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Intersecting D3-branes and holography
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We study a defect conformal field theory describing D3-branes intersecting over two space-time dimensions.
This theory admits an exact Lagrangian description which includes both two- and four-dimensional degrees of
freedom, has (4,4) supersymmetry and is invariant under global conformal transformations. Both two- and
four-dimensional contributions to the action are conveniently obtained in a two-dimensional (2,2) superspace.
In a suitable limit, the theory has a dual description in terms of a probe D3-brane wrapping an AdS33S1 slice
of AdS53S5. We consider the AdS/CFT dictionary for this setup. In particular we find classical probe fluc-
tuations corresponding to the holomorphic curvewy5ca8. These fluctuations are dual to defect fields con-
taining massless two-dimensional scalars which parametrize the classical Higgs branch, but do not correspond
to states in the Hilbert space of the CFT. We also identify probe fluctuations which are dual to BPS supercon-
formal primary operators and to their descendants. A nonrenormalization theorem is conjectured for the corr-
elators of these operators, and verified to orderg2.
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I. INTRODUCTION AND SUMMARY

The general problem of introducing a spatial defect int
conformal field theory has been studied in several conte
@1,2#. Within string theory such defect conformal field the
ries arise in various brane constructions. They were fi
studied in this context as matrix model descriptions of co
pactified Neveu-Schwarz 5-branes~NS5-branes! @3# and
more generally as effective field theories describing vari
D-brane intersections@4,5#. More recently, an extension o
the AdS/CFT duality@6# was conjectured in which an AdS5
3S5 background is probed with a D5-brane wrapping
AdS43S2 submanifold. This configuration has been conje
tured to be dual to a four-dimensional conformal field theo
coupled to a codimension one defect@7#. This defect confor-
mal field theory~CFT! describes the decoupling limit of th
D3-D5 intersection, and consists of theN54, d54 super
Yang-Mills theory coupled to anN54, d53 hypermultiplet
localized at the defect. The open string modes with both
points on the D5-brane decouple in the infrared. Holograp
duality can be viewed as acting twice: TheN54, d54 super
Yang-Mills degrees of freedom are dual to closed strings
AdS53S5, while the defect hypermultiplet degrees of fre
dom are dual to open strings with end points on the pr
D5-brane wrapping AdS43S2. In @8#, the action of the
model was written down, and the chiral primaries localiz
on the defect were identified along with the dual fluctuatio
on the AdS4 brane. In@9#, the action was written compactl
in an N52, d53 superspace, and field theoretic argume
for quantum conformal invariance were given. The sup
symmetry of the AdS43S2 embedding was demonstrated
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@10#. Gravitational aspects of this setup were discussed
@11–13#. The Penrose limit of this background was studied
@10,14#, wherein a map between defect operators with la
R-charge and open strings on a D3-brane in a plane w
background was constructed. Moreover, two-dimensio
conformal field theories with a one-dimensional defect d
to AdS2 branes in AdS3 have recently been studied i
@15,16#. In @17,18# spacetime filling D7-branes were added
the AdS5/CFT4 correspondence in order to study flavors
supersymmetric extensions of QCD. Similarly the supergr
ity solution for the D2-D6 intersection, dual to~211!-
dimensional Yang-Mills theory with flavor, was obtained
@19#. RG flows related to defect conformal field theori
were discussed in@20#. Finally, defect CFT’s were discusse
in connection with the phenomenon of supertubes in@21#.

In this paper we consider a defect conformal field theo
which describes the low energy dynamics of intersecting D
branes. This system consists of a stack of D3-branes s
ning the 0123 directions and an orthogonal stack spann
the 0145 directions such that eight supercharges are
served, realizing a a (4,4) supersymmetry on the commo
(111)-dimensional world volume. This theory exhibits in
teresting properties which did not arise for the D3-D5 int
section. Unlike the D3-D5 intersection, open strings on b
stacks of branes remain coupled asa8→0. The resulting
theory is described by a linear sigma model on tw
intersecting world volumes. The classical Higgs branch
this theory has an interpretation as a smooth resolution of
intersection to the holomorphic curvewy;ca8, where w
5X21 iX3 and y5X41 iX5. However, due to the two-
dimensional nature of the fields which parametrize th
curves the quantum vacuum spreads out over the entire
sical Higgs branch.

As a result of the spreading over the Higgs branch, it h
been argued that a fully localized supergravity solution
this D3-brane intersection does not exist@22–24#. Obtaining
a closed string description of this defect CFT would the
©2003 The American Physical Society07-1
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fore seem to be difficult. From the point of view of the line
sigma model description, a holographic equivalence wit
closed string background would seem to require a ta
space with a singular boundary. Nevertheless, there is a
in which a holographic duality be found relating fluctuatio
in an AdS background to operators in the linear sigma mo
One simply takes the number of D3-branes,N, in the first
stack to infinity, keepinggsN and the number of D3-brane
in the second stack,N8, fixed. In this limit, the ’t Hooft
coupling of the gauge theory on the second stack,l8
5gsN8, vanishes. Thus the open strings with all endpoi
on the second stack decouple, and one is left with a fo
dimensional CFT with a codimension two defect. The def
breaks half of the originalN54, d54 supersymmetry, leav
ing eight real supercharges realizing a two-dimensional (4
supersymmetry algebra. The conformal symmetry of
theory is a globalSL(2,R)3SL(2,R), corresponding to a
subgroup of the four-dimensional conformal symmetri
The degrees of freedom at the impurity are a (4,4) hyp
multiplet arising from the open strings connecting the
thogonal stacks of D3-branes.

In the limit described above, the holographic dual is o
tained by focusing on the near horizon region for the fi
stack of D3-branes, while treating the second stack a
probe. The result is an AdS53S5 background withN8 probe
D3-branes wrapping an AdS33S1 subspace. This embeddin
was shown to be supersymmetric in@10#. We will demon-
strate below that there is a one complex parameter famil
such embeddings, corresponding to the holomorphic cu
wy;c, all of which preserve a set of isometries correspo
ing to the superconformal group. In the spirit of@7#, holo-
graphic duality is conjectured to act ‘‘twice.’’ First there
the standard AdS/CFT duality relating closed strings
AdS53S5 to operators inN54 super Yang-Mills theory.
Second, there is a duality relating open strings on the pr
D38 wrapping AdS33S1 to operators localized on th
(111)-dimensional defect.

One of the original motivations to search for holograph
dualities for defect conformal field theories@7# is that such a
duality might imply the localization of gravity on branes
string theory. In the context of a brane wrapping an Ad3
geometry embedded inside AdS5, localization of gravity
would indicate the existence of a Virasoro algebra in the d
CFT, through a Brown-Henneaux mechanism@25#. We do
not find any evidence for the existence of a Virasoro alge
in the conformal field theory. Although this theory has
(4,4) superconformal algebra, only the finite part of the
gebra is realized in any obvious way. Roughly speaking,
(4,4) superconformal algebra is the common intersection
two N54, d54 superconformal algebras, both of which a
finite. The even part of the superconformal group
SL(2,R)3SL(2,R)3SU(2)L3SU(2)R3U(1), which is
also realized as an isometry of the AdS5 background which
preserves the probe embedding. Enhancement to the u
infinite dimensional algebra would require the existence o
decoupled two-dimensional sector. Correctly addressing
issue would require going beyond the probe limit and stu
ing the back reaction of the D38-branes on the AdS53S5
10600
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geometry as well as gaining a deeper understanding of
dynamics of the defect CFT.

The action for the D3-D3 intersection is most easily a
elegantly constructed in (2,2) superspace. Although it m
seem unusual to write theN54, d54 components of the
action in (2,2) superspace, this is actually quite natural
cause the four-dimensional supersymmetries are broken
couplings to the defect hypermultiplet. In writing this actio
we will not take the limit which decouples one stack of D
branes. With the help of the manifest chirality of (2,2) s
perspace we are able to find an argument for the absenc
quantum corrections to the combined 2D-4D actions, wh
implies that the theory remains conformal upon quantizati
Although this theory has two-dimensional fields coupled
gauge fields, the gauge couplings couplings are exactly m
ginal due to the four-dimensional nature of the gauge fie

We give a detailed dictionary between Kaluza-Klein flu
tuations on the probe D3-brane and operators localized
the defect. Of particular interest will be a certain subset
the fluctuations which describe the embedding of the pr
inside AdS5. This subset is dual to operators containing d
fect scalar fields, which appear without any derivative
vertex operator structure. Due to strong infrared effects
two dimensions, these fields are not conformal fields ass
ated to states in the Hilbert space. From the point of view
the probe-supergravity system, there is at first sight noth
unusual about these fluctuations. However upon applying
usual AdS3/CFT2 rules to compute the dual two-point co
relator, one finds identically zero due to extra surface ter
in the probe action. Thus there is no clear interpretation
these fluctuations as sources for the generating function
the CFT. We shall find however that the bottom of t
Kaluza-Klein tower for these fluctuations~with appropriate
boundary conditions! parametrizes the aforementioned hol
morphic embedding of the probe inside AdS5. While the
interpretation of this fluctuation as a source is unclear
nevertheless labels points on the classical Higgs bran
Since the infrared dynamics of two dimensions implies t
the vacuum is spread out over the entire Higgs branch,
should in principle sum over holomorphic embeddings wh
performing computations in the AdS background.

The fluctuations of the probe S1 embedding inside S5 sat-
isfy the Breitenlohner-Freedman bound despite the lack
topological stability. These fluctuations are dual to a mult
let of scalar operators with defect fermion pairs which w
identify with BPS superconformal primaries localized at t
intersection. We also find fluctuations of the probe emb
ding inside AdS5 which are dual to descendants of the
operators. Remarkably, the AdS computation of the co
sponding correlators, which is valid for large ’t Hooft cou
pling l, shows no dependence onl. We also study pertur-
bative quantum corrections to the two-point function of t
BPS primary operators and find that such corrections
absent at ordergY M

2 . Together with the AdS strong couplin
result, this suggests the existence of a nonrenormaliza
theorem.

The paper is organized as follows. In Sec. II we pres
the D3-brane setup, its near horizon isometries and the
perconformal algebra. In Sec. III we obtain the spectrum
7-2
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low-energy fluctuations about the probe geometry. In Sec
we show that then-point functions associated with thes
fluctuations are independent of the ’t Hooft coupling, at le
when the ’t Hooft coupling is large. Moreover, we show th
the classical action for probe fluctuations dual operators
rametrizing the classical Higgs branch does correspond
power law two-point function. In Sec. V we study the fie
theory associated with the D3-brane intersection. We ob
the action using (2,2) superspace for both the defect
four-dimensional components. In Sec. VI we derive t
fluctuation-operator dictionary for the conjectured AdS/C
correspondence. In Sec. VII we demonstrate that two-p
functions of the BPS primary operators identified in Sec.
do not receive any radiative corrections to orderg2, thus
providing evidence for a nonrenormalization theorem.
conclude in Sec. VII by presenting some open questio
There is a series of Appendixes containing further details
the calculations. In particular in Appendix E we give an
gument for quantum conformal invariance of the defect C
which holds to all orders in perturbation theory.

II. HOLOGRAPHY FOR INTERSECTING D3-BRANES

A. The configuration

We are interested in the conformal field theory describ
the low energy limit of a stack ofN D3-branes in the
x0,x1,x2,x3 directions intersecting another stack ofN8 D3-
branes in thex0,x1,x4,x5 directions, as indicated in the fol
lowing table:

0 1 2 3 4 5 6 7 8 9

D3 X X X X
D38 X X X X

This intersection preserves 8 supersymmetries. The m
less open string degrees of freedom correspond to a pa
N54 super-Yang-Mills multiplets coupled to a bifundame
tal (4,4) hypermultiplet localized at the (111)-dimensional
intersection. The coupling is such that a two-dimensio
(4,4) supersymmetry is preserved. We shall study the h
graphic description of this system in a limit in which one
the N54 multiplets decouples, leaving a singleN54 mul-
tiplet coupled to a (4,4) hypermultiplet at
(111)-dimensional defect. This decoupling is achieved
scalingN→` while keepinggsN;gY M

2 N andN8 fixed. This
is the usual ’t Hooft limit for the gauge theory describing t
N D3-branes. Forl[gY M

2 N@1 one may replace theN D3-
branes by the geometry AdS53S5, according to the usua
AdS/CFT correspondance. On the other hand, the ’t Ho
coupling for the N8 orthogonal D3-branes isl85gsN8
5lN8/N which vanishes in the above limit. For largel, one
may treat these branes as a probe of an AdS53S5 geometry.

We now demonstrate the existence of a one complex
rameter family of AdS33S1 embeddings of the prob
D38-branes in the AdS53S5 background. Consider first th
geometry of the stack ofN D3-branes before taking the ne
horizon limit. The D3 metric is given by
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ds25S 11
L4

r 4 D 21/2

~2dt21dx1
21dx2

21dx3
2!

1S 11
L4

r 4 D 1/2

~dx4
21•••1dx9

2!. ~2.1!

We will choose a static gauge in which the world volum
coordinates of the probe are identified witht,x1,x4,x5. De-
fining w5x21 ix3 and y5x41 ix5 the probe is taken to lie
on the surface defined bywy5cL2 and x65x75x85x9

50. Herec is an arbitrary complex number. Whenc50 we
havew50 and the probe sits at the origin of the space tra
verse to its world volume. ForcÞ0 the probe sits on a ho
lomorphic curve embedded into the space spanned byx2,3,4,5

~see Fig. 1!. With this choice of embedding the induced me
ric on the probe world volume is

dsprobe
2 5h21/2~2dt21dx1

2!1h1/2S 11
ucu2L4

~ uyu2!2
h21D dydȳ

~2.2!

whereh511L4/(uyu2)2 is the harmonic function appearin
in the background geometry evaluated at the position of
probe.

In the near horizon limit,L/r @1, the D3-brane geometry
becomes AdS53S5,

dsAdS53S5
2

5
L2

u2
~2dt21dx1

21dx2
21dx3

21du2!

1L2~df21sf
2 du21sf

2 su
2dr21sf

2 su
2sr

2dw2

1sf
2 su

2sr
2sw

2dj2!, ~2.3!

where u[L2/r and we have defined angular variabl
f,u,r,w,j via

x45rsfsusrswsj, x55rsfsusrswcj,

x65rsfsusrcw, x75rsfsucr,

2wy=cL

D3

c=0

D3’

y

w

FIG. 1. Holomorphic curvewy5cL2.
7-3
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FIG. 2. AdS/CFT duality for
an impurity CFT. The duality acts
twice: once for the type IIB super
gravity on AdS53S5, and once
for DBI theory on AdS33S1.
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x85rsfcu, x95rcf, ~2.4!

wheresf5 sinf, cf5 cosf etc. It is instructive to conside
this limit from the point of view of the probe metric. One ca
easily show that in the near horizon region the induced m
ric on the probe becomes

dsprobe
2 5

L̃2

ũ2
~2dt21dx1

21dũ2!1L̃dj2, ~2.5!

whereL̃25L2(11ucu2) and

ũ5
L̃

L
uU

x6,x7,x8,x950

. ~2.6!

One immediately recognizes Eq.~2.5! as the metric on
AdS33S1 with radius of curvatureL̃. The probe is sitting at
f5u5r5w5p/2 and thus wraps a circle of maximal ra
dius inside the S5. For the special casec50 the curvature is
the same as that of the ambient AdS53S5 geometry. Forc
Þ0 however the effective cosmological constant on
probe differs from that of the bulk of AdS5. This is reminis-
cent of the D3-D5 system studied in Ref.@7# in which D5-
brane probes were wrapped on an AdS43S2 slice of the full
geometry. In that case probe D5-branes were able to h
effective cosmological constants which differed from t
bulk when some of the D5-branes ended on the D3-bra
@7#. Here the probe D38-branes cannot end on the D3-bran
however one of the probe branes can ‘‘merge’’ with one
the N D3-branes and form a holomorphic curve. It is th
holomorphic curve that is parametrized byc. Notice thatc
also parametrizes a family of AdS3 spaces and therefore w
expect that this deformation preserves the conformal inv
ance of the dual field theory. It is interesting that while s
persymmetry allows forany holomorphic curve of the form
wyl5cLl 11 @26# only for l 51 is the AdS3 geometry and
hence conformal invariance preserved. For the majority
this paper we will restrict our attention to the casec50
however we will return to the general case when we disc
the classical Higgs branch of the dual defect conformal fi
theory.

The boundary of the embedded AdS3 is an R2 at ũ50,
and lies within theR4 boundary of AdS5. This embedding is
10600
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indeed supersymmetric, as was verified forc50 in @10#.
Thus this configuration is stable despite the fact that the S1 is
contractible within the S5. As we will see shortly, the naively
unstable modes associated with contracting the S1 satisfy the
Breitenlohner-Freedman bound@27# for scalars in AdS3, and
therefore do not lead to an instability.

Following the arguments of@7,8# we propose that AdS
CFT duality ‘‘acts twice’’ in the background with an AdS3
brane embedded in AdS5. This means that the closed string
on AdS5 should be dual toN54 SU(N) super Yang-Mills
theory onR4, while open string modes on the probe AdS3
brane should be dual to the fundamental (4,4) hypermultip
on theR2 defect~see Fig. 2!. Interactions between the defe
hypermultiplet and the bulkN54 fields should correspond
to couplings between open strings on the probe D3-brane
closed strings in AdS53S5. For large ’t Hooft coupling, the
generating function for correlation functions of the defe
CFT should be given by the classical action of type IIB s
pergravity on AdS53S5 coupled to a Dirac-Born-Infeld
theory on AdS33S1, with suitable conditions on the behav
ior of fields at the boundary of AdS5 and AdS3.

B. Isometries

In the absence of the probe D3-branes, the isometry gr
of the AdS53S5 background isSO(2,4)3SO(6). The
SO(2,4) component acts as conformal transformations
the boundary of AdS5, while the SO(6);SU(4) isometry
of S5 is the R symmetry of four-dimensionalN54 super
Yang-Mills theory, under which the six real scalarsX4,5,6,7,8,9

transform in the vector representation.
In the presence of the probe D3-brane, the AdS53S5

isometries are broken to the subgroup which leaves the
bedding equations of the probe invariant:

SO~2,4!3SU~4!→SL~2,R!3SL~2,R!3U~1!3SU~2!L

3SU~2!R3U~1!. ~2.7!

Out of theSO(2,4) isometry of AdS5 only SO(2,2)3U(1)
.SL(2,R)3SL(2,R)3U(1) is preserved. TheSO(2,2)
.SL(2,R)3SL(2,R) factor is the isometry group of AdS3,
while theU(1) factor acts as a phase rotation of the comp
coordinatesw5X21 iX3. Out of theSO(6).SU(4) isom-
etry of S5, only SO(4)3U(1).SU(2)L3SU(2)R3U(1)
7-4
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is preserved. TheU(1) factor here acts as phase rotation
the complex coordinatey5X41 iX5, which rotates theS1 of
the probe world volume. TheSO(4) component acts on th
coordinatesX6,7,8,9. As we shall see in Sec. II C, only a ce
tain combination of the twoU(1) factors in Eq.~2.7! enters
the superconformal algebra. The even part of the super
formal group is SL(2,R)3SL(2,R)3SU(2)L3SU(2)R
3U(1).

C. The superconformal algebra

The D3-D3 intersection has a (4,4) superconformal gro
whose even part isSL(2,R)3SL(2,R)3SU(2)L3SU(2)R
3U(1). Weemphasize that this system does not give a s
dard (4,4) superconformal algebra. Because of the coupl
between two and four-dimensional fields, the algebra d
not factorize into left and right moving parts. Neither a
infinite Virasoro algebra nor an affine Kac-Moody algeb
are realized in any obvious way. The superconformal alge
for the D3-D3 system should be thought of as a comm
‘‘intersection’’ of two N54, d54 superconformal algebras
both of which are finite. If there is a hidden affine algebra
should arise via some dynamics which gives a decoup
two-dimensional sector, for which we presently have no e
dence.

For comparative purposes, it is helpful to first review t
situation for more familiar two-dimensional (4,4) theori
with vector multiplets and hypermultiplets, such as tho
considered in@28#. These theories may have classical Hig
and Coulomb branches which meet at a singularity of
moduli space. For finite coupling, quantum states spread
over both the Higgs and Coulomb branches. However in
infrared ~or strong coupling! limit, one obtains a separat
(4,4) CFT on the Higgs and Coulomb branches@28#. One
argument for the decoupling of the Higgs and Coulom
branches is that the (4,4) superconformal algebra contain
SU(2)l3SU(2)rR symmetry with a different origin in the
original SU(2)L3SU(2)R3SU(2)R symmetry depending
on whether one is on the Higgs branch or Coulomb bran
The CFT scalars must be uncharged under theR symmetries.
This means for example that the originalSU(2)L3SU(2)R
factor may be theR symmetry of the CFT on the Higg
branch but not the Coulomb branch.

For the linear sigma model describing the D3-D3 int
section, a (4,4) superconformal theory arises only on
Higgs branch, which is parametrized by the two-dimensio
scalars of the defect hypermultiplet. On the Coulomb bran
the orthogonal D3-branes are separated by amounts ch
terized by the VEV’s of four-dimensional scalar fields. O
obtains a CFT on the Higgs branch without flowing to the I
since the gauge fields propagate in four dimensions and
gauge coupling is exactly marginal.1 Furthermore scalar de
grees of freedom of the CFT may carryR charges, since the
R currents do not break up into purely left and right movi
parts. Of course the scalars of the defect hypermultiplet m

1We give field theoretic arguments for quantum conformal inva
ance in Appendix E.
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still be uncharged under theR symmetries, since forgY M
50 the free (4,4) hypermultiplet realizes a convention
two-dimensional (4,4) CFT. However the four-dimension
scalar fields, which are not decoupled at finitegY M , trans-
form nontrivially under theR symmetries of the defect CFT

In more familiar considerations of the AdS3/CFT2 duality,
the full Virasoro algebra is realized in terms of diffeomo
phisms that leave the form of the metric invariant asympto
cally, near the boundary of AdS3 @25#. Of these diffeomor-
phisms, the finiteSL(2,R)3SL(2,R) subalgebra is realized
as an exact isometry. However the three-dimensional diff
morphisms which are asymptotic isometries of AdS3, and
correspond to higher-order Virasoro generators, do not h
an extension into the bulk which leave the AdS5 metric as-
ymptotically invariant. The existence of a Virasoro algeb
seems to require localized gravity on AdS3. This could only
be seen through a consideration of the back reaction. In
defect CFT, the two-dimensional conformal algebra conta
only those generators which can be extended to confor
transformations of the four-dimensional parts of the wo
volume, namelyL21 , L0 , L1 , L̃21 , L̃0 and L̃1.

The ‘‘global’’ (4,4) superconformal algebra of defect CF
gives relations between the dimensions andR charges of
BPS operators. We will later find that these relations
consistent with the spectrum of fluctuations in the probe-A
background. To construct the relevant part of the algebra
is helpful to note that the algebra should be a subgroup o
N54, d54 superconformal algebra~or actually an unbro-
ken intersection of two such algebras!.

Let us start by writing down the relevant part of th
N54, d54 superconformal algebra for the D3-branes in t
0123 directions. The supersymmetry generators areQa

a ,
wherea51,2 is a spinor index anda51, . . . ,4 is anindex
in the representation4 of theSU(4)R symmetry. The specia
superconformal generators areSbb which are in the4* rep-
resentation ofSU(4). Therelevant part of theN54, d54
algebra is then

$Qa
a ,Sbb%5eab„db

aD14JA~TA!b
a
…1 1

2 db
aLmnsab

mn , ~2.8!

whereD is the dilation operator,JA are the operators gene
atingSU(4), andLmn are the generators of four-dimension
Lorentz transformations. The matrices (TA)b

a generate the
fundamental representation ofSU(4), and arenormalized
such that Tr(TATB)5 1

2 dAB.
A (4,4) supersymmetry sub-algebra is generated by

superchargesQ1
a[Q1

a with a51,2, andQ2
a[Q2

a with a
53,4, on which anSU(2)L3SU(2)R3U(1) subgroup of
the orginalSU(4)R symmetry acts. The embedding of th
SU(2)L3SU(2)R3U(1) generators inSU(4) is as follows:

SU~2!L : S 1

2
sA 0

0 0
D , SU~2!R : S 0 0

0
1

2
sBD ,

U~1!:
1

A8
S 2I 0

0 I D . ~2.9!-
7-5
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The unbrokenSU(2)L3SU(2)R R symmetry correspond
to rotations in the directions 6,7,8,9 transverse to both sta
of D3-branes, while the unbrokenU(1) describes rotation in
the 45 plane. These symmetries act on adjoint scalars. S
theR currents of the CFT do not break up into left and rig
moving parts, there is no requirement that four-dimensio
scalars are uncharged underR symmetries. We shall call the
generator of rotations in the 45 planeJ45, and normalize it
such that the superchargesQ6

a have J45 eigenvalue61/2.
The special superconformal generators of the (4,4) suba
bra areSb2[Sb2 with b51,2 andSb1[Sb1 with b53,4.
The term in the (4,4) algebra inherited from Eq.~2.8! is then

$Q1
a ,Sb2%5db

aD12JA
L~sA!b

a1db
aJ451db

aL011db
aL23,

~2.10!

$Q2
a ,Sb1%52db

aD22JA
R~sA!b

a1db
aJ451db

aL011db
aL23.

~2.11!

The unbroken Lorentz generators areL01 andL23. Note that
from a two-dimensional point of view, the Lorentz transfo
mations are generated byL01, whereasL23 is anR symme-
try.

For the orthogonal D3-branes spanning 0,1,4,5, rotati
in the 45 plane are Lorentz generatorsL45 rather than a sub
group ofSU(4). Therotations in the 23 plane are an unbr
ken U(1) part of theSU(4)R symmetry rather than a Lor
entz transformation. This distinction is illustrated in Fig. 3

From the two-dimensional point of view, both 23 and
rotations areU(1)R symmetries. If we writeL235J23, L45
5J45 and defineJ5J231J45, then the terms~2.10! and
~2.11! become

$Q1
a ,Sb2%5db

a~L011D !12JA
L~sA!b

a1db
aJ, ~2.12!

$Q2
a ,Sb1%5db

a~L012D !22JA
R~sA!b

a1db
aJ, ~2.13!

which are applicable tobothstacks of D3-branes. This form
part of the (4,4) superconformal algebra of the full D3-D
system. The chargeJ plays a somewhat unusual role. Fro
the point of view of the bulk four-dimensional fields,J is a
combination of anR symmetry and a Lorentz symmetry, un
der which the preserved supercharges are invariant. As
will see later, the fields localized at the two-dimensional
tersection are not charged underJ. Upon decoupling the
four-dimensional fields by takingg50, the two-dimensiona
sector becomes a free (4,4) superconformal theory with

xSU(2) SU(2)J
45

SU(4)

SU(4)

L
23

L
45

J
23

D3  in (0123):

D3  in (0145):

FIG. 3. Decomposition of the twoSU(4)R symmetries.
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affine SU(2)L3SU(2)R R symmetry. However, forgY M

Þ0, the algebra does not factorize into left and right movi
parts.

The algebra~2.12!, ~2.13! determines the dimensions o
the BPS superconformal primary operators, which are an
hilated by all theS8s and some of theQ8s. The bounds on
dimensions due to the superconformal algebra are best
tained in Euclidean space. The Euclidean (4,4) algebra of
defect CFT contains the terms

$Q 1/2
a ,Q1/2

b†%52db
aL012JA

L~sA!b
a1db

aJ, ~2.14!

$Q̃1/2
a ,Q̃1/2

b†%52db
aL̃012JA

R~sA!b
a2db

aJ. ~2.15!

For a5b, the left hand side of Eqs.~2.14! and ~2.15! are
positive operators, leading to the bounds

h1 j 3
L1 1

2 J > 0, ~2.16!

h2 j 3
L1 1

2 J > 0, ~2.17!

h̃1 j 3
R2 1

2 J > 0, ~2.18!

h̃2 j 3
R2

1/2

J > 0, ~2.19!

some of which are saturated by the BPS superconformal
maries. As always, the dimensions areD5h1h̃, with h5h̃
for scalar operators.

III. FLUCTUATIONS IN THE PROBE-SUPERGRAVITY
BACKGROUND

Following the conjecture put forth in@7# and elaborated
upon in @8#, we expect the holographic duals of defect o
erators localized on the intersection are open strings on
probe D38, whose world volume is an AdS33S1 submani-
fold of AdS53S5. The operators with protected conform
dimensions should be dual to probe Kaluza-Klein excitatio
at ‘‘substringy’’ energies,m2!l/L2. In this section we shall
find the mass spectra of these excitations. Later we will fi
this spectrum to be consistent with the dimensions of ope
tors localized on the intersection.

A. The probe-supergravity system

The full action describing physics of the background
well as the probe is given by

Sbulk5SIIB1SDBI1SWZ . ~3.1!

The contribution of the bulk supergravity piece of the acti
in Einstein frame is

SIIB5
1

2k2 E d10xA2gS R2
1

2
e2F~]F!21••• D

~3.2!
7-6
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where 2k25(2p)7gs
2l s

8 . The dynamics of the probe D3
brane is given by a Dirac-Born-Infeld term and a We
Zumino term@29#,

SDBI1SWZ52TD3 E d4se2FA2det~gab
PB1e2F/2Fab!

1TD3 E CPB
(4) . ~3.3!
th
la

-
ro

i

th

10600
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The metricgab

PB is the pull back of the bulk AdS53S5 metric
to the world volume of the probe, whileCPB

(4) is the pull back
of the bulk Ramond-Ramond four form.

We work in a static gauge where the world volume co
dinates of the brane are identified with the space time co
dinates bysa;x0,x1,u,j. With this identification the DBI
action is
SDBI52TD3 E d4sA2det~gab1]aZi]bZjgi j 1e2F/2Fab12gai]bZi !, ~3.4!
by
l
o
ing

ns

,

e
-

r
rder

s

wherei , j label the transverse directions to the probe and
scalarsZi represent the fluctuations of the transverse sca
X2,X3,u,f,r,w. Also, Fab5Bab12p l s

2Fab is the total
world volume field strength. Henceforth we will only con
sider the open string fluctuations on the probe and thus d
terms involving closed string fields2 Bab and gai . To qua-
dratic order in fluctuations, the action takes the form

SDBI52TD3L4 E d4sAḡ4S 12
1

2
f22

1

2
u22

1

2
r22

1

2
w2

1
1

2
]au]au1

1

2
]af]af1

1

2
]ar]ar1

1

2
]aw]aw

1
1

2u2
]aX2]aX21

1

2u2
]aX3]aX3

1
1

4
~2p l s

2!2FabF
abD

~3.5!

whereḡ4 is the determinant of the rescaled AdS33S1 metric
ḡab

4 given by

ds̄2 5
1

u2
~2dt21dx1

21du2!1dj2. ~3.6!

To obtain the Wess-Zumino termSWZ we require the pull
back of the bulk RR–four form to the probe:

Cabcd
PB 5Cabcd14] [aZiCbcd] i16] [aZi]bZjCcd] i j

14] [aZi]bZj]cZ
kCd] i jk1] [aZi]bZj]cZ

k]d]Z
lCi jkl .

~3.7!

In the AdS53S5 background, one can choose a gauge
which

2Such terms encode the physics of operators in the bulk of
dual N54 theory restricted to the defect.
e
rs

p

n

C0123
(4) 5

L4

u4
~3.8!

while the remaining components, which are determined
the self duality ofdC(4), contribute only to terms in the pul
back with more than two]Z’s. We do not need such terms t
obtain the fluctuation spectrum. The quadratic term aris
from Eq. ~3.8! is

CPB
(4)5~]uX2]jX

32]uX3]jX
2!C0123dt`dx1`du`dj.

~3.9!

The Wess-Zumino action is then

SWZ5TD3L4 E d4s
1

u4
~]uX2]jX

32]uX3]jX
2!.

~3.10!

B. S1 fluctuations inside S5

From Eq.~3.5! one can see that the angular fluctuatio
u,f,r and w are minimally coupled scalars on AdS33S1.
Interestingly they havem2521 which, although negative
satisfies~saturates! the Breitenlohner-Freedman boundm2

>2d2/4, where d52 for AdS3. Expanding in Fourier
modes onS1, i.e.,u5u le

il j the Kaluza-Klein modes of thes
scalars havem25211 l 2. This leads to a spectrum of con
formal dimensions of dual defect operators given byD6

5d/26Ad2/41m2516 l , where d52. For l .0 one
should choose the positive branch for unitarity, while fol
,0 one should choose the negative branch. To leading o
in fluctuations of theS1 embedding we see that

x652rw, x752rr,

x852ru, x952rf. ~3.11!

Thus the angular variablesf,u,r and w belong to a (12 , 1
2 )

multiplet of SU(2)L3SU(2)R . Moreover, these fluctuation
e

7-7
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haveJ2350 andJ455 l such that theU(1) charge appearing
in the algebra~2.14!, ~2.15! is J5 l . Each fluctuation in the
seriesD5 l 11 saturates one of the bounds in Eqs.~2.16!–
~2.19!, so these fluctuations should be dual to 1/4 BPS
erators.
o-
la
um

10600
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C. AdS3 fluctuations inside AdS5

Let us now compute the conformal dimensions of the o
erators dual to the scalars which describe the fluctuation
the probe inside of AdS5. From Eqs.~3.5! and ~3.10! the
action forX2 andX3 is
S2,352TD3L4 E d4sAḡ4S 1

2u2
]aX2]aX21

1

2u2
]aX3]aX3D

1TD3L4 E d4sS 1

u4
]jX

2]uX32
1

u4
]uX2]jX

3D . ~3.12!

Writing A2pXi5Xl
iexp(ilj) for i 52,3 and doing the integral overj gives

S2,352TD3L4 E d3sAg3S 11
1

2u2
~g3

ab]aX2 l
i ]bXl

i1 l 2X2 l
i Xl

i !D
1TD3L4 E d3s

1

u4
~ i lX l

3]uX2 l
2 2 i lX l

2]uX2 l
3 ! ~3.13!

wheregab
3 is the metric for the AdS3 geometry

ds25
1

u2
~2dt21dx1

21du2!. ~3.14!

The X2,X3 mixing in the Wess-Zumino term is diagonalized by working with the fieldwl[Xl
21 iXl

3 , in terms of which the
action is

Sw52TD3L4 E d3sAg3

1

2u2
~g3

ab]awl* ]bwl1 l 2wl* wl !

1TD3L4 E d3s
1

2u4
]u~ lwl* wl !. ~3.15!

The usual action for a scalar field in AdS3 is obtained by definingw̃l5wl /u, giving

Sw52TD3L4 E d3sAg3

1

2
„g3

ab]aw̃l* ]bw̃l1~ l 224l 13!w̃l* w̃l… ~3.16!

1TD3L4~ l 21! E d3s
1

2
]uS 1

u2
w̃l* w̃l D . ~3.17!
he
we

e
to

he
tion.
The surface term~3.17! does not effect the equations of m
tion, but will be significant later when we compute corre
tion functions of the dual operators. Inserting the spectr
m25 l 224l 13 into the standard formula D5d/2

6Ad2/41m2 gives

D516u l 22u. ~3.18!

This gives two series of dimensions,D5 l 21 and D53
2 l , which are possible in the ranges ofl for which D is
-
non-negative. The entry in the AdS/CFT dictionary for t
seriesD5 l 21 holds several remarkable surprises which
will encounter later.

D. Gauge field fluctuations

We finally turn to the fluctuations of the world volum
gauge field. It is convenient to rescale fields according
F̂ab52p l s

2Fab so that the gauge field fluctuations have t
same normalization as the scalars in the previous subsec
We have
7-8
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Sgauge52TD3L4 E d4sAḡ4

1

4
F̂abF̂

ab

52TD3L4 E d4sAḡ4

1

4
~ F̂abF̂ab12F̂jaF̂ja!.

~3.19!

In order to decouple the AdS3 components of the gauge fiel
from that on the S1 it is convenient to work in the gaug
Aj50. Expanding the rest of the components in Four
modes on the S1 so thatAa5Âaeil j the action becomes

Sgauge52TD3L4 E d3sAḡ3

1

4
~ F̂abF̂ab12l 2ÂaÂa!.

~3.20!

The equations of motion are easily found to be

DaF̂ab1 l 2Âb50 ~3.21!

which are just the Maxwell-Proca equations for a vector fi
with M25 l 2. Using the standard relationD5d/2

6A(d22)2/41M2 relating the mass of a vector field to th
dimension of its dual operator we find the spectrum

D6516 l ~3.22!

which for l .1 requires us to choose the positive branch.
10600
r

d

IV. CORRELATORS FROM STRINGS ON THE PROBE-
SUPERGRAVITY BACKGROUND

The rules for using classical supergravity in an AdS ba
ground to compute CFT correlators have a natural gene
zation to defect CFT’s dual to AdS probe-supergravity ba
grounds. The generating function for correlators in the def
CFT is identified with the classical action of the combin
probe-supergravity system with boundary conditions set
the sources. This approach was used to compute correla
in the DCFT describing the D3-D5 system in@8#. Without
worrying yet about what the dual operators are, we will
the same for the D3-D3 system here. In this section we w
highlight some peculiar features of this defect CFT. Firs
will be shown that the correlators of operators dual to pro
fluctuations are independent of the ’t Hooft coupling, at le
in the limit that the ’t Hooft coupling is large. Second, th
two-point function of operators dual to one set of fluctuatio
discussed in Sec. III C will be shown to vanish. Correlato
involving both defect and bulk fields are presented in App
dix A.

A. Independence of the correlators on the ’t Hooft coupling

As in Refs. @30,31,8# it is useful to work with a Weyl
rescaled metric

gMN5L2ḡMN ~4.1!

whereL25AgsNls
2 . In terms of the rescaled metric, the s

pergravity action~3.2! becomes
e
of the

ension

on.

e of
is
L8

2k2 E d10xA2ḡS R2
1

2
e2F~]F!21••• D;N2 E d10xA2ḡS R2

1

2
e2F~]F!21••• D . ~4.2!

As in the usual AdS/CFT correspondence correlation functions of gauge invariant operators in the bulk ofN54 SYM at large
’t Hooft coupling are calculated by expanding this action around the AdS53S5 vacuum of type IIB. Here the presence of th
probe D3-brane will make additional contributions both through its world volume fields but also through the pull backs
AdS53S5 fields. Terms involving the pull backs are dual to couplings between the bulk of the field theory and the codim
2 defect. After Weyl rescaling the metric as above, the D3-brane probe actionSDBI1SWZ becomes

2L4TD3 E d4sAḡ~11fluctuations!;N E d4sAḡ~11fluctuations!. ~4.3!

Notice that the dependence on the ’t Hooft couplingl5gsN has completely dropped out of the normalization of the acti
Generic correlation functions involvingn fields c living on the D3-brane probe andm fields f from the bulk of AdS5 arise
from

SDBI5N E d4s„~]c!21fmcn
…

5 E d4sS ~]c8!21
1

Nn/21m21
c8 nf8 mD ~4.4!

where c85N1/2c and f85Nf are the canonically normalized probe and AdS5 fields respectively. TheN dependence of
correlators which follows from Eq.~4.4! is consistent with what one expects in the planar limit. It is interesting that non
these correlation functions has any dependence onl, at least for largel where the AdS probe-supergravity description
valid.
7-9
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B. Correlators from probe fluctuations inside AdS5:
A surprise

Let us now compute the correlation functions associa
to the fluctuationswl of the probe brane inside AdS5. For a
classical solution of the equation of motion, the action giv
by the sum of Eqs.~3.16! and~3.17! is given by the surface
term

Scl52TD3L4 E d3s
1

2
]uF1

u
w̃l* ]uw̃l2~ l 21!

1

u2
w̃l* w̃l G .

~4.5!

The first term in this expression is of the standard form
tained in AdS/CFT, for instance in@32#. The new feature here
which does not appear in standard AdS computations is
extra surface term with coefficient (l 21). This term has
dramatic consequences. To see this we compute the
point function of the operator dual towl following the pro-
ar
d
R
a

m
th
iz
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cedure of@32#. We introduce an AdS3 boundary atu5e and
evaluate the action~4.5! for a solution of the form

wl~u,kW !5K ( l )~u,kW !wl
b~kW ! ~4.6!

in momentum space satisfying the boundary conditions

lim
u→e

K ( l )~u,kW !51, lim
u→`

K ( l )~u,kW !50. ~4.7!

The solution of the wave equation with these boundary c
ditions is

K ( l )~u,kW !5
u

e

Kn~uukW u!

Kn~eukW u!
, ~4.8!

wheren5D21 andKn(x) is the modified Bessel function
which vanishes atx→`. Note that this coincides with the
calculation of@32# where in this cased52. The two-point
function is given by
ly
^O~kW !O~kW8!&[2
d2

dwl
b~kW !dwl

b~kW8!
SclU

wl
b50

52
1

e
d~kW1kW8! lim

u→e
F]uK~u,kW !2~ l 21!

1

u
K~u,kW !G , ~4.9!

with Scl the Fourier transform of Eq.~4.5!.
The nonlocal part of the two-point function is obtained by expandingKn in a power series for small argument, keeping on

the term which scales like«2(D22). The more singular terms give rise to local contact terms of the formh2d(x2y) and are
dropped. The nonlocal contribution to the two-point function is given by

^O~kW !O~kW8!&5d~kW1kW8! lim
u→e

F 2e21~ek!21]u
S 222(D21)

G~22D!

G~D!
~ku!D

~ke!12D
D

1~ l 21!e22~ek!21

222(D21)
G~22D!

G~D!
~ku!D

~ke!12D
G . ~4.10!
3
er
n

g
ta-

th
e

The first of the two terms coincides exactly with the stand
AdS calculation of@32#, whereas the second term is an a
ditional feature due to the presence of the probe brane.
markably, there is an exact cancellation between the first
the second term in Eq.~4.10! for the seriesD5 l 21. Thus
for these fluctuations the usual calculation doesnot give a
power law correlation function of the form 1/x2D. When we
obtain the operators dual to these fluctuations, it will beco
clear that one should not find a power law. In particular,
lowest mode in this series is the operator which parametr
the classical Higgs branch.
d
-
e-

nd

e
e
es

V. THE CONFORMAL FIELD THEORY
OF THE D3-D3 INTERSECTION

Thus far we have only studied the DCFT on the D3-D
intersection in terms of its holographic dual, without ev
writing the action. In this section we will construct the actio
describing N D3-branes orthogonally intersectin
N8 D38-branes over two common dimensions. In the no
tion of @10# this system is known as (1uD3' D38). In the
discussion of holography it was assumed thatN→` with
gY M

2 N and N8 fixed, such that the open strings with bo
endpoints on the D38-brane decoupled. We will not mak
7-10
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this assumption in constructing the action.
The N54 SYM SU(N) theory located on the D3-brane

and the N54 SYM SU(N8) theory located on the
D38-branes couple to a (4,4) hypermultiplet at a tw
dimensional impurity. Although (4,4) supersymmetry is p
served, it is convenient to work with (2,2) superspace.3 The
world volume of both stacks of D3-branes can be viewed
two N52, d54 superspaces, intersecting over a tw
dimensional (2,2) superspace. One of theN52, d54 super-
spaces is spanned by

X;~z1,z2,w,w̄,u i
a ,ū ȧ

i !, ~5.1!

with z65X06X1 andw5X21 iX3. The indexa is a spinor
index with values 1,2, while the indexi accounts for theN
52 supersymmetry and has values 1,2. The otherN52,
d54 superspace is spanned by

X8;~z1,z2,y,ȳ,Q i
a ,Q̄ȧ

i !, ~5.2!

wherey5X41 iX5 and one makes the identification4

u (1)
1 5Q (1)

1 [u1, ~5.3!

u (2)
2 5Q (2)

2 [ū2. ~5.4!

This is not the unique choice. For instance one could h
written u (2)

2 5Q (2)
2 [u2 which is related to the first choice b

mirror symmetry@33#. The intersection is the (2,2),d52
superspace spanned by

XùX8;~z1,z2,u1,u2,ū1,ū2!. ~5.5!

All the degrees of freedom describing the D3-D38 intersec-
tion can be written in (2,2) superspace. For instance
D3-D3 strings, which are not restricted to the intersecti
can be described by (2,2) superfields carrying extra~continu-
ous! labels w,w̄. Similiarly superfields associated to th
D38-D38 strings carry the extra labelsy,ȳ. Fields associated
to D3-D38 strings are localized on the intersection and ha
no extra continuous labels.

Due to the breaking of four-dimensional supersymme
by the couplings to the degrees of freedom localized at
intersection, it is convenient to write the action in a langua
in which the unbroken (2,2) symmetry is manifest. Th
leads to a somewhat unusual form for the four-dimensio
parts of the action. One way to obtain this action is som
what akin to deconstruction@34#. The basic idea is to star
with a conventional (4,4) two-dimensional action in (2,
superspace, add an extra continuous labelw,w̄ to all the
fields, and then try to add terms preserving (4,4) supers
metry such that there is a~nonmanifest! four-dimensional

3A more complicated alternative would be to work in harmon
(4,4) superspace.

4We put brackets around the indices 1 and 2, which label the
Grassmann coordinates, in order to distinguish these indices

spinor indicesa,ȧ51,2.
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Lorentz invariance. A four-dimensional Lorentz invaria
theory which has a two-dimensional (4,4) supersymme
must also haveN54 supersymmetry in four dimensions
The procedure of constructing a supersymme
D-dimensional theory using a lower dimensional supersp
has been employed in several contexts@35,9,36#. The reader
wishing to skip directly to the action of the D3-D3 interse
tion in (2,2) superspace may proceed to Sec. V B.

A. Four-dimensional actions in lower-dimensional superspaces

The approach of building four-dimensional Lorentz i
variance starting with a conventional (4,4) supersymme
theory is an indirect but effective way to obtain theN54,
d54 super Yang-Mills action in a two-dimensional supe
space. There is also a more direct approach which give
(2,2) superspace representation for the part of theN54,
d54 action containing only theN52, d54 vector multip-
let. The N52, d54 vector multiplet has a straightforwar
decomposition under two-dimensional (2,2) supersymme
On the other hand, there is no off-shellN52, d54 formal-
ism for the hypermultiplet, unless one uses harmonic su
space. We demonstrate the decomposition of the vector m
tiplet below. This provides a useful check of at least part
the action appearing in Sec. V B. For the fields we use
notation of Table I.

1. Embedding„2,2…, dÄ2 in NÄ2, dÄ4

We begin by showing how to embed (2,2),d52 super-
space intoN52, d54 superspace. TheN52, d54 super-
space is parametrized by (z1,z2,w,w̄, u ( i )

a, ū ȧ
( i )). For the

embedding let us redefine these coordinates as

u1[u (1)
1 , u”1[u (2)

1 ,

ū2[u (2)
2 , u”2[u (1)

2 . ~5.6!

In the absence of central charges, theN52, d54 supersym-
metry algebra is

$Q( i )a ,Q̄( j )
ḃ%52raḃ

m
Pmd i

j , i , j 51,2,

$Q( i )a ,Q( j )b%5$Q̄ ȧ
( i ) ,Q̄ ḃ

( j )
%50, ~5.7!

with Pauli matricesrm given by Eq.~B2!. We define super-
symmetry chargesQ1[Q(1)1, Q̄2[Q(2)2, Q” 1[Q(2)1,
andQ” 2[Q(1)2. Following the methods of Refs.@37,38#, we
introduce a superspace defect at

w50, u”15 u”250,

which implies that the generatorsP2 , P3 , Q” 6 , andQ” 6 are
broken. The unbroken subalgebra of Eq.~5.7! is generated by
Q6 and Q̄6 and turns out to be the (2,2),d52 supersym-
metry algebra given by

$Q6 ,Q̄6%52~P06P1!. ~5.8!

o
m

7-11
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Other anticommutators of theQ8s vanish due to the absenc
of central charges.

2.NÄ2, dÄ4 super Yang-Mills action in„2,2…, dÄ2 language

In order to derive theN52 Yang-Mills action in (2,2)
language, we decompose the four-dimensionalN52 Abelian
vector superfieldC in terms of a two-dimensional (2,2) ch
ral superfieldF, a twisted chiral superfieldS, and a vector
superfieldV. In the Abelian case, the twisted chiral superfie
~see e.g. Refs.@33,39#! is related to the vector multiplet by

S[D̄1D2V ~5.9!

and satisfiesD̄1S5D2S50. The (2,2) vector and chira
superfields can be obtained by dimensional reduction of t
N51, d54 counterparts.

In Appendix C we show that theN52, d54 vector su-
permultipletC decomposes into

C52 iS1u”1D̄1~F̄2] w̄V!,

1u”2D2~F2]wV!1 u”1 u”2G, ~5.10!

where ]w is the transverse derivative andG an auxiliary
(2,2) superfield. An interesting result of the decomposition
that the auxiliary fieldD of the twisted chiral superfieldS is
related to the componentD8 and transverse derivatives of th
componentsv28 andv38 of the four-dimensional vector supe
field,

D5
1

A2
~D81 f 328 !, ~5.11!

where f 328 5]3v282]2v38 . Note that in distinction to the con
formal field theory dual to the (2uD3' D5) intersection stud-
ied in @8,9# there are no transverse derivatives like]wf8 in
the auxiliary fieldsF of the ~2,2! superfieldF.

With the above decomposition ofC, we can now write
down theN52, d54 ~Abelian! Yang-Mills action in ~2,2!
language. Substituting Eq.~5.10! with G5D̄1D2( iS†

1•••) into the usual form of the YM action, we find

1

4p
Im t E d4xd2u (1)d

2u (2)

1

2
C2

5
1

4p
Im t E d4xd4u ~S̄S1F̄F1] w̄VF

2F̄]wV2] w̄V]wV!,

~5.12!

with d4u5 1
4 du1du2dū1dū2. From this one can easily de

duce the corresponding non-Abelian Yang-Mills action
vanishingu angle,

SYM
non-Ab5

1

g2 E d4xd4u tr„S†S1~] w̄1F̄!eV~]w1F!e2V
….

~5.13!
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B. The D3-D3 action in „2,2… superspace

We now present the full action for the (4,4) supersymm
ric theory describing the intersecting stacks of D3-bran
The action has the form

S5SD31SD381SD3-D38 . ~5.14!

For each stack of parallel D3-branes we have separate
tions, SD3 and SD38 , each of which correspond to anN
54, d54 SYM theory with gauge groupsSU(N) and
SU(N8), respectively. The termSD3-D38 describes the cou
pling of these theories to matter on the two-dimensional
tersection.

In (2,2) superspace, the field content ofSD3 is as follows.
First, there is a vector multipletV(z6,u6,ū6;w,w̄) or, more
precisely, a continuous set of vector multiplets labeled
w,w̄ which are functions on the (2,2) superspace spanne
(z6,u6,ū6). The labelw5X21 iX3 parametrizes the direc
tions of the D3 world volume transverse to the intersecti
while z65X06X1 parametrizes the remaining direction
Under gauge transformationsV transforms as

eV→e2 iL†
eVeiL, e2V→e2 iLe2VeiL†

, ~5.15!

whereL is a (2,2) chiral superfield which also depends
w,w̄. From V one can build a twisted chiral~or field
strength! multiplet as

S5
1

2
$D̄1 ,D2%, ~5.16!

where D65e2VD6eV, D̄65eVD̄6e2V. Additionally one
has a pair of adjoint chiralsQ1 andQ2, transforming as

Qi→e2 iLQie
iL. ~5.17!

Finally there is a (2,2) chiral fieldF which transforms such
that ] w̄1F is a covariant derivative:

] w̄1F→e2 iL~] w̄1F!eiL. ~5.18!

The complex scalar which is the lowest component ofF is
equivalent to the gauge connectionv21 iv3 of the four-
dimensional SYM theory described bySD3 . This structure
was also seen in the explicit decomposition of the ambi
N52, d54 vector fieldC under (2,2),d52 supersymme-
try discussed in Sec. V A; cf. Eq.~C6!.

The action of the second D3-brane (D38) is identical to
that of the first D3-brane with the replacements

w→y, V→V, S→V, Qi→Si , F→Y, ~5.19!

and is invariant under gauge transformationsL8.
The fields corresponding to D3-D38 strings are the chira

multiplets B and B̃, which are bifundamental and ant
bifundamental respectively with respect toSU(N)
3SU(N8) gauge transformations,

B→e2 iLBeiL8, B̃→e2 iL8B̃eiL. ~5.20!
7-12
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Using a canonical normalization (V→gV etc.!, the com-
ponents of the action are as follows:

SD35
1

g2 E d2zd2wd4u trS S†S1~]w1gF̄!egV

3~] w̄1gF!e2gV1 (
i 51,2

e2gVQ̄ie
gVQi D

1 E d2zd2wd2ue i j tr Qi@] w̄1gF,Qj #1c.c.

~5.21!

SD385
1

g2 E d2zd2yd4u trS V†V1~]y1gȲ !

3egV~] ȳ1gY!e2gV1 (
i 51,2

e2gVS̄ie
gVSi D

1 E d2zd2yd2ue i j tr Si@] ȳ1gY,Sj #1c.c.

~5.22!

SD3-D385 E d2zd4u tr~e2gVB̄egVB1e2gVBD egVB̃!

1
ig

2 E d2zd2u tr~BB̃Q12B̃BS1!1c.c.

~5.23!

with d4u5 1
4 du1du2dū1dū2 andd2u5 1

2 du1du2.
Some comments aboutSD3 are in order. We have alread

presented part of this action, as the first two terms in theSD3
are given by Eq.~5.13!. Upon integrating out auxiliary fields
SD3 can be seen to describe theN54 SYM theory. To illus-
trate how four-dimensional Lorentz invariance arises, c
sider the superpotentiale i j tr Qi@] w̄1F,Qj #. Upon integrat-
ing out the F-terms ofQ1 andQ2, one gets kinetic terms in
theX2,X3 directions which are the four-dimensional Loren
completion of the kinetic terms in theX0,X1 directions aris-
ing from e2VQ̄ie

VQi .
The form of SD3-D38 is dictated by gauge invariance an

(4,4) supersymmetry. The geometric interpretation of va
ous fields can be seen from this part of the action. T
vacuum expectation values for the scalar components ofQ1

andS1 give rise to mass terms for the fieldsB and B̃ local-
ized at the intersection. There are also ‘‘twisted’’ mass ter
for B and B̃ which arise when the scalar components of
twisted chiral fieldsS and V ~or equivalently ofV and V)
get expectation values. One expectsB andB̃ fields to become
massive when the D3-branes are separated from
D38-branes in theX6,7,8,9directions transverse to both. Thu
we associate the scalar components of (Q1 ,S) or (S1 ,V)
with fluctuations in (X61 iX7,X81 iX9).

Note that in (2,2) superspace,Q2 andS2 are not directly
coupled to the fieldsB andB̃, although derivative couplings
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arise after integrating out the F-terms ofQ1 and S1. The
scalar component ofQ2 describes fluctuations of the D3
branes in they5X41 iX5 plane parallel to the D38-branes.
Similiarly the scalar components ofS2 describe fluctuations
of the D38-branes in thew5X21 iX3 plane parallel to the
D3-branes. When the orthogonal branes intersect, a H
branch opens up on which the scalar components ofB andB̃
have VEVs~classically!. The vanishing of the F-terms of th
chiral fieldsS1 andQ1 gives

]W

]q1
5] w̄q22gd2~w!bb̃50

]W

]s1
5] ȳs22gd2~y!b̃b50. ~5.24!

Because of the geometric identificationsq2;y/a8 and
s2;w/a8, the solutions of these equations give rise to ho
morphic curves5 of the form wy5ca8, where 2p ic5gbb̃

5gb̃b.

C. R symmetries

Recall that the isometries of the AdS backround a
SL(2,R)3SL(2,R)3U(1)3SU(2)L3SU(2)R3U(1). The
SU(2)L3SU(2)R component is anR symmetry which acts
as rotations in the 6,7,8 and 9 directions transverse to all
D3-branes. The firstU(1)R symmetry acts as a rotation i
thew ~or 23) plane, while the secondU(1) acts as a rotation
in the y ~or 45) plane. In the near horizon geometry, t
probe Kaluza-Klein momentum on S1 is a contribution to
J45. The chargeJ23 generates a rotation in AdS5 directions
orthogonal to the probe.

We summarize theR charges and engineering dimensio
of the fields of the D3-D3 intersection in Table I.

TheU(1) symmetries generated byJ45 andJ23 are mani-
fest in (2,2) superspace. TheU(1) generated byJ45 has the
following action:

u1→eia/2u1, B→eia/2B, Q2→eiaQ2 ,

u2→eia/2u2, B̃→eia/2B̃, Y→e1 iaY,

y→eiay, ~5.25!

with all remaining fields being singlets. TheU(1) generated
by J23 acts as

u1→e2 ia/2u1, B→e2 ia/2B, S2→e2 iaS2 ,

u2→e2 ia/2u2, B̃→e2 ia/2B̃, F→e2 iaF,

w→e2 iaw. ~5.26!

5The holomorphic curves on the Higgs branch were obtained
discussions with Robert Helling and will be discussed more e
where.
7-13
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The reader may be surprised that these R-symmetries a
the coordinatesw and y.6 However in the language of two
dimensional superspace, these are continuous labels r
than space-time coordinates. Recall also thatJ23 ~or J45) is
an R symmetry of theN54 algebra associated with on
stack of D3-branes, but a Lorentz symmetry for the ortho
nal stack.

VI. FLUCTUATION-OPERATOR DICTIONARY

In this section we find the map between fluctuations
the probe D3-brane and operators localized at the defect.
single particle states on the probe correspond to meson
operators with strings of adjoint fields sandwiched betwe
pairs of defect fields in the fundamental representation.

A. Fluctuations inside AdS5

The fluctuations of the probe D3-brane wrapping Ad3
inside AdS5 are characterized bywl , which is the Fourier
transform ofw5X21 iX3 on S1. The associatedR symmetry

6Upon toroidal compactification ofw andy theU(1) R symmetry
generated byJ231J45 is enhanced toSU(2). Note that the (4,4)
supersymmetry algebra admits anSU(2)L3SU(2)R3SU(2) auto-
morphism@40# which in the compactified case is also realized a
symmetry.

TABLE I. Field content of the D3-D3 intersection.

~4,4! ~2,2! Components (j L , j R) J23 J45 D

s,q1 ( 1
2 , 1

2 ) 0 0 1

Vector Q1 ,S cq1

1 ,l̄s
1 (0,1

2 )
1
2 2

1
2

3
2

cq1

2 ,l̄s
2 ( 1

2 ,0)
1
2 2

1
2

3
2

v0 ,v1 (0,0) 0 0 1

f (0,0) 21 0 1
Hyper Q2 ,F q2 (0,0) 0 1 1

cf
1 ,c̄q2

1 ( 1
2 ,0) 2

1
2 2

1
2

3
2

cf
2 ,c̄q2

2 (0,1
2 ) 2

1
2 2

1
2

3
2

b (0,0) 2
1
2

1
2 0

Hyper B,B̃ b̃ (0,0) 2
1
2

1
2 0

cb
1 ,c̄ b̃

1
( 1

2 ,0) 0 0 1
2

cb
2 ,c̄ b̃

2
(0,1

2 ) 0 0 1
2

v,s1 ( 1
2 , 1

2 ) 0 0 1

Vector S1 ,V cs1

1 ,c̄v
1 (0,1

2 )
1
2 2

1
2

3
2

cs1

2 ,c̄v
2 ( 1

2 ,0)
1
2 2

1
2

3
2

ṽ0 ,ṽ1
(0,0) 0 0 1

y (0,0) 0 1 1
Hyper S2 ,Y s2 (0,0) 21 0 1

ly
1 ,c̄s2

1 ( 1
2 ,0)

1
2

1
2

3
2

ly
2 ,c̄s2

2 (0,1
2 )

1
2

1
2

3
2
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charges areJ23521 andJ455 l , while there are no charge
with respect toSU(2)L3SU(2)R . Recall that the possible
series of dimensions for operators dual to these fluctuat
areD5 l 21 andD532 l .

1. The DÄ lÀ1 series and the classical Higgs branch

We now focus on the seriesD5 l 21. In Sec. IV B, we
found that the usual AdS computation of the two-point fun
tion for this series does not give a power law behavior. Let
nevertheless determine the corresponding operators. In
free field limit, a gauge invariant scalar operator which
localized on the defect and hasD5 l 21,J23521 and J45
5 l with no SU(2)L3SU(2)R charges is

B l[b̃q2
l 21b. ~6.1!

This operator has dimensionD5J, which saturates the
bounds~2.18!, ~2.19! due to the superconformal algebra. A
inspection of the supersymmetry variations of the fundam
tal fields of the defect CFT also suggests thatB l is a chiral
primary. However this conclusion is erroneous. In fact,B l is
not even a quasiprimary conformal field due to the prese
of the dimensionless scalarsb,b̃. In other examples for
probe brane holography were the branes intersect over m
than two dimensions~for instance for the D3-D5 intersec
tion!, similar operators are in fact chiral primaries. He
however, massless scalar fields in two dimensions h
strong infrared fluctuations and logarithmic correlation fun
tions. In a unitary two-dimensional CFT, it is generally ma
datory to take derivatives of massless scalars or const
vertex operators from them in order to obtain operators
sociated with states in the Hilbert space.7 It may therefore
seem remarkable that operators such as Eq.~6.1! appear at all
in the AdS/CFT dictionary. Note that even though the app
ent dimension ofB l is greater than zero forl .1, the two-
point functions do not have a standard power law behav
This can be readily seen in perturbation theory, where
scalarsb and b̃ give rise to logarithmic terms in the two
point functions forB l .

There is nevertheless a very simple interpretation for
fluctuationw1, the lowest mode in thewl series, in the AdS
background. Recall that the classical Higgs branch is par
etrized by the vacuum value of the fieldB 15b̃b and corre-
sponds to the holomorphic curveswy;^b̃b&5c via Eqs.
~5.24!. Furthermore, as discussed in Sec. II, the probe br
can be embedded in AdS53S5 so as to sit on a holomorphi
curve of precisely this form. Thus it is natural to expect th
these holomorphic embeddings correspond to the class
fluctuationsw1 about thec50 embedding.

To see this is more detail let us elaborate on the rela
between the fluctuationsw̃1 and the classical Higgs branch

a

7In our case, due to the fact thatb and b̃ transform in the funda-
mental and antifundamental representations, it is not clear how
build a gauge covariant vertex operator with power law correlat
functions.
7-14
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INTERSECTING D3-BRANES AND HOLOGRAPHY PHYSICAL REVIEW D68, 106007 ~2003!
Scalar fields in AdS3 have the following behavior near th
u→0 boundary of AdS3:

f;uD f ~z6!1u22Dg~z6!. ~6.2!

As is standard in the AdS/CFT duality~with Lorentzian sig-
nature! non-normalizable classical solutions are to be int
preted as sources for the corresponding operators, while
normalizable solutions can be interpreted as specifying a
ticular state in the Hilbert space@41,42#. Only the VEV in-
terpretation seems to make sense for the fluctuationsw̃l
since, as shown in Sec. IV B, the two-point functions calc
lated in the usual way with source boundary conditions v
ish. Let us examine thel 51 fluctuation for whichD5 l 21
50, and consider the solutionsw̃15c wherec is a complex
number. Naively one might conclude that this amounts
choosinĝ b̃b&;c. However sinceD50, this solution is not
normalizable, although it sits right at the border
normalizability.8 This is a reflection of the fact that the qua
tum mechanical vacuum must spread out over the entire c
sical Higgs branch, since the latter is parametrized by dim
sionless scalars whose correlators grow logarithmically w
distance.9

Despite the lack of normalizability of the fluctuation
w15c, the identificationc;^b̃b& makes sense at the class
cal level. This follows from the fact that the solutionw̃1
5c corresponds to a holomorphic embedding. To see th
is convenient to recall the following coordinate definitio
~with L251):

r 51/u, z65X06X1, w5uw̃5X21 iX3, y5x41 ix5,
~6.3!

and definevW 5X6,7,8,9, in terms of which the D3-brane metri
is

ds25S 11
1

r 4D 21/2

~2dz1dz21dwdw̄!

1S 11
1

r 4D 1/2

~dydȳ1dvW 2!. ~6.4!

In the simplest case, the embedding of the probe D38-brane
is given byw50,vW 50. On the probe,y5r exp(2ij) where
j is defined in Eq.~2.4!. Thereforew̃15c implies

w5uw̃1ei j5
c

re2 i j
5

c

y
. ~6.5!

8Note that such solutions have as much right to be considere
Euclidean signature, since they are nonsingular at the ‘‘origin’’
AdS, u5`.

9This is the same spreading which accounts for the ‘‘Colem
Mermin-Wagner’’ theorem@43# preventing spontaneously broke
continuous symmetries in two dimensions.
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The holomorphic curvewy5c is precisely that which arise
from Eq. ~5.24!, provided that

b5S v

0

A
D , b̃5~v 0 ••• ! ~6.6!

with gv25c/(2p i ). In this background, the prob
D38-brane combines with one of theN D3-branes to form a
single D3 on the curvewy5c. In this sense the AdS fieldw1
parametrizes the possible embeddings of the probe b
within AdS5 and the dual operatorb̃b parametrizes the clas
sical Higgs branch of the CFT.

As was noted earlier the curvewy5c does not break the
superconformal symmetries. To see this, it is convenien
represent AdS5 by the hyperboloid,

X 0
21X 5

22X 1
22X 2

22X 3
22X 4

251, ~6.7!

where

ds252dX 0
22dX 5

21dX 1
21dX 2

21dX 3
21dX 4

2 . ~6.8!

The coordinates on the Poincare´ patch,t,xW5x1,2,3 andr, are
related to these by

X55
1

2r
„11r 2~11xW22t2!…, X05rt , X1,2,35rx1,2,3,

~6.9!

X45
1

2r
„12r 2~11xW22t2!…. ~6.10!

The embeddingwy5c, or x21 ix35c/rei j can then be writ-
ten as

X21 iX35ce2 i j, ~6.11!

which when combined with Eq.~6.7! gives

X 0
21X 5

22X 1
22X 4

2511ucu2. ~6.12!

This is exactly the hyperboloid which defines an AdS3 space-
time with radius of curvature 11ucu2. Further, this embed-
ding is manifestly invariant under the isometrySO(2,2)
3SU(2)L3SU(2)R3U(1)8. TheU(1)8 factor is precisely
that which appears in the superconformal algebra as a c
bination of rotations in the 23 and 45 planes generated
J231J45. This U(1)8 factor phase rotatesw and shiftsj
such thatwe2 i j is invariant.

Quantum mechanically we expect the vacuum to spr
out over the entire classical Higgs branch, since it is para
etrized by massless two-dimensional fields. This differs fr
the situation on the Coulomb branch, on which the ortho
nal branes are separated in theX6,7,8,9 directions by giving
VEV’s to four-dimensional fieldsq1 ,s,s1 andv. Note that
on the Higgs branch one also has nonzero four-dimensio
fields, of the form q25c/w,s25c/y, however since the
asymptotic values of the fields are independent ofc in all but
two of the four world-volume directions, we expect th

in
f

-
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there is no obstruction to the wave function spreading ou
a function ofc. This suggests that the AdS/CFT prescripti
for computing correlators should be modified to sum o
embeddings of holomorphic curves parametrized byc. A
natural conjecture is that the map between the genera
function for correlators in the CFT and the prob
supergravity action should have the form

^e2JÔ&5 E Dce2Scl(f,c), ~6.13!

where, as usual, the probe-supergravity fieldsf have bound-
ary behavior determined by the sourcesJ. Note that the clas-
sical Higgs branch is noncompact, and it is unclear to
what the measureDc should be.10

We note that the operatorsB l have been proposed as d
als of the light-cone open string vacuum for D3-branes i
plane-wave background@10#. The Penrose limit giving rise
to this background isolates a sector with largeJ45 in the
defect CFT. The light-cone energy in the plane wave ba
ground corresponds toD2J45. For the operatorsB l , this
quantity is negative:D2J45521. Moreover, we have see
that these operators are not really chiral primaries~or even
conformal fields!. Thus it is not clear that they should be du
to the light-cone open string vacuum. In fact it is not cle
what the open string vacuum is, due to the quantum m
chanical spreading over the classical Higgs branch, wh
corresponds different embeddings in the plane-wave~or
AdS! background.

2. Fluctuations inside AdS5: The DÄ3À l series

Next let us consider the seriesD532 l with l<1. A
gauge invariant scalar operator on the defect havingD
532 l ,J23521,J455 l with no SU(2)L3SU(2)R charges is

G l[D2b̃q2
†12 lD1b1D1b̃q2

†12 lD2b, ~6.14!

with the gauge covariant derivativesD6[D06D1. Note
that the two separate terms are necessary for parity inv
ance underz1↔z2. The fluctuations modeswl are scalars
rather than pseudoscalars. These operators satisfy the bo
~2.16!–~2.19! and will be shown to be descendants.

B. Fluctuations inside S5

The fluctuations of the probe S1 embedding inside S5 are
characterized by the modeVl

m wherem56,7,8,9. These fluc-

tuations are scalars in the (1
2 , 1

2 ) representation ofSU(2)L

3SU(2)R and haveJ2350 andJ455 l . The possible series
of dimensions areD516 l . We need only considerl>0
sinceVl

m* 5V2 l
m . In this case the sensible series of dime

sions isD511 l . The only gauge invariant defect operat
consistent with this is

10We expect that one contribution to the measure should a
from the fact that the AdS3 metric induced on the curvewy5c has
effective curvature radiusA11c* c.
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C m l[s i j
m~e ikC̄k

1q2
l C j

21e jkC̄k
2q2

l C i
1!, ~m50, . . . ,3!

~6.15!

where C i
1 and C i

2 are SU(2)L and SU(2)R doublets re-
spectively, given by

C i
15S cb

1

c̄ b̃
1D , C i

25S cb
2

c̄ b̃
2D . ~6.16!

The indexm is anSO(4) index and should not be confuse
with a spacetime Lorentz index. Note that Eq.~6.15! is in-
variant under parity, which exchanges theSU(2)L index i
with theSU(2)R index j, as well as1 with 2. This operator
saturates the bound~2.19!, and is actually 1/4 BPS. Forl
50, the operator is a pure defect operator which satis
both the bounds~2.17! and ~2.19! and thus is 1/2 BPS. This
operator will be shown to satisfy a nonrenormalization the
rem to orderg2 in Sec. VII, in accordance with the results o
Sec. IV A. The operators~6.14! are obtained as two supe
charge descendants of Eq.~6.15!.

C. Gauge field fluctuations

The gauge field fluctuations as derived in Sec. III D tran
form trivially underSU(2)L3SU(2)R and haveJ2350 and
J455 l . If we pick the positive branch, the dimension of th
operator isD5 l 11. On the field theory side, the operator
the bottom of the tower with the same quantum number
the current associated with a globalU(1)B under which the
defect fields transform,

J B
M[C̄ i

arab
MI C i

b1 i b̄DJMb1 i b̃DJMbD ~M50,1!,
~6.17!

with Pauli matricesrM defined by Eq.~B2!, C as in Eq.
~6.16!, anda,bP$1,2%. Although this current is conserve
and satisfies the BPS bound of the superconformal algeb
is not a quasiprimary of theSO(2,2) global conformal sym-
metry. This is essentially due to the fact that it is in the sa
~short! supersymmetry multiplet as the dimensionless fi

b̄b1b̃b̄̃.
The contributions to Eq.~6.17! involving b, b̃ lead to

logarithms in the correlation functions. These are actua
present even in the purely two-dimensional free field the
obtained by settingg50 and thus decoupling the 2D from
the 4D theory. In this case we have a bosonic current con
bution of the form

JM
2d5 i b̄]Mb2 i ~]Mb̄!b, ~6.18!

which is conserved. For Euclidean signature, this current
a correlator of the form

^JM
2d~x!JN

2d~0!&} 1
2 ln ~x2m2!

I MN~x!

x2
1

xMxN

x2
,

e

7-16



bers.

INTERSECTING D3-BRANES AND HOLOGRAPHY PHYSICAL REVIEW D68, 106007 ~2003!
TABLE II. Summary of fluctuation modes and field theory operators with coincident quantum num

Fluctuations D l ( j 1 , j 2)J Operator Interpretation

S1,S5 l 11 l>0 ( 1
2 , 1

2 ) l
C l 1/4 BPS primary

AdS3,AdS5 32 l l <1 (0,0)l 11 G l descendant
l 21 l>1 (0,0)l 11 B l classical Higgs branch

gauge field l 11 l>0 (0,0)l J B
Ml
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th or
I MN~x!5dMN22
xMxN

x2
, ~6.19!

whereI MN(x) is the inversion tensor. Equation~6.18! satis-
fies ]M

x ^JM
2d(x)JN

2d(0)&50 for xÞ0. Note that in complex
coordinates we have] z̄Jz

2d1]zJz̄
2d

50, where only the sum
vanishes, not each term separately, such that there is
holomorphic-antiholomorphic splitting.

On the supergravity side, it is not quite clear if th
current-current correlator obtained from the gauge field fl
tuations in Sec. III D is well-defined. In AdS3, the equation
of motion for the gauge field leads formally to a logarithm
propagator. This however does not satisfy the requi
boundary condition to be identified as a bulk to bound
propagator. A better understanding of the role played by tw
dimensional scalars in this model will be left for future wor

D. Summary and discussion of the AdSÕCFT dictionary

Table II summarizes the fluctuations of the KK modes a
their dual operators.11 The angular fluctuations of the prob
S1 embedding inside S5 are dual to 1/4 BPS primariesCm l .
The D532 l fluctuations of the embedding of AdS3 inside
AdS5 are dual toG l which are two-supercharge descenda
of these primaries. TheD5 l 21 fluctuations of the embed
ding of AdS3 inside AdS5 are not dual to conformal opera
tors which correspond to states in the Hilbert space. Naiv
the dual operatorsB l look like 1/2 BPS~chiral! primaries,
but in fact they contain massless defect scalars which do
give rise to power law correlation functions. These mass
scalars and their dual fluctuations include an entryB 1 which
parametrizes the classical Higgs branch. The fluctuati
B l for l .1 correspond to other holomorphic curv
w5d/yl 21, however we do not~as yet! have a clear inter-
pretation for these in the defect CFT. Lastly, the operatorJ B

M

which is dual to the gauge field fluctuations on AdS3 is a

descendant of the dimensionless operatorb̄b1b̃b̄̃, which has
a logarithmic two-point function and is not a primary oper
tor although formally it trivially satisfies the BPS bounds.

11The conformal dimensions of the dual operators are lowered
one in comparison with the corresponding series in the D3-D5
tem studied in@8#. This is simply because the operators are biline
of defect fundamental fields, whose conformal dimensions are l
ered by 1/2 in comparison with corresponding defect fields in
D3-D5 case.
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VII. NONRENORMALIZATION THEOREM

In Sec. IV A we found from considering strings on th
probe-supergravity background that correlators of both pr
and bulk fields should be independent of the ’t Hooft co
pling l5gY M

2 N. In general, the weak and strong couplin
behavior do not have to be related. Nevertheless, the rem
able result of complete ’t Hooft coupling independence
the correlators at strong coupling suggests that nonrenor
ization theorems may be present in the defect conformal fi
theory. In this section we study the nonrenormalization
havior of the correlators at weak coupling. By showing t
absence of ordergY M

2 radiative corrections to some of th
correlators, we give some field-theoretical evidence for
existence of nonrenormalization theorems. In particular,
consider the two-point function of the chiral primary oper
tor C m l which is the lowest component of a short represe
tation of the ~4,4! supersymmetry algebra derived
Sec. II C.

A. Nonrenormalization of the two-point function involving C µl

Let us consider the two-point correlator of the chiral p
mary C m l . In the following we show that̂ C m l(x) C̄m l(y)&
does not receive any corrections at ordergY M

2 in perturbation
theory. It is sufficient to show this for the componentC l

[C 1l given by

C l[c b̃
2

q2
l c̄ b̃

1
2c̄b

1q2
l cb

21c̄ b̃
2

q2
l c b̃

1
2cb

1q2
l c̄b

2 . ~7.1!

The nonrenormalization of the other components is guar
teed by theSO(4) R symmetry. The tree-level graph of th
two-point function^C l(x) C̄l(y)& is depicted in Fig. 4. There
are three other graphs contributing to this propagator co
sponding to the remaining three terms in Eq.~7.1!.

We showO(g2) nonrenormalization forC l with l 50 for
which q2 exchanges are absent. The relevant propagators

y
s-
s
-

e

ψ−
b

q l q l

ψ−
b

_
b

ψ+

_
b

yx _
2                                2

+

ψ−

FIG. 4. One of the four graphs of the correlat

^C l(x) C̄l(y)&.
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FIG. 5. First order corrections

to the correlator̂ C l(x) C̄l(y)& for
l 50.
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in
^vM~x!vN~y!&5
hMN

~2p!2~x2y!2
, ~7.2!

^q1~x!q̄1~y!&5
1

~2p!2~x2y!2
, ~7.3!

^cå~x!c̄b~y!&5
i

2p

rab
MI ~x2y!M

~x2y!2
, ~7.4!

with hMN5diag(11,21), Pauli matricesrM(M50,1) de-
fined in Appendix B, and defect coordinatesx,y. The four-
dimensional propagators in Eq.~7.3! are pinned to the defect
The Feynman rules for the vertices can be read off from
defect action in component form derived in Appendix D.

First we note that, similar as inN54, d54 SYM theory
@44#, there are no one-loop self-energy corrections to
defect fermionic propagator^c̄bcb&. Self-energy corrections
involving a gaugino propagator are cancelled by those
volving a cq1 propagator which is the fermion of the supe
field Q1. There are also self-energy graphs withq1 and s
propagators which arise from the ambient scalars couplin
the defect. These cancel each other, too. However, we h
two possible corrections from exchange graphs as show
Fig. 5. Note that in Fig. 5, two different contributions toC l

( l 50) are depicted at the pointy, which originate from dif-
ferent terms in the sum~7.1!. These graphs include an amb
ent gauge boson exchange and an ambient scalar exch
There is no s exchange contributing to the correlat
^C l(x)C l(y)& ~for l 50). In fact, it may be shown that fo
each of the components ofC m l , there is either as or a q1
exchange. For all of the components, the vector exchang
cancelled by one of these scalar exchanges while the o
one vanishes.

For the gauge boson exchange in Fig. 5~a! we find the
contribution

1

2 E d2ud2v
r11•~x2u!

2p~x2u!2 S 2
1

2
gr11

M D hMN

~2p!2~u2v !2

3S 2
1

2
gr22

N D r11•~u2y!

2p~u2y!2

3
r22•~x2v !

2p~x2v !2

r22•~v2y!

2p~v2y!2
.

~7.5!
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The overall factor 1
2 comes from the definitionvM

5(1/A2)vM8 .
Let us now consider the contribution from theq1 ex-

change in Fig. 5~b! which is given by

2 E d2ud2v
r11•~x2u!

2p~x2u!2 S 1

2
ig D 1

~2p!2~u2v !2

3 S 2
1

2
ig D r22•~u2y!

2p~u2y!2
3

r22•~x2v !

2p~x2v !2

r11•~v2y!

2p~v2y!2
.

~7.6!

Note that the operator at the external pointy in the graph of
Fig. 5~b! is the conjugate of the first term in Eq.~7.1! which
leads to the minus sign in front of the integral in Eq.~7.6!. In
Fig. 5~a! both external vertices have a minus sign, wherea
Fig. 5~b! the vertices have opposite signs. Sin
hMNr11

M r22
N 52, the vector exchange exactly cancels t

contribution from the scalar exchange.
Nonrenormalization of correlators ofC m l with l>1 is

more difficult to show. As was shown for the operators TrXk

in N54 super Yang-Mills theory@44,45#, there are no ex-
changes between the ambient propagators^q2(x)q̄2(y)&
within the correlator̂ C l(x) C̄l(y)&. However, one could think
of a gauge boson exchange between a fermionic defect a
bosonic ambient propagator. If we donot work in Wess-
Zumino gauge then there is an additional interaction of
defect fermions with a scalarC which is the lowest compo-
nent of the gauge superfieldV. Keeping this in mind we
expect that a CD exchange@44# cancels the above gaug
boson exchange. This will be shown elsewhere.

B. Vanishing of odd correlators of the BPS primariesC µl

Another property of the BPS primariesC m l is the vanish-
ing of all (2k11)-point functions (kPN). Only even
n-point functions may differ from zero. On the gravity sid
this can be seen by studying once more the BI action of
probe D3-brane. Due to the expansion of the cosines of
angular fluctuationsu,f,r, andx in the determinant, the BI
action contains only even powers of the fluctuations, see
~3.5!. This implies vanishing odd couplings for the Kaluz
Klein modes which, via the AdS/CFT correspondence, i
plies vanishing oddn-point functions on the field-theory
side. In the dual conformal field theory these Kaluza-Kle
modes correspond to the BPS primary operatorsC m l . Again
we restrict to the componentC l[C 1l .
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On the field theory side too, one finds for instance that
three-point function̂ C l 1(x)C l 2(y)C l 3(z)& is absent. This is
due to a globalU(1) symmetry of the action

B→ei (f/2)B, B̃→ei (f/2)B̃,

Q1→e2 ifQ1 , Q2→eifQ2 , ~7.7!

with all other fields being singlets under this symmetry. If w
choosef5p thenC l→(eip) l 11C l and the three-point func
tion transforms as

^C l 1~x!C l 2~y!C l 3~z!&

→~21! l 11 l 21 l 311^C l 1~x!C l 2~y!C l 3~z!&. ~7.8!

Since l 11 l 21 l 3 must be even, (21)l 11 l 21 l 311521 and
^C l 1(x)C l 2(y)C l 3(z)& vanishes. Though we have restricte
the discussion onC 1l , the statement also holds for the oth
components. This is guaranteed by the fact thatC m l trans-
forms as a vector under theSO(4) R symmetry group.

VIII. CONCLUSIONS AND OPEN QUESTIONS

We have presented the action and some of the elemen
properties of a defect conformal field theory describing
tersecting D3-branes, including some aspects of the A
CFT dictionary. There remain many interesting open qu
tions, of which we enumerate a few below.

The defect conformal field theory requires further fie
theoretic analysis. One of the stranger features of this the
is that it contains massless two-dimensional scalars w
~presumably! exactly marginal gauge, Yukawa, and sca
potential couplings. It is not at all obvious that one can co
struct a Hilbert space corresponding to operators with po
law correlation functions, due to the logarithmic correlato
of the two-dimensional scalars. It would be very interest
if one could show this to all orders in perturbation theory

As a precursor to including gravity into the holograph
map, it would be interesting to study the energy-moment
tensor of the defect conformal field theory in detail. We d
not find any evidence of an enhancement of the tw
dimensionalSO(2,2) global conformal symmetry to a fu
infinite-dimensional conformal symmetry on the tw
dimensional defect. A study of the energy-momentum ten
would allow us to address this question conclusively at le
from the field-theoretic side. For example, if an enhancem
did indeed occur it should manifest itself in the form of
two-dimensional energy-momentum tensor which is ho
morphically conserved.

Another question concerns the light-cone open str
vacuum for D3-branes in the Penrose limit of the prob
supergravity background which we have considered. The
erator proposed in@10# to correspond to the open string ligh
cone vacuum is not really a chiral primary and giv
negative light-cone energy. This operator is precisely the
given in Eq. ~6.1!, and contains the dimensionless scal
which parametrize the Higgs branch. One might instead p
pose the operatorC m l , with P25D2 l 50 as the dual of the
light-cone vacuum, however this is only 1/4 BPS and is i
nontrivial representation of the unbrokenSU(2)L3SU(2)R
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R symmetry. Presumably the subtleties regarding the lig
cone vacuum are related to the quantum spreading over
lomorphic embeddingswy5c corresponding to the classica
Higgs branch of the defect CFT. While the origin of th
spreading is clear from the point of view of the dual defe
CFT, and from the difficulties in finding localized supergra
ity solutions for intersecting D3-branes@22,24,23#, they are
not so clear from the point of view of a probe D3-bra
embedded in the plane-wave or AdS backgrounds.

Although there is presumably no fully localized supe
gravity solution for intersecting D3-branes, it would be su
prising if there is no closed string string description, in whi
both stacks of D3-branes are replaced by geometry.
problem of finding a closed string description of the theo
raises a closely related question of how new degrees of f
dom appear when 1/N ~or gs) corrections are taken into ac
count in probe-supergravity background which we have c
sidered. In constructing the holographic dual of the def
CFT, we have fixed the numberN8 of D3-branes in one
stack, while taking the numberN of D3-branes in the or-
thogonal stack to infinity. In this limit, the degrees of fre
dom on one four-dimensional part of the world volume of t
defect become free. The remaining coupled degrees of f
dom live on a four-dimensional world volume and a tw
dimensional defect, which are the boundaries of AdS5 and
the embedded AdS3 respectively. Because the defect degre
of freedom are in the fundamental representation, the ge
expansion of Feynman diagrams resembles an open s
world-sheet expansion. When 1/N corrections are taken into
account, the decoupled degrees of freedom must some
reappear. The defect degrees of freedom become bifu
mental fields with respect to aSU(N)3SU(N8) gauge
group. The genus expansion for Feynman diagrams of
theory can now be viewed as a closed string world-sh
expansion, where a new branch of the target space
opened up.12

Finally, the string theory realization of the defect CF
leads one to expect that it exhibitsSduality. It would be very
interesting to find some field theoretic evidence for this.
particular one would need to find theS duals of the funda-
mental degrees of freedom localized at the intersection.
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APPENDIX A: KINEMATICS OF 2D-4D DEFECT
CONFORMAL FIELD THEORIES

1. Conformal symmetry

Here we present some basic implications of conform
symmetry in a four-dimensional field theory with a tw
dimensional defect.

Consider four-dimensional Euclidean space with a tw
dimensional defect. The coordinates are given byvm

5(zW,xW ) wherevm are the four-dimensional coordinates,zWM

are the two defect coordinates andxWa are the coordinates
perpendicular to the defect. The conformal transformati
which leave the defect invariant are given by translations
rotations within the defect plane, rotations in the plane p
pendicular to the defect and by inversionsvm→vm /v2. The
conformal group is given bySO(3,1)3SO(2). Under these
transformations we have for two pointsv, v8

~v2v8!2→ ~v2v8!2

V~v !V~v8!
, xWa→ xWa

V~v !
xWa8→

xWa8

V~v8!
.

~A1!

Hence there is a dimensionless coordinate invariant of
form

j5
~v2v8!4

~xW•xW !~xW8•xW8!
. ~A2!

Note that in the defect plane, we have only a global con
mal symmetry associated with the Virasoro generat
L21 , L0 and L1. One may wonder if there is an accident
two-dimensional local conformal symmetry giving rise to
Virasoro algebra. This is however not the case: A neces
condition for the existence of a Virasoro algebra is the ex
tence of a two-dimensional conserved local ener
momentum tensor. This requirement is not satisfied in
situation considered here since only the four-dimensio
energy-momentum tensor of the combined four-dimensio
and two-dimensional action contributions, given by

Tmn~v !5Tbulk
mn~v !1Tdef

MN~zW ! dM (mdn)N d (2)~xW !,
~A3!

is conserved,]mTmn50. Note that this energy-momentum
tensor is in agreement with the (2,2) supercurrent~E4! since
from Eq. ~A3! we obtain by integration overx

TMN~z!5 E d2xTbulk
MN~x,z!1Tdef

MN~z!, ~A4!

which is contained as a component inJM given by Eq.~E4!.
TMN(z) satisfies]z

MTMN(z)50. Nevertheless it is not a lo
cal traceless two-dimensional energy-momentum tensor.

For a quasiprimary scalar operator of dimensionD close
to the defect we have a one-point function

^O~v !&5
AO

~xW•xW !D/2
. ~A5!
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Near to the defect we have a boundary operator expansio
the bulk operators in terms of the defect operators, wh
reads

O~v !5 (
n

BO,Ôn

~xW•xW !(D2D̂n)/2
Ôn~zW !. ~A6!

This gives rise to a bulk-defect correlator

^O~v !Ôn~zW8!&5
BO,Ôn

~xW•xW !(D2D̂n)/2~v2v8!2D̂n
,

~v2v8!m5~xW ,zW2zW8!. ~A7!

For two operators of dimensionD̂n on the defect, this expres
sion reduces to

^Ôn~zW !Ôn~zW8!&5
BÔn,Ôn

~zW2zW8!2D̂n
~A8!

as expected.

2. SUGRA calculation of one-point functions
and bulk-defect two point functions

We now compute the space-time dependence of the b
one-point and the bulk-defect two-point function using ho
graphic methods and show that their structure agrees with
general results obtained from conformal invariance in A
pendix . The one-point function of the bulk operatorOD is
the integral of the standard bulk-boundary propagator
AdS5 @32# over the AdS3 subspace. We find

^OD~xW ,zW !&5 E dwdwW 2

w3

G~D!

p2G~D22!

3S w

w21xW21~wW 2zW !2D D

5
1

uxW uD
G~ 1

2 D11!G~ 1
2 D21!

2p G~D22!~D21!
, ~A9!

which converges forD.2. The scaling behavioruxW u2D has
been expected from the structure of the one-point funct
~A5! on the CFT side. Note that the DBI action~4.4! of the
D3-brane probe determines the scale dependence onN of the

correlation functions of defect and bulk operatorsÔD̂ and
OD.

The two-point function^OD(xW ,zW)ÔD̂(0)& is the integral
over the product of the bulk-boundary propagato
KD„w,(xW ,zW),(0W ,wW )… andK D̂„w,(0W ,wW ),(0W ,0W )…,

^OD~xW ,zW !ÔD̂~0W !&5
1

N1/2

G~D!

p2G~D22!

3
G~D̂!

pG~D̂21!
J~xW ,zW;D,D̂ ! ~A10!

with the integral
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J~xW ,zW;D,D̂ !5 E dwdwW 2

w3 S w

w21xW21~wW 2zW !2D DS w

w21wW 2D D̂

5
1

~xW21zW2!D E dw8dwW 82 w8D̂23S w8

w821xW821~wW 82zW8!2D D

. ~A11!

In the last line we made use of the inversion trick@32# by defining

~w8,0,wW 8!5
1

w21wW 2
~w,0,wW !, ~xW8,zW8!5

1

xW21zW2
~xW ,zW !. ~A12!

As in @8#, we rescalewW 85zW81AxW821w82vW andw85uxW8uu and find

J~xW ,zW;D,D̂ !5
1

~xW 21zW 2!D̂uxW uD2D̂
E du

uD̂231D

~11u2!D22
E dvW 2

1

~11vW 2!D

5
1

~xW 21zW 2!D̂uxW uD2D̂

p

2~D21!

G@ 1
2 ~D2D̂ !#G@ 1

2 ~D1D̂!#

G@D22#
. ~A13!
by

v

m

l
ce

n-

tor

-
r

t
xt
This converges forD.D̂. The scaling 1/„(xW21zW2) D̂uxW uD2D̂
…

agrees with the behavior of the two-point function fixed
conformal invariance, cf. Eq.~A7!.

The defect-defect correlator^ÔD̂(zW)ÔD̂(0W )& for a defect

operatorÔD̂ is given by Eq.~17! in @32# with d52 and is
independent ofN. Let us stress again that none of the abo
correlators depends onl in the strong coupling regime.

APPENDIX B: MULTIPLETS IN „2,2…, dÄ2 SUPERSPACE

In order to fix the notation we briefly summarize the co
ponent expansions of the superfields in (2,2),d52 super-
space which can be found in@33#, for instance. We use chira
coordinatesy0,y1,u6,ū6 which are related to the superspa
coordinatesx0,x1,u6,ū6 by

yM5xM1 iu1r11
M ū11 iu2r22

M ū2

5xM1 iu1ū11~21!Miu2ū2,

M50,1, ~B1!

where we use the Pauli matrices

r0[s05S 1 0

0 1D , r1[s35S 1 0

0 21D ,

r2[s25S 0 2 i

i 0 D , r3[s15S 0 1

1 0D . ~B2!

Expansions of~2,2! superfields can be obtained by dime
sional reduction ofN51, d54 superfields in the 2 and 3
direction and definingu1[u15u2 and u2[u252u1. In
10600
e

-

this way we find the expansions of the chiral and the vec
multiplet in Wess-Zumino gauge,

F~y,u6!5f1A2u1c11A2u2c222u1u2F ~B3!

V~y,u6,ū6!5u2ū2~v02v1!1u1ū1~v01v1!2u2ū1s

2u1ū2s̄1 iA2u2u1~ ū2l̄21 ū1l̄1!

1 iA2ū1ū2~u2l21u1l1!

12u2u1ū1ū2~D2 i ]MvM !. ~B4!

The scalars is complex and is defined in terms of the com
ponentsv1 andv2 of the dimensionally reduced four-vecto
v_ by s[v31 iv2. For the~Abelian! twisted chiral super-
field S(y,u6,ū6)[D̄1D2V(y,u6,ū6) we find the expan-
sion

S~y,u6,ū6!5s1 iA2u1l̄12 iA2ū2l2

12u1ū2~D2 i f 01!12i ū2u2]~02]1!s

22A2ū2u2u1~]02]1!l̄1 . ~B5!

APPENDIX C: DECOMPOSING THE NÄ2, dÄ4 VECTOR
MULTIPLET UNDER „2,2…, dÄ2 SUPERSYMMETRY

We start from the decomposition13 of the vector multiplet
C underN51, d54 which is given by an expansion inu (2)
@47#,

13Important note: In this section theN52, d54 superspace is

parametrized by (x0, . . . ,x3, u i
a , ū ȧ

i ) and the defect is placed a
x15x250 in contrast with our convention in the rest of the te
~defect atx25x350).
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C~ ỹ,u (1) ,u (2)!5F8~ ỹ,u (1)!1 iA2u (2)
a Wa8 ~ ỹ,u (1)!

1u (2)u (2)G8~ ỹ,u (1)!, ~C1!

whereF8, Wa8 , and G8 are chiral, vector, and auxiliaryN
51 multiplets, respectively. The superfieldC is a function
of the coordinateỹm which is related toxm by

ỹm5xm1 iu1s11
m ū11 iu”2s21

m 1 iu1s12
m u”̄1 i u”̄21 iu”2s22

m u”̄2

1 i ū2s22
m u21 i u”1s12

m u21 i ū2s21
m u”̄11 i u”1s11

m u”̄1,

~C2!
d
th

ct

-

10600
wheres0 is the identity matrix andsa (a51,2,3) are the
Pauli matrices.

Our goal is to find an expression forC in terms of (2,2),
d52 multiplets,

C[Cuu”5u”̄501 u”1~D” 1C!uu”5u”̄501uX2~D” 2C!uu”5u”̄50

1u”1 u”2~D” 1D” 2C!uu”5u”̄50 , ~C3!

with u”5(u”1,u”2). In order to find the coefficients of this
expansion, we substitute the component expansions
F8, Wa8 andG8 in Eq. ~C1! and use the coordinates (ỹ, u6,

u”6, ū6, u”̄6) as defined in Eq.~5.6!. We find14
C5f81A2u1c18 1A2 u”2c28 22u1u”2F8

1 iA2ū2
„2 il28 1u1D81u1~ f 128 2 i f 038 !1 u”2~ f 028 2 f 328 1 i f 108 2 i f 138 !22u1 u”2~]1l̄811 i ]2l̄811]0l̄822]3l̄82!…

1 iA2 u”1
„2 il18 2 u”2D82u1~ f 028 1 f 328 2 i f 108 2 i f 138 !1 u”2~ f 218 1 i f 038 !22u1 u”2~]1l̄822 i ]2l̄821]0l̄811]3l̄81!…

22 u”1ū2
„F8* 2 iA2u1~]1c̄822 i ]2c̄821]0c̄811]3c81!12u1 u”2h4f8* …. ~C4!
e

s

-
he

xil-
Note that all fields are functions ofỹ and we have to expan
this expression such that all fields become functions of
chiral coordinates yM5xM1 iu1ū11(21)Miu2ū2(M
50,3). EvaluatingC, D” 1C, andD” 2C at u”15 u”250 we
obtain

Cuu”5052 iS,

~D” 1C!uu”505D̄1~F̄2] x̄V!,

~D” 2C!uu”505D2~F2]xV!, ~C5!

where]x[]11 i ]2 is the derivative transverse to the defe
Here we defined the~unprimed! components of the~2,2! su-
perfieldsS, F, andV in terms of the~primed! components
of the N51, d54 superfieldF8 andWa8 by

s[ if8, l̄1[c18 , l2[2l28 ,

D[
1

A2
~D81 f 128 !, f 03[

1

A2
f 038 , f[

1

A2
~v181 iv28!,

c̄1[l18 , c2[c28 , F [F8. ~C6!

If we substitute the coefficients~C5! back into the expansion
~C3! of C, we find the decomposition~5.10!.

The appearance off 128 in the definition~C6! of the auxil-
iary field D is required by (2,0),(2,2) supersymmetry. Con
e

.

sider the~2,0! supersymmetry transformation rules for th
spinor componentl81, the auxiliary fieldD8, and the com-
ponentf 128 given by

del815 i ē1~D81 f 128 2 i f 038 !

deD85 ē1~]02]3!l812e1~]02]3!l̄81

2 ē1~]12 i ]2!l822e1~]12 i ]2!l̄82

de f 128 5e1~]12 i ]2!l̄821 ē1~]12 i ]2!l82. ~C7!

Of particular interest in Eq.~C7! are the nonstandard term
appearing in the variations ofl81 and D8 involving trans-
verse derivatives,]2 and]1. Note that in dimensional reduc
tion these terms would have simply been set to zero. T
SUSY variation off 128 in deD[(1/A2)de(D81 f 128 ) precisely
cancels the nonstandard terms in the variation of the au
iary field D8. This leads to the familiar~2,0! SUSY variation
for D,

deD5 ē1~]02]3!l12e1~]02]3!l̄1. ~C8!

14Conventions: (c1 ,c2)5(c1 ,c2); c15c2 ,c252c1 .
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APPENDIX D: IMPURITY ACTION
IN COMPONENT FORM

In this appendix we derive the component expansion
the impurity action in the decoupling limit which is given b

SD3-D38
dec [Skin1Ssuperpot

5 E d2zd4u~B̄egVB1B̃e2gVBD !

1
ig

2 E d2zd2u~B̃Q1B!1c.c. ~D1!

with d4u5 1
4 du1du2dū1dū2 and d2u5 1

2 du1du2. Using
the following expansions for the~2,2! superfieldsB, B̃, Q1,

B5b1A2u1c1
b 1A2u2c2

b 22u1u2Fb

B̃5b̃1A2u1c1
b̃ 1A2u2c2

b̃ 22u1u2Fb̃ ~D2!

Q15q11A2u1c
1

q11A2u2c
2

q122u1u2Fq1

as well as Eq.~B4! for V, the impurity action can be ex
panded as

Skin5 E d2zS F̄bFb2uDMbu21 i c̄2
b ~D01D1!c2

b

1 i c̄1
b ~D02D1!c1

b 2
g

2
~ c̄2

b sc1
b 1c̄1

b s̄c2
b !

1
ig

2
~bc̄1

b l̄22bl̄1c̄2
b 2b̄l2c1

b 1b̄l1c2
b !

1
1

2 S gD2
1

2
gY M

2 s̄s D b̄bD1~B→B̃,g→2g!

~D3!

Ssuperpot5
ig

2 E d2z~ b̃Fq1b1b̃c
2

q1c1
b 1c1

b̃ c
2

q1b1Fb̃q1b

1c2
b̃ c

1

q1b1c2
b̃ q1c1

b 1b̃q1Fb1c1
b̃ q1c2

b

1b̃c
1

q1c2
b !1c.c. ~D4!

where we used the covariant derivativeDM5]M
1( i /2)gvM(M50,1).

For the ambient action we have the standard compon
expansion ofN54, d54 SYM. Some of the components o
the N54 ambient vector field, which we gather in the~2,2!
fields V andQ1, couple to the impurity. The components
V andQ1 are related to the components of theN51, d54
superfieldsV8, F8, F18 , andF28 , which form theN54 vec-
tor multiplet, by

s[ if8, l̄1[c18 , l2[2l28 ,
10600
f

nt

D[
1

A2
~D81 f 328 !, f 01[

1

A2
f 018 ,

qi[f i8 , c
6

qi5c86

f i , Fqi[F8f i ~ i 51,2!.
~D5!

APPENDIX E: QUANTUM CONFORMAL INVARIANCE

Here we give an argument that the action given by E
~5.21!, ~5.22! and ~5.23! does not receive quantum corre
tions, such that it remains conformal to all orders in pert
bation theory. This argument is analogous to the discuss
of the 3D/4D case in@9#, where more details on the reno
malization procedure may be found.

The argument for excluding possible quantum breakin
of conformal symmetry by defect operators relies on cons
ering the~2,2! supercurrent and its possible anomalies, a
by making the assumption that (4,4) supersymmetry is p
served by the quantum corrections. We begin by recalling
situation inN51, d54 theories. In this case there is a s
percurrentJȧb5sm

ȧbJm , which has theR current, the su-
persymmetry currents and the energy-momentum ten
among its components. Potential superconformal anoma
may be written in the form

D̄ ȧJȧb5DbS, ~E1!

with Sa chiral superfield. WhenS50, superconformal sym-
metry is conserved.

By standard dimensional reduction to (2,2) supersymm
try in two dimensions, we obtain from Eq.~E1!, as shown in
@48#,

~gM !A
BD̄BJM5DAS, ~E2!

whereM5$1,2%, A,B5$1,2%, gM5$s1,is2% are the two-
dimensional gamma matrices,JM is the two-dimensional
(2,2) supercurrent and the possible conformal anomaly
given by the (2,2) chiral superfieldS. JM contains the 2DR
current, the four (2,2) supersymmetry currents and the
energy-momentum tensor.

For 2D/4D models like the one given by Eqs.~5.21!,
~5.22! and~5.23!, the classically conserved two-dimension
supercurrent is given by

JM~z!5J def
M~z!1 E d2xJ bulk, 1

M~x,z!

1 E d2yJ bulk, 2
M~y,z!. ~E3!

Let us first consider possible defect operator contribution
the anomalyS, which have to be gauge invariant and
dimension 1. The possible defect contributions to t
anomalyS are given by

SD5Tr@uD̄1D̄2~e2VB̄eVB1e2VB̄̃eVB̃!

1v~BB̃Q12B̃BS1!#. ~E4!
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It is important to note that there is no gauge anomaly te
contributing to this equation, since TrS or TrV, which
would have the right dimension, is twisted chiral and n
chiral. u andv are coefficients which may be calculated pe
turbatively. They are related to theb andg functions. From
the standard supersymmetric nonrenormalization theorem
know thatv50 since the corresponding operator is chiralu
may be non-zero in a general (2,2) supersymmetric ga
theory. Howeveru andv are related by (4,4) supersymmetr
Therefore if we assume that (4,4) supersymmetry is p
served upon quantization,v50 also impliesu50. Thus
there are no defect contributions breaking conformal sym
try.

We may also show that there are no contributions fr
four-dimensional operators to the conformal anomalyS.
Such terms would have to originate from bulk action cou
e
; I

igh

ys

s

10600
t
-

e

ge

-

e-
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terterms which asymptotically fall off with the distance fro
the boundary. Asymptotically such anomaly contributio
would be of the form

SB; E d2w uwu2s1L t1O1~w,z!

1 E d2y uyu2s2L t2 O2~y,z!, ~E5!

with L a regulator scale, andsi>2, t i>0 for i 51,2. How-
ever there are no such operators available in the theory. F
dimensional analysis, only TrS or Tr V would be possible
for O1 or O2, respectively, but again these are twisted chi
and not chiral. Therefore we conclude that there are no te
breakingSO(2,2) conformal invariance, such that the theo
is conformal to all orders in perturbation theory.
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s,

igh

rgy

lli,

v.

rgy

,’’

, J.

ev.

’

@1# J. L. Cardy, Nucl. Phys.B240, 514 ~1984!.
@2# D. M. McAvity and H. Osborn, Nucl. Phys.B455, 522~1995!.
@3# S. Sethi, Nucl. Phys.B523, 158 ~1998!.
@4# O. J. Ganor and S. Sethi, J. High Energy Phys.01, 007~1998!.
@5# A. Kapustin and S. Sethi, Adv. Theor. Math. Phys.2, 571

~1998!.
@6# J. M. Maldacena, Adv. Theor. Math. Phys.2, 231 ~1998! @Int.

J. Theor. Phys.38, 1113~1999!#.
@7# A. Karch and L. Randall, J. High Energy Phys.06, 063~2001!;

05, 008 ~2001!; Phys. Rev. Lett.87, 061601~2001!.
@8# O. DeWolfe, D. Z. Freedman, and H. Ooguri, Phys. Rev. D66,

025009~2002!.
@9# J. Erdmenger, Z. Guralnik, and I. Kirsch, Phys. Rev. D66,

025020~2002!.
@10# K. Skenderis and M. Taylor, J. High Energy Phys.06, 005

~2002!.
@11# M. Porrati, Phys. Rev. D65, 044015~2002!.
@12# A. Fayyazuddin, J. High Energy Phys.03, 033 ~2003!.
@13# M. J. Duff, J. T. Liu, and H. Sati, ‘‘Complementarity of th

Maldacena and Karch-Randall pictures,’’ hep-th/0207003
Giannakis, J. T. Liu, and H. C. Ren, Nucl. Phys.B654, 197
~2003!.

@14# P. Lee and J. Park, Phys. Rev. D67, 026002~2003!.
@15# C. Bachas, J. de Boer, R. Dijkgraaf, and H. Ooguri, J. H

Energy Phys.06, 027 ~2002!.
@16# T. Quella and V. Schomerus, J. High Energy Phys.06, 028

~2002!.
@17# A. Karch and E. Katz, J. High Energy Phys.06, 043 ~2002!.
@18# A. Karch, E. Katz, and N. Weiner, Phys. Rev. Lett.90, 091601

~2003!.
@19# S. A. Cherkis and A. Hashimoto, J. High Energy Phys.11, 036

~2002!.
@20# S. Yamaguchi, J. High Energy Phys.10, 002 ~2002!.
@21# D. Mateos, S. Ng, and P. K. Townsend, J. High Energy Ph

07, 048 ~2002!.
@22# D. Marolf and A. Peet, Phys. Rev. D60, 105007~1999!.
@23# A. Gomberoff, D. Kastor, D. Marolf, and J. Traschen, Phy

Rev. D61, 024012~2000!.
@24# A. W. Peet, Classic Quantum Gravity17, 1235~2000!.
.

.

.

@25# J. D. Brown and M. Henneaux, Commun. Math. Phys.104,
207 ~1986!.

@26# J. P. Gauntlett, N. D. Lambert, and P. C. West, Commun. Ma
Phys.202, 571 ~1999!; G. W. Gibbons and G. Papadopoulo
ibid. 202, 593 ~1999!.

@27# P. Breitenlohner and D. Z. Freedman, Phys. Lett.115B, 197
~1982!.

@28# E. Witten, J. High Energy Phys.07, 003 ~1997!.
@29# R. G. Leigh, Mod. Phys. Lett. A4, 2767~1989!.
@30# H. J. Boonstra, K. Skenderis, and P. K. Townsend, J. H

Energy Phys.01, 003 ~1999!.
@31# M. Bianchi, D. Z. Freedman, and K. Skenderis, J. High Ene

Phys.08, 041 ~2001!.
@32# D. Z. Freedman, S. D. Mathur, A. Matusis, and L. Raste

Nucl. Phys.B546, 96 ~1999!.
@33# K. Hori and C. Vafa, ‘‘Mirror symmetry,’’ hep-th/0002222.
@34# N. Arkani-Hamed, A. G. Cohen, and H. Georgi, Phys. Re

Lett. 86, 4757~2001!.
@35# N. Arkani-Hamed, T. Gregoire, and J. Wacker, J. High Ene

Phys.03, 055 ~2002!.
@36# A. Hebecker, Nucl. Phys.B632, 101 ~2002!.
@37# K. Hori, ‘‘Linear models of supersymmetric D-branes

hep-th/0012179.
@38# S. Hellerman, S. Kachru, A. E. Lawrence, and J. McGreevy

High Energy Phys.07, 002 ~2002!.
@39# E. Witten, Nucl. Phys.B403, 159 ~1993!.
@40# D. E. Diaconescu and N. Seiberg, J. High Energy Phys.07,

001 ~1997!.
@41# V. Balasubramanian, P. Kraus, and A. E. Lawrence, Phys. R

D 59, 046003~1999!.
@42# I. R. Klebanov and E. Witten, Nucl. Phys.B556, 89 ~1999!.
@43# N. D. Mermin and H. Wagner, Phys. Rev. Lett.17, 1133

~1966!; S. R. Coleman, Commun. Math. Phys.31, 259~1973!.
@44# M. Bianchi and S. Kovacs, Phys. Lett. B468, 102 ~1999!.
@45# E. D’Hoker, D. Z. Freedman, and W. Skiba, Phys. Rev. D59,

045008~1999!.
@46# H. Ooguri and C. Vafa, Nucl. Phys.B641, 3 ~2002!.
@47# J. D. Lykken, ‘‘Introduction to Supersymmetry,’

hep-th/9612114.
@48# P. S. Howe and P. C. West, Phys. Lett. B223, 371 ~1989!.
7-24


