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String imprints from a preinflationary era
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We derive the equations governing the dynamics of cosmic strings in a flat anisotropic universe of Bianchi
type | and study the evolution of simple cosmic string loop solutions. We show that the anisotropy of the
background can have a characteristic effect in the loop motion. We discuss some cosmological consequences of
these findings and, by extrapolating our results to cosmic string networks, we comment on their ability to
survive an inflationary epoch, and hence be a possible fossil renfsi@hvisible today of an anisotropic
phase in the very early Universe.
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Cosmological inflatiorf1—4] is a fairly simple paradigm could still be present today and have within it some imprints
whose main virtue lies in its ability to solve a number of the of the early anisotropic phase. In the present work, we dis-
problems of standard cosmology, in particular those relateguss the analogous scenario for cosmic string networks. Just
to initial conditions. Even though it has proven difficult to as in the domain wall case, we expect such a network to
find a single inflationary model that is botth) well moti-  retain some imprints of such an early anisotropic phase,
vated in terms of a more fundamental theory &hdin com-  Since it is well known{15-17 that only if it is in a relativ-
plete agreement with observations, the inflationary paradigritic, linear scaling regime can such a network erase the
is broad enough to allow simple toy models to be in quitetraces of its former conditions. We shall start by discussing
good agreement with observational res{iis]. cosmic string evolution in a flat, anisotrogiBianchi type )

Roughly speaking, the way inflation solves these initialuniverse, and then the evolution of the background. We then
condition problems is by erasing the previously existing con-Study numerically the evolution of cosmic string loops, em-
ditions and effectively “restarting” the universe to a fairly Phasizing the differences with respect to the standautro-
simple state. Depending on one’s point of view, this can biC casg. Finally we comment on the implications of our
seen either as blessing or as a curse. The reason for the latf€sults to the evolution of cosmic string networks as a whole,
view is that if inflation is very effectivéin practice, if it acts ~and we summarize our results. Throughout the paper we
long enough then we have essentially no hope of probingshall work in units where=#%=1.

the physics of a preinflationary epoch—g&e8] for enlight- Let us consider the evolution of a cosmic string in a flat

ening discussions of these issues. anisotropic universe of Bianchi type I, with line element:
Fortunately there can be relics left behind after inflation.

One possible example is topological defef@$ formed at ds?=dt?>— X2(t)x?>— Y2(t)dy?— Z?(t)d Z. 1)

phase transitions either before or during inflatid®-12.

The inflationary_epoch will clearly have the eff_ect of diluti_ng Here X(t), Y(t) and Z(t) are the cosmological expansion
the defect density, and push the network outside the horizoRgciors in thex, y andz directions respectively, artds physi-
freezing it in comoving coordinates in the process. Howevertf,j‘I time. We also defind=X/X B=Y/Y and C=7/7

once the mﬂgtlonary epc_>ch ends the subsequent evolution c\)/Y(here the dot represents a derivative with respect to physical
the defects is necessarily such as to make them come baﬁ

inside the horizorj12,13 me t. o . . :
. o . e In the limit where the curvature radius of a cosmic string
In previous work[13], we have discussed a specific ex-

) ; . . s much larger than its thickness, we can describe it as a
ample of this behavior. We have considered a domain wal . ; : ; .
] i ) : one-dimensional object so that its world history can be rep-
network produced during an anisotropic phase in the ver

early universésee]14] for constraints on the present level of ¥e§ented by a two-dimensional surface in space-tithe
. : . - . string world sheet
anisotropy, and shown that in plausible circumstances it

X'=x"({%, a=0,1, »=0,1,2,3 2)
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S:—MJ V= yd?e, &)
where u is the string mass per unit lengthy,, is the two-
dimensional world-sheet metric and= det(y,,). Let us also
define

X2=0,pXXP=1- XX - Y?y? - 7272,

(4)
5

X'2=Q,5X X' F= = X2x'2-Y?y'2-7%7'2,

so thaty=x?x'2 (usingx-x'=g,zx’ *x#=0 as a gauge con-

dition).
If we choose;®=t and define/= ' then the string equa-
tion of motion is given by{9]

ﬁ(ﬁ(MXIZ) J (x’,u)'@) 1 e . y )
| — |+ — “ X' 2K+ XX VX
M\ J=y] \N=-y] -v

=0. (6)
From the time component we can obtain
) ) 12 . 12 ) 212
etel AXP| XP— — | +BY?| y?— = | +CZ% 22— —
€ € €
=0 (7)
where we have made the further definition
e=\—X"2x=x"2\[— y= - yIX (8)
On the other hand, the component gives
. [e Co1x!
X+ | —+2A | x+ — —) =0, 9
€ €\ €

and analogous equations obviously hold for ytendz com-

ponents. One can show that in the limit of an isotropic uni-

verse these equations reduce to the usual {&mn
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In the following discussion we will make the simplifica-
tion thatZ(t)=X(t) (and thereforeC=A) and consider the
dynamics of the universe during an inflationary phase with
p=—p=const. In this casél’=kp/3=const. and the Ein-
stein field equation$10)—(14) imply that

A+ % (A2—H?)=0, (15)
while B can be found from the suggestive relation

B 1[3H? 16

AT 2| a2 (16)

Equation (15) has two solutions, depending on the initial
conditions. IfA;<H, thenA is the smallest of the two di-
mensions and the spatial hypersurfaces are prolate ellipsoids
(such as a rugby ballThen the solution is

A_ T3 A
ﬁ—tan z (t—t;)+tan ﬁ ,

with A;=A(t;). On the other hand, iA;>H, thenA is the
larger of the dimensions and the spatial hypersurfaces are
oblate ellipsoidgsuch as a pumpkjnIn that case the solu-
tion is

17

A 3 A
—=cotr{§H(t—ti)+cothl<— } (18

H H
Note that in both cases the rathfH tends to unity expo-
nentially fast, and hence the same happens with the ratio
B/A. In other words, inflation tends to make the universe
more isotropic, as expected. An easy way to see this is to
consider the ratio of the two different dimensions—Iet us call
it D=B/A—and to study its evolution equation. One easily
finds

D=\6H(D+ $)¥41-D), (19
which has an obvious attractor At=1.

Note that even though we have so far assuitiedsim-
plicity) thatp= — p, the same analysis can be carried out for

The time component of the Einstein equations in a flatan inflating universe witpp=wp with w# —1 by numeri-

anisotropic universe of Bianchi type | is given by

0+A%+B2+C2=— ; k(p+3p), (10
while the spatial components give
A+ 6A=B+6B=C+6C= tk(p—p), (11)

and we have made the following auxiliary definitions

A=X/X, B=YIY, C=2/zZ, (12

9=A+B+C, (13

andk=8=G. It is also useful to combine Eq§10),(11) to
obtain

AB+BC+CA=Kkp. (14)

cally solving the conservation equation

p+0(p+p)=0, (20)

together with Eqs(11)—(14). Indeed, the more general case
will be relevant for what followg 13].

Let us start by considering the simple case of the evolu-
tion of an initially static circular cosmic string loop. Its tra-

jectory in thez=0 plane can be written as
X(t,0)=q(t, 6)(sin6,cos6,0), (22

wheret is again physical timdin units of the initial loop
length. Let us define

r(t,0)=Xq(t,0), ryt,0)=Yqt,0), (22
dq(t,6 dq(t,6
vy(t,0)=X qut ), vy(t,0)=X qut ). (23
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FIG. 1. Phase space diagrafirsboth thex and they directiong FIG. 2. Same as Fig. 1, but for a larger lo@pith twice the

and time evolution for the loop sizes and velocities, for the case ofize.

a relatively “small” loop. In the bottom left panel the solid lines
represent the loop radii and the dashed lines represent the loop Note that although we only study simple loop solutions
velocities. See the main text for the definitions of the various quanour main results are also expected to hold for the more real-
tities. istic loops produced by a cosmic string network.

From the results of the previous section and the basic
atures of the standard scenario of cosmic string evolution
evolution equations beconjas] [15-17 a number of i.nteresting concllusior?s can be drayvn

concerning the evolution of full cosmic string networks in

dv ’ anisotropic universes.

m:(l_v )|~ a_q_ZHU ' (24 First our results show that the overall behavior of a cos-
. mic string network is analogous to that of a domain wall
with H=A=B=C, a=X=Y=Z andv=uv,=vy. In what  nework (discussed in13]) in similar circumstances. The
follows we shall numerically study the evolution of initially ayistence of an anisotropic phase through which the network
static circular loops in a flat anisotropic universe, and discusg,,gjved will be imprinted on it much beyond the time when
the dependence of the results on the t_)ackgrou_nd evoluf[ionthe background becomes isotropic. In fact, it will be im-

~ InFig. 1 we plot the phase space diagrams in both direCprinted on the network as long as it is frozen outside the
tions, [r(0)/ri,vx(0)] and[r(7/2)/ri,vy(7/2)], and the  horizon.(Note that in this situation the network will not seed
corresponding time evolution of the loop sizes and velocmesemy density fluctuations—for this to happen other mecha-
[r«(0)/ri, ry(m/2)Iri, vx(0) andvy(w/2)], of an initially  nisms would be required, as discussed[i8,19.) Only
static circular loop withri=r,(0)=r,(0)=0.5/A=0.125B  \yhen it falls inside the horizon it will start to become rela-

for thew=—1 case. We clearly see that the motion of thetjyistic and isotropic. Again as in the domain wall case, we
loop in an anisotropic universe is no longer periodic, with the

In the particular case of a spherical loop in a homogeneouis
) ; . 5 e
and isotropic universeq is independent of), and hence the

anisotropy in the background evolution clearly affecting the » w=-10, (A=rC=1.1B=
loop motion. This effect only disappears for very small loops T T
(riH<1).
Figure 2 shows analogous plots but now a larger loop e LT

(with twice the size is considered. In this case the loop

dynamics is dominated by the strong damping caused by the

exponential expansion, which drives the loop velocity to-

wards zero and freezes the loop in comoving coordinates.
The final shape of loop will be highly asymmetrisee

Fig. 3 for the case of the loop shown in Fig. Zhe degree

of asymmetry will depend both on the initial size of the loop

and on the asymptotic value &fY. The asymptotic values

of the degree of asymmetfparametrized by, (0)/r,(7/2)] L

andX/Y will be equal for very large loops. For smaller loops L

the final degree of asymmetry will be smaller, being bound FiG. 3. Evolution of the shape of the loop, parametrized by

from above byX/Y. It is also straightforward to shof{d3]  r,(0)/r (/2) (solid line), and of the ratio between the scale factors

that the smallew is the faster the universe becomes isotropicin thex andy directions K/Y) (dashed lingwith physical time, for

and the smaller is the asymptotic valueXofy. the larger loop of Fig. 2. Here, we assume tX&0)=Y(0).

1 (0¥ /2, XY

R
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expect that the evolution towards the relativistic regime will We have studied the dynamics and cosmological conse-
be somewhat slower than in the standard case, which coulguences of cosmic strings in a flat anisotropic universe of
conceivably have observational implications. Bianchi type |. Focusing on the evolution of simple loop
Using the results 0f12,13 it is possible to see that a solutions, we have demonstrated that the anisotropy of the
cosmic string network can “survive” up to about 60 packground has a characteristic effect in the loop motion, in
e-foldings of inflation (the exact number being model- particular preventing the existence of periodic solutions.
dependent in the sense that any network produced in such a e have also discussed some cosmological consequences
period will still come back inside the horizon in time to have of these findings both for long strings and loops in a realistic
observable consequences by the present day. _cosmic string network. Much like in the domain wall case
Of course, wher_1 the network_starts becqmmg !SOtFOp'(T13], we have seen that cosmic string networks can remain
after coming back inside the horizon the anisotropic S'gna'anisotropic much beyond the epoch when the background
tures will gradually disappear, but we still expect it to Ieavebecomes isotropic. The inflationary epoch will push the net-
an observational imprint of its former state. While it is be- ork outside the horizon freezing it in comoving coordi-
yond the scope of the present article to carry out a detaileﬁ/ates and hence freeziné] the anisotropy with it. Once the

223'8)?156%‘3?5%\/’%202aslirzorll:t;?;ztjsgﬂ);hg zgen'::n%:l'ﬁa\g\'lllnflationary epoch ends the subsequent evolution of the de-
P P q fect network is necessarily such as to make it come back

fea%réesﬁ.rst oint to notice is that cosmic strings are muchinside the horizon, but it can only start losing the anisotropic
more beni r?than domain walls. and hence V\?e expect th stignature once it is unfrozen, i.e. once it is fully inside the
9 ' P Florizon and relativistic.

constraints on this scenar{which are fairly tight in the do- Just as in the case of domain walis3] there are a num-

g?;gaslir?ﬁgfW_I[lrl]:reevizrgr:gl:ﬁgrwnf:jﬁrC'I?ﬁg:gnccoenﬁﬁtho:e_ber of possible observational signatures of the existence of
spect to the domain wall case. It is well knov20] that such a phase in the long string network itself. The detailed

domain wall “balls” have a negligible dynamical effect in study of the observational consequences of this scenario is

the evolution of the network, because they are relatively fe peyond the scope of the present work, but clearly deserves
and unwind very auickl Ir,1 contrast co);mic strin Igo ;’\further scrutiny. Finally, let us conclude by emphasizing that
Ty q y.In " 9 PSthe results we presented are further evidence of the fact that
generally _contrlbute a significant fraction of the overall eNihe importance of cosmic stringnd topological defects in
ergy density of the string netwofid5] and also may have a ral) as probes of the physics of the early universe goes well

crucial role n Seed"f‘g den_sny perturbatigiad, 22, . beyond their possible role in seeding structure formation.
Imprints of an anisotropic defect network could conceiv-

ably be seen in the cosmic microwave background or, at C.M. is funded by FCT(Portugal, under grant FMRH/
lower redshifts, in a search involving gravitational lensingBPD/1600/2000. This work was done in the context of the
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claim of a detection23]. Clearly further study is required if under contract CERN/POCTI/49507/2002. P.A. was partially
one is to make a quantitative assessment of their observéianded by FCT(Portugal under grant SFRH/BSAB/331/
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