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Renormalization group improved small-x Green’s function
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We investigate the basic features of the gluon density predicted by a renormalization group improved small-
x equation which incorporates both the gluon splitting function at the leading collinear level and the exact
Balitskii-Fadin-Kuraev-Lipatov~BFKL! kernel at the next-to-leading level. We provide resummed results for
Green’s function and its hard Pomeron exponentvs(as), and for the splitting function and its critical exponent
vc(as). We find that nonlinear resummation effects considerably extend the validity of the hard Pomeron
regime by decreasing diffusion corrections to Green’s function exponent and by slowing down the drift towards
the nonperturbative Pomeron regime. As in previous analyses, the resummed exponents are reduced to phe-
nomenologically interesting values. Furthermore, significant preasymptotic effects are observed. In particular,
the resummed splitting function departs from the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi~DGLAP! result
in the moderate small-x region, showing a shallow dip followed by the expected power increase in the very
small-x region. Finally, we outline the extension of the resummation procedure to include the photon impact
factors.
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I. INTRODUCTION

Progress in understanding small-x physics has been cha
acterized by quite a number of steps: first the Balitskii-Fad
Kuraev-Lipatov~BFKL! evolution equation@1# and its early
prediction of the small-x rise of hard cross sections, leadin
to the notion of a hard Pomeron in perturbative QCD; th
the qualitative confirmation of such a rise at the DESYep
collider HERA@2#, showing however a somewhat milder e
fect and, at the same time, good agreement with Dokshit
Gribov-Lipatov-Altarelli-Parisi ~DGLAP! evolution @3# at
the two-loop level; then the parallel calculation of the ne
to-leading ~NL! BFKL kernel @4,5#, leading to a dramatic
decrease of the effect and to possible instabilities@6–8# of
the leading logs series; finally, the proposal of various re
summation approaches@9–15# and recipes to stabilize th
series in order to provide reliable predictions for proces
with two hard scales and deep inelastic scattering~DIS! type
processes.

The resummation approach proposed by some of
@9–11# and summarized in Sec. II identifies a few physic
QCD effects that lead to large corrections: first, the cr
section dependence on the ratio of the hard scales of
problem, which is constrained by the renormalization gro
~RG! requirement of single-logarithmic scaling violations
the relevant Bjorken variables, second, the occurrence, a
level, of the nonsingular part~in moment space! of the
anomalous dimension, yielding a sizable negative contri
tion; finally, the running coupling effects which modify an
make ambiguous the very notion of a hard Pomeron.

A key effect of the running coupling is that the BFK
evolution drifts towards smaller momentum scales, wh
are more strongly coupled, thus making nonperturba
physics more important at high energies. This means tha
0556-2821/2003/68~11!/114003~36!/$20.00 68 1140
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asymptotically leading PomeronvP @16# is actually a non-
perturbative strong-coupling quantity@17,18#. This feature
can be taken into account by the initial condition in the D
LAP evolution of structure functions, but may be a proble
in the processes with two hard scales~such as Mueller-
Navelet jets@19#, g* g* scattering@20#, etc.! where the per-
turbative hard Pomeron behavior can be observed at inter
diate energies only.

Recently, it has been noticed that the transition to
Pomeron regime is driven, in some small-x models, by a
sudden tunneling effect@21,22# at moderate values o
as(t)log 1/x, so that theb expansion@23# may be needed to
suppress the Pomeron and to identify the hard Pomeron
ponentvs(t) and its diffusion corrections@24,25,8,26# ~here
t5 logk2/L2, wherek is the transverse momentum of th
hard probe, andL5LQCD). Furthermore, the gluon splitting
function is expected to be power behaved in the smax
region too, but with a different exponentvc(t), due to run-
ning coupling effects. Therefore, in a resummed appro
with running-coupling one has to investigate various hig
energy exponents: the hard Pomeron indexvs(t) just men-
tioned, the resummed anomalous dimension singula
vc(t), which are generally different and perturbatively ca
culable, finally the asymptotic PomeronvP which is deter-
mined by the strong-coupling behavior of the model.

The calculation ofvs andvc was performed in the renor
malization group improved~RGI! approach of@11#. The re-
sult was thatvs(t) carries important nonlinear effects, lea
ing to a stable and sizable decrease with respect to
leading-log ~LL ! BFKL value, and thatvc(t) is sizably
smaller thanvs(t) also. However, the method of solution o
the RGI equation used in@11# was best suited for the homo
geneous equation, rather than Green’s function~cf. Sec. II!.
©2003 The American Physical Society03-1
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Therefore, no real estimate of hard small-x cross sections
was really possible.

The purpose of the present paper is to further investig
the RGI approach by providing a numerical calculation ink
and rapidity space of Green’s function and of the correspo
ing splitting function. By then usingk factorization@27# and
the corresponding impact factors@28–31#, this sets the
ground for a full cross section calculation. Here we also p
vide the high-energy exponents and a semianalytical tr
ment of the diffusion corrections. Part of the results of t
paper have been summarized elsewhere@32#.

In order to perform such an analysis, we introduce a
summation scheme slightly different from that proposed
@11#, which turns out to be more convenient for numeric
implementation, and belongs to a class of schemes tha
identical modulo NNLx @and NLO~next-to-leading order! in
Q2] ambiguities intrinsic in the resummation approach. R
call, that—as summarized in the introductory Sec. II—t
RGI approach incorporates leading and next-to-leading
nel information exactly, with some extrav dependence (v is
the Mellin variable conjugated toY; log 1/x) so as to imple-
ment the RG constraints and the resummation of leading
collinear singularities mentioned before. Such requireme
fix the form of thev dependence of the kernel, apart fro
NNL terms, which remain and allow some freedom in t
choice of the resummation scheme.

The exact definition of the kernel and of the resummat
scheme is provided in Sec. III. Stated in words, the m
difference of the present formulation with respect to that
Ref. @11# is that the resummation of the collinear behav
quoted before is obtained here by thev dependence of the
leading kernel, rather than by a string of subleading on
This allows us to include the fullv dependence of the one
loop anomalous dimension in a more direct way, while,
course, leading plus NL kernel information is correctly i
corporated, as in all such schemes.

The detailed investigation of the gluon Green’s functi
with its hard Pomeron behavior and its diffusion correctio
is performed in Sec. IV, by analytical and numerical me
ods. The full numerical evaluation relies on the method
troduced in Ref.@33#. Through the numerical study we ar
able to analyze the border between perturbative and non
turbative Pomeron behavior, at realistic values ofY andas ,
and to extract the leading terms (;bY,;b2Y3) in the expo-
nent of the perturbative part. Such terms can also be ca
lated analytically by theb-expansion method@24,23#. We are
thus able to identify both the hard Pomeron exponent at
derO(b) and its diffusion corrections, and we notice sizab
nonlinear effects which stabilize the intercept, decrease
diffusion effects, and slow down the drift towards the no
perturbative Pomeron regime.

We also provide in Sec. V the resummed splitting fun
tion. At the analytical level, we notice that thev-expansion
method@10,11# allows one to define a resummed charact
istic function which, in the saddle-point approximation, c
be related to the ‘‘duality’’ approach of Ref.@12#, depending
on the choice of the intercept in the latter. Beyond t
saddle-point estimate, the resummed splitting function
evaluated numerically by the method of Ref.@34#, and shows
11400
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a power increase;x2vc(as) in the very small-x region, to-
gether with a shallow dip~compared to the DGLAP result! at
moderately small-x values.

A preliminary discussion of the off-shell photon impa
factors is provided in Sec. VI. Here we show how the resu
mation scheme incorporating collinear leading logs can
extended to the impact factor, and how the latter can
extracted from the result obtained in the recent literat
@31#. We finally summarize and discuss our results in S
VII.

II. RENORMALIZATION GROUP IMPROVED APPROACH

The size of subleading corrections@4,5# to the BFKL ker-
nel K(k,k8) and the ensuing instabilities@6–8# make it man-
datory to understand the physical origin of the large ter
and possibly resum them. In a series of papers@9–11# ~for a
review see Ref.@35#! it was argued that most of the larg
corrections were due to collinear contributions, so as
achieve consistency of high-energy factorization@27# at sub-
leading level@28# with the renormalization group. This re
quires resummation@9# of both the energy-scale-depende
terms of the kernel@5# and of the leading-log collinear loga
rithms @10# for both Q@Q0 andQ!Q0, with Q, Q0 being
the hard scales of the process. In the following we summ
rize the approach of@11#, which incorporates both the reno
malization group requirements and the known exact forms
the leading@1# and next-to-leading@4,5# BFKL kernel. A
resummation for anomalous dimensions within a single c
linear regimeQ@Q0 has been proposed in@12#, and alterna-
tive resummations in@13–15#.

A. k factorization and high-energy exponents

We consider a general process of scattering of two h
probesA andB with scalesQ andQ0 at high center-of-mass
energyAs. We assume that the cross section can be writ
in the following k-factorized form@27#:

sAB~s;Q,Q0!

5E dv

2p i

d2k

k2

d2k0

k0
2 S s

QQ0
D v

hv
A~Q,k!Gv~k,k0!

3hv
B~Q0 ,k0!, ~1!

where hA and hB are dimensionless impact factors whic
characterize the probes and ensure thatuku (uk0u) is of the
order ofQ (Q0), and the gluon Green’s function is define
by

Gv~k,k0!5^ku@v2Kv#21uk0&. ~2!

The functionKv is the kernel of the small-x equation of the
general form

vGv~k,k0!5d2~k2k0!1E d2k8

p
Kv~k,k8!Gv~k8,k0!.

~3!
3-2
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The factorization formula~1! involving two-~Regge!gluon
exchange has been justified up to NL logs level in Ref.@28#
for initial partons and in@29,30# for physical probes. At fur-
ther subleading levels, many~Regge!gluon Green’s functions
contribute to the cross section as well, due to the s-cha
iteration. However, our purpose here is to incorpor
leading-twist collinear behavior, and at that level the tw
gluon contribution is dominant, so that we shall consid
only the contribution~1! in the following.

While k factorization is supposed to be valid foras&v
!1, we shall sometimes extrapolate Eq.~1! to sizable values
of v5O(1) and moderate values ofs, encouraged by the
stability of our resummation, and by the possibility of inco
porating phase-space thresholds in Eq.~1! ~cf. Sec. VI!. It
should be kept in mind that such a region lies outside
validity range of Eq.~1!, so that the extrapolated Green
function loses—most probably—its original meaning as tw
~Regge!gluon propagator.

In writing Eq. ~1!, we have performed the choice of e
ergy scales05QQ0, in terms of which the high-energy ki
nematics shows a simpler phase space, as explained in
detail in Sec. VI. Actually, for intermediate subenergies it
more convenient to introduce as energy variables the sc
products of typen52kmk0

m , which haveukuuk0u as threshold,
so thatukuuk0u/n is a good Mellin variable. Correspondingl
the energy dependence of Green’s function and of the im
factors is defined by (k[uku,k0[uk0u)

G~n,k,k0!5E dv

2p i S n

kk0
D v

Gv~k,k0!

[
1

kk0
G~Y;t,t0!,

S Y[ log
n

kk0
, t[ log

k2

L2D ~4!

and

h~n,Q,k!5E dv

2p i S n

QkD
v

hv~Q,k!. ~5!

In this paper, we are mostly interested in the properties
the two-scale Green’s function and of its high-energy ex
nents. It was pointed out in@11# that, in the improved ap-
proach with running coupling, the high-energy limits
Green’s function and of the collinear splitting functions a
regulated by different indices, which both originate from t
frozen-coupling hard Pomeron exponent. We shall define
index vs(t) by ~cf. Sec. IV C!

G~Y;t,t0!.
1

A2pāsx9Y
expFvsS t1t0

2
DY

1diffusion correctionsG , ās[as

Nc

p
~6!

in the limit vs(t)Y@1 andt.t0@1, and the indexvc(t) by
11400
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xP„ās~k2!,x… →
x→0

x2vc(t)p~ ās!, ~7!

where P„ās(k
2),x… is the resummed gluon-gluon splittin

function ~Sec. V!. The exponentvs in Eq. ~6! used to be
defined as the location of the anomalous dimension singu
ity in the saddle-point approximation. It is now understo
@11#, see also@13#, that this singularity is actually an artifac
of the saddle-point approximation, and that the true anom
lous dimension singularity, located atv5vc(t), causes the
power behavior of the effective splitting function. This resu
has then been confirmed in the alternative resummation
cedures of Refs.@13,36,37#.

Even the definition in Eq.~6! is not free of ambiguities,
due to the occurrence of diffusion corrections to the ex
nent @24,25,8,26#, which rapidly increase withY, and to the
contamination of the nonperturbative Pomeron, which do
nates above some critical rapidity@22,23#.

In the following, both regimest.t0 and t@t0 will be
discussed in detail in the RG-improved approach, by emp
sizing our perturbative predictions and their range of valid

B. Scale changing transformations

Let us note that the symmetrical scale choicen05kk0
performed in Eq.~4! is not the only possible one, and
physically justified only in the casek;k0. This configura-
tion occurs, for example, in the process ofg* g* scattering at
high energy with comparable virtualities of both photo
@20#, forward jet/p0 production in DIS@38#, or production of
two hard jets at hadron colliders@19#. However, in the typi-
cal deep inelastic situation, when one of the scales is m
larger,k@k0 (k0@k) the correct Bjorken variable is rathe
k2/s (k0

2/s). In order to switch to this asymmetric case o
should perform a similarity transformation on the gluo
Green’s function of the form

Gv→S k.

k,
D v

Gv , ~8!

wherek.5max(k,k0) andk,5min(k,k0). The transformation
~8! implies the following change of kernelKv :

Kv~k,k8!→K v
u ~k,k8!5Kv~k,k8!S k

k8
D v

, n05k2,

~9a!

Kv~k,k8!→K v
l ~k,k8!5Kv~k,k8!S k8

k D v

, n05k82,

~9b!

where nowK v
u (K v

l ) means the kernel for the upper-k2

~lower-k82) energy-scale choice.
Our goal is to find a resummed prescription forKv(k,k8)

which takes into account the largeY terms and is consisten
with renormalization group equations. The kernelKv(k,k8)
is not scale invariant, and it can be expanded in powers
the coupling constant as follows:
3-3
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Kv~k,k8!5 (
n50

`

@ās~k2!#n11K n
v~k,k8!, ~10!

where

ās~k2!5
1

b log~k2/L2!
, b5

11

12
2

nf

6Nc
, ~11!

and the coefficient kernelsK n
v(k,k8) are now scale invariant

and additionally carry somev dependence. We shall now se
how the renormalization group constraints onK v

u and K v
l

determine the collinear behavior ofKv .

C. Renormalization group constraints and shift ofg poles

It is important to notice that thev dependence of the sca
invariant kernelsK n

v , present in Eq.~10!, is not negligible
~even for the smallv values being considered! and follows
from the requirement that collinear singularities have to
single logarithmic in both regimesk@k0 and k0@k. If k
@k0, it is simplest to discuss the kernel in its formK v

u , Eq.
~9a!. A leading-logk2 analysis fork@k8 shows that its col-
linear singularities are determined by the nonsingular part~in
v space! A1(v) of the gluon anomalous dimension,

āsA1~v!5ggg~v!2
ās

v
, ~12!

and

A1~v!52 11
12 1O~v! ~Nf50!. ~13!

In contrast the singular partās /v is accounted for by the
iteration of the BFKL equation itself.

To be precise, one has

K v
u ~k,k8!.

ās~k2!

k2
expE

t8

t

d~ logk2!A1~v!ās~k2!

5
ās~k2!

k2 S 12bās~k2!log
k2

k82D 2A1(v)/b

,

~14!

where t5 logk2/LQCD
2 , indeed showing single-logarithmi

scaling violations. A similar reasoning, yields the colline
behavior ofK v

l from Eq. ~9b! with the opposite strong or
dering behaviork8@k, which is relevant in the regimek0
@k.

But K v
u and K v

l are related toKv by the v-dependent
similarity transformations~9a!, ~9b!, so that the latter mus
have the following collinear structure:
11400
e

r

Kv~k,k8!.ās~k2!F 1

k2 S k8

k D vS ās~k2!

ās~k8 2!
D 2A1(v)/b

Q~k2k8!

1
1

k8 2 S k

k8
D vS ās~k2!

ās~k8 2!
D A1(v)/b21

Q~k82k!G .

~15!

In this expression one can see that thev dependence pro
vided by (k, /k.)v is essential, becausek. /k, can be a
large parameter. We also keep thev dependence inA1(v),
in order to take into account the full one-loop anomalo
dimension.

By expanding inbās the renormalization group loga
rithms present in the collinear behavior of Eqs.~14!, ~15!, we
obtain the leading collinear singularities of the coefficie
kernelsK n

v in Eq. ~10!. This implies that, ing space, the
corresponding eigenvalues have the following structure:

xn
v~g!5

1•A1~A11b!•••@A11~n21!b#

S g1
v

2 D n11

1
1•~A12b!A1•••@A12nb#

S 12g1
v

2 D n11 , ~16!

where thev dependence ofA1 is left implicit. Therefore the
position of the g→0(g→1) poles is shifted by2v/2
(1v/2) for the kernel~15! with symmetrical scale choice
n05kk0. Through this shift one is able to resum@9# the
higher-orderg poles of the kernel that are due to sca
changing effects.

In fact, the leading and next-to-leading eigenvalues co
sponding to this symmetrical choice of scale have the col
ear behavior

x0
v~g!.

1

g1
v

2

1
1

12g1
v

2

,

x1
v~g!.

A1~v!

S g1
v

2
D 2 1

A1~v!2b

S 12g1
v

2
D 2 .

~17!

Now, in order to obtain the NLL coefficient@11# in the ās

expansion one has to expand inv the termx0
v(g) to first

order with subsequent identificationv→āsx0
v50, and add

the x1
v50 terms. The result for the NLL eigenvalue in th

collinear approximation then reads
3-4
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x1
coll~g!5F āsx0

v~g!
]x0

v

]v
1x1

vG
v50

52
1

2g3 2
1

2~12g!3 1
A1~0!

g2 1
A1~0!2b

~12g!2 1•••.

~18!

We note that thev-dependent shift has generated cubic po
1/g3,1/(12g)3 which seem to imply double logs, log2k,

2 /k.
2 ,

but are actually needed with the choice of scalekk0 in order
to recover the correct Bjorken variablek.

2 /s. The collinear
terms with A1(v) have instead generated double po
1/g2,1/(12g)2 which correspond to single logs, logk,

2 /k.
2 .

The double and cubic poles atg50 andg51 so obtained
are precisely those of the full NLL~next-to-leading-log!
BFKL kernel eigenvalue. In fact Eq.~18! is a collinear ap-
proximation to the full NLL BFKL kernel eigenvalue@4,5#
which has the following form:

x1~g!52
b

2
@x0

2~g!1x08~g!#2
1

4
x09~g!

2
1

4 S p

sinpg D 2 cospg

3~122g! S 111
g~12g!

~112g!~322g! D
1S 67

36
2

p2

12Dx0~g!1
3

2
z~3!1

p3

4 sinpg

2 (
n50

`

~21!nFc~n111g!2c~1!

~n1g!2

1
c~n122g!2c~1!

~n112g!2 G . ~19!

It turns out that the collinear approximation~18! above
reproduces the exact eigenvalue~19! up to 7%@11,35# accu-
racy whengP]0,1@ . This suggests that the collinear term
are the dominant contributions in the NLL kernel.

In the following, we shall normally incorporate the sh
of g poles in the form

xn
v~g!5xnL

v S g1
v

2 D1xnR
v S 12g1

v

2 D , ~20!

wherexnL
v (xnR

v ) have onlyg→2v/2 (g→11v/2) singu-
larities of the type in Eq.~16!. In this way the collinear
singularities are single logarithmic in both limitsk@k0 and
k0@k, and the energy scale-dependent terms are autom
cally resummed. The modified leading-order eigenvalue
we adopt has the following structure@compare~17!#:

x0
v52c~1!2cS g1

v

2 D2cS 12g1
v

2 D ~21!

in the case of symmetric choice of energy scalen05kk0.
This form of the kernel was considered previously in@39,40#.
It is obtained from the leading-order BFKL kernel by impo
ing the so-called kinematical~or consistency! constraint
11400
s
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ti-
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@41–43# which limits the virtualities of the transverse mo
menta of the gluons in the real emission part of the kern
The origin of this constraint is the requirement that in t
multi-Regge kinematics the virtualities of the exchanged g
ons be dominated by their transverse parts. The NLL con
bution of the resummed kernelx1

v was then@11# constructed
by the requirement that the collinear limit in Eq.~17! should
be correctly reproduced, and the exact form of the NL ker
~19! should also be obtained.

The final NLL eigenvalue function proposed in@10,11#
reads

x1
v~g!5x1~g!1

1

2
x0~g!

p2

sin2pg

2A1~0!c8~g! 2@A1~0!2b#c8~12g!

1A1~v!c8S g1
v

2 D1@A1~v!2b#c8S 12g1
v

2 D
2

p2

6
@x0~g!2x0

v~g!#. ~22!

The first line is the original NLL termx1(g) with the sub-
traction of the cubic poles which come from the changes
the energy scale and which are resummed by the lead
order v-dependent kernel~21!. The second and third line
contain shifted collinear double poles, and finally the la
line contains the shifted single poles which additionally a
pear as an artifact of the resummation procedure.

D. v expansion and collinear resummation

In the present paper we choose a form of the improv
kernel that differs somewhat from that of Ref.@11#—quoted
in Eqs.~21!, ~22!—by using the possibility of translating pa
of the as dependence in Eq.~10! into additionalv depen-
dence. Actually, it was pointed out in@10,11# that, at high
energies,v is a more useful expansion parameter th
as(k

2), the relation being given roughly byv.āsx0, as
noticed already in connection with Eq.~18!.

The v expansion is a systematic way of solving the h
mogeneous equation

~v2Kv!Fv~k!50, ~23!

whereKv is given by Eq.~10!, by theg representation

Fv~ t !5E dg

2p i
egt2(1/bv)Xv(g), ~24!

in which xv(g)5Xv8 (g) satisfies a nonlinear integrodiffer
ential equation equivalent to Eq.~23!. The latter is derived
by using the representationt→2]g in Eq. ~10!, and is given
by @11#

xv~g!5x0
v~g!1S v

xv2bv]g
Dx1

v1S v

xv2bv]g
D 2

x2
v1•••.

~25!
3-5
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Approximate solutions to Eq.~25! can be obtained either b
truncating at, say, NL level~i.e., settingx25x35•••50) or
by expanding in thev parameter to all orders. The latte
procedure yields the solution@10,11#

xv~g!5x0
v~g!1v

x1
v~g!

x0
v~g!

1v2
1

x0
v~g!

Fx2
v~g!

x0
v~g!

1bS x1
v

x0
vD 8

2S x1
v

x0
vD 2G1•••, ~26!

and amounts to replacing the kernelKv by an effective ker-
nel ās(k

2)K v
eff , where K v

eff is scale invariant. The corre
sponding characteristic functionxv(g) in Eq. ~26! is—very
roughly—obtained by the replacementās→v/xv in Eq.
~10!, so that indeedv plays the role of a new expansio
parameter. A virtue of the expansion~26! is that it contains
simple ~leading! collinear poles only, because the doub
poles left inx1

v after thev shift are canceled by the denom
nators.

The v expansion is particularly useful for the resumm
tion of the leading collinear singularities of Eqs.~15! and
~16!. Suppose we first takeās frozen~limit b50). Then, the
leading poles of Eq.~16! have approximately the factorize
form

xn
v.x0

v~xc
v!n, xc

v5
A1~v!

g1
v

2

1
A1~v!

12g1
v

2

~27!

~valid for g1v/2.0 or 12g1v/2.0), so that the re-
summed behavior~15! reads

Kv. (
n50

`

āsK0
v@āsKc

v#n5āsK0
v~12āsKc

v!21. ~28!

Exactly the same result can be obtained by thev expansion
~26! truncated at the NL level, by settingx1

v/x0
v.xc

v , and
thus considering the kernel

K̃v5ās~K0
v1vKc

v!. ~29!

In fact, the resolvent of the latter is given by

G̃v[@v2K̃v#21.~12āsKc
v!21

3@v2āsK0
v~12āsKc

v!21#21, ~30!

and is then proportional to Green’s function of the resumm
kernel ~28!.

In other words, leading-log collinear singularities a
equivalently incorporated by a string of subleading kern
@as in Eq.~28!# or by a NL contribution of the order ofāsv
@as in Eq. ~29!#1—apart from a redefinition of the impac

1That is thev expansion successfully reproduces the collin
anomalous dimension even in the region wherev is not small.
11400
-

-

d

s

factors. In the realistic case with running coupling it
straightforward to check thatb dependence only remains i
the first term of thev expansion~26!

xv~g!.x0
v1vS A1

g1
v

2

1
A12b

12g1
v

2
D 1•••, ~31!

whereas it cancels out in all remaining subleading term
Therefore, in order to incorporate the leading-log colline
behavior in the form~31! we can set, for instance,

K̃v5ās~q2!K0
v1vās~k.

2 !Kc
v1NLL, ~32!

as an improved leading kernel. Here we assume that the s
for ās in the leading BFKL part is provided by the mome
tum of the emitted gluonq5k2k8, as suggested by th
b-dependent part of the NLL eigenvalue in Eq.~19!, which
corresponds to the kernelb(1/q)2log(q2/k2)uReg ~see @5#!
and—viav expansion—to theb term in Eq.~31!. A simpli-
fied version of Eq.~32! without the NLL term and with one
collinear term~for g→0) was used in@43# for a phenomeno-
logical analysis of the structure functions.

Note that if we take literally thev expansion~26! with
the choice of NLL term~22!, then x1

v/x0
v would coincide

with xc
v close to the collinear poles, but would be different

detail away from them, and would actually contain spurio
poles at complex values ofg due to the zeroes ofx0

v(g).
Such poles cancel out if the fullv-expansion series~26! is
summed up, but are present at any finite truncation of
series, thus implying poor convergence of the solution wh
everg values close to the spurious poles become import
For this reason in this paper we prefer to resum collin
singularities by the improved kernel~32!, which contains
only collinear poles. Furthermore, the NLL term needed
complete Eq.~32!—to be detailed in the next section—turn
out to have only simple~leading! collinear poles, because th
running-coupling terms have been already included in
q2-scale dependence of the running coupling. Therefore,
full kernel has the same virtues as Eq.~26! in the collinear
limit and, lacking spurious poles, is more suitable for n
merical iteration.

III. FORM OF THE RESUMMED KERNEL

A. Next-to-leading coefficient kernel

We have still to incorporate in our improved kernel th
exact form of the NLL result@4,5# in the scheme of theās
expansion, i.e., Eq.~32!. We choose to start from the leadin
kernel in Eq.~32! which incorporates both the collinear re
summation and the running-coupling effects due to
choice of scaleq2. The full improved kernel then has th
form

K̃v5ās~q2!K0
v1vās~k.

2 !Kc
v1ās

2~k.
2 !K̃1

v , ~33!
r

3-6
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wherek.5max(k,k8), k,5min(k,k8), andK̃1
v is determined

below.
We recall that the Mellin transform of the collinear pa

Kc
v , defined by

xc
v~g!5

A1~v!

g1
v

2

1
A1~v!

12g1
v

2

, ~34!

leads to the expression

Kc
v~k,k8!5

A1~v!

k.
2 S k,

k.
D v

. ~35!

One can match the above prescription to the standard ke
at NLL order by expanding inv and inbās to first order

K̃v.ās~k2!~K0
01vK0

11vKc
0!1ās

2~K̃1
01K0

run!, ~36!

where we have defined

Kc
0[Kc

v50, K j
0[K j

v50 ,

K j
1[

]K j
v

]v
U

v50

, x0
run~g!52

b

2
~x081x0

2!,

~37!

by noting that the running-coupling term has the form@see
Eqs.~89!, ~90! and the Appendix#

K0
run~k,k8!52bF log

q2

k2
K0~k,k8!G

Reg

. ~38!

By substituting the expression~36! into Eq.~1! we obtain the
relationship with the customary BFKL Green’s function

@v2K̃v#215@12ās~K0
11Kc

0!#21

3@v2ās$K01āsK11O~ ās
2!%#21, ~39!

whereK0 and K1 are LL and NLLv-independent kernels
The two expressions will match provided we identify

K05K0
0 , K̃1

05K12K0
0~K0

11Kc
0!2K0

run, ~40!

and we properly redefine the~so far unspecified! impact fac-
tors ~see Sec. VI!. Thus the termK̃1

0 in Eq. ~40! corresponds
to the customary NLL expression~19! with subtractions.

In g space the subtracted NLL eigenvalue function wh
corresponds toK̃1

v has the following form:

x̃1~g!5x1~g!2x0
0~g!@x0

1~g!1xc
0~g!#2x0

run~g!

5x1~g!1
1

2
x0~g!

p2

sin2~pg!
2x0~g!

A1~0!

g~12g!

1
b

2
~x081x0

2!. ~41!
11400
el

The subtractions cancel the triple poles~due to change of
energy scales! and the double poles~from the nonsingular
part of the anomalous dimension!. Therefore the resulting
kernel x̃1 contains at most single poles atg50,1. Equation
~33! together with the eigenvalues~21!, ~34!, and~41! gives
a complete prescription for the resummed model. This n
formulation is identical to the previousv expansion@10,11#
near the collinear poles. It has the advantage that it can
easily transformed into the (x,k2) space~it is free of ratios in
g space, such asx1 /x0) and avoids the spurious poles th
were present in Eq.~26!.

Note that the choice of scale inās in the first term in Eq.
~33! is determined by the form of the NLL part. Any chang
of scale in this term would correspond to the change of N
terms proportional tob. The scale for the collinear parts i
chosen to match the standard DGLAP formulation wher
in the NLL part is purely conventional, and its change wou
be of the NNLL ~next-to-next-to-leading-log! order. In the
following, in order to study the dependence on renormali
tion scale uncertainties, we introduce the quantityxm and
generalize Eq.~33! as follows:

Kv5@ās~xm
2 q2!1bās

2logxm
2 #K0

v1v@ās~xm
2 k.

2 !

1bās
2logxm

2 #Kc
v1ās

2~xm
2 k.

2 !K̃1
v . ~42!

B. Form of the kernel in „x,k2
… space

We define the resummed kernel in (x,k2) space as the
~integrated! inverse Mellin transform ofK̃v :

K̃~z;k,k8![E dv

2p i
z2v

1

v
K̃v~k,k8!, ~43!

where the real variablez can assume values betweenx and 1.
The subtractions of Eq.~41! are translated into (x,k2)

space to give

1

2
x0~g!

p2

sin2~pg!
→ 1

4uk22k82u

3F log2
k82

k2
14 Li2S 12

k,
2

k.
2 D G ,

2x0~g!
A1~0!

g~12g!
→2A1~0!sgn~k22k82!

3F 1

k2log
uk22k82u

k82

2
1

k82
log

uk822k2u

k2 G ,

1

2
@x0

2~g!1x08~g!#→F 1

q2log
q2

k2G
Reg

, ~44!
3-7
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where the dilogarithm function is defined to be

Li2~w!ª2E
0

wdt

t
log~12t !, Li2~1!5

p2

6
. ~45!

In (x,k2) space the symmetric shift is translated into t
symmetric kinematical constraint which has to be impos
onto the real emission part of the BFKL and also into t
collinear nonsingular DGLAP terms:

kz,k8,
k

z
~46!

@in the following we denote the imposition of the kinematic
constraint onto the appropriate parts of the kernel by
superscript kc, i.e.,K0

kc(k,k8)].

The final resummed kernelK̃(z;k,k8) is the sum of three
contributions:

E
x

1dz

z E dk82K̃~z;k,k8! f S x

z
,k8D

5E
x

1dz

z E dk82@ās~q2!K0
kc~z;k,k8!1ās~k.

2 !Kc
kc~z;k,k8!

1ās
2~k.

2 !K̃1~k,k8!# f S x

z
,k8D . ~47!

The different terms are as follows.
is

11400
d

l
e

~a! Leading-order~LO! BFKL with running-coupling and
consistency constraint (q5k2k8)

E
x

1dz

z E dk82@ās~q2!K0
kc~z;k,k8!# f S x

z
,k8D

5E
x

1dz

z E d2q

pq2
ās~q2!F f S x

z
,uk1qu DQS k

z
2k8D

3Q~k82kz!2Q~k2q! f S x

z
,kD G . ~48!

~b! Nonsingular DGLAP terms with consistency co
straint

E
x

1dz

z E dk8 2ās~k.
2 !Kc

kc~z;k,k8! f S x

z
,k8D

5E
x

1dz

z E(kz)2

k2 dk82

k2
ās~k2!z

k

k8
P̃ggS z

k

k8
D f S x

z
,k8D

1E
x

1dz

z Ek2

(k/z)2 dk82

k8 2
ās~k82!z

k8

k
P̃ggS z

k8

k D f S x

z
,k8D .

~49!

~c! NLL part of the BFKL with subtractions included
E
x

1dz

z E dk8 2ās
2~k.

2 !K̃1~k,k8! f S x

z
,k8D5

1

4Ex

1dz

z E dk82ās
2~k.

2 !HS 67

9
2

p2

3 D 1

uk822k2u
F f S x

z
,k82D2

2k,
2

~k821k2!
f S x

z
,k2D G

1F2
1

32H 2

k82
1

2

k21S 1

k82
2

1

k2D logS k2

k82D J 1
4 Li2~12k,

2 /k.
2 !

uk822k2u

24A1~0!sgn~k22k82!S 1

k2log
uk822k2u

k82
2

1

k82
log

uk822k2u

k2 D
2F31S 3

4
2

~k821k2!2

32k82k2 D G E
0

` dy

k21y2k82
logU11y

12yU1 1

k821k2

3H p2

3
14 Li2S k,

2

k.
2 D J G f S x

z
,k8D J1

1

4
6z~3!E

x

1dz

z
ās

2~k2! f S x

z
,kD . ~50!
The nonsingular splitting function in the DGLAP terms
defined as follows:

P̃gg5Pgg2
1

z
, ~51!

where we take
Pgg5
12z

z
1z~12z!1

z

~12z!1
1

11

12
d~12z! ~52!

~we only consider purely gluonic channel,nf50). Also we
note that the argument of the splitting functionP̃ has to be
3-8
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RENORMALIZATION GROUP IMPROVED SMALL-x . . . PHYSICAL REVIEW D68, 114003 ~2003!
shifted in Eq.~49! in order to reproduce the correct colline
limit when the kinematic constraint (kz,k8,k/z) is in-
cluded. This follows from the inverse Mellin transform o
Eq. ~35!,

Kc
kc~z;k,k8!5E dv

2p i

A1~v!

k.
2 S k,

k.
D v

z2v

5
1

k.
2 S z

k.

k,
D P̃S z

k.

k,
D . ~53!

In other words the correct variable in the splitting function
modified by the ratio of two virtualities in the case when t
kinematical constraint is included

z→z
k

k8
,1 for k8,k,

z→z
k8

k
,1 for k,k8. ~54!

C. Choice of scheme

The prescription formulated above for the kernel eige
value ~41! is free of double and cubic poles ing50 ~and
g51), however there are still some residual single po
These poles come from the constant terms from the exp
sion of subtractionx0

11xc
0 aroundg50 (g51). Expanding

this subtraction aroundg50 one obtains

2x0
0~x0

11xc
0!52x0

0F2
1

2g2 2
p2

6
1

A1~0!

g
1A1~0!

1O~g!G , ~55!

therefore there appear additional singular terms,

Fp2

6
2A1~0!G 1

g
, ~56!

in the subtracted kernelx̃1
0 which are not shifted. Further

more, the term~56! contributes to the two-loop anomalou
dimension, together with the constant term arising from
leading kernel as follows

x0
v1vxc

v.
11vA1

g1
v

2

2vC~v!1OS g1
v

2 D , ~57!

where

C~v!52
A1~v!

v11
1

c~11v!2c~1!

v
,

C~0!5
p2

6
2A1~0!. ~58!
11400
-

.
n-

e

By combining Eq.~56! with Eq. ~57! we would get the con-
tribution

Dg (2)5
ās

2

v
C~0!2āsC~v!g (1)

.
ās

2

v
@C~0!2C~v!$11vA1~v!%#, ~59!

where g (1)5ās@11vA1(v)#/v is the DGLAP anomalous
dimension in the leading order. The expression~59! violates
the momentum sum ruleDg (2)(v51)50.

We thus consider two possible forms of subtraction. In
first scheme A we add and subtract from the NLL part t
term proportional toC(0) in the following way:

x̃1~g!→x̃1
v~g!5x̃1~g!2C~0!x0~g!1C~0!x0

v~g!,
~60!

which leads to the following modification of the kernel
(x,k2) space

E
x

1dz

z E dk82$ās~q2!K0
kc~z;k,k8!1ās~k.

2 !Kc
kc~z;k,k8!

1ās
2~k.

2 !@K̃1~k,k8!1C~0!K0
kc~z;k,k8!

2C~0!K0~k,k8!#% f S x

z
,k8D . ~61!

This scheme satisfies general RG constraints, but cont
the anomalous dimension~59! and violates the momentum
sum rule.

In the second scheme B we shall consider a modifica
which adds the shifted pole to the NLL kernel with th
v-dependent coefficient@11vA1(v)#

x̃1~g!→x̃1
v~g!5x̃1~g!2S 1

g
1

1

12g DC~0!

1S 1

g1
v

2

1
1

11
v

2
2gD C~v!

3@11vA1~v!#. ~62!

It is straightforward to check that in this case the two-lo
anomalous dimension vanishes,2 due to a cancellation be
tween the pole term~62! and the constant term in Eq.~57!.
Therefore, scheme B satisfies energy-momentum conse
tion.

2We use here a generalization of theQ0 scheme@44#. We do not
try to include the known two-loop expression in theMS scheme
because it is subject to a scheme change and to kernel ambig
which are not fully understood yet.
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The change in the resummed kernel in (x,k2) space cor-
responding to scheme B is obtained by inverse Mellin tra
form of Eq. ~62! and is given by

E
x

1dz

z E dk82$ās~q2!K0
kc~z;k,k8!1ās~k.

2 !Kc
kc~z;k,k8!

1ās
2~k.

2 !K̃1~k,k8!% f S x

z
,k8D2E

x

1dz

z

3H C~0!F E
0

k2 dk82

k2
ās

2~k2! f S x

z
,k8D
ep
r

ca
f-
is

al
-
im
e
an
hi
i

lo

ls

11400
- 1E
k2

` dk82

k8 2
ās

2~k82! f S x

z
,k8D G

2F E
(kz)2

k2 dk82

k2
ās

2~k2!z
k

k8
S2S z

k

k8
D f S x

z
,k8D

1E
k2

(k/z)2dk82

k8 2
ās

2~k82!z
k8

k
S2S z

k8

k D f S x

z
,k8D G J , ~63!

with the functionS2(z) given by
S2~z!5
1

144z H 132124p21z@2541124p2172z~113z!#2144 logS 211
1

zD logS 1

zD
112F log~12z!@2122z$231z~21518z!%212~11z!log~12z!#112z logS 211

1

zD logS 1

zD
12z@11z~22115z!26 log~12z!# log~z!26~2112z!log2~z!G1144~211z!

3H Li2~z!1
1

2
logS 1

zD logF z

~12z!2G2
p2

6 J 2144~112z!Li2~12z!J . ~64!
es-
po-
d

ted
e
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on-
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n’s
ent
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e

Note that whatever scheme we choose,K̃1 contains
higher-twist poles~at g521,22, . . . and g52,3, . . . ),
which are not shifted. In the calculations that follow we ke
these poles unshifted independently of the choice of ene
scale. This means that calculations of Green’s function
ried out with different energy-scale choices will formally di
fer at NNLL level. In practice, however, we find that th
energy-scale dependence is very small.

IV. CHARACTERISTIC FEATURES OF THE RESUMMED
GREEN’S FUNCTION

We shall first investigate the features of the two-sc
Green’s function3 G(Y;k2,k0

2) based on the form of the re
summed kernel just proposed. In the perturbative reg
k2,k0

2@LQCD
2 with vs(k

2)Y large we have both perturbativ
contributions, leading to the hard Pomeron exponent,
nonperturbative ones, due to the asymptotic Pomeron, w
is sensitive to the strong-coupling region. It was noticed
@21,22# that the hard Pomeron dominates for energies be
a certain thresholdās(k

2)Y,1/bvP beyond which there is a
tunneling transition to the nonperturbative regime. It has a
been noticed@23# that in the formal limitb→0 with ās(k

2)

3In Secs. IV and V we remove for simplicity thẽsymbols used

before to denote RGI quantities in our present scheme.
gy
r-

e

e

d
ch
n
w

o

fixed the Pomeron is suppressed as exp(21/bās), so that one
can define a purely perturbative Green’s functions and inv
tigate the diffusion corrections to the hard Pomeron ex
nent. In the following, we use theb expansion up to secon
order, so as to obtain the exponentvs(t) and the additional
parameters occurring in the diffusion corrections predic
by our improved small-x equation. Furthermore, we analyz
the perturbative-nonperturbative interface numerically so
to estimate, as a function of logQ2, the critical rapidity be-
yond which the nonperturbative Pomeron takes over.

Since the perturbative rapidity range turns out to be c
siderably extended with respect to LL expectations, we s
be able to extract numerically the full perturbative Gree
function and among other things its high-energy expon
and diffusion corrections to it.

A. Frozen-coupling features

Let us first consider the features ofG(Y;t1 ,t2) in the limit
of frozen couplingās5ās(k0

2), i.e.,b50. In such a case the
kernel Kv becomes scale invariant, but the solution to E
~3! is still nontrivial, due to thev dependence which com
plicates theY evolution, it no longer being purely diffusive
In fact, the characteristic function becomes

āsxv~g,ās!5ās~x0
v1vxc

v!1ās
2x̃1

v , ~65!

and the importantv values, corresponding to the pole of th
resolvent, are defined by
3-10
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v5āsxv~g,ās!, ~66!

whose solution at fixedg we denote by

FIG. 1. vs as a function ofas for different subtraction scheme
together with the original result for thev expansion. The calcula
tion is done in the fixed-coupling case.
11400
v5āsxeff
(0)~g,ās!, ~67!

the superscript~0! referring to theb50 limit. The effective
characteristic function~67! so defined has the interpretatio
of a BFKL-type eigenvalue reproducing the pole~66!. As
such, it can be compared, at least for frozen coupling, to
analogous quantity defined in the duality approach of R
@12#. It provides information about the hard Pomeron exp
nent and the diffusion coefficientD5xm9 /2xm . In Fig. 1 we
compare the results for the exponentvs as a function ofas
calculated in the case of fixed coupling for schemes A, B a
the originalv-expansion method presented in@10,11#. The
critical exponent is obtained by evaluating the effective k
nel eigenvalue at the minimum

vs
(0)5āsxeff

(0)~gm ,ās!. ~68!

All resummed results for the intercept are significantly
duced in comparison with the LL result and they all gi
stable predictions even for large values ofās . As we see
from the plot, the changes of resummation procedure as
as subtraction scheme do not significantly influence the
ues of vs . They give at most 20% change at the highe
as.0.35. In Fig. 2 we show the effective kernel eigenval
as a function ofg. We have considered here the asymmet
FIG. 2. āsxeff(g,ās) as a function ofg in different schemes for different values ofas : as50.1 ~dash-dotted line!, as50.2 ~solid line!,
as50.3 ~dashed line!. The calculation is done in the fixed-coupling case.
3-11
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v shift, which corresponds to the upper energy-scale cho
n05k2. In this case it is easy to show that close tog50 the
effective eigenvalues from scheme B and the originalv ex-
pansion@11# satisfy the momentum sum rule. This is illu
trated in Fig. 2 by the fact thatāsxeff(g50,ās)51 for all
values ofās in these schemes. This can be seen by expa
ing aroundg50, where we have

xv~g,ās!}
11vA1~v!

g
, ~69!

which for g50 givesvA1(v)521, which has the solution
v51. Note that a second fixed intersection point of curv
with different as occurs atg52. This is expected from
energy-momentum conservation4 in the collinear regimeQ0

2

@Q2, because of a behavior similar to Eq.~69! around the
shifted pole 11v2g50. This intersection has no counte
part in the approach of Ref.@12#.

We also examine the second derivativexeff9 (g,ās) which
controls the diffusion properties of the small-x equation, Fig.
3. As we see from the plot, the second derivative is m
model dependent than the interceptvs , though the two mod-
els A and B presented in this paper give quite similar
swers. The value of the second derivative will influence
diffusion corrections to the hard Pomeron, as we shall se
Sec. IV C, and also the transition of the solution to the n
perturbative regime.

4Such an intersection occurs in scheme A also~where momentum
conservation is not satisfied! as an artifact of the collision of the
shifted pole atg511v with the unshifted one atg52.

FIG. 3. x9(gm ,ās) as a function ofas for two different subtrac-
tion models and thev-expansion scheme.
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B. Numerical methods for solution

In this section we are going to investigate in detail t
shape of the solutions to the integral equation5 with the re-
summed kernel given in Secs. III B and III C. To this aim w
solve numerically the following integral equation.6

G~Y;k,k0!5G(0)~k,k0!Q~Y!1E
0

Y

dyE
kmin

kmax
dk82

3K~Y2y;k,k8!G~y;k8,k0!, ~70!

with @so as to have the same normalization as in Eq.~3!#,

2pk0
2G(0)~k,k0!5dS log

k

k0
D . ~71!

We use the method of iterations and discretized kernel s
lar to that introduced in@33#. More precisely in our problem
@see Eq.~47!# we can rewrite the kernel in the following
way:

K~Y2y;k,k8!5(
a

Ka~Y2y;k,k8!

5(
a

Ka~k,k8!Pa~Y2y!

3QRS Y2y2maxS log
k

k8
, log

k8

k D D ,

~72!

where the indexa enumerates different terms in Eq.~47!
~that is, LL BFKL, LL DGLAP, and the different component
of NLL BFKL with subtractions!, each of which factorize
into transverse and longitudinal parts.Pa are the singular
and nonsingular pieces of the splitting function as well as
subtraction termsS2(x). The additionalQR stands for the
kinematical constraint, applied to all terms that in Mell
space have anv shift.

To find the solution numerically one introduces a grid
rapidity Y and logarithm of momentum,t5 logk/k0, with
small spacings,DY and Dt, respectively. The solution is
then calculated at the grid points. Linear interpolation giv
the values of the solution in the points between the node
the grid

G~Y;k,k0!5(
i

(
j

f i~Y!c j~k!G~Yi ;kj ,k0!, ~73!

wheref i(Y) and c j (k) are the appropriate basis function
for linear interpolation. To find the solution forG Eq. ~70! is

5An interesting iterative method of solution to the NLL BFK
equation has been recently proposed@45#. By using this method it is
possible to solve the equation directly in (x,k) space and keep the
full angular dependence.

6Here we change slightly the notation in the first argument ofK,
writing log 1/z5Y2y instead ofz.
3-12
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solved by a method of evolution in rapidity. In a first ste
one takes G(Y050;km ,k0)5G(0)(km ,k0) and estimates
G(Y1 ;km ,k0) at the next point of the grid,Y15DY, using
the integral Eq.~70!. This gives a first approximated valu
for G(Y1 ;km ,k0). This function is then again used in E
~70! to calculate the next approximation. Usually a few ite
tions are sufficient to find an accurate answer~typically 5
28). After obtainingG(Y1 ;km ,k0) with the desired accu
racy one proceeds to calculate the solution on the next p
of the grid Y252DY and so on. The procedure is then r
peated for all points of the grid in rapidityYn5nDY.

The procedure presented above requires numerous e
ations of the right-hand side of Eq.~70!. Given the fact that
we have two convolutions iny andk8, with the complicated
kernelK, such a procedure can be quite time consuming

In order to speed up the calculation one can discretiz
k8 the kernelsKa and iny the functionsPa using the basis
functions in the following form:

Km,i
(a)5E dk82Ka~km ,k8!c i~k8!,

Pn2 j
(a) 5E dyPa~Yn2y!f j~y!, ~74!

where we have used the fact that the functionsPa depend
only on the differenceYn2y which—together with the linea
interpolation—results in a one-dimensional vectorP instead
of a matrix. One can simplify the treatment of theQR func-
tion in Eq. ~72! by using the same grid spacing iny and in
logk, Dy5Dt ~or for energy-scale choicen05k2, Dy
52Dt). After the discretization procedure, the convoluti
on the right-hand side in Eq.~70! @and using~72!# can be
then represented as a multiplication as follows:

E dyE dk82Ka~Yn2y;km ,k8!G~y;k8,k0!

5(
i 50

i max

(
j 50

n2um2 i u

Pn2 j 2um2 i u
(a) Km,i

(a)G~yj ;ki ,k0!, ~75!

so that in practice all the integrations present in Eq.~70! are
performed once before the evolution, and then only the m
tiplications of kernel matrices and gluon Green’s functi
vectors are done during the iterations.

Of course, in a numerical analysis one is not able to
exact distributions—in particular, for thed function in k as
an initial condition, see Eq.~3!. In practice what is done is to
set to 1/Dt one point on the fine grid, i.e.
2pk0

2G(0)(km ,k0)5(1/Dt)dm0, whereDt is the grid spac-
ing in logk. The resulting Green’s function will be finite in
theY50 limit but dependent on the size of the grid spacin
We illustrate this effect in the upper set of curves of Fig.
where we have solved Eq.~70! with the kernel in LL ap-
proximation with three different grid spacingsDt
50.05,0.1,0.2. One might be worried by the apparently s
stantial dependence on the choice of the grid spacingDt.
However this is just a consequence of the grid-depend
discretization of the initiald function and disappears whe
11400
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one convolutes the gluon Green’s function with some smo
impact factor. We will therefore consider from now on
slightly asymmetric choice of scales,G(Y;t0 ,t01e) with e
50.2. In the lower set of curves of Fig. 4 one sees that
dependence on the grid spacing in this case is relativ
small. For the remaining plots in this paper we have us
Dt50.1 or smaller.

C. Basic features of Green’s function

Let us now discuss the properties of the gluon Gree
function obtained with the method discussed above. We s
use a one-loop coupling withnf54, normalized such tha
ās(9 GeV2)50.244.7 The coupling is cutoff at scalek̄
50.74 GeV—a detailed analysis of the sensitivity to th
regularization is postponed to Sec. IV D. In the kernel,
the time being we considernf50, since our single-channe
RGI approach does not properly account for the quark se
~however we will see below that simply varyingnf in the
kernel has only a small effect!.

Results will be given for LL evolution@with ās(q
2)]; our

two resummation schemes, A and B; and two variants
‘‘pure’’ NLL evolution: one, labeled ‘‘NLL as(q

2),’’ where
the kernel isās(q

2)K01ās
2(k.

2 )K1
b50 , with K1

b50 corre-
sponding to Eq.~19! without the first term in square brack
ets, and another, labeled ‘‘NLLas(k

2),’’ where the kernel is
ās(k

2)K01ās
2(k2)K1, andK1 corresponds to Eq. 19 in full

Figure 5 shows Green’s functionsG(Y;k01e,k0) as a
function of rapidityY and Fig. 6 showskk0G(Y;k,k0) as a
function of k for Y510. To aid legibility, each figure ha
been separated into two plots, the left-hand one~a! showing

7As one obtains, roughly, by runningas(Mz
2)50.118 down to

9 GeV2, taking into account flavor thresholds and the two-loopb
function.

FIG. 4. Gluon Green’s function as a function of rapidityY for
three different grid spacingsDt50.05,0.1,0.2. LL evolution is used

with a fixed coupling,ās50.2; e.0.2k0.
3-13
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FIG. 5. Gluon Green’s functionG(Y;k01e,k0) as a function of rapidityY: ~a! for LL and the two RGI schemes A and B;~b! for scheme
B and two variants of pure NLL evolution. The parameters arek0520 GeV ande.0.2k0.
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LL and schemes A and B, while the right-hand one~b! shows
the two pure NLL curves and scheme B. We choose a m
erately high value for the initial transverse scale,k0

520 GeV, ās(k0).0.15, so as to be able to focus on t
perturbative aspects of the problem~nonperturbative effects
are formally suppressed by powers ofL2/k0

2). Such a scale
has been used for BFKL dijet studies at the Tevatron@46#.

A number of features of Fig. 5a are worth commentin
Most noticeable is the significant reduction in the hig
energy growth of Green’s function when going from LL ev
lution to our resummed schemes A and B. This is as expe
from the discussion of high-energy exponents, Fig. 1. A
important is the fact that for the RGI schemes the hig
11400
d-

.
-

ed
o
-

energy growth does not start until a rapidity of about 4. T
is partly due to the slow opening of small-x phase space@47#
implicit in our v-shifting procedure. Both of these observ
tions are relevant to the problem of trying to reconcile the
retical predictions with the lack of experimental evidence
a strong high-energy growth of cross sections at today’s
ergies. The small difference between the two RGI resumm
tion schemes, A and B, is in accord with their slightly diffe
ent vs values~cf. Fig. 1!.

As regards the transverse momentum dependence
Green’s function, Fig. 6a, there are a number of further d
ferences between the LL and RGI results. The higher ove
normalization for LL evolution is just a consequence of
n
FIG. 6. Gluon Green’s function 2pkk0G(Y;k,k0) at rapidityY510 as a function of the transverse scalek. The sets of kernels used i
plots ~a! and ~b! are the same as in Fig. 5.
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largervs value. But one also sees that the large-k tails for the
resummed models are substantially steeper than in the
case. This can be understood by comparing the diffusion
efficients in these models: the RGI models are character
by a smallerxeff9 and, as a consequence, they have less
fusion than in the LL case. As was the case for theY depen-
dence, the two RGI schemes give very similar results, h
differing essentially only in the normalization.

Some comments are due concerning the structure at
k: there, there is a component of the evolution that is se
tive to the larger coupling,as(1 GeV2).0.4. For the LL
case the resulting stronger evolution~than atk0

2) overcom-
pensates the suppression due to the large ratio of scalesk0 /k,
leading to the absence of a decreasing low-k tail. For the
RGI schemes the difference betweenvs values at 1 GeV and
k0 is not sufficient to bring about this overcompensation
Y510, so there still is a decreasing tail for smallk. However
the results are sensitive to the fact that at largeas the differ-
ence betweenvs values for the two schemes becomes no
negligible. This is what causes the low-k Green’s function to
be almost three times larger for scheme A than scheme
should of course be kept in mind that all the properties at
k are strongly dependent on the particular choice of infra
regularization of the coupling.

Let us now examine the right-hand plots of Figs. 5 and
which show results with pure NLL evolution. We recall th
the original motivation for introducing RGI resummatio
schemes was the large size of the NLL corrections, and
particular, the fact that for moderate values of the coupl
the NLL terms change the sign ofx(g) and its second de
rivative aroundg51/2, with the situation being even wors
in the collinear region. Nevertheless, as was pointed ou

Ross@7#, because of the change of sign ofx9( 1
2 ), the usual

saddle point atg5 1
2 is replaced by two saddle points off th

real axis, atg51/21 in0 and 1/22 in0* , and it is the value of
x at these new saddle points that determines the high-en
behavior of the~fixed-coupling! NLL Green’s function:

pkk0G~Y;k,k0!5E dg

2p i
eāsYx(g)S k2

k0
2D g21/2

;eāsYx(1/21 in0)S k2

k0
2D in0

1eāsYx(1/22 in0* )S k2

k0
2D 2 in0*

. ~76!

Sincex(g)5x* (g* ) this gives

pkk0G~Y;k,k0!;expH āsYRFxS 1

2
1 in0D G

2I@n0# log
k2

k0
2J cosH R@n0# log

k2

k0
2

1āsYIFxS 1

2
1 in0D G J . ~77!
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Whenx1(g) is symmetric ing↔12g, as is the case if we
useas(q

2) in the LL term ~or as can be achieved with th
modified Mellin transform suggested in@4# and used in@7#!,

then āsx( 1
2 1 in0) is real, having a value of about 0.2. On

therefore expects to find a high-energy growth of Gree
function that numerically is not so different from that wit
out RGI resummed schemes. This is precisely what is
served in Fig. 5b for the NLLas(q

2) result.
On the other hand ifx1(g) is not symmetric ing↔1

2g thenx will be complex at the saddle points. This is th
case for the NLLas(k

2) kernel and the change in sign o
Green’s function aroundY518 can be understood as a dire

consequence of a zero of Eq.~77! when āsYI@x( 1
2 1 in0)#

5p/2.
The oscillatory behavior of Eq.~77! also becomes an is

sue whenkÞk0, as is visible in Fig. 6~b!. For NLL evolution
with as(q

2) the change of sign intervenes only for ratios
k/k0 that are fairly small or large from a phenomenologic
point of view ~at least for Mueller-Navelet org* g* -type
processes!. For evolution withas(k

2) the situation is more
dramatic because of the sum of terms in the argument of
cosine of Eq.~77!.

So our overall conclusions regarding NLL evolution
that, while in certain instances it may give results that are
too different from those with RGI methods, in general
offers only limited predictive power, because of the stro
sensitivity to the details of the formulation. Though here w
have just discussed renormalization scale sensitivity, we n
that changing the energy scalen0 from saykk0 to k2 also
leads to a Green’s function that oscillates as a function oY,
since once again the characteristic function is asymmetr

A final point relating to Figs. 5 and 6 concerns the over
normalization of the results. One sees that at lowY the LL
and NLL results all have similar normalizations, while th
RGI results are slightly lower. This is because thev depen-
dence is associated with an implicit NLO impact factor. Th
of course has to be taken into account should one wish to
the RGI Green’s function in conjunction with any NLO im
pact factor calculation, as is discussed in detail in Sec. VI.
close this section we present brief results onnf and renor-
malization scale dependence for the RGI schemes.

Our RGI approach has been constructed for a purely g
onic channel and only scheme B satisfies the momentum
rule in this case. For phenomenological purposes one wo
wish to include quarks and in Fig. 7 we present the t
schemes in the cases whennf50 and nf54 in the NLL
kernel. As is clear from the plot, havingnfÞ0 does not
change the result in a significant way. We note that the
inclusion of quarks in a RG-consistent manner is a nontriv
operation in this framework especially if one is to constru
resummed quark anomalous dimensions that satisfy the
mentum sum rules.

Finally, we show the dependence of the gluon Gree
function on the renormalization scale choice Eq.~42!. We
have varied the scalexm in the range 1/2,xm

2 ,2. The results
of the calculation are presented in Fig. 8 where the yell
bands correspond to the renormalization scale variation
two resummation schemes.
3-15
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D. b expansion of intercept and of diffusion coefficient

In order to properly evaluate the hard Pomeron interc
vs in the case with running coupling it is necessary to co
trol the corrections with respect to the frozen-coupling lim
To this end we shall apply theb-expansion method presente
in @23#.

According to this method, we use the formal limitb→0
@with as(t0) kept fixed# in order to suppress the nonpertu

FIG. 7. Gluon Green’s functionG(Y;k0 ,k01e) as a function of
rapidity Y for two different resummation schemesA,B in the nf

50,4 cases. Parametere.0.2k0.

FIG. 8. Gluon Green’s functionG(Y;k0 ,k01e) as a function of
rapidity Y for two different resummation modelsA,B. The bands
represent the uncertainty due to a variation of the renormaliza
scale in the range 1/2,xm

2 ,2. Parametere.0.2k0.
11400
t
-
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bative Pomeron. The leftover perturbative Green’s funct
can then be expanded inb in the form

G~Y;t0 ,t0!5G(0)~Y;t0 ,t0!exp@bvs
(1)Y1O~b2as

5Y3!#

3@11O~b2as
4Y2!#, ~78!

which shows a shift ofvs of the order ofbas
2 , as well as

diffusion corrections of the order of (bas)
2(vsY)2 and

(bas)
2(vsY)3. The purpose of this section is to compu

vs
(1) @defined by Eq.~78!# and theY3 terms both analytically

and numerically. Further corrections tovs of the order of
b2as

3 appear as subleading contributions in this expans
and are probably not really meaningful, given the compleY
dependence of the exponent involving the parameterbas

2Y
@23#.

We start by expanding theas dependence of the kerne
around the frozen-coupling limit up toO(b2) by setting, for
instance, at scaleq2,

as~q2!2as~k0
2!

52ba0
2S log

q2

k2
1~ t2t0!D 1b2a0

3

3S log2
q2

k2
12~ t2t0!log

q2

k2
1~ t2t0!2D , ~79!

where a0[ās(k0
2) throughout this section. We then defin

the kernel with frozen couplingK v
(0)[Kvu ās→a0

and the cor-

rection kernelD as

D~ t,t8![Kv2K v
(0)5Kv2a0~K0

v1vKc
v!2a0

2K̃1
v ,

~80!

5D0~ t2t8!1~ t02t !D1~ t2t8!

1~ t02t !2D2~ t2t8!, ~81!

where D i ’s are scale invariant, and are obtained from t
definition ~47! by picking up the relevant terms in th
running-coupling expansions of type~79!. We obtain

D052ba0
2F log

q2

k2
K0

v1 log
k.

2

k2
~vKc

v12a0K̃1
v!G1O~b2a0

3!,

~82a!

D15ba0
2@K0

v1vKc
v12a0K̃1

v#1O~b2a0
3!

5ba0
2 ]

]a0
Kv

(0)~a0 ;k2,k0
2!1O~b2a0

3!, ~82b!

D25b2a0
3@~K0

v1vKc
v!13a0K̃1

v#. ~82c!

Now we evaluate Green’s functionGv(t,t0) in v space up to
second order inb, with the purpose of deriving the leadin
n
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diffusion terms8 ;b2Y3 and the intercept shift atO(b); to
this purpose, expansion~82! is sufficient. We have

G5G(0)1G(1)1G(2)1•••, ~83!

with

G(0)5@v2Kv
(0)#21, ~84a!

G(1)5G(0)DG(0)

5E dg

2p i
e(g21/2)(t2t0)G(0)~g!

3@D0G(0)1~D1G(0)!81~D2G(0)!9#~g!,

~84b!

G(2)5G(0)DG(1)

5E dg

2p i
e(g21/2)(t2t0)G(0)~g!

3@D0G(1)1~D1G(1)!81~D2G(1)!9#~g!, ~84c!

where, inside the integrals, we have used the same nota
for the kernels and theirg-space eigenvalues. We restrict o
attention tot5t0 and perform partial integrations to obtain

Gv
(1)~ t0 ,t0!5E dg

2p i F S D01
1

2
D18DG(0)21D2

3H 1

2
~G(0)2!92~G(0)8!2J G

5E dg

2p i FD01 1
2 D181 1

3 D29

@v2xv
(0)#2

1
1

3

D2xv
(0)9

@v2xv
(0)#3G ,

~85!

where theg-variable dependence is understood inD ’s, G’s,
and x ’s. Up to this order, the maximal energy dependen
comes from the cubic pole, which yields a;b2a0

3Y2 depen-
dence. The double pole yields instead terms;ba0

2Y which
provide theO(b) correction tovs . By noting that

G(0)~Y;t0 ,t0!5E dg

2p i

dv

2p i

evY

v2xv
(0)~g!

.
Jevs

(0)Y

A4pDvs
(0)Y

,

~86!

J5@12]vxv
(0)~ 1

2 !#v5v
s
(0)

21
, ~87!

and that a squared Jacobian factorJ2 occurs inG(1), we
obtain theO(b) correction

8In principle all diffusion correction terms can be derived usi
this method.
11400
on

e

bvs
(1)5FD0~ 1

2 !1
1

2
D18~

1
2 !GJ, ~88!

where actuallyD18(
1
2 )50, becauseD1(g) is symmetric for

g↔12g.
The eigenvalue functionD0(g) is found from the defini-

tion in Eq. ~82a! by noting that the generalized regularize
kernel

1

pq2 S q2

k2D lS k,

k.
D v

2
1

l
d2~q! ~89!

has characteristic function xL
[l] (g1v/2)1xR

[l] (12g
1v/2), where

x [l]~g!5
1

l FexpS lx0~g!1
1

2
l2x08~g!1O~l3! D21G ,

~90!

and the subscriptL ~R! refers to the projection with left-hand
~right-hand! poles. By proper expansion inl we obtain~see
the Appendix!

D0~g!1
1

2
D18~g!52

ba0
2

2 H @x0
2#LS g1

v

2 D2vxcL8 S g1
v

2 D
22a0x̃1L

v8~g!1@g↔12g#J , ~91!

and finally

vs
(1)52a0

2H @x0
2#LS 11v

2 D2vxcL8 S 11v

2 D22a0x̃1L
v8S 1

2D J J

1•••. ~92!

We note that the expressions of the left projections are~see
the Appendix!

x0L~g!5c~1!2c~g!, ~93!

@x0
2#L~g!52@x0L~g!#22c8~g!1

p2

2
, ~94!

xcL~g!5
A1~v!

g
, ~95!

and x̃1L(g), depending on the resummation scheme,
quoted in the Appendix.

While the;b2Y2 terms exponentiateDvs and provide a
further normalization correction@23#, the;b2Y3 terms pro-
vide the leading diffusion corrections and occur inG(2).
Considering Eq.~84c! for t5t0 and performing partial inte-
grations, we obtain atO(b2),
3-17
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Gv
(2)~ t0 ,t0!.E dg

2p i
@D0G(0)2D1G(0)8#G(0)@D0G(0)

1~D1G(0)!8#

5E dg

2p i
@~D0G(0)!22D1G(0)8~D1G(0)!8#G(0).

~96!

This result contains up to a fifth-order pole, which can
reduced to a quartic one by partial integration, to yield

G(2)~Y;t0 ,t0!.E dg

2p i

dv

2p i
evY

1

4

D1
2xv

(0)9

@v2xv
(0)#4

.E dg

2p i
eāsxeff(g)Y

3
Y3

24

xv
(0)9~g!@] log k

0
2xv

(0)
„g,as~k0

2!…#2

@12]vxv
(0)~g!#4

.G(0)~Y;t0 ,t0!
Y3

24
@] t0

vs
(0)~ t0!#2āsxeff9 ~ 1

2 !.

~97!

The last factor provides the leading diffusion exponent
were looking for. Note that the Jacobian factorJ3 has been
reabsorbed in thet0 derivative ofvs and in the curvature o

the effective characteristic function: xeff9 ( 1
2 )

5Jxv9 ( 1
2 )uv5asxeff

. This particular form for the generaliza

tion of the LO Y3 diffusion term is quite natural when on
considers the physical mechanism at play: diffusion caus
symmetric spread over a logarithmic range of transve

scales of the order ofAāsxeff9 Y. The exponent of the evolu
tion at a scalet8 is given byvs

(0)(t0)1(t82t0)] t0
vs

(0)(t0).
In a first-order expansion of the evolution there is a canc
lation between components above and belowt0. But in a
second-order expansion of the evolution, there are cor
tions from above and belowt0 that enter with the same sign

;@6Aāsxeff9 Y] t0
vs

(0)(t0)Y#2. This is precisely the form of
Eq. ~97!.

The analytical treatment given above has its counter
in the numerical extraction of the running-coupling diffusio
coefficients presented in@23#. We illustrate here that the
method can also be applied to a more general case wit
v-dependent resummed NLL BFKL kernel.

Formally we write the logarithm of Green’s function as
power series inb,

logG~Y;t;t0!5(
i 50

bi@ logG~Y;t;t0!# i , ~98!

where the expansion is defined such thatas(t0) ~or option-
ally some other scale! is kept independent ofb. We can then
write the effective exponent
11400
e

e
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veff~Y;t0!5
d

dY
logG~Y;t0 ;t0!, ~99!

also as a series inb,

veff~Y;t0!5(
i 50

biveff,i5(
i 50

bi
d

dY
@ logG~Y;t0 ;t0!# i .

~100!

In practice, the power series is determined numerically
carrying out the evolution with a generalizedb-dependent
coupling ās

[b] (k2),

ās
[b]~k2!5

ās~k0
2!

11~ t2t0!bās~k0
2!

~101!

using several values ofb5 idb ~typically db50.01 andi
ranges from23 to 3). In the formal limit of smalldb, the
knowledge of logG(Y;t0;t0) for n values ofb allows one to
determine the power series up to the order ofbn21.

In Fig. 9 we test the analytical prediction for the leadin
diffusion term;Y3 as given by Eq.~97!. We show on this
plot the termveff,2 from expansion~100! with the subtracted
]YY3 term calculated for schemes A and B with scaleās(q

2)
as a function of rapidityY. We clearly see that after th
subtraction there is only a linear dependence left, which s
nals presence of the subleading]YY2 terms. The numerica
value of the diffusion terms is much lower in the resumm
models than in the LL BFKL equation. For example, t
coefficient of the leading;Y3 term, see Eq.~97! in the LL
BFKL case is about eight times larger than the one in

FIG. 9. The difference between theveff,2 coefficient as from Eq.
~100! and the leading diffusion term calculated from Eq.~97! for
resummed kernel in schemes A~dashed line! and B~solid line!. The
b expansion has been performed around the fixed-coupling v

ās(k0
2)50.1.
3-18
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resummed models. As a consequence the regime in w
the solution is perturbative is much broader in the case of
NLL BFKL. One can see this by studying the contour plo
in Fig. 14, as will be discussed in more detail in the ne
section. In particular, one finds, Fig. 14~a!, that the region
where the LL solution is insensitive to nonperturbative
sults is much smaller than in Figs. 14~b!,~c!,~d! with the re-
summed evolution. This result is quite encouraging as fa
the phenomenological predictions for high-energy proces
with two hard scales are concerned.

In principle, one could extend our procedure to extract
Y2 terms too, as has been done in Ref.@23# for the case of
the LL BFKL with running-coupling. However, the analyt
cal calculation here would be quite involved, since the
terms originate from a number of different sources, i.e., th
come both from Eqs.~85! and ~96!, and moreover they mix
with the terms coming from the normalization. In practi
theseY2 terms are expected to be rather small and not
relevant for phenomenology as the leadingY3 terms.

We restrict therefore ourselves to showing only theO(b)
shift to vs given by the analytical expression Eq.~92! and
compared with the numerical calculation, see Fig. 10. Th
is clearly a perfect agreement between the two methods
hibiting the leadinga0

2 behavior ofvs
(1) .

Finally, we show in Fig. 11 our numerical evaluation
the sum of the first two terms ofveff , Eq. ~100!, that is,
v (0)1bv (1), as a function of the coupling constantās . The
correction due to the running of the coupling reduces so
what the value of the intercept, as compared with the fix
coupling case (b50), which is shown in Fig. 1. The plot in
Fig. 11 summarizes our present understanding ofvs , be-
cause the higher-order terms;b2as

3 , . . . are beyond our

FIG. 10. veff,1 from Eq. ~100! as a function of the couplingās

calculated in schemes A~dashed! and B ~solid!. Lines represent
analytical evaluation based on Eq.~92!, the points correspond to th
numerical extraction.
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present level of accuracy and are perhaps not really me
ingful, given the complexY dependence of Eq.~78!.

Note that we do not compare directly with our earli
results forvs @11#, because they are based on a differe
definition ~the saddle point of an effective characteris
function!, which is less directly related to Green’s functio
Nevertheless, the present results are consistent with the
vious ones to within NNLL uncertainties.

E. Nonperturbative uncertainties on Green’s function

It is well appreciated nowadays that, even with two ha
scales, the ultrahigh-energy behavior of the BFKL Gree
function is entirely determined by nonperturbative physics
is only in an intermediate high-energy regime where one
able to make reliable perturbative predictions@16–18,22#.

Traditionally, one estimates nonperturbative uncertain
on BFKL evolution by examining the sensitivity to variation
of the infrared regularization of the coupling. More recen
we showed that a purely perturbative answer can be defi
in the context of theb expansion@23#, with the highest per-
turbatively accessible rapidity being determined by t
breakdown of convergence of this expansion. In this sec
we shall examine both approaches.

Let us consider a variety of infrared~IR! regularizations
of the coupling. Mostly we shall use cutoff regularization

ās~q2![ās
PT~q2!Q~q2 k̄!, ~102!

with three different values ofk̄. It will also be instructive to
examine a ‘‘freezing’’ regularization

ās~q2![ās
PT
„max~q2,k̄2!…. ~103!

FIG. 11. Sum of the first two terms from Eq.~100! as a function

of the couplingās calculated in schemes A~dashed! and B~solid!.
3-19
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We believe this freezing regularization to be somewhat l
physical, since it allows diffusion to arbitrarily low scales
the infrared, in contradiction with confinement. However f
the purposes of our general discussion it will be helpful
have it too at our disposal.

In all casesās
PT is the perturbative one-loop coupling wit

nf54, chosen such thatās(9 GeV2)50.244, and no cutoff
is placed on exchanged gluon virtualities. The complete
of IR regularizations is summarized in Table I, together w
the resulting Pomeron properties, both for LL and resumm
tion scheme B (NLLB) evolution.

The two main Pomeron features that one may wish
study are its analytical structure and the powervP of
asymptotic growth, both shown in Table I. It is well know
that with a cutoff one expects the Pomeron to be a p
while for a frozen coupling one expects a branch cut, giv
a Y23/2exp(vPY) growth. Though these properties are mo
easily derived for LL BFKL and a coupling that runs a
as(k

2), they apply quite generally.
As regards thevP values, the first point to note concern

the results for LL evolution, which with cutoffs onās are
much smaller than the naive expectation
ās( k̄

2)x0(1/2)—the difference stems from largeās
5/3 ~and

higher! contributions, originally noticed by Hancock an
Ross@48# ~discussed also in@49#!.

For NLLB evolution the difference between the cutoff a
frozen-coupling evolutions is less dramatic because of
smaller value of the ‘‘raw’’vs value ~Figs. 1 and 11!. As a
result, the uncertainty on the properties of the Pomero
somewhat reduced. It is interesting to note that these va
for the Pomeron intercept are not too different from tho
found for the hard Pomeron in ‘‘two-Pomeron’’ fits to data
@50#. It is not clear however that to what extent this can
considered significant, since on one hand nonperturbative
pects of small-x evolution are likely to be extensively mod
fied by the true nonperturbative physics, including saturat
effects; and on the other hand because the two-Pomeron
involve rather strong simplifying assumptions.

Having examined the asymptotic properties of the vario
infrared regularizations, we can now move on to examine
IR sensitivity of ‘‘perturbative’’ Green’s functions. The left
hand plots of Fig. 12@~a! and ~c! simply have different ra-
pidity ranges# show G(Y,k2e,k1e) for the four infrared
coupling regularizations of Table I. The transverse mom
tum k54.5 GeV is chosen lower than in the plots of Se
IV C in order enhance the sensitivity to the IR region. F
reference we also include the uncertainty band due

TABLE I. Our set of infrared regularizations of the couplin
together with the resulting asymptotic ‘‘Pomeron’’ behavior andvP
values for LL with running couplingas(q) and NLLB evolution.

k̄ ~GeV! ās( k̄
2) Asymptotic growth vP ~LL ! vP (NLLB)

1.00 ~cutoff! 0.39 exp(vPY) 0.44 0.32
0.74 ~cutoff! 0.46 exp(vPY) 0.49 0.35
0.50 ~cutoff! 0.62 exp(vPY) 0.58 0.41
0.74 ~frozen! 0.46 Y23/2exp(vPY) 1.28 0.46
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renormalization-scale uncertainty. The discussion that
lows will concentrate on the NLLB results, however all the
plots of Fig. 12 also include LL results, so as to illustrate t
dramatically different IR sensitivity between LL and NLLB

evolution.
So let us first consider the three cutoff regularizatio

(NLLB). One sees that up toY.30 they give very similar
results. Beyond this point, tunneling occurs~for the lowest
cutoff!, and the three curves start to diverge, indicating t
according to this prescription Green’s function is no long
under perturbative control.

When instead one examines the curve with an infrar
frozen coupling, one finds a result that at first sight appe
paradoxical: Green’s function is somewhat lower than wit
cutoff regularization, over a wide range ofY, in which the
cutoff regularization looks relatively insensitive to NP e
fects. Naively, one might have expected to see little diff
ence until the tunneling point. Our understanding of the o

served behavior is that it is connected with the use ofās(q
2)

in Eq. ~48!, which causes the regularization of the coupli
to affect, among other things, the virtual corrections of t
BFKL equation. Having a larger infrared coupling increas
the size of the~negative! virtual corrections. In situations
where Green’s function has a substantially negative sec
derivative ~as it does over a wide range ofY) there is an
incomplete cancellation with the real contributions~of the
order of 1/Q2), which means that a larger infrared couplin
leads tosmallerpreasymptotic growth of Green’s function9

This also explains why the curves with a cutoff IR couplin

initially evolve more slowly for smaller values ofk̄.
One could also have imagined more sophisticated

regularization schemes. For example, while maintaining
infrared-frozen coupling, one could have placed an IR cu
on the exchanged transverse momentumk. We expect that
this would give curves whose initial evolution is very simil
to that of the IR-frozen-coupling case, but whose asympto
NP behavior is a pole, as in the cases with a cutoff on
coupling.

This confusion arising from this wide range of regulariz
tion options was in part the motivation for introducing theb
expansion in@23#. The b expansion allows one to define
perturbative prediction in close analogy with the prescript
that is implicitly contained in standard fixed-order perturb
tive predictions. There, one never has to specify any IR re
larization. Rather, momentum integrals are implicitly carri
out over a perturbative fixed-order expansion of the c
pling, which is well behaved down to zero momentum. Se
sitivity to nonperturbative effects then manifests its
through the appearance of renormalons~see, for example, the
review by Beneke@51#!, i.e., factorially divergent coeffi-
cients in the series expansion for one’s observable.

9One cross-check of this understanding comes from the fact

when evolving with a scaleās(k
2) in the kernel, differences be

tween cutoff and freezing IR regularizations appear only in
asymptoticY dependence.
3-20
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FIG. 12. ~a! Green’s function calculated with four different infrared regularizations of the coupling, with a renormalization-scale

(1/2,xm
2 ,2) included for reference for thek̄50.74 GeV curve;~b! Green’s function calculated in theb expansion, up to and including

second, third, fourth, and fifth orders inb; ~c! and ~d! are the same as~a! and ~b!, respectively, but on a different scale. In all casese
.0.1k.
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In a small-x resummation, a pure fixed-order expansi
would defeat the purpose of the resummation in the fi
place. However it was shown in@23# that one can expand
logG in powers of theb-function coefficientb, and that a
truncation of the resulting series maintains the advantage
small-x resummation, while providing a prescription for d
fining purely perturbative predictions. This is in addition
its usefulness of studying analytical properties of t
running-coupling dependence of Green’s function, as has
ready been exploited in Sec. IV C.

Figures 12~b! and 12~d! show the same Green’s functio
as in Figs. 12~a! and 12~c!, but in truncations of theb expan-
sion ranging from ordersb2 to b5. One sees how all differen
truncations give fairly similar answers at lowY. But at large
11400
t

of

l-

Y, the presence of the terms in logG involving additional
factors ofb2as

4Y2 leads to the splaying out of the differen
truncations, signaling the fundamental limit of theb expan-
sion. In certain models~e.g., Ref.@26#! this is associated with
the appearance of nonanalyticity inb. It is to be noted that
this large-Y breakdown of theb expansion is not of the
renormalon type that is expected in normal perturbative
ries.

A detailed study of the figure also reveals that even at l
Y the expansion is not entirely well behaved. Indeed, succ
sive coefficients of theb expansion are all of the same sig
and grow quite rapidly, in a way thatis suggestive of an
infrared renormalon. Infrared renormalons are a factoria
divergent behavior of the perturbative series whereby
3-21
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nth@1 order term is proportional to (āsb/p)nn! ~in simple
cases!. When interpreted in the language of asymptotic
ries, this translates to an uncertainty on the sum of the
turbative series of the order of (L2/Q2)p.

To establish whether it is renormalon behavior that we
seeing, in Fig. 13 we show ratios of successive coefficie
of bn in the expansion of logG. The fact that, over a signifi
cant range ofn, one sees a large-n behavior consistent10 with
(logG)(n)/(logG)(n21).cn implies that it is renormalon be
havior. Furthermore, by examining a second value ofQ one
can establish thatc itself is roughly proportional toās , c

.1.9ās . However the constant of proportionality, corr
sponding to a value ofp5ās /c.0.53, is somewhat surpris
ing, because it implies power corrections of the order
(L/Q)2p, i.e., roughlyL/Q. Naively, one would have ex
pectedp51 ~see also@52#!. This difference has yet to b
understood, though it should be kept mind that signific
enhancements of naively expected power-suppressed ef
are known to be possible due to certain classes of resum
tion effects@53#. It is interesting additionally to note that th
formally higher-twist nonperturbative effects that we exp
for splitting functions in Sec. V will also turn out to sca
roughly asL/Q rather thanL2/Q2.

Regardless of the precise reason for the unexpected
ing, it can be quite straightforwardly established that
renormalon behavior is directly connected with the use
ās(q

2) in the LL part of the kernel; i.e., it has the sam
origin as the preasymptotic effects that arise when modify

10Except for the last point—indeed while it is the largest values
n that are the hardest to determine accurately with our nume
methods, we have not been able to determine with certainty tha
value obtained forn58 is truly unreliable. Accordingly we have
chosen to show the point despite our limited confidence in it.

FIG. 13. Ratios of successive coefficients ofbn in the b expan-
sion of logG(Y,k2e,k1e) for Y55.
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the IR regularization of the coupling, Fig. 12~a!.
These preasymptotic effects are a feature of BFKL evo

tion that to the best of our knowledge have not been
served before. Given that they are strictly connected to
use of ās(q

2), they are somewhat model dependent. Ho
ever the motivations for usingās(q

2) are quite strong. In
particular, as we have mentioned above, this is the scale
is explicitly suggested by the form of the NLO correction
furthermore the appearance of the transverse momentum
the emitted gluon as the scale of the coupling is a phen
enon that is well motivated in many other contexts of QC
@54#.

The appearance of significant preasymptotic NP effe
complicates somewhat any attempt to give a compact s
mary of NP limits in BFKL evolution. In their absence on
might have parametrized NP effects at a given transve
scalek, by the rapidity at which one loses predictability fo
Green’s function~e.g., Refs.@22–24#!. Instead, we examine
contour plots, Fig. 14, of

U log
Ga~Y;k2e,k1e!

Gb~Y;k2e,k1e!
U, ~104!

where the subscriptsa andb indicate the different nonpertur
bative treatments in the two evaluations of Green’s functi
Darker shades indicate good agreement between the
evaluations, while lighter shades indicate disagreement.
ditionally, to guide the eye, we have added explicit conto
where the~absolute value of the! log of the ratio is equal to
0.1, 0.2, and 0.4, which for brevity we shall refer to as t
10%, 20%, and 40% contours, respectively.

The first plot, Fig. 14~a!, given for reference, shows re
sults for LL evolution with two different IR cutoffs on the
coupling (0.5 GeV and 1 GeV). Preasymptotic effects
fairly irrelevant here, in part because the asymptotic NP c
tributions set in quite quickly. The contours indicate a line
relation between the maximum perturbatively accessiblY
value,Ymax, and logk, as would be expected if this limit is
due to tunneling in Green’s function with the lower cuto
From the simplified version of the tunneling formula@21,22#

Ytunnel~k2!.
logk2/ k̄2

vP2vs~k2!
, ~105!

we expect that for asymptotically largek, we should see
dYmax/d logk.2/vP.3.45. In practice, the slope that i
measured~for k between 103 and 104 GeV) is about 2.7;
given that the measurement region is not truly asympto
the 20% disagreement between the two numbers is not
reasonable.

Figure 14~b! uses the same pair of NP regularizations, b
with NLLBevolution. The first striking difference is the sig
nificant region~lower left-hand quadrant! in which there are
preasymptotic NP effects at the 20% level. This is connec
with the preasymptotic effects@due to ās(q

2)] mentioned
earlier in this section. The second important observation
that the rapidity where asymptotic nonperturbative effe
become important,Ymax, is significantly larger than for LL.

f
al
he
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FIG. 14. Contour plots showing the sensitivity ofG(Y,k2e,k1e) to the choice of nonperturbative regularization, obtained by exa
ining the absolute value of the logarithm of the ratio of pairs of regularizations. Darker shades indicate insensitivity to the NP regula
and contours have been drawn where the logarithm of the ratio is equal to 0.1, 0.2, and 0.4. Plot~a! shows the result for LL evolution@with

as(q)] and two cutoff regularizations (k̄50.5 GeV andk̄51.0 GeV); ~b! shows NLLB evolution with the same pair of cutoffs;~c! shows
NLLB evolution with truncations of theb expansion at ordersb3 andb4; and~d! shows NLLB evolution, comparing a cutoff regularizatio

( k̄50.74 GeV) with ab-expansion truncation~at orderb3).
o

n
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But as before it is roughly consistent with a manifestation
tunneling in Green’s function with the lower cutoff:11 this
time the tunneling formula differs slightly from that i
@21,22#, because of the presence of the kinematical constr

11The linear dependence ofYmax on logk only becomes convinc-
ingly evident at very largek; we have limited the scale to onl
moderately largek in order to maintain the visibility of the phenom
enologically relevant region ofk.
11400
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~kc! in the evolution, giving

Ytunnel, kc~k2!.
~11vP!logk2/ k̄2

vP2vs~k2!
. ~106!

At very large k one would therefore expect a slop
dYmax/logk.2(111/vP).6.9. The measured slope~samek
range as above! is roughly 6.1. As for LL evolution, these
3-23
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two results are not perfectly compatible, but given that thk
region is not formally asymptotic, the disagreement is
unreasonable.

As is discussed above, using different infrared regulari
tions is not the only way of gauging nonperturbative effec
Figure 14~c! shows what happens if instead we consider t
truncations of theb expansion, at ordersb3 and b4. Once
again, for smaller values ofk there are significant preasymp
totic NP effects, though the range ofk for which they matter
is more limited. The upper~‘‘asymptotic’’! limit on Y due to
NP uncertainties also behaves differently with theb expan-
sion. As was shown in@23#, the b expansion allows one to
reach rapidities of the order of the fundamental perturba
limit @8,24–26#, Ymax;log2k2/L2. This different parametric
behavior ofYmax, though not directly relevant for phenom
enological parameter ranges, is evident from the large-k cur-
vature of the contours, and becomes even more so w
going to yet largerk.

The plots so far have shown comparisons of pairs of
regularizations, or pairs ofb-expansion truncations. Howeve
if we look once again at Fig. 12, we see that the larg
preasymptotic ‘‘NP’’ differences are to be seen when co
paring an IR cutoff with theb expansion. Accordingly in Fig
14~d!, we show contours for the ratio of Green’s functio
where one is evolved with a central IR cutoff (k̄
50.74 GeV) and the other is determined by ab3 truncation
of theb expansion. This is to be considered as a conserva
estimate of the impact of nonperturbative effects.

In this comparison, preasymptotic NP effects are so
portant at lower-k values~below a few GeV! that one loses
the ability to distinguish them clearly from asymptotic N
effects associated with tunneling or diffusion. Only fork
*6 GeV is one able to calculate Green’s function ove
reasonable range of rapidity~at least up toY510) with bet-
ter than 20% accuracy. One comes to a similar conclusio
one compares the cutoff and frozen-IR coupling regulari
tions, as was illustrated in@32#.

It should, of course, be kept in mind that nonlinear sa
ration effects may have a significant impact on the ab
analysis of nonperturbative contributions, for example, d
to the generation of a saturation scaleQs(Y). This is a non-
trivial problem, in part because a proper treatment wo
require the knowledge of the triple Pomeron vertex at
accuracy in order to be consistent with the linear part at N
considered in this paper. We note however that since
intercept found from our resummed approach is mu
smaller than the LL one, it is likely to delay the onset
saturation effects to higher energies; see, for example,
@55#. Nevertheless, saturation effects are an important is
and should be included into the evolution, though we lea
this problem for future investigation.

V. RESUMMED ANOMALOUS DIMENSION
AND SPLITTING FUNCTION

So far, we have investigated the gluon Green’s function
the hard Pomeron regime, in which the hard scalesk2,k0

2 are
of the same order, and—by theb-expansion method—we
have isolated diffusion and running-coupling effects from
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nonperturbative Pomeron behavior. In the complementary
gime k2@k0

2 ~or k0
2@k2), the collinear properties becom

dominant, and Green’s function is characterized by sca
violations and by the corresponding anomalous dimensio
The relation to nonperturbative physics changes also bec
of the validity of the RG factorization property. By argu
ments based on the doubleg representation@16,36,56# or on
truncated models@17,21,34# we can state that, fort@t0,

Gv~k,k0!5Fv~k!F̃v~k0!1higher twists, ~107!

whereFv (F̃v) is a solution of the homogeneous equati
~23! which is regular fort→` (t0→2`). While the t de-
pendence, because of its boundary conditions, is expecte
be perturbatively calculable, thet0 dependence is sensitive t
the strong-coupling region and to nonperturbative phys
but is factorized so that the standard approach of DGL
evolution @3# can apply. We are thus entitled to define

g res~v,t !5
Fv~ t !

gv~ t !
, gv~ t !5E dg

2p ig
egt f v~g!, ~108!

where f v(g) representsFv in g space.

A. Resummation by v expansion

The analytical form of the resummed eigenfunctionf v

was found in @11# on the basis of thev expansion—
summarized in Sec. II B—which provides the solution

f v~g!5expS 2
1

bv
Xv~g! D , Xv8 ~g![]gXv~g![xv~g!,

~109!

in terms of the eigenvalue functionxv(g) in Eqs. ~25! and
~26!. Furthermore, in the ‘‘semiclassical’’ regime whenbt
.1/v@1, the behavior ofFv(t) can be found from the
saddle-point estimate,

bvt5xv„ḡv~ t !…5Xv8 „ḡv~ t !…, ~110!

and the solution is then given by

Fv~ t !5k2Fv~k!;
1

A22pxv8 „ḡv~ t !…
expF E t

dtḡv~t!G ,
~111!

where the functionḡv(t) satisfies the following identity:

ḡv~ t !t2
1

bv
Xv~ḡ !5E t

ḡv~t!dt. ~112!

The corresponding gluon anomalous dimension is given
@10#

g res~v,t !5ḡv~ t !2
bv

xv8 ~ ḡ !
F 1

ḡ
1

1

2

xv9 ~ ḡ !

xv8 ~ ḡ !
1•••G .

~113!
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Recall, however, that Eq.~113! is an acceptable approx
mation only away from the turning point

xv̄s
8 „ḡ~ v̄s ,t !…50, ~114!

which is a singularity of Eq.~113! with infinite fluctuations,
and defines the exponentv5v̄s(t) at anomalous dimensio
level.

Therefore, whenv approachesv̄s(t), one can only rely
on theg representation~108! in order to define the anoma
lous dimension past the turning point. This was the meth
followed in @11# @with the choice of scheme in Eq.~22!# in
order to provide the resummed anomalous dimension an
exponentvc . In the following, we refer to this calculation a
the ‘‘v-expansion’’ result.

B. Practical determination of splitting functions

Here we are more interested in providing the resumm
gluon splitting function directly inx space, by using the re
summation scheme defined by the kernelKv and by the cor-
responding Green’s function. Two methods are available
this purpose. One can exploit theg representation for thet
dependence on the gluon distribution, and define an ano
lous dimension inv space as given in Eqs.~108!, ~109!. To
obtain a result inx space, it is then necessary to take t
inverse Mellin transform ofg res(v,t). However our formal-
ism for calculating Green’s function involves a kernel wi
higher-order terms inas , and this cannot be straightfo
wardly represented with ag representation, so in order t
obtain a splitting function within the same ‘‘model’’ a
Green’s function we shall need to resort tox-space deconvo
lution directly from Green’s function, using the numeric
method presented in@34#. This involves calculating Green’
function G(y,t,t0) and a corresponding integrated gluo
density

xg~x,Q2![EQ

d2kG(n05k2)~ log 1/x,k,k0!, ~115!

and then solving numerically the following equation for t
effective splitting functionPeff(z,Q2):

dg~x,Q2!

dlogQ2
5E

x

1 dz

z
Peff~z,Q2!gS x

z
,Q2D . ~116!

In the limit of Q2@max$k0
2,L2%, Peff(z,Q2) should be inde-

pendent of the particular choice ofk0 and of regularization of
the coupling, modulo higher-twist corrections. That this
true in practice is an important verification of factorizatio
and provides complementarity to analytical ‘‘proofs’’ bas
on simplified models.

As a first step it is interesting to check that the two me
ods for obtaining splitting functions are equivalent. We
this for a ‘‘LL 1 DGLAP’’ model ~which includes the kine-
matical constraint!, namely,
11400
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xv~g!52c~1!2c~g!2c~12g1v!1vA1~v!

3S 1

g
1

1

12g1v D , ~117!

where the running coupling is evaluated at scalek. Such a
model is of interest because it can be fully represented
both theg representation, since it has no higher-order ter
in as , and the Green’s function approach, since it is straig
forwardly expressed ink space. It also contains some of th
typical sources of potential numerical instability@e.g., the
1/(12z)1 term#, making it a powerful ‘‘test-case.’’

Figure 15 shows that the effective splitting functions o
tained with the two methods are nearly identical. The diff
ence between them is of the same order as the higher-t
effects that come from varying the regularization of the co
pling in the deconvolution method~not shown!. Also plotted
is the one-loop~LO! pure DGLAP splitting function for com-
parison. We note that at largez one sees the standard 1/(
2z) behavior in all three curves.

Having established the validity of the deconvolution a
proach, one can examine the effective splitting functions
the context of the full resummed kernel. We restrict our
tention to scheme B, given that scheme A is not expecte
obey the momentum sum rule. Since we are determinin
purely gluonic splitting function we takenf50 in the sub-
tracted NLL kernel, though we keepnf54 in occurrences of
the b function, so as to maintain a realistic running of th
coupling. Switching tonf54 in the kernel as well has a
relatively small effect, cf. Fig. 7.

Figure 16 shows the effective splitting function forQ
54.5 GeV. It is compared to the one-loop DGLAP splittin
function, and to BFKL splitting functions obtained in th
pure LL approximation with fixed@ās[ās(Q

2).0.215# and
running @ās(q

2)# couplings.
It is perhaps of interest to discuss first the two LL curve

As can be seen from the figure~and as has been discuss
extensively elsewhere@11,34,13,36,37#!, running-coupling

FIG. 15. Small-z splitting function determined by two comple
mentary numerical methods (g representation and deconvolution!
for the test case of the LL1DGLAP model. For reference the pur
DGLAP splitting function is also shown.
3-25
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effects alone give strong modifications relative to the fixe
coupling LL splitting function. There is a taming of th
asymptotic behavior: the cut atvs54log2ās.0.60 is con-
verted to a series of poles, the leading one being atvc
.0.25, with the differencevs2vc formally of the order of
ās

5/3 @48,49,11#. The running of the coupling also leads
preasymptotic effects, in particular, it is associated with a
at moderately smallz. Similar features have been discuss
by other authors as well, though the details differ: in@13# the
running asās(q

2) is fully implemented only through to NLL
order. In@36,37# the coupling runs asās(k

2) ~a NLL differ-
ence!, and furthermore the use of the Airy approximation
the evaluation of the expressions analogous to our E
~108!, ~109! means that their results do not quite correspo
to an exact solution of Eqs.~2! and ~116!.

From the discussion in Sec. IV for Green’s function, o
expects a further strong suppression of the asympt
growth when going from LL to NLLB—for example @for
b(nf54)], vs goes from 0.60 to 0.27. However because
nonlinearities~and the compensation of some double cou
ing!, the correction to the splitting function from the comb
nation of running-coupling and NLLB effects is weaker than
would be expected from a simple linear combination of
two separate effects. Indeed, the final running-coupl
NLLB result for vc with ās(Q

2)50.215 isvc.0.18. The
preasymptotic dip, to which we return below, is also mo
fied in the NLLB resummation, becoming somewhat deep
~about 30% ofās) and moving to smallerz (;1023).

Other important characteristics of the splitting functi
extracted in scheme B are the large-z behavior, which coin-
cides with the expected LO DGLAP result and the value
its first moment (v51): the scheme has been construc
such that for fixed coupling, the effective characteristic fun
tion satisfiesāsxeff(g50,ās)51. At fixed coupling, duality
arguments@12# then automatically lead to the splitting func
tion having a zero first moment~to within higher-twist cor-
rections!, i.e., validity of the momentum sum rule. More ge
erally, for running coupling we expect the momentum su

FIG. 16. Small-z resummed splitting function from resumma
tion scheme B, compared to the pure one-loop DGLAP and BF
splitting functions~the latter with fixed and running-couplings!.
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rule to hold because atv51 the kernel is free of leading
twist poles. It is therefore interesting to observe that after
inclusion of the IR regularized running-coupling, and o
rather sophisticated deconvolution approach, the numeric
derived splitting function of Fig. 16@including thed(x21)
component, not shown in the figure# does indeed have a firs
moment which is zero, to within a few parts in 104. ~We
have not so far succeeded in establishing the detailed or
of this small departure from zero, though it may well be
higher-twist contribution.!

Given the large difference between the original fixe
coupling LL splitting function and the running-couplin
scheme B result, it is important to establish the order
magnitude of potential higher-order and nonperturbative
certainties. This question is addressed in Fig. 17, where
scheme B splitting function is shown together with two u
certainty bands. The inner band is that associated with
variation of the infrared cutoffk̄ between 0.5 and 1 GeV
indicating a modest nonperturbative uncertainty.12

The outer band shows the effect of varyingxm in the
range 0.5,xm

2 ,2 ~a range commonly used for fully inclu
sive quantities!. This should give an estimate of the impo
tance of potential higher-order corrections. One sees tha
main features of the splitting function are stable, though
small z the uncertainty grows because different renormali

12A more conservative NP uncertainty estimate would consi
also an IR-frozen coupling. Unfortunately, this leads to numeri
instabilities and we are only able to study the case of a coup
frozen down to some moderately low scale~below which it is cut-
off!. From these studies we deduce that including the results fro
full IR-frozen coupling would roughly double the size of the N
uncertainty band.

L
FIG. 17. The small-z resummed splitting function fork̄

50.74 GeV andxm51 together with renormalization scale and I
regularization uncertainties; the inner band is due to the variatio

k̄ between 0.5 GeV and 1.0 GeV, while the outer band comes f
varying the renormalization scale in the range 1/2,xm

2 ,2. Also
shown are the splitting function obtained with thev expansion@11#
~calculated with ab0 corresponding tonf54), the LO DGLAP
Pgg , and the known small-x parts of the NNLO DGLAPPgg .
3-26
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tion scales lead to slightly differentvc powers. Another way
of investigating higher-order uncertainties is to consider
v expansion of@11#—here recalculated with the samenf
convention as used for scheme B (nf54 in the b function
and nf50 in the rest of the kernel! and transformed toz
space. We recall that thev-expansion is based on the sam
assumptions as scheme B, namely, LL1NLL BFKL and the
requirement of correct LO DGLAP limits. From Fig. 17 on
sees that down toz;1023 it agrees with scheme B to within
the renormalization-scale uncertainties. Below, the NLLBand
v-expansion curves move further apart, essentially beca
their vc values (0.18 and 0.20, respectively! differ by more
than would be expected based on thexm variation. This sug-
gests that for future phenomenological purposes, in the v
small-z region one might wish to consider the effects of
larger range ofxm variation.

An aspect of the splitting function that deserves mo
comment is the dip at moderately smallz. A priori one may
wonder about its origin and indeed whether it might not
some form of artifact of our resummation procedure. To h
resolve the issue Fig. 17 also shows the known small-z part
of the NNL DGLAP splitting function~for nf50):

zPgg~z!5ās1Bās
3log

1

z
,

B52
395

108
1

z~3!

2
1

11p2

72

.21.549. ~118!

One sees that the initial decrease of the scheme B spli
function corresponds closely to the decrease of the pure N
DGLAP splitting function, associated with theBās

3log 1/z
term. At a certain point however small-z resummation effects
set in and the scheme B structure function starts to r
giving the characteristic dip structure. The fact that the ini
decrease of the fullPgg is correlated with an exactly dete
mined (NLLx) piece of the NNL DGLAP splitting function
suggests that the dip structure is a true feature of the smz
splitting function. This belief is reinforced by the observ
robustness of the dip structure under renormalization s
and resummation scheme changes~though the depth of the
dip is subject to some degree of uncertainty!. Indeed in the
limit of small as , one can show that the terms in Eq.~118!
dominate the splitting function down to log1/z;1/Aas and
that the dip is a mathematically rigorous property of t
splitting function@57#.13 For moderate values ofas the situ-
ation is more complex because of the relevance of hig
powers ofas /v in the small-z expansion. It is also to be
noted that substantial non-asymptotic NNLO DGLAP con

13It is worth noting that the dips observed in Figs. 15 and 16
the running-coupling LL1DGLAP and LL models have differen
features compared to that of scheme B. This is at least in
because the NLLx terms of their low-order expansions differ su
stantially from the true NLLx terms contained in scheme B.
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butions, which may be relevant even forz as low as 1022

@58#, could modify the properties of the dip.
An interesting question concerns the impact of the dip

fits to parton distributions. Calculations in a~partially! RGI
LL model @43#, whose effective splitting function also has
dip, suggest that it is not incompatible with the availab
structure function data. Reference@13# mentions work in
progress on fits involving a resummed splitting function w
a dip ~actually considerably deeper than ours!, but detailed
results have yet to be presented. In the duality appro
@36,37#, the resummed splitting function shows also a simi
dip, whose location and depth depends somewhat on the
summation level being considered. For LL resummation w
running-coupling the dip of Ref.@37# looks somewhat stron
ger than the corresponding one in Fig. 16~which has the
different scaleq2, as noticed before!. It is claimed in@37# to
be compatible with the data. In the case of full NLL resum
mation, where a more pronounced dip is expected becaus
the large negative contribution from the NLL kernel, Re
@37# does not provide an explicitx-space result, and no direc
comparison with our result in Figs. 16, 17 is therefo
possible.14 It should, of course, be kept in mind that so f
we have only presented results for purely gluon
problems—phenomenological studies will additionally r
quire a treatment of the quark sector.

To close off this section, we examine how certain prop
ties of the effective splitting function depend on the coupli
as , Fig. 18. One quantity of interest is the formal smallz
exponentvc , shown in the left-hand plot, together with un
certainty bands from varying the IR regularization and t
renormalization scale. One sees that at smallas , regulariza-
tion uncertainties very quickly become negligible, in acco
with their expected higher-twist nature,15 while
renormalization-scale uncertainties decrease much m
slowly with as . Also shown, for comparison, are curves f
vc in the v expansion~quite similar to scheme B! and a
reproduction of the results of Sec. IV C forvs to first order
in b ~here shown withnf54 in b, whereas in Sec. IV Cnf
was uniformly 0!.

Given the late onset of the small-z power growth, other
interesting quantities are the position of the dip,zdip , and the
point where the effective splitting function becomes larg

r

rt

14Roughly speaking, we differ from the approach of Ref.@37# by
a proper treatment of the collinear terms for both theg→0 andg
→1 regions, while in Ref.@37# the duality constraint is used in th
g→0 region only. Thisg↔12g symmetrization allows us to hav
predictive power for the full Green’s function~for k;k0 also! and,
with some limited uncertainty, for the small-x intercepts. It is true
that there is some remaining model dependence in theg;1/2 re-
gion, but its impact is moderate, being exemplified by the differe
between thev-expansion and NLLB results. Indeed, in the phenom
enologically relevant regionx.1023 it is of the same order of
magnitude as the renormalization-scale dependence.

15Actually the regularization uncertainties seem to decre
roughly as 1/Q whereas one would have expected a 1/Q2

behavior—this fact~cf. also the discussion of renormalons fo
Green’s functions in Sec. IV! has yet to be understood.
3-27
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FIG. 18. ~a! the small-z exponent,vc of the effective BFKL splitting function in resummation scheme B, compared to the prev
v-expansion result, and to Green’s functionvs as determined in Sec. IV C (NLLB); ~b! the position (zdip) of the small-z minimum of the
splitting function and the point (zcross) below which the resummed splitting function becomes larger than the one-loop DGLAPPgg . The
inner and outer bands have the same meaning as in Fig. 17.
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than the plain one-loop DGLAP splitting function~always
defined withxm51) zcross. Both quantities are shown as
function ofas in the right-hand plot of Fig. 18. As one woul
perhaps expect, as one decreasesas , one has to go to pro
gressively smaller values ofz before the BFKL increase o
the splitting function becomes visible. In this plot, too, w
note the contrast between regularization uncertainties w
vanish rapidly withQ and renormalization-scale uncertai
ties which vary much more slowly withQ.

VI. INCLUSION OF IMPACT FACTORS

For a realistic calculation of a physical cross sectio
high-energy factorization requires that one specify also
impact factors characterizing the external probes~Sec. II!.
The impact factors are known in the LL approximation for
variety of physical processes@27,28#, and also in the NLL
approximation for virtual photons@31# and for forward jet
production@30#. However, the corresponding expressions
quite involved and still to be implemented in numerical
gorithms. Furthermore, their accuracy stops at the first n
trivial order in as .

The purpose of this section is to show how the resumm
scheme forG̃v can be extended to the corresponding imp
factorsh̃’s by incorporating subleading corrections due to~1!
phase-space and threshold effects and~2! leading-log collin-
ear singularities. The inclusion of the exact NL impact fac
expressions@30,31# is left to a future investigation.

A. Phase-space and threshold effects

Let us first consider deep inelastic scatteringg* (q)1p
→hadrons in the high-energy regimen[2pq[Q2/xB
11400
h

,
e

e

n-

d
t

r

@Q2. According to the analysis presented in Ref.@27# we can
factorize the LL contribution to theg* p cross section in the
form

sg* p~n,Q!5E dn1

n1

dn2

n2

d2k

k2
h~n1 ,Q,k! f ~n2 ,k!

3QS n2
n1n2

k2 D . ~119!

h and f represent the off-shellg* g* andg* p cross sections
in which the virtual gluon has a particular polarization. T
Q function indicates the threshold condition to be satisfied
the multi-Regge kinematics~MRK! n@n1 ,n2@Q2,k2 by the
invariants defined in Fig. 19~a!.

This threshold condition expresses the fact that the lon
tudinal part of the momentum transfer is small with resp
to its longitudinal part~consistency constraint@41–43#!. In
fact, in a frame where the momentap andq have no trans-
verse component, one has

q5q82xp, ~120a!

k52 z̄q81zp1k: q8•k505p•k. ~120b!

In the last equation, one has to remember the Euclidean
ture of k:2kmkm5zz̄n1k2. The relations among invariant
and Sudakov parameters are given by

z5
1

n S n12
Q2

n
n2D , ~121a!
3-28
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FIG. 19. Kinematic diagrams
for: ~a! deep inelastic scattering
~b! g* g* cross section. The vari-
ables correspond to~2 times! the
scalar product of the correspond
ing momenta, e.g.,n152q•k,

n252p•(2k)52q0•k0 , ñ2

52q0•(2k) etc.
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z̄5
n2

n
, ~121b!

ukmkmu5k21
n2

n S n12
Q2

n
n2D . ~121c!

MRK implies n1@Q2n2 /n, hence Eqs.~121a! can be ap-
proximated by

z.
n1

n
, ~122a!

ukmkmu.k21
n1n2

n
>

n1n2

n
. ~122b!

Therefore, if k2 were replaced byukmkmu, the Q function
would represent just a phase-space threshold. As it stand
yields the consistency condition that the virtuality of t
gluon is essentially transverse, that is,

k2.ukmkmu>
n1n2

n
, ~123!

which is the condition in Eq.~119!. The additional thresholds
(q1k)2.n12Q21k2.0 and (p2k)2.n22k2.0 — en-
suring the final state particles to be in the forward lig
cone—are implicitly contained inh and f, respectively. Ac-
cording to Eq.~122a!, we can rewrite Eq.~119! as

sg* p~n,Q!5E
Q2

n dn1

n1

d2k

k2
hS Q2

n1
,Q,kDFS n1

n
,kD ~124!

5E
xB

1 dz

z

d2k

k2
hS xB

z
,Q,kDF~z,k! ~125!

in terms of the unintegrated gluon density
11400
, it

t

F~z,k!5E dn2

n2
f ~n2 ,k!QS n2

n1n2

k2 D . ~126!

Equation~125! is the well-known factorization formula fo
DIS which we present for later convenience also as a con
lution in the invariant ‘‘energy variable’’n1 @Eq. ~124!#.

Taking the Mellin transform with respect ton/Q25xB
21

yields the simpler structure

sv
g* p~Q!5E d2k

k2
hv~Q,k!Fv~k!, ~127!

in terms of Mellin transforms16 of the original factors.
We remark that the LL behavior ofsg* p is determined by

the leading~rightmost! singularity v5vP(as) →
as→0

0 of Fv

in thev plane, whilehv5h01O(v) contributes at LL level
only through its zero momenth0. This amounts to integrat
ing h(n1 ,Q,k) in n1 regardless of then1 dependence inF
and identifying inF: n15Q2, i.e., z5xB . This shows that
the details of the phase-space effects, in particular, thos
threshold—evidently ignored in the approximationhv.h0
just mentioned—appear only as a NL contribution. On t
other hand, they are expected to be important when the t
energy n has moderately high values. Therefore, t
v-dependent formulation of impact factors is suitable to d
scribe subleading effects coming from the proper treatm
of the phase space.

This applies also to the doublek-factorization formula
describing the high-energyg* g* cross section: in the MRK
n@ ñ1,ñ2@ ñ,n1 ,n2@Q2,Q0

2 ,k2,k0
2 the threshold condition

~122b! can be applied to any 2→2 subdiagram of Fig. 19~b!:

16Here we definehv usingQ2 as energy scale forn1, at variance
with Eq. ~5!, where we usedQuku as energy scale forn1. The
difference is a multiplicative factor (Q/uku)v.
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ñ1.
ñn1

k2
, ñ2.

ñn2

k0
2

, n.
n1ñ2

k2
,

n.
n2ñ1

k0
2

⇒n.
ñn1n2

k2k0
2

.
n1n2

ukuuk0u
. ~128!

The last inequality~obtained by usingñ.ukuuk0u) shows that
the boundary of phase space can be very simply describe
the combinationn1n2 /(nukuuk0u). This suggests that we
write the high-energy cross section for photons of polari
tion A andB (A,B5T,L) as

sAB~n,Q2,Q0
2!

5E dn1

n1

dn2

n2

d2k

k2

d2k0

k0
2

hA~n1 ,Q,k!

3GS nk2k0
2

n1n2
,k,k0DhB~n2 ,Q0 ,k0!, ~129!

whereG, representing theg* g* off shell cross section inte
grated in the ‘‘invariant mass’’ñ, contains the total energ
dependence and is constrained by the last of the thres
conditions~128!.

Equation ~129! is just equivalent to thek-factorization
formula ~1! in energy space, because the convolution in
energy variables can be diagonalized by means of the foll
ing Mellin transforms:

sv
AB~Q,Q0!5E

QQ0

` dn

n S QQ0

n D v

sAB~n,Q,Q0!

~130a!

hv~Q,k!5E
Quku

` dn1

n1
S Quku

n1
D v

h~n1 ,Q,k!

~130b!

Gv~k,k0!5E
0

1du

u
uvGS ukuuk0u

u
,k,k0D ,

u5
n1n2

nukuuk0u
. ~130c!

In fact, by using the equality

QQ0

n
5

Quku
n1

n1n2

nukuuk0u
Q0uk0u

n2
~131!

and the thresholds~123! and ~128!, we obtain

sv
AB~Q,Q0!5E d2k

k2

d2k0

k0
2

hv
A~Q,k!Gv~k,k0!hv

B~Q0 ,k0!.

~132!

The choice of a symmetric energy scalen05QQ0 leads
naturally to symmetric energy scales for the individual fa
tors hv andGv , as one can see in Eqs.~130!.
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The lesson is that even in the double high-energy fac
ization formula, a single Mellin variablev allows one to
treat in a proper way the kinematics of the process, in p
ticular, the threshold effects. This motivates our choice to
v-dependent impact factors and kernel.

B. Collinear resummation of impact factors

Additional subleading contributions tosg* g* not taken
into account in Green’s function are higher-order pertur
tive corrections to the impact factors. Here we want to a
lyze the additional corrections which are important in t
collinear limits Q@Q0 and Q!Q0. In order to keep the
discussion as simple as possible, we analyze only the fix
coupling (b50) case.

In Sec. II B we have shown that we can replace the or
nal RG improved Green’s functionG of Eq. ~2! with G̃ of Eq.
~30!—the latter being defined in term of the modified kern
~32!—up to NNLL differences. Correspondingly, one shou
define impact factorsh̃’s which provide the same cross se
tion in the new scheme.

We begin by considering Eq.~132! with LO impact fac-
tors and with the effective Green’s functionG̃. With fixed
coupling, both the impact factor and Green’s function a
scale invariant, and the cross section can be given the i
gral representation

sv
AB~Q,Q0!5

p

QQ0
E dg

2p i S Q0
2

Q2D g2(1/2)

sv~g!, ~133!

sv~g!.h̃v
A~g!G̃v~g!h̃v

B~12g!, ~134!

where we have introduced the Mellin transforms

hv~g![E dk2

k2 S k2

Q2D g21

hv~Q,k!, ~135a!

Gv~g![E d2k0S k0
2

k2D g21

Gv~k,k0!. ~135b!

We shall now compare the collinear behavior of Eq.~134! to
that predicted for the total cross section in order to find
NLL corrections inh̃A at collinear level. Ing space the for-
mulation of collinear factorization becomes particular
simple in the fixed-coupling case, and can be stated as
lows: the leading-logQ2/Q0

2 contribution (Q@Q0) — corre-
sponding to the behavior atg.2v/2 for the Mellin
transform—to the photon-photon cross section at ordera2as

n

is given by

sv
AB~g!

;
4paVv

A

g1
v

2

(
a1•••an215q,g

gv
qa1

g1
v

2

gv
a1a2

g1
v

2

•••

gv
an21q

g1
v

2

gv
qgVv

B

g1
v

2

~136!
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in terms of the one-loop anomalous dimensionsgv
ba , de-

scribing the ‘‘probability’’ of thea→b splitting, and of ad-
ditional ‘‘photon-vertex factors’’Vv

j distinguishing the polar-
ization of the corresponding photon:

Vv
T51, Vv

L 5S g1
v

2 D @11O~v!#. ~137!

If we restrict our analysis to gluon emission only, besides
two qq̄ pairs coupling to the two photons, in Eq.~136! all ai
but two are just gluons. A further approximation, valid in t
high-energy limit, is to neglect collinear gluon emissions b
tween two quarks belonging to the same loop. In fact, t
amounts to neglectingq→q splittings which are proportiona
to gv

qq501O(v). Therefore,a15an215q and a2•••an22

5g.
In order to find the collinear behavior of the resumm

impact factors, we have to compare Eq.~136! with the
k-factorization formula~132!. The collinear behavior of the
RGI kernel~33! at b50 is simply

x̃v~g!.ās~x0
v1vxc

v!;
vgv

gg

g1v/2
. ~138!

This determines the collinear behavior of the RGI Gree
function

G̃v~g!;@v2x̃v~g!#215
1

v (
n50

` S gv
gg

g1
v

2
D n

. ~139!

The collinear behavior of the LO impact factors with exa
kinematics@59# is

hv
T(0)~g!5hv

T(0)~12g!;2aANc
221gv

qg 1

S g1
v

2 D 2 ,

~140a!

hv
L(0)~g!5hv

L(0)~12g!

;2aANc
221gv

qg 1

g1v/2

11v

11 3
4 v1 1

4 v2
.

~140b!

Using the relation

gv
qg5

a

as
2Ncgv

qg , ~141!

the Mellin transform of the cross section with LO impa
factors assumes the form
11400
e

-
s

s

t

sv
AB~g!uLO imp.fac.hv

A(0)~g!G̃v~g!hv
B(0)~12g!

;
4paVv

A

g1
v

2

gv
qg

g1
v

2

3 (
n50

` S gv
gg

g1
v

2
D n gv

gq,sing

g1
v

2

gv
qgVv

B

g1
v

2

,

~142!

having decomposed the anomalous dimensions relative to
q→g splitting in a singular}1/v and a nonsingular~ns! part:

gv
gq5

CF

CA
F 1

v
1B~v!G[gv

gq, sing1gv
gq,n.s. ~143!

We can see from Eq.~142! that the structure of Eq.~136! is
reproduced, but in theq→g splitting we are taking into ac-
count only the singular part of the anomalous dimension

This is not a surprise, because the LO impact factors
by definition coupled to Green’s function via a high-ener
gluon exchange, i.e., a singular splitting. Surprising enou
is the fact that, using the effective Green’s function, it s
fices to use upper impact factor at LO only, in order to obt
the correct collinear singularities on its side. The reason
that the additional factor

~12āsKc
v!215 (

n50

`

~āsKc
v!n ~144!

stemming from the resolvent ofK̃v @see Eq.~30!# provides
exactly the nonsingular splittings needed to build up the c
linear corrections of the upper impact factor to all orders,
the collinear orderingQ@k.

On the other hand, the full expression~136! contains the
correction factor 11vB(v) with respect to Eq.~142!, due to
the full q→g anomalous dimension~143!. This factor is at-
tributed to the lower impact factor in the collinear regio
k0@Q0, so that we can set, at the NLL level,

h̃v
B~12g!5hv

B(0)~12g!1vB~v!hvR
B(0)~12g!

.h̃v
B(0)~12g!F 11ās

B~v!

g1
v

2
G1NNLL,

~145!

where the additional term shows right-hand singularities o
in the 12g variable@i.e., R(12g).1/2].

Analyzing the opposite orderingQ0@Q—thus the lead-
ing right-hand singularities in the variableg @i.e., R(g)
.1/2]—yields the modification of the upper impact facto

h̃v
A~g!5hv

A(0)~g!F 11ās

B~v!

12g1
v

2
G1NNLL, ~146!
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which differs from Eq.~145! by the replacementsA↔B and
g↔12g.

In conclusion, the high-energy cross section can be
torized in the product of Green’s functionG̃v and impact
factorsh̃ as follows:

sv
AB~Q,Q0!5E d2k

k2

d2k0

k0
2

h̃v
A~Q,k!G̃v~k,k0!h̃v

B~Q0 ,k0!.

~147!

Such a factorization formula includes the full one-lo
anomalous dimensions to all orders, the NLL contributio
of Green’s function, and the NLL phase-space effects. S
missing are the running-coupling effects and the sublead
collinear NLL corrections to the impact factors. The form
could be easily incorporated in the collinear limit on t
basis of a straightforward generalization of Eq.~142!. The
latter can be included from the known results@31# on the
basis of the change of scheme discussed below.

C. Next-to-leading impact factors in thev-independent
formulation

Here we wish to relate thev-dependent formulation ofk
factorization and of BFKL evolution used so far to the mo
conventional next-to-leading-log expansion of the cross s
tion. We shall see that this involves a redefinition of NL
impact factors which is somewhat ambiguous, and consi
ably complicates their collinear structure. For the sake
simplicity, we shall provide the relation in the frozenas
limit.

We have already encountered the operator relation of
v-dependent Green’s function to the BFKL one up to N
order. According to Eq.~39! we have

G̃v.@12ās~K0
11Kc

0!#21@v2āsK01āsK11O~as
2!#21,

~148!

which differs from the pure BFKL-type expansion by th
operator factorH5@12ās(K0

11Kc
0)#21. The latter origi-

nates from thev shift ~expanded to first order inv) and
from the collinear behavior. It was first introduced in Ref.@5#
where it was shown to provide energy-independent ter
which compensate the symmetrical scale choices05kk0, so
as to provide the effective energy scales.5max(k2,k0

2) for
Green’s function. On the other hand, the complete cross
tion includes the impact factorsh̃’s according to Eqs.~147!
and~146!, and should be consistent with the NLL paramet
zation

sAB~n,Q,Q0!5E dv

2p i S n

QQ0
D v d2k

k2

d2k0

k0
2 @hA(0)~Q,k!

1ash
A(1)~Q,k!#^ku@v2ās

3~K01āsK1!#21uk0&@hB(0)~Q0 ,k0!

1ash
B(1)~Q0 ,k0!#. ~149!
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In order to compare Eq.~147! with Eqs.~148! and~149!, we
see that the factorH has to be incorporated in the impa
factors. We can do that, given the eigenvalue funct
H(g)5H(12g), by defining some functionHL(g), such
that H(g)5HL(g)HL(12g), and by assigning facto
HL(g) @HL(12g)# to impact factorA (B). This decompo-
sition is not unique, however, and each solution forHL cor-
responds to a choice ofk-factorization scheme@5# in the
subtraction of the leading term at the NLL level in perturb
tion theory. Furthermore, thev dependence should be ex
panded in theh̃’s also. Ing space we have

h̃v
A5hv50

(0)A 1v]vhv
(0)Auv501āsh̃v50

(1)A

.hv50
(0)A 1ās@]vhv

(0)Auv50x01h̃v50
(1)A #, ~150!

where in the last line we have exploited that the factorv

2āsx0) eliminates the high-energy part of the cross secti
On the other hand, at the NL level the factorization of t

H factor is achieved by settingHL(g)511āsH(g)
1O(ās

2), with

H~g!1H~12g!5x0
1~g!1xc

0~g!

.2
1

2 F 1

g2
1

1

~12g!2G1A~0!

3F1

g
1

1

~12g!G . ~151!

Therefore, the NL contribution to the impact factor in th
v-independent expansion becomes

h(1)A~g!5hv50
(0)A ~g!H~g!1]vhv

(0)A~g!uv50x0~g!

1h̃v50
(1)A ~g!. ~152!

We see from Eq.~152! that the first two terms both genera
higher-order singularities which—e.g., forA5T—are of
type 1/g4 and 1/(12g)4, and come from thev derivative
and from multiplication by the singularH term. In order to
extract the dynamically interesting correctionh̃(1)A from a
perturbative calculation ofh(1)A, one has to subtract bot
terms fromh(1)A, by a proper choice ofH, corresponding to
a proper factorization scheme.

VII. DISCUSSION

In this paper we have presented a formulation of the
summed small-x equation based on the renormalizatio
group constraints. The equation presented here embo
correctly the LL and NLL BFKL kernels as well as LL DG
LAP evolution. The new equation is very close to the form
lation proposed previously@11#, the main difference being
the treatment of the collinear terms, which are here treate
v-dependent terms of the leading kernel. The advantag
the small-x equation proposed here is that it shows sim
collinear poles only and is defined directly ink and rapidity
space, thus making it easy to study the full gluon Gree
3-32
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function rather than just its high-energy exponents. The
fore, after inclusion of the impact factors, it can be used i
straightforward way for phenomenological applications
processes with two hard scales.

In our numerical analysis we have obtained the soluti
to this equation in the case of fixed and running-coupling,
have studied the energy dependence of Green’s function
for comparable scales and in the collinear limit and we h
extracted the corresponding splitting function.

The analysis of Green’s function has confirmed the f
@21,26# that the hard Pomeron exponentvs(as) parametrizes
only a transient rapidity dependence of the gluon density
be modified by nonlinear diffusion corrections at perturb
tive level and—beyond some critical rapidity—by the no
perturbative Pomeron behavior. Nevertheless, subleading
summation effects not only decrease and stabilizevs itself
~Fig. 11!, but basically weaken the nonperturbative Pome
and considerably increase the range of validity of the per
bative behavior~Fig. 14! by 10–20 units in rapidity com-
pared to leading-log expectations. Therefore, we are enc
aged to trust the resummed perturbative predictions for n
generation accelerators@32#.

We have provided resummed results for the gluon sp
ting function also. This is a purely perturbative quantity,
has been verified from its definition as the logarithmic d
rivative of the gluon density, by checking collinear factoriz
tion for Q@Q0. Here resummation effects stabilize the~os-
cillating! logs hierarchy, and cause a soft departure from
DGLAP result, showing a shallow dip in the moderate-x re-
gion, followed by the expected power increase in the v
small-x region, characterized by the splitting function exp
nentvc(as).

Let us now comment in a little more detail on some
teresting features of our results. For the high-energy ex
nents, this work confirms the picture of Ref.@11#. The re-
summed Green’s function exponentvs(as) turns out to be
numerically similar toas for relevant values ofas ~Fig. 11!.
This exponent is closely related to the saddle-point singu
ity discussed in@11#, but cannot really be identified with it
due to the presence of diffusion corrections to the expon
with the same rapidity dependence. For this reason, the
traction ofvs requires the subtraction of the leadingY3 dif-
fusion term, which turns out to be small compared
leading-log expectations. On the other hand, the splitt
function exponentvc(as) is substantially belowvs—by
about 0.1 for typical as—due to well-known running-
coupling effects.

In addition, we find here interesting preasymptotic effe
in the energy dependence of the gluon density at compar
scales. In particular, the growth of the NLLBresummed den-
sity is delayed up to rapidities of the order ofY.4 for as
.0.2. It is also worth commenting on the expectations
the onset of perturbative nonlinear~saturation! effects in the
evolution. These become relevant when Green’s functio
of the order of 1/as @60#. For our reference scales (kt
.5 GeV andas.0.2), this translates toY of the order of
15, i.e., close to the kinematic limit of LHC. This is of cours
a very rough estimate, a more detailed study being bey
the scope of this article.
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A special comment is needed for the splitting function
dip in the moderate-x region. It is at most a 30% effect with
respect to the DGLAP value foras.0.2, spread over severa
orders of magnitude inx. It is therefore a shallow dip, asso
ciated with several subleading effects~notably the small-z
terms of the NNLO DGLAP splitting function!, and it signals
a quite moderate departure from pure LO DGLAP evolutio
Considering this result and the values ofvc(as) just men-
tioned, the overall picture is that our resummed predictio
are much closer to low-order results than naively expec
In turn, this may provide an explanation for the appare
success of low-order evolution to fit HERA data, despite
size of the effective couplingas(Q

2)log(1/x).
In order to compare the present results to experime

data, we need to include the physical impact factors for tw
scale processes and quark evolution for DIS processes.
issues are well studied. For quarks we can follow@56,11# and
for impact factors we have shown here how to incorpor
the collinear resummation~in the frozen-coupling limit!. We
recall that the NL contribution to the impact factors depen
on the formulation of evolution kernel~e.g.,v-dependent or
independent!. In our v-dependent approach, the impact fa
tors have a simple collinear behavior due to thev shift of
leading poles. The relation to the more convention
v-independent calculations@31# is given by the subtraction
procedure outlined in Sec. VI B.

On the whole, we have presented here a unified desc
tion of small-x deep inelastic processes, applicable to b
the structure function regime and to theg* g* kinematics.
Resummed results push the validity of perturbative QCD
wards higher energies and give perhaps a preliminary ex
nation of the cross sections’ apparent smoothness in
small-x regime despite the occurrence, in their descripti
of large perturbative coefficients and various strong-coupl
phenomena.
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APPENDIX: COMPUTATION OF EIGENVALUES
AND PROJECTIONS

We give here some details of the calculation of the ker
eigenvalues and Mellin transforms which are needed
Secs. III B and IV C.

Let us start from the computation of the eigenvalues
the kernel

1

q2 S q2

k2D l

2
1

l
d2~q![Hl~k,k8!, ~A1!

possibly multiplied by thev-shifting factor (k, /k.)v, in
order to obtain the kernel of Eq.~89! of the text. Such ker-
nels are closely related to the regularized form of the lead
3-33
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BFKL kernel ~with or without consistency constraint!, by
possibly including powers of logq2 due to the running-
coupling.

Note first that, denoting byx [l] (g) the eigenvalue func-
tion of Hl , the shifted kernel (k, /k.)vHl has eigenvalues

xL
[l] S g1

v

2 D1xR
[l] S g2

v

2 D , ~A2!

where the left~right! projections off (g) are defined by

f L,R~g![6E
Rg8"Rg

dg8

2p i

f ~g8!

g2g8
5 (

gn>1
gn<0

f ~gn!

g2gn
, ~A3!

with the upper~lower! determination of signs and condition
Note that the last expression holds in the particular cas
simple pole singularities in the left~right! g plane. In fact,
such eigenvalues are found by the Fourier transform

E dt8E dg8

2p i
x [l]~g8!eg8(t2t8)@e2(v/2)(t2t8)Q~ t2t8!

1e2(v/2)(t82t)Q~ t82t !#eg(t82t)

5E
0

`

dtE
(1/2)2 i`

(1/2)1 i`dg8

2p i
x [l]~g8!

3@e[ 2g2(v/2)1g8] t1e(g2
v
2 2g8)t#. ~A4!

In this equation, theg8 integral can be displaced to the le
~right! of g1(v/2) (g2(v/2)) in the first~second! term on
the right-hand side~rhs!. By then performing thet-integral
in its convergence region we obtain, by the definition~A3!,
the result~A2!.

We then computex [l] (g) itself by applying the kernelHl

to the test function (k82)g21. By using then the known inte
gral

E d2k8

p

1

~k82!12g@~k2k8!2#12l

5
G~l!G~g!G~12g2l!

G~12l!G~12g!G~g1l!
~A5!

and the representation

G~z1e!

G~z!
5expFec~z!1

1

2!
e2c8~z!1

1

3!
e3c9~z!1•••G ,

~A6!

we obtain@x0(g)[2c(1)2c(g)2c(12g)#
11400
of

x [l]~g!5
1

l S G~l!G~g!G~12g2l!

G~12l!G~12g!G~g1l!
21D ~A7!

.
1

l H expFlx0~g!1
1

2
l2x08~g!

1
1

6
l3@2c9~1!2c9~g!2c9~12g!#

1•••G21J
which proves Eq.~90! of the text. Note the cancellation o
thel50 singularity between real emission and virtual ter

By expanding Eq.~A7! in l we obtain, at orderl0, the
BFKL eigenvalue, at orderl the eigenvalue of the running
coupling kernel of Eq.~38!, and so on. The correspondin
kernels with consistency constraint are obtained by shift
the left/right projections of Eqs.~A2! and ~A3!.

The simplest left/right projections are based on the form
las

x0L~g!5x0R~12g!5c~1!2c~g!5 (
n50

`
12g

~11n!~g1n!

5 (
n50

` S 1

g1n
2

1

11nD , ~A8!

2x0L8 ~g!5c8~g!5 (
n50

`
1

~g1n!2
, c8~g!1c8~12g!

5
p2

sin2~pg!
. ~A9!

For the shifted running-coupling kernel we need@x0
2

1x08#L and thus@x0
2#L(g). Sincex05x0L1x0R we obtain

@x0
2#L~g!5@x0L~g!#212@x0L~g!x0L~12g!#L .

~A10!

The last term has simple poles on the left-hand side~lhs!, so
that by Eq.~A3! it is expressed by a sum over residues a

2@x0L~g!x0L~12g!#L5x0L
2 ~ 1

2 !12(
n51

` x0L~11n!~ 1
2 2g!

~ 1
2 1n!~g1n!

,

~A11!

where a subtraction atg5 1
2 has been performed to make th

series convergent, andx0L( 1
2 )5 1

2 x0( 1
2 )52 log 2.

The series in the r.h.s.~with simple poles! is expressed as
a combination of@x0L#2 ~which has simple and doubl
poles! and ofc8 ~with double poles only!, as follows:

2@x0L~g!x0L~12g!#L5@x0L~g!#22c8~g!1
p2

2
~A12a!

2@x0L~g!x0L~12g!#R5@x0L~12g!#22c8~12g!1
p2

2
.

~A12b!
3-34



nd

th

RENORMALIZATION GROUP IMPROVED SMALL-x . . . PHYSICAL REVIEW D68, 114003 ~2003!
Equations~A12! can be proved by checking residues a
values atg5 1

2 of lhs and rhs and coincides with Eq.~94! of
the text.

Finally, the left/right projections ofx̃1(g), as given in Eq.
~41!, are computed on the basis of Fourier transforms of
type ~A4! by splitting thet integration into the ]̀ ,0] (@0,
2`@) intervals for theL ~R! projection. The result is
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The corresponding expressions forx̃1 in scheme A@Eq. ~60!#
and in scheme B@Eq. ~62!#, are respectively,

x̃1L
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v
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