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Superstar in noncommutative superspace via covariant quantization of the superparticle
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A covariant quantization method is developed for the off-shell superparticle in 10 dimensions. On shell it is
consistent with light cone quantization, while off shell it gives a noncommutative superspace that realizes
nonlinearly a hidden 11-dimensional super Poincare´ symmetry. The nonlinear commutation rules are then used
to construct the supersymmetric generalization of the covariant Moyal star product in noncommutative super-
space. As one of the possible applications, we propose this new product as the star product in supersymmetric
string field theory. Furthermore, the formalism introduces new techniques and concepts in noncommutative
~super!geometry.
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I. MOTIVATION: STAR PRODUCT IN SUPERSTRING
FIELD THEORY

The purpose of this paper is to propose the covar
spacetime supersymmetric generalization of the Moyal
product as a first step in constructing supersymmetric st
field theory. The motivation for this work is provided by th
Moyal star formulation of string field theory~MSFT! @1–4#.
On the way to constructing the superstar, we also obtain
results on the quantization of the off-shell superparticle, a
on new group theoretical methods for constructing a
evaluating star products based on nontrivial~super!Poisson
manifolds.

The first proposal of a covariant nontrivial product in s
perspace was given in the context of purely fermionic sup
gravity @5#, asua

•ub5Cab, whereCab is the charge conju-
gation matrix.1 A later proposal was given in@6# as
$ua ,ub%5xm(gm)ab . These ideas were motivated by certa
aspects of supergravity or supersymmetry and their mys
ous origins were not at that time connected to string the
0556-2821/2003/68~10!/106006~9!/$20.00 68 1060
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In the recent literature there are other studies of a star p
uct in noncovariant superspace@7–9# ~see also@10,11#!
whose origin is background fields in string theory. The s
product in MSFT has also a fundamental but different phy
cal origin, namely, string joining. The superstar product
study in this paper is motivated by MSFT, and as required
that context, is super Poincare´ invariant, and has a differen
structure than the previous proposals.

It has been shown that in the language of string fi
theory the Moyal product is the simplest description of int
actions of bosonic strings, corresponding to string joini
@1#. To arrive at this description we express the general str
field in the space of mixed position-momentum represen
tion of string modesA( x̄,xe ,pe) ~instead of purely position
representation!, where x̄m is the string midpoint, and
(xe

m ,pe
m), with e52,4,6, . . . , is anequivalent description of

the string excitation modes that are compatible with simu
neous observations in first quantized quantum mechanic
the string.2 Then the joining of strings is described by com
f

d
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1Cab is antisymmetric ford5(3,4,5) mod(8), symmetric for d5(7,8,9) mod(8) and mixed~i.e. Lorentz singlet occurs in product o
opposite chiral spinors! in d5(6,10) mod(8). Theproductua

•ub5Cab is not associative, but an associativecovariant fermionic Moyal

product ua!ub5uaub1
1
2 Cab can be constructed in every dimension generally asA(u)!B(u), where !5exp„21/2Cab(]Q /]ua)

3(]W /]ub)…, because the star anticommutator$ua,ub%! is either zero~antisymmetricCab) or a constant~symmetric or mixedCab).
2The probability amplitude in position space isA( x̄,xe ,xo)[^x̄,xe ,xouA& whereo51,3,5, . . . ande52,4,6, . . . denote excited modes an

x̄ is the midpoint mode. In the mixed even positions and odd momenta space~obtained by Fourier transformation! the probability amplitude

is A( x̄,xe ,po)[^x̄,xe ,pouA&. As in @1# we definepe as a linear combination of the odd momentum modespe5(opoRoe leading to the

probability amplitudê x̄,xe ,peuA&5A( x̄,xe ,pe). It is important to emphasize that herepe is not the momentum that is quantum canonic
conjugate toxe as defined in the canonical treatment of string modes. That mode is represented by2 i ]xe

as applied on the string field

A( x̄,xe ,pe). Instead,pe is defined as a linear combination of the odd momentum modes as above. Sincexe and po commute in quantum
mechanics,xe and pe also commute with each other in quantum mechanics, and therefore (xe ,pe) are quantum mechanicallycompatible
observables, as they should be in defining the probability amplitude. At first sight it appears somewhat misleading to use the sympe ,
since that symbol is also used for thequantumcanonical conjugate toxe . However, the string joining operation introduces a new nonco
mutativity beyond quantum mechanics, such thatxe

m ,pe
m behave like a canonical pair under the string joining star product as in Eq.~1.3!,

althoughxe ,pe commute with each other in quantum mechanics. In this sense the usual momentum mode2 i ]xe
A is actually reproduced as

a star commutator2 i ]xe
A5@pe ,A#!, and therefore, after all,pe does behave as if it is a canonical conjugate toxe , justifying the use of the

symbolpe .
©2003 The American Physical Society06-1
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BARS et al. PHYSICAL REVIEW D 68, 106006 ~2003!
bining their first-quantized probability amplitudes~i.e. string
fields! A1( x̄,xe ,pe) and A2( x̄,xe ,pe) into the probability
amplitudeA12( x̄,xe ,pe)

A12~ x̄,xe ,pe!5A1~ x̄,xe ,pe!!A2~ x̄,xe ,pe!, ~1.1!

where the star product is local at the midpointx̄m of both
strings, and is precisely the Moyal product in the nonco
mutative spacexe ,pe , separately for eache52,4,6, . . . , as
in @1#

![)
e>2

e( i /2)(]Qxe
]W pe

2]Q pe
]Wxe

). ~1.2!

This formulation of string interactions, which reproduces t
operator formalism or conformal field theory, has develop
into an efficient computational tool in string field theo
@1–4#.

The meaning of the symbolpe
m must be emphasized

Namely, as described in footnote 2, it must be clearly und
stood that the canonical-conjugate-like properties ofpe in
MSFT

xe
m!pe8

n
2pe8

n !xe
m5 idee8h

mn, ~1.3!

derive from string joining, and not from quantum mech
nics.3 Thus the process of string joining creates the nonco
mutative space (xe

m ,pe
m) which includes timelike coordinate

and is Lorentz covariant. The ghost problems of the timel
coordinates is taken care of by the overall gauge invaria
structure of MSFT.

Since the star product above is independent for e
string mode, we may concentrate on the supersymmetr
tion of the Moyal product for one degree of freedom. To
this we are inspired by the close relation between the st
joining star product for a single mode as given in Eq.~1.3!,
and the quantum mechanics of a single relativistic part
which has exactly the same mathematical structure. Tha
to supersymmetrize the string joining star product we w
borrow from the supersymmetry structure of the quant
mechanics of the relativistic supersymmetric particle.

Thus we consider the phase space degrees of freedom
single relativistic superparticle given by (xm,pm,ua,pa),
wherem denotes the vector anda denotes the spinor ind
dimensions, with (xm,pm) and (ua,pa) being canonical con-
jugates. However, there is also a fermionic constraint s
thatpa is not an independent degree of freedom, and res
in the supercharge being proportional tou

Qa;~p” u!a , ~p” !ab[pm~gm!ab . ~1.4!

Hence we may take only (xm,pm,Qa) as the independen
degrees of freedom, and consider fields in super phase s
of the formA(x,p,Q). We can think of these functions as th

3However, this observation leads us to speculate that the mys
ous origin of quantum mechanics may be related to some de
physical phenomenon, analogous to string joining.
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Weyl images of corresponding operators in quantum m
chanics, and define a star product among them such tha
star product among the Weyl images reproduces the prod
of the operators in quantum mechanics. The star product
defined is the generalization of the Moyal product which
automatically invariant under relativistic supersymme
transformations. We then propose the same mathema
structure as the supersymmetrization of string joining o
mode at a time, generalizing the product in Eq.~1.3!.

In the present paper we discuss the superparticle and
corresponding star product in its own right. It remains to
examined in the future whether this proposal for supersy
metrizing one mode at a time really reproduces the joining
superstrings.

Thus we will first propose a novel covariant quantizati
of the off-shell superparticle in Sec. II, and then study t
star product in the noncommutative covariant superspace
emerges in Sec. III. In this approach to quantization of
superparticle, we will deviate from the structure of the sup
particle in one respect, namely we will not impose the m
shell conditionp250 which also implies the constraintp”Q
50. These constraints will be relaxed because the st
modes which we wish to consider are off shell and do
satisfy these conditions. Then we find that the quant
theory of the off-shell 10-dimensional superparticle is d
scribed by anonlinear realizationof the 11-dimensional
Poincare´ superalgebra. The superspace thus defined is n
commutative, and it becomes the basis for our proposal
the star product in supersymmetric string field theory.

II. COVARIANT QUANTIZATION OF THE OFF-SHELL
SUPERPARTICLE

The standard generator of supersymmetry acting onun-
constrained super phase space isQa5pa1(p” u)a . The
commutation rules amongQa and other functions of phas
space follow from the canonical commutation rul
@xm ,pn#5 ihmn and $pa ,ub%5da

b . In particularQa and pm

satisfy the standard Poincare´ superalgebra

$Qa ,Qb%52~p” !ab , @Qa ,pm#50, @pm ,pn#50.
~2.1!

The superparticle is defined with a constrained su
phase space. In particular, one finds that the following co
bination of canonical variables vanishesda[pa2(p” u)a
50. Therefore, in the subspacepa5(p” u)a the supercharge
Qa takes the formQa;(p” u)a . Due to such relations the
independent degrees of freedom need to be identified
then the correct commutation rules need to be worked out
the constrained subspace. Whatever these may turn out
for some chosen independent degrees of freedom, the su
symmetry algebra of Eq.~2.1! must remain unchanged eve
for the constrained system, because this algebra is a re
tion of the supersymmetry of the theory.

In noncovariant quantization, such as in the light co
gauge, there is no problem in identifying and quantizing

ri-
er
6-2
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SUPERSTAR IN NONCOMMUTATIVE SUPERSPACE VIA . . . PHYSICAL REVIEW D68, 106006 ~2003!
independent degrees of freedom4 of the massless, on she
p250, superparticle@12#. However, the covariant quantiza
tion of the massless superparticle has been a longstan
problem. Despite many attempts in a variety of approac
that provide an answer consistent with light cone quant
tion, there is still room for discussion@13,14# of what is an
economical approach to covariant quantization. This prob
has attracted a lot of attention because it is a first step tow
the much harder problem of covariant quantization of
superstring in the Green-Schwarz formalism@15#.

In our investigation in this paper we will relax the ma
shell condition and allow any value forp2. This is a desir-
able step anyway for massless superparticles which are
shell in the presence of interactions. It is also desirable
the application we have in mind in string field theory
explained in the previous section. Since the constraint du
kappa supersymmetryp”Q50 is not satisfied off-shell, the
fermionic gauge symmetry is no longer effective. Hence
off-shell superparticle has more degrees of freedom. In
case we see that, at least heuristically, we can solve fou
from the constraint ua;(p”21Q)a , where (p”21)ab
51/p2p” ab , so that we may attempt to formulate the qua
tum theory covariantly in terms of the off-shell independe
degrees of freedom (Qa ,pm ,xm), while treatingu as a de-
pendent quantity. We preferred to eliminateu and keepQ as
the independent dynamical quantity since the commuta
relations ofQ with any quantity have the meaning of infin
tesimal supersymmetry transformations and therefore
commutators can be obtained from SUSY transformations
particular we already know the quantum algebra of (Q,p)
through the SUSY algebra in Eq.~2.1!. As we have already
emphasized, the SUSY algebra must be obeyed in any
cedure of quantization because of consistency with the
derlying global symmetry of the theory.

What remains is to find the commutation rules ofxm. In
particular we need to find@Qa ,xm# and @xm,xn#. These are
generally gauge dependent sincexm transforms under the fer
mionic local symmetry as well as under the reparametr
tion symmetry. To find these we will require consisten
with the covariant canonical commutation rule

@xm,pn#5 ihmn, ~2.2!

and with the covariant SUSY algebra of Eq.~2.1!.

4In the light cone gauge one choosesg1u50 andx15p1t, and
the mass shell conditionp250 is solved byp25(pi)2/(2p1). In
10 dimensions, the remaining independent degrees of freedom
(x2,xi ;p1,pi ,xa) where i 51, . . . ,8 labels SO~8! vectors anda
51, . . . ,8 labels SO~8! spinors. Using the following 16316
gamma matrix representation in the light cone ba

g15( 00
A20), g25(

2A20
00 ), g i5(02s i

s i 0 ), we can write p”52p1g2

2p2g11pig i , and obtain the gauge fixed form

u5AA2/p1(0
x) andQ5p” u5AA2/p1(A2p1x

pis ix ). We can then show
that the basic supersymmetry algebra in Eq.~2.1! follows from the
commutation rules of the independent canonical variab
(x2,xi ;p1,pi ,xa) given by @x2,p1#52 i , @xi ,pj #5 id i j , $xa ,xb%
5dab .
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Since@Qa ,xm# amounts to an infinitesimal SUSY trans
formation, we recall that, for unconstrained superspace it
given as2 i (gmu)a . Using this as a hint, and noting thatu
;(p”21Q), we write @Qa ,xm#52 ic(gmp”21Q)a where we
determine the unknown constantc by consistency with Ja-
cobi identities. Specifically, the super Jacobi identity f
(Qa ,Qb ,xm)50, together with Eqs.~2.1!, ~2.2! determine
c51/2. Therefore we find

@Qa ,xm#52
i

2
~gmp”21Q!a . ~2.3!

Next we examine the Jacobi identity for (xm,xn,Qa)50 to
find the commutator@xm,xn#. We can easily see that thi
commutator cannot vanish, and therefore we must hav
noncommutative spacexm. Using symmetry properties o
gamma matrices in 10 dimensions, Lorentz covariance,

dimensions of operators (1
2 ,1,21) respectively for (Q,p,x),

we can guess the only possible structure to be@xm,xn#
5@b/(p2)2#Q$gmn,p” %Q up to the unknown constantb. Im-
posing the Jacobi identity (xm,xn,Qa)50 we find b
521/16. Therefore, we have

@xm,xn#52 i
Smn

p2
, Smn[

2 i

16p2
Q$gmn,p” %Q. ~2.4!

This noncommutative algebra among thexm is consistent
with the commutative subspace in the light cone gauge
seen fromp”Q→0 if one uses the light cone form5 of Q and
p” in footnote 4.

In preparation for the Jacobi identity among threexm’s we
evaluate

†@xm,xn#,xl
‡5

1

p4
~pmSln2pnSlm12plSmn!. ~2.5!

To arrive at this form we used a number of gamma ma
identities, and the formQgmQ5pm which follows from the
symmetric (gm)ab and the anticommutator in Eq.~2.1!.
From this, it is immediately seen that the Jacobi identity
satisfied (xm,xn,xl)50. All other Jacobi identities among
the quantitiesQa ,pm,xm are trivially satisfied.

Hence we have shown that the off-shell covariant qua
zation of the superparticle is uniquely determined by the
sic commutations rules in Eqs.~2.1!–~2.4!. In our covariant
quantization approach we were guided only by the con
tency with the global symmetry. The consistent nonline
algebra defined by these equations is a nonlinear extensio
the well known SUSY algebra of Eq.~2.1!.

are

s

s

5Due to powers ofp2 in the denominator, the on-shell massle
particle conditionp250 leads to ambiguous expressions 0/0. Ho
ever, the light cone massless particle isdefinedby eliminating some
of its degrees of freedom through gauge conditions, and this pr
dure requires us to interpret 0/0 as zero when comparing to the
cone quantization of the massless particle.
6-3
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The results above can also be derived from the Di
brackets in covariant quantization as follows. The constra
da[pa2(p” u)a obey the algebra$da ,db%522p” ab . When
pm is off shell these are second class constraints. Using
constraintsda , one can compute the classical Dirac brack
among (xm,pm ,ua,pa) as follows:

$xm,pn%D5dn
m , $xm,ua%D52

1

2
~p”21gmu!a,

$xm,pa%D5
1

2
~gmu!a , ~2.6!

$ua,ub%D5
1

2
~p”21!ab, $ua,pb%D5

1

2
db

a ,

$pa ,pb%D5
1

2
p” ab , ~2.7!

$xm,xn%D5
i

4
u$gmn,p”21%u. ~2.8!

Solving the constraints one can writepa5(p” u)a , Qa
52pa andua5 1

2 (p”21Q)a . Eliminatingu andp in favor of
Q through these equations, and inserting the factor ofi in
passing to quantum mechanics, we arrive at the same
tions derived above through the Jacobi identities.

Next, we examine further the properties ofSmn. We see
that it commutes with the momentumpm, it is transverse to it
Smnpn50, and from Eq.~2.1! it follows that it satisfies the
algebra of Lorentz transformations in the space transvers
pm

@Smn,Sls#5 i XSmlS hns2
pnps

p2 D 2~m↔n!C2 i „~l↔s!….

~2.9!

Therefore,Smn is interpreted as the spin operator. Indeed,
commutator withQa , as follows from Eq.~2.1!, gives the
correct Lorentz transformation of the spinor in the subsp
transverse topm

@Smn,Qa#5
i

2 XS gmn2gms
pnps

p2
1gns

pmps

p2 D QC
a

.

~2.10!

These observations lead us to introduce the following
mensionless Hermitian vectorJm

Jm[~2p2!1/4xm~2p2!1/45~2p2!1/2xm2
i

2
~2p2!21/2pm

5xm~2p2!1/21
i

2
~2p2!21/2pm. ~2.11!

We find that its commutators give the total Lorentz genera
Jmn
10600
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@Jm,Jn#5 iJmn, Jmn5~xmpn2xnpm!1Smn. ~2.12!

It is now straightforward to notice that the operato
Jmn,pm,Qa satisfy the super Poincare´ algebra. NamelyJmn

rotates correctlypm as well asQa , and it satisfies the Lor-
entz algebra not only in the space transverse topm, but in the
full space

@Jmn,pl#5 ihl[mpn] , @Jmn,Qa#5
i

2
~gmnQ!a ~2.13!

@Jmn,Jls#5 i ~Jmlhns2~m↔n!!2 i ~l↔s!.
~2.14!

Hence our covariant quantization of the off shell superp
ticle is consistent with the global Poincare´ symmetry of the
theory.

Furthermore, we can extend the symmetry algebra int
hidden symmetry in 11 dimensions, by including the ope
tors Jm, (2p2)1/2, andQ̃ȧ[(2p2)21/2(p”Q) ȧ . We compute
the commutators ofJm with the other quantities and find

@Jm,~2p2!1/2#52 ipm, @Jm,pn#5 ihmn~2p2!1/2,

@Jm,Jnl#52 ihm[nJl] , ~2.15!

@Jm,Qa#52
i

2
~gmQ̃!a , @Jm,Q̃ȧ#5

i

2
~gmQ!ȧ .

~2.16!

Together with Eqs.~2.13!, ~2.14!, we notice the structure o
the 11-dimensional SUSY algebra, such thatQA5(Qa ,Q̃ȧ)
together form a 32 component spinor,PM5„pm,(2p2)1/2

…

together form an 11-dimensional massless momentum,
JMN5(Jmn ,Jm) together form the 11-dimensional Loren
algebra. Furthermore, if we define 11-dimensional gam
matrices GM, we can check explicitly thatPM(GM)A

BQB

50 as well asPMPM50, therefore our structure corre
sponds to the quantum massless superparticle in 11 dim
sions. The quantum states of this off-shell system are p
cisely the supergravity multiplet in 11 dimensions, b
dimensionally reduced to the 10-dimensional type-IIA sup
gravity multiplet.

Thus our covariant quantization of the off-shell 10 dime
sional superparticle is described by a nonlinear realization
the 11-dimensional super Poincare´ algebra, acting on the
quantum states that correspond to the 11-dimensional su
gravity multiplet. The fundamental commutators of th
structure are given by Eqs.~2.1!–~2.4!, including the non-
commutative position space of Eq.~2.4!. In particular the
commutation rules with the operatorQa correspond to the
supersymmetry transformations of the fundamental supe
ordinates (xm,pm,Qa), and this gives the supersymmet
transformation rules of fields defined as functions of t
superspaceA(x,p,Q).

In our discussion we treated the 10-dimensional super
ticle, but it is straightforward to apply the same approach
any dimensiond, leading to a nonlinear realization of th
Poincare´ superalgebra ind11 dimensions.
6-4
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The nonlinear superalgebra among the noncommuta
covariant superspace coordinates (xm,pm,Qa) is the basis for
constructing the supersymmetric star product. In princi
one can use the Kontsevich method@16,17# to construct the
associativestar product. However, we can use simpler me
ods that can be applied to our problem as developed in
next section. Thus, we will first discuss a generic linear c
and later apply the method to the nonlinear superalgebr
our case.

III. STAR PRODUCT IN NONCOMMUTATIVE
SUPERSPACE

A. At most linear Poisson structure

Consider some noncommutative spacexa with a noncom-
mutativity functionuab(x), such thatuab(x) is at most linear
in x. The classical Poisson structure then has the form

$xa ,xb%52 iuab~x!52 i ~sab1 i f ab
c xc!, ~3.1!

wheresab , f ab
c are independent ofx. Such auab(x) includes

the case of the Heisenberg algebra~when f ab
c 50) as well as

the case of a pure Lie algebra~when sab50). In the next
section we will study the case of superspace with thexa
replaced by the phase space of a superparticlexa
→(xm ,pm ,Qa) whereQa is the generator of supersymm
try. But in the present section we discuss the star produc
the general bosonic system that has the general noncom
tativity property given above.

The usual quantization of this system is done in quant
mechanics by promoting thexa to operatorsx̂a . General
operatorsÂ1( x̂),Â2( x̂) are multiplied with each other in th
usual way by writing them next to each otherÂ12( x̂)
5Â1( x̂)Â2( x̂), and then the resulting operatorÂ12( x̂) is
computed by keeping track of the orders of the opera
consistently with their quantum commutation relations

@ x̂a ,x̂b#5uab~ x̂!5sab1 i f ab
c x̂c . ~3.2!

The deformation quantization of this system introduce
star product among classical functionsA1(x),A2(x) to con-
struct a resulting classical functionA12(x)

A12~x!5A1~x!!A2~x!. ~3.3!

The classicalA1(x),A2(x),A12(x) are ‘‘Weyl images’’ of the
corresponding operatorsÂ1( x̂),Â2( x̂),Â12( x̂) and are de-
signed to reproduce the same results as quantum mecha
although in the classical functionA(x) the orders ofxa do
10600
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not matter. In particular, when applied to the case ofA1(x)
5xa , A2(x)5xb , the star product should give the same r
sult as quantum mechanics

@xa ,xb#![xa!xb2xb!xa5uab~x!5sab1 i f ab
c xc .

~3.4!

An additional property of the star product, consistent w
quantum mechanics, is that it should be associative

A123~x!5„A1~x!!A2~x!…!A3~x!5A1~x!!„A2~x!!A3~x!….

~3.5!

A star product with such properties can be constructed
using Kontsevich’s general diagrammatic prescription@16#,
which defines it as an infinite series for an arbitraryuab(x).
However, because of the maximum linear nature ofuab(x)
there is a much simpler closed expression which we c
struct in the following section. Of course, we expect that
the limit f ab

c 50, our expression reduces to the simple Moy
product given byuab→sab .

B. The generic star for maximum linear uab„x…

We define the Fourier transforms of the classical functio

Ai~x!5E ~dp!Ãi~p!eipaxa. ~3.6!

Constructing the star product for the Fourier ba

eip1
axa!eip2

bxb is equivalent to constructing it for any othe
basis of functions that can be related by the Fourier tra
form. We recall the Baker-Hausdorff-Campbell~BHC! theo-
rem for quantum operators

eÂeB̂5eĈ(Â,B̂), ~3.7!

where the operatorĈ(Â,B̂) is determined by an infinite se
ries given by multiple commutators

Ĉ~Â,B̂!5Â1B̂1
1

2
@Â,B̂#1

1

12
†@Â,B̂‡,B̂#

1
1

12
†Â,@Â,B̂#‡1•••. ~3.8!

We note that this theorem relies simply on an associa
product. Therefore, the same theorem also applies to
exponentials of classical functionsA(x),B(x) as long as we
have an associative star product
~eA(x)!!!~eB(x)!!5~e„A(x)1B(x)1(1/2)[A(x),B(x)] !1(1/12)[[A,B] ! ,B] !1(1/12)[A,[A,B] !] !1•••…!! . ~3.9!
6-5
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In particular, let us construct a star product such that the
exponential of a linear function of thexa is equal to the
classical exponential, i.e. (eip•x)!5eip•x for any set of con-
stant parameterspa. This relation is true for the simple
Moyal product, and we will verify that it is also true in ou
case, after we give the construction of our star product. T
the BHC theorem can be applied to the classical Fou
basis

eip1
axa!eip2

bxb5expS ip1
axa1 ip2

axa

1
1

2
@ ip1

axa ,ip2
bxb#!1••• D . ~3.10!

The crucial observation here is that all the higher terms
C(A,B)(x) involve only star commutators, which can b
evaluated for the Fourier basis by using repeatedly Eq.~3.4!.
Sinceuab(x) is at most linear inx, the result is also neces
sarily at most linear inx, and therefore only the linear Pois
son structure is sufficient to completely evaluate the prod
of exponentials. The result is identified with the classi
exponential since it is designed to be the same as the
exponential for anyp. Therefore, we obtain the form

eip1
axa!eip2

axa5Z~p1 ,p2!exp~ ixap12
a !, ~3.11!

whereZ,p12
a are functions ofp1

a ,p2
a which we determine be

low. Once these functions are determined, the star pro
for generic classical functionsA1(x),A2(x) can be given ex-
actly in the form

A12~x!5A1~x!!A2~x!

5E E ~dp1dp2!Ã1~p1!Ã2~p2!Z~p1 ,p2!

3exp„ixapa~p1 ,p2!…. ~3.12!

This can be rewritten in terms of differentials as follows

A1~x!!A2~x!5@A1~x1!Z~2 i ]Q x1
,2 i ]W x2

!

3exp„ixaDpa~2 i ]Q x1
,2 i ]W x2

!…

3„A2~x2!…#x15x25x ~3.13!

whereDpa(p1 ,p2)5p12
a (p1 ,p2)2p1

a2p2
a . Note thatDpa is

multiplied by xa which is kept distinct fromx1
a ,x2

a when the
derivatives are applied. The derivative form is useful in ge
eral, but it is particularly essential for evaluating the s
products of polynomials inxa.

In the simplest case off ab
c 50 the infinite series in

Eq. ~3.10! terminates with the first commutato
1
2 @ ip1

axa ,ip2
axa#!52 1

2 p1
asabp2

b since it is independent ofx.
Similarly, for certain cases of interest~for an example see
@18#!, the series terminates after a few terms once we re
terms that are independent ofx. Even if the series does no
terminate, the functionsZ(p1 ,p2),p12

a (p1 ,p2) can be com-
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puted by using the properties of the Lie algebra associa
with the structure constantsf ab

c .
In particular, when we specialize this expression tof ab

c

50, we haveZ(p1 ,p2)5exp(21
2p1

asabp2
b) and p12

a (p1 ,p2)
5p1

a1p2
a , which gives

A12~x!5A1~x!!A2~x! 5
f ab
c 50

E E ~dp1dp2!

3Ã1~p1!Ã2~p2!e2(1/2)p1
asabp2

b
eixa(p1

a1p2
a).

~3.14!

The right hand side may be written also in the derivat

form A1(x)!A2(x)5A1(x)exp(12]Q
asab]W

b)A2(x), which shows
that the result is the usual Moyal star product whenf ab

c

50.
For the general case, we compute the first few terms

the series for anysab , f ab
c

1

2
@ ip1

axa ,ip2
bxb#!52

1

2
p1

asabp2
b2

i

2
~p1

ap2
bf ab

c !xc

~3.15!

1

12
@@ ip1

axa ,ip2
bxb#,ip2

cxc#5
1

24
~p1

af ab
d p2

b!sdcp2
c

1
i

24
~p1

ap2
bp2

c f ab
d f dc

e !xe .

~3.16!

So we obtain

Z~p1 ,p2!5expS 2
1

2
p1

asabp2
b1

1

24
~p1

af ab
d p2

b!sdcp2
c

1
1

24
~p2

af ab
d p1

b!sdcp1
c1••• D ~3.17!

p12
e ~p1 ,p2!5p1

e1p2
e2

1

2
p1

af ab
e p2

b1
1

24
~p1

af ab
d p2

b! f dc
e p2

c

1
1

24
~p2

af ab
d p1

b! f dc
e p1

c1•••. ~3.18!

We identify the structure of the series as follows. Fir
p12

e (p1 ,p2) is independent ofsab ; it is fully determined by
the group multiplication property, withp1

a ,p2
b being the in-

finitesimal group parameters associated with the Lie alge
characterized by f ab

c . Therefore, the full series fo
p12

e (p1 ,p2) can be computed from any convenient repres
tation of the group~see below!. Second, the expression fo
ln Z(p1,p2) is completely parallel to the expression fo
p12

e (p1 ,p2)2p1
e2p2

e , except for replacingsab in place of
f ab

e in the last factor of each term. In fact,sab may be re-
garded as an additional structure constant in the centr
extended Lie algebra characterized byf ab

e , which explains
why the two series for lnZ(p1,p2) and p12

e (p1 ,p2) have a
similar structure. Thus, ifpe(p1 ,p2) is computed exactly
from some convenient group representation, lnZ(p1,p2) can
6-6
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also be computed by using its relationship top12
e (p1 ,p2) or

by using a convenient representation of the centrally
tended Lie algebra.

As an example, consider the case ofsab50 and takef ab
c

to be the structure constants for SU(2). To compute
p12

a (p1 ,p2) exactly we use the 232 matrix representation

eixapa→ei (1/2)sapa
where sa are the Pauli matrices

Then the matrix representationei (1/2)sapa
5cos(upu/2)

1 i (p•s/upu)sin(upu/2) can be used to multiply the matrice
and compute an exact expression forp12

a (p1 ,p2) written as a

3-vectorpW as follows:

cos
upu
2

5cos
up1u
2

cos
up2u
2

2
pW 1•pW 2

up1uup2u
sin

up1u
2

sin
up2u
2

~3.19!

pW

upu
sin

upu
2

5S pW 1

up1u
sin

up1u
2

cos
up2u
2

1
pW 2

up2u
sin

up2u
2

cos
up1u
2

2
pW 13pW 2

up1uup2u
sin

up1u
2

sin
up2u
2

D .

~3.20!

The first equation gives the length of the vectorupu, and after
inserting it in the second equation we get the fullpW . The
expansion of this exact expression in powers ofpW 1 ,pW 2 repro-
duces the infinite series computed through the BHC theor
Replacing this result forp12

a (p1 ,p2) in Eq. ~3.12! and taking
Z(p1 ,p2)51 gives the star product for the case ofsab50
and f ab

c the SU(2) structure constants. It is a nontrivial e
ercise to obtain this result in the diagramatic approach
Kontsevich.

Finally, let us verify that the star exponential is the cla
sical exponential (eip•x)!5eip•x which was assumed in ou
approach. This would follow by showing that the star pow
are the same as the classical powers (p•x)!

n5(p•x)n for any
set of parameterspa. This has to be true since the dot pro
uct p•x amounts to picking up a single component ofx in the
direction ofpa, and for a single component the star produ
is trivial with itself since the commutator vanishes@p•x,
p•x#!50. In any case one can also verify that it is tr
explicitly by applying the star product of Eq.~3.13! to
(p•x)n1!(p•x)n2 to show that it gives (p•x)n11n2. This can
be proven by iteration by starting withn15n251; and this
case is easily computed by using the expansion of the g
eral formulas in Eqs.~3.17!, ~3.18!.

The lesson learned in this section is that we can use
BHC theorem and group theory to determine the star pr
uct. The case treated in this section involved a linear Pois
structure. In the next section we will treat a nonline
~super!Poisson structure, but the essential tool will be ag
the group theoretical aspect we emphasized in this sec
We will use this concept to determine the star product
relativistic noncommutative superspace (xm,pm,Qa). From
the context we will see that our approach is a more gen
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technique than the particular example, and therefore it ca
applied more generally to other bosonic or supersymme
cases.

C. Covariant superstar

We will find it convenient to work with a basis of func
tions of (J,p,Q) instead of functions of the noncommutativ
phase space (x,p,Q), and define the star product in the spa
of (J,p,Q). This is completely general since these are
lated by a change of variables6 xm5Jm(2p2)21/2. The virtue
of the basis (J,p,Q) is that these variables have simple com
mutation rules as quantum operators~i.e. they are part of the
Lie algebra of (d11)-dimensional super Poincare´ group!,
and this makes them convenient for the formalism of de
ing a star product on classical functions of this space. If o
desires, the star product in the space of (x,p,Q) can be ex-
tracted from the one we define. To emphasize that the
product is defined in the (J,p,Q) space we will denote it
with the symbolL, while reserving the symbol! for the
(x,p,Q) space.

We begin with the Fourier transform as in Eq.~3.6!

A~J,p,Q!5E dkdqdc Ã~k,q,c!eik•J1 iq•p1 ic•Q.

~3.21!

Then we need to evaluate the star product of the Fou
basis eik1•J1 iq1•p1 ic1•Q L eik2•J1 iq2•p1 ic2•Q. Note that
these equations involve conveniently a classical exponen
Fortunately, the classical exponential of an arbitrarylinear
combination of (J,p,Q) is equal to the star exponential a
long as the star productL is given in the (J,p,Q) basis,
(eik•J1 iq•p1 ic•Q)L5eik•J1 iq•p1 ic•Q, for any set of con-
stants (km ,qm ,ca). This is by virtue of the fact that, as in
the previous section, under theL product (J,p,Q) act as
generators of the Lie algebra of the (d11)-dimensional su-
per Poincare´ group.

We may begin to apply the BHC theorem, as in Eq.~3.9!,
to evaluate this product. It becomes quickly evident that
series does not terminate since the non-AbelianJmn is pro-
duced in the commutator@Jm,Jn#L . However, the product
can be determined from group theory since the exponen
of any linear combination of generators defines an elemen
the super Poincare´ group in (d11) dimensions. Therefore
the result of the BHC series must accumulate to become
series one obtains in group multiplication, and therefore
must take the form of a general group element on the ri
hand side

6To be more careful, the change of variables needs to be consi
with the corresponding quantum operators, and therefore it sh
involve star multiplication of various factors. However, note that,
can be expected, for a single power ofxm or Jm the star product
form is equal to its classical formJm5(2p2)1/4!xm!(2p2)1/4

5xm(2p2)1/2, or xm5(2p2)21/4LJmL(2p2)21/4

5Jm(2p2)21/2, without any corrections of the deformation param
eter ~which is set equal to 1 in our formalism!.
6-7



be

ar

he

o

as

d

q.

se

at

t

no

no
-
r

r o

r

for

effi-
ly

m-
use
his
rm

r

e

t-

in
t in

d-

l-

or-
en

ym-
upe-

tar

on
e
is

BARS et al. PHYSICAL REVIEW D 68, 106006 ~2003!
eik1•J1 iq1•p1 ic1•QLeik2•J1 iq2•p1 ic2•Q

5~ei (k12•J1v12
mnJmn)1 i (q12•p1z12

A2p2)1 i (c12•Q1j12•Q̃)!L .

~3.22!

The important point here is that the coefficientsk12
m ,v12

mn ,
q12

m ,z12,(c12)a ,(j12) ȧ that appear in the exponent must
constant coefficients~independent ofx,p,Q). They are func-
tions of (k1 ,k2 ;q1 ,q2 ;c1 ,c2) which can be determined
from any convenient representation of the super Poinc´
group in d11 dimensionsas in the example of Eqs.~3.19!,
~3.20!. In the result we may then replace the nonlinearclas-

sical expressions forJmn ,Q̃,

Jmn5
J[mpn]

A2p2
1

iQ$gmn,p
”
%Q

16~2p2!
, Q̃ȧ[~2p2!21/2~p

”
Q!ȧ

~3.23!

and A2p2, thus obtaining the desired star product for t
basiseik1•J1 iq1•p1 ic1•Q.

Note that, because of the nonlinear nature
Jmn ,Q̃,A2p2 as functions of (J,p,Q) the resulting expo-
nential must be aL-star exponential. This is understood
follows. A priori we have started with the classical (J,p,Q)
as the Weyl images of the quantum operators (Ĵ,p̂,Q̂). Any
function of these operators has an image that is compute
replacing each (Ĵ,p̂,Q̂) by its classical image (J,p,Q) but
multiplied with each other by using theL product. With that
definition, theJmn andQ̃ȧ that appear in the exponent in E
~3.22! are constructed by inserting theL product, such as
Jmn5(2p2)21/4LJ[mLpn]L(2p2)21/41•••. Further-
more, when these are multiplied to build the exponential
ries, one should always use the star product. Then Eq.~3.22!
is understood as the image of its corresponding oper
equation.

However, there are some simplifications that permit us
substitute the classical forms ofJmn ,Q̃,A2p2 as mentioned
above. First, by noting thatQ̃ȧ andSmn are constructed only
from ~anti!commuting operators we realize that they can
have any corrections from the deformation parameter7 \
since one can freely change the orders of (J,p,Q) as quan-
tum operators in these expressions~thanks to the symmetry
structure of the gamma matrices inSmn the nontrivial anti-
commutator between twoQ’s does not contribute!. Second,
since the expression (2p2)21/4LJ[mLpn]L(2p2)21/4 is
Hermitian, its Weyl image must be real. Therefore it can
have a contribution at first order in\ ~odd orders are imagi
nary!. It cannot have\ corrections to higher orders eithe
because the star product at higher orders involves highe
der derivatives that vanish on a function that is linear inJ
~analogous to the differential operator version of Moyal sta!.

7In this paper for convenience we will refer to the deformati
parameter as\. However if we apply the formalism to describ
string joining in string field theory, the deformation parameter
unrelated to the\ in quantum mechanics.
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Hence, the images for the nonlinear expressions
Jmn ,Q̃,A2p2 are simply their classical expressions.

A systematic expansion of theL product in powers of\
can be given as follows. The parameter\ comes from two
sources: first the star exponentiation, and second the co
cients (k12

m , . . . ) which we can compute group theoretical
to all orders of\. Up to second order in\ only the expan-
sion of the coefficients (k12

m , . . . ) contribute. Starting with
the third order the star exponential also contributes. To co
pute the contribution from the star exponential, one can
the known form of the star product at one lower order. In t
way one can obtain systematically a completely explicit fo
of theL product to all orders of\. By applying this method
we have verifieda posteriori that indeed the expressions fo
Jmn ,Q̃,A2p2 do not receive any contributions from\.
Similarly, the statements in footnote 6 can be verifieda pos-
teriori.

The result for theL product may also be written in th
differential form of Eq.~3.13! ~with ]/]J derivatives, not
]/]x derivatives!. This last form is appropriate for compu
ing the star product for polynomials~such asxmLxn) or any
other functions ofA(x,p,Q) after writing them in terms of
(J,p,Q). For example, from the group theoretical result
the J basis, we can also determine the superstar produc
the x basiseik1•x1 iq1•p1 ic1•Q by writing it in the J basis as
(eik1•J(2p2)21/21 iq1•p1 ic1•Q)L , with a L-star exponential.

In the purely bosonic case, the classical basiseik1•x1 iq1•p

is simpler than the basis„exp(ik1•xA2p21 iq1•p)…!

5eik1•J1 iq1•p, where! reduces to the standard Moyal pro
uct in the absence of fermions. Similarly, theL products for
the Fourier basiseik1•x1 iq1•p, when expressed in the (J,p)
space, should give the same result as the Moyal product~us-
ing the Moyal!)

eik1•x1 iq1•p!eik2•x1 iq2•p

5ei (k11k2)•x1 i (q11q2)•pe2( i /2)(k1•q22k2•q1).

~3.24!

Therefore, the following computation is a test of our forma
ism

~eik1•J(2p2)21/21 iq1•p!LL~eik2•J(2p2)21/21 iq2•p!L

5~ei (k11k2)•J(2p2)21/21 i (q11q2)•p!L e2( i /2)(k1•q22k2•q1),

~3.25!

where onlyL exponentials must appear. Indeed this is c
rect. The technical details of this computation will be giv
in another paper@19#.

Thus, as expected, the Moyal product! in the (x,p) basis
and our group theoreticalL product in the (J,p) basis are
equivalent when the fermions are absent. In the supers
metric case it remains to be seen whether one basis is s
rior to the other in practical computations~explicit computa-
tions are in progress!.

By following this program we can compute the supers
product for general fields
6-8
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A~J,p,Q!!B~J,p,Q! or A8~x,p,Q!!B8~x,p,Q!.
~3.26!

The result appears complicated but it has a completely t
table group theoretical structure. We hope to give expl
calculations using these formulas in the near future. Our
sults as well as methods are likely to be useful in vario
applications. In particular, we hope that it can be used in
formulation of superstring field theory, which was the mo
vating factor of our investigation.

In this paper we achieved our main goal of formulati
the superstar, but along the way we also obtained two o
new results. First we gave the quantization of the off sh
superparticle ind dimensions and showed that its quantu
mechanics gives a nonlinear realization
(d11)-dimensional Poincare´ superalgebra. This highe
structure was essential for constructing the superstar. Sec
we introduced efficient group theoretical methods for co
structing and computing star products. We showed that
h

h
,’’

nt

m
.
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the maximum linear Poisson structure, as well as for non
ear Poisson structures that can be embedded as part of
linearly realized Lie~super!algebras, we can obtain the exa
full ~super!star product by using group theory represen
tions. This concept is useful for performing explicit comp
tations involving the superstar in its applications.

ACKNOWLEDGMENTS

I.B. would like to thank M. Lledo for discussions. I.B. i
in part supported by a DOE grant DE-FG03-84ER40168.
is grateful to the Physics Department at UC Berkeley,
Feza Gu¨rsey Institute, and the CERN TH-division for hosp
tality while this work was performed. C.D. is supported
part by the Turkish Academy of Sciences in the framewo
of the Young Scientist Program~CD/TÜBA–GEBİP/2002–
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