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We study a defect conformal field theory describing D3-branes intersecting over two space-time dimensions.
This theory admits an exact Lagrangian description which includes both two- and four-dimensional degrees of
freedom, has (4,4) supersymmetry and is invariant under global conformal transformations. Both two- and
four-dimensional contributions to the action are conveniently obtained in a two-dimensional (2,2) superspace.
In a suitable limit, the theory has a dual description in terms of a probe D3-brane wrapping ax SldSice
of AdS;x S°. We consider the AdS/CFT dictionary for this setup. In particular we find classical probe fluc-
tuations corresponding to the holomorphic cuwg=ca’. These fluctuations are dual to defect fields con-
taining massless two-dimensional scalars which parametrize the classical Higgs branch, but do not correspond
to states in the Hilbert space of the CFT. We also identify probe fluctuations which are dual to BPS supercon-
formal primary operators and to their descendants. A nonrenormalization theorem is conjectured for the corr-
elators of these operators, and verified to omfer
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I. INTRODUCTION AND SUMMARY [10]. Gravitational aspects of this setup were discussed in
[11-13. The Penrose limit of this background was studied in
The general problem of introducing a spatial defect into §10,14], wherein a map between defect operators with large
conformal field theory has been studied in several contextR-charge and open strings on a D3-brane in a plane wave
[1,2]. Within string theory such defect conformal field theo- background was constructed. Moreover, two-dimensional
ries arise in various brane constructions. They were firstonformal field theories with a one-dimensional defect dual
studied in this context as matrix model descriptions of comto AdS, branes in Ad$ have recently been studied in
pactified Neveu-Schwarz 5-branddiS5-branes [3] and  [15,16. In[17,18 spacetime filling D7-branes were added to
more generally as effective field theories describing varioushe AdS/CFT, correspondence in order to study flavors in
D-brane intersectionf4,5]. More recently, an extension of supersymmetric extensions of QCD. Similarly the supergrav-
the AJS/CFT duality6] was conjectured in which an AgS ity solution for the D2-D6 intersection, dual t@-+1)-
X S° background is probed with a D5-brane wrapping andimensional Yang-Mills theory with flavor, was obtained in
AdS, X S? submanifold. This configuration has been conjec[19]. RG flows related to defect conformal field theories
tured to be dual to a four-dimensional conformal field theorywere discussed if20]. Finally, defect CFT's were discussed
coupled to a codimension one def§g}. This defect confor- in connection with the phenomenon of supertubefg2iti.
mal field theory(CFT) describes the decoupling limit of the In this paper we consider a defect conformal field theory
D3-D5 intersection, and consists of thié=4, d=4 super which describes the low energy dynamics of intersecting D3-
Yang-Mills theory coupled to aw=4, d=3 hypermultiplet branes. This system consists of a stack of D3-branes span-
localized at the defect. The open string modes with both ending the 0123 directions and an orthogonal stack spanning
points on the D5-brane decouple in the infrared. Holographithe 0145 directions such that eight supercharges are pre-
duality can be viewed as acting twice: Th&=4, d=4 super served, realizig a a @,4) supersymmetry on the common
Yang-Mills degrees of freedom are dual to closed strings i1+ 1)-dimensional world volume. This theory exhibits in-
AdS; X S, while the defect hypermultiplet degrees of free- teresting properties which did not arise for the D3-D5 inter-
dom are dual to open strings with end points on the probaection. Unlike the D3-D5 intersection, open strings on both
D5-brane wrapping AdS<S®. In [8], the action of the stacks of branes remain coupled @5—0. The resulting
model was written down, and the chiral primaries localizedtheory is described by a linear sigma model on two
on the defect were identified along with the dual fluctuationsntersecting world volumes. The classical Higgs branch of
on the AdS brane. In[9], the action was written compactly this theory has an interpretation as a smooth resolution of the
in an V=2, d=3 superspace, and field theoretic argumentsntersection to the holomorphic curwey~ca’, wherew
for quantum conformal invariance were given. The super=X2+iX® and y=X*+iX® However, due to the two-
symmetry of the Ad$x S? embedding was demonstrated in dimensional nature of the fields which parametrize these
curves the quantum vacuum spreads out over the entire clas-
sical Higgs branch.

*Email address: constabl@Ins.mit.edu As a result of the spreading over the Higgs branch, it has
"Email address: jke@physik.hu-berlin.de been argued that a fully localized supergravity solution for
*Email address: zack@physik.hu-berlin.de this D3-brane intersection does not eXi22—24. Obtaining

SEmail address: ik@physik.hu-berlin.de a closed string description of this defect CFT would there-

0556-2821/2003/680)/10600724)/$20.00 68 106007-1 ©2003 The American Physical Society



CONSTABLE et al. PHYSICAL REVIEW D 68, 106007 (2003

fore seem to be difficult. From the point of view of the linear geometry as well as gaining a deeper understanding of the
sigma model description, a holographic equivalence with alynamics of the defect CFT.

closed string background would seem to require a target The action for the D3-D3 intersection is most easily and
space with a singular boundary. Nevertheless, there is a limiglegantly constructed in (2,2) superspace. Although it may
in which a holographic duality be found relating fluctuationsseem unusual to write th&/=4, d=4 components of the

in an AdS background to operators in the linear sigma modekction in (2,2) superspace, this is actually quite natural be-
One simply takes the number of D3-brand,in the first ~cause the four-dimensional supersymmetries are broken by
stack to infinity, keepingsN and the number of D3-branes couplings to the defect hypermultiplet. In writing this action,
in the second stackN’, fixed. In this limit, the 't Hooft ~We will not take the limit which decouples one stack of D3-
coupling of the gauge theory on the second stack, Pranes. With the help of the manifest chirality of (2,2) su-

=g.N’, vanishes. Thus the open strings with all endpointd’€rspace we are able to find an argument for th(_a absenc_e of
on the second stack decouple, and one is left with a foyrduantum corrections to the combined 2D-4D actions, which

dimensional CFT with a codimension two defect. The defecfmplie"3 that .the theory remains ponfor_mal upon quantization.
breaks half of the origina'=4, d=4 supersymmetry, leav- AIthougfh Ith|s Lheory has twol—.dlmen3|or|1'al fields couplled to

[ ight real supercharges realizing a two-dimensional (4,4 auge fie ds, the gauge couplings couplings are exactly mar-
g €19 ' “ginal due to the four-dimensional nature of the gauge fields.

supersymmetry algebra. The conformal symmetry of th€™ \ya give a detailed dictionary between Kaluza-Klein fluc-
theory is a globalSL(2R) X SL(2R), corresponding ©0 @ yations on the probe D3-brane and operators localized on
subgroup of the four-dimensional conformal symmetrieSine gefect. Of particular interest will be a certain subset of
The degrees of freedom at the impurity are a (4,4) hyperthe fluctuations which describe the embedding of the probe
multiplet arising from the open strings connecting the or-inside AdS. This subset is dual to operators containing de-
thogonal stacks of D3-branes. fect scalar fields, which appear without any derivative or
In the limit described above, the holographic dual is ob-vertex operator structure. Due to strong infrared effects in
tained by focusing on the near horizon region for the firsttwo dimensions, these fields are not conformal fields associ-
stack of D3-branes, while treating the second stack as ated to states in the Hilbert space. From the point of view of
probe. The result is an Ad$ S° background witiN’ probe  the probe-supergravity system, there is at first sight nothing
D3-branes wrapping an AdS S' subspace. This embedding unusual about these fluctuations. However upon applying the
was shown to be supersymmetric [ib0]. We will demon-  usual AdS/CFT, rules to compute the dual two-point cor-
strate below that there is a one complex parameter family ofelator, one finds identically zero due to extra surface terms
such embeddings, corresponding to the holomorphic curveis the probe action. Thus there is no clear interpretation of
wy~c, all of which preserve a set of isometries correspondthese fluctuations as sources for the generating function of
ing to the superconformal group. In the spirit [of], holo-  the CFT. We shall find however that the bottom of the
graphic duality is conjectured to act “twice.” First there is Kaluza-Klein tower for these fluctuatiorisvith appropriate
the standard AdS/CFT duality relating closed strings inboundary conditionsparametrizes the aforementioned holo-
AdS; X S° to operators inN=4 super Yang-Mills theory. morphic embedding of the probe inside AdSNhile the
Second, there is a duality relating open strings on the probimterpretation of this fluctuation as a source is unclear, it
D3’ wrapping Ad$xS! to operators localized on the nevertheless labels points on the classical Higgs branch.
(1+1)-dimensional defect. Since the infrared dynamics of two dimensions implies that
One of the original motivations to search for holographicthe vacuum is spread out over the entire Higgs branch, one
dualities for defect conformal field theorig8] is that such a  should in principle sum over holomorphic embeddings when
duality might imply the localization of gravity on branes in performing computations in the AdS background.
string theory. In the context of a brane wrapping an AdS  The fluctuations of the probe' @mbedding inside Ssat-
geometry embedded inside AgjSlocalization of gravity isfy the Breitenlohner-Freedman bound despite the lack of
would indicate the existence of a Virasoro algebra in the dualopological stability. These fluctuations are dual to a multip-
CFT, through a Brown-Henneaux mechani§®b]. We do let of scalar operators with defect fermion pairs which we
not find any evidence for the existence of a Virasoro algebradentify with BPS superconformal primaries localized at the
in the conformal field theory. Although this theory has aintersection. We also find fluctuations of the probe embed-
(4,4) superconformal algebra, only the finite part of the al-ding inside Adg which are dual to descendants of these
gebra is realized in any obvious way. Roughly speaking, th@perators. Remarkably, the AdS computation of the corre-
(4,4) superconformal algebra is the common intersection o$ponding correlators, which is valid for large 't Hooft cou-
two N=4, d=4 superconformal algebras, both of which arepling A, shows no dependence an We also study pertur-
finite. The even part of the superconformal group isbative quantum corrections to the two-point function of the
SL(2,R) XSL(2,R) X SU(2), XSU(2)gxU(1), which is BPS primary operators and find that such corrections are
also realized as an isometry of the AdSackground which absent at ordeg%M. Together with the AdS strong coupling
preserves the probe embedding. Enhancement to the usuakult, this suggests the existence of a nonrenormalization
infinite dimensional algebra would require the existence of aheorem.
decoupled two-dimensional sector. Correctly addressing this The paper is organized as follows. In Sec. Il we present
issue would require going beyond the probe limit and studythe D3-brane setup, its near horizon isometries and the su-
ing the back reaction of the D2ranes on the AdS<S° perconformal algebra. In Sec. lll we obtain the spectrum of
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low-energy fluctuations about the probe geometry. In Sec. IV y
we show that then-point functions associated with these
fluctuations are independent of the 't Hooft coupling, at least
when the 't Hooft coupling is large. Moreover, we show that
the classical action for probe fluctuations dual operators pa-
rametrizing the classical Higgs branch does correspond to a
power law two-point function. In Sec. V we study the field
theory associated with the D3-brane intersection. We obtain
the action using (2,2) superspace for both the defect and
four-dimensional components. In Sec. VI we derive the
fluctuation-operator dictionary for the conjectured AdS/CFT
correspondence. In Sec. VIl we demonstrate that two-point
functions of the BPS primary operators identified in Sec. VI
do not receive any radiative corrections to or@gr thus
providing evidence for a nonrenormalization theorem. We
conclude in Sec. VII by presenting some open questions.
There is a series of Appendixes containing further details of FIG. 1. Holomorphic curvavy=cL?.
the calculations. In particular in Appendix E we give an ar-

gument for quantum conformal invariance of the defect CFT 4\ 12 5 ) ) )
which holds to all orders in perturbation theory. ds’=| 1+ ) (—dt+dxy+dx;+dx3)
4\ 12
1. HOLOGRAPHY FOR INTERSECTING D3-BRANES + 1+ — (dx§+ o +dxg2,). 2.1
r

A. The configuration

We are interested in the conformal field theory describingwe will choose a static gauge in which the world volume
the low energy limit of a stack oN D3-branes in the coordinates of the probe are identified with!,x* x°. De-

x%,x,x?,x? directions intersecting another stackf D3-  fining w=x2+ix® andy=x*+ix5 the probe is taken to lie

branes in the®,x*,x*,x> directions, as indicated in the fol- on the surface defined bwy=cL? and x6=x"=x8=x°

lowing table: =0. Herec is an arbitrary complex number. Wher=0 we
havew=0 and the probe sits at the origin of the space trans-

4 5 6 7 8 9 verse to its world volume. Far#0 the probe sits on a ho-
lomorphic curve embedded into the space spannexffiy°
(see Fig. 1 With this choice of embedding the induced met-

o 1 2 3
D3 X X X X
X X

D3’ X X ric on the probe world volume is
This intersection preserves 8 supersymmetries. The mass- 1 ) ) o lc|?L? . —
less open string degrees of freedom correspond to a pair ofjsgrobe: h™"(=dt®+dx) +h™5 1+ (|y|z)2h dydy

N=4 super-Yang-Mills multiplets coupled to a bifundamen- 2.2
tal (4,4) hypermultiplet localized at the {11)-dimensional

intersection. The coupling is such that a two-dimensionalyhereh= 1+ L%/(]y|?)? is the harmonic function appearing
(4,4) supersymmetry is preserved. We shall study the holon the background geometry evaluated at the position of the
graphic description of this system in a limit in which one of prope.

the N'=4 multiplets decouples, leaving a singlé=4 mul- In the near horizon limitL/r>1, the D3-brane geometry
tiplet coupled to a (4,4) hypermultiplet at a pecomes AdSxS,

(1+1)-dimensional defect. This decoupling is achieved by

scalingN— oo while keepinggSN~g$MN andN’ fixed. This L2

is the usual 't Hooft limit for the gauge theory describing the dsidssxsg,:—z(— dt?+dxé+dx3+dx5+du?)

N D3-branes. Foh=g%,,N>1 one may replace thd D3- u

5 .
branes by the geometry A¢g8S°, according to the Lljsual +L2(d¢2+5<2bd 62+Sis§dp2+s§,s§sﬁdcp2
AdS/CFT correspondance. On the other hand, the 't Hooft
coupling for the N’ orthogonal D3-branes i3.'=gN’ +s5s5s5s5dE?), (2.3

=\N'/N which vanishes in the above limit. For larye one

may treat these branes as a probe of ans&d% geometry. where u=L?/r and we have defined angular variables
We now demonstrate the existence of a one complex pag, 6,p,¢,& via

rameter family of Ad§xS! embeddings of the probe

D3’-branes in the Ad$< S® background. Consider first the X'=r54565,5,8;,  X°=1848,8,8,C¢,
geometry of the stack dfl D3-branes before taking the near
horizon limit. The D3 metric is given by X0=15,545,C,, X' =15,45,C,,
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N (> ) decouple

AdS; )

FIG. 2. AdS/CFT duality for
M~ -~ an impurity CFT. The duality acts
AdS; D3 twice: once for the type 1B super-

gravity on Ad$xS°, and once
for DBI theory on Adg§Xx St

R4

R2

x8=rs¢c0, x9=rc¢, (2.4 indeed supersymmetric, as was verified for0 in [10].
Thus this configuration is stable despite the fact that this S
wheres,= sin¢, c,= cos¢ efc. It is instructive to consider contractible within the 3 As we will see shortly, the naively
this limit from the point of view of the probe metric. One can unstable modes associated with contracting theefisfy the
easily show that in the near horizon region the induced metBreitenlohner-Freedman bouf27] for scalars in Ad§, and
ric on the probe becomes therefore do not lead to an instability.

Following the arguments df7,8] we propose that AdS/
CFT duality “acts twice” in the background with an AgS
brane embedded in AgSThis means that the closed strings
on AdS; should be dual toV'=4 SU(N) super Yang-Mills

L2 o~
dShope==5 (—dP+dxG+du?)+Ldé?, (25
u

T2_,2 2 theory onR*, while open string modes on the probe AdS
wherelL"=L(1+c|") and brane should be dual to the fundamental (4,4) hypermultiplet
T on theR? defect(see Fig. 2 Interactions between the defect
U=—u ) (2.6) hypermultiplet and the bulk/=4 fields should correspond
x6,x7,x8,x9=0 to couplings between open strings on the probe D3-brane and

i _ _ i closed strings in AdSx S°. For large 't Hooft coupling, the
One immediately recognizes E@2.5 as the metric on  generating function for correlation functions of the defect
AdS;x St with radius of curvaturé.. The probe is sitting at CFT should be given by the classical action of type IIB su-
¢=6=p=¢=m/2 and thus wraps a circle of maximal ra- pergravity on Adg$xS® coupled to a Dirac-Born-Infeld
dius inside the 3 For the special case=0 the curvature is theory on Ad$X S!, with suitable conditions on the behav-
the same as that of the ambient A4SS® geometry. Forc ior of fields at the boundary of AdSand AdS.
#0 however the effective cosmological constant on the

probe differs from that of the bu_Ik o_f AchThis is reminis- B. Isometries
cent of the D3-D5 system studied in RET] in which D5- )
brane probes were wrapped on an A#S? slice of the full In the absence of the probe D3-branes, the isometry group

geometry. In that case probe D5-branes were able to hay@f the AdSxS® background isSO(2,4)<SO(6). The

effective cosmological constants which differed from theSA(2,4) component acts as conformal transformations on

bulk when some of the D5-branes ended on the D3-brane§l€ boundary of Ads; while the SO(6)~SU(4) isometry

[7]. Here the probe D3branes cannot end on the D3-branesOf S’ is the R symmetry of four-dimensiona\'=4 super

however one of the probe branes can “merge” with one ofYang-Mills theory, under which the six real scalats®> 759

the N D3-branes and form a holomorphic curve. It is this transform in the vector representation.

holomorphic curve that is parametrized byNotice thatc ~ In the presence of the probe D3-brane, the AdS°

also parametrizes a family of AgSpaces and therefore we SOMetries are'broken to the sub_grou.p which leaves the em-

expect that this deformation preserves the conformal invaribedding equations of the probe invariant:

ance of the dual field theory. It is interesting that while su-

persymmetry allows foany holomorphic curve of the form SQ2,4XSU(4)—SL2R) X SLZR) X U(1) X SU2),

wy'=cL'"? [26] only for =1 is the AdS geometry and XSU(2)gXU(1). 2.7)

hence conformal invariance preserved. For the majority of

this paper we will restrict our attention to the case0 Out of theSQ(2,4) isometry of AdS only SO(2,2)xU(1)

however we will return to the general case when we discuss-S|(2,R) X SL(2R) X U(1) is preserved. TheSO(2,2)

the classical Higgs branch of the dual defect conformal field~ s (2 R) x SL(2,R) factor is the isometry group of AdS

theory. while theU (1) factor acts as a phase rotation of the complex
The boundary of the embedded AdB anRR? atu=0, coordinatesv=X?+iX%. Out of theSQ(6)=SU(4) isom-

and lies within theR* boundary of AdS. This embedding is etry of S°, only SO(4)XU(1)=SU(2), X SU(2)gx U(1)
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is preserved. Th&J(1) factor here acts as phase rotation ofstill be uncharged under th@ symmetries, since fogyy
the complex coordinatg=X*+iX®, which rotates th&' of =0 the free (4,4) hypermultiplet realizes a conventional
the probe world volume. Th8O(4) component acts on the two-dimensional (4,4) CFT. However the four-dimensional
coordinatesx®’9 As we shall see in Sec. I C, only a cer- scalar fields, which are not decoupled at finitg,, trans-
tain combination of the twdJ(1) factors in Eq(2.7) enters  form nontrivially under theR symmetries of the defect CFT.
the superconformal algebra. The even part of the supercon- In more familiar considerations of the AGE€FT, duality,
formal group is SL(2R)XSL(2,R)XSU(2) XSU(2)g the full Virasoro algebra is realized in terms of diffeomor-
XU(1). phisms that leave the form of the metric invariant asymptoti-
cally, near the boundary of Ad§25]. Of these diffeomor-
phisms, the finiteSL(2,R) X SL(2,R) subalgebra is realized
as an exact isometry. However the three-dimensional diffeo-
The D3-D3 intersection has a (4,4) superconformal groupnorphisms which are asymptotic isometries of Ad@nd
whose even part iSL(2,R) X SL(2R)XSU(2), XxSU(2)g  correspond to higher-order Virasoro generators, do not have
X U(1). Weemphasize that this system does not give a stanan extension into the bulk which leave the Ad®etric as-
dard (4,4) superconformal algebra. Because of the couplinggmptotically invariant. The existence of a Virasoro algebra
between two and four-dimensional fields, the algebra doeseems to require localized gravity on AdShis could only
not factorize into left and right moving parts. Neither anbe seen through a consideration of the back reaction. In the
infinite Virasoro algebra nor an affine Kac-Moody algebradefect CFT, the two-dimensional conformal algebra contains
are realized in any obvious way. The superconformal algebranly those generators which can be extended to conformal
for the D3-D3 system should be thought of as a commorransformations of the four-dimensional parts of the world
“intersection” of two N'=4,d=4 superconformal algebras, volume, namelyL_,, Lo, Ly, L_;, Ly andL;.
both of which are finite. If there is a hidden affine algebra, it The “global” (4,4) superconformal algebra of defect CFT
should arise via some dynamics which gives a decouplegives relations between the dimensions d@dharges of
two-dimensional sector, for which we presently have no eviBPS operators. We will later find that these relations are
dence. consistent with the spectrum of fluctuations in the probe-AdS
For comparative purposes, it is helpful to first review thepackground. To construct the relevant part of the algebra, it
situation for more familiar two-dimensional (4,4) theories s helpful to note that the algebra should be a subgroup of an
with vector multiplets and hypermultiplets, such as thosen=4, d=4 superconformal algebréor actually an unbro-
considered if28]. These theories may have classical Higgsken intersection of two such algebyas
and Coulomb branches which meet at a singularity of the et us start by writing down the relevant part of the
moduli space. For finite coupling, quantum states spread oyt/=4, d=4 superconformal algebra for the D3-branes in the
over both the Higgs and Coulomb branches. However in thg123 directions. The supersymmetry generators @fe
infrared (or strong coupling limit, one obtains a separate \hereq=1,2 is a spinor index and=1, . . . 4 is anindex
(4,4) CFT on the Higgs and Coulomb branch@8]. One i the representatiod of the SU(4)R symmetry. The special
argument for the decoupling of the Higgs and Coulombgyperconformal generators a8g, which are in thes* rep-

branches is that the (4,4) superconformal algebra contains §Bsentation ofSU(4). Therelevant part of theV'=4, d=4
SU(2)xSU(2),R symmetry with a different origin in the  gigepra is then

original SU(2) X SU(2)gX SU(2)R symmetry depending

on whether one is on the Higgs branch or Coulomb branch. {Q3,Sgp}=€,5(5D+4INTa)p) +3 SL,,0hs, (2.8

The CFT scalars must be uncharged undeRisgmmetries.

This means for example that the origifdU(2), X SU(2)r ~ whereD is the dilation operator)” are the operators gener-

factor may be theR symmetry of the CFT on the Higgs atingSU(4), andL,, are the generators of four-dimensional

branch but not the Coulomb branch. _ Lorentz transformations. The matrice3 )2 generate the
For the linear sigma model describing the D3-D3 inter-fyndamental representation &U(4), and arenormalized

section, a (4,4) superconformal theory arises only on thech that TITATE) =1 5",

Higgs branch, which is parametrized by the two-dimensional o (4 4) supersymmetry sub-algebra is generated by the

scalars of the defect hypermultiplet. On the Coulomb bra”ChsuperchargeQaEQa with a=1,2, andQ3=Q? with a

the orthogonal D3-branes are separated by amounts chara§-3 4. on which anéU(Z) X SU(2) ><U(12) suE)group of

terized by the VEV's of four-dimensional scalar fields. One "o\ ino1s  4)R symm(Letry acts The embedding of the

obtains a CFT on the Higgs branch without flowing to the IR, « « ; ; .
since the gauge fields propagate in four dimensions and thSeU(z)" SU(2)rxU(1) generators i U(4) is as follows:

gauge coupling is exactly marginaFurthermore scalar de-

C. The superconformal algebra

grees of freedom of the CFT may cafRycharges, since the EUA 0 0 0
R currents do not break up into purely left and right moving SU2),.: | 2 , SU(2)R: 0 1.1,
parts. Of course the scalars of the defect hypermultiplet must 0O O P

We give field theoretic arguments for quantum conformal invari- U(l): — ) (2.9
ance in Appendix E. NCANC
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D3 in (0123): SU(4) |_23 affine SU(2), XSU(2)r R symmetry. However, forgy
/i\ \L #0, the algebra does not factorize into left and right moving
parts.
The algebra2.12), (2.13 determines the dimensions of
I 45 U@ x SUER I the BPS superconformal primary operators, which are anni-
hilated by all theS's and some of th€’s. The bounds on
T/ dimensions due to the superconformal algebra are best ob-
tained in Euclidean space. The Euclidean (4,4) algebra of the
D3 in (0145): L s su@) defect CFT contains the terms

a bty _ L, _Aja
FIG. 3. Decomposition of the tw8U(4)R symmetries. {Q1), Qua =285L o+ 23R (0™ + 55, (2.1

The unbrokenSU(2), X SU(2)gr R symmetry corresponds {02, 00 =268+ 23R (02— 827, (219
to rotations in the directions 6,7,8,9 transverse to both stacks
of D3-branes, while the unbrokem(1) describes rotation in For a=b, the left hand side of Eqg2.14 and (2.15 are

the 45 plane. These symmetries act on adjoint scalars. Sing®sitive operators, leading to the bounds
the R currents of the CFT do not break up into left and right

moving parts, there is no requirement that four-dimensional h+j§+%j> 0, (2.1
scalars are uncharged undesymmetries. We shall call the
generator of rotations in the 45 pladg;, and normalize it h—j§+ i7=0, (2.17)

such that the supercharg€s have J,5 eigenvalue= 1/2.
The special superconformal generators of the (4,4) subalge-

LR 1

bra areSy,=S,_ With b=1,2 andS,; =S, with b=3,4. h+iz=27=0, (2.18
The term in the (4,4) algebra inherited from E2.8) is then U
= g 172

{Q% .Sy }=0D +2J5(0™)p+ Spdust Splort Splos, h=i3 7=0 (219

(2.10
some of which are saturated by the BPS superconformal pri-
a _ _ R/ _Aya ~ ~
{Q% 1Sy} =~ 65D~ 2Ja(0™)5+ Gpdast Gplort Gplos. maries. As always, the dimensions dre=h+h, with h=h

(21D for scalar operators.
The unbroken Lorentz generators &rg andL,;. Note that

from a two-dimensional point of view, the Lorentz transfor- |1l FLUCTUATIONS IN THE PROBE-SUPERGRAVITY
mations are generated lhy,, wheread ,; is anR symme- BACKGROUND
try.

For the orthogonal D3-branes spanning 0,1,4,5, rotations Following the conjecture put forth ifi’] and elaborated
in the 45 plane are Lorentz generataug rather than a sub- UPON in[8], we expect the holographic duals of defect op-
group ofSU(4). Therotations in the 23 plane are an unbro- erators localized on the intersection are open strings on the

. 1 .
kenU(1) part of theSU(4)R symmetry rather than a Lor- Probe D3, whoge world volume is an Ad'S" submani-
entz transformation. This distinction is illustrated in Fig. 3. fqld of _Ad85><S . The operators with protectec_i confprmal

From the two-dimensional point of view, both 23 and 45 dimensions should be dual to probe Kaluza-Klein excitations

“ H ” H 2 < 2 . .
rotations areU(1)R symmetries. If we writel y5=Jos, Lus ?t dSL:]bstrlngy energles;nh<)\/L . I_n t_hls section we shlflzll:_ .
— 45 and definef=Jys+ Jgs, then the terms2.10 and ind the mass spectra of these excitations. Later we will fin
this spectrum to be consistent with the dimensions of opera-
(2.11) become . ) .
tors localized on the intersection.

{Q%.Sp-}=85(Loy+ D) +2J5(0™)p+ 537, (2.12
A. The probe-supergravity system
{Q% 1S5 }=8(Lor= D)~ 23005+ &7, (213 The full action describing physics of the background as
which are applicable tbothstacks of D3-branes. This forms well as the probe is given by
part of the (4,4) superconformal algebra of the full D3-D3 Spui= S5+ Sos1+ Swz- 3.1)

system. The chargg plays a somewhat unusual role. From

the point of view of the bulk four-dimensional fieldS,is @ 1he contribution of the bulk supergravity piece of the action
combination of arR symmetry and a Lorentz symmetry, un- ;. Einstein frame is

der which the preserved supercharges are invariant. As we

will see later, the fields localized at the two-dimensional in-

tersection are not charged undégr Upon decoupling the SIIB:iJ leX\/__g(R_ Eezq’(a¢>)2+-~-
four-dimensional fields by taking=0, the two-dimensional 2k? 2

sector becomes a free (4,4) superconformal theory with an (3.2
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where %?=(2m)"g21%. The dynamics of the probe D3- The metricg’,? is the pull back of the bulk AdS< S° metric
brane is given by a Dirac-Born-Infeld term and a Wess-to the world volume of the probe, whilg&} is the pull back

Zumino term[29],
SpeitSwz=—Tps f dAUe_q)\/— de(giS+e™ 27,

+Tps f cy.

(3.3

of the bulk Ramond-Ramond four form.

We work in a static gauge where the world volume coor-
dinates of the brane are identified with the space time coor-
dinates byo®~x% xt,u,£. With this identification the DBI
action is

Spei=—Tpbs J d*o\/—detgap+ 9aZ' IpZ)Gij + €~ P2 Fpt 204i9pZ)),

(3.9

wherei, | label the transverse directions to the probe and the 4

scalarsZ' represent the fluctuations of the transverse scalars

X2,X3,0,¢,p,0. AlS0, Fa,=B,,+2m2F,, is the total

world volume field strength. Henceforth we will only con-

Clibs= 3.8

u4

sider the open string fluctuations on the probe and thus drowhile the remaining components, which are determined by

terms involving closed string fieldsB,, and g,;. To qua-
dratic order in fluctuations, the action takes the form

1 1 1

1
Spei=—Tpal* f d40'\/a( 1- §¢’2_ 592_ EPZ_ §<P2

1 1 1 1
+§(930(939+§(9a¢(93¢+ E&apaap-f'z&a(pﬁa(p

1 1
- 2qay2 T 3 jay3
+2uzaax 92X +2u2aax 92X

1
+ (279 %F oF

(3.9

whereg, is the determinant of the rescaled AdSS! metric
ga, given by

_ 1
ds? = S(—dt?+dx+du?) +dé2. (3.6
u

To obtain the Wess-Zumino terf,, we require the pull
back of the bulk RR—four form to the probe:

CEoed= Cabeat 4d[aZ' Cocqi+6d[aZ' dpZ) Ceqpij
+ 492 321 9.ZC i+ IpaZ' 952 9250y Z' Cijp -
(3.7

the self duality ofdC(¥), contribute only to terms in the pull
back with more than tw@Z’s. We do not need such terms to
obtain the fluctuation spectrum. The quadratic term arising
from Eq.(3.8) is

CEY=(0,X29:X3— 3,X39,:X?) Corodt/\dX A dUNdE.
(3.9

The Wess-Zumino action is then

1
Swz=TpsL* j d4UF(07uX2(9§X3— 9 X39:X?).
(3.10

B. S fluctuations inside S

From Eq.(3.5 one can see that the angular fluctuations
6,¢,p and ¢ are minimally coupled scalars on Ag$S!.
Interestingly they haven?=—1 which, although negative,
satisfies(saturates the Breitenlohner-Freedman bouma?
=—d?/4, whered=2 for AdS;. Expanding in Fourier
modes orS!, i.e., = 6,e''¢ the Kaluza-Klein modes of these
scalars haven’=—1+12. This leads to a spectrum of con-
formal dimensions of dual defect operators given by
=d/2+\d¥4+m?=1+1, where d=2. For |>0 one
should choose the positive branch for unitarity, while for
<0 one should choose the negative branch. To leading order
in fluctuations of theS! embedding we see that

6_

X"=—re, X7=—rp,

In the AdS;XS® background, one can choose a gauge in

which

x8=-r0, x°=-rdo.

(3.1)

2Such terms encode the physics of operators in the bulk of thd hus the angular variables, 6,p and ¢ belong to a §,3)

dual N=4 theory restricted to the defect.

multiplet of SU(2), X SU(2)g. Moreover, these fluctuations
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haveJ,;=0 andJ,s=1 such that th&J (1) charge appearing C. AdS; fluctuations inside AdS;

in the algebra2.14), (2.19 is J=I. Each fluctuation in the Let us now compute the conformal dimensions of the op-
seriesA=|+1 saturates one of the bounds in E16—-  erators dual to the scalars which describe the fluctuations of
(2.19, so these fluctuations should be dual to 1/4 BPS opthe probe inside of AdS From Egs.(3.5 and (3.10 the
erators. action forX? and X3 is

1 1
Spa= —Tosl? | ddoag| = 0aX207X2+ — 9, X20%X3
2u? 2u?

1 1
+Tpsl? J d%(magxzauxs— F(9ux2(9§x3 . (3.12
Writing \/ZWXi:Xiequlg) for i=2,3 and doing the integral oveérgives
4 3 1 ab i i 2yi
S;5= —Tpal* | dPo\gs| 1+ E(gs 92X 9pX;+17X11 X))
4 3 1 H 3 2 H 2 3
+TD3L d UF(I|X|§UX_|—I|X|(9UX_|) (313
Wheregrg‘b is the metric for the Adggeometry
1 2 2 2
dszzﬁ(—dt +dx¢+du?). (3.149

The X2,X® mixing in the Wess-Zumino term is diagonalized by working with the figle=X?+iX?, in terms of which the
action is

1
Sw=—TpaL* J d3a@2—u2<g§baawr FpWy + 12w wy)

1
+TD3L4 J d30'ﬁ(9u(|w|*w|) (315)

The usual action for a scalar field in Ag¢l® obtained by definingv,=w; /u, giving

1 ~, o~ ~
Sw=—Toal* f A0 Vgs 5 (@5 0aW" oWy + (17— 41 + 3) Wi Wy) (3.16
4 3 1 1"'*"
+TD3L (l_l) d O'Et?u EW| W| . (317}

The surface tern(3.17 does not effect the equations of mo- non-negative. The entry in the AdS/CFT dictionary for the
tion, but will be significant later when we compute correla- seriesA=1—1 holds several remarkable surprises which we
tion functions of the dual operators. Inserting the spectrunwill encounter later.

m?=12—41+3 into the standard formula A=d/2

+\d2/4+ m? gives D. Gauge field fluctuations
We finally turn to the fluctuations of the world volume
A=1x[1-2]. (818  gauge field. It is convenient to rescale fields according to

ﬁab:2wI§Fab so that the gauge field fluctuations have the
This gives two series of dimensiond,=l—-1 andA=3  same normalization as the scalars in the previous subsection.
—1, which are possible in the ranges lofor which A is We have
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1 IV. CORRELATORS FROM STRINGS ON THE PROBE-
Sgauge= — ToaL* f d*o Vg, ZFabFa‘b SUPERGRAVITY BACKGROUND

1 The rules for using classical supergravity in an AdS back-
= —T03L4f dﬂ,@ _(f:an:aB_,_ 2|‘:§af:§a). ground to compute CFT correlators have a natural generali-
4 zation to defect CFT’s dual to AdS probe-supergravity back-
(3.19 grounds. The generating function for correlators in the defect
CFT is identified with the classical action of the combined

In order to decouple the AdSomponents of the gauge field Probe-supergravity system with boundary conditions set by
from that on the it is convenient to work in the gauge the sources. This approach was used to compute correlators
A,=0. Expanding the rest of the components in Fouriefn the DCFT describing the D3-D5 system [if]. Without

modes on the Sso thatA = A e''¢ the action becomes worrying yet about what the dual operators are, we will do
« e the same for the D3-D3 system here. In this section we will

1 highlight some peculiar features of this defect CFT. First it
Syauge= —Tpsl? f d?:(,\/gz3 Z(f:aﬁf:aﬁ+ 2|2Aa/‘_\a)_ will be shown that the correlators of operators dual to probe
fluctuations are independent of the 't Hooft coupling, at least

(3.20 in the limit that the 't Hooft coupling is large. Second, the
two-point function of operators dual to one set of fluctuations
discussed in Sec. Il C will be shown to vanish. Correlators

i - involving both defect and bulk fields are presented in Appen-
DF 5+ 1°Az=0 B2)  gix A

The equations of motion are easily found to be

which are jUSt the Maxwell-Proca equations for a vector field A. Independence of the correlators on the 't Hooft coupling
with  M2=12, Using the standard relationA=d/2

+/(d—2)?/4+ M? relating the mass of a vector field to the
dimension of its dual operator we find the spectrum

As in Refs.[30,31,9 it is useful to work with a Weyl
rescaled metric

gun="L2gun 4.1

wherel?= \/g(NI2. In terms of the rescaled metric, the su-
which for I>1 requires us to choose the positive branch. pergravity action(3.2) becomes

A.=1=+] (3.22

8
L—Z dlox\/—jR—lez‘l’(a@)%-.-)~N2f dlox\/—jR—lezq’(acb)%-.- ) 4.2)
2k 2 2

As in the usual AdS/CFT correspondence correlation functions of gauge invariant operators in theXfeld &§YM at large

't Hooft coupling are calculated by expanding this action around thesXd8 vacuum of type 1IB. Here the presence of the
probe D3-brane will make additional contributions both through its world volume fields but also through the pull backs of the
AdS; x S° fields. Terms involving the pull backs are dual to couplings between the bulk of the field theory and the codimension
2 defect. After Weyl rescaling the metric as above, the D3-brane probe &gjgr S,z becomes

_L4TD3J d4a\/§(1+fluctuations)~Nf d4a\/§(1+fluctuations). 4.3

Notice that the dependence on the 't Hooft coupliig gsN has completely dropped out of the normalization of the action.
Generic correlation functions involving fields ¢ living on the D3-brane probe and fields ¢ from the bulk of Adg arise
from

Spei=N J d*a((a) %+ ¢™y")

1
— J d40'( (a¢/)2+ Nn/2+m,l¢, n¢/m) (44)

where ' =NY2) and ¢’ =N¢ are the canonically normalized probe and Ad®lds respectively. Thé&\ dependence of
correlators which follows from Eq4.4) is consistent with what one expects in the planar limit. It is interesting that none of
these correlation functions has any dependence ,oat least for large. where the AdS probe-supergravity description is
valid.
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B. Correlators from probe fluctuations inside AdS;: cedure of{32]. We introduce an Adgboundary au= e and
A surprise evaluate the actiofd.5) for a solution of the form
Let us now compute the correlation functions associated - . -
to the fluctuationsv, of the probe brane inside AgSFor a w;(u, k) =KO(u,k)w,"(k) (4.6

classical solution of the equation of motion, the action givenIn momentum space satisfying the boundary conditions
by the sum of Eqs(3.16 and(3.17 is given by the surface P 9 y
term

imKO(u,k)=1, limK®(u,k)=0. 4.7
1 1 U—e u—oo
— 4 3 ko
Ser=~Tosl f d o 5 dy| Gwi duwi — (1= DE W The solution of the wave equation with these boundary con-
ditions is
(4.9
KOy = Y KulkD 4.9
The first term in this expression is of the standard form ob- (uk)= € K (elk|)’ '

tained in AdS/CFT, for instance {132]. The new feature here

which does not appear in standard AdS computations is thetherev=A—1 and,(x) is the modified Bessel function
extra surface term with coefficieni €1). This term has which vanishes ak—o. Note that this coincides with the
dramatic consequences. To see this we compute the twealculation of[32] where in this casel=2. The two-point
point function of the operator dual te, following the pro-  function is given by

52

(O(k)O(K"))=— WSCI

w,b=0

:—%5(E+|2')|im[au|<(u,|2)—(l—1)%K(u,lz) , (4.9

U—e

with S;, the Fourier transform of Eq4.5).

The nonlocal part of the two-point function is obtained by expandingn a power series for small argument, keeping only
the term which scales like?®~2). The more singular terms give rise to local contact terms of the fafi(x—y) and are
dropped. The nonlocal contribution to the two-point function is given by

22<A1)—F(F2(;)A) (ku®
((’)(k)O(k’))=5(k—l—k’)lljiLn€ —e Y(ek) 1o, ket &
SIS
+(I1-1)e (ek)* (ko2 (4.10
|
The first of the two terms coincides exactly with the standard V. THE CONFORMAL FIELD THEORY
AdS calculation of|32], whereas the second term is an ad- OF THE D3-D3 INTERSECTION

ditional feature (_jue to the presence_of the probe bra_ne. Re- Thus far we have only studied the DCFT on the D3-D3
markably, there is an exact cancellation between the first anghtersection in terms of its holographic dual, without ever
the second term in Eq4.10 for the seriesA=1—1. Thus  writing the action. In this section we will construct the action
for these fluctuations the usual calculation does give a  describing N  D3-branes orthogonally intersecting
power law correlation function of the formx?*. When we N’ D3’-branes over two common dimensions. In the nota-
obtain the operators dual to these fluctuations, it will becomdion of [10] this system is known as (D31 D3'). In the
clear that one should not find a power law. In particular, thediscussion of holography it was assumed thiat:c with
lowest mode in this series is the operator which parametrizeg?,,N and N’ fixed, such that the open strings with both
the classical Higgs branch. endpoints on the D3brane decoupled. We will not make
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this assumption in constructing the action. Lorentz invariance. A four-dimensional Lorentz invariant

The N=4 SYM SU(N) theory located on the D3-branes theory which has a two-dimensional (4,4) supersymmetry
and the /=4 SYM SU(N’) theory located on the must also have\'=4 supersymmetry in four dimensions.
D3’-branes couple to a (4,4) hypermultiplet at a two-The procedure of constructing a supersymmetric
dimensional impurity. Although (4,4) supersymmetry is pre-D-dimensional theory using a lower dimensional superspace
served, it is convenient to work with (2,2) superspaddée  has been employed in several contd@s,9,3q. The reader
world volume of both stacks of D3-branes can be viewed asgvishing to skip directly to the action of the D3-D3 intersec-
two AN=2,d=4 superspaces, intersecting over a two-tion in (2,2) superspace may proceed to Sec. V B.
dimensional (2,2) superspace. One of e 2, d=4 super-

spaces is spanned by A. Four-dimensional actions in lower-dimensional superspaces

X~(z+,z‘,W,W, o ), (5.1) '!'he approach o_f building fou_r-dimensional Lorentz in-_
“ variance starting with a conventional (4,4) supersymmetric
with z* = X%+ X! andw=X?+iX3. The indexa is a spinor  theory is an indirect but effective way to obtain thé=4,
index with values 1,2, while the indéxaccounts for the"  d=4 super Yang-Mills action in a two-dimensional super-
=2 supersymmetry and has values 1,2. The oth&r2, space. There is also a more direct approach which gives a

d=4 superspace is spanned by (2,2) superspace representation for the part of Ahe4,
o . d=4 action containing only thé/=2, d=4 vector multip-
X ~(z,27y,y,0{,0)), (5.2 let. The N=2, d=4 vector multiplet has a straightforward
decomposition under two-dimensional (2,2) supersymmetry.
wherey=X*+iX® and one makes the identificatfbn On the other hand, there is no off-shall=2, d=4 formal-
N 1 N ism for the hypermultiplet, unless one uses harmonic super-
01)y=0)=0", (5.3 space. We demonstrate the decomposition of the vector mul-
. tiplet below. This provides a useful check of at least part of
(9;22):@9(22)5 0. (5.9  the action appearing in Sec. V B. For the fields we use the

notation of Table I.
This is not the unique choice. For instance one could have

written 65, = ©%,,= 6" which is related to the first choice by 1. Embedding(2,2), d=2 in N'=2, d=4
mirror symmetry[33]. The intersection is the (2,2H=2

We begin by showing how to embed (2,2)=2 super-
superspace spanned by gin by showing how (2,3 up

space intaV=2, d=4 superspace. Th&/=2,d=4 super-
XOX ~(z527,6%,07,07.67). (5.5 space ig parametrized _b)z*(,z‘,w,v_v, 0(_”“, ES)). For the
embedding let us redefine these coordinates as
All the degrees of freedom describing the D3-'Diitersec-

tion can be written in (2,2) superspace. For instance the 9+59(11), WEﬁ(lz),
D3-D3 strings, which are not restricted to the intersection,
can be described by (2,2) superfields carrying efdomtinu- 9 = 9(22) . 0= 9(21)_ (5.6)

ous labels w,w. Similiarly superfields associated to the
D3’-D3’ strings carry the extra labeysy. Fields associated In the absence of central charges, e 2, d=4 supersym-
to D3-D3' strings are localized on the intersection and havemetry algebra is
no extra continuous labels. o _
Due to the breaking of four-dimensional supersymmetry {Quya . QW at=2p% P, 8, i,j=12,

43 I
by the couplings to the degrees of freedom localized at the g
intersection, it is convenient to write the action in a language _ R =~ O W=~ ( IR
in which the unbroken (2,2) symmetry is manifest. This {Qwa Qet=1Q 72 Q5 =0, .7

leads to a somewhat unusual form for the four-dimensional . . . . ,
parts of the action. One way to obtain this action is somey\"th Pauli matricesp” given by @'(BZ)' We define super-
what akin to deconstructiof84]. The basic idea is to start Symmetry chargesQ,=Q)1, Q-=Q()2, @+=Q(2)1,
with a conventional (4,4) two-dimensional action in (2,2) @d®@_=Q),. Following the methods of Ref§37,38, we
superspace, add an extra continuous labgk to all the introduce a superspace defect at

fields, and then try to add terms preserving (4,4) supersym-

— + __ -
metry such that there is @monmanifest four-dimensional w=0, ¢"=0 =0,

which implies that the generatoPs,, P3, @., andQ. are
3A more complicated alternative would be to work in harmonic broken. T_he unbroken subalgebra of E8}7) is generated by
(4,4) superspace. Q. andQ- and turns out to be the (2,28l=2 supersym-

“We put brackets around the indices 1 and 2, which label the twdnetry algebra given by
Grassmann coordinates, in order to distinguish these indices from

spinor indicesa, a=1,2. {Q.,Q.}=2(Py=Py). (5.9
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Other anticommutators of th@'s vanish due to the absence B. The D3-D3 action in(2,2) superspace

of central charges. We now present the full action for the (4,4) supersymmet-

2. N=2, d=4 super Yang-Mills action in(2,2), d=2 language rllﬁ;hai?iglndheasscrtlr?én?ort:]e intersecting stacks of D3-branes.
In order to derive the\'=2 Yang-Mills action in (2,2)

language, we decompose the four-dimensidvial2 Abelian S=Sp3+ Sps'+ Spap3 - (5.19

vector superfieldV in terms of a two-dimensional (2,2) chi-

ral superfield®, a twisted chiral superfield,, and a vector

superfieldV. In the Abelian case, the twisted chiral superfiel

(see e.g. Refd.33,39) is related to the vector multiplet by

For each stack of parallel D3-branes we have separate ac-
dtions, Sps and Spy, each of which correspond to ak’

=4,d=4 SYM theory with gauge groupSU(N) and

SU(N'), respectively. The ternSps.pg describes the cou-

S=D.D_V (5.9 pling of these theories to matter on the two-dimensional in-
tersection.
and satisfieD .S =D_3=0. The (2,2) vector and chiral In (2,2) superspace, the field contentSpf is as follows.
superfields can be obtained by dimensional reduction of theiFirst, there is a vector multiplat(z*, 6=, 6~ ;w,w) or, more
N=1,d=4 counterparts. precisely, a continuous set of vector multiplets labeled by
In Appendix C we show that th&/=2, d=4 vector su- w,w which are functions on the (2,2) superspace spanned by
permultiplet¥ decomposes into (z*,0%,6%). The labelw=X2+iX3 parametrizes the direc-
- tions of the D3 world volume transverse to the intersection,
V=—iX+0"D. (P-dyV), while z-=X%+ X! parametrizes the remaining directions.
+0°D_(d—a,\V)+ 0" -G, (5.10 Under gauge transformationétransforms as
where d,, is the transverse derivative ar@ an auxiliary e'—e Mevelt, e Voete Vet (519

(2,2) superfield. An interesting result of the decomposition is . . ' .
that the auxiliary fieldD of the twisted chiral superfield is WhgreA is & (2,2) chiral superfield which also depends on

related to the componeBt’ and transverse derivatives of the W.W. From V one can build a twisted chirafor field
components, andv of the four-dimensional vector super- Strength multiplet as

field, 1

L 3=3{D, D}, (5.16

D=E(D'+féz), (5.1 _ _
where D.=e VD.e", D.=e"D.e V. Additionally one

wheref,= d;05— 3,04 . Note that in distinction to the con- Nas a pair of adjoint chiral@, andQ,, transforming as
formal field theory dual to the (B3L D5) intersection stud- Q—e rQei (5.17
ied in [8,9] there are no transverse derivatives likgp' in ! T '
the auxiliary fields~ of the (2,2 superfieldd. Finally there is a (2,2) chiral fiel® which transforms such

With the above decomposition o, we can now write  that 9+ @ is a covariant derivative:
down the N'=2, d=4 (Abelian) Yang-Mills action in(2,2) . .
language. Substituting Eq(5.10 with G=D_.D_(i3" Tt ®—e Mgyt D)e' (5.18

+---) into the usual form of the YM action, we find o
The complex scalar which is the lowest componentbofs

1 4o o, 1, equivalent to the gauge connectien+ivg of the four-
A Im Tf d*xdf()d 6’(2)5‘1’ dimensional SYM theory described 8;. This structure
was also seen in the explicit decomposition of the ambient

1 dode oe N=2,d=4 vector field¥ under (2,2),d=2 supersymme-
T4 Im Tf d'xd*0 (3Z+OP+a, Ve try discussed in Sec. V A; cf. EGCB6).
o The action of the second D3-brane (D3s identical to
— D9,V — VW), that of the first D3-brane with the replacements

(5.12 woy, V=V, 350, Q-S, ®—Y, (519

with d*6= %dbﬁd@_d?dg_- From this one can easily de- and is invariant under gauge transformation's
duce the corresponding non-Abelian Yang-Mills action for  The fields corresponding to DB3’ strings are the chiral

vanishingé angle, multiplets B and B, which are bifundamental and anti-
bifundamental respectively with respect t&U(N)

nol\?-Ab:izf d*xd* 0 tr(S TS + (9 + d_b)ev(aWJr(I))e*V). X SU(N’") gauge transformations,
9 L e
(5.13 B—e ABe*, B—e M Be'l. (5.20
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Using a canonical normalizatioV{(-gV etc), the com- arise after integrating out the F-terms @Qf and S;. The
ponents of the action are as follows: scalar component of), describes fluctuations of the D3-
branes in they=X*+iX> plane parallel to the D3branes.
Similiarly the scalar components & describe fluctuations
of the D3 -branes in thav=X2+iX? plane parallel to the
D3-branes. When the orthogonal branes intersect, a Higgs
branch opens up on which the scalar componen® arfidB
have VEVs(classically. The vanishing of the F-terms of the
chiral fieldsS! andQ* gives

L —
Sos=—2f dzzd2wd4etr(2*2+(aw+9‘1’)egv
9
X(gtgdle ®V+ 2 e 9VQie”'Q
i=1,2

+ f d?zdPwd?@e;;tr Q[ 9+ gP,Q;]+c.c.

IW o
(5.2 (9—ql=f9WQ2—g5 (w)bb=0
1 _ IW o
ngfz—zf dzzdzyd4atr(9*9+(ay+g\() E—ﬁﬁz—gﬁ(y)bb—o. (5.24
9

o Because of the geometric identifications~y/a’ and

x eI dy+ gY)e 9+ 2 e 9'5e9s; s,~w/a', the solutions of these equations give rise to holo-
i=1,2 . . ~
morphic curves of the formwy=ca’, where 2ric=gbb

+ f d’zdyd®6e;tr S[ay+gY,S]+c.c. =gbb
(5.22 C. R symmetries

Recall that the isometries of the AdS backround are
L 2 — VR AgV —gVR A0V SL(2R) X SL(2R) XU(1)XSU(2) XSU(2)gXU(1). The
Sps.03' = f d’zd'ot(e” 9 Be B +e 9BV SU(2), X SU(2)g component is alk symmetry which acts
i as rotations in the 6,7,8 and 9 directions transverse to all the
+ EJ d?zRotr(BBQ, - BBS,)+c.c. D3-branes. The firsU(1)R symmetry acts as a rotation in
2 thew (or 23) plane, while the secondi(1) acts as a rotation
(5.23 in they (or 45) plane. In the near horizon geometry, the
probe Kaluza-Klein momentum on'Ss a contribution to

with d*6=1d6*do do*de~ andd?6=31de*do . Jss. The chargel,; generates a rotation in AdSlirections
Some comments abo@; are in order. We have already Orthogonal to the probe. _ _ _ _
presented part of this action, as the first two terms inShe We summarize th& charges and engineering dimensions
are given by Eq(5.13. Upon integrating out auxiliary fields, Of the fields of the D3-D3 intersection in Table I. _
Sps can be seen to describe thé=4 SYM theory. To illus- TheU(1) symmetries generated Bys andJ,; are mani-

trate how four-dimensional Lorentz invariance arises, confest in (2,2) superspace. Th&(1) generated by,s has the
sider the superpotentia|;tr Q[ d5+®,Q;]. Upon integrat- following action:

ing out the F-terms o€, andQ,, one gets kinetic terms in b a2t ial2 i

the X2,X2 directions which are the four-dimensional Lorentz 0T—e"0T, BoetB, QmetQy
completion of the kinetic terms in th¢°,X* directions aris-
ing frome VQ,eVQ; .

The form of Sps.py is dictated by gauge invariance and " 59
(4,4) supersymmetry. The geometric interpretation of vari- y—ew, (5.29
ous fields can be seen from this part of the action. The . L . .
vacuum expectation values for the scalar componen®of with all remaining fields being singlets. Th&1) generated

o . = by J,; acts as
andS; give rise to mass terms for the fieldsand B local- Y J2s

H—Heia/ZG—’ 'Bg)eia/ZE' YHG-HQY,

ized at th(i intersection. There are also “twisted” mass terms 9" e i*2gt  Boe @B s, e ieg

for B and B which arise when the scalar components of the

twisted chiral fields% and () (or equivalently ofV andV) 0 —e i*2p-  Boe 9B peivp,

get expectation values. One expeBtandB fields to become

massive when the D3-branes are separated from the W e W (5.26

D3’-branes in thex®"89directions transverse to both. Thus
we associate the scalar components @f () or (S;,Q)

; ; i 561 iy 7 w81 w9
with fluctuatu_Jns in KO+IX7,X5+iX5). . 5The holomorphic curves on the Higgs branch were obtained in
Note that in (2,2) superspac®, andS, are not directly  gjiscussions with Robert Helling and will be discussed more else-

coupled to the field8 andB, although derivative couplings where.
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TABLE I. Field content of the D3-D3 intersection. charges ard,;= —1 andJ,s=1, while there are no charges
with respect toSU(2), X SU(2)g. Recall that the possible

(4.9 (22 Components j(.jr) Js Jas A series of dimensions for operators dual to these fluctuations
- (.1 0 0 1 areA=|-1 andA=3-1.
Vector Q.2 Y, Ay (03) 3 -3 3 1. The A=1—1 series and the classical Higgs branch
——— 1 1 3
bq, Mo (3.0) 2 2 2 We now focus on the series=1—1. In Sec. IV B, we
Vo,U1 (0,0) 0 0 1 found that the usual AdS computation of the two-point func-
tion for this series does not give a power law behavior. Let us
¢ 00 -1 0 1 . .
Hyper  Q, . (0.0) 0 1 1 nevertheless determine the corresponding operators. In the
yp 2 +q2_+ . 1 13 free field limit, a gauge invariant scalar operator which is
Vg1, (20) 72 72 2 ocalized on the defect and has=1—1Jp;=—1 and s
Yy, 0y -z -3 2 =1 with no SU(2), X SU(2)r charges is
b (00 -1 z 0 ~
I_Fyl-1
Hyper BB B 00 -5 3 0 5'=ba; "b. ©
U 1 0 o 3
, ,0 . . . .
l'/ltj ﬁ % 1) 0 0 i This operator has dimensioA =7, which saturates the
Yo oty (0.2) 2 bounds(2.18), (2.19 due to the superconformal algebra. An
©,5, 11 0 0 1 inspection of the supersymmetry variations of the fundamen-
vector S G L 22 1 13 tal fields of the defect CFT also suggests tBatis a chiral
o Vs Vo (02) : 2 primary. However this conclusion is erroneous. In f&tis
s, P (3.0 2 -z 2 not even a quasiprimary conformal field due to the presence
V0,01 (0,0) 0 0 1 of the dimensionless scalatsb. In other examples for
00 0 1 1 probe brane holography were the branes intersect over more
v (0.0) than two dimensiongfor instance for the D3-D5 intersec-
Hyper  S;.Y S2_ (0.0) -1 9 1 ion), similar operators are in fact chiral primaries. Here
+ + 1 = = = . . . .
Ny s, (2.0 2 2 2 however, massless scalar fields in two dimensions have
N, 'E;z (03) 3 3 3 strong infrared fluctuations and logarithmic correlation func-

tions. In a unitary two-dimensional CFT, it is generally man-
datory to take derivatives of massless scalars or construct
The reader may be surprised that these R-symmetries act afrtex operators from them in order to obtain operators as-
the coordinatesv andy_6 However in the language of two- sociated with states in the Hilbert spa?cE. may therefore
dimensional superspace, these are continuous labels rattggem remarkable that operators such ag&@) appear at all
than space-time coordinates. Recall also that(or J,5) is  in the AAS/CFT dictionary. Note that even though the appar-
an R symmetry of theA’=4 algebra associated with one ent dimension of3! is greater than zero fdr>1, the two-
stack of D3-branes, but a Lorentz symmetry for the orthogooint functions do not have a standard power law behavior.
nal stack. This can be readily seen in perturbation theory, where the
scalarsb andb give rise to logarithmic terms in the two-
point functions for3'.
There is nevertheless a very simple interpretation for the
In this section we find the map between fluctuations orfluctuationw;,, the lowest mode in they, series, in the AdS
the probe D3-brane and operators localized at the defect. THeckground. Recall that the classical Higgs branch is param-
single particle states on the probe correspond to meson-likgtrized by the vacuum value of the fieRft=bb and corre-
operators with strings of adjoint fields sandwiched t'>etwee|gpondS to the holomorphic curvesy~(bb)=c via Egs.
pairs of defect fields in the fundamental representation. (5.24). Furthermore, as discussed in Sec. I, the probe brane
can be embedded in Ad8 S° so as to sit on a holomorphic
A. Fluctuations inside AdS; curve of precisely this form. Thus it is natural to expect that
these holomorphic embeddings correspond to the classical
fluctuationsw, about thec=0 embedding.
To see this is more detail let us elaborate on the relation

between the fluctuations, and the classical Higgs branch.

VI. FLUCTUATION-OPERATOR DICTIONARY

The fluctuations of the probe D3-brane wrapping AdS
inside AdS are characterized bw,, which is the Fourier
transform ofw=X2+iX® on S'. The associateR symmetry

5Upon toroidal compactification off andy the U(1) R symmetry
generated byl,s+Jss is enhanced t&&U(2). Notethat the (4,4) "In our case, due to the fact thiatandb transform in the funda-
supersymmetry algebra admits 8J(2), X SU(2)gX SU(2) auto-  mental and antifundamental representations, it is not clear how to
morphism[40] which in the compactified case is also realized as abuild a gauge covariant vertex operator with power law correlation
symmetry. functions.
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Scalar fields in Ad$ have the following behavior near the The holomorphic curvevy=c is precisely that which arises
u—0 boundary of Ad$: from Eq. (5.24), provided that

d~urf(z5)+u? 2g(zY). (6.2 v
b=(0|, b=(v 0 ---) (6.6)
As is standard in the AdS/CFT dualitwith Lorentzian sig- .
nature non-normalizable classical solutions are to be inter-
preted as sources for the corresponding operators, while thgith gy2=c/(2mi). In this background, the probe

normalizable solutions can be interpreted as specifying a pap3’-prane combines with one of thé¢ D3-branes to form a
ticular state in the Hilbert spadd1,42. Only the VEV in-  single D3 on the curvary=c. In this sense the AdS field,
terpretation seems to make sense for the fluctuatwns parametrizes the possible embeddings of the probe brane
since, as shown in Sec. IV B, the two-point functions calcuyjthin AdS; and the dual operatdb parametrizes the clas-
lated in the usual way with source boundary conditions vans;ca| Higgs branch of the CFT.

ish. Let us examine thbe=1 ﬂuftuatlon for whichA=1-1 As was noted earlier the Curvey=c does not break the
=0, and consider the solutions, =c wherec is a complex  superconformal symmetries. To see this, it is convenient to
number. Naively one might conclude that this amounts taepresent AdSby the hyperboloid,

choosing(bb)~c. However since\ =0, this solution is not
normalizable, although it sits right at the border of
normalizability? This is a reflection of the fact that the quan-

, : where
tum mechanical vacuum must spread out over the entire clas-
sical Higgs branch, since the latter is parametrized by dimen-
sionless scalars whose correlators grow logarithmically with

X2+ XE-xi-X5-x3-xi=1, (6.7)

d?=—dX5—dxi+dxi+drs+dx3+dxs. (6.9

distance’ S ~ The coordinates on the Poincasatch,t,x=x"23andr, are
Despite the lack of normalizability of the fluctuations (gjated to these by
w,=c, the identificationc~ (bb) makes sense at the classi-
- L= 1
c_al level. This follows from the'fact that t'he solutiom, A= — (1414 R2—12),  Ap=rt, Xl’2'3:rxl,2,3,
=c corresponds to a holomorphic embedding. To see this it 2r
is convenient to recall the following coordinate definitions (6.9
(with L?=1): L
- X=—(1-r3(1+x°—t?)). (6.10
r=1u, z-=X=X w=uw=X2+iX3 y=x*+ix®, “or
6.3 The embeddingvy=c, orx?>+ix3=c/re'¢ can then be writ-
and defines = X5782 in terms of which the D3-brane metric ©" &
Is X, +iX;=ce ¢, (6.11)
—uz _ which when combined with EJ6.7) gives
d$’=|1+—| (—dz'dz +dwdw)
r X3+ x2-x2-Xi=1+|c|]% (6.12
1/2
1 T I This is exactly the hyperboloid which defines an Adpace-
+1+=]  (dydy+do?). 6.4 . . y the nyp A
r4 (dydy+dv®) 64 time with radius of curvature 4|c|?. Further, this embed-

In the simplest case, the embedding of the probé-B&ne
is given byw=0,p=0. On the probey=r exp(-i&) where
¢ is defined in Eq(2.4). Thereforew,=c implies

Cc C

=-, (6.5

re ¢y

w=uw;e'é=

ding is manifestly invariant under the isomet80(2,2)
XSU(2), XSU(2)gxU(1)". TheU(1)' factor is precisely
that which appears in the superconformal algebra as a com-
bination of rotations in the 23 and 45 planes generated by
Jo3tJss. This U(1)' factor phase rotates and shifts¢
such thatwe™'¢ is invariant.

Quantum mechanically we expect the vacuum to spread
out over the entire classical Higgs branch, since it is param-
etrized by massless two-dimensional fields. This differs from
the situation on the Coulomb branch, on which the orthogo-

. 7’8'9 . . . .
8Note that such solutions have as much right to be considered if&! l?ranes are separated in t&" 52 directions by giving
Euclidean signature, since they are nonsingular at the “origin” of VEV'S to four-dimensional fields);,o,s; andw. Note that

AdS, u=co,

on the Higgs branch one also has nonzero four-dimensional

*This is the same spreading which accounts for the “Colemanfields, of the formg,=c/w,s,=c/y, however since the
Mermin-Wagner” theoren{43] preventing spontaneously broken asymptotic values of the fields are independert iof all but

continuous symmetries in two dimensions.

two of the four world-volume directions, we expect that
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there is no obstruction to the wave function spreading out as oui_ r(c wrolw =+ e ¥ ol Wt

a function ofc. This suggests that the AdS/CFT prescription Cr=oilenVicaz¥) +eptica¥i), (u ' '(6315)
for computing correlators should be modified to sum over '
embeddings of holomorphic curves parametrized chyA + - )
natural conjecture is that the map between the generatinvg\g]:ggvtl' aR/de;PIb are SU(2). and SU(2)g doublets re
function for correlators in the CFT and the probe- ¥ 9 y
supergravity action should have the form

\Iﬁ_(w;) q}_(wb) 616
(e*36>= J Dee Se(#:0) (6.13 | lﬂg ’ | 3 |

o The indexu is anSQ(4) index and should not be confused

where, as usual, the probe-supergravity fieldsave bound- \yith a spacetime Lorentz index. Note that E.15 is in-
ary behavior determined by the sourde®ote that the clas- \griant under parity, which exchanges t8&J(2), index i
sical Higgs branch is noncomc[)aact, and it is unclear to Ugyith the SU(2)g indexj, as well as+ with —. This operator
what the measur®c should b|e1. saturates the boun2.19, and is actually 1/4 BPS. Fdr

We note that the operato¥’ have been proposed as du- —q the operator is a pure defect operator which satisfies
als of the light-cone open string vacuum for D3-branes in g,4th the bound€2.17) and(2.19 and thus is 1/2 BPS. This
plane-wave backgroundl0]. The Penrose limit giving rise gnerator will be shown to satisfy a nonrenormalization theo-
to this background isolates a sector with largg in the e to orderg? in Sec. VII, in accordance with the results of

defect CFT. The light-cone energy in the plane wave backgec v A. The operatorés.14) are obtained as two super-
ground corresponds td —J,s. For the operator®', this charge descendants of E§.15.

guantity is negativeA —J,s= — 1. Moreover, we have seen
that these operators are not really chiral primaf@seven
conformal field$. Thus it is not clear that they should be dual
to the light-cone open string vacuum. In fact it is not clear The gauge field fluctuations as derived in Sec. Ill D trans-
what the open string vacuum is, due to the quantum meform trivially underSU(2), X SU(2)g and havel,;=0 and
chanical spreading over the classical Higgs branch, whicld,s=1. If we pick the positive branch, the dimension of this
corresponds different embeddings in the plane-w@we operator isA=I1+1. On the field theory side, the operator at

=0,.

C. Gauge field fluctuations

AdS) background. the bottom of the tower with the same quantum numbers is
the current associated with a gloda(1)g under which the
2. Fluctuations inside Ad§ The A=3—1 series defect fields transform,
Next let us consider the serigd=3—1 with I<1. A M T M By oM L i SME
gauge invariant scalar operator on the defect having Tg=Vi'pag¥7+ibD b+ibD¥b (M=0,1),

=3—1,J,5=—1,J,c=| with no SU(2), X SU(2)x charges is (6.17

Il Rnfl-l T ot with Pauli matricespM defined by Eq.(B2), ¥ as in Eq.
G'=D-ba;" D.b+D.ba;" Db, (6.14 (6.16, anda,Be{+,—}. Although this current is conserved
and satisfies the BPS bound of the superconformal algebra, it

with the gauge covariant derivativd3. =Do*D,. Note is not a quasiprimary of th80(2,2) global conformal sym-

that the two+sepzirate terms aré necessary for parity 'nvarlhetry. This is essentially due to the fact that it is in the same
ance under” <z . The fluctuations modew, are scalars

rather than pseudoscalars. These operators satisfy the bourﬁgoi—s upersymmetry muiltiplet as the dimensionless field
(2.16—(2.19 and will be shown to be descendants. bb+bb ~
The contributions to Eq(6.17) involving b, b lead to
logarithms in the correlation functions. These are actually
] o present even in the purely two-dimensional free field theory
The fluctuations of the probe' @mbedding inside Sare  gptained by settingg=0 and thus decoupling the 2D from
characterized by the modg" wherem=6,7,8,9. These fluc- the 4D theory. In this case we have a bosonic current contri-
tuations are scalars in the,}) representation oBU(2),  bution of the form
X SU(2)g and havel,3=0 andJ,s=I. The possible series
of dimensions areA=1=*1. We need only considelr=0

B. Fluctuations inside $

sinceV{™ =VT, . In this case the sensible series of dimen- Jfﬂdzib_aMb—i(aME)b, (6.18
sions isA=1+1. The only gauge invariant defect operator
consistent with this is which is conserved. For Euclidean signature, this current has

a correlator of the form

Owe expect that one contribution to the measure should arise
from the fact that the Adgmetric induced on the curwey=c has <J§Ad(x)‘]ﬁld(o)>o<% In (x%u?)

Imn(X) n XMXN
effective curvature radiug1+c*c.

NG NG
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TABLE Il. Summary of fluctuation modes and field theory operators with coincident quantum numbers.

Fluctuations A I (J1)i2) 7 Operator Interpretation
stcs® I+1 =0 3, c ! 1/4 BPS primary
AdS;CAdS; 3—1 <1 (0,0),, g descendant

-1 =1 (0,0),, B! classical Higgs branch
gauge field I+1 =0 (0,0) gm

VII. NONRENORMALIZATION THEOREM

XMXN
hun(X) = dun—2 2 (6.19 In Sec. IV A we found from considering strings on the

probe-supergravity background that correlators of both probe
) ) ) ) ) and bulk fields should be independent of the 't Hooft cou-
v_vherexl,v,g((jx) |52dthe inversion tensor. Equat|d§.18) satis- pling >\=g$MN. In general, the weak and strong coupling
fies gy (Iw(x)IN1(0))=0 for XZEO- Note that in complex  pehavior do not have to be related. Nevertheless, the remark-
coordinates we have,J2%+4,J>°=0, where only the sum aple result of complete 't Hooft coupling independence of
vanishes, not each term separately, such that there is nhe correlators at strong coupling suggests that nonrenormal-
holomorphic-antiholomorphic splitting. ization theorems may be present in the defect conformal field
On the supergravity side, it is not quite clear if the theory. In this section we study the nonrenormalization be-
current-current correlator obtained from the gauge field fluchavior of the correlators at weak coupling. By showing the
tuations in Sec. Il D is well-defined. In AdSthe equation absence of ordeg?,, radiative corrections to some of the
of motion for the gauge field leads formally to a logarithmic correlators, we give some field-theoretical evidence for the
propagator. This however does not satisfy the require@xistence of nonrenormalization theorems. In particular, we
boundary condition to be identified as a bulk to boundaryconsider the two-point function of the chiral primary opera-
propagator. A better understanding of the role played by twotor ¢#! which is the lowest component of a short represen-
dimensional scalars in this model will be left for future work. tation of the (4,4) supersymmetry algebra derived in

Sec. Il C.
D. Summary and discussion of the AAECFT dictionary

Table Il summarizes the fluctuations of the KK modes andA. Nonrenormalization of the two-point function involving C*

thleir dual operator§: g‘e angular fluctuations of the plrobe Let us consider the two-point correlator of the chiral pri-
S' embedding inside Sare dual to 1/4 BPS primarie3*. mary CH'. In the following we show thatC* (x)C™ (y))

The A=3-1 fluctuations of the embedding of Ad$nside d . . é . bati
AdS; are dual tog' which are two-supercharge descendants oes not receive any corrections at ordey, in perturbation

of these primaries. ThA=I1—1 fluctuations of the embed- Te%ry..lt is sufficient to show this for the componefit
ding of AdS, inside AdS are not dual to conformal opera- —C 9iven by

tors which correspond to states in the Hilbert space. Naively [T s s TN R S RS

the dual operator$s' look like 1/2 BPS(chiral) primaries, C'= g U2 — W G2ty + Y5 U2 — ¥p G2y - (7.1
but in fact they contain massless defect scalars which do not

give rise to power law correlation functions. These massles§he nonrenormalization of the other components is guaran-

scalars and their dual fluctuations include an efittywhich
parametrizes the classical Higgs branch. The ﬂuctuationtseeOI by theSQ(4) R symmetry. The tree-level graph of the

B' for 1>1 correspond to other holomorphic curves two-point function(C'(x)H(y)) is depicted in Fig. 4. There
w=d/y' "1, however we do notas yel have a clear inter- '€ three other graphs contributing to this propagator corre-

pretation for these in the defect CFT. Lastly, the opera[@r sponding to the remaining three terms in g.J).

2 H H I \wri —
which is dual to the gauge field fluctuations on AdS a We showO(g7) nonrenormalization foC" with 1 =0 for
= which g, exchanges are absent. The relevant propagators are

descendant of the dimensionless operatot bb, which has
a logarithmic two-point function and is not a primary opera-
tor although formally it trivially satisfies the BPS bounds.

1The conformal dimensions of the dual operators are lowered by
one in comparison with the corresponding series in the D3-D5 sys-
tem studied il 8]. This is simply because the operators are bilinears
of defect fundamental fields, whose conformal dimensions are low-
ered by 1/2 in comparison with corresponding defect fields in the FIG. 4. One of the four graphs of the correlator
D3-D5 case. (C'(x)C'(y)).
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B Uy 4‘5‘ 3
W FIG. 5. First order corrections
x Q) 1 Ry to the correlatolC'(x)C'(y)) for

I=0.

fel
Ug

LH] I

1
U

The overall factor 3 comes from the definitionv,,
5 > (7.2 =1N2)v},.
(2m)*(x=y) Let us now consider the contribution from thg ex-
change in Fig. ) which is given by

7TMN

(vm(X)on(y))=

XA (Y))= ———5 . 73
(92(x)as(y)) 2m)2(x—y)? f L pre(x—u) (1 1
— | d?ud® 2("9) 2 2
o 2m(x—u)? \2 7/ (2m)%(u—v)
_ i Papg(X=Y)m
N i T |5 )P-(u—y)xp~<x—v> pes (=)
27 2a(u-y)? " 2m(x—v)? 2m(v-y)?

with pyn=diag(+1,—1), Pauli matricesp™(M=0,1) de-
fined in Appendix B, and defect coordinates/. The four-
dimensional propagators in E(..3) are pinned to the defect.
The Feynman rules for the vertices can be read off from théNote that the operator at the external paginh the graph of
defect action in component form derived in Appendix D.  Fig. 5(b) is the conjugate of the first term in E€..1) which
First we note that, similar as iV=4, d=4 SYM theory leads to the minus sign in front of the integral in E£@.6). In
[44], there are no one-loop self-energy corrections to thdrig. 5@ both external vertices have a minus sign, whereas in

defect fermionic propagatdijy, ). Self-energy corrections Fig- M5(b)N the vertices have opposite signs. Since
involving a gaugino propagator are cancelled by those inZZmnp++p- - =2, the vector exchange exactly cancels the
volving a 91 propagator which is the fermion of the super- contribution from the scalar exchange.

field Ql' There are also Se'f-energy graphs thh and o Nonrenormalization of correlators Gﬂ"“l with 1=1 is
propagators which arise from the ambient scalars coupling tg1ore difficult to show. As was shown for the operatorscfr
the defect. These cancel each other, too. However, we havé N=4 super Yang-Mills theory44,45, there are no ex-
two possible corrections from exchange graphs as shown ichanges between the ambient propagatys(x)q,(y))

Fig. 5. Note that in Fig. 5, two different contributions ®  within the correlato(C'(x)C'(y)). However, one could think
(1=0) are depicted at the poigt which originate from dif-  of 4 gauge boson exchange between a fermionic defect and a
ferent terms in the SUr('V.l). These gl’aphS include an ambi- bosonic ambient propaga‘[or_ If we dwmt work in Wess-

ent gauge boson exchange and an ambient scalar exchang@mino gauge then there is an additional interaction of the
There is noo exchange contributing to the correlator defect fermions with a scala® which is the lowest compo-
(€'(x)C'(y)) (for 1=0). In fact, it may be shown that for nent of the gauge superfieM. Keeping this in mind we

each of the components 6!, there is either ar or aq; expect that a CD exchandd4] cancels the above gauge
exchange. For all of the components, the vector exchange {soson exchange. This will be shown elsewhere.

cancelled by one of these scalar exchanges while the other
one vanishes.

(7.6

For the gauge boson exchange in Figa)5we find the B. Vanishing of odd correlators of the BPS primariesC*!
contribution Another property of the BPS primari€g is the vanish-
ing of all (2k+1)-point functions keN). Only even
1 s o P+t (X—U) 1 MN n-point functions may differ from zero. On the gravity side
2 d“ud 2m(x—u)? T 29P+ 4 (2m)%(Uu—0)>2 this can be seen by studying once more the Bl action of the

probe D3-brane. Due to the expansion of the cosines of the
angular fluctuation®, ¢,p, andy in the determinant, the BI
_ E N )P++ (u—y) action contains only even powers of the fluctuations, see Eq.
ng” 2m(u—y)>? (3.5. This implies vanishing odd couplings for the Kaluza-
Klein modes which, via the AAS/CFT correspondence, im-
p_—-(X—v) p__-(v—Y) plies vanishing oddn-point functions on the field-theory
X 2m(x—0)2 2m(v—y)? side. In the dual conformal field theory these Kaluza-Klein
y modes correspond to the BPS primary operafbts Again
(7.5 we restrict to the componedt=C?'.

X
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On the field theory side too, one finds for instance that theR symmetry. Presumably the subtleties regarding the light-
three-point function(C'1(x)C'2(y)C'3(2)) is absent. This is cone vacuum are related to the quantum spreading over ho-

due to a globalU(1) symmetry of the action lomorphic embeddinge/y=c corresponding to the classical
Higgs branch of the defect CFT. While the origin of this
B—el(¥2B, B—el(#2B, spreading is clear from the point of view of the dual defect

Q,—e 4Q;, Q,—e¢Q,, (7.7 CFT, and from the difficulties in finding localized supergrav-

ity solutions for intersecting D3-bran¢22,24,23, they are
with all other fields being singlets under this symmetry. If wenot so clear from the point of view of a probe D3-brane
choosep= 7 thenC'—(e'™)! *1¢' and the three-point func- embedded in the plane-wave or AdS backgrounds.

tion transforms as Although there is presumably no fully localized super-
gravity solution for intersecting D3-branes, it would be sur-
(C'(x)C'2(y)C"3(2)) prising if there is no closed string string description, in which

both stacks of D3-branes are replaced by geometry. The
_ gtz ol [ |

(=D CX)CA(Y)C (D)) (7.8 problem of finding a closed string description of the theory
Since l,+1,+15 must be even, £1)1t2*lst1=_1 an raises a closely related question of how new degrees of free-

(C'(x)C'2(y)C'2(z)) vanishes. Though we have restricted dom appear when W (or gs) corrections are taken into ac-
the discussion od!', the statement also holds for the other countin probe-supergravity background which we have con-

components. This is guaranteed by the fact 4k trans- sidered. In constructing the holographic dual of the defect

IRO( CFT, we have fixed the numbed’ of D3-branes in one
forms as a vector under t 4) R symmetry group. stack, while taking the numbeX of D3-branes in the or-

thogonal stack to infinity. In this limit, the degrees of free-
dom on one four-dimensional part of the world volume of the

We have presented the action and some of the elementafigfect become free. The remaining coupled degrees of free-
properties of a defect conformal field theory describing in-dom live on a four-dimensional world volume and a two-
tersecting D3-branes, including some aspects of the Adglimensional defect, which are the boundaries of AdSd
CFT dictionary. There remain many interesting open questhe embedded AdSespectively. Because the defect degrees
tions, of which we enumerate a few below. of freedom are in the fundamental representation, the genus

The defect conformal field theory requires further field- €xpansion of Feynman diagrams resembles an open string
theoretic analysis. One of the stranger features of this theonyorld-sheet expansion. WhenNLEorrections are taken into
is that it contains massless two-dimensional scalars witfccount, the decoupled degrees of freedom must somehow
(presumably exactly marginal gauge, Yukawa, and scalarreappear. The defect degrees of freedom become bifunda-
potential couplings. It is not at all obvious that one can con-mental fields with respect to SU(N)XSU(N’) gauge
struct a Hilbert space corresponding to operators with powe@roup. The genus expansion for Feynman diagrams of the
law correlation functions, due to the logarithmic correlatorstheory can now be viewed as a closed string world-sheet
of the two-dimensional scalars. It would be very interestingexpansion, where a new branch of the target space has
if one could show this to all orders in perturbation theory. opened up?

As a precursor to including gravity into the holographic ~ Finally, the string theory realization of the defect CFT
map, it would be interesting to study the energy-momentuniéads one to expect that it exhibBsiuality. It would be very
tensor of the defect conformal field theory in detail. We didinteresting to find some field theoretic evidence for this. In
not find any evidence of an enhancement of the two-Particular one would need to find tf®duals of the funda-
dimensionajsqzyz) g|0ba| conformal symmetry to a full mental degrees of freedom localized at the intersection.
infinite-dimensional conformal symmetry on the two-
dimensional defect. A study of the energy-momentum tensor
would allow us to address this question conclusively at least
from the field-theoretic side. For example, if an enhancement We are grateful to Glenn Barnich, Oliver DeWolfe, Dan
did indeed occur it should manifest itself in the form of a Freedman, Ami Hanany, Robert Helling, Marc Henneaux,
two-dimensional energy-momentum tensor which is holo-Andreas Karch, Neil Lambert, Joe Minahan, Carlos &n
morphically conserved. Volker Schomerus, David Tong, Paul Townsend and Jan

Another question concerns the light-cone open stringlroost for useful discussions. The authors are particularly
vacuum for D3-branes in the Penrose limit of the probe-indebted to Robert Helling and to David Tong for helpful
supergravity background which we have considered. The opsomments. The research of J.E., Z.G. and |.K. is funded by
erator proposed ifiL0] to correspond to the open string light- the DFG (Deutsche Forschungsgemeinschaftithin the
cone vacuum is not really a chiral primary and givesEmmy Noether program, grant ER301/1-2. N.R.C. is sup-
negative light-cone energy. This operator is precisely the onported by the DOE under grant DF-FC02-94ER40818, the
given in Eq.(6.1), and contains the dimensionless scalarsNSF under grant PHY-0096515 and NSERC of Canada.
which parametrize the Higgs branch. One might instead pro-
pose the operatat*', with P_=A—1=0 as the dual of the
light-cone vacuum, however this is only 1/4 BPS and is in a A similar although not directly related picture has been dis-
nontrivial representation of the unbrok&uU(2), XSU(2)gr  cussed in46].

VIIl. CONCLUSIONS AND OPEN QUESTIONS
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APPENDIX A: KINEMATICS OF 2D-4D DEFECT Near to the defect we have a boundary operator expansion of
CONFORMAL FIELD THEORIES the bulk operators in terms of the defect operators, which

r
1. Conformal symmetry eads

o Bo ¢
Here we present some basic implications of conformal O(v)= 2 ©:%n

symmetry in a four-dimensional field theory with a two- no(x-x)(A-4n2
dimensional defect. o )

Consider four-dimensional Euclidean space with a two-ThiS gives rise to a bulk-defect correlator
dimensional defect. The coordinates are given by

0n(2). (A6)

- . . . Bo.o
=(z,x) wherev,, are the four-dimensional coordinatez, <O(v)(‘9n(2,)>: o _
are the two defect coordinates amg are the coordinates (x-x) (A=A — 1) 280
perpendicular to the defect. The conformal transformations R
which leave the defect invariant are given by translations and (v—v'),=(x,2—-2"). (A7)

rotations within the defect plane, rotations in the plane per- i o i
pendicular to the defect and by inversians—u , /v2. The For two operators of dimensiak,, on the defect, this expres-
s—v,lv°.

conformal group is given b§O(3,1)x SO(2). Under these  SiOn reduces to
transformations we have for two points v’ .-

(O DONZ )= = (A8)
N -, V4 z = =5 ;5
L - Ka o Xa e (z—2')%n
(v=v") s N YO S YT
Q)" () Q") as expected.
(A1)
] ] ] . . . 2. SUGRA calculation of one-point functions
Hence there is a dimensionless coordinate invariant of the and bulk-defect two point functions
form We now compute the space-time dependence of the bulk
(v—0")" one-point and the bulk-defect two-point function using holo-

- ' (A2) graphic methods and show that their structure agrees with the
(X-X)(X"-x") general results obtained from conformal invariance in Ap-
pendix . The one-point function of the bulk operatdy is

Note that in the defect plane, we have only a global conforthe integral of the standard bulk-boundary propagator in
mal symmetry associated with the Virasoro generatoré&\dSs [32] over the Adg subspace. We find
L_4, Ly andL;. One may wonder if there is an accidental dwdi? T(A)
two-dimensional local conformal symmetry giving rise to a <0A(>Z,£)>= f
Virasoro algebra. This is however not the case: A necessary w® 7r(A-2)
condition for the existence of a Virasoro algebra is the exis-
tence of a two-dimensional conserved local energy-
momentum tensor. This requirement is not satisfied in the
situation considered here since only the four-dimensional
energy-momentum tensor of the combined four-dimensional 1 TGA+DI(3A-1)
and two-dimensional action contributions, given by _W 27 T(A—2)(A-1)’

w

A
w2+§2+(W—2)2)

(A9)

Tu0) =T, (0) + T®Nn(2) Sm(udn 82(X), which converges foA>2. The scaling behavidx| * has
been expected from the structure of the one-point function

. ) (A5) on the CFT side. Note that the DBI acti¢#.4) of the

is conservedg,T,,=0. Note that this energy-momentum p3 hrane probe determines the scale dependendédsiihe

%?griolrzzqs ER;Q\:\?: ?&gtir\]/v SS ::;érzéﬁzjsuop\)/zcur(m since correlation functions of defect and bulk operatafﬁg and
' O,.

The two-point function(OA(i,Z)(AOA(O» is the integral
Tun(2)= f d?x TP, N (x,2)+ T, \(2),  (A4)  over the product of the bulk-boundary propagators

K o (W, (x,2),(0,w)) andK 3 (w, (0,w),(0,0)),
which is contained as a componentJfy, given by Eq.(E4).

Tun(2) satisfiesd*y Tyun(z) =0. Nevertheless it is not a lo- <OA()Z’£)(5&(6)>:L&
cal traceless two-dimensional energy-momentum tensor. N2 72T (A —-2)
For a quasiprimary scalar operator of dimensibrclose .
to the defect we have a one-point function y ra) IREA A) (A10)
(O0)) = =2 (A5) aT@-1
v Tt
(x-x)A%2 with the integral
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S dwdw? w Aoow )\ ®
J(x,z;A,A)zf 3

w W2 x2+(w—2)2) | w2+ w?

'A-3

- w’ 4
dw'dw’? w . (A11)
)2

W 24X 24 (W =27’

e
1 )8

In the last line we made use of the inversion trj@2] by defining

(W0W) = ——= (W0W), (X'.2)==2=5(x2). (A12)
w2+ w X“+z
As in [8], we rescalev’ =z + x'?2+w'% andw’=|x’|u and find
1 UA_3+A 1
J(X,Z,A,A) = — — Afdu fd&z
(X2+Z2)4x[2 -2 (1+u?)A~2 (1+v 2"
1 7 T3 (A=DII3(A+4)]
- . (A13)
(x2+z2)4x|A722(A-1) I'[A-2]

This converges foA>A. The scaling ](,(>'(’2+£2)5|>2|A*3) this way we find the expansions of the chiral and the vector
agrees with the behavior of the two-point function fixed by Multiplet in Wess-Zumino gauge,

conformal invariance, cf. Ec{A?}. L q)(y,ai)=¢+\/§0+¢++ 207y 200 F (B3
The defect-defect correlatdiO;(z) O;(0)) for a defect . o o .
operatorO; is given by Eq.(17) in [32] with d=2 and is V(y,07,07)=0"60 (vo—v1)+0" 0" (votv)—0 60
independent oN. Let us stress again that none of the above el T
correlators depends onin the strong coupling regime. —07 0 o+iN2070 (6"A_+07h)
+i26707 (6 N_+67\,)
APPENDIX B: MULTIPLETS IN (2,2, d=2 SUPERSPACE o
. . . . +267607076  (D—idMvy).
In order to fix the notation we briefly summarize the com- 26767676 (D=1%vw) (B4)
ponent expansions of the superfields in (2@%2 super- The scalair is complex and is defined in terms of the com-
space which can be f_ound B3], for instance. We use chiral ponentsy, andv, of the dimensionally reduced four-vector
coordinateg/®,y*, 6,6~ which are related to the superspacev_ by o=vz+iv,. For the(Abelian twisted chiral super-
coordinates<®,x*, 6", 6" by field 2 (y,0~,07)=D,D_V(y,0~,07) we find the expan-
sion
M=xMtigtpMot+io plo- — —
g = Pt S(y,0%,0%) = o+i207 N, — V20 X
=xM+igTo"+(—DMio 0, — . —
+26076 (D_|f01)+2|0 6 (9(0_0”1)0'

M=0,1, (B1) — 226707 0" (d— N . (B5)

where we use the Pauli matrices
APPENDIX C: DECOMPOSING THE AN=2,d=4 VECTOR

MULTIPLET UNDER (2,2, d=2 SUPERSYMMETRY

10 1 0
p’=0"= ( 0 1) . pl=o= ( 0 _1) ' We start from the decompositibhof the vector multiplet
¥ underN'=1, d=4 which is given by an expansion #,)
[47]1

s 0 —i s 1 0 1
= = . , = = . BZ
pr=ot=lL e P (B2)
Bimportant note: In this section th&/=2, d=4 superspace is
Expansions 02,2 superfields can be obtained by dimen- parametrized by>C, ... X3, 67, 6,) and the defect is placed at
sional reduction ofA’'=1,d=4 superfields in the 2 and 3 x'=x?=0 in contrast with our convention in the rest of the text

direction and definingg™=6'=6, and 6 =6?=—6,. In  (defect atx®=x3=0).
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~ ~ . ong 0 ; ; ; ; a (a_
q,(y’a(l)’9(2)):(19,(%0(1))4_.ﬁa(z)Wa(y,G(l)) whereo” is the identity matrix andr® (a=1,2,3) are the
Pauli matrices.
+ 9(2)9(2)(3'@,9(1)), (C1) Our gogl is to find an expression fdf in terms of (2,2),
d=2 multiplets,
where®’, W/, andG’ are chiral, vector, and auxiliar
=1 multiplets, respectively. The superfiel is a function V=)ot 0T (D, V)| yoyeot 0 (D_W)|p—s—o
inater® which i ©
of the coordinate/* which is related toc* by Ot 0 (DD V)|y o, (C3)
YE=XE4+i 0T ok 0T +i0 o0 ol 041 0 +i0 0%0”  with 9=(97,07). In order to find the coefficients of this
. L — = — expansion, we substitute the component expansions of
Ti07 b0 +i 07 050" +i0" 50" +i 07011 07, ®’, W/, andG’ in Eq.(C1) and use the coordinatey,(6~,

(C2 0%, 67, 97) as defined in Eq(5.6). We find*

V=g +\20" ¢\ +\20 ¢y —26"HF’
FiV20 T (—IN_+ 0D+ 0T (Fl,—if )+ 0 (Foy—Fhotifig—if1 =267 07 (I T +idoh' T+ 3N~ — 3\’ 7))
FiN2 0T (—iN = 07D — T (Fppt fh—if = if i+ 07 (Fhytifl—260F 07 (N ~—idN ~+ A" T +a5N"T))

— 20760 (F'* =201 (004’ ~—i 0.0 ~+ o'+ gy’ T)+267 070, *). (C4)

Note that all fields are functions gfand we have to expand Sider the(2,0) supersymmetry transformation rules for the
this expression such that all fields become functions of th&pinor c9mponen)t’ , the auxiliary fieldD’, and the com-
chiral coordinates yM=xM+ig* ¢ +(—1)Mig-9-(M  Ponentfy, given by

=0,3). EvaluatingV, D, V¥, andD_W¥ at "= ¢~ =0 we

obtain SN T =iet (D' + ity
‘I’lgzoz - IE)
(D, )| goo=D (P —aV), 8D'=€" (9= )N " =€ (dg— )\
— et (d1—id )N " — et (a—id)N'~
(DW)]g-0=D (& 2,), 9 € (ATl T (Amid)
whered,=d,+id, is the derivative transverse to the defect. S = et (g N+ e (9 —id )N~ c
Here we defined théunprimed components of th€2,2) su- ef1z=€7(017192) € (=i (CD)
perfieldsX, ®, andV in terms of the(primed components
of the V=1, d=4 superfield®’ andW,, by Of particular interest in Eq(C7) are the nonstandard terms
appearing in the variations of’ ¥ andD’ involving trans-
o=i¢', N.=¢,, A_=—-\, verse derivativesj, andd;. Note that in dimensional reduc-
tion these terms would have simply been set to zero. The
o B , o SUSY variation off;, in §.D=(1//2)8.(D’ +f},) precisely
b= E(D +i) fos= Efo& ¢=E(Ul+'v2)' cancels the nonstandard terms in the variation of the auxil-
iary fieldD'. This leads to the familiaf2,0) SUSY variation
_ ) ) for D,
yo=\N,, ¢y_=y¢., F=F. (C6)
If we substitute the coefficient€5) back into the expansion 8.D=€"(dg— )N — € (dg— dg)\ . (CY

(C3) of ¥, we find the decompositio(b.10.
The appearance df}, in the definition(C6) of the auxil-
iary field D is required by (2,0 (2,2) supersymmetry. Con-  Conventions: {1, ¢,)= (¢, ,b_); 4 =¢_ o =— i, .
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In this appendix we derive the component expansion of

the impurity action in the decoupling limit which is given by

dec _
SD3.D3f = Skin+ Ssuperpot

= f d2zd*6(Be? B+ Be 9VB)

+ 2 [ zfoBoB e @D

with d*9=21de"de do*de~ and d?6=21de"dé . Using
the following expansions for the,2) superfieldsB, B, Q1,
B=b+20"y° + 26 y° —267 6 FP
B=b+26" g2 + 20 4P —207 6 FP (D2)
Qu=01+ V20" g+ 207y —20" 07 F*

as well as Eq.(B4) for V, the impurity action can be ex-
panded as

Siin= f dZZ(Ebe—|DMb|2+i$°(DO+ D)y
+gR(Do=DyWh — S ok + R auP)
+ g(bmr_—brﬁz “BA_ g2 DA, o)
1

+ —

5 +(B—B,g——-9)

1, —\=
gD—EgYMO'U' bb

(D3)
ig ~ - - .
Ssuperpot: 2 f dZZ(qulb-f— bcjjilwlj_ + (ptj_ l/lcllb-f— qulb

+ 42 g+ y° quy% +basFP+ ¢ g p°

+byyP)+c.c. (D4)

where we used the covariant

+(i/2)guy(M=0,1).

derivativ® ;= dy

For the ambient action we have the standard component
expansion of\V=4,d=4 SYM. Some of the components of

the /=4 ambient vector field, which we gather in tf#&2)

fieldsV andQ, couple to the impurity. The components of

V andQ, are related to the components of the=1, d=4
superfields/’, @', ®;, and®;, which form theN=4 vec-
tor multiplet, by

A=—-\",

O'Ei(;s,, erEl;b;!

1 1
D=—(D'+f%,), fo=—=f),

\/5( 32) 01 \/E 01
q=¢, Y= ':_/ii' Fai=F'% (i=1,2).

(DY)

APPENDIX E: QUANTUM CONFORMAL INVARIANCE

Here we give an argument that the action given by Egs.
(5.21, (5.22 and (5.23 does not receive quantum correc-
tions, such that it remains conformal to all orders in pertur-
bation theory. This argument is analogous to the discussion
of the 3D/4D case 9], where more details on the renor-
malization procedure may be found.

The argument for excluding possible quantum breakings
of conformal symmetry by defect operators relies on consid-
ering the(2,2) supercurrent and its possible anomalies, and
by making the assumption that (4,4) supersymmetry is pre-
served by the quantum corrections. We begin by recalling the
situation in =1, d=4 theories. In this case there is a su-
percurrentd, z=o",J,, which has theR current, the su-
persymmetry currents and the energy-momentum tensor
among its components. Potential superconformal anomalies
may be written in the form

D*J,5=D,S, (ED)
with Sa chiral superfield. Whe8=0, superconformal sym-
metry is conserved.

By standard dimensional reduction to (2,2) supersymme-
try in two dimensions, we obtain from E¢E1), as shown in
[48]1

(Y ABD T =DaS,

whereM={1,2, A,B={+,-}, yM={o',io?} are the two-
dimensional gamma matricesj,, is the two-dimensional
(2,2) supercurrent and the possible conformal anomaly is
given by the (2,2) chiral superfielsl 7y, contains the 20R
current, the four (2,2) supersymmetry currents and the 2D
energy-momentum tensor.

For 2D/4D models like the one given by Eg&.21),
(5.22 and(5.23, the classically conserved two-dimensional
supercurrent is given by

(E2

jM(Z)ZjdefM(Z)+ f dZijulk, 1M(X,Z)

+ f d?y 7% Ay, 2). (E3

Let us first consider possible defect operator contributions to
the anomalyS, which have to be gauge invariant and of

dimension 1. The possible defect contributions to the
anomalyS are given by

Sp=Tr{uD'D (e “Be'B+e VBe'B)

+v(BBQ;—BBS))]. (E4)
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It is important to note that there is no gauge anomaly terntierterms which asymptotically fall off with the distance from
contributing to this equation, since Ir or TrQ}, which  the boundary. Asymptotically such anomaly contributions
would have the right dimension, is twisted chiral and notwould be of the form
chiral. u andv are coefficients which may be calculated per-
turbatively. They are related to th® andy functions. From
the standard supersymmetric nonrenormalization theorem we
know thatv =0 since the corresponding operator is chital.
may be non-zero in a general (2,2) supersymmetric gauge
theory. Howeveu andv are related by (4,4) supersymmetry.
Therefore if we assume that (4,4) supersymmetry is prewith A a regulator scale, ang/=2, ;=0 for i=1,2. How-
served upon quantizationj=0 also impliesu=0. Thus ever there are no such operators available in the theory. From
there are no defect contributions breaking conformal symmedimensional analysis, only ™ or Tr{) would be possible
try. for O, or O,, respectively, but again these are twisted chiral
We may also show that there are no contributions fromand not chiral. Therefore we conclude that there are no terms

SB~J dw |w| "S1A1O;(w,2)

+ [y oy, e

four-dimensional operators to the conformal anomaly

breakingSO(2,2) conformal invariance, such that the theory

Such terms would have to originate from bulk action coun-is conformal to all orders in perturbation theory.
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