the GeV) o 5 | i

power suppressed side in Fig. 5 is enlarged by a isospin J

prefactor of 3{2=2.1. 0.1k .
For B® decays to D(*)° D()OKC pDHIOKK?, | w\q)

DK™, andD)K* ™ only upper bounds on the branching 0 : : : : .

ratios exist, so our relation betwe@nhandD* triangles has 6 0.1 0.2 0.3 0.4 0.5

not yet been tested. For each of these channels similar tri- Re Ser (GeV)

angles to the one in Fig. 5 can be constructed once data
become available.

The results in Eqs(56) and (57) can be contrasted with
the absence of a definite prediction in the lakgdimit as in
Eq. (6). Even when only thé&, term is includednaive fac-
torization, R, is given by a ratio ofB— = form factors,
which for genericm, . are not related by heavy quark sym-
metry. Thus, one does not expect a relation between the
b_ran(_:hing fractions or strong phases unless tlgg éxpan- \/§A00+ A, _=Aq_. (63)
sion is used.

Next consider the second class of predictions, which fol-
low from the perturbative expansion of the jet function in Eq. This is shown in Fig. 6 where we divide By,_ to normalize
(55). We now assume thatg(u,) is perturbative and focus the base. The data &P— D°p° are not yet sensitive enough
on M=,p since the kaons are contaminated by contribuo test the prediction thap is the same for® and p°.
tions fromAB:;)M . The tree level result fad is given in Eq. Using Egs.(7) and(62) it is possible to make a prediction
(42), and was used to define the nonperturbative parametef@r the ratioR; in Eq. (12) at next-to-leading order in the
s(%8) through convolutions with the soft distribution func- power expansion. SinceR.=A,_/A,_ contains only
tions S®8(k*) as in Eq.(44). It is convenient to introduce Ccharged light mesons, it is easier to measure than neutral
an effective moment parameter pion channels. Data are available for all four of &)

andD™)p channels. Using the triangle relation in H§3)
one finds for the ratio of any two such moded = m,p]

FIG. 6. Fit to the soft parametet; defined in the text, repre-
sented in the complex plane with the convention that is real.
The regions are derived by scanning the drrors on the branching
fractions (which may slightly overestimate the uncertaintfhe
light gray area gives the constraint frdéa—~D 7 and the dark gray
area gives the constraint froB+—D* 7.

(8)
L 8= —ig
2NCCF C(LO)S |S(-3‘ff|e . (61)

Ser= — SO+

RE(*)M:]._ \/E
In terms of the effective moment the result in E§5) at

lowest order inag(Q) and as(uy) becomes 16mag( o)Mp) S o)

=1 X Hu.
16 ary( 1) 9 Ey(mg+Mmpx)) f(wo,uo)< m
— Tas( Mo _
A(B®—D™MO) = N§! C{——=—sc(1o)(x ), (64)

(62

It is easy to see that the ratio of amplitudes on the right-hand
whereNy' is defined in Eq(36). Sincesey is independent of  side is common to final states containin@ar D*, and has
M=m,p the same phaseé is predicted for these two light only a mild dependence on the light meson, introduced
mesons. through the inverse momefx 1)y, . In particular we note

At leading order in 1D the type-l amplitudeAq_ that there is no dependence on the decay conétain the
=A(B~—D%") factors as in Eq(7) giving the product of RHS of Eq.(64), since it cancels in the ratifigy/A,_ . This
a form factor and decay constant, both of which are realmplies that the ratioR, are comparable for all four chan-
(with the usual phase conventions for the states, and neglegtels D*)7 and D™*)p, up to corrections introduced by
ing tiny ag(mp) strong phases~2°) generated by the co- (x~1)_#(x"!),. These corrections can be smaller than the
efficientsC(L% at one lood 7]). Therefore the amplituda, _ correction one might expect from the ratio of decay constants
is real at leading order in @ up to calculable corrections of f,/f_=1.6 (which appear in the naive, factorization). The
the order ofa¢(Q). Choosing the orientation of the triangle experimental values of these ratios can be extracted from
so thatAy_ lies on the real axis, the phagecan be directly Table | and are in good agreement with a quasiuniversal
extracted as one of the angles in the isospin triangle prediction,
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|A(§°—>D+7T‘)| The result in Eq.(62) also leads to predictions for the
|R§D’T)|= ———=0.77+0.05, ratios of color-suppressed decay amplitudes to final states
|A(B™—D% )| containing different light mesons!°= 7° p°. We find
RO *+ = _O_> 0.0
|R(O* ™| = |A(E__>D ”_)| ~0.81:+0.05, RE/ "= A=D1 £y X700y 44e0.77,
IA(B~—D*%7)| |A(B° =D 70| Tr(x7!),
(65 (69)
0 + -
IR(P)| = M:O'goi 0.09, where we usedf,:=130.7-0.4 MeV and f,-=210
|A(B~—D% )| +10 MeV, and inserted the result in E(6) for the mo-
ments. This can be compared with the experimental result
|A(BY—D**p7) (Ry7)®P=1.02+0.21. The large uncertainty in the ratio of
IR (DLPL)I =0.86+0.10. moments in Eq(66) dominates the error in Eq69). With
|A(B~—D*% ") the QCD sum-rule result in Eq67) we find R,,=1.64

+0.35, a result whose central value is farther from the ex-

This lends support to our prediction for the universality of perimental data, but still consistent with it.
the strong phaseb in B—D®) 7 and BHD(*)p decays In contrast to the first class of predictions, the predictions
from the s in Eq. (64). The central values dR.=0.8 are for the ratios in Eqs(64), (66), and(69) and the prediction
well described bys.t of the expected size~<Aqcp), as  for the universality of¢ can receive corrections from ne-
discussed in the fit to the isospin triangle below. Further datglected[ ag(uo)?/ ] terms inJ. The dominant theoretical
on these channels may expose other interesting questionsprrections to this extraction are expected to come again
such as Whetheﬁqu*M) is closer toR(PW) thaan:D(*)’T) isto  from these perturbative corrections dmr from power cor-
R(O*)p) rections, which we estimate may be at thé30% level. A

¢ : future study of the perturbative corrections is possible within
the framework of our factorization theorem and SCET. If
future data indicate large deviations from the predictions in
our second class then this points to significant perturbative
corrections to the jet functiod. However, it would not indi-
cate anything about our first class of predictions which are
independent of the functional form Jf

The result in Eq.(62) and the data olB—D# and B
—D* 7 decays can be used to extract values of the moment
where only the experimental uncertainty is shown. The exParameter$seq and strong phasé. We present in Fig. 6 the
traction in Eq.(66) is smaller, but still in agreement with the constraints on the parametsy; in the complex plane, ob-
ratio extracted from light-cone QCD sum rules. The best fittained fromD 7 (light shaded regionandD* 7 data(darker
from the y*y—«° data performed in Ref[39] gives shaded arga We used in this determination.,=E
(x~1),=3.2+0.4 in agreement with sum-rule estimates of =2.31 GeV, and leading order running which gives
the moment. The QCD sum-rule resgit *),=3.48+0.27  as(#o) =025,  Cy(u=puo)=1.15, and Cy(u=po)

An alternative use of Eq64) and theR, amplitude ratios
is to give us a method for extracting the ratio @fand =
moments. Using th® = and D p measurements which have
smaller errors than fob*, we find

(xh, IR®?|-1
x Y, [RC7-1

=0.87+0.42, (66)

[40] then implies =—0.32. The good agreement between e and D* 7
1o regions marks a quantitative success of our factorization
<x’1>p relation in Eq.(55). Averaging over theD 7 and D* 7 re-
— =1.10+0.16. (67) sults, we find the following values for the soft parameters at
(X7 SR K= Mo
The result that this ratio is close to unity is consistent with 0.26 3.2
the universality of the data in E465). These data can be |Seil =(428+48+100 MG\O(C (o) s )) n )
contrasted with cases where the single light meson is re- AL A (X
placed by a multibody state such [d¥]
¢=44.0°+6.5°. (70

BR(EO_’D*+7T m ) ~1.02-0.27. (68 In this determination the inverse moment of the pion wave
BR(B~—D*°z*n 7 7% o function was taken from the best fit to thé y— #° data
[39], (x 1),=3.2+0.4. For|s.q the first error is experi-

For the four pion final state our proof of the factorization mental, while the second is our estimate of the theoretical
theorem does not work, since for many events one or morencertainty in the extraction from varying, from E_/2
of the pions will be slow. We therefore would expect lessto 2E .. At the order we are working the extraction of the
universality in branching ratios involving more than one phase¢ is independent of the scale, since the prefactor
light meson.(For these decays a different type of factoriza- ag(uo)(x 1), drops out. The result in E470) agrees well
tion involving largeN, works well for theq? spectrum(8].)  with the dimensional analysis estimamgr~s(°'8)~AQCD.
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Since ¢ is nonperturbative its value is unconstrained, and alistance amplitude. This may account for the observed sup-

large value of this phase is allowed. pression. Basically strange quark mass effects imply a larger
The recenB®—D°p° data from Belle allow us to extract SU(3) violation for inverse moments than expected by

el and ¢ in a manner independent of the above determiversusgy alone, and implies thatxg ") <(X4 ")« . Using

nation. Keeping only experimental errors we find the result from QCD sum rules the ratio of momejt8] is
(xg D {xs k~1.4. Furthermore, we anticipate a similar
ISue] = (259+ 124 MeV) 0.26 3.5 large effect from the moments that appear in the soft matrix
Seff| = + e , . o )
eff CL(10) @s( o) <x’l>p elements which again differ by factors okf) ! versus

(k$)~1, and appear in a way that suppres§eK . The
$=17°+70°. (72) combination of these two suppression facto_rs might accom-
modate the observed factor of 3 suppression in D~
The results agree with EGZ0) within 1o, but currently have ~ amplitudes:* The long-distance amplitude also involves two
errors that are too large to significantly test the factorizatiorinverse momentum fractions through®® in Eq. (26), al-
prediction of equality on the 20—-30% level of the param-though admittedly much less is known about the nonpertur-
eters extracted frorDp andD . bative functions®{;® and ®(°%. Thus, we find that the
TheB®—D{*)*K™ channels proceed exclusively through suppression oEP<€ may not imply much about the relative
the W-exchange graph and have been the object of recenrfize of C°™ andEP™. Finally, we note that the suppression
theoretical worK41]. For the result analogous to E§2) we  echanism foss creation that we have identified is particu-

would have[M=K,K*] lar to problems involving large energies where light-cone
16mae( o) wave functions arise.
A(B°—=D¥IM)=2NY C(O)—S'“OSE (o){x3 1) Further information on the relative size of the short- and
s 0 “L 9 efl L0\ Xs /M X . o
long-distance contributions to the kaon factorization theorem
NG is clearly desirable. In Sec. IV it was noted that in type-I|
TAomg - (72)  decays transvers&*'s are produced only by the long-

_ distance contribution at this order iNgcp/Q. Therefore,
Both theB°—D{*)“K~ modes and the Cabibbo suppressedmeasuring the polarization of th&* in both the B

decays B—D™)K™*) receive this additional contribution —.D*K*~ and B®~D*°K*° decays can give us a direct
from A,?):;'V' . This makes the factorization theorem less pre-handle on whether there might be additional dynamical sup-
dictive, and so we do not attempt an analysis of ratiogression of either the long- or short-distance contributions, or

RE(*)K(*), Rg"“\"', or the universal phasesg and ¢ that whether they are of similar in size as one might expect
are analogous t@ in Eq. (6). priori from the power counting.

On the experimental side both Babar and Belle Collabo-
rations[42] recently observed thB°—DJ K~ decay, and set VII. SUMMARY AND CONCLUSIONS

limit on the branching ratio 8°—D* "K ", . : .
an tpperfimit on the branching ratio &7="1s We presented in this paper the first model-independent

B(B°~D/K") analysis of color suppressegf’—D°*)M® decays, in the
limit of an energetic light mesoM®. The soft-collinear ef-
[3.2+1.0(stah+1.0sy9]x 107 ° (Babay fective theory (SCET) was used to prove a factorization
= [4.6f}€(sta1)i1.3(sys]><10*5 (Belle), theorem for these decay amplitudes at leading order in

Aqcp/Q, whereQ={m,,m.,Ey}. Compared with decays
=0 x4y — 5 into a charged pion these decays are suppressed by a factor
B(B"—Dg "K7)=<2.5x107>(90% C.L) (Babab.(73) Aqcp/Q. Therefore, in the effective theory they are pro-
duced exclusively by subleading operattfs.

The branching fraction fo§°—>D;rK‘ is an order of mag-
i R0 0.0 is indi
nitude smaller than that faB™—D"". This indicates that 1y, general this argument gives a dynamic explanation for the

the W-exchange amplitud&®s" LS suppressed relative t0 gyppression ofs popping at large energies which could be tested
(C—E)°™ and (V,q/v2V,d) CPK". In SCET the SUB)  elsewhere. The production of as pair which end up in different
breaking betweewp . (x) and ¢« (x) is generated by masses strange hadrons is likely to be accompanied by a suppression from
in the collinear quark Lagrangidd3]. This causes an asym- inverse momentum fractions that arise from the gluon propagator
metry in the light-cone kaon wave function. This @WJvio-  that produced these quarks. This enhances th@)Sliblation in a
lation can be expected to be at most a canonica0—-30%  well-defined direction so that less pairs are produced. A factor of
effect, which would not account for the observed suppress suppression a§s popping is implemented in JETSE#4].
sion. 12n type-I decays, other subleading operators can compete with
However, there is one important source of potentiallythe time-ordered products we have identified at the same order in
larger SU3) breaking from an enhancement in moments ofA/Q. This makes a complete analysis of power corrections to
the light-cone kaon wave function which appear in the shorttype-I decays more complicated than our analysis of type-Il decays.
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We have identified the complete set of subleading operain the ag(m,) or ag(ue) expansion(in type | B—D®*) 7

tors which contribute toB°—D°*)M® decays withmM  decays the hard strong phase is very smalk® [7].) In
—m.p,K,K*, as well as for the decay§°—>Dg*)K(*)*. contrast, our new source of strong phases is entirely nonper-

After hard-soft-collinear factorization, their matrix elementsturb&uive In origin and can produce unconstrained phases.
. ) . T . .~ For the case oB—D®)M these phases show up in the
are given by(i) a short-distance contribution involving a jet

f . luted with bati ft distributi power suppressed class-Il amplitudes.
unction convoluted with nonperturbative soft distribution ™ e factorization theorem proven in this paper leads to

functions, and the nonperturbative light-cone meson wavey.eqictions which were tested against existing experimental
function, and(ii) a long-distance contribution involving an- data on color suppressed decays. We derived two model-
other jet function and additional, dependent nonperturba- . . . S0 ~Ong0

tive functions for the sofB,D, and collinearM. The long- independent relations, which relatét) the B"—~D"M " and

distance contributions were shown to vanish fbe r, p at B°—~D*°M° decay branching fractions an@) the B
lowest order inag(Q)/ . —DM andB—D*M strong phases.

The factorization formula is given in Eq&5) and(37). It Here M = w,p,K,Kﬁ‘ , and these relations are true to all
may seem surprising that the type-Il decays factor into a piomrders in the strong coupling at the collinear scale. The same
light-cone wave function and 8—D®) soft distribution  predictions are also obtained f@°—D®*)K~ and B°
function rather than being like the naieg factorization in _,Dg*)KH ~. The good numerical agreement observed be-
Eq. (2). Our results indicate that factorization for type-Il de- tyeen the strong phases and branching fractions irDthe
cays is similar to factorization for type-l decagalbeit with  4,qp* 7 channels gives strong backing to our results. This
new nonperturbative soft functions and additional ong-pregiction can be tested further since the equality of the
distance contributions for kaonsTo derive Eq.(35), QCD strong phases for the, K, andK#* channels have not yet
was first matched onto SCEat the scalex?=Q?. In SCET, L ”

L . S . _been tested experimentally.
it is still possible for gluons to redistribute the quarks. This Additional predictions followed from the factorization

intermediate theory provides a mechanism for connecting thg, oo rem by using a perturbative expansion for the jet func-
soft spectator quark iB to a quark in the pion and for Eon including M = . p):

connecting the energetic quark produced by the four-quar o
operator with the soft spectator I (see Fig. 2 This pro- (1) the ratios |R.=|A(B’—=D®*)*M~)/A(B~—D®*)°
cess is achieved by the power suppressed time-ordered prod- x M )| to subleading order,

ucts given in Eq(21). SCET, is then matched onto SCE Gt (2) the ratios| Rg/ﬂ'| _ |A(§°HD(*)°p°)/A(§°HD(*)°w°)|
a scaIeMg: EuA. In SCET, the collinear quarks and gluons to subleading order

are nonperturbative and bind together to make the light ME3) universal parameter§|s.s,#} which appear for both
sonM. This second stage of matching introduces a new co- D® 7 andD™*)p, and

efficient function(jet functiong as in Eq.(24). The jet func- (4) a mechanism for enhanced @violation in ss produc-
tion J contains the information about the SGEjraphs that ion for the short-di litud hi hp iah
move the spectator quarks into the pion. The physics at vari- tion for the short-distance amplitude wnich might ex-
ous scales is neatly encoded in E85). The Wilson coeffi- plain the suppression of tHe°— DK~ rates relative
cient C(z) from matching QCD onto SCETdepends on to B~ D%#P.

physics at the scal®?, the jet functions],J from matching
SCET, onto SCET, depends oQA physics, which is where
quark redistribution occurs, and finally the soft distribution
functions S,® and the pion light-cone wave function
v ¥y depend on nonperturbative physics/Agt which is

For |R.| taking different values oM with the same isospin
the power corrections only differ by the momexits 1)y,
giving an explanation for the observed quasiuniversality of
where the binding of hadrons occur. the_se ratios. Th_e isospin triangles for t_hM;és are predicted
The soft functionsS are complex and encode information to |/nvolve a “”'Ve_fsa' a”?l'@“- The ratio of neutral _modes
[RE'™| are determined by inverse moments of the light-cone

about strong rescattering phases. This information is intro X k )
duced through Wilson lines along the light meson directionVave functions and decay constants. Finally extractions of

of motion, which exchange soft gluons with the final statetN® nonperturbative soft moment paramedgy agrees with
mesonD*). They provide a new mechanism which gener-the ~Aqcp size estimated by dimensional analysis.

ates nonperturbative strong phases. In the literature other In the case oB%—DK™*)~ an additional suppression
mechanisms which generate perturbative strong phases haveechanism was identified, which arises from enhanced
been proposed. In particular in Refd,45] a method for SU(3) violation due to the asymmetry of nonperturbative dis-
identifying perturbative strong phases with an expansion iriributions involving strange versus down quarks. The inverse
a<(Q? was developed. In Ref$38,46| it was pointed out moments that appear in the factorization theorem enhances
that strong phases can also be generated perturbatively at ttiés difference, and can lead to a dynamic suppressi®sof
intermediate scalers(EyA). In the language of our factor- popping. Further information on the size of the short- and
ization theorem in Eq(35) these phases roughly correspondlong-distance amplitudes would help in clarifying this obser-
to imaginary parts in the hard coefficierﬁé‘?g) and jet func-  vation.

tions J, respectively. These phases exist, but for Be A more detailed experimental study of the channels in
— D channels they only show up at next-to-leading orderTables | and Il is crucial to further test the accuracy of the
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factorization theorem and improve our understanding of thel,, shows that these two types of contributions always ap-
structure of power corrections. Work on extending these repear in pairs, such that the projection\Bf, onto an isotrip-
sults to decays to isosinglet mesons is in progress. It shouligt state is even undes— — w. This suggests the existence
be evident thaBg decays could also be considered althoughof a symmetry argument, valid to all orders in perturbation

we have not done so here. theory.
We will prove that¥(9® is even, as a consequenceG®f
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APPENDIX A: LONG-DISTANCE CONTRIBUTIONS

FOR 7 AND p = (&PW)_, APR(WTEW)
The factorization theorem derived in Sec. Il for the color
suppresse®®—D°M? amplitude contains both short- and G(EDW) AP (WD) gt
long-distance contributions. In this appendix we show that, (&0 W) APLWI£:7),,
working at lowest order in the Wilson coefficients at the hard = (EW)_ APR(WTED) (A3)
scaleQ, the long-distance amplitude vanishes for the case of " ¢ noTe
an isotriplet light meson# =, p. Taking into account thes parity of the states, EqA2) is

We start by recalling the factorized form of the long- equal to
distance amplitude, which is given by SCEfime-ordered

T(0,8)
prOdUCtSTL’R i<MO(g)|[(Elgd)W),TZWPR(WTé:gu))—Tl](OL)
Alng "= f 4z f dk* do f dx, [C)(2) I (wk*) XL(EYW)— APR(WED)_,](x))[0),  (Ad)
0

where=+ refer to thep® and#®, respectively. Next, we apply
parity in the matrix element followed by switching our basis

iC(Ri)(Z)JTi)(war) CI>(Ri)(k+,xl vSB*) vectorsn+n. Acting on Eq.(A4) this gives

XDkt x5 )P((z,0,x, ,85)

X)) 1. Al -
(200 e)] (AD (M(B)ILEDW)- APLWTE) . 1(0,)

The functions® ;) and®{"; are SCET matrix elements of

collinear and soft fields, respectively, and their precise defi-

i ven | - ionsI0)(wk* o

nitions areﬂglvsnflln_t.EQS(.S;St)H Thebjlet l;u_nctlonf?] (”‘,"k ) . where the overall sign is now the same fdr=p, 7. Now
af;’fa};:& N ai(ljn'lrg: E)we(sats;)urd:rae;(n%ezosic;ﬁ: ;Zarive""r;since\lf,(\ff's) is a scalar function the only allowed perpendicu-
grang §¢aq P IVEMar dot products are€x,)?=x? and—x, -ef=x, -&*. Fi-

in Eq. (26). )
In the following we derive a few general properties of the _naIIy we note that the change in , from Eqgs.(A2) to (A5)

) 0 ~08) ) ) ) is equivalenz— 1—z. Thus the invariance of SCETunder
functionsW¥};’ andJ*>* following from isospin, charge con- G narity and regular parity has allowed us to prove that
jugation, parity, and time reversal. The collinear function

XL(EPW) _ AP (WTED) _ 1(—x,)[0), (A5)

V) (z,0,x, &) is defined as the matrix element VO (z,0x,,e)=W0 (1-7,- 0, ,&*). (A6)
(MO2)[[(£PW), WP (W) 1(0,) Next we prove thaf®®(wk*) is odd undew— — w. By

reparametrization invariance type-[i47] only the product
><[(Ef]“)W)wWPL(WTgﬁd))a,](XL)|0). (A2) k™ will appear. Consider applying time reversal plus the
. . interchange 1f<n) to the SCETJ, Lagrangian. Since this
We will prove that¥y, -, is even undeto——w andz | agrangian does not have coefficients that encode decays to
—1—2z. As motivation consider the first bilinear in Egh2),  highly virtual offshell states, it should be invariant under this

which creates alu collinear quark pair. The second bilinear transformation. Acting on Eq(25) this implies thatJ©®
in Eqg. (A2) must act at some point along the co_llinear quarkmust be real,

lines: it either takes d— u (for w>0) or takes a1—d (for o o
w<0). Examination of lowest order graphs contributing to [JO8 k™) ]* =3O8 wk™). (A7)
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At tree level this implies that we should drdp in the col-  usual definition of helicity as the projection of the spin along
linear gluon propagator in matching onto this operator. Thigts momentum. Unlike QCD, the collinear fields in SCET
was done in arriving at the odd functiod€®«1/(wk*) in  only allow quarks and antiquarks that move in thelirec-
Eq. (26). The imaginary part would give & wk™) and cor-  tion. Forh,, we have

responds to cases where the SCETproduct is reproduced

by a purely collinear SCETT product k*=0), or a purely hh=%€""a,,, h?=1, [h,n]=[h,A]=0,
soft SCET, T product (w=0). Thus dropping e also saves
us from double counting. {hn,y7}=0. (B1)

Now consider what functions can be generated by com- i fiel finit e ul ¢
puting loop corrections ta)(09), By dimensional analysis After making a field redefinitiori26] to decouple ultrasoft

08 _ R . . gluons the leading order collinear quark Lagrangian is
J(8 must be proportional to 1ék ™) times a dimensionless

function of wk*/u?. Since at any order in perturbation . 1 W

theory the matching calculation will involve only massless cg‘g):gn,p, in-D+iD; ——iD; Egn,p, (B2)
guarks we can only generate logarithms. Therefore, we must in-De

study functions of the form

whereiD# contains only collinea’ . gluons. £ (Y is in-
variant under the transformatiort,—exp(6h)é,, &n
—Enexp(—iehn). This means that any number of leading or-
der collinear quark interactions preserve the quark helicity
To demand that only the real part of these functions matcfin- The collinear gluon interactions take,(1)—un(T),
onto J©® we average them with their conjugates. It is Un(1)=Un(L), va(T)—vn(T), va(l)—vn(l), and can also
straightforward to check that only terms oddan- — o sur- produce or annihilate the quark-antiquark combinations

. —T0e8) us(Muon(l) oruy(l) va(T) (the arrows refer to the helicity
VIVe. Thus, all _the terms that can correct the formygf® at of the antiparticles themselves rather than their spjnéisr
higher orders inxg are odd undet— — .

this reason we refer t4 (2 as aAh,=0 operator.
. . . . — 0 §§ n
NOW n I_Eq.(Al) the mtegratlon_ ovew Is from to ! The leading order SCEToperators in Eq(18) are also
while z varies from 0 to 1. Consider the change of variable .
(i) ) unchanged by thé, transformation and therefore does not
o——w andz—1-z. If C{'x(2)=C}’r(1—2), then under

this interchange one of the functions in the integrand is odoChange collinear quark helicity. In contrast the operatbfg@

i 0 do generate or annihilate a collinear quark gividd,
(J) and the other two are everC{; and W), so the _ .7/ However, at tree level we showed in Sec. Ill that

integral _WOLE!? vanish. _ the two graphs in Figs.(a,b match onto an overalhh,
Now if C{ r(2) are kept only to leading order, then they — g gperator in SCET as given in Eqs(28). Since at higher
are independent afand thus unchanged undes>1-2. S0 orders. (2 will not cause a change in the helicity, they also

at this order in thex(Q)/ expansion ofC{ x(z) we find i onto these same operators, so the strudtytewill

(*) : .
Al?mg M:_O' _Th's completes th? proof of the_ass_eruon aboutnot occur. At tree level only the structquP,_@WP,_ ap-
the vanishing of the long-distance contributions fiof peared in Eq(28). To rule out the appearance Bf, beyond

wkt+ie

(A8)

P tree level we note that the weak operator projects onto left-
handed collinear fermions, and for the jet function the con-
APPENDIX B: HELICITY SYMMETRY AND JET servation of helicity inC {? implies a conservation of chiral-

FUNCTIONS ity. This leaves us with the desired resuilt.

In this appendix we discuss the general structure of the jet It. s perhaps .||Iustrat|ve to see this more epr|C|tIy. by
functionsJ(O’s)(z,x,kj*) in Eq. (35), which are generated by Iool'<|ng at the sper structure of the loop g']rC:;\phs. \;Ve begin by
matching SCETand SCET at any order ineg(uo). In Figs.  noting that the spin and color structurehff) - - -h® is un-
2(a,b this means adding additional collinear gluons whichaffected by this second stage of matching. Adding additional
generate loops by attaching to the collinear lines alreadgollinear attachments only can affect the spin and color
presentas well as vacuum polarization-type collinear quark,structure generated in putting the collinear quark fields and
gluon, and ghost loopsAdditional collinear loops should light ultrasoft quark fields together.
also be added to Figs(&d,e, and the difference at lowest ~ Consider how additional gluon attachments effect the spin
order in\ givesJ. Throughout this appendix we continue to Structures that appear in Fiogs_(aZJ). The leading order col-
drop isosinglet combinations o, - - - &,. These will also lIn€ar quark Lagrangian 'ggﬁf)_'” Eq. (B2). Each attachment
have additional contributions from topologies where the out°f @ collinear gluon to a collinear quark lines in the figures
going collinear quarks are replaced by outgoing gluonggenerates ai/2 from the vertex and &/2 from the quark
(throughB* operator propagator. These combine to a projector which can be elimi-

The leading order collinear Lagrangian has@)helicity ~ nated by commuting them to the right or left to act on the
spin symmetry for the quarks, see the second reference itollinear quark spinors, vianf)/4 ¢é,=¢,. Therefore, at
[25]. It is defined by a generatdr, that has the quark spin most we have additional pairs of, s that appear between
projection along then direction, which is different from the light quark spinors. The aim is to show that just like the
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tree level calculation in Eq42) the resulting operators have ~ APPENDIX C: PROPERTIES OF SOFT DISTRIBUTION

spin structure qnP, u)(£,AP,&,). FUNCTIONS
- 8) which ai . . . .
For the contraction o (> which gives theC topology In this appendix we derive some useful properties of the
the spin structure is soft functionsS(®®). In particular we show that these func-
o tions are complex. The imaginary parts have a direct inter-
—d) 1o P n , vt ho @ pretation as nonperturbative contributions to final state res-
Up 7117@ Yy _13@ EPL hl"'?’l PRa Ug cattering between th®®™) and final energetic meson as
discussed in Sec. lll.
X[UD(F) 1. pray@] To be definite we consider the functig® and suppress
the indexL. The manipulations for the remaining soft func-
=[ul@yhr. . payap g1 tions S& andS(), are identical. The definition in E434) is
) BN ) (d) _ _
usTyiy eyl B3 (Do) (D S)HPL(STH) (AS); APL(STu)s[B(v))
In the first line[ (#/2)P, ] comes fromQ (%%, the y{ andy? =50, (CY

are terms generated by the{}) insertions, and the/2 is
from the extra collinear quark propagator. In the second linavhere the Wilson lines are defined as
the P, projector was moved next lué”) without a change of

sign (for anticommutingys), and the remainingh and # {

were then moved next to thé? and canceled. The remain- W=
ing freeL indices in the second line are contracted with each

other in some manner. Fierzing the setyofmatrices in Eq.

(B3) by inserting 1 next to the collinear spinors gives S=

> exp( — %ﬁ- An’q(x))

perms

(C2

1
> ex —gﬁwAs,q) .
perms :
A Noi ’
[ufT U IuD Pyt - P H T 2 P LUl ], o _
In generalS(® is a dimensionless function af-v’, n-v,
(B4 n.y’, n-ky, n-ky, Agep, and u. Since S‘q)k;:&(k;r

where —n-P)(S'q) the LHS is invariant under a type-IIl reparam-
etrization transformatiofi4d7] (n—e“n, n—e™“n). There-
, " hys hy! fore the RHS can only be a function @, t=n-v/n-v’,
Nel=;0h-—-ahys— T@Mﬁ z=n-k;/n-ky, Klu=[n-kyn-ky/(n-vn-v'u?]"? and
AQCD/,U«-
" Wﬂ Rather than studying the matrix element in EG1) di-
— 5(1— v5)®h— T@mﬁ . (B5)  rectly it is useful to instead consider

N U as), -+ t )
In the second line of EqB5) we have used the fact that (Hi(@")l(hy SAPL(STh,) (aS)i; APL73(STA) i [Hj (v))

in the bracket with soft quark spinors can be eliminated by K A
moving it next toP, . To eliminate theAy! Dirac structure =S t,z,p-v!,— 2
we note that between the soft spinors in B84) there are an K

odd number ofy, s to the left and right ofiy; , and so at

least one set of indices are contracted between the seydereh, are doublet fields under heavy quark flavor sym-
{BA1, ... Ay} and {mq,....uz0,.a}. The identity metry, andg and |H;_1 5(v)) are isospin doublets ofu(d).

{7 57}=2g"" can be used to move these matrices so thaf Ne last three variables in EGC3) will not play a crucial

they éandwiéh¢ and this gives the produciy" y: role, so we will suppress this dependence. Taking the com-
v v/u . .

=0. After these manipulations only the spin structurepIeX conjugate of Eq(C3) gives

(dAP_u)(£,hP &,) remains. A similar argument can be ap-

(m™ij» (C3

plied to theE topology with the same result. <HJ(U)|(FvSMPL(SThv’)(as)kz*ﬁPLTa(STQ)kﬂHi(v’)>
In several places in the above argument we made use of

Dirgc algebra that.is particular to four dimensidaﬂticom— :[S(O)(t’z)]*(Ta)ji :S(O)(E’ 1) (Ta)ji . (C4)

muting ys and settmgyj‘yﬁy;=0). If the y, 's are taken in t'z

full dimensional regulation, then it is natpriori clear if the

manipulations survive regulation. However, the original he-The dependence ow and K is unchanged since they are
licity symmetry argument shows that as long as the theorgven under the interchange—v’, n-k;<>n-k,. Next, de-
can be regulated in a way that preserves this symmetry thisompose the functions(%) in terms of even and odd func-
will indeed be the case. tions undent— 14, z—1/z:

114009-22



STRONG PHASES AND FACTORIZATION FOR COLOR.. ..

SO=g0+50), (C5)

whereSLL=[SO(t,2) = S\(1,1/2) ]/2. Now Eq.(C4) im-

plies that

[SO(t,2)]* =sO(t,2), [S§(t,2)]*=—-SIt,2)
(C6)

PHYSICAL REVIEW 68, 114009 (2003

) S%O) is real andS{?) is imaginary. An identical argument
for S®® implies that it too is a complex function.

For the above analysis it is important to note that'
=mg/mp is not 1 in the heavy quark limit where we have
new spin and flavor symmetries. These symmetries arise
from taking mg> A gcp and mp>Aqgcp, not from having
mB: mD .
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