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String imprints from a preinflationary era
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We derive the equations governing the dynamics of cosmic strings in a flat anisotropic universe of Bianchi
type I and study the evolution of simple cosmic string loop solutions. We show that the anisotropy of the
background can have a characteristic effect in the loop motion. We discuss some cosmological consequences of
these findings and, by extrapolating our results to cosmic string networks, we comment on their ability to
survive an inflationary epoch, and hence be a possible fossil remnant~still visible today! of an anisotropic
phase in the very early Universe.
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Cosmological inflation@1–4# is a fairly simple paradigm
whose main virtue lies in its ability to solve a number of t
problems of standard cosmology, in particular those rela
to initial conditions. Even though it has proven difficult
find a single inflationary model that is both~1! well moti-
vated in terms of a more fundamental theory and~2! in com-
plete agreement with observations, the inflationary parad
is broad enough to allow simple toy models to be in qu
good agreement with observational results@5,6#.

Roughly speaking, the way inflation solves these init
condition problems is by erasing the previously existing c
ditions and effectively ‘‘restarting’’ the universe to a fairl
simple state. Depending on one’s point of view, this can
seen either as blessing or as a curse. The reason for the
view is that if inflation is very effective~in practice, if it acts
long enough! then we have essentially no hope of probi
the physics of a preinflationary epoch—see@7,8# for enlight-
ening discussions of these issues.

Fortunately there can be relics left behind after inflatio
One possible example is topological defects@9#, formed at
phase transitions either before or during inflation@10–12#.
The inflationary epoch will clearly have the effect of dilutin
the defect density, and push the network outside the hori
freezing it in comoving coordinates in the process. Howev
once the inflationary epoch ends the subsequent evolutio
the defects is necessarily such as to make them come
inside the horizon@12,13#.

In previous work@13#, we have discussed a specific e
ample of this behavior. We have considered a domain w
network produced during an anisotropic phase in the v
early universe~see@14# for constraints on the present level
anisotropy!, and shown that in plausible circumstances
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could still be present today and have within it some impri
of the early anisotropic phase. In the present work, we d
cuss the analogous scenario for cosmic string networks.
as in the domain wall case, we expect such a network
retain some imprints of such an early anisotropic pha
since it is well known@15–17# that only if it is in a relativ-
istic, linear scaling regime can such a network erase
traces of its former conditions. We shall start by discuss
cosmic string evolution in a flat, anisotropic~Bianchi type I!
universe, and then the evolution of the background. We t
study numerically the evolution of cosmic string loops, e
phasizing the differences with respect to the standard~isotro-
pic case!. Finally we comment on the implications of ou
results to the evolution of cosmic string networks as a who
and we summarize our results. Throughout the paper
shall work in units wherec5\51.

Let us consider the evolution of a cosmic string in a fl
anisotropic universe of Bianchi type I, with line element:

ds25dt22X2~ t !x22Y2~ t !dy22Z2~ t !dz2. ~1!

Here X(t), Y(t) and Z(t) are the cosmological expansio
factors in thex, y andz directions respectively, andt is physi-
cal time. We also defineA[Ẋ/X, B[Ẏ/Y and C[Ż/Z
where the dot represents a derivative with respect to phys
time t.

In the limit where the curvature radius of a cosmic stri
is much larger than its thickness, we can describe it a
one-dimensional object so that its world history can be r
resented by a two-dimensional surface in space-time~the
string world sheet!

xn5xn~za!, a50,1, n50,1,2,3 ~2!

obeying the usual Goto-Nambu action
©2003 The American Physical Society01-1
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S52mE A2gd2z, ~3!

wherem is the string mass per unit length,gab is the two-
dimensional world-sheet metric andg5det(gab). Let us also
define

ẋ2[gabẋaẋb512X2ẋ22Y2ẏ22Z2ż2, ~4!

x82[gabx8ax8b52X2x822Y2y822Z2z82, ~5!

so thatg5 ẋ2x82 ~usingẋ•x8[gabx8aẋb50 as a gauge con
dition!.

If we choosez05t and definez[z1 then the string equa
tion of motion is given by@9#

]

]t S ẋmx82

A2g
D 1

]

]z S x8mẋ2

A2g
D 1

1

A2g
Gns

m ~x82ẋnẋs1 ẋ2x8nx8s!

50. ~6!

From the time component we can obtain

ė1eFAX2S ẋ22
x82

e2 D 1BY2S ẏ22
y82

e2 D 1CZ2S ż22
z82

e2 D G
50 ~7!

where we have made the further definition

e[A2x82/ ẋ25x82/A2g5A2g/ ẋ2. ~8!

On the other hand, thex component gives

ẍ1S ė

e
12AD ẋ1

1

e S x8

e D 8
50, ~9!

and analogous equations obviously hold for they andz com-
ponents. One can show that in the limit of an isotropic u
verse these equations reduce to the usual form@9#.

The time component of the Einstein equations in a
anisotropic universe of Bianchi type I is given by

u̇1A21B21C252 1
2 k~r13p!, ~10!

while the spatial components give

Ȧ1uA5Ḃ1uB5Ċ1uC5 1
2 k~r2p!, ~11!

and we have made the following auxiliary definitions

A5 Ẋ/X , B5 Ẏ/Y , C5 Ż/Z , ~12!

u5A1B1C, ~13!

andk58pG. It is also useful to combine Eqs.~10!,~11! to
obtain

AB1BC1CA5kr. ~14!
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In the following discussion we will make the simplifica
tion thatZ(t)5X(t) ~and thereforeC5A) and consider the
dynamics of the universe during an inflationary phase w
r52p5const. In this caseH2[kr/35const. and the Ein-
stein field equations~10!–~14! imply that

Ȧ1 3
2 ~A22H2!50, ~15!

while B can be found from the suggestive relation

B

A
5

1

2 S 3H2

A2
21D . ~16!

Equation ~15! has two solutions, depending on the initi
conditions. If Ai,H, then A is the smallest of the two di-
mensions and the spatial hypersurfaces are prolate ellips
~such as a rugby ball!. Then the solution is

A

H
5tanhF3

2
H~ t2t i !1tanh21S Ai

H D G , ~17!

with Ai5A(t i). On the other hand, ifAi.H, thenA is the
larger of the dimensions and the spatial hypersurfaces
oblate ellipsoids~such as a pumpkin!. In that case the solu
tion is

A

H
5cothF3

2
H~ t2t i !1coth21S Ai

H D G . ~18!

Note that in both cases the ratioA/H tends to unity expo-
nentially fast, and hence the same happens with the r
B/A. In other words, inflation tends to make the univer
more isotropic, as expected. An easy way to see this is
consider the ratio of the two different dimensions—let us c
it D5B/A—and to study its evolution equation. One eas
finds

Ḋ5A6H~D1 1
2 !1/2~12D !, ~19!

which has an obvious attractor atD51.
Note that even though we have so far assumed~for sim-

plicity! thatp52r, the same analysis can be carried out
an inflating universe withp5wr with wÞ21 by numeri-
cally solving the conservation equation

ṙ1u~r1p!50, ~20!

together with Eqs.~11!–~14!. Indeed, the more general cas
will be relevant for what follows@13#.

Let us start by considering the simple case of the evo
tion of an initially static circular cosmic string loop. Its tra
jectory in thez50 plane can be written as

x~ t,u!5q~ t,u!~sinu,cosu,0!, ~21!

where t is again physical time~in units of the initial loop
length!. Let us define

r x~ t,u!5Xq~ t,u!, r y~ t,u!5Yq~ t,u!, ~22!

vx~ t,u!5X
dq~ t,u!

dt
, vy~ t,u!5X

dq~ t,u!

dt
. ~23!
1-2
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In the particular case of a spherical loop in a homogene
and isotropic universeq is independent ofu, and hence the
evolution equations become@15#

dv
dt

5~12v2!S 2
1

aq
22Hv D , ~24!

with H5A5B5C, a5X5Y5Z and v5vx5vy . In what
follows we shall numerically study the evolution of initiall
static circular loops in a flat anisotropic universe, and disc
the dependence of the results on the background evolut

In Fig. 1 we plot the phase space diagrams in both dir
tions, @r x(0)/r i ,vx(0)# and @r y(p/2)/r i ,vy(p/2)#, and the
corresponding time evolution of the loop sizes and veloci
@r x(0)/r i , r y(p/2)/r i , vx(0) and vy(p/2)], of an initially
static circular loop withr i5r x(0)5r y(0)50.5/A50.125/B
for the w521 case. We clearly see that the motion of t
loop in an anisotropic universe is no longer periodic, with t
anisotropy in the background evolution clearly affecting t
loop motion. This effect only disappears for very small loo
(r iH!1).

Figure 2 shows analogous plots but now a larger lo
~with twice the size! is considered. In this case the loo
dynamics is dominated by the strong damping caused by
exponential expansion, which drives the loop velocity
wards zero and freezes the loop in comoving coordinate

The final shape of loop will be highly asymmetric~see
Fig. 3 for the case of the loop shown in Fig. 2!. The degree
of asymmetry will depend both on the initial size of the lo
and on the asymptotic value ofX/Y. The asymptotic values
of the degree of asymmetry@parametrized byr x(0)/r x(p/2)]
andX/Y will be equal for very large loops. For smaller loop
the final degree of asymmetry will be smaller, being bou
from above byX/Y. It is also straightforward to show@13#
that the smallerw is the faster the universe becomes isotro
and the smaller is the asymptotic value ofX/Y.

FIG. 1. Phase space diagrams~in both thex and they directions!
and time evolution for the loop sizes and velocities, for the cas
a relatively ‘‘small’’ loop. In the bottom left panel the solid line
represent the loop radii and the dashed lines represent the
velocities. See the main text for the definitions of the various qu
tities.
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Note that although we only study simple loop solutio
our main results are also expected to hold for the more r
istic loops produced by a cosmic string network.

From the results of the previous section and the ba
features of the standard scenario of cosmic string evolu
@15–17# a number of interesting conclusions can be dra
concerning the evolution of full cosmic string networks
anisotropic universes.

First our results show that the overall behavior of a c
mic string network is analogous to that of a domain w
network ~discussed in@13#! in similar circumstances. The
existence of an anisotropic phase through which the netw
evolved will be imprinted on it much beyond the time whe
the background becomes isotropic. In fact, it will be im
printed on the network as long as it is frozen outside
horizon.~Note that in this situation the network will not see
any density fluctuations—for this to happen other mec
nisms would be required, as discussed in@18,19#.! Only
when it falls inside the horizon it will start to become rel
tivistic and isotropic. Again as in the domain wall case, w

f

op
-

FIG. 2. Same as Fig. 1, but for a larger loop~with twice the
size!.

FIG. 3. Evolution of the shape of the loop, parametrized
r x(0)/r y(p/2) ~solid line!, and of the ratio between the scale facto
in thex andy directions (X/Y) ~dashed line! with physical time, for
the larger loop of Fig. 2. Here, we assume thatX(0)5Y(0).
1-3
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expect that the evolution towards the relativistic regime w
be somewhat slower than in the standard case, which c
conceivably have observational implications.

Using the results of@12,13# it is possible to see that
cosmic string network can ‘‘survive’’ up to about 6
e-foldings of inflation ~the exact number being mode
dependent!, in the sense that any network produced in suc
period will still come back inside the horizon in time to ha
observable consequences by the present day.

Of course, when the network starts becoming isotro
after coming back inside the horizon the anisotropic sig
tures will gradually disappear, but we still expect it to lea
an observational imprint of its former state. While it is b
yond the scope of the present article to carry out a deta
analysis of observational constraints on this scenario we
nevertheless provide a simple discussion of some qualita
features.

The first point to notice is that cosmic strings are mu
more benign than domain walls, and hence we expect
constraints on this scenario~which are fairly tight in the do-
main wall case! will be very much weaker in the context o
cosmic strings. There is another major difference with
spect to the domain wall case. It is well known@20# that
domain wall ‘‘balls’’ have a negligible dynamical effect i
the evolution of the network, because they are relatively f
and unwind very quickly. In contrast, cosmic string loo
generally contribute a significant fraction of the overall e
ergy density of the string network@15# and also may have a
crucial role in seeding density perturbations@21,22#.

Imprints of an anisotropic defect network could conce
ably be seen in the cosmic microwave background or
lower redshifts, in a search involving gravitational lensi
due to cosmic strings—for which there has been a rec
claim of a detection@23#. Clearly further study is required i
one is to make a quantitative assessment of their obse
tional implications.
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We have studied the dynamics and cosmological con
quences of cosmic strings in a flat anisotropic universe
Bianchi type I. Focusing on the evolution of simple loo
solutions, we have demonstrated that the anisotropy of
background has a characteristic effect in the loop motion
particular preventing the existence of periodic solutions.

We have also discussed some cosmological conseque
of these findings both for long strings and loops in a realis
cosmic string network. Much like in the domain wall ca
@13#, we have seen that cosmic string networks can rem
anisotropic much beyond the epoch when the backgro
becomes isotropic. The inflationary epoch will push the n
work outside the horizon, freezing it in comoving coord
nates and hence freezing the anisotropy with it. Once
inflationary epoch ends the subsequent evolution of the
fect network is necessarily such as to make it come b
inside the horizon, but it can only start losing the anisotro
signature once it is unfrozen, i.e. once it is fully inside t
horizon and relativistic.

Just as in the case of domain walls@13# there are a num-
ber of possible observational signatures of the existenc
such a phase in the long string network itself. The detai
study of the observational consequences of this scenar
beyond the scope of the present work, but clearly dese
further scrutiny. Finally, let us conclude by emphasizing th
the results we presented are further evidence of the fact
the importance of cosmic string~and topological defects in
ral! as probes of the physics of the early universe goes w
beyond their possible role in seeding structure formation
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