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We investigate the basic features of the gluon density predicted by a renormalization group improved small-
X equation which incorporates both the gluon splitting function at the leading collinear level and the exact
Balitskii-Fadin-Kuraev-LipatoBFKL) kernel at the next-to-leading level. We provide resummed results for
Green’s function and its hard Pomeron exponeg(te), and for the splitting function and its critical exponent
w(ag). We find that nonlinear resummation effects considerably extend the validity of the hard Pomeron
regime by decreasing diffusion corrections to Green’s function exponent and by slowing down the drift towards
the nonperturbative Pomeron regime. As in previous analyses, the resummed exponents are reduced to phe-
nomenologically interesting values. Furthermore, significant preasymptotic effects are observed. In particular,
the resummed splitting function departs from the Dokshitzer-Gribov-Lipatov-Altarelli-R&{SLAP) result
in the moderate smak-region, showing a shallow dip followed by the expected power increase in the very
smallx region. Finally, we outline the extension of the resummation procedure to include the photon impact
factors.
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. INTRODUCTION asymptotically leading Pomeroa; [16] is actually a non-
perturbative strong-coupling quantif.7,18. This feature
Progress in understanding smalphysics has been char- can be taken into account by the initial condition in the DG-
acterized by quite a number of steps: first the Balitskii-Fadin{ AP evolution of structure functions, but may be a problem
Kuraev-Lipatov(BFKL) evolution equatioi1] and its early  in the processes with two hard scalesich as Mueller-
prediction of the smalk rise of hard cross sections, leading Navelet jet§19], y* y* scattering20], etc) where the per-

to the notion of a hard Pomeron in perturbative QCD; thenyrpative hard Pomeron behavior can be observed at interme-
the qualitative confirmation of such a rise at the DE&Y  yjate energies only.

collider HERA[2], showing however a somewhat milder f-  pacently, it has been noticed that the transition to the
fect and, at the same time, good agreement with Doksh|tzerpOmeron regime is driven, in some smalimodels, by a

Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution [3] at sudden tunneling effecf21,22 at moderate values of

the two-loop level; then the parallel calculation of the next- .
to-leading (NL) BFKL kernel [4,5], leading to a dramatic as(t)log 1k, so that theb expan_smr[?S] may be needed to
suppress the Pomeron and to identify the hard Pomeron ex-

decrease of the effect and to possible instabilifi@s 8| of N .
the leading log series; finally, the proposal of various re- ponentcgs(tg and its dlf_'fu5|on correctionf24,25,8,24 (here
t=logks/A“, wherek is the transverse momentum of the

summation approachd®-15] and recipes to stabilize the "
series in order to provide reliable predictions for processe§ard probe, and =Aqcp). Furthermore, the gluon splitting
with two hard scales and deep inelastic scatte(@i§) type  function is expected to be power behaved in the small-
processes. region too, but with a different exponent.(t), due to run-
The resummation approach proposed by some of uBing coupling effects. Therefore, in a resummed approach
[9-11] and summarized in Sec. Il identifies a few physicalwith running-coupling one has to investigate various high-
QCD effects that lead to large corrections: first, the crosgnergy exponents: the hard Pomeron indggt) just men-
section dependence on the ratio of the hard scales of théoned, the resummed anomalous dimension singularity
problem, which is constrained by the renormalization groupw¢(t), which are generally different and perturbatively cal-
(RG) requirement of single-logarithmic scaling violations in culable, finally the asymptotic Pomeraes,. which is deter-
the relevant Bjorken variables, second, the occurrence, at Ninined by the strong-coupling behavior of the model.
level, of the nonsingular partin moment spageof the The calculation ofwg and w, was performed in the renor-
anomalous dimension, yielding a sizable negative contribumalization group improvedRGlI) approach of11]. The re-
tion; finally, the running coupling effects which modify and sult was thatwg(t) carries important nonlinear effects, lead-
make ambiguous the very notion of a hard Pomeron. ing to a stable and sizable decrease with respect to its
A key effect of the running coupling is that the BFKL leading-log (LL) BFKL value, and thatw.(t) is sizably
evolution drifts towards smaller momentum scales, whichsmaller tharw(t) also. However, the method of solution of
are more strongly coupled, thus making nonperturbativedhe RGI equation used iil1] was best suited for the homo-
physics more important at high energies. This means that thgeneous equation, rather than Green’s functicfn Sec. I).
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Therefore, no real estimate of hard smalkross sections a power increase-x~“<(®s in the very smallx region, to-
was really possible. gether with a shallow digcompared to the DGLAP resulat
The purpose of the present paper is to further investigatenoderately smalk values.
the RGI approach by providing a numerical calculatiorkin A preliminary discussion of the off-shell photon impact
and rapidity space of Green’s function and of the correspondfactors is provided in Sec. VI. Here we show how the resum-
ing splitting function. By then using factorization[27] and ~ mation scheme incorporating collinear leading logs can be
the corresponding impact factof28-31], this sets the extended to the impact factor, and how the latter can be
ground for a full cross section calculation. Here we also pro.eXtI’aCted from the result obtained in the recent literature
vide the high-energy exponents and a semianalytical treat31]. We finally summarize and discuss our results in Sec.
ment of the diffusion corrections. Part of the results of thisVII.
paper have been summarized elsewH8e.
In order to perform such an analysis, we introduce a re{. RENORMALIZATION GROUP IMPROVED APPROACH
summation scheme slightly different from that proposed in
[11], which turns out to be more convenient for numerical ~ The size of subleading correctiof%5] to the BFKL ker-
implementation, and belongs to a class of schemes that af€! £(k,k’) and the ensuing instabiliti¢s—8] make it man-
identical modulo NNIx [and NLO(next-to-leading ordgrin ~ datory to understand the physical origin of the large terms
Q?] ambiguities intrinsic in the resummation approach. Re-and possibly resum them. In a series of papersl] (for a
call, that—as summarized in the introductory Sec. Il—thereview see Ref[35]) it was argued that most of the large
RGI approach incorporates leading and next-to-leading kercorrections were due to collinear contributions, so as to
nel information exactly, with some extradependence« is  achieve consistency of high-energy factorizafiai] at sub-
the Mellin variable conjugated t6~log 1k) so as to imple- qud|ng level[28] _Wlth the renormalization group. This re-
ment the RG constraints and the resummation of leading-loguires resummatiofi9] of both the energy-scale-dependent
collinear singularities mentioned before. Such requirementferms of the kernel5] and of the leading-log collinear loga-
fix the form of thew dependence of the kernel, apart from fithms [10] for both Q>Q, and Q<Q,, with Q, Qo being
NNL terms, which remain and allow some freedom in thethe hard scales of the process. In the following we summa-
choice of the resummation scheme. rize the approach dfL1], which incorporates both the renor-
The exact definition of the kernel and of the resummatiorMalization group requirements and the known exact forms of
scheme is provided in Sec. Ill. Stated in words, the mairfhe leading[1] and next-to-leadind4,5] BFKL kernel. A
difference of the present formulation with respect to that off€summation for anomalous dimensions within a single col-
Ref. [11] is that the resummation of the collinear behaviorlinear regimeQ>Q, has been proposed 2], and alterna-
quoted before is obtained here by thedependence of the tive resummations in13-15.
leading kernel, rather than by a string of subleading ones.
This allows us to include the fulb dependence of the one- A. k factorization and high-energy exponents
loop anomalous dimension in a more direct way, while, of

course, leading plus NL kernel information is correctly in- probesA andB with scalesQ andQ, at high center-of-mass

corporated, as in all such schemes. 5. Wi that th " b "
The detailed investigation of the gluon Green’s function€NErgyys. We assume that th€ cross section can be written

with its hard Pomeron behavior and its diffusion corrections” the following k-factorized form[27]:

We consider a general process of scattering of two hard

is performed in Sec. IV, by analytical and numerical meth- o ap(5:Q,Q0)

ods. The full numerical evaluation relies on the method in-

troduced in Ref[33]. Through the numerical study we are do d’k d%ky[ s | A

able to analyze the border between perturbative and nonper- =f 2mi 1@ 7(@) h(Q,K) G, (k,ko)
turbative Pomeron behavior, at realistic valuesraind o, 0 0

and to extract the leading terms-bY,~b?Y?®) in the expo- % hB(Qg.ko) 1)
nent of the perturbative part. Such terms can also be calcu- ol <0rRon
lated analytically by thé-expansion methof24,23. We are A B . . : .
thus able to identify both the hard Pomeron exponent at or\évr?:rfc?eriggdthhe argebgslmaenrli&gr?lsisrz 'tr;gtackt |f)aci:;o(r; tvr\:ZICh
der O(b) and its diffusion corrections, and we notice sizableOrder ofQ (Qo) :End the aluon Green’s funcotion is defined
nonlinear effects which stabilize the intercept, decrease th o/ 9
diffusion effects, and slow down the drift towards the non-
perturbative Pomeron regime. B _ 1

We also provide in Sec. V the resummed splitting func- Gu(kko) = (Kl[@—K,]" ko). 2)
tion. At the analytical level, we notice that the-expansion ) ) )
method[10,11] allows one to define a resummed character-1"€ functionC, is the kernel of the smakt-equation of the
istic function which, in the saddle-point approximation, can9eneral form
be related to the “duality” approach of R€f12], depending 2
on the choice of the intercept in the latter. Beyond the Y J' ’ )
saddle-point estimate, the resummed splitting function is ©Gu(kiko)= 0" (k=ko) - | =K (kKD Gu (K" o).
evaluated numerically by the method of Re4], and shows (3)
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The factorization formulal) involving two{Reggegluon X0
exchange has been justified up to NL kigvel in Ref.[28] xP(ZS(kZ),x) N x—wc(t)p(gs), 7
for initial partons and if29,3Q for physical probes. At fur-
ther subleading levels, mariReggegluon Green's functions  \here P(Es(kz),x) is the resummed gluon-gluon splitting
pontr!bute to the cross section as well, dqe to th_e s-channglnction (Sec. \J. The exponeniws in Eq. (6) used to be
iteration. However, our purpose here is to incorporat€jefined as the location of the anomalous dimension singular-
leading-twist collinear behavior, and at that level the two-jyy iy the saddle-point approximation. It is now understood
gluon contribution is dominant, so that we shall consider11] see alsd13], that this singularity is actually an artifact
only the contribution(1) in the following. _ of the saddle-point approximation, and that the true anoma-

While k factorization is supposed to be valid fet=w |55 dimension singularity, located at=w(t), causes the
<1, we shall sometimes extrapolate E%).to sizable values hoyer hehavior of the effective splitting function. This result
of ¥=0(1) and moderate values sf encouraged by the |55 then been confirmed in the alternative resummation pro-
stability of our resummation, and by the possibility of incor- -equres of Refd13,36,317.
porating phase-gpac_e thresholds in Et)-_(Cf- Sec. VD-_ It Even the definition in Eq(6) is not free of ambiguities,
should be kept in mind that such a region lies outside thgy,e 1o the occurrence of diffusion corrections to the expo-
validity range of Eq.(1), so that the extrapolated Green's nent[24 25 8 26, which rapidly increase witly, and to the
function loses—most probably—its original meaning as tWo-contamination of the nonperturbative Pomeron, which domi-
(Reggegluon propagator. , nates above some critical rapiditg2,23.

In writing Eq. (1),_we have perfo_rmed the_ choice of eN- |y the following, both regimeg=t, and t>t, will be
ergy scaleso=QQo, in terms of which the high-energy ki- yiscyssed in detail in the RG-improved approach, by empha-

nematics shows a simpler phase space, as explained in MaRing our perturbative predictions and their range of validity.
detail in Sec. VI. Actually, for intermediate subenergies it is

more convenient to introduce as energy variables the scalar
products of typev=2k kf , which havelk||k,| as threshold,
so that|k||ko|/v is a good Mellin variable. Correspondingly, ~ Let us note that the symmetrical scale choigg=kk,
the energy dependence of Green’s function and of the impagterformed in Eq.(4) is not the only possible one, and is
factors is defined byk=|k|,ko=|ko|) physically justified only in the cask~k,. This configura-
tion occurs, for example, in the process)dfy* scattering at
o v\|® high energy with comparable virtualities of both photons
G(v.k.ko) = J ﬁ(m) Gu(k.ko) [20], forward jet/r° production in DIS38], or production of
two hard jets at hadron collidef49]. However, in the typi-

B. Scale changing transformations

_ iG(Y't ty) cal deep inelastic situation, when one of the scales is much

~ kkg ok larger, k>k, (ko>k) the correct Bjorken variable is rather

) k?/s (k(z)/s). In order to switch to this asymmetric case one

(Yzlogl tzlog—) @ should perfor_m a similarity transformation on the gluon
kko'’ A2 Green’s function of the form

and G,— k_>) G, (8)
k<
do [ v\
h(V'Q'k):fﬁ(@) hu(Q,K). ) wherek- = max,ky) andk_ =min(k,ky). The transformation

(8) implies the following change of kerndl,, :
In this paper, we are mostly interested in the properties of
the two-scale Green’s function and of its high-energy expo- @
nents. It was pointed out ifil1] that, in the improved ap- /Cw(k,k')ﬂfci(k'k’)=/Cw(k,k')<—,> . vo=k?,
proach with running coupling, the high-energy limits of k

Green’s function and of the collinear splitting functions are (%a
regulated by different indices, which both originate from the o
frozen-coupling hard Pomeron exponent. We shall define the K (KKkD—K' (KKY=K (KK’ (_ —K'2
index w4(t) by (cf. Sec. IV Q w(KKD =Ko (K K) =Ko (kKD ] 0 mo=k'S,
(9b)
1 t+1,
G(Y;ttg)=———exp ws| —|Y where now ! (IC'w) means the kernel for the upplft-
V2max"Y (lowerk’?) energy-scale choice.

N Our goal is to find a resummed prescription f05(k,k")
+ diffusion corrections, a=as— (6) which takes into account the largeterms and is conS|s,tent
T with renormalization group equations. The kerig)(k,k")

is not scale invariant, and it can be expanded in powers of
in the limit wg(t)Y>1 andt=ty>1, and the indexo.(t) by  the coupling constant as follows:
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/cw<k,k'>=n20[Es<k2>]”“/c;’<k,k'>, (10)

where

11 N

b:l—z—G—NC, (11)

as(k)=p log(K2/A2)

and the coefficient kernel§ ;/(k,k") are now scale invariant,

and additionally carry some dependence. We shall now see

how the renormalization group constraints &}, and k',
determine the collinear behavior &f, .

C. Renormalization group constraints and shift of ¥ poles

It is important to notice that the dependence of the scale

invariant kernelsC,, present in Eq(10), is not negligible
(even for the smallw values being considergdnd follows

from the requirement that collinear singularities have to be

single logarithmic in both regimek>k, and ko>k. If k
>k, it is simplest to discuss the kernel in its forat , Eq.
(9a). A leading-logk? analysis fork>k' shows that its col-
linear singularities are determined by the nonsingular (art
w space A;(w) of the gluon anomalous dimension,

aA(0)= g @) ~ =, 12

and

Ay(w)=—5+0(w) (N=0). (13

In contrast the singular paES/w is accounted for by the
iteration of the BFKL equation itself.
To be precise, one has

aq

k2 t _
- exp| llog k)1

B ;S(kz) ( k2 ) _Al(“))/b

KU (k,k")=

% 1- bES(|<2)|ogF

(14

WheretzlogkzlAéCD, indeed showing single-logarithmic
scaling violations. A similar reasoning, yields the collinear

behavior ofIC'w from Eq. (9b) with the opposite strong or-
dering behavioik’ >k, which is relevant in the regimk,
>Kk.

But £! and IC'w are related taC,, by the w-dependent
similarity transformationg9a), (9b), so that the latter must
have the following collinear structure:

PHYSICAL REVIEW D 68, 114003 (2003

1/k'\® ;S(kz) —Az(w)/b
F(ﬂ (Es(k' 2)) O(k=k)

1 K ) Es(kz) A(w)/b—1
+W<P) (&(k' 2)) ®(k'_k)1'

(15

Ko(kk')=agk?

In this expression one can see that thedependence pro-
vided by Kk./k-)“ is essential, becaude. /k. can be a
large parameter. We also keep thedependence if\;(w),

in order to take into account the full one-loop anomalous
dimension.

By expanding inbag the renormalization group loga-
rithms present in the collinear behavior of E¢s4), (15), we
obtain the leading collinear singularities of the coefficient
kernelsC in Eq. (10). This implies that, iny space, the
corresponding eigenvalues have the following structure:

1-Ai(Ai+b)---[A;+(n—1)b]

n+1

Xn(y)= ”

-

L L(As=b)Ay - [A—nb]

n+1 '

(16)

w

_J’__
(172

where thew dependence oA, is left implicit. Therefore the
position of the y—0(y—1) poles is shifted by—w/2
(+ w/2) for the kernel(15) with symmetrical scale choice
vo=Kkky. Through this shift one is able to resuff] the
higher-ordery poles of the kernel that are due to scale
changing effects.

In fact, the leading and next-to-leading eigenvalues corre-
sponding to this symmetrical choice of scale have the collin-
ear behavior

1 1
Xo(y)=—"—+ ~
’y+§ 1—’y+5
A Afe)-b
x1(y)= R EL
7+E (1—’)/4‘5

17

Now, in order to obtain the NLL coefficiefill] in thezS
expansion one has to expand dnthe termyg () to first
order with subsequent identificatian— agx§~°, and add

the x¢~° terms. The result for the NLL eigenvalue in the
collinear approximation then reads
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0,,—0?4-)(1 menta of the gluons in the real emission part of the kernel.

The origin of this constraint is the requirement that in the

1 1 AL(0) A 0)—b multi-Regge kinematics the virtualities of the exchanged glu-

— 53— 3t ———+ > ons be dominated by their transverse parts. The NLL contri-
2y 2(1=v) 4 (1=v) bution of the resummed kerngl’ was ther{11] constructed
(18 by the requirement that the collinear limit in Ed.7) should

) ) be correctly reproduced, and the exact form of the NL kernel
We note that thev-dependent shift has generated cubic poles(lg) should also be obtained.

1/y%,1/(1~ y)® which seem to imply double logs, 18d./k., The final NLL eigenvalue function proposed ja0,11]
but are actually needed with the choice of sdeig in order  reads
to recover the correct Bjorken variabké /s. The collinear

X3y =] asxs(y)

X } [41-43 which limits the virtualities of the transverse mo-
=0

terms with A;(w) have instead generated double poles " 1 w?
1/%%,1/(1— y)? which correspond to single logs, kigk> . X1(Y)=x2(%)+ 5 Xof 7)—sin277y
The double and cubic poles at=0 andy=1 so obtained
are precisely those of the full NLI(next-to-leading-loy —A1(0)¢'(y) —[A1(0)=b]y' (1~ )
BFKL kernel eigenvalue. In fact Eq18) is a collinear ap- © ©
proximation to the full NLL BFKL kernel eigenvalugs,5] +A1(w)¢/( y+ E) +[A1(w)—b]zp’( 1=yt
which has the following form:
() 4y ()] SR, (22
x1(7)= = 5xa(¥) + xo(¥)]= 7 x0() g LAY Xol Y-
1( = \? cosmy y(1-7y) The first line is the original NLL termy,(y) with the sub-
4 sinmy) 3(1—2y) 1 (1+2y)(3—2y) traction of the cubic poles which come from the changes of

the energy scale and which are resummed by the leading-

N 67 7T_2 (1) + 3 (3)+ 3 order w-dependent kernel21). The second and third lines

36 12/X0\Y 2{ 4 sinmy contain shifted collinear double poles, and finally the last

. line contains the shifted single poles which additionally ap-
S (—yyn p(n+1+y)— (1) pear as an artifact of the resummation procedure.

n=0 (n+y)?
D. w expansion and collinear resummation
+ p(n+2-y)— (1) ) (19) In the present paper we choose a form of the improved
(n+1—1v)? kernel that differs somewhat from that of Rgf1]—quoted

in Egs.(21), (22—by using the possibility of translating part
It turns out that the collinear approximati@t8) above  of the a dependence in Eq10) into additionale depen-
reproduces the exact eigenvali®) up to 7%[11,35 accu-  dence. Actually, it was pointed out {10,11] that, at high
racy whenye]0,1]. This suggests that the collinear terms energies,» is a more useful expansion parameter than

are the dominant contributions in the NLL kernel. 2 ; ; ;
X . .. ag(k), the relation being given roughly by=agx,, as
In the following, we shall normally incorporate the shift noticed already in connection with E6L8).

of y poles in the form The w expansion is a systematic way of solving the ho-
® mogeneous equation

2

w
Xn(=xn| v+ 5| T xnR 1=t 5, (20

(0—K,)F,(k)=0, (23

wherex, (xnr) have onlyy— —w/2 (y—1+ w/2) singu-
larities of the type in Eq(16). In this way the collinear
singularities are single logarithmic in both limiks>k, and

=

where/C,, is given by Eq.(10), by the y representation

d_Yeytf(llbw)xwm, (24)

ko>k, and the energy scale-dependent terms are automati- 5

cally resummed. The modified leading-order eigenvalue that

we adopt has the following structufeompare(17)}: in which x,(v) =X/ (y) satisfies a nonlinear integrodiffer-

ential equation equivalent to E¢R3). The latter is derived
(21) by using the representatidn- — 4., in Eq. (10), and is given
by [11]

w

2

X8’=2t//(1)—<//( y+ %) —t//( 1—y+

in the case of symmetric choice of energy scaje=kk. 5

This form of the kernel was considered previously38,4Q. (7)=x2(y)+ w o ® ) oL
It is obtained from the leading-order BFKL kernel by impos- X«' ¥/~ Xol¥ Xo—bwd, X1 Xo—bwd, X2 '
ing the so-called kinematicalor consistency constraint (25)
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Approximate solutions to Eq25) can be obtained either by factors. In the realistic case with running coupling it is
truncating at, say, NL levdi.e., settingy,= x3=---=0) or  straightforward to check thdt dependence only remains in
by expanding in thew parameter to all orders. The latter the first term of thew expansion(26)

procedure yields the solutidi.0,11]

T 1 5 o)’ o Ar  A-b
)(w('y)Z)(g’('y)—i-wXLlu(y)-l-wz - Xi(y)-i-b(x—i) Xo(Y)=x0t+ o o +---, (3D
xo(7) xo () [ xo(v) X0 Yty l-vts
o)\ 2
X
=15 [+ (26 | | - |
% whereas it cancels out in all remaining subleading terms.

Therefore, in order to incorporate the leading-log collinear
and amounts to replacing the kerrié], by an effective ker-  behavior in the form(31) we can set, for instance,

nel ay (k)K" where K" is scale invariant. The corre-
sponding characteristic functiop,(y) in Eq. (26) is—very Ko=as(0?)KE+ wag(k?)KE+NLL, (32
roughly—obtained by the replacement— w/x, In EQ.
(10), so that indeed» plays the role of a new expansion ) )
parameter. A virtue of the expansié®6) is that it contains ~@s an improved leading kernel. Here we assume that the scale
simple (leading collinear poles only, because the double-for «g in the leading BFKL part is provided by the momen-
poles left iny{ after thew shift are canceled by the denomi- tum of the emitted gluomg=k—k’, as suggested by the
nators. b-dependent part of the NLL eigenvalue in E@9), which

The  expansion is particularly useful for the resumma-corresponds to the kerndd(1/q)2log(g/k?)|req (se€ [5])
tion of the leading collinear singularities of Eq45) and and—viae expansion—to thé term in Eq.(31). A simpli-
(16). Suppose we first takEs frozen(limit b=0). Then, the fied version of Eq(32) without the NLL term and with one

leading poles of Eq(16) have approximately the factorized collinear term(for y—0) was used if43] for a phenomeno-

form logical analysis of the structure functions.
Note that if we take literally thev expansion(26) with
o o o e M) Ai(w) the choice of NLL term(22), then x7/x§ would coincide
Xn=Xo(xc)" xc'= + © @7 Wit x? close to the collinear poles, but would be different in
Yts 1-y+ > detail away from them, and would actually contain spurious

poles at complex values of due to the zeroes of;(y).
(valid for y+ w/2=0 or 1— y+ w/2=0), so that the re- Such poles cancel out if the fulb-expansion serie€6) is
summed behaviofl5) reads summed up, but are present at any finite truncation of the
series, thus implying poor convergence of the solution when-
S o Lo — v — o1 every values close to the spurious poles become important.
K‘”ano asKolaK "= aKg(1—aK) ™" (28) For this reason in this paper we prefer to resum collinear
singularities by the improved kernéB2), which contains
Exactly the same result can be obtained by ¢hexpansion only collinear poles. Furthermore, the NLL term needed to
(26) truncated at the NL level, by settingf’/xo=x2, and ~ complete Eq(32)—to be detailed in the next section—turns

thus considering the kernel out to have only simpl@eading collinear poles, because the
running-coupling terms have been already included in the
kw:gs(KéoJr wK®). (29) g°-scale dependence of the running coupling. Therefore, the
full kernel has the same virtues as Eg6) in the collinear
In fact, the resolvent of the latter is given by limit and, lacking spurious poles, is more suitable for nu-

o merical iteration.
Go=[o—K,] '=(1-ak)™?

X[w—;SKg(l—;SKg))fl]fl, (30) IIl. FORM OF THE RESUMMED KERNEL

. . . A. Next-to-leading coefficient kernel
and is then proportional to Green’s function of the resummed 9

kernel (28). We have still to incorporate in our improved kernel the
In other words, leading-log collinear singularities are exact form of the NLL resulf4,5] in the scheme of the
equivalently incorporated by a string of subleading kernelsexpansion, i.e., Eq32). We choose to start from the leading

[as in EQ.(28)] or by a NL contribution of the order Q?Sw kernel in Eq.(32) which incorporates both the collinear re-

[as in Eq.(29)]*—apart from a redefinition of the impact summation and the running-coupling effects due to the
choice of scaleg®. The full improved kernel then has the

form

That is thew expansion successfully reproduces the collinear e e D2 e
anomalous dimension even in the region where not small. Ko=as(q)Kg+ wag(k2)KZ+ ag(k2)KT, (33

114003-6
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wherek. =maxkk'), k- =min(kk’), andK? is determined The subtractions cancel the triple poletue to change of
below. energy scalgsand the double polefrom the nonsingular
We recall that the Mellin transform of the collinear part Part of the anomalous dimensjoriTherefore the resulting
K¢, defined by kernel}}1 contains at most single poles at=0,1. Equation
(33) together with the eigenvalug2l), (34), and(41) gives
a complete prescription for the resummed model. This new
formulation is identical to the previous expansior{10,11]
near the collinear poles. It has the advantage that it can be
easily transformed into thex(k?) space(it is free of ratios in
v space, such ag;/xg) and avoids the spurious poles that
were present in E¢26).

A(w) [k\© Note that the choice of scale w in the first term in Eq.
T(Z) : (35 (33) is determined by the form of the NLL part. Any change

= of scale in this term would correspond to the change of NLL
One can match the above prescription to the standard kernEMs proportional td. The scale for the collinear parts is
at NLL order by expanding im and in ba. to first order _chosen to matc_h the standard I?GLAP formulatlon whereas

s in the NLL part is purely conventional, and its change would

be of the NNLL (next-to-next-to-leading-logorder. In the
following, in order to study the dependence on renormaliza-
tion scale uncertainties, we introduce the quanity and
generalize Eq(33) as follows:

A A
XE"()’): 1(:)+ 1(w)w ,

_+_
172

(39

+_
Y7o

leads to the expression

Ke(k,K') =

K= a(k®)(K+ oKi+ wK®) + a2(KO+KEM, (36)
where we have defined

Ke=Kg™° Kj=K™°,
K,=[as(x20%) +baZlogx2]K§ + o as(x2k2)

b
run _ ’ 2 ~
+ Xo (7)== 5(xo+ x0), +bzglogxi]K‘c"+E§(Xik2>)Ki’. (42)

(37

by noting that the running-coupling term has the fdrsee
Egs.(89), (90) and the Appendik

B. Form of the kernel in (x,k?) space

We define the resummed kernel i, k?) space as the
(integrated inverse Mellin transform ofC,, :

KM(k,k')= —b (39)

2
q '
Iog—k2 Ko(k,k )] . ok =Jd—w “"ETC » .
Reg (Zy ’ )_ 2’7T| z w w( ’ )1
By substituting the expressidB6) into Eq.(1) we obtain the

relationship with the customary BFKL Green’s function where the real variablecan assume values betweeand 1.

The subtractions of Eq(41) are translated intox(k?)
[w_k"'w]fl:[l_;S(K%_i_ Kg)]fl space to give
X[w—agKot+ aKi+0(a?)}] 72, (39 1 " s 1

2XNY St () ake—k'?

whereKy andK; are LL and NLL w-independent kernels.
The two expressions will match provided we identify

X

12 k2
- log?~— +4 Lip| 1— — ||,
Ko=K§, KI=K,—KJKF+KH—KE", (40 9 2( ki”

and we properly redefine tHso far unspecifiedimpact fac-

A1(0)

tors (see Sec. VL Thus the ternK? in Eq. (40) corresponds
to the customary NLL expressigi9) with subtractions.

_ L 2_ 1,12
X°(7)y(1—y) A1(0)sgr(k®—k’?)

In v space the subtracted NLL eigenvalue function which 1 [K2—k'?
corresponds t&‘f has the following form: X PlOgT
X1(9)=x1(9) = X0V Ixe(M + XA 1= x5"(y) 1 k2K
i T A T2 |
X1\Y 2Xo YW XolY (1= )
b L 2ty o o 44
+§(X6+Xc2))- (41) 5 xo(¥) + xo()]— 2 %2 . (44)

1140083-7



CIAFALONI et al. PHYSICAL REVIEW D 68, 114003 (2003

where the dilogarithm function is defined to be (a) Leading-order(LO) BFKL with running-coupling and

5 consistency constraingEk—k')

Liz(w):z—fwﬂog(l—t), Liy(1)= —. (45)
ot 6 i
f;f dk’Z[ZS(qZ)K(kf(z;k,k')]f(;,k')

In (x,k?) space the symmetric shift is translated into the
symmetric kinematical constraint which has to be imposed

onto the real emission part of the BFKL and also into the 1dZ ) " k N
collinear nonsingular DGLAP terms: _as(q )| f =| +q |© 77
' k X
kz<k'<7 (46) X@(k’—kz)—@(k—q)f(z,k”. (48)

[in the following we denote the imposition of the kinematical

constraint onto the appropnate parts of the kernel by the (b) Nonsingular DGLAP terms with consistency con-

superscript kc, i.e KO (k,k")T. Straint
The final resummed kerndl(z;k,k’) is the sum of three dz «
contributions: J 7[ dK’ zzs(ki)K‘éc(z;k,k’)f<E,k’)
X
1dz - X
f —f dk’ZIC(z;k,k’)f<—,k’> 1dz k’2 K. k X
x Z z J f , — Qg 2)Z—,ng Z—, f —,k’
g (k2) k k z
10z _ _
= J;( ?J' dk'z[a's(qz)KgC(Z; k,k’)"‘as(ki)Kléc(Z;k,k,) 1dZ (k/z)2 dk/2 - kr Kk’ X ,
~ X
+ aZ(K2)K (kK z'k')- (47 (49)
The different terms are as follows. (c) NLL part of the BFKL with subtractions included

1dz 1dz 67 2 1 X 2k? X
1 252(K2 _ 1272/1,2 Zopr2| = 22
j fdk 2(k2)K 4 (k,k’ )f( ) J fdk S(k>)[< )|k,2_k2| f(z,k ) (k,2+k2)f(z,k ”

112 2 [1 1I k2 4 Liy(1-K2/K2)

T3z K ez k)N [T T e
|k72_k2| 1 |k72_k2|

RERE S

1
—4A,(0)sgrk®—k’ 2)( 2l

3 (k'?+K?)? fw dy 1+y\ 1
—|3+| - ——— og +
i~ aacne | o iyt iy et
™ et S o[ % e 6 3J 201 50
Xz 4L 2 ~k 764(3) ) (50)
|
The nonsingular splitting function in the DGLAP terms is 1-z z 11
defined as follows: ng:T+Z(1_Z) + (1_—2) + Eﬁ(l—z) (52
+
~ 1
Pgg=Pgg™ 7 (51

(we only consider purely gluonic channel;=0). Also we
where we take note that the argument of the splitting functienhas to be

114003-8
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shifted in Eq.(49) in order to reproduce the correct collinear By combining Eq.(56) with Eq. (57) we would get the con-
limit when the kinematic constraintkg<k’<k/z) is in-  tribution
cluded. This follows from the inverse Mellin transform of
Eq. (35), a? _
AyP=—=C(0) - asC(w) ¥

Kermt e dw Al(w)(k<)“’ W
Ke(z;K,k") 5 k2> . z ;g
:;[C(O)—C(w){l-l— wA(w)}], (59
1/ kol ke
:_Z(Zk_ P(Zk—). (53) _ )
kS K< < where yM=aJ1+ wA;(w)]/» is the DGLAP anomalous

. . - . dimension in the leading order. The expresdib9) violates
In other words the correct variable in the splitting function ishe momentum sum rula Y@ (w=1)=0.

modified by the ratio of two virtualities in the case when the

. . s We thus consider two possible forms of subtraction. In the
kinematical constraint is included

first scheme A we add and subtract from the NLL part the
term proportional taC(0) in the following way:

k
Z—>ZP< 1 for k'<Kk,

X2(M—=X2(¥)=x1(¥)—C(0)xo(¥)+C(0) x&(7),
(60)

!

k
z—z—<1 for k<k’. (54)

k which leads to the following modification of the kernel in

(x,k?) space
C. Choice of scheme 1
z — _

The prescription formulated above for the kernel eigen- f 7J dk' Y ag(qP)KE(zZ;k k') + as(k2)KE(Z;k k')
value (41) is free of double and cubic poles ip=0 (and x
y=1), however there are still some residual single poles.
These poles come from the constant terms from the expan-
sion of subtractionyg+ x2 aroundy=0 (y=1). Expanding ,
this subtraction aroung=0 one obtains —C(0)Ko(k,k") I}

+a?(K2)[Ky(k,k')+C(0)KE(Z;k,K)

X ,>
E’k . (61

0, 1 0 0 1 772 Al(o) . . . .
—xoxot X&)=—Xol — 272 €+ 5 +A4(0) This scheme satisfies general RG constraints, but contains

the anomalous dimensiof®9) and violates the momentum

sum rule.
+O( 7)}, (55 In the second scheme B we shall consider a modification
which adds the shifted pole to the NLL kernel with the

therefore there appear additional singular terms, w-dependent coefficientl + wA; ()]

w? 1 ~ .~ 1. 1o
& A0 > (56) Xx1(Y)—=x7(y)=x1(y)— ;"‘ry (0)
in the subtracted kerng}? which are not shifted. Further- + ! + ! C(w)

more, the term(56) contributes to the two-loop anomalous
dimension, together with the constant term arising from the
leading kernel as follows

2 1+
7’5 E?’

X[1+ wA(w)]. (62)
" W 1t whAg 0]
Xotoxi=—— ——wC(w)+0|y+5|, (57 Itis straightforward to check that in this case the two-loop
v+ = anomalous dimension vanishesiue to a cancellation be-
2 tween the pole terni62) and the constant term in E7).
Therefore, scheme B satisfies energy-momentum conserva-
where -
tion.
Al(w)  P(l1+w)— (1)
Clw)=———=+ d ey
w w 2We use here a generalization of tg scheme[44]iVe do not
2 try to include the known two-loop expression in tMS scheme
- o . N
C(0)=— —A(0). (58) because it is subject to a scheme change and to kernel ambiguities

6 which are not fully understood yet.
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The change in the resummed kernel ink?) space cor- = dk'2 X
responding to scheme B is obtained by inverse Mellin trans- fz ,—ZEg(k’z)f<—,k’>
form of Eq.(62) and is given by K Kk z
dz — — @ dk?, ok AP
L 7f dk' A as(qP)KE(zZ;k, k') + ag(k2 ) K (Z;k k') —“(kz)z Fas(k )zps2 o fl 5k
21,2\ , Xl 1d_z (|</z)2dk’2—2 o K K"\ [x
+C¥s(k>)K1(k,k )}f(z,k) Lz +fk2 Fas(k )Z?SZ Z? f E,k , (63
2 dk'? X
x{ c(0) f" —Eg(kz)f(—,k’) . . .
0o k2 z with the functionS,(z) given by
- 132+ 241 541+ 247%+722(1+3 1441 11| !
Sz(Z)—m + 24m°+ 7] — 541+ 247w+ 722(1+ 32) ] — o —1+—Jlog| -

1 1
+12[Iog(1—z)[—1—22{23+z(—15+82)}—12(1+z)|og(1—z)]+122|og _1+E Iog(;)
+27[1+2z(—21+52)— 6 log(1—2z) ]log(z) — 6(— 1+ 2z)log?(2) | + 144 — 1+ 2)

Li Yool 21 z T ad1+ 22y 64
X1 Lix(z)+ Slog| — [log 1-22 6| 41+27)Li(1-2) . (64)

Note that whatever scheme we chood€, contains fixed the Pomeron is suppressed as expbas), so that one
higher-twist poles(at y=—-1,-2,... andy=2,3,...), can define a purely perturbative Green’s functions and inves-
which are not shifted. In the calculations that follow we keeptigate the diffusion corrections to the hard Pomeron expo-
these poles unshifted independently of the choice of energyent. In the following, we use thie expansion up to second
scale. This means that calculations of Green’s function carorder, so as to obtain the exponeni(t) and the additional
ried out with different energy-scale choices will formally dif- parameters occurring in the diffusion corrections predicted
fer at NNLL level. In practice, however, we find that this by our improved smalk equation. Furthermore, we analyze
energy-scale dependence is very small. the perturbative-nonperturbative interface numerically so as

to estimate, as a function of |&f, the critical rapidity be-
yond which the nonperturbative Pomeron takes over.
IV. CHARACTERISTIC FEATURES OF THE RESUMMED Since the perturbative rapidity range turns out to be con-
GREEN'S FUNCTION siderably extended with respect to LL expectations, we shall
be able to extract numerically the full perturbative Green’s

We shall first investigate the features of the two—scalef . . . :
. unction and among other things its high-energy exponent
Green’s function G(Y;k? k3) based on the form of the re- and diffusion correc%ions o it g g 9y exp

summed kernel just proposed. In the perturbative regime
k2, k6> Adcp with wg(k?)Y large we have both perturbative
contributions, leading to the hard Pomeron exponent, and } , ) o
nonperturbative ones, due to the asymptotic Pomeron, which L&t us first consider the features@{Y:t,,t,) in the limit

is sensitive to the strong-coupling region. It was noticed inof frozen couplinges= a(k3), i.e.,b=0. In such a case the
[21,22 that the hard Pomeron dominates for energies belovkernel K, becomes scale invariant, but the solution to Eq.
a certain thresholds(k?) Y< 1/bw; beyond which there is a  (3) is still nontrivial, due to thew dependence which com-
tunneling transition to the nonperturbative regime. It has als@!icates theY evolution, it no longer being purely diffusive.

been noticed23] that in the formal limitb—0 with ag(k?) M fact: the characteristic function becomes

A. Frozen-coupling features

_ _ o
as)(w(y,as)=aS(XS’—I—w)(é")—i-as)(‘f, (65
3In Secs. IV and V we remove for simplicity thesymbols used and the important values, corresponding to the pole of the
before to denote RGI quantities in our present scheme. resolvent, are defined by
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FIG. 1. wg as a function ofxg for different subtraction schemes
together with the original result for the expansion. The calcula-

tion is done in the fixed-coupling case.

0= agx,(7,as), (66)

whose solution at fixeds we denote by

s Xef w-—expansion

B T e et

0 05 1 15 2

Y

PHYSICAL REVIEW D68, 114003 (2003

w=axxP(y,as), (67)

the superscript0) referring to theb=0 limit. The effective
characteristic functiori67) so defined has the interpretation
of a BFKL-type eigenvalue reproducing the pdigf). As
such, it can be compared, at least for frozen coupling, to the
analogous quantity defined in the duality approach of Ref.
[12]. It provides information about the hard Pomeron expo-
nent and the diffusion coefficie@= x;/2x,. In Fig. 1 we
compare the results for the exponesnt as a function ofag
calculated in the case of fixed coupling for schemes A, B and
the original w-expansion method presented|[it0,11. The
critical exponent is obtained by evaluating the effective ker-
nel eigenvalue at the minimum

0= axQ(ym,as). (68)

All resummed results for the intercept are significantly re-
duced in comparison with the LL result and they all give

stable predictions even for large values @f. As we see
from the plot, the changes of resummation procedure as well
as subtraction scheme do not significantly influence the val-
ues of wg. They give at most 20% change at the highest
as=0.35. In Fig. 2 we show the effective kernel eigenvalue
as a function ofy. We have considered here the asymmetric

Ts Xeff Scheme B

Y

0 05 1 15 2

FIG. 2. asxen( 7, <) as a function ofy in different schemes for different values @f : as= 0.1 (dash-dotted ling as=0.2 (solid line),
as=0.3 (dashed ling The calculation is done in the fixed-coupling case.
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,gaus MR s e e B B. Numerical methods for solution
g L ] In this section we are going to investigate in detail the
4 e N shape of the solutions to the integral equatiaith the re-
I 1 summed kernel given in Secs. Il B and Il C. To this aim we
12 - - | solve numerically the following integral equatifn.
L Y Kmax
1+ G(Y;k,k0)=G(°)(k,k0)(Y)+J dyf dk’2
L 0 Kmin
08 - XK(Y=yik K )Gy ko), (70)
06 [ with [so as to have the same normalization as in By,
[ m-expansion - o K
0.4 scheme A , ZwkgG(o)(k,k0)=5 |ng— . (7D
scheme B _— 0
0.2 Fixed o, i We use the method of iterations and discretized kernel simi-
I s ] lar to that introduced ifi33]. More precisely in our problem
P A B N I R [see Eq.(47)] we can rewrite the kernel in the following
0 0.05 0.1 0.15 0.2 0.25 0.3 way:
U“s
FIG. 3. x"(¥m, ) as a function ofx for two different subtrac- K(Y-yikk')= 20:4 KoY =y k,K")

tion models and the-expansion scheme.

o shift, which corresponds to the upper energy-scale choice :Z, Ka(k,K)Po(Y=y)

vo=Kk>2. In this case it is easy to show that closeyte 0 the
effective eigenvalues from scheme B and the originax- k k'’
pansion[11] satisfy the momentum sum rule. This is illus- Y—y—max( IOQP'IOQI) )
trated in Fig. 2 by the fact thakcyes(y=0,a5)=1 for all

values ofES in these schemes. This can be seen by expand- (72)

ing aroundy=0, where we have where the indexa enumerates different terms in E(47)
(thatis, LL BFKL, LL DGLAP, and the different components
of NLL BFKL with subtractions, each of which factorize

— 1+ wAi(w) . o .
Xol Vrtg) F————— (69) into transverse and longitudinal part3, are the singular
Y and nonsingular pieces of the splitting function as well as the
subtraction termsS,(x). The additional®y stands for the

which for y=0 giveswA;(w)=—1, which has the solution kinematical constrfamt, applied to all terms that in Mellin
space have aw shift.

=1. Note that a second fixed intersection point of curves \ . : . .
@ P To find the solution numerically one introduces a grid in

ith diff =2. This i f T . -
s o soreaeecit o™ rapety Y and logarim of momentur- ogky i
ay 9 0 small spacingsAY and A, respectively. The solution is

>Q, because of a behavior similar to H§9) around the then calculated at the grid points. Linear interpolation gives

shifted pole k w—y=0. This intersection has no counter- o 165 of the solution in the points between the nodes of
part in the approach of Reff12]. the grid

We also examine the second derivatiyg(y,as) which
controls the diffusion properties of the smalkequation, Fig.
3. As we see from the plot, the second derivative is more G(Y;k,ko)in 2 ¢i(Y) i (K)G(Yi ki ko), (73
model dependent than the intercept, though the two mod-
els A and B presented in this paper give quite similar anwhere ¢;(Y) and ;(k) are the appropriate basis functions

swers. The value of the second derivative will influence thefor linear interpolation. To find the solution f@ Eq. (70) is
diffusion corrections to the hard Pomeron, as we shall see in

Sec. IV C, and also the transition of the solution to the non-

perturbative regime. SAn interesting iterative method of solution to the NLL BFKL
equation has been recently propo§48]. By using this method it is
possible to solve the equation directly ir,k) space and keep the
4Such an intersection occurs in scheme A dlshere momentum  full angular dependence.
conservation is not satisfipés an artifact of the collision of the ~ ®Here we change slightly the notation in the first argumentof
shifted pole aty=1+ w with the unshifted one ay=2. writing log 1/z=Y —y instead ofz

X0
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solved by a method of evolution in rapidity. In a first step
one takes G(Yy=0:Ky ko)=G(ky ko) and estimates
G(Yq1;km, ko) at the next point of the gridy,;=AY, using
the integral Eq.(70). This gives a first approximated value
for G(Y1;km,Kp). This function is then again used in Eq.

(70) to calculate the next approximation. Usually a few itera-

tions are sufficient to find an accurate answtgpically 5
—8). After obtainingG(Y;;k.,,Kkg) with the desired accu-

racy one proceeds to calculate the solution on the next point

of the gridY,=2AY and so on. The procedure is then re-
peated for all points of the grid in rapidity,=nAY.

The procedure presented above requires numerous evalu-

ations of the right-hand side of E¢70). Given the fact that
we have two convolutions iy andk’, with the complicated
kernel IC, such a procedure can be quite time consuming.

In order to speed up the calculation one can discretize in

k' the kernelK, and iny the functionsP, using the basis
functions in the following form:

i1 [ k2K, K1k,

Pi2)= f dyPu(Yn=y) y(y), (74
where we have used the fact that the functiéhsdepend
only on the differenc&,,—y which—together with the linear
interpolation—results in a one-dimensional vedinstead
of a matrix. One can simplify the treatment of tBe; func-
tion in Eqg. (72) by using the same grid spacing ynand in
logk, Ay=Ar (or for energy-scale choiceru=k?, Ay
=2A 7). After the discretization procedure, the convolution
on the right-hand side in Eq70) [and using(72)] can be
then represented as a multiplication as follows:

| dy[ ko yikn kG ko)

imax n—|m—il

% & F

(@)

) mi KEIG(y; ki ko), (75)

so that in practice all the integrations present in &) are
performed once before the evolution, and then only the mul
tiplications of kernel matrices and gluon Green’s function
vectors are done during the iterations.

Of course, in a numerical analysis one is not able to usePure” NLL evolution: one, labeled

exact distributions—in particular, for thé function ink as

an initial condition, see Ed3). In practice what is done is to
set to 1A7 one point on the fine grid, i.e.,
27k3G O (ki ko) = (1/A 7) 6y, WhereA 7 is the grid spac-
ing in logk. The resulting Green’s function will be finite in
the Y=0 limit but dependent on the size of the grid spacing.
We illustrate this effect in the upper set of curves of Fig. 4,
where we have solved E@70) with the kernel in LL ap-
proximation with three different grid spacings\+

PHYSICAL REVIEW D68, 114003 (2003

100 : .
- AT =0.05 A
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Y

FIG. 4. Gluon Green'’s function as a function of rapidityfor
three different grid spacings~=0.05,0.1,0.2. LL evolution is used
with a fixed coupling,as=0.2; e=0.2.

one convolutes the gluon Green'’s function with some smooth
impact factor. We will therefore consider from now on a
slightly asymmetric choice of scale§(Y;tg,to+ €) with €
=0.2. In the lower set of curves of Fig. 4 one sees that the
dependence on the grid spacing in this case is relatively
small. For the remaining plots in this paper we have used
A7=0.1 or smaller.

C. Basic features of Green’s function

Let us now discuss the properties of the gluon Green’s
function obtained with the method discussed above. We shall
use a one-loop coupling with;=4, normalized such that
as(9 GeV?)=0.244] The coupling is cutoff at scal
=0.74 GeV—a detailed analysis of the sensitivity to this
regularization is postponed to Sec. IV D. In the kernel, for
the time being we consider;=0, since our single-channel
RGI approach does not properly account for the quark sector
(however we will see below that simply varying in the
kernel has only a small effect

Results will be given for LL evolutiofiwith a4(q?)]; our
two resummation schemes, A and B; and two variants of
“NLL a4(g?),” where
the kernel isaq(q?)Ko+ a2(k2)KE=0, with K= corre-
sponding to Eq(19) without the first term in square brack-
ets, and another, labeled “NLkg(k?),” where the kernel is
ag(k?)Ko+ a?(k?)K,, andK; corresponds to Eq. 19 in full.

Figure 5 shows Green’s functiorS(Y;kq+ €,kg) as a
function of rapidityY and Fig. 6 show&k,G(Y;k,kg) as a
function of k for Y=10. To aid legibility, each figure has
been separated into two plots, the left-hand @eshowing

=0.05,0.1,0.2. One might be worried by the apparently sub=—————

stantial dependence on the choice of the grid spading

"As one obtains, roughly, by runningS(M§)=O.118 down to

However this is just a consequence of the grid-dependers Ge\?, taking into account flavor thresholds and the two-lgdp

discretization of the initiald function and disappears when

function.
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FIG. 5. Gluon Green’s functio(Y;kq+ €,kp) as a function of rapidity: (a) for LL and the two RGI schemes A and Bj) for scheme
B and two variants of pure NLL evolution. The parametersigre 20 GeV ande=0.2.

LL and schemes A and B, while the right-hand ¢heshows  energy growth does not start until a rapidity of about 4. This
the two pure NLL curves and scheme B. We choose a modss partly due to the slow opening of smallphase spacgt7]
erately high value for the initial transverse scale,  implicit in our w-shifting procedure. Both of these observa-
=20 GeV, ag(ky)=0.15, so as to be able to focus on thetions are relevant to the problem of trying to reconcile theo-
perturbative aspects of the problgmonperturbative effects retical predictions with the lack of experimental evidence for
are formally suppressed by powersA)F/kS). Such a scale a strong high-energy growth of cross sections at today’s en-
has been used for BFKL dijet studies at the Tevafdsl. ergies. The small difference between the two RGI resumma-
A number of features of Fig. 5a are worth commenting.tion schemes, A and B, is in accord with their slightly differ-
Most noticeable is the significant reduction in the high-ent wg values(cf. Fig. 1).
energy growth of Green’s function when going from LL evo- As regards the transverse momentum dependence of
lution to our resummed schemes A and B. This is as expecte@reen’s function, Fig. 6a, there are a number of further dif-
from the discussion of high-energy exponents, Fig. 1. Alsderences between the LL and RGI results. The higher overall
important is the fact that for the RGI schemes the high-normalization for LL evolution is just a consequence of a

o LL N LL as(qi) e
10 scheme A -~~~ 1 10 ¢ NLL o(k") ;
_scheme B scheme B ———
= (a) 3
o x
5 1 % _
= &
Xo f
= X
& &
ko = 20 GeV \ L ko=20GeV O\,
Y =10 . L Y=10 P
1 10 100 1000 1 10 100 1000
<[GoV] K [GeV]

FIG. 6. Gluon Green’s function 2kk,G(Y;k,kp) at rapidityY=10 as a function of the transverse scll@he sets of kernels used in
plots (a) and (b) are the same as in Fig. 5.
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largerwg value. But one also sees that the lakgiils for the ~ When x4(y) is symmetric iny—1— v, as is the case if we
resummed models are substantially steeper than in the Luse a4(g?) in the LL term (or as can be achieved with the

case. This can be understood by comparing the diffusion conodified Mellin transform suggested 4] and used if7]),

efficients in these models: the RGI models are characterize — 1. . .
) thenagy(5 +ivg) is real, having a value of about 0.2. One
by a smallery 4 and, as a consequence, they have less dif-

fusion than in the LL case. As was the case for Yngepen-  therefore expects to find a high-energy growth of Green's
dence, the two RGI schemes give very similar results, herfunction that numerically is not so different from that with
differing essentially only in the normalization. out RGI resummed schemes. This is precisely what is ob-
Some comments are due concerning the structure at logerved in Fig. 5b for the NLlxg(g?) result.

k: there, there is a component of the evolution that is sensi- On the other hand ify;(y) is not symmetric iny«—1

tive to the larger couplingas(1 GeV?)=0.4. For the LL  —y theny will be complex at the saddle points. This is the
case the resulting stronger evolutitthan atk3) overcom- case for the NLLag(k?) kernel and the change in sign of
pensates the suppression due to the large ratio of skglks  Green’s function around =18 can be understood as a direct

leading to the absence of a decreasing lovail. For the consequence of a zero of Eq7) When;SYj[)((%-Hvo)]
RGI schemes the difference betwaegpvalues at 1 GeV and

ko is not sufficient to bring about this overcompensation for
Y =10, so there still is a decreasing tail for smalHowever
the results are sensitive to the fact that at lakgehe differ-
ence betweemg values for the two schemes becomes non
negligible. This is what causes the IdwGreen’s function to
be almost three times larger for scheme A than scheme B
should of course be kept in mind that all the properties at lo
k are strongly dependent on the particular choice of infrare
regularization of the coupling.

Let us now examine the right-hand plots of Figs. 5 and 6

The oscillatory behavior of Eq.77) also becomes an is-

sue wherk#Kkg, as is visible in Fig. &). For NLL evolution

with a¢(g?) the change of sign intervenes only for ratios of

k/k, that are fairly small or large from a phenomenological
oint of view (at least for Mueller-Navelet or* y* -type

'\ABrocesses For evolution witha(k?) the situation is more

(gramatic because of the sum of terms in the argument of the
osine of Eq(77).

So our overall conclusions regarding NLL evolution is
which show results with pure NLL evolution. We recall that ’Eggt,dvi\;fhellree:]r; ??gﬁlngzfr\ﬁ?ﬁ Igg?yn?el\tlﬁ Orgi’ UIitnS tg;]:rg earrael r:,? t
the original motivation fo_r introducing RGI resummation_oﬁers only limited predictive power, becausé of the strong
schemes was the large size of the NLL corrections, and, IIgensitivity to the details of the formulation. Though here we

Fhartﬁlilfr{ the faﬁt that Iﬁr moderate valtijegt Sl chL:ijmqqave just discussed renormalization scale sensitivity, we note
€ erms change the sign ai(y) and its second de- that changing the energy scalg from saykk, to k? also

rivative aroundy=1/2, with the situation being even worse leads to a Green'’s function that oscillates as a functioM, of

in the collinear region. Nevertheless, as was pointed out b)éince once again the characteristic function is asymmetric.
Ross[7], because of the change of signgf(3), the usual Afinal point relating to Figs. 5 and 6 concerns the overall
saddle point aty=3 is replaced by two saddle points off the normalization of the results. One sees that at he LL
real axis, aty=1/2+ivy and 1/2-ivy , and it is the value of and NLL results all have similar normalizations, while the
x at these new saddle points that determines the high-enerd3Gl results are slightly lower. This is because thalepen-

behavior of the(fixed-coupling NLL Green’s function: dence is associated with an implicit NLO impact factor. This
12 of course has to be taken into account should one wish to use
) B dy V() k2 the RGI Green’s function in conjunction with any NLO im-
WkkoG(Y,k,ko)—f o4ic e K2 pact factor calculation, as is discussed in detail in Sec. VI. To

close this section we present brief resultsrgnand renor-
_ 2\ %o malization scale dependence for the RGI schemes.
~ asYX(l’Z“VO)(—z) Our RGI approach has been constructed for a purely glu-
ko onic channel and only scheme B satisfies the momentum sum
o\ v ru_Ie in thlis case. For phenom_enolpgical purposes one would
+easvx(1/2iyg)(k_) (76) wish to include quarks and in Fig. 7 we present the two
: schemes in the cases whep=0 andn;=4 in the NLL
kernel. As is clear from the plot, having;#0 does not
Since x(y)=x*(y*) this gives change the result in a significant way. We note that the full
inclusion of quarks in a RG-consistent manner is a nontrivial
operation in this framework especially if one is to construct

0

mkkoG(Y; K, Ko) ~exp{ Esvm{ pY

§+'V° resummed quark anomalous dimensions that satisfy the mo-
mentum sum rules.
k2 k2 Finally, we show the dependence of the gluon Green’s
—3[1’0]'09—2] CO% Rl vollog— function on the renormalization scale choice E4R). We
Ko Ko have varied the scalg, in the range 1/Z xi<2. The results
o 1 of the calculation are presented in Fig. 8 where the yellow
+aYJ| x EHVO) } (77 bands correspond to the renormalization scale variation for
two resummation schemes.
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<9 LR A bative Pomeron. The leftover perturbative Green’s function
? 8 can then be expanded min the form
> 7
Eo6 G(Y;to,to) = GO(Y;to,to)exd boPY + O(b2a®Y?)]
S s
@ X[1+O(b%adY?)], (79
S 4
3 which shows a shift ofos of the order ofba?, as well as
diffusion corrections of the order ofbgg)?(w<Y)? and
(bag)?(wsY)3. The purpose of this section is to compute
2 oV [defined by Eq(78)] and theY? terms both analytically
and numerically. Further corrections te, of the order of
bzag appear as subleading contributions in this expansion
and are probably not really meaningful, given the compex
0; I dependence of the exponent involving the parambtxirY
0.8 [23].
0.7 We start by expanding thes dependence of the kernel
0.6 r around the frozen-coupling limit up t(b?) by setting, for
0.5 ;- instance, at scalg?,

2 2
) ] as(q )_as(ko)
FIG. 7. Gluon Green'’s functio(Y;Kkg,ky+ €) as a function of

rapidity Y for two different resummation schemésB in the n; 5 q2 5 3
=0,4 cases. Parameter0.,. =—baj |09F +(t—tp) | +bay
D. b expansion of intercept and of diffusion coefficient ) )
. q q
In order to properly evaluate the hard Pomeron intercept X ( Iogz—2+2(t—t0)log—2+(t—t0)2>, (79
wg in the case with running coupling it is necessary to con- k k

trol the corrections with respect to the frozen-coupling limit. o
To this end we shall apply tHeexpansion method presented where ay= as(kg) throughout this section. We then define

in [23]. the kernel with frozen coupling (=K, |, .., and the cor-
According to this method, we use the formal linbit-0 rection kernelA as °
[with ag(ty) kept fixed in order to suppress the nonpertur-
e e o e R A A(t,t)=K,— KO=K,— ag(K§+ oK) — aZK?,
= (80)
L4
= =Ag(t—t")+(tg—t)As(t—t")
%’ +(tg—1)2A,(t—t'), (81)
&
) where A;’'s are scale invariant, and are obtained from the
- definition (47) by picking up the relevant terms in the
running-coupling expansions of ty@9). We obtain
2 2
Ag= —bad| Iogl K2+ log = (wK ¥+ 2agK2) | + O(b2ad
0= ag ng 0 ng(w ot 2a0K?) (b%ay),
1
0.9 (823
0.8 B
0.7 A =bad[K&+ wK?+2aoK$ ]+ O(b%ad)
0.6 - J
o Lo/t =baf——K(ag;k? k§) + O(b%ag), (82b)
0 2 4 6 8 10 12 14 0
Y
_Rh2,3 %) ® o
FIG. 8. Gluon Green'’s functiofs(Y;kq,ko+ €) as a function of Az=b%ag[(Kg+ wKS)+3aoKT]. (829

rapidity Y for two different resummation models,B. The bands
represent the uncertainty due to a variation of the renormalizatioow we evaluate Green’s functids,(t,to) in w space up to
scale in the range 1ﬁ2xi<2. Parametee=0.2,. second order irb, with the purpose of deriving the leading
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diffusion term§ ~b?Y? and the intercept shift ab(b); to W A S
this purpose, expansiai82) is sufficient. We have bog'=|A0(2)+541(3) I, (88)

=G0 (1) @4 ...
G=GT+GH+ G- -, 3 \here actuallyaj(2)=0, because\;(y) is symmetric for

with yel-y.
The eigenvalue functiod(y) is found from the defini-

GO=[—KO] 1, (843 tion in Eq. (823 by noting that the generalized regularized
@ kernel
GW=gOAGO A
: <q2> (k< L) (89)
dy 2] (ko) ~xe'd
= | —L a(y=12)(t—tg)(0) 7q-\ k >
f > € G ()
X[AgG O+ (A,G@) +(A,G©)](y), has characteristic function X[L}‘](y-l— a)/2)+)(g‘](1—'y
+ w/2), where
(84b
(2) (0) (1) A 1 1 2.1 3
G¥=GAG XM ()= S exg Mxo(9) + 50 2%x0(1) +O) | -1,
_ f %e(v—lm)(t—to)(;(o)(,},) (90)
i
and the subscrigt (R) refers to the projection with left-hand
X[AGM+(A;GM)" +(A,GM) (), (840  (right-hand poles. By proper expansion i we obtain(see
the Appendix
where, inside the integrals, we have used the same notation
for the kernels and theiy-space eigenvalues. We restrict our 1 ag w w
attention tot=t, and perform partial integrations to obtain ~ Ag(y)+ EAi(?’): - Tl[xg],_ v+ 5]~ oxy | v+ 5
dy 1
(1) - | == T 0)2 ~
G (‘0*‘0)‘fzm{ AO*zAl)G( P44, —2aox1m>+[w1—y]], (o)
1 '
X E(G<0>2)”—(G<°> )2H and finally
dv | Ag+EAI+LEAY 1 A9 1+w (1t oe ~o[1
=f—7 0 271 872 - 2Xo , wgl):_a(z) [X(Z)]L 2 T WXL 2 —2agx7L 2 J
2m Lo=x1 3lo—xJT
(85) +o (92

where they-variable dependence is understoodiils, G's, We note that the expressions of the left projections(aee
and x's. Up to this order, the maximal energy dependenceghe Appendix

comes from the cubic pole, which yields-ab?a3Y? depen-

dence. The double pole yields instead termbaSY which XoL(yY)=y(1)— (), (93
provide theO(b) correction tows. By noting that

2
O o [dy do e gen™ D) =2 xo ()P =o' (1) + (94)
© (Y’to’to)_fmﬁ w—Xff)(y)_\/47TDwS(ch'
(86) Ay()
Xe(¥)= ) (95
_ (0),1y7—1 Y
J=[1-3d,x, (z)]wwgon (87)

and y;.(y), depending on the resummation scheme, is
and that a squared Jacobian fac#roccurs inG®), we  quoted in the Appendix.
obtain theO(b) correction While the ~b?Y? terms exponentiatd w, and provide a
further normalization correctiof23], the ~b?Y? terms pro-
vide the leading diffusion corrections and occur Gi2.
8In principle all diffusion correction terms can be derived using Considering Eq(84¢) for t=t, and performing partial inte-
this method. grations, we obtain ab(b?),
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(2) dy 0 V1m0 . 0.04
G, (to,tg)= 2_7-ri[A°G( )—A,G'1GO[A,G© : |
(0) 0.035 [ Dyrp — Oy Y? term B

+(4,G™)'] : |

d')’ (0)\2 0y ) ) 0.03 } {

= | 57 [(AG™)*=A,G77(4,GT) ]G, : 7

0.025 [ scheme A ---n-rrevenn- ]

(96)

scheme B

This result contains up to a fifth-order pole, which can be ©.02 -
reduced to a quartic one by partial integration, to yield i

2 o 0.015 —

d dw 1 Alx i
f ﬁe“sxeﬁ(v)Y 0.005 - 7
Y3X D (N 010giex Dy, as(k§)1? 0 bl S
"2 [1 dox ()] Y

FIG. 9. The difference between tlhg , coefficient as from Eq.
) ( ) = n 1 (100 and the leading diffusion term calculated from E§7) for
=G™(Y; toio) [5t (to) ] asxen(2)- resummed kernel in schemegdashed lingand B(solid line). The
b expansion has been performed around the fixed-coupling value
97 ak®)=0.1.

The last factor provides the leading diffusion exponent we
were looking for. Note that the Jacobian facirhas been wei( Y;to) =
reabsorbed in th&, derivative ofwg and in the curvature of

the effective characteristic function: xer(3)  also as a series i,

=IX" ()| w=a Her . This particular form for the generaliza- d

tion of the LO Y3 diffusion term is quite natural when one 4, _(Y;tg)= > blweri= >, b —<[logG(Y;tyity)]; .
considers the physical mechanism at play: diffusion causes a i=0 N dy

symmetric spread over a logarithmic range of transverse (100
scales of the o’rd_er of angﬁY'((;l)-he exp?nent of ”}g’) evolu- |y practice, the power series is determined numerically by
tion at a scale’ is given by wg™(to) +(t" —to) dy s '(to).  carrying out the evolution with a generalizéddependent

In a first-order expansion of the evolution there is a cancelgoupling ol (k?),
lation between components above and belgwBut in a

d
dYIog G(Y;tg:to), (99

second-order expansion of the evolution, there are correc- ay(k3)

tions from above and beloty that enter with the same sign, Z[sb](kz) (101
v O VT2 Thie i oreci 1+ (t—tg)bay(k))

~[+ asxeﬁYatows (tg)Y]*. This is precisely the form of

Eq. (97). using several values di=isb (typically sb=0.01 andi
The analytical treatment given above has its counterpaitanges from—3 to 3). In the formal limit of smallbb, the

in the numerical extraction of the running-coupling diffusion knowledge of log(Y;ty;t,) for n values ofb allows one to

coefficients presented if23]. We illustrate here that the determine the power series up to the ordeb®f?.

method can also be applied to a more general case with an |n Fig. 9 we test the analytical prediction for the leading

w-dependent resummed NLL BFKL kernel. diffusion term~Y? as given by Eq(97). We show on this
Formally we write the logarithm of Green’s function as a plot the termw, , from expansior(100) with the subtracted

power series irb, ayY? term calculated for schemes A and B with scal¢q?)
as a function of rapidityY. We clearly see that after the
logG(Y:tity)= >, bi[logG(Y:t:ty)]:, (98) subtraction there is only a Iine_ar d;ependence left, whic_:h sig-
i=0 nals presence of the subleadiagY< terms. The numerical
value of the diffusion terms is much lower in the resummed
where the expansion is defined such thafty) (or option-  models than in the LL BFKL equation. For example, the
ally some other scalés kept independent df. We can then coefficient of the leading-Y? term, see Eq(97) in the LL
write the effective exponent BFKL case is about eight times larger than the one in the
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FIG. 10. w1 from Eq. (100 as a function of the coupling
calculated in schemes Adashed and B (solid). Lines represent
analytical evaluation based on E§2), the points correspond to the
numerical extraction.

FIG. 11. Sum of the first two terms from E@.00 as a function
of the couplinga, calculated in schemes @asheg and B (solid).

present level of accuracy and are perhaps not really mean-

) ) . ingful, given the complex’ dependence of Eq78).
resummed models. As a consequence the regime in which Note that we do not compare directly with our earlier

the solution is perturbative is much broader in the case of th?esults for g [11], because they are based on a different
. . s I}

NLL BFKL. One .ﬁag sg_e this bg studying ;he t_:lo_ntoEr PlOtS yefinition (the saddle point of an effective characteristic

in Fig. 14, as will be discussed in more detail in the nextq,qtior which is less directly related to Green’s function.

S(chtlon.hln paruclulqr, one fmds,. '.:'g' (B that thebreg|on Nevertheless, the present results are consistent with the pre-
where the LL solution is insensitive to nonperturbative re-;io s ones to within NNLL uncertainties.

sults is much smaller than in Figs. (b4,(c),(d) with the re-
summed evolution. This result is quite encouraging as far as _ o _
the phenomenological predictions for high-energy processes E. Nonperturbative uncertainties on Green'’s function

with two hard scales are concerned. It is well appreciated nowadays that, even with two hard
2In principle, one could extend our procedure to extract theycgles, the ultrahigh-energy behavior of the BFKL Green's
Y* terms too, as has been done in R&| for the case of  fynction is entirely determined by nonperturbative physics. It
the LL BFKL with running-coupling. However, the analyti- s only in an intermediate high-energy regime where one is
cal calculation here would be quite involved, since thesgple to make reliable perturbative predictii$—18,22.
terms originate from a number of different sources, i.e., they  Traditionally, one estimates nonperturbative uncertainties
come both from Eqs(85) and (96), and moreover they mix  on BFKL evolution by examining the sensitivity to variations
with the terms coming from the normalization. In practice of the infrared regularization of the coupling. More recently
theseY? terms are expected to be rather small and not age showed that a purely perturbative answer can be defined
relevant for phenomenology as the leadirijterms. in the context of theb expansior{23], with the highest per-
We restrict therefore ourselves to showing only @)  turbatively accessible rapidity being determined by the
shift to ws given by the analytical expression E®2) and  preakdown of convergence of this expansion. In this section
compared with the numerical calculation, see Fig. 10. Therge shall examine both approaches.

is clearly a perfect agreement between the two methods, ex- Let us consider a variety of infrare@R) regularizations

hibiting the leadingxj behavior ofw{". of the coupling. Mostly we shall use cutoff regularizations
Finally, we show in Fig. 11 our numerical evaluation of o .
the sum of the first two terms abey, EQ. (100, that is, ay(?)=al(q?)O(q—k), (102

0@ +bw, as a function of the coupling constamj. The

correction due to the running of the coupling reduces SOmeyi, three different values d. It will also be instructive to
what the value of the intercept, as compared with the fixedg, 2 mine a “freezing” regularization

coupling caself=0), which is shown in Fig. 1. The plot in

Fig. 11 summarizes our present understandingogf be- — ot .

cause the higher-order termsb2a?, ... are beyond our as(q7)=as (maxq,k?)). (103
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TABLE 1. Our set of infrared regularizations of the coupling, renormalization-scale uncertainty. The discussion that fol-
together with the resulting asymptotic “Pomeron” behavior and  |ows will concentrate on the NL.results, however all the

values for LL with running couplingrs(q) and NLLg evolution. plots of Fig. 12 also include LL results, so as to illustrate the
— — , dramatically different IR sensitivity between LL and NiL

k (GeV) ay(k?) Asymptotic growth wp (LL) wp (NLLg) evolution.

1.00 (cutoff)  0.39 expiorY) 0.44 0.32 So let us first consider the three cutoff regularizations
0.74(cutoffy  0.46 expiopY) 0.49 0.35 (NLLg). One sees that up tg=230 they give very similar
0.50 (cutoffy  0.62 expiorY) 058 0.41 results. Beyond this point, tunneling occufer the lowest
0.74(frozen  0.46 Y~ 3exp(wpY) 1.28 0.46 cutoff), and the three curves start to diverge, indicating that

according to this prescription Green’s function is no longer
under perturbative control.
We believe this freezing regularization to be somewhat less \When instead one examines the curve with an infrared-
physical, since it allows diffusion to arbitrarily low scales in frozen coupling, one finds a result that at first sight appears
the infrared, in contradiction with confinement. However for paradoxical: Green’s function is somewhat lower than with a
the purposes of our general discussion it will be helpful to.ioff regularization, over a wide range ¥f in which the
have it too at our disposal. cutoff regularization looks relatively insensitive to NP ef-
In all casesn? " is the perturbative one-loop coupling with fects. Naively, one might have expected to see little differ-
n{=4, chosen such that,(9 Ge\?)=0.244, and no cutoff ence until the tunneling point. Our understanding of the ob-

is placed on exchanged gluon virtualities. The complete Se&ferved behavior is that it is connected with the usegt?)

of IR regqlarizations is summgrized in Table |, together with;, Eq. (48), which causes the regularization of the coupling
the resulting Pomeron properties, both for LL and resummag, atfect, among other things, the virtual corrections of the

tiorjl_r?cheme B .(NII‘DlB) evolutifon. h ish BFKL equation. Having a larger infrared coupling increases
e two main Pomeron features that one may wis to[he size of the(negative virtual corrections. In situations

study are s analytical structure and the_poue‘rv of where Green’s function has a substantially negative second
asymptotic growth, both shown in Table I. It is well known oo . ) .
derivative (as it does over a wide range &) there is an

that with a cutoff one expects the Pomeron to be a pole

while for a frozen coupling one expects a branch cut, giVingmcomplete cancellation with the real contributiof@ the

a Y~ ¥%exp(,Y) growth. Though these properties are mostorder of 10Q2), which means that a larger infrared cou'pling
easily derived for LL BFKL and a coupling that runs as leads tosmaller preasymptotic growth of Green’s functidn.

ay(k?), they apply quite generally. This also explains why the curves with a cutofUR coupling
As regards thew; values, the first point to note concerns initially evolve more slowly for smaller values &
the results for LL evolution, which with cutoffs oag are One could also have imagined more sophisticated IR

much smaller than the naive expectation of Fegularization schemes. For example, while maintaining an

;S(P)Xo(1/2)—the difference stems from Iarg_eS5’3 (and infrared-frozen coupling, one could have placed an IR cutoff

highe) contributions, originally noticed by Hancock and On the exchanged transverse momentine expect that
Ross[48] (discussed also if49)). this would give curves whosg initial evolution is very S|m|Iar.
For NLLg evolution the difference between the cutoff and t0 that of the IR-frozen-coupling case, but whose asymptotic
frozen-coupling evolutions is less dramatic because of th&lP behavior is a pole, as in the cases with a cutoff on the
smaller value of the “raw”w, value (Figs. 1 and 1L As a  coupling.
result, the uncertainty on the properties of the Pomeron is This confusion arising from this wide range of regulariza-
somewhat reduced. It is interesting to note that these valudin options was in part the motivation for introducing the
for the Pomeron intercept are not too different from thoseexpansion in23]. The b expansion allows one to define a
found for the hard Pomeron in “two-Pomeron” fits to data in perturbative prediction in close analogy with the prescription
[50]. It is not clear however that to what extent this can bethat is implicitly contained in standard fixed-order perturba-
considered significant, since on one hand nonperturbative ative predictions. There, one never has to specify any IR regu-
pects of smalk evolution are likely to be extensively modi- larization. Rather, momentum integrals are implicitly carried
fied by the true nonperturbative physics, including saturatioout over a perturbative fixed-order expansion of the cou-
effects; and on the other hand because the two-Pomeron fipding, which is well behaved down to zero momentum. Sen-
involve rather strong simplifying assumptions. sitivity to nonperturbative effects then manifests itself
Having examined the asymptotic properties of the varioughrough the appearance of renormalésee, for example, the
infrared regularizations, we can now move on to examine theeview by Beneke[51)), i.e., factorially divergent coeffi-
IR sensitivity of “perturbative” Green’s functions. The left- cients in the series expansion for one’s observable.
hand plots of Fig. 14(a) and(c) simply have different ra-
pidity range$ show G(Y,k— ¢,k+€) for the four infrared
coupling regularizations of Table I. The transverse momen- °One cross-check of this understanding comes from the fact that
tum k=4.5 GeV is chosen lower than in the plots of Sec.when evolving with a scaler(k?) in the kernel, differences be-
IV C in order enhance the sensitivity to the IR region. Fortween cutoff and freezing IR regularizations appear only in the
reference we also include the uncertainty band due tasymptoticY dependence.
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FIG. 12. (a) Green’s function calculated with four different infrared regularizations of the coupling, with a renormalization-scale band
(1/2<x%2<2) included for reference for thie=0.74 GeV curve(b) Green’s function calculated in the expansion, up to and including
second, third, fourth, and fifth orders  (c) and (d) are the same a&) and (b), respectively, but on a different scale. In all cages
=0.1k.

In a smallx resummation, a pure fixed-order expansionY, the presence of the terms in I&involving additional
would defeat the purpose of the resummation in the firsfactors oszo/S‘Y2 leads to the splaying out of the different
place. However it was shown if23] that one can expand truncations, signaling the fundamental limit of theexpan-
log G in powers of theB-function coefficientb, and that a  sion. In certain modelée.g., Ref[26]) this is associated with
truncation of the resulting series maintains the advantages dfie appearance of nonanalyticity im It is to be noted that
smallx resummation, while providing a prescription for de- this largeY breakdown of theb expansion is not of the
fining purely perturbative predictions. This is in addition to renormalon type that is expected in normal perturbative se-
its usefulness of studying analytical properties of theries.
running-coupling dependence of Green’s function, as has al- A detailed study of the figure also reveals that even at low
ready been exploited in Sec. IV C. Y the expansion is not entirely well behaved. Indeed, succes-

Figures 12b) and 12d) show the same Green’s function sive coefficients of thé expansion are all of the same sign
as in Figs. 12a) and 1Zc), but in truncations of thb expan- and grow quite rapidly, in a way thas suggestive of an
sion ranging from orders? to b®. One sees how all different infrared renormalon. Infrared renormalons are a factorially
truncations give fairly similar answers at o But at large  divergent behavior of the perturbative series whereby the
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' ' ' T ' ' ' ' the IR regularization of the coupling, Fig. (&2.
3} + These preasymptotic effects are a feature of BFKL evolu-
+ tion that to the best of our knowledge have not been ob-
] served before. Given that they are strictly connected to the
= 25 1 NLLg;Q=4.5GeV + i use ofas(g?), they are somewhat model dependent. How-
< Y=5 ever the motivations for using(q?) are quite strong. In
0] 2 F + T particular, as we have mentioned above, this is the scale that
£ is explicitly suggested by the form of the NLO corrections;
= 15t + ] furthermore the appearance of the transverse momentum of
£ ' the emitted gluon as the scale of the coupling is a phenom-
(2 + enon that is well motivated in many other contexts of QCD
=3 1 7 [54].
The appearance of significant preasymptotic NP effects
05 | + i complicates somewhat any attempt to give a compact sum-
) + mary of NP limits in BFKL evolution. In their absence one
might have parametrized NP effects at a given transverse
0 ' ' ' L ' ' : ' scalek, by the rapidity at which one loses predictability for
6 1.2 3 4 5 6 7 8 Green’s functione.g., Refs[22—-24). Instead, we examine
n contour plots, Fig. 14, of
FIG. 13. Ratios of successive coefficientsbdfin the b expan- Ga(Y;k—ek+ E)|
sion of logG(Y,k—ek+e) for Y=5. IOng(Y;k— ckte)’ (109

nth>1 order term is proportional to;gb/p)”n! (in simple  where the subscripsandb indicate the different nonpertur-
cases When interpreted in the language of asymptotic sebative treatments in the two evaluations of Green'’s function.
ries, this translates to an uncertainty on the sum of the peParker shades indicate good agreement between the two
turbative series of the order ofA\¢/Q?)P. evaluations, while lighter shades indicate disagreement. Ad-
To establish whether it is renormalon behavior that we arelitionally, to guide the eye, we have added explicit contours
seeing, in Fig. 13 we show ratios of successive coefficientshere the(absolute value of theog of the ratio is equal to
of b" in the expansion of lo@. The fact that, over a signifi- 0.1, 0.2, and 0.4, which for brevity we shall refer to as the
cant range of, one sees a largebehavior consistettwith ~ 10%, 20%, and 40% contours, respectively.
(log G)™/(log G)" V=cn implies that it is renormalon be-  The first plot, Fig. 14a), given for reference, shows re-
havior. Furthermore, by examining a second valu®asne  sults for LL evolution with two different IR cutoffs on the
can establish that itself is roughly proportional tax,, ¢~ ¢OUPling (0.5 GeV and 1 GeV). Preasymptotic effects are

— . . fairly irrelevant here, in part because the asymptotic NP con-
=1.9a,. However the constant of proportionality, corre- . ~°. . ) . - .
tributions set in quite quickly. The contours indicate a linear

sponding to a value gh= a,/c=0.53, is somewhat surpris- reation between the maximum perturbatively accessible
ing, bgcaqse it implies power corrections of the order thq,ameyymax, and logk, as would be expected if this limit is
(A/Q)?P, i.e., roughlyA/Q. Naively, one would have ex- qye to tunneling in Green’s function with the lower cutoff.

pectedp=1 (see alsgd52]). This difference has yet to be From the simplified version of the tunneling formyid, 27
understood, though it should be kept mind that significant

enhancements of naively expected power-suppressed effects log K2/ K2
are known to be possible due to certain classes of resumma- Yunnel k2) = — (105
tion effects[53]. It is interesting additionally to note that the wp— wg(K)

formally higher-twist nonperturbative effects that we expect

for splitting functions in Sec. V will also turn out to scale We expect that for asymptotically large we should see

roughly asA/Q rather thanA 2/Q?2. dVYa/dlogk=2/wp=3.45. In practice, the slope that is
Regardless of the precise reason for the unexpected scaneasuredfor k between 18 and 16 GeV) is about 2.7;

ing, it can be quite straightforwardly established that thediven that the measurement region is not truly asymptotic,

renormalon behavior is directly connected with the use ofhe 20% disagreement between the two numbers is not un-

a(g?) in the LL part of the kernel: i.e., it has the same r¢asonable.

origin as the preasymptotic effects that arise when modifyinqutFigure 14b) uses the same pair of NP regularizations, but

h NLL gevolution. The first striking difference is the sig-
nificant region(lower left-hand quadraipin which there are
0Except for the last point—indeed while it is the largest values Ofpreasymptotlc NP effects at the 20% Igvel. This is connected
n that are the hardest to determine accurately with our numericaVith the preasymptotic effectidue to a(q?)] mentioned
methods, we have not been able to determine with certainty that th@arlier in this section. The second important observation is
value obtained fon=8 is truly unreliable. Accordingly we have that the rapidity where asymptotic nonperturbative effects
chosen to show the point despite our limited confidence in it. become importanty ., is significantly larger than for LL.
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FIG. 14. Contour plots showing the sensitivity 8{Y,k— ¢,k + €) to the choice of nonperturbative regularization, obtained by exam-
ining the absolute value of the logarithm of the ratio of pairs of regularizations. Darker shades indicate insensitivity to the NP regularization,
and contours have been drawn where the logarithm of the ratio is equal to 0.1, 0.2, and 0(&). $Plotvs the result for LL evolutiofwith
ag(q)] and two cutoff regularizationsk& 0.5 GeV andk= 1.0 GeV); (b) shows NLLg evolution with the same pair of cutoffég) shows
NLL evolution with truncations of the expansion at ordets® andb*; and(d) shows NLLg evolution, comparing a cutoff regularization
(k=0.74 GeV) with ab-expansion truncatiofat orderb®).

But as before it is roughly consistent with a manifestation of(kc) in the evolution, giving
tunneling in Green’s function with the lower cutdff:this
time the tunneling formula differs slightly from that in

21,27, because of the presence of the kinematical constraint (1+ wp)logk?/K?
[ 2] P Ytunnel, kd kz) = . (106)

wp— o kz)

"The linear dependence df,,, on logk only becomes convinc-
ingly evident at very large; we have limited the scale to only At very large k one would therefore expect a slope
moderately largé in order to maintain the visibility of the phenom- dYa/logk=2(1+1/wp)=6.9. The measured slofisamek
enologically relevant region d. range as aboyes roughly 6.1. As for LL evolution, these
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two results are not perfectly compatible, but given thatkhe nonperturbative Pomeron behavior. In the complementary re-

region is not formally asymptotic, the disagreement is notgime k2>k§ (or k%»kz), the collinear properties become

unreasonable. dominant, and Green’s function is characterized by scaling
As is discussed above, using different infrared regularizaviolations and by the corresponding anomalous dimensions.

tions is not the only way of gauging nonperturbative effects The relation to nonperturbative physics changes also because

Figure 14c) shows what happens if instead we consider twoof the validity of the RG factorization property. By argu-

truncations of theb expansion, at orders® andb®. Once  ments based on the doubjerepresentatiofil6,36,56 or on

again, for smaller values dfthere are significant preasymp- truncated model§17,21,34 we can state that, fas>t,,

totic NP effects, though the range lofor which they matter

is more limited. The uppet‘asymptotic”) limit on Y due to G.(k.ko)=F,(K)F, (ko) + higher twists, (107

NP uncertainties also behaves differently with thexpan-

sion. As was shown 23], the b expansion allows one to where 7, (F,) is a solution of the homogeneous equation

reach rapidities of the order of the fundamental perturbativg23) which is regular fort—o (ty— —o). While thet de-

limit [8,24-28, Y a-log?k?/A% This different parametric pendence, because of its boundary conditions, is expected to

behavior ofY yay, though not directly relevant for phenom- pe perturbatively calculable, thg dependence is sensitive to

enological parameter ranges, is evident from the l&rgef-  the strong-coupling region and to nonperturbative physics,

vature of the contours, and becomes even more so Whesut is factorized so that the standard approach of DGLAP

going to yet largek. evolution[3] can apply. We are thus entitled to define
The plots so far have shown comparisons of pairs of IR

regularizations, or pairs df-expansion truncations. However Fo(t) dy

if we look once again at Fig. 12, we see that the largest Yred 0= o= gw(t):f 2y € fol¥), (108

preasymptotic “NP” differences are to be seen when com-
paring an IR cutoff with thé expansion. Accordingly in Fig. wheref () representsF,, in y space.
14(d), we show contours for the ratio of Green’s functions
where one is evolved with a central IR -cutoffk ( A. Resummation by w expansion
=0.74 GeV) and the other is determined bptruncation . . .
of theb expansion. This is to be considered as a conservative The analytlcal form of the rgsummed e|genfun'ct|bcm
estimate of the impact of nonperturbative effects. was fou_nd n [11] on the b_a5|s Of.the‘” expansion—
In this comparison, preasymptotic NP effects are so im_summarlzed in Sec. Il B—which provides the solution
portant at loweik values(below a few GeV that one loses 1
the ability to distinguish them clearly from asymptotic NP f ( 'y)=EX[< - —Xw()/)), Xo (M=, X,(V)=x0(7),
effects associated with tunneling or diffusion. Only for bw 109
=6 GeV is one able to calculate Green's function over a (109
reasonable range of rapiditat least up tor=10) with bet- 1 tarms of the eigenvalue functiop,(y) in Egs.(25) and
ter than 20% accuracy. One comes to a similar conclusion i(26). Furthermore, in the “semiclassical” regime whér
one compares the cutoff and frozen-IR coupling regulariza>1/w>1’ the behavior ofF,(t) can be found from the

tions, as was illustrated if82]. o _ saddle-point estimate,
It should, of course, be kept in mind that nonlinear satu-

ration effects may have a significant impact on the above _ IRV

analysis of nonperturbative contributions, for example, due Pot=xu (7o (D) =X, (7u(V), (119
to the generation of a saturation sc&g(Y). Thisis a non- 4.4 the solution is then given by
trivial problem, in part because a proper treatment would

require the knowledge of the triple Pomeron vertex at NL 1

accuracy in order to be consistent with the linear part at NLL - 7 (t)=k2r, (k)~ ex;{ Jth;w(T) 1
considered in this paper. We note however that since the ‘/_277/\//(; (1))
intercept found from our resummed approach is much @t (117

smaller than the LL one, it is likely to delay the onset of

saturation effects to higher energies; see, fo'r example_, Refyhere the function?w(t) satisfies the following identity:
[55]. Nevertheless, saturation effects are an important issue,

and should be included into the evolution, though we leave _ 1 _ t
this problem for future investigation. YD1 5K Y)ZJ' Yo(T)dT. (112
V. RESUMMED ANOMALOUS DIMENSION The corresponding gluon anomalous dimension is given by
AND SPLITTING FUNCTION [10]

So far, we have investigated the gluon Green’s function in b 1 14" —)
the hard Pomeron regime, in which the hard scifek? are Yeed ©,1) = 7, (1) — O |2y XV ]
of the same order, and—by thHeexpansion method—we xsMly 2 x.(y)
have isolated diffusion and running-coupling effects from the (113
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Recall, however, that Eq113) is an acceptable approxi- deconvolution
mation only away from the turning point 1} LL+DGLAP [0 (K})] Jrepresentation - - -
L Q=4.5GeVY LO DGLAP --------
X (V(05,1)=0, (114

z P(z)

which is a singularity of Eq(113) with infinite fluctuations,
and defines the exponeat= w¢(t) at anomalous dimension
level.

Therefore, whenw approachesog(t), one can only rely 0.1
on the y representatiorf108) in order to define the anoma-
lous dimension past the turning point. This was the method

ey

followed in [11] [with the choice of scheme in E2)] in 1010 10° 109 104 102 10°
order to provide the resummed anomalous dimension and it: 5

exponentw, . In the following, we refer to this calculation as

the “w-expansion” result. FIG. 15. Smallz splitting function determined by two comple-

mentary numerical methodsy(representation and deconvolutjon
for the test case of the LEDGLAP model. For reference the pure

B. Practical determination of splitting functions DGLAP splitting function is also shown.
Here we are more interested in providing the resummed
gluon splitting function directly irx space, by using the re- Xo(V)=20(1)— (y) — p(1— y+ ©) + 0Ai(0)
summation scheme defined by the kerkigland by the cor-
. ; . ; 1 1
responding Green’s function. Two methods are available for | =4 (117)
this purpose. One can exploit therepresentation for the vy l—vy+tow/’

dependence on the gluon distribution, and define an anoma-
lous dimension inw space as given in Eq§108), (109. To  \where the running coupling is evaluated at sdalSuch a
obtain a result inx space, it is then necessary to take themodel is of interest because it can be fully represented in
inverse Mellin transform ofy,e{ w,t). However our formal-  poth they representation, since it has no higher-order terms
ism for calculating Green’s function involves a kernel with jn as, and the Green’s function approach, since it is straight-
higher-order terms inxs, and this cannot be straightfor- forwardly expressed ik space. It also contains some of the
wardly represented with & representation, so in order to typical sources of potential numerical instabilitg.g., the
obtain a splitting function within the same “model” as 1/(1—z). term], making it a powerful “test-case.”
Green'’s function we shall need to resorttspace deconvo- Figure 15 shows that the effective splitting functions ob-
lution directly from Green’s function, using the numerical tained with the two methods are nearly identical. The differ-
method presented if84]. This involves calculating Green’s ence between them is of the same order as the higher-twist
function G(y,t,t) and a corresponding integrated gluon effects that come from varying the regularization of the cou-
density pling in the deconvolution methoghot shown. Also plotted
o is the one-loofLO) pure DGLAP splitting function for com-
Xg(X,QZ)EJ’ d2k(3(VO:k2)(|Og 1k,k,ky), (115  Parison. We note that at largeone sees the standard 1/(1
—2) behavior in all three curves.

Having established the validity of the deconvolution ap-
and then solving numerically the following equation for the proach, one can examine the effective splitting functions in
effective splitting functionP .«(z,Q?): the context of the full resummed kernel. We restrict our at-

tention to scheme B, given that scheme A is not expected to
dg(x,02) 1dz « obey the mo_ment_ur_n sum rqle. Since we are determining a
—’:f _peﬁ(Z’QZ)g(_’Qz)_ (116  Purely gluonic splitting function we take;=0 in the sub-
dlog Q? z z tracted NLL kernel, though we keep=4 in occurrences of

the B function, so as to maintain a realistic running of the

In the limit of Q2> max{k3,A2), P(z,Q?) should be inde- coupling. Switching tons=4 in the kernel as well has a
pendent of the particular choice k§ and of regularization of relia:t_lvely slrgallheffect,tr?f. F]L?' z litting function f

the coupling, modulo higher-twist corrections. That this is_4 'Sgérev It's ows edet eghlve sp; nganL(Xgn f{t.
true in practice is an important verification of factorization, _ ™ eVv. I11s compared 1o the one-loop SPitting

and provides complementarity to analytical “proofs” based function, and to BFKL splitting functions obtained in the
on simplified models. pure LL approximation with fixeflas= a(Q?)=0.215 and

As a first step it is interesting to check that the two meth-running[ as(q?)] couplings.
ods for obtaining splitting functions are equivalent. We do It is perhaps of interest to discuss first the two LL curves.
this for a “LL + DGLAP” model (which includes the kine- As can be seen from the figufand as has been discussed
matical constraint namely, extensively elsewherg11,34,13,36,3]j, running-coupling
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FIG. 16. Smallz resummed splitting function from resumma- FIG. 17. The smale resummed spliting function fork
tion §cheme B, compared to Fhe pure O“e"o"p, DGLAP gnd BFKL_0.74 Gev andk =1 together with renormalization scale and IR
splitting functions(the latter with fixed and running-couplings regularization uncertainties; the inner band is due to the variation of

k between 0.5 GeV and 1.0 GeV, while the outer band comes from
effects alone give strong modifications relative to the fixed-varying the renormalization scale in the range%<2. Also

coupling LL splitting function. There is a taming of the shown are the splitting function obtained with theexpansiorj11]
asymptotic behavior: the cut msz4|oggzszo_60 is con- (calculated with a8, corresponding ta¢=4), the LO DGLAP
verted to a series of poles, the leading one beingvat Pgg» @nd the known smak-parts of the NNLO DGLAPP .
=0.25, with the differencevs— w. formally of the order of

35’3 [48,49,11. The running of the coupling also leads to rule to hold because at=1 the kernel is free of leading-
preasymptotic effects, in particular, it is associated with a digwist poles. It is therefore interesting to observe that after full
at moderately smalt. Similar features have been discussedinclusion of the IR regularized running-coupling, and our
by other authors as well, though the details differfi8] the  rather sophisticated deconvolution approach, the numerically

running asa(q?) is fully implemented only through to NLL ~ derived splitting function of Fig. 16including thes(x—1)
order. In[36,37 the coupling runs as(k?) (a NLL differ- component, _not_shown in the_flgLeroes indeed _have a first
ence, and furthermore the use of the Airy approximation in moment which is zero, to yv|th|n a .fe".V parts in 41(_IWe -
the evaluation of the expressions analogous to our Eq )ave not so far succeeded in establishing Fhe detailed origin
(108), (109 means that their results do not quite correspon f trt"s S”?a” depgrtu_re from zero, though it may well be a
to an exact solution of Eq$2) and (116). '9 ?r'tW'St contrlbutlpr). - )
From the discussion in Sec. IV for Green’s function, one _ GIVen the large difference between the original fixed-

expects a further strong suppression of the asymptotiEOUpIing LL splitting function and the running-coupling
growth when going from LL to NLk—for example[for scheme B result, it is important to establish the order of
b(n;=4)], w, goes from 0.60 to 0.27. However because Ofmagnitude of potential higher-order and nonperturbative un-
nonlineari’tiess(and the compensation of some double Count_certainties. Th.is. questior_1 s .addressed in Fig. 17’ where the
ing), the correction to the splitting function from the combi- SChe'_“e B splitting fur_lct|on IS sho_wn together \_N'th two un-
nation of running-coupling and NLg effects is weaker than certainty bands. The inner band is that associated with the
would be expected from a simple linear combination of thevariation of the infrared cutofk between 0.5 and 1 GeV,
two separate effects. Indeed, the final running-couplingndicating a modest nonperturbative uncertai‘ﬁ_ty. _
NLL result for o, with ay(Q?)=0.215 isw,~0.18. The The outeg band shows the effect of varyimg in .the
preasymptotic dip, to which we return below, is also modi-"@n9€ 0.5-x, <2 (a range commonly used for fully inclu-
fied in the NLLg resummation, becoming somewhat deepers'Ve quantities This should give an estimate of the impor-
(about 30% 015) and moving to smallez (~10") tance of potential higher-order corrections. One sees that the
Other import;nt characteristics of the splitting. function main features of the splitting function are stable, though at
extracted in scheme B are the laméehavior, which coin- smallz the uncertainty grows because different renormaliza-

cides with the expected LO DGLAP result and the value of
its first moment p=1): the scheme has been constructed ,

. . . . A more conservative NP uncertainty estimate would consider
such that for fixed coupling, the effective characteristic func- . . .
— also an IR-frozen coupling. Unfortunately, this leads to numerical

tion satisfiesasxer(y=0,25) = 1. At fixed coupling, duality  instabilities and we are only able to study the case of a coupling
argumentg12] then automatically lead to the splitting func- frozen down to some moderately low scételow which it is cut-

tion having a zero first momerito within higher-twist cor-  off). From these studies we deduce that including the results from a
rectiong, i.e., validity of the momentum sum rule. More gen- full IR-frozen coupling would roughly double the size of the NP
erally, for running coupling we expect the momentum sum-uncertainty band.
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tion scales lead to slightly differemi, powers. Another way butions, which may be relevant even foras low as 102

of investigating higher-order uncertainties is to consider thé58], could modify the properties of the dip.

o expansion off 11]—here recalculated with the sanmg An interesting question concerns the impact of the dip on
convention as used for scheme B;€4 in the 8 function  fits to parton distributions. Calculations in(partially) RGI

and n;=0 in the rest of the kerngland transformed t@ L model [43], whose effective splitting function also has a
space. We recall that the-expansion is based on the samedip, suggest that it is not incompatible with the available
assumptions as scheme B, namely#NMLL BFKL and the  strycture function data. Referen¢&3] mentions work in
requirement of correct LO DGLAP limits. From Fig. 17 one progress on fits involving a resummed splitting function with
sees that down te~10"* it agrees with scheme B to within 5 dip (actually considerably deeper than oursut detailed

the renormahzatlon-scale uncertainties. Below, the Bid  rasuits have yet to be presented. In the duality approach
w-expansion curves move further apart, essentially becau§gg 37, the resummed splitting function shows also a similar
their . values (0.18 and 0.20, respectivetliffer by more  in "\ hose location and depth depends somewhat on the re-
than would be expected based on I&}Levarlann. Th!s SUG- symmation level being considered. For LL resummation with
gests that for future phenomenological purposes, in the Ver?’unning-coupling the dip of Ref37] looks somewhat stron-
smallz region one might wish to consider the effects of ager than the corresponding one in Fig. 0Ghich has the

larger range ok, variation. . 5 . . i .
An aspect of the splitting function that deserves mored'fferent scaley”, as noticed befojelt is claimed in[37] to

comment is the dip at moderately smallA priori one may be gompatible with the data. In the case of full NLL resum-
wonder about its origin and indeed whether it might not pemation, where amore prc_mom_mced dip is expected because of
some form of artifact of our resummation procedure. To hel he large negative contrlbutl_or_\ from the NLL kernel,_ Ref.
resolve the issue Fig. 17 also shows the known smpht 37] doe_s not p_rowde an exphc_xt—spgce result, an_d no direct
comparison with our result in Figs. 16, 17 is therefore

of the NNL DGLAP splitting function(for ny=0): possible!* It should, of course, be kept in mind that so far
1 we have only presented results for purely gluonic
2Py(2)=as+Ballog-, problems—phenomenological studies will additionally re-
z quire a treatment of the quark sector.
To close off this section, we examine how certain proper-

395 ((3) 11x? ties of the effective splitting function depend on the coupling
== ﬁf T+ 72 ag, Fig. 18. One quantity of interest is the formal snmll-
exponentw., shown in the left-hand plot, together with un-

=—1.549. (118 certainty bands from varying the IR regularization and the

renormalization scale. One sees that at small regulariza-

One sees that the initial decrease of the scheme B splittinion uncertainties very quickly become negligible, in accord

function corresponds closely to the decrease of the pure NNWith — their — expected  higher-twist  natue, while
DGLAP splitting function, associated with trﬁ?log 1 renormalization-scale uncertainties decrease much more
] S

; : . slowly with «4. Also shown, for comparison, are curves for
term. At a certain point however smallresummation effects o, In the o expansion(quite similar to scheme Band a
set in and the scheme B structure function starts to riseI, c ducti fR[h ?t fSec. IV C for. to first ord
giving the characteristic dip structure. The fact that the initial.e‘gohuc 'O?]O e_rtrer?u_s‘lc_) bec.h ars % Irs I\c;rmer
decrease of the fulPy, is correlated with an exactly deter- was Ejrtlei;grrilov(\)m witmy=4 in b, whereas in Sec. f
mined (NLLx) piece of the NNL DGLAP splitting function Gi th yl t. t of th " wih. oth
suggests that the dip structure is a true feature of the small- lven the fate onset ot the smaiipower growth, other
splitting function. This belief is reinforced by the observed'm.ereStIng quantities are the position of Fhe dif,, and the
robustness of the dip structure under renormalization scal@Olnt where the effective spliting function becomes larger
and resummation scheme chang#®ugh the depth of the
dip is subject to some degree of uncertaintpdeed in the
limit of small «g, one can show that the terms in E418

dominate the splitting function down to logt 1/\/a and

YRoughly speaking, we differ from the approach of H&f7] by
a proper treatment of the collinear terms for both the 0 andy

that the dio is a mathematically riqorous. property of theﬂl regions, while in Ref[37] the duality constraint is used in the
p y ng property v—0 region only. Thisy« 1—y symmetrization allows us to have

SP““'”_Q function[57 ¥ For moderate values af; the S'tuT predictive power for the full Green’s functidifior k~k, alsg and,
ation is more complex because of the relevance of higheyin some limited uncertainty, for the smadlintercepts. It is true
powers ofas/w in the smallz expansion. It is also to be hat there is some remaining model dependence inythd/2 re-
noted that substantial non-asymptotic NNLO DGLAP contri-gion, but its impact is moderate, being exemplified by the difference
between thev-expansion and NL} results. Indeed, in the phenom-
enologically relevant regiox=10"3 it is of the same order of
13t is worth noting that the dips observed in Figs. 15 and 16 formagnitude as the renormalization-scale dependence.
the running-coupling Li-DGLAP and LL models have different  '°Actually the regularization uncertainties seem to decrease
features compared to that of scheme B. This is at least in pamoughly as 1) whereas one would have expected aQ/
because the NLk terms of their low-order expansions differ sub- behavior—this fact(cf. also the discussion of renormalons for
stantially from the true NLk terms contained in scheme B. Green’s functions in Sec. IVhas yet to be understood.
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FIG. 18. (a) the smallz exponent,w. of the effective BFKL splitting function in resummation scheme B, compared to the previous
w-expansion result, and to Green’s functieg as determined in Sec. IV C (Nld); (b) the position ) of the smallz minimum of the
splitting function and the pointz(,.s) below which the resummed spilitting function becomes larger than the one-loop DBLAPThe
inner and outer bands have the same meaning as in Fig. 17.

than the plain one-loop DGLAP splitting functicglways >Q? According to the analysis presented in H&f7] we can
defined withx,=1) z..s Both quantities are shown as a factorize the LL contribution to the* p cross section in the
function of o in the right-hand plot of Fig. 18. As one would form

perhaps expect, as one decreasgs one has to go to pro-

gressively smaller values afbefore the BFKL increase of * dv, dv, d%k

the splitting function becomes visible. In this plot, too, we o” P(r,Q)= j V_lv_zﬁh(Vl’Q’k)f(Vz’k)

note the contrast between regularization uncertainties which

vanish rapidly withQ and renormalization-scale uncertain-

ties which vary much more slowly witl. X0

k2

- Wz). (119

VI. INCLUSION OF IMPACT FACTORS
o ] ) ~ h andf represent the off-shel}* g* andg* p cross sections

_ For a realistic calculation of a physical cross section,in which the virtual gluon has a particular polarization. The
high-energy factorization requires that one specify also thgy fynction indicates the threshold condition to be satisfied in
impact factors characterizing the external progec. I). e multi-Regge kinematigdIRK) v> v, v,> Q2 k? by the
The impact factors are known in the LL approximation for ajvariants defined in Fig. 19).
variety of physical process¢27,28, and also in the NLL This threshold condition expresses the fact that the longi-
approximation for virtual photong31] and for forward jet  ,ginal part of the momentum transfer is small with respect
production[30]. However, the corresponding expressions are ts longitudinal partconsistency constraifé1—43). In

quite involved and still to be implemented in numerical al- ¢3¢t in a frame where the momenpaand g have no trans-
gorithms. Furthermore, their accuracy stops at the first nongg,ge component, one has

trivial order in as.

The purpose of this section is to show how the resummed a=q’' —xp, (120a
scheme fo@w can be extended to the corresponding impact B
factorsh’s by incorporating subleading corrections dug1p k=-zq'+zp+k: q'-k=0=p-k. (120b

phase-space and threshold effects é)deading-log collin- _ _
ear singularities. The inclusion of the exact NL impact factorln the last equation, one has to remember the Euclidean na-

expression$30,31] is left to a future investigation. ture of k: —k,k#=zzv+k2 The relations among invariants
and Sudakov parameters are given by

A. Phase-space and threshold effects

Let us first consider deep inelastic scatterigiy(q) +p 1( Q? (1213

—hadrons in the high-energy regimev=2pg=Q?%/xg =\ e
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(121b

vy — (1210

vy Q?
||(/_Lk’u“|=k2+7 71/2).

MRK implies v;>Q?v,/v, hence Eqs(1219 can be ap-
proximated by

=—, (1223

ViV  bp

|k, k#| =K+ (122h

14

Therefore, ifk? were replaced byk,k*|, the ® function

PHYSICAL REVIEW D68, 114003 (2003

FIG. 19. Kinematic diagrams
for: (a) deep inelastic scattering;
(b) v* y* cross section. The vari-
ables correspond t(2 timeg the
scalar product of the correspond-
ing momenta, e.g.,v;=2q-Kk,
v =2p-(—k)=20do-ko, )
=20y (—k) etc.

Vivo

f(z,k)zfdy—’;zf(yz,k)<v— 7) (126

Equation(125 is the well-known factorization formula for
DIS which we present for later convenience also as a convo-
lution in the invariant “energy variable’; [Eq. (124)].

Taking the Mellin transform with respect t1@/Q2=x,§l
yields the simpler structure

Y*p d?k
opA (Q)=J Fhw(Q,k)ﬂ)(k). (127

in terms of Mellin transform® of the original factors.
We remark that the LL behavior of”*P is determined by

ag—0

the leading(rightmos} singularity o= wp(as) — 0 of F,,

would represent just a phase-space threshold. As it stands,iif the w plane, whileh ,=hy+ O(w) contributes at LL level
yields the consistency condition that the virtuality of the only through its zero momerit,. This amounts to integrat-

gluon is essentially transverse, that is,

ViV
2: M=
k |kMk | S

(123

which is the condition in Eq119). The additional thresholds
(q+k)?=v;—Q%*+k*>0 and p—k)*=v,—k*>0 — en-

ing h(v1,Q,k) in v, regardless of the;; dependence itF

and identifying inF: v;=Q?, i.e.,z=xg. This shows that

the details of the phase-space effects, in particular, those at
threshold—evidently ignored in the approximatibr=h,

just mentioned—appear only as a NL contribution. On the
other hand, they are expected to be important when the total
energy v has moderately high values. Therefore, the

suring the final state particles to be in the forward lightw-dependent formulation of impact factors is suitable to de-

cone—are implicitly contained ih andf, respectively. Ac-
cording to Eq.(1223, we can rewrite Eq(119 as

womoy= [ KN oA 24
o’ P(v,Q)= v K& v_l’Q’ > (1249
B 1dzd2kh Xg ) . 1
= XBYF 7,Q7 F(z,k) (125

in terms of the unintegrated gluon density

scribe subleading effects coming from the proper treatment
of the phase space.

This applies also to the doublefactorization formula
describing the high-energy* y* cross section: in the MRK
v>1, 1,51, v,1,>Q%,Q3 k2, k3 the threshold condition
(122b can be applied to any-22 subdiagram of Fig. 1®):

18Here we defind,, usingQ? as energy scale far;, at variance
with Eq. (5), where we used|k| as energy scale for;. The
difference is a multiplicative factorQ/|k|)®.
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- v~ v Vivs The lesson is that even in the double high-energy factor-

V>, V>, >, ization formula, a single Mellin variable allows one to
k? 0 k treat in a proper way the kinematics of the process, in par-
_ _ ticular, the threshold effects. This motivates our choice to use
Vovy vrivy  Vilp w-dependent impact factors and kernel.

(128

V> —— S>> —— >,
K2 k2kZ "~ [KlTko
B. Collinear resummation of impact factors

The last inequalityobtained by using>|k||ko|) shows that
the boundary of phase space can be very simply described t?Pft
the combinationv,v,/(v|K||ko|). This suggests that we
write the high-energy cross section for photons of polariza
tion AandB (A,B=T,L) as

Additional subleading contributions to”"”" not taken
0 account in Green’s function are higher-order perturba-
tive corrections to the impact factors. Here we want to ana-
Tyze the additional corrections which are important in the
collinear limits Q>Q, and Q<Q,. In order to keep the

AB(}, Q2 QS) discussion as simple as possible, we analyze only the fixed-
coupling (b=0) case.
dv, dv, d?k d2k, " In Sec. Il B we have shown that we can repIaEe the origi-
= e k_ (v1,Q.k) nal RG improved Green’s functia of Eq. (2) with G of Eq.
0

(30—the latter being defined in term of the modified kernel
2|2 (32—up to NNLL differences. Correspondingly, one should
XQ( oK ko) h®(v2,Qo.ko), (129  define impact factors’s which provide the same cross sec-
v tion in the new scheme.
whereg, representing thg*g* off shell cross section inte- ~ We begin by considering Eq132) with LO impact fac-
grated in the “invariant mass¥, contains the total energy tors and with the effective Green’s functign With fixed
dependence and is constrained by the last of the threshoRPupling, both the impact factor and Green’s function are
conditions(128). scale invariant, and the cross section can be given the inte-
Equation (129 is just equivalent to thek-factorization ~ gral representation
formula (1) in energy space, because the convolution in the

—(1/2)
energy variables can be diagonalized by means of the follow- oAB
ing Mellin transforms: w (Q:Q0)= 55 QQ 27-” Qz 7u(7), (133
= dv(QQp|” TA,
74°(Q.Qo) = fQQ 7( . ) o"%(»,Q.Qo) To(N=RG(NT (VRG(L= ), (134
0
(1303 where we have introduced the Mellin transforms
hy(Q.k f ( Qlk ) h k )7
AQW= | (71.Q.K) h(y)= f . (—) hu(Q.K), (1353
(130b
1du |k||ko| o (k)
w(k!kO) Tu g k kO gw(’)/)E d kO E gw(krko)' (1350
V1Vp We shall now compare the collinear behavior of EtB4) to
u= DTk (1300 that predicted for the total cross section in order to find the
NLL corrections inh” at collinear level. Iny space the for-
In fact, by using the equality mulation of collinear factorization becomes particularly
simple in the fixed-coupling case, and can be stated as fol-
QQo _ Qlkl  v1v; Qolkol (13 lows: the leading-lo@%Qj3 contribution @>Q,) — corre-
v vi vIK||ko| v sponding to the behavior ay=—w/2 for the Mellin
. transform—to the photon-photon cross section at oeder]
and the threshold€l23) and (128), we obtain is given by
AB
2°Q.00= ?k_hA(Q 0Gu(k kN8 Qo ko). 7o ()
0 (132) ~47TCEV$ 7?0&1 ,yzlaz N ,yzn—lq ygyVB
. . @ a;---a,-1=09 w © @ o
The choice of a symmetric energy scalg=QQ, leads v+ = vt y+t= v+ y+ =
: < <D 2 2 2 2 2
naturally to symmetric energy scales for the individual fac-
torsh, andgG,, as one can see in Eq4.30. (136
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in terms of the one.—I.oop anomalous d_imensioyfﬁ, de- %o imp.faczhﬁ(o)(v)?w( y)hBO(1— )
scribing the “probability” of thea— b splitting, and of ad-
ditional “photon-vertex factors'V!, distinguishing the polar- 47'ran}, R
ization of the corresponding photon: - © ®
Yty vts
w
Vi=1, Vb= y+ 5 [1+O(w)]. (137 y i Y99\ N ,Lasing ) ary/B
n=0 (O] w o’
Yyt | vyt vt5

If we restrict our analysis to gluon emission only, besides the 2 2
two qq pairs coupling to the two photons, in E{.36) all a; (142
but two are just gluons. A further approximation, valid in the
high-energy limit, is to neglect collinear gluon emissions be-having decomposed the anomalous dimensions relative to the
tween two quarks belonging to the same loop. In fact, thisgy— g splitting in a singular: /o and a nonsinguléns) part:
amounts to neglecting— q splittings which are proportional
to y919=04+ O(w). Therefore,a;=a,_;=q anda,- - -a,_» gq:& 1
o Ve +B(w)

:g CA w

In order to find the collinear behavior of the resummed .
impact factors, we have to compare EG.36 with the We can see from Eq142) that the structure of Eq136) is

k-factorization formula(132). The collinear behavior of the eProduced, but in thg—g splitting we are taking into ac-
RGI kernel(33) atb=0 is simply count only the singular part of the anomalous dimension.

This is not a surprise, because the LO impact factors are
by definition coupled to Green'’s function via a high-energy
_ (138) gluon exchange, i.e., a singular splitting. Surprising enough
v+ wl2 is the fact that, using the effective Green’s function, it suf-
fices to use upper impact factor at LO only, in order to obtain

This determines the collinear behavior of the RGI Green'dhe correct collinear singularities on its side. The reason is
that the additional factor

= yJh SN ygens (143

99

Xo(V)=as(xg+ox2)~

function
- - 1 2 y99 \ " (1—aKO) =2 (aK®)" (144)
Go(y)~[o—xu(7)] l:Z 2 (139 ¢ n=0 ¢
+= ~
YT stemming from the resolvent df,, [see Eq.(30)] provides

exactly the nonsingular splittings needed to build up the col-
The collinear behavior of the LO impact factors with exactlinéar corrections of the upper impact factor to all orders, in
kinematics[59] is the collinear ordering)>k. _ _
On the other hand, the full expressi@iB6) contains the
correction factor ¥ wB(w) with respect to Eq(142), due to
hTO(5)=hTO(1— y)~ 20 NZ— 159 1 the full g—g anomalous dimensiofl43. This factor is at-

w)z’ tributed to the lower impact factor in the collinear region
Yt

2 ko>Q,, so that we can set, at the NLL level,
140 ~
o ho(1—7)=h5"(1-7)+ wB(w)hER)(1-7)
h-O)(y)=hLO1- - — B(w
o (M=) “REO(1— )| 1+ ae | 4 NNLL,
1 1+ w + —
~2aNE—1y% : YT2
y+wl2 1+ 3w+ ;i 0?
(149
(140b
where the additional term shows right-hand singularities only
: : in the 1— y variable[i.e., R(1—y)>1/2].
Using the relation Analyzing the opposite orderin@,>Q—thus the lead-
ing right-hand singularities in the variable [i.e., 23(y)
qy:ichng (141) >1/2]—yields the modification of the upper impact factor
w as w
~ — B(w
. N . A =hAO(y)| 1+ a2 | A NNLL, (149
the Mellin transform of the cross section with LO impact 1— w
Yt5
factors assumes the form 2
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which differs from Eq.(145 by the replacement&— B and  In order to compare Eq147) with Egs.(148 and(149), we
ye1l—1. see that the factoH has to be incorporated in the impact
In conclusion, the high-energy cross section can be facfactors. We can do that, given the eigenvalue function

torized in the product of Green’s functio, and impact H(¥)=H(1-7), by defining some functiort, (y), such
factorsh as follows: that H(y)=H.(y)H.(1—v), and by assigning factor
H. () [H.(1—7)] to impact factorA (B). This decompo-

4%k d2k sition is not unique, however, and each solution#r cor-
AB _ | 222 "0gA e B responds to a choice df-factorization schem¢5] in the
o, (Q,Qo)= h,(Q,k)G,(K,Ko)h,(Qg,Ko). pona: _ :
(QQo) f k2 K3 (QIGu{kkalNo( Qo-ko) subtraction of the leading term at the NLL level in perturba-
(147  tion theory. Furthermore, the dependence should be ex-

o . panded in thén’s also. Iny space we have
Such a factorization formula includes the full one-loop

anomalous dimensions to all orders, the NLL contributions PA=hOA + w9, hOA o+ adh DA
! ) ® w=0 w''ow w=0 s''w=0
of Green'’s function, and the NLL phase-space effects. Still o
missing are the running-coupling effects and the subleading zhgool‘(\ﬁ as[,;whsuo)A|w:0X0+ﬁwli% , (150

collinear NLL corrections to the impact factors. The former
could be easily incorporated in the collinear limit on the where in the last line we have exploited that the facter (

basis of a straightforward generalization of E@42). The  — 4 y) eliminates the high-energy part of the cross section.
latter can be included from the known resul&l]| on the On the other hand, at the NL level the factorization of the

basis of the change of scheme discussed below. M factor is achieved by settingH, (v)=1+ a.H(7)

o . _ +0(a?), with
C. Next-to-leading impact factors in the w-independent

formulation H(7)+H(1= ) =xo(7) +xe(¥)
Here we wish to relate the-dependent formulation d€

factorization and of BFKL evolution used so far to the more - 1 i+ ; +A(0)
conventional next-to-leading-log expansion of the cross sec- 2192 (1—-v)?

tion. We shall see that this involves a redefinition of NLL

impact factors which is somewhat ambiguous, and consider- v EJF (151)
ably complicates their collinear structure. For the sake of vy 1=y

simplicity, we shall provide the relation in the frozen
limit. Therefore, the NL contribution to the impact factor in the
We have already encountered the operator relation of the-independent expansion becomes

w-dependent Green’s function to the BFKL one up to NLL m (0)A (0)A
order. According to Eq(39) we have h 2y =heZo(VH(Y) + 3,0, (V)] w=oxo( ¥)

~ — — — T(1)A
Go=[1— ag(Ki+ KT [ w—agko+ aKy+0(a?)] 2, +haZo(). (152

(148 We see from Eq(152) that the first two terms both generate

higher-order singularities which—e.g., fok=T—are of
type 1A* and 1/(1— y)*, and come from thevs derivative
and from multiplication by the singuldd term. In order to

extract the dynamically interesting correctibh?” from a
éaerturbative calculation oh™”, one has to subtract both
terms fromh(MA, by a proper choice ofl, corresponding to
a proper factorization scheme.

which differs from the pure BFKL-type expansion by the

operator factorH=[1— ay(K§+K2)] 1. The latter origi-
nates from thew shift (expanded to first order im) and
from the collinear behavior. It was first introduced in R&f
where it was shown to provide energy-independent term
which compensate the symmetrical scale chaigekk,, so
as to provide the effective energy scale= maxq@,kg) for
Green’s function. On the other hand, the complete cross sec-
tion includes the impact factotss according to Eqs(147)
and(146), and should be consistent with the NLL parametri- In this paper we have presented a formulation of the re-

VIl. DISCUSSION

zation summed smalk equation based on the renormalization
group constraints. The equation presented here embodies
do [ v \?d?%k d?k correctly the LL and NLL BFKL kernels as well as LL DG-
AB - 0 LA(©0) . o
a™*(v,Q,Qo) = 271100y @ 12 h™™(Q,k) LAP evolution. The new equation is very close to the formu-
o/ k% ko lation proposed previouslyll], the main difference being

the treatment of the collinear terms, which are here treated as

A1) .
+ash™(Q K Kk[w—as w-dependent terms of the leading kernel. The advantage of

X(KO+ESK1)]_1|kO>[hB(O)(QO1k0) the.smallx equation proposed' here is that. it shows' §|mple
collinear poles only and is defined directly knand rapidity
+ achBM(Qq, ko) 1. (149 space, thus making it easy to study the full gluon Green’s
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function rather than just its high-energy exponents. There- A special comment is needed for the splitting function’s
fore, after inclusion of the impact factors, it can be used in aip in the moderate-region. It is at most a 30% effect with
straightforward way for phenomenological applications torespect to the DGLAP value fars=0.2, spread over several
processes with two hard scales. orders of magnitude in. It is therefore a shallow dip, asso-
In our numerical analysis we have obtained the solutionsiated with several subleading effedisotably the smalk
to this equation in the case of fixed and running-coupling, wagerms of the NNLO DGLAP splitting functionand it signals
have studied the energy dependence of Green’s function bothquite moderate departure from pure LO DGLAP evolution.
for comparable scales and in the collinear limit and we haveConsidering this result and the values of(«g) just men-
extracted the corresponding splitting function. tioned, the overall picture is that our resummed predictions
The analysis of Green’s function has confirmed the factare much closer to low-order results than naively expected.
[21,26] that the hard Pomeron exponeni( ) parametrizes In turn, this may provide an explanation for the apparent
only a transient rapidity dependence of the gluon density, tsuccess of low-order evolution to fit HERA data, despite the
be modified by nonlinear diffusion corrections at perturba-size of the effective couplings(Q?)log(1k).
tive level and—beyond some critical rapidity—by the non- In order to compare the present results to experimental
perturbative Pomeron behavior. Nevertheless, subleading refata, we need to include the physical impact factors for two-
summation effects not only decrease and stabiizetself ~ scale processes and quark evolution for DIS processes. Both
(Fig. 11), but basically weaken the nonperturbative Pomerorissues are well studied. For quarks we can fol[&®,11] and
and considerably increase the range of validity of the perturfor impact factors we have shown here how to incorporate
bative behavior(Fig. 14 by 10-20 units in rapidity com- the collinear resummatioin the frozen-coupling limjt We
pared to leading-log expectations. Therefore, we are encourecall that the NL contribution to the impact factors depends
aged to trust the resummed perturbative predictions for nextn the formulation of evolution kernéé.g., w-dependent or
generation acceleratof82]. independent In our w-dependent approach, the impact fac-
We have provided resummed results for the gluon splittors have a simple collinear behavior due to theshift of
ting function also. This is a purely perturbative quantity, asleading poles. The relation to the more conventional
has been verified from its definition as the logarithmic de-w-independent calculatio81] is given by the subtraction
rivative of the gluon density, by checking collinear factoriza- procedure outlined in Sec. VI B.
tion for Q>Q,. Here resummation effects stabilize tfues- On the whole, we have presented here a unified descrip-
cillating) log s hierarchy, and cause a soft departure from thetion of smallx deep inelastic processes, applicable to both
DGLAP result, showing a shallow dip in the moderatee-  the structure function regime and to thé& y* kinematics.
gion, followed by the expected power increase in the veryResummed results push the validity of perturbative QCD to-
smallx region, characterized by the splitting function expo-wards higher energies and give perhaps a preliminary expla-
nentw.(ay). nation of the cross sections’ apparent smoothness in the
Let us now comment in a littte more detail on some in-smallx regime despite the occurrence, in their description,
teresting features of our results. For the high-energy expoef large perturbative coefficients and various strong-coupling
nents, this work confirms the picture of Rél1l]. The re- phenomena.
summed Green’s function exponeat(«s) turns out to be

numerically similar toa for relevant values ofg (Eig. 1.1). ACKNOWLEDGMENTS
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fusion term, which turns out to be small compared to

leading-log expectations. On the other hand, the splitting APPENDIX: COMPUTATION OF EIGENVALUES

function exponenta_)c(as) is substantially beIOWwS—_by AND PROJECTIONS
about 0.1 for typical es—due to well-known running-
coupling effects. We give here some details of the calculation of the kernel

In addition, we find here interesting preasymptotic effectseigenvalues and Mellin transforms which are needed for
in the energy dependence of the gluon density at comparabkgecs. Il B and IV C.
scales. In particular, the growth of the Njlesummed den- Let us start from the computation of the eigenvalues of
sity is delayed up to rapidities of the order ¥&=4 for «;  the kernel
=0.2. It is also worth commenting on the expectations for

the onset of perturbative nonline@aturation effects in the NG LY
evolution. These become relevant when Green’s function is —2(—2> — = 8%(q)=H,(k,k"), (A1)
of the order of 1&g [60]. For our reference scalesk( q°\ k A

=5 GeV anda =0.2), this translates t& of the order of

15, i.e., close to the kinematic limit of LHC. This is of course possibly multiplied by thew-shifting factor k- /k=)®, in

a very rough estimate, a more detailed study being beyondrder to obtain the kernel of E489) of the text. Such ker-
the scope of this article. nels are closely related to the regularized form of the leading
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BFKL kernel (with or without consistency constrajntby
possibly including powers of log? due to the running-
coupling.

Note first that, denoting by () the eigenvalue func-
tion of H, , the shifted kernelK. /k-)“H, has eigenvalues

w
’)’2,

where the left(right) projections off (y) are defined by

V]
L)

XL R

+XR (A2)

dy" f(y") f(vn)
f Eif _— = , (A3
L,R(?’) %y’giﬁyzm y—y EO Y= n (A3)
=1

with the upper(lower) determination of signs and conditions.
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FOF(YIF(1—y—\)

F(I-ML(A—pT(tn)

1
XMy = X( (A7)

1 1,
x| X Axo(y)+ >N Xo(7y)

1
+ENI20 ()= ¢ ()~ (1 7)]

.

which proves Eq(90) of the text. Note the cancellation of
the A =0 singularity between real emission and virtual term.
By expanding Eq(A7) in X we obtain, at order®, the
BFKL eigenvalue, at ordex the eigenvalue of the running-
coupling kernel of Eq(38), and so on. The corresponding
kernels with consistency constraint are obtained by shifting
the left/right projections of EqgA2) and (A3).

4+

Note that the last expression holds in the particular case of The simplest left/right projections are based on the formu-

simple pole singularities in the leftight) y plane. In fact,
such eigenvalues are found by the Fourier transform

dy’ et Y (af2) (1"
f dtrfﬁx[)\](,y/)e-y (t t)[e (w/2)(t t)®(t_tr)

+ e—(w/Z)(t'—t)(,_D(t/ _t)]ey(t' —t)

- (W2)+i=dy’
=f de P
0 (1/2)—ic 27T

x[el= 7= (@2 +y17 1 gly=3 =77,

My
(Ad)

In this equation, they’ integral can be displaced to the left
(right) of y+ (w/2) (y— (w/2)) in the first(second term on
the right-hand sidérhs). By then performing ther-integral
in its convergence region we obtain, by the definitié®),
the result(A2).

We then computg(y) itself by applying the kerneh,
to the test functionK’?)?~ . By using then the known inte-

gral

d2k’ 1
T (er)lfy[(k_kr)Z]lf)\
FMT(yIF(1=y—N\)

T VT Tyt N (A5)
and the representation
F(Z+E)_ 1 2.1 1 3.0
W—GX eP(z)+ Eé Y (2)+ 56 y'(2)+ -,
(A6)

we obtain[ xo(y)=2¢(1)— () —(1—-1v)]

las
XoL (N =Xor(A= =¥V =¥(N= 2 Tc )
o0 l 1
zzo(7+n_m ’ "o

—xoL N =9¢'(y)=2>,

n=0

) P (y)+i'(1-y)

71_2

" sirf(my) (A9)

For the shifted running-coupling kernel we neéﬁé
+ x4]L and thug x2].(¥). Sincexo=xoL+ xor We obtain

XLV =LxoL (Y 1?+ 2L xoL (M xoL(1— )]0 -
(A10)

The last term has simple poles on the left-hand sildg), so
that by Eq.(A3) it is expressed by a sum over residues as

i XoL(1+Nn)(5—7)

(z+n)(y+n)
(A11)

where a subtraction at=3 has been performed to make the
series convergent, ang, (3)=3xo(3)=2log 2.
The series in the r.h.¢with simple polesis expressed as

a combination of[ xo_ ]? (which has simple and double
poles and of ¢’ (with double poles only as follows:

2[xoL(MxoL (L= ML =x5.(3)+2

n=1

2
2xo (M xa (1= NI =Ixo (NP =o' (N + 5 (A123)

2
2[xoL(VxoL(1= Y Ir=[xoL(1= Y ]?— ¢ (1—y)+ %
(A12b)
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Equations(A12) can be proved by checking residues andwhere
values aty= 3 of lhs and rhs and coincides with E@4) of

the text. I )=f1dtt’/1u2(l)_u2(t) < Y(n+1)
Finally, the left/right projections 0}1(7/), as given in Eq. Y= 0 1-t &y nty
(41), are computed on the basis of Fourier transforms of the (A14)
type (A4) by splitting the 7 integration into the $,0] ([0,
—oo[) intervals for thelL (R) projection. The result is * Y(n+1+7y)— (1)
DU(9=2 (1" —, (A15)
(9= 29 () + xal )[w'( )—A<0>(3+i) " B
X lY 2 Y) T XoL\Y Y 1 y 11—y 14y ) L 3
67 = o o M(y)= y_Jl/f’ — | TV 5T Z)_wl(Z”'
+§3_E_§3N_C+ (Y)=P(y) (A16)
2 ~
" Tr_[ y Tty ¢(Z " §§(3) The corresponding expressions farin scheme AEq. (60)]
8 2 2]] 4 and in scheme BEq. (62)], are respectively,
am LA 1 L ©
Ty MO T D) X=X +CO)| X v 5 ~xe(9)| (ALY)
C
11 1) 1 _ _ 1
"2l 1oy TRM DMy 1] X =Xar (M) + C@)[ 1+ 0A (@)=~ C(0) .
Yt>
11 2
- EM()/) ' (A13) (A18)
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