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Superstar in noncommutative superspace via covariant quantization of the superparticle
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A covariant quantization method is developed for the off-shell superparticle in 10 dimensions. On shell it is
consistent with light cone quantization, while off shell it gives a noncommutative superspace that realizes
nonlinearly a hidden 11-dimensional super Poincgmametry. The nonlinear commutation rules are then used
to construct the supersymmetric generalization of the covariant Moyal star product in noncommutative super-
space. As one of the possible applications, we propose this new product as the star product in supersymmetric
string field theory. Furthermore, the formalism introduces new techniques and concepts in noncommutative

(supejgeometry.
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I. MOTIVATION: STAR PRODUCT IN SUPERSTRING In the recent literature there are other studies of a star prod-
FIELD THEORY uct in noncovariant superspad@-9] (see also[10,11])

The purpose of this paper is to propose the covarianwhose origin is background fields in string theory. The star
spacetime supersymmetric generalization of the Moyal staproduct in MSFT has also a fundamental but different physi-
product as a first step in constructing supersymmetric stringal origin, namely, string joining. The superstar product we
field theory. The motivation for this work is provided by the study in this paper is motivated by MSFT, and as required in
Moyal star formulation of string field theofMSFT) [1-4].  that context, is super Poincaivariant, and has a different
On the way to constructing the superstar, we also obtain newtructure than the previous proposals.
results on the quantization of the off-shell superparticle, and It has been shown that in the language of string field
on new group theoretical methods for constructing andheory the Moyal product is the simplest description of inter-
evaluating star products based on nontriilpeyPoisson actions of bosonic strings, corresponding to string joining
manifolds. [1]. To arrive at this description we express the general string

The first proposal of a covariant nontrivial product in su-field in the space of mixed position-momentum representa-
perspace was given in the context of purely fermionic supertion of string modedA(X,Xe,pe) (instead of purely position
gravity [5], as8%- ##=C*# whereC®”? is the charge conju- representation where x* is the string midpoint, and
gation matrixX A later proposal was given ir6] as (x&,p&), withe=2,4,6 . . ., is anequivalent description of
104,05 =x"(v,)op- These ideas were motivated by certainthe string excitation modes that are compatible with simulta-
aspects of supergravity or supersymmetry and their mysteriheous observations in first quantized quantum mechanics of
ous origins were not at that time connected to string theorythe string? Then the joining of strings is described by com-

icef is antisymmetric ford=(3,4,5) mod8), symnetric for d=(7,8,9) mod(8) and mixedi.e. Lorentz singlet occurs in product of
opposite chiral spinojsn d=(6,10) mod8). Theproduct§¢- ##=C%# is not associative, but an associativ@variantfermionic Moyal
product 6%x #=6*6P+3C*# can be constructed in every dimension generally A®)*B(6), where x=exp(—1/2C*#(/36%)
X (d196P)), because the star anticommutafer, 67}, is either zeroantisymmetricC*#) or a constantsymmetric or mixedC?).

2The probability amplitude in position spaceéi(s;,xe ,xO)E(;,xe Xo|A) whereo=1,3,5 ... ande=2,4,6 . .. denote excited modes and
X is the midpoint mode. In the mixed even positions and odd momenta &pisteéned by Fourier transformatipthe probability amplitude
is A(er,po)s<;,xe,po|A>. As in [1] we definep, as a linear combination of the odd momentum mopgs = ,p,R,. leading to the
probability amplitude(?,xe,pe|A)=A(;,xe,pe). It is important to emphasize that hegog is not the momentum that is quantum canonical
conjugate tox, as defined in the canonical treatment of string modes. That mode is represen’feid)xkg)as applied on the string field
A(;,xe,pe). Instead,p, is defined as a linear combination of the odd momentum modes as abovexgiaeép, commute in quantum
mechanicsx, and p, also commute with each other in quantum mechanics, and therefprp.f are quantum mechanicallyompatible
observablesas they should be in defining the probability amplitude. At first sight it appears somewhat misleading to use thepsymbol
since that symbol is also used for thgantumcanonical conjugate ®,. However, the string joining operation introduces a new noncom-
mutativity beyond quantum mechanics, such tkatp4 behave like a canonical pair under the string joining star product as if1E3),
althoughx, ,pe commute with each other in quantum mechanics. In this sense the usual momenturs 'rﬁgeweis actually reproduced as
a star commutatoH&XeA:[pe ,Al,, and therefore, after alp, does behave as if it is a canonical conjugatgtpjustifying the use of the
symbolpe.
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bining their first-quantized probability amplitudése. string  Weyl images of corresponding operators in quantum me-
fields A;(X,Xe,pe) and A,(X,Xe,pe) into the probability ~chanics, and define a star product among them such that the
star product among the Weyl images reproduces the products
of the operators in quantum mechanics. The star product thus
defined is the generalization of the Moyal product which is
automatically invariant under relativistic supersymmetry
transformations. We then propose the same mathematical

strings, and is precisely the Moyal product in the noncom-Structure as the supersymmetrization of string joining one

mutative space.,p., separately for eace=2,4,6..., as mode at a time, generalizing 'the product in IED,S).'
in [1] In the present paper we discuss the superparticle and the

corresponding star product in its own right. It remains to be

S, examined in the future whether this proposal for supersym-

*=[] el/D0xp,~%x,). (1.2 metrizing one mode at a time really reproduces the joining of
e=2 superstrings.

Thus we will first propose a novel covariant quantization

amplitudeA (X, Xe , Pe)

Alz(zxe vpe):Al(zxeape)*Az(zxeape)v (1.0

where the star product is local at the midpoﬂt of both

This formulation of string interactions, which reproduces the

. . f the off-shell superparticle in Sec. Il, and then study the
operator formalism or conformal field theory, has develope star product in the noncommutative covariant superspace that
into an efficient computational tool in string field theory P PErsp

emerges in Sec. lll. In this approach to quantization of the
[1-4]. : \ )

superparticle, we will deviate from the structure of the super-
particle in one respect, namely we will not impose the mass
shell conditionp?=0 which also implies the constraipiQ
=0. These constraints will be relaxed because the string
modes which we wish to consider are off shell and do not
satisfy these conditions. Then we find that the quantum
theory of the off-shell 10-dimensional superparticle is de-
scribed by anonlinear realizationof the 11-dimensional

derive from string joining, and not from guantum meCha_Poincafesu eralgebra. The superspace thus defined is non-
nics® Thus the process of string joining creates the noncom: peraig : PETSp

mutative spacext ,pL) which includes timelike coordinates commutative, and it becomes the basis for our proposal for

and is Lorentz covariant. The ghost problems of the timelikethe star product in supersymmetric string field theory.

coordinates is taken care of by the overall gauge invariance
structure of MSFT. L Il. COVARIANT QUANTIZATION OF THE OFF-SHELL

Since the star product above is independent for each SUPERPARTICLE
string mode, we may concentrate on the supersymmetriza-
tion of the Moyal product for one degree of freedom. To do The standard generator of supersymmetry actingion
this we are inspired by the close relation between the stringonstrained super phase space Q,=m,+(p6),. The
joining star product for a single mode as given in EQ3),  commutation rules amon@, and other functions of phase
and the quantum mechanics of a single relativistic particlespace follow from the canonical commutation rules
which has exactly the same mathematical structure. That i$x, ,p,]=i7,, and{m,,6°}= 2. In particularQ, andp,
to supersymmetrize the string joining star product we will satisfy the standard Poincaseperalgebra
borrow from the supersymmetry structure of the quantum
mechanics of the relativistic supersymmetric particle.

Thus we consider the phase space degrees of freedomofa  {Q,,Qg}=2(P) s, [Qu.P.]1=0, [P,.p,]=0.
single relativistic superparticle given byxX, p*, 6% 7,), (2.1
where u denotes the vector and denotes the spinor id
dimensions, with X#,p*) and (6%, ,) being canonical con- _ ) ) ) _
jugates. However, there is also a fermionic constraint such 1he superparticle is defined with a constrained super
that r, is not an independent degree of freedom, and result8nase space. In particular, one finds that the following com-

The meaning of the symbopy must be emphasized.
Namely, as described in footnote 2, it must be clearly under
stood that the canonical-conjugate-like propertiespgfin
MSFT

XE* Py — Po ¥ XE=18ee 7™, 1.3

in the supercharge being proportional o bination of canonical variables vanishels,=m,—(p6),
=0. Therefore, in the subspaee,=(p0), the supercharge
Q=00 a0, (D) ap=Pu(¥")up- (1.4 Q, takes the formQ,~(p6),. Due to such relations the

independent degrees of freedom need to be identified and
Hence we may take onlyx(¢,p*,Q,) as the independent then the correct commutation rules need to be worked out for
degrees of freedom, and consider fields in super phase spaitee constrained subspace. Whatever these may turn out to be
of the formA(x,p,Q). We can think of these functions as the for some chosen independent degrees of freedom, the super-
symmetry algebra of Eq2.1) must remain unchanged even
for the constrained system, because this algebra is a reflec-
SHowever, this observation leads us to speculate that the mysterfion of the supersymmetry of the theory.
ous origin of quantum mechanics may be related to some deeper In noncovariant quantization, such as in the light cone
physical phenomenon, analogous to string joining. gauge, there is no problem in identifying and quantizing the
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independent degrees of freedbof the massless, on shell Since[Q, ,x*] amounts to an infinitesimal SUSY trans-
p?=0, superparticl¢12]. However, the covariant quantiza- formation, we recall that, for unconstrained superspace it was
tion of the massless superparticle has been a longstandirggven as—i(y*#0),. Using this as a hint, and noting thét
problem. Despite many attempts in a variety of approaches-(p~1Q), we write[Q,, ,x*]=—ic(y*p 1Q), where we
that provide an answer consistent with light cone quantizadetermine the unknown constaotby consistency with Ja-
tion, there is still room for discussidri3,14 of what is an  cobi identities. Specifically, the super Jacobi identity for
economical approach to covariant quantization. This problen(Q, ,Qz,x*)=0, together with Eqs(2.1), (2.2 determine
has attracted a lot of attention because it is a first step towarcl=1/2. Therefore we find
the much harder problem of covariant quantization of the
superstring in the Green-Schwarz formaligh3]. i

In our investigation in this paper we will relax the mass [Qu . X¥]=~ E(Y“WlQ)a- 2.3
shell condition and allow any value f@?. This is a desir-

able step anyway for massless superparticles which are offey¢ \ve examine the Jacobi identity fox4x",Q,)=0 to
shell in the presence of interactions. It is also desirable fOfind the commutatof x“,x"]. We can easily seg that this

the a_ppllcguon we h_ave n 'T"”d n string field th‘?OW aS commutator cannot vanish, and therefore we must have a
explained in the previous section. Since the constraint due tﬂoncommutative space”. Using symmetry properties of

kapp_a ;upersymmetrszo_ is not satisfied fo-shell, the gamma matrices in 10 dimensions, Lorentz covariance, and
fermionic gauge symmetry is no longer effective. Hence the . . ¢ ively f
off-shell superparticle has more degrees of freedom. In thidimensions o operators; (1,— 1) respectively for Q.,p,x),

case we see that, at least heuristically, we can solvegfor W€ Can guess the only possible structure to [l€,x"]
from the constraint 6,~(p~1Q),, where @ 1), =[l:_)/(p ) ]Q{yﬂ”,p}Q up tp the unknown consta@t Im-
=1/p?p,z, SO that we may attempt to formulate the quan-POSINd the Jacobi identity x(',x",Q,)=0 we find b
tum theory covariantly in terms of the off-shell independent= — 1/16. Therefore, we have

degrees of freedomQ,,p,,X,), while treatingé as a de- _
pendent quantity. We preferred to eliminatand keepQ as , . L, )

the independent dynamical quantity since the commutation [x#,x"]= 1 F = erzQ{V” BIQ. (24
relations ofQ with any quantity have the meaning of infini-
tesimal supersymmetry transformations and therefore itsr

. : his noncommutative algebra among tké is consistent
commutators can be obtained from SUSY transformations. IR‘Nith the commutative subspace in the light cone gauge, as

seen frompQ— 0 if one uses the light cone forhof Q and

v

particular we already know the quantum algebra Qf )
through the SUSY algebra in E€R.1). As we have already i footnote 4
emphasized, the SUSY algebra must be obeyed in any prc?— .‘ . .

. . . In preparation for the Jacobi identity among thréés we
cedure of quantization because of consistency with the Uns,aluate
derlying global symmetry of the theory.

What remains is to find the commutation rulesx#f In N

particular we need to finflQ,,x*] and[x*,x”]. These are Loy YN ACAY_ PO Aauv
generally gauge dependent sinc¢etransforms under the fer- [[x* X1, p4(p SYmpISH2piS). (2.9
mionic local symmetry as well as under the reparametriza-

tion symmetry. To find these we will require consistencyTo arrive at this form we used a number of gamma matrix

with the covariant canonical commutation rule identities, and the forn®y“Q= p* which follows from the
Loy symmetric (*),z and the anticommutator in Eq2.1).
[x*.p"]=19"", (2.2 From this, it is immediately seen that the Jacobi identity is

satisfied &*,x”,x*)=0. All other Jacobi identities among
the quantitiexQ,, ,p*,x* are trivially satisfied.

Hence we have shown that the off-shell covariant quanti-
zation of the superparticle is uniquely determined by the ba-
sic commutations rules in Eq&.1)—(2.4). In our covariant

uantization approach we were guided only by the consis-
af ncy with the global symmetry. The consistent nonlinear
algebra defined by these equations is a nonlinear extension of
the well known SUSY algebra of E¢2.1).

and with the covariant SUSY algebra of EG.1).

“In the light cone gauge one choosgsf=0 andx™=p*r, and
the mass shell conditiop?=0 is solved byp~=(p')%/(2p™). In
10 dimensions, the remaining independent degrees of freedom
(x~,x';p*,p',xa) Wherei=1,... 8labels S@8) vectors anda
=1,...,8 labels S@8) spinors. Using the following 1816
gamma matrix representation in the light cone basis
Y =030, v =30, ¥=(5_), we can write p=—p*y"

N ; !
~p y fpy, and obtain_the i igauge fixed  forms Due to powers ofp? in the denominator, the on-shell massless
6=\2/p* (§) andQ=po=V \/E/W(\s%;f;)- We can then show  particle conditionp?=0 leads to ambiguous expressions 0/0. How-
that the basic supersymmetry algebra in Eql) follows from the  ever, the light cone massless particlelé&inedby eliminating some
commutation rules of the independent canonical variable®f its degrees of freedom through gauge conditions, and this proce-
(x~,x';p",p' xa) given by[x~,pT1=—i, [x',p'1=i6", {xa.xs}  dure requires us to interpret 0/0 as zero when comparing to the light
= Sap - cone quantization of the massless particle.
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The results above can also be derived from the Dirac [J#,JV]=1d#7, J#7=(xMp’—x"p*)+S*. (2.12
brackets in covariant quantization as follows. The constraints
d,=m,—(p6), obey the algebrgd, ,ds}=—2p,5. When It is now straightforward to notice that the operators
p* is off shell these are second class constraints. Using thé"”,p*,Q, satisfy the super Poincamdgebra. Namely,,,
constraintsl,,, one can compute the classical Dirac bracketgotates correctlyp” as well asQ,,, and it satisfies the Lor-
among &*,p,,0%m,) as follows: entz algebra not only in the space transvergg“tobut in the

full space
1
{x*,p,to=196), {Xﬂ-aa}D:_E(Fﬁ_lyﬂa)a, _ [

[JMV,p)\]:| WA[MPV], [J/-LV,Qa]: E(’YMVQ)a (213

1
X majp=5(7"6)a, (2.6 [3#7, ] =i (I "7 = (e v)) =i (A= o).
(2.19
o _ e o L. Hence our covariant quantization of the off shell superpar-
10 "9B}D_§(p R ’Wﬁ}D_§5ﬂ’ ticle is consistent with the global Poincasgmmetry of the
theory.
1 Furthermore, we can extend the symmetry algebra into a
{7, 17T,B}D=§pa,81 (2.7 hidden symmetry in 11 dimensions, by including the opera-

torsJ#, (—p?)*2 andQ;=(—p? YA pQ),. We compute
the commutators od# with the other quantities and find

[34,(~p?)¥)=—ip#, [34p"] =i (~p?)2

Solving the constraints one can write,=(p6),, Q, [J#,37N = — i ptlvgN] 2.19
=2, andd,=3(p 'Q),. Eliminating # and in favor of ' '
Q through these equations, and inserting the factor iof

(X X0 26780, 29

[ ~ ~ i
passing to quantum mechanics, we arrive at the same rela- [I%,Q.]=— E(y*‘Q)a, [I#,Q.]= E(y”Q)d.
tions derived above through the Jacobi identities. 2.16
Next, we examine further the properties $f”. We see )

that it commutes with the momentup#, it is transverse to it Together with Eqs(2.13, (2.14), we notice the structure of

S*p,=0, and from Eq.(2.1) it follows that it satisfies the ;. . B ~
algebra of Lorentz transformations in the space transverse ttcr)]e 11-dimensional SUSY algebra, such (= (Qq,Qu)

pH together form a 32 component spiné = (p#,(—p?)*?)
together form an 11-dimensional massless momentum, and

p'p° IMN=(J,,.d,) together form the 11-dimensional Lorentz
[sf”,s“’]zi(sf“( 77— — |~ (r=v) |[-i(N=0)). algebra. Furthermore, if we define 11-dimensional gamma
p matricesT™, we can check explicitly thaP™(T'y) 2Qg
2.9 =0 as well asPMPy,=0, therefore our structure corre-

v . .. sponds to the quantum massless superparticle in 11 dimen-
Therefore S* is interpreted as the spin operator._ Indeed, 'tssions. The quantum states of this off-shell system are pre-
commutator withQ,, as follows from Eq.2.1), gives the

. AR cisely the supergravity multiplet in 11 dimensions, but
correct Lorentz transformation of the spinor in the SUbSpaC%iimensionally reduced to the 10-dimensional type-lIA super-
transverse te*

gravity multiplet.

. ; Thus our covariant quantization of the off-shell 10 dimen-
I PPy . p“pa) Q)

[$47,Q,]= _(( N +y sional superparticle is described by a nonlinear realization of
ealt o 2 2
p p

the 11-dimensional super Poincaagebra, acting on the
“(2_10) guantum states that correspond to the 11-dimensional super-
gravity multiplet. The fundamental commutators of this

These observations lead us to introduce the following di-structure are given by Eq$2.1)—(2.4), including the non-
mensionless Hermitian vectdr commutative position space of E¢R.4). In particular the

commutation rules with the operat@, correspond to the
B supersymmetry transformations of the fundamental superco-
‘J#E(_pz)mxﬂ(_pz)m:(_pz)llzxﬂ_5(_p2) Hpr ordinates x“,p*,Q,), and this gives the supersymmetry
transformation rules of fields defined as functions of this
superspac@d(x,p,Q).

In our discussion we treated the 10-dimensional superpar-
ticle, but it is straightforward to apply the same approach in
We find that its commutators give the total Lorentz generatoany dimensiond, leading to a nonlinear realization of the
Jry Poincaresuperalgebra i+ 1 dimensions.

i
=x*(—p?) P+ 5 (—p?) " Vpr, (211
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The nonlinear superalgebra among the noncommutativaot matter. In particular, when applied to the casefgfx)
covariant superspace coordinates,p*,Q,) is the basis for =x,, A,(x)=X,, the star product should give the same re-
constructing the supersymmetric star product. In principlesult as quantum mechanics
one can use the Kontsevich methdd,17] to construct the
associativestar product. However, we can use simpler meth- _ . _ _ e
ods that can be applied to our problem as developed in the [Xa 1 Xp]a=Xa*Xp = Xp*Xa= Oap(X) = gaptifgpXc. 34
next section. Thus, we will first discuss a generic linear case '
and later apply the method to the nonlinear superalgebra iAn additional property of the star product, consistent with

our case. quantum mechanics, is that it should be associative
Ill. STAR PRODUCT IN NONCOMMUTATIVE Apd X) = (A1(X)* An(X))*Ag(X) = Ag(X)* (An(X) * As(X)).
SUPERSPACE
(3.5

A. At most linear Poisson structure

Consider some noncommutative spagavith a noncom- A star product with such properties can be constructed by
mutativity functionf,,(x), such that,,(X) is at most linear  Using Kontsevich's general diagrammatic prescriptiafl,

in x. The classical Poisson structure then has the form  Which defines it as an infinite series for an arbitragy(x).
However, because of the maximum linear naturedgf(x)

. ) e there is a much simpler closed expression which we con-
{Xa Xp} =~ 0ap(X) = —1(aptifapXc), (3D struct in the following section. Of course, we expect that in
the limit f;, =0, our expression reduces to the simple Moyal

c . .
whereao,y, T, are independent of. Such af,,(x) includes product given bybg— o .

the case of the Heisenberg algebrdenfS,=0) as well as
the case of a pure Lie algebtevhen o,,=0). In the next
section we will study the case of superspace with xhe
replaced by the phase space of a superpartikle We define the Fourier transforms of the classical functions
—(X,,p.,Q,) whereQ, is the generator of supersymme-

try. But in the present section we discuss the star product for ~ -

the general bosonic system that has the general noncommu- Ai(x)zf (dp)Ai(p)e'P *a, (3.6
tativity property given above.

The u_sual quant|zat_|on of this system is dAone n quamunt:onstructing the star product for the Fourier basis
mechanics by promoting the, to operatorsx,. General 03 inPx. . N
e'Pi¥axe'P2* is equivalent to constructing it for any other

operatorsA, (x),A,(x) are multiplied with each otherin the paqis of functions that can be related by the Fourier trans-
usual way by writing them next to each othény(x)  form. We recall the Baker-Hausdorff-Campbé@HC) theo-
=A1(X)A5(x), and then the resulting operatd,,(x) is  rem for quantum operators

computed by keeping track of the orders of the operators
consistently with their quantum commutation relations

B. The generic star for maximum linear 0,,(x)

ehreB=eC(AB) (3.7

[Xa :Xp]= Oap(X) = TaptifgpXc. (3.2 where the operato€(A,B) is determined by an infinite se-
ries given by multiple commutators
The deformation quantization of this system introduces a
star product among classical functioAsg(x),A,(x) to con- C(A,B)=A+B+ E[A B]+ i[[A B1,B]
struct a resulting classical functioy ,(x) ’ 277 2=
1 . ..
A(X)=A1(X)*Ax(X). (3.3 + HALABI - (3.9

The classicaly(x),Az(x),A1(x) are “Weyl images” of the e note that this theorem relies simply on an associative
corresponding operatorf1(X),A,(X),A1x(X) and are de- product. Therefore, the same theorem also applies to star
signed to reproduce the same results as quantum mechaniesponentials of classical functiosgx),B(x) as long as we
although in the classical functioA(x) the orders ofx, do  have an associative star product

(eA(X))** ( eB(X))* = (e(A(X) +B)+(U2)[AM), B(X)] .+ (1/12)[[AB], Bl + (1/12)[A,[AB] ]+ - - -)) .. (3.9
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In particular, let us construct a star product such that the stgyuted by using the properties of the Lie algebra associated
exponential of a linear function of the® is equal to the with the structure constanfs, .
classical exponential, i.ee*),=e'®* for any set of con- In particular, when we specialize this expressionfig
stant parameterp®. This relation is true for the simple =g, we haVGZ(pl,Pz)=eXP(—%D?Uabpg) and p2,(p1,p)
Moyal product, and we will verify that it is also true in our —pay na \which gives

. A 1 2 g
case, after we give the construction of our star product. Then
the BHC theorem can be applied to the classical Fourier

basis Alz(X)=A1(X)*A2(X)fgb=_Oj f (dp,dp,)

A A — (112)pdoappBaixa(pi+pd)
ipel"xa* ipgxb: D3 +ip2 XA1(p1)Axp2)e abrzgta .
e e exp ipiXatip5Xa 314

1. The right hand side may be written also in the derivative
+50PXa ip2Xei - | B10 form A (x)xAy(X) = Ay (X) explPoFP)A(X), which shows
that the result is the usual Moyal star product whigp
The crucial observation here is that all the higher terms in=0.
C(A,B)(x) involve only star commutators, which can be For the general case, we compute the first few terms of
evaluated for the Fourier basis by using repeatedly(8&4). the series for anyr,p, 5,
Since 64,(x) is at most linear irx, the result is also neces- )
sarily at most linear irx, and therefore only the linear Pois- 1 o boq_ L, b ' a bec
son structure is sufficient to completely evaluate the product 2[|p1xa,|p2xb]*— 2 P17anP2 2(plpz ab)Xe
of exponentials. The result is identified with the classical (3.15
exponential since it is designed to be the same as the star1 1
exponential for anyp. Therefore, we obtain the form 1—2[[ipi‘xa,ip2xb],ip5xc]= ﬂ(p?fgbpg)gdcpg

eiPXax glP¥a= Z(p1,po2)expixapsy), (3.11

i
+ 52 (PIP3P3Tuf o) Xe -
whereZ,p$, are functions op?,p5 which we determine be- 24°"% e

low. Once these functions are determined, the star product (3.16
for generic classical function&;(x),A,(x) can be given ex- .
actly in the form So we obtain
1 1
Asz(X) = A1) *Ag(X) Z(p1.p2) = exr{ — 5 PiTanP3+ 55(PifanP2) Tachs
= (dp:dpa)As(p1)As(P2)Z(P1,P2) 1
f f + ﬂ(pgfgbp?)adcpg"_ e (3.17
X explixap®(p1,P2))- (3.12
e e e 1 age b 1 agd .byfe .cC
This can be rewritten in terms of differentials as follows P1P1,P2) =P+ P2~ Eplfabszr Z(plfabpz) dcP2
AL(X)*Ay(X) =[A1(X1)Z(—idy ,—idy.) 1
100 A0 = A CZ 1 1, +oa(PHLPYTSRS (3.18

X expiX,ApA(—idy ,—id
PixaA P & Xz)) We identify the structure of the series as follows. First,
x(Az(xz))]X1:x2:X (3.13 PiAP1,P2) is independent ofr,y; it is fully determined by
the group multiplication property, witp"i‘,pg being the in-
whereAp?(p1,p2) = piAP1.P2) — Pi—p5. Note thatAp? is finitesimal group parameters associated with the Lie algebra
multiplied by x2 which is kept distinct from2,x3 when the ~ characterized byfg,. Therefore, the full series for
derivatives are applied. The derivative form is useful in gen-piz(pl,pz) can be computed from any convenient represen-
eral, but it is particularly essential for evaluating the startation of the groupsee below. Second, the expression for
products of polynomials ix?2. InZ(p;,py) is completely parallel to the expression for
In the simplest case ofg,=0 the infinite series in Pi(P1,P2) —PI—P5, except for replacingr,y in place of
Egq. (3.10 terminates with the first commutator f§, in the last factor of each term. In fact,, may be re-
1[ip2X,,ip3Xa]. = — 1p2oaup)h since it is independent of  garded as an additional structure constant in the centrally
Similarly, for certain cases of interedior an example see extended Lie algebra characterized t§y,, which explains
[18]), the series terminates after a few terms once we reaclwhy the two series for I1&(p,,p,) and pS,(p1,p,) have a
terms that are independent xf Even if the series does not similar structure. Thus, iP%(p;,p,) is computed exactly
terminate, the functionZ(p1,p,),piApP1,P2) can be com- from some convenient group representatior(lm ,p,) can
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also be computed by using its relationshipp(p,,p,) or  technique than the particular example, and therefore it can be

by using a convenient representation of the centrally exapplied more generally to other bosonic or supersymmetric

tended Lie algebra. cases.
As an example, consider the caseof,=0 and takefg,

to be the structure constants for @). To compute

pip1.P2) exactly we use the 22 matrix representation

1A . _ .
el el(M2)0ap” \where o, are the Pauli matrices.

C. Covariant superstar

We will find it convenient to work with a basis of func-
) (U2 tions of (J,p,Q) instead of functions of the noncommutative
Then the matrix representatione*”a" =cos(pl/l2)  phase spacex(p,Q), and define the star product in the space
+i(p-ol|p|)sin(pl/2) can be used to multiply the matrices of (3,p,Q). This is completely general since these are re-
and compute an exact expression pds(p;,p,) written as a  |ated by a change of variabfes”*=J*(— p?) =2 The virtue
3-vector§ as follows: of the basis J,p,Q) is that these variables have simple com-
mutation rules as quantum operat@rs. they are part of the
L. Lie algebra of ¢+ 1)-dimensional super Poincagroup,
COSM: COSM cos@— P1-P2 sinMsinM and this makes them convenient for the formalism of defin-
2 2 2 |p4llp2l 2 2 ing a star product on classical functions of this space. If one
(3.19 desires, the star product in the space xaip(Q) can be ex-
tracted from the one we define. To emphasize that the star
- R product is defined in theJ(p,Q) space we will denote it
p1 . [Pl @ P2 . @ M with the symbol &, while reserving the symbot for the

N — SIN—— COS + Sin COS
pIpl [lea ™ 2 2 |p 7 2 2 (x,p,Q) space.

HSIn?_ 51X F;2 Ipal . [pal We begin with the Fourier transform as in E§.6)
ol M2 M2 ) o
o (3 20) A(J’p!Q):f dkdqdﬂ A(k,q,¢)elk~J+|qu+|¢AQ.
(3.21)

The first equation gives the length of the vedtol, and after
inserting it in the second equation we get the foll The ~ Then we need to evaluate the star product of the Fourier
- basis e'k1It1d1PTivLQ ¢ glkp-I+ia2PTiv2:Q - Note that
hese equations involve conveniently a classical exponential.
ortunately, the classical exponential of an arbitrimgar

expansion of this exact expression in powersﬁp,fpz repro-
duces the infinite series computed through the BHC theore

. . a ) .
Replacing this result fop1(ps,p2) in Eq. (3.12 and taking combination of §,p,Q) is equal to the star exponential as

Z(p1,p2) =1 gives the star product for the case ®f,=0 long as the star prod is given in the basis
andfZ, the SU(2) structure constants. It is a nontrivial ex-g g product, is given | 0.p.Q) 'S

: A ) . . ek IHia-priy-Qy = glk-IHia-pHY-Q for any set of con-
Erc;:rﬁgef/ci)crc:btam this result in the diagramatic approach of;. < K..Q,..1.). This is by virtue of the fact that, as in

. . - the previous section, under theé product {J,p,Q) act as
. Finally, let us v?rn;y thati thxe star exponential is the CIaS'generators of the Lie algebra of the« 1)-dimensional su-
sical exponential P ), =e'P* which was assumed in our

; . Poincat .
approach. This would follow by showing that the star powerspe:/Veoglgsr&rgiﬁpto apply the BHC theorem, as in E|9)
H n__ 1 )
are the same as ”;e classical powers),=(p-x)" forany  , eyajuate this product. It becomes quickly evident that the
set of parameterp®. This has to be true since the dot prod- series does not terminate since the non-Abeli&h is pro-

uctp-x amounts to picking up a single componenkafi the  qced in the commutatdid*,J*],, . However, the product
direction ofp?, and for a single component the star productcap pe determined from group theory since the exponential
is trivial with itself since the commutator vanishgp-X,  of any linear combination of generators defines an element of
p-x],=0. In any case one can also verify that it is truéne super Poincargroup in @+ 1) dimensions. Therefore,
explicitly by applying the star product 0‘1 Eq3.13 10 the result of the BHC series must accumulate to become the
(p-x)™*(p-x)" to show that it gives|§-x)"""2. This can  geries one obtains in group multiplication, and therefore it

be proven by iteration by starting withy, =n,=1; and this st take the form of a general group element on the right
case is easily computed by using the expansion of the gefgnd side

eral formulas in Eqs(3.17), (3.18.
The lesson learned in this section is that we can use the———

BHC theorem and group theory to determine the star prod- 5To be more careful, the change of variables needs to be consistent

uct. The case treated in this section involved a linear Poissoi, the corresponding quantum operators, and therefore it should
structure. In the next section we will treat a nonlinearinyolve star multiplication of various factors. However, note that, as

(supejPoisson structure, but the essential tool will be againtan be expected, for a single powerdf or J* the star product
the group theoretical aspect we emphasized in this sectioform is equal to its classical fornd®=(—p2)Y4xx#x(— p?)¥4
We will use this concept to determine the star product in=x~(—p?)2 or Xt=(—p?) YO I+ O (—p?) Y4
relativistic noncommutative superspace(p*,Q,). From  =J#(—p?) ~*2 without any corrections of the deformation param-
the context we will see that our approach is a more generadter (which is set equal to 1 in our formalism
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elk1-I+iay-p+igy-Q ¢y giky-I+iaz p+iyy-Q Hence, the images for the nonlinear expressions for

N ,0,\/— p? are simply their classical expressions.
A systematic expansion of thé product in powers of;
(3.22 can be given as follows. The parametercomes from two
sources: first the star exponentiation, and second the coeffi-
The important point here is that the coefficiekts, w5 , cients k{5, . ..) which we can compute group theoretically
a45,212, (P12 o » (€12) , that appear in the exponent must be to all orders offi. Up to second order it only the expan-
constant coefficientSndependent ok,p,Q). They are func-  sion of the coefficientskf,, . . .) contribute. Starting with
tions of (ky,K»;01,0,;¢1,¢,) which can be determined the third order the star exponential also contributes. To com-
from any convenient representation of the super Poincarepute the contribution from the star exponential, one can use
group in d+ 1 dimensionsas in the example of Eq$3.19,  the known form of the star product at one lower order. In this
(3.20. In the result we may then replace the nonlinglas- ~ way one can obtain systematically a completely explicit form
sical expressions fod,,,, 0 of the & product to all orders of. By applying this method
we have verifiech posteriorithat indeed the expressions for

_JlepY +iQ{y’”,p}Q N J,,,Q,V=p? do not receive any contributions frorh.
o 16-p?) Q.=(—p7) "pQ), Similarly, the statements in footnote 6 can be veritepos-

(3.23 teriori.
' The result for the® product may also be written in the

and = p?, thus obtaining the desired star product for thedifferential form of Eq.(3.13 (with 4/4J derivatives, not
basiseik1- a1 p+iv-Q dl ox derivative$. This last form is appropriate for comput-

Note that, because of the nonlinear nature 0fing the star product for polynomialsuch ax* ¢ x*) or any

~ . . other functions ofA(x,p,Q) after writing them in terms of
J,,,0,J/—p? as functions of J,p,Q) the resulting expo- . .
y72%
nential must be & -star exponential. This is understood as (J.p,Q). For example, from the group theoretical result in

follows. A priori we have started with the classical, p,Q) the J basis, we can also determine the superstar product in

) SO the x basise' 1 X*191-P+1¥1-Q by writing it in the J basis as
as the Weyl images of the quantum operataxg(Q). Any

. . ; gik1-3(=p%) " EHiarptiva-Q) - with a ¢ -star exponential.
function of these operators has an image that is computed b In the purely bosonic case, the classical bakis* 9P

replacing eachJ,p,Q) by its classical imageJp,Q) but simpler than the basis(expk, -x\— p2+idy- p)).
multiplied with each other by using the product. With that  _ jik;-9+id1-p \yherex reduces to the standard Moyal prod-
definition, theJ*” andQ,, that appear in the exponent in Ed. yct in the absence of fermions. Similarly, tke products for
(3.22 are constructed by inserting thé product, such as the Fourier basig'*1 **191"P, when expressed in thel (p)

= (=p?) Moo p o (—p?) Y+ ..., Further-  space, should give the same result as the Moyal progiset
more, when these are multiplied to build the exponential seing the Moyal)

ries, one should always use the star product. Then&Eg2

:(ei(k12'3+wf53#v)+i(Q12‘p+212V*P )*i(ilflz'Q+§12'5))<> .

Ju

is understood as the image of its corresponding operator glky x+idy-py gika x+ida-p

equation. (K K X (GG De (1/2) (K G
However, there are some simplifications that permit us to =gl (katke) xri(arrag) e (Al do~he au),

substitute the classical forms d)fw,@,\/— p2 as mentioned (3.29

above. First, by noting thad,, andsS,,, are constructed only
from (antjcommuting operators we realize that they canno
have any corrections from the deformation parariefer
since one can freely change the orders &ip(Q) as quan-
tum operators in these expressidtizanks to the symmetry
structure of the gamma matrices 8y, the nontrivial anti-
commutator between twQ'’s does not contribute Second,
since the expression—(p?)~ Y40 JI# o p1 & (—p?) Y4 is (3.25
Hermitian, its Weyl image must be real. Therefore it cannot
have a contribution at first order i (odd orders are imagi- Wwhere only & exponentials must appear. Indeed this is cor-
nary). It cannot have: corrections to higher orders either rect. The technical details of this computation will be given
because the star product at higher orders involves higher oid another papef19].
der derivatives that vanish on a function that is lineadin Thus, as expected, the Moyal producin the (x,p) basis
(analogous to the differential operator version of Moyal)star and our group theoreticad product in the {,p) basis are
equivalent when the fermions are absent. In the supersym-
metric case it remains to be seen whether one basis is supe-
"In this paper for convenience we will refer to the deformation fior to the other in practical computatiofexplicit computa-
parameter agi. However if we apply the formalism to describe tions are in progregs
string joining in string field theory, the deformation parameter is By following this program we can compute the superstar
unrelated to thé: in quantum mechanics. product for general fields

tTherefore, the following computation is a test of our formal-
ism

K302~ 124 0. ko J(— 02~ V24 iq .
(e'k13(=p%) 141:P) o & (elk2 I(=PY) 1az-Py

= (& kitka)-I=p?) ri(arta) Py g (112)(ky G2k ap),
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A(J,p,Q)*xB(J,p,Q) or A’'(x,p,Q)xB’'(x,p,Q). the maximum linear Poisson structure, as well as for nonlin-
(3.2  ear Poisson structures that can be embedded as part of non-
. ] linearly realized Lig(supejalgebras, we can obtain the exact
The result appears complicated but it has a completely traqy|| (supejstar product by using group theory representa-

table group theoretical structure. We hope to give explicitjons. This concept is useful for performing explicit compu-
calculations using these formulas in the near future. Our remtions involving the superstar in its applications.

sults as well as methods are likely to be useful in various
applications. In particular, we hope that it can be used in the
formulation of superstring field theory, which was the moti-
vating factor of our investigation. I.B. would like to thank M. Lledo for discussions. I.B. is

In this paper we achieved our main goal of formulatingin part supported by a DOE grant DE-FG03-84ER40168. He
the superstar, but along the way we also obtained two othds grateful to the Physics Department at UC Berkeley, the
new results. First we gave the quantization of the off shellFeza Gusey Institute, and the CERN TH-division for hospi-
superparticle ind dimensions and showed that its quantumtality while this work was performed. C.D. is supported in
mechanics gives a  nonlinear realization of part by the Turkish Academy of Sciences in the framework
(d+1)-dimensional Poincaresuperalgebra. This higher of the Young Scientist Prograt€D/TUBA—-GEBIP/2002—
structure was essential for constructing the superstar. Seconth-7). A.P. and B.Z. are supported in part by the DOE under
we introduced efficient group theoretical methods for con-contract DE-AC03-76SF00098 and in part by the NSF under
structing and computing star products. We showed that fogrant 22386-13067.
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