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Worldvolume supersymmetries for branes in plane waves
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We study the worldvolume supersymmetries ofM2 branes in the maximally supersymmetric plane wave
background of M theory. For certain embeddings the standard probe analysis indicates that the worldvolume
theory has less than 16 supersymmetries. We show that at the quadratic level the worldvolume theory admits
additional linearly realized supersymmetries, and that the spectra of the branes are organized into multiplets of
these symmetries. We find, however, that these supersymmetries are not respected by worldvolume interac-
tions. Our analysis was motivated by recent work showing thatD branes in the maximally supersymmetric
plane wave background of type IIB string theory admit supersymmetries beyond those of the probe analysis.
The construction of the additional supercharges in this case was specific to a string worldsheet that is a strip
and the present results suggest that string interactions do not preserve these symmetries.
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I. INTRODUCTION

One of the most elementary questions that one can
about a supersymmetric theory is ‘‘what are the supers
metric states of the theory.’’ In superstring theory a class
supersymmetric states is represented byD branes. Recen
work on branes in the maximally supersymmetric pla
wave background type IIB string theory shows that this is
is more subtle than the corresponding analysis in flat sp
times. A tree-level open string analysis of boundary con
tions and spectra in@1,2# revealed that certain branes ha
more supersymmetries than the probe analysis gives@3#. This
implies that either the standard probe analysis needs to
amended or that the extra supersymmetries are not resp
by string interactions. One of the aims of the present wor
to settle this issue.

Recall that in string perturbation theoryD branes specify
boundary conditions for open strings. In the Green-Schw
formalism the spacetime supersymmetries preserved by
D-brane manifest themselves as global symmetries of
worldsheet action. Some of the global symmetries of
open worldsheet directly descend from corresponding s
metries of the closed string. These symmetries are exa
the ones found by the probe analysis. It was found in@1,2#,
however, that in certain cases the worldsheet action ad
additional supersymmetries and that the spectrum of
theory is organized with respect to the extra supersymme
as well.

The branes in the type IIB plane wave can be divided i
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two different classes: theD2 and D1 branes. This classifi-
cation originates from the specific form of the~worldsheet!
fermionic boundary conditions, but one can also underst
it from the features of the spectrum. InD2 branes, the mass
parameterm of the plane wave lifts some of the degenera
of states present in the flat space limit. In particular,
lowest lying states which in the flat space limit form ad
510 vector multiplet~i.e., a multiplet with 818 degrees of
freedom with the same lightcone energyP2) now split as
114161411 ~see Table 1 of@2#!. On the other hand, the
lowest lying states forD1 branes are as degenerate as in
space~see Table 3 of@2#!.

The branes under investigation are located at a cons
transverse position and wrap specific directions. Accord
to the probe analysis,D1 branes always break all kinemat
cal supersymmetries.1 D2 branes preserve eight kinematic
supercharges along with an additional eight dynamical su
charges only when the brane is located at the origin@3#. In
the string theory analysis@1#, however, one finds eight alter
native supercharges for theD1 branes and for theD2 branes
located away from the origin. A clue for the existence of t
extra supersymmetries was that the spectrum of the b
exhibits more symmetries than the probe analysis sugge
In particular, the spectrum ofD2 branes at and away from
the origin is identical up to an overall additive~positive!
constant in the lightcone energy@2#.

Notice that the existence of extralocal Noether currents
corresponding to the new supersymmetries is not an a
matic consequence of the degeneracy of the spectrum

1We call kinematical supersymmetries the supercharges
square to the lightcone momentum, and dynamical the ones
square to the lightcone Hamiltonian~plus other charges!.
©2003 The American Physical Society01-1
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deed, the string states of theD1 branes also appear to b
organized in multiplets of ‘‘dynamical supercharges.’’ How
ever, these charges are associated withnonlocalcurrents@2#.

The extra eight supersymmetries forD1 branes are com
pletely new symmetries, unrelated to the closed string s
metries. They satisfy the standard lightcone superalge
i.e., they square to the lightcone momentum. The extra e
supersymmetries forD2 branes are a combination of th
corresponding closed string supersymmetries and new tr
formation rules. The new supercharges when evaluated
shell are identical to the corresponding supercharges of
brane at the origin@2#. It follows that the corresponding su
peralgebras are also identical~up to certainc-number shifts!.
In particular, the new supercharges square to the lightc
Hamiltonian plus rotational charges plus ac-number that has
the interpretation of the energy of an open string in a h
monic oscillator potential with ends at the constant posit
of the brane. Thisc-number contribution is also the on-she
value of an additional worldsheet charge@see Eqs.~4.31! and
~4.32! of @1##.

The construction of the extra supercharges crucially u
the fact that the gauge fixed worldsheet action is quadrati
the fields and that the worldsheet is a strip. The former
special property of strings propagating in the type IIB pla
wave background. The latter indicates that the extensio
the extra symmetries to higher genus surfaces is not im
diate, and that string interactions may invalidate them.

Consistency requires that the string theory and pr
analysis yield the same results. Recall that the worldvolu
theory ofD branes captures the low-lying open string ex
tations and their~low-energy! interactions. In particular, the
spectrum of small fluctuations around theD-brane embed-
ding should coincide with the zero slope limit of the op
string spectrum. As mentioned, the open string spectrum
more supersymmetric than the probe analysis implies. It
lows that the quadratic part of theD-brane action should
exhibit additional supersymmetries. If string interactions
spect the extra symmetries then the worldvolume interact
should also respect them. Conversely, if we show that
worldvolume interactions do not preserve the extra symm
tries then this shows that string interactions do not resp
the extra symmetries.

Recall that the brane worldvolume theories are by c
struction invariant under target space supersymmetry
they also possess a local kappa symmetry invariance. U
gauge fixing the kappa symmetry, the target space supers
metry turns into worldvolume supersymmetry. The pla
wave backgrounds we discuss in this paper admit 32 su
charges. This means that the worldvolume theory is by c
struction invariant under 32 fermionic symmetries. Howev
at most 16 of them are linearly realized, i.e., they are of
schematic form~the exact expressions are given in the m
text!

dXA;ūGAe1¯ , du;GmA]mXAe1mGAXAe1¯ ,

~1.1!

wheree is the supersymmetry parameter and the dots in
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cate additional terms which are at least quadratic in
fields. The remaining transformations have an inhomo
neous term

du5b1¯ , ~1.2!

where b is field independent, and the associatedu can be
identified with the Goldstone fermion associated with t
breaking of supersymmetry.

The probe analysis by construction counts the numbe
linearly realized supersymmetries that arise from a comb
tion of target space supersymmetries with kappa symme
This does not exclude, however, the possibility that there
extra nongeneric symmetries when the brane is in partic
backgrounds. The string theory analysis in@1,2# can be
viewed as an example of such phenomenon: because of
cial properties of the background~i.e., the worldsheet action
is quadratic in fields! the worldsheet theory exhibits mor
symmetries than in generic situations.

The extra linearly realized supersymmetries can be co
pletely new symmetries, unrelated to the supersymmet
associated with target space supersymmetries. Alternativ
if the brane in special backgrounds exhibits a new ga
invariance that allows one to gauge away the Goldstone
mion then the corresponding symmetry would be linea
realized. Both mechanisms are suggested by the string th
computation in@1#: the former is the analogue of the ne
kinematical supersymmetries inD1 branes and the latter i
the analogue of the restoration of dynamical supersym
tries for D2 branes using worldsheet symmetries. We w
see that both mechanisms are realized, albeit only at the
dratic approximation of the worldvolume theories.

The purpose of this paper is to analyze the issue of wo
volume supersymmetries in detail. Instead of working w
the worldvolume theory of the type IIBD branes, however
we will analyze the same issues forM2 branes for which the
worldvolume theory is much simpler~since there are no
gauge fields!. The probe analysis for this case has be
worked out in@4# ~see also@5#!. The results for supersym
metric M2 embeddings are directly analogous to the res
in @3#. Recall that in the maximally supersymmetric pla
wave of M theory the transverse to the lightcone coordina
split as 316. TheM2 branes that wrap the lightcone dire
tions and one of the three coordinates preserve 16 su
charges when located at the origin of transverse space
only eight when located away from it. These are the a
logues of D2 branes and we will refer to them asM 22
branes.M2 branes that wrap the lightcone coordinates a
one of the six coordinates preserve no supersymmetry
are the analogue ofD1 branes. They will be referred to a
M 12 branes. We will see here that their fluctuation spec
are similar to those of the correspondingD2 andD1 branes.

Of course in this case there is no computation correspo
ing to the string theory analysis in@1,2# so strictly speaking
there is noa priori reason for expecting the worldvolum
theory to exhibit extra supersymmetries. Since the pro
computations forM and D branes are similar, we expec
extra supersymmetries at the quadratic level of fluctuati
of the M2 probe action, and our calculations confirm th
1-2
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Conversely our results in Secs. IV and V indicate that
extra supersymmetries fail at the interacting level, and
expect the same to be true forD branes.

This paper is organized as follows. We review the pro
erties of the plane wave background in Sec. II and disc
the computation of the gauge fixed supermembrane actio
Sec. III. In Sec. IV we consider the spectrum and worldv
ume supersymmetries ofM 22 branes while Sec. V address
the same issues forM 12 branes. In the discussion sectio
Sec. VI, we review our results and comment on the impli
tions for D branes in type IIB plane waves and for the s
bility of the branes.

II. THE PLANE WAVE BACKGROUND

The maximally supersymmetric plane wave backgrou
of 11-dimensional supergravity is@6#

ds2522dx1dx21 (
A51

9

~dxA!2

2
m2

36 S 4(
i 51

3

~xi !21 (
a54

9

~xa!2D ~dx1!2,

~2.1!
F112352m→Ci jk52mx1e i jk ,

where a specific gauge choice for the 3-form gauge ga
field C is made.

For coset spaces such as the plane wave exact expres
for the supervielbein were computed in@7# ~see also@8#!

E5Du1 (
n51

16
1

~2n11!!
MnDu,

~2.2!

Er5er1 ūG rDu12(
n51

15
1

~2n12!!
ūG rMnDu.

Here (r ,ā) are tangent space vector and spinor indices,
spectively, and (m,a) are the corresponding curved indice
In these expressions2

Du5du1erTr
stuvuFstuv1 1

4 v rsG rsu,

Tr
stuv5

1

2!3!4!
~G r

stuv28d r
[sG tuv] !, ~2.3!

M52(Trstuvu)Fstuv(uGr )2 1288 (Grsu)

The bosonic vielbein and the spin connection are

2Note that we will use here the usual Wess-Zumino gauge for
plane wave superspace, namelyu ā5da

āua. An alternative choice
would be the Killing spinor adapted gauge@9# u ā5Ka

āua where the
Killing spinors of the curved target space aree ā5Ka

āe0
a with con-

stante0
a . In contrast to the AdS backgrounds considered in@9# this

choice does not appear to lead to substantial simplifications in
supervielbeins or the worldvolume action.
10600
e
e

-
ss
in
-

-
-

d

ge

ons

-
.

e2
25e1

151, eB
A5dB

A , e1
252 1

2 G11 ,

v1
2A52 1

2 ]AG11 ~2.4!

(Gmn denotes the spacetime metric!. The Killing spinors are

e5S 11
m

12
~xaGa22xiG i !G1123DexpS m

12
x1G12123D

3expS 2
m

6
x1G123D e0 , ~2.5!

wheree0 is a constant spinor.

III. SUPERMEMBRANE ACTION

The supermembrane action@10# is

S52E d3jA2det gmn1E B, ~3.1!

where the induced worldvolume supermetric isgmn

5Pm
r Pn

sh rs andPm
r 5]mZMEM

r . HereZM5(Xm,ua) are the
coordinates of the target superspace andjm are the worldvol-
ume coordinates. The explicit expression forB in the coset
background is@7#

B5
1

6
er∧es∧etCrst2E

0

1

dtūG rsE~ t !∧Er~ t !∧Es~ t !,

~3.2!

where t is auxiliary andE(t),Er(t) are obtained from the
supervielbeins by the shiftu→tu.

This action is invariant under the kappa symmetry tra
formations@10#

dZMEM
r 50, dZMEM

a 5@~12G!k#a, ~3.3!

where

G5
1

6

emnr

A2g
Pm

r Pn
sPr

t G rst , ~3.4!

which satisfiesG251 and Tr(G)50. The action is also in-
variant under superspace diffeomorphismsdZM52KM(Z)
which act as

dEM
A 5KN]NEM

A 1]MKNEN
A ,

~3.5!
dBMNP5KQ]QBMNP13] [ MKQBuQuNP] ,

whereKM(Z) is a Killing supervector, along with worldvol-
ume diffeomorphisms

dZM5hm]mZM, dgmn5hr]rgmn12] (mhrgn)r .
~3.6!

The action also admits other symmetries, such as ten
gauge transformations, but these will not play a role here.
leading order the kappa symmetry and supersymmetry tr
formations of the supermembrane action are

e

e

1-3
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dku5~12G!k, dkXm52 ūGmdku, ~3.7!

deu5e, deX
m52 ēGmu, ~3.8!

where e are the Killing spinors of the target space~2.5!.
Implicit in Eqs. ~3.3! and ~3.5! are corrections to these ex
pressions which are higher order inu and can be neglected i
what follows.

A. Embeddings

Membrane embeddings are given by solutions of
bosonic field equations of Eq.~3.1!,

1

A2g
]m~A2ggmn]nXm!1gmn]mXn]nXpGnp

m

5
1

3!
elmnFlmn

m , ~3.9!

where gmn5]mXm]nXnGmn is the induced worldvolume
metric andGnp

m is the Christoffel symbol of the plane wav
metric.

The solutions of interest here have been discussed in@4#,
so our discussion will be brief. These solutions are

M 22: Xm5jm, m5$1,2,1%, XA85x0
A8 , A85$ i 8,a%,

M 12: Xm5jm, m5$1,2,4%, XA85x0
A8 , A85$ i ,a8%,

~3.10!

where in each caseA8 runs over directions transverse to th
brane,i 852,3 anda855, . . . ,9.

The supersymmetries of branes at the origin vs bra
displaced along the parabolic ‘‘potential’’ in the transver
directions are one of the main concerns of this paper.
though the plane wave space-time is homogeneous, r
translations in transverse directions are not isometries.

branes atx0
A850 and x0

A8Þ0 are not related by symmetr
and are physically distinct.

The condition for unbroken supersymmetry is@11#

05du5e~X!1~12g* !k~X!, ~3.11!

whereg* is G evaluated at the embedding ande is the Kill-
ing spinor of the background evaluated at the embedd
Clearly one can choosek(X) to cancel the effect of the (1
2g* )e(X) projection of the Killing spinor, so the conditio
reduces to

g* e52e. ~3.12!

For M 22 branes,g* 5G121 , and for M 12 branesg*
5G124 . Using the decomposition of the Killing spinor
~2.5! into eigenspinors ofg* given in Eqs.~4.23! and ~5.6!
one can easily solve Eq.~3.12!. The situation on supersym
metries of the embeddings in Eq.~3.10! may be summarized
as follows:
10600
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M 22: x0
A850, G121e052e0 , 16 supercharges,

~3.13!

M 22: x0
A8Þ0 above andG1e050, 8 supercharges,

~3.14!

M 12: no preserved supercharges. ~3.15!

It is guaranteed that supersymmetries of the embedd
are preserved by the kinetic and interaction Lagrangians
fluctuations~in both Xm and u! about the static configura
tions in Eq.~3.10!. By construction the embedding SUSY
satisfy du50 when u50. They are therefore realized lin
early on fluctuations. The principal question investigated
low is whether there are new linear fermionic symmetries
the fluctuations about displacedM 22 branes andM 12
branes which effectively increase the number of sup
charges beyond those counted in Eqs.~3.13!–~3.15!.

B. Gauge fixing

The next step of our investigation requires gauge fixing
both worldvolume diffeomorphisms andk symmetry. We en-
countered some initially puzzling issues of compatibility
gauge-fixing conditions with the specific embeddings~3.10!.
These issues were not known to the previous investiga
we consulted, so we will describe them in some detail.

It was shown in@12,13# that the plane wave membran
action is quadratic in fermions in lightcone gauge, just as i
in flat space@10#. Here lightcone gauge consists of the co
ditions

G1u50, X15p1t, gtp50, gtt52detgpq ,

~3.16!

where (t,sp) with p51,2 are the worldvolume coordinate
Note that these conditions do not entirely fix the worldvo
ume diffeomorphisms; the group of area preserving diffe
morphisms remain.

Given the simplicity of the action in lightcone gauge, th
gauge appears at first sight to be the natural choice for
However, the embeddings in which we are interested
degenerate in this gauge. To prove this consider a bos
embedding and gauge fixX15p1t. Then the induced
worldvolume metric is

gtt522p1]t X21~]t XA!21~p1!2G11 ,
~3.17!

gtp52p1]pX21]t XA]pXA, gpq5]pXA]qXA.

Now impose the next condition from Eq.~3.16!, namely
gtp50; this condition will determineX2 from the remaining
scalarsXA ~see@14# for details!. The final condition in Eq.
~3.16! is needed to remove the square rootA2detgmn and
give a polynomial action. However, even before imposi
this, one finds

det~gmn!5gtt det~gpq!. ~3.18!
1-4
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Since the configurations in Eq.~3.10! describe branes ex

tended in (X1,X2,XÃ), there is a single worldvolume direc

tion XÃ transverse to the lightcone. The induced brane m
rics are thus degenerate for our embeddings, i.e., det(2gmn)
50 and are thus inadmissible in lightcone gauge.

It may seem surprising that these embeddings are de
erate in this gauge, given that they are clearly not degene

in the static gaugeX65j6 andXÃ5j Ã, which is necessarily
related to the lightcone gauge by a worldvolume diffeom
phism ~3.6!. However, the Jacobian of the transformati

from (j6,j Ã) to (t,sp) is zero. This follows from imposing
the conditions

j15p1t, 052p1]pj21]tj
Ã]pj Ã, ~3.19!

which enforceX15p1t andgtp50, respectively.
Thus we must give up lightcone gauge for the bosons

favor of the static gauge which is immediate for our emb
dings. However, we might consider a ‘‘hybrid’’ gauge
which the bosonic static gauge conditions are combined w
lightcone gauge for the fermions (G1u50). The matrixM
vanishes in this gauge@12# so the supervielbeins in Eq.~2.2!
are quadratic in the fermions. The square rootA2detgmn

will still contain terms up to orderu16, but the Lagrangian is
still much simpler than for other fermionic gauges.

However, this hybrid gauge is also singular in the neig
borhoods of our embeddings. To prove that a given fermio
gauge is admissible one needs to show that there alw
exists a kappa symmetry transformation to bring any th
into this gauge. In the case at hand this requires that

G1@u1~12G!k#50 ~3.20!

admits solutions fork which remove all 16~arbitrary! com-
ponents ofu1, whereu152 1

2 G2G1u.
Now let G5g* 1dG where g* is G evaluated on the

classical embedding anddG contains field fluctuations; the
g* 251 and (16g* ) are projectors of rank 16. For the em
beddings~3.10!, g* is G121 or G124 ; thus @g* ,G1#50.
These two facts immediately imply

~11g* !G1~u2dGk!50. ~3.21!

This means that the kappa transformations needed to rem
the eight components of theta satisfyingg* u15u1 are non-
perturbative in thatk;(dG)21u1. The conclusion is tha
the fermion lightcone gauge is singular at the embedding
interest.

The singularity of the hybrid gauge near the embeddin
also manifest on gauge fixing within the functional integr
When one tries to introduce ghosts for the hybrid gauge
ing one finds as usual that one needs an infinite numbe
ghosts for ghosts. Leaving this well-known problem asi
one also finds that the leading term in the ghost action
cubic in the fields for 24 out of the 32 ghost componen
Thus the ghost action does not admit a traditional pertur
tive formulation, which is directly connected to the observ
tion above that the compensating kappa transformatio
nonperturbative.
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Given these problems, we choose to work instead with
physical gauge, namelyg* u5u, which can manifestly al-
ways be reached in the neighborhood of the embedd
Given the complexity of the supervielbeins we will wor
only to quadratic order in the fermions. Fortunately this tur
out to be sufficient to investigate the question of enhan
supersymmetry for displacedM 22 branes andM 12 branes.

C. Action to quadratic order in fermions

It is straightforward to compute the supermembra
theory on the plane wave supergeometry specified by
~2.2! to quadratic order in the fermions. From Eqs.~2.2! and
~2.3! we obtain

Pm
r 5]mXnen

r 1 ūG r D̃mu1O~u4!, ~3.22!

where

D̃mu5]mu1]mXm~em
r Tr1

1
4 vm

rsG rs!u ~3.23!

andTr5Tr
stuvFstuv . From this expression we obtaingmn to

quadratic order in the fermions

gmn5gmn12ū] (mXnG̃nD̃n)u1O~u4!, ~3.24!

where gmn5]mXm]nXnGmn is the induced worldvolume

metric and G̃n5en
r G r are curved gamma matrices. Usin

these results we obtain

S52E d3jA2detgmn„11gmn]mXnūG̃nD̃nu1O~u4!…

1E d3j elmnS 1

6
Clmn]lXl]mXm]nXn

2
1

2
ūG̃mnD̃lu]mXm]nXn1O~u4! D . ~3.25!

IV. MÀ2 BRANES

We now discuss the case ofM 22 branes along~1, 2, 1!.
The physical gauge corresponds to

Xm5jm, G121u5u, ~4.1!

wherem5(1,2,1). We are interested in both the brane
the origin and the brane away from the origin. Recall that
worldvolume scalars parametrize the transverse position
the brane. To obtain the action for the brane at the origin

expand aroundXcl
A85u50, whereas for the brane localized

x0
A8 we instead expand aroundXcl

A85x0
A8 , u50 whereA8

5( i 8,a) runs over all transverse directions.
Clearly the action for the brane at the origin is given

Eq. ~3.25! and to obtain the action for the brane away fro

the origin we simply have to shiftXA8 by x0
A8 . It will be

useful to introduce a double grading to count the order
fluctuations and in the constant positionx0 . The action and
variation are then split into terms of definite order and
1-5
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will denote them asSq
p anddq

p , where the superscriptp de-
notes the order of fluctuating fields and the subscriptq de-
notes the order of the constant positions. For instance,
quadratic part of the action for the brane at the origin will
denoted byS0

2, etc.

To explicitly evaluate the action we need to knowD̃mu
andhmn[A2detgmng

mn:

D̃mu5F]m1]mB1S m

12
~G2312G123!2

1

4
]AG11G2AD dm1

1
m

6
G223dm1Gu,

h1152g̃22 , h115g̃21 , h215g̃111G11g̃21 ,
~4.2!

h2252G112 1
2 G11g̃112g̃112G11g̃12

2 1
2 G11

2 g̃22 ,

h125212 1
2 g̃112

1
2 G11g̃22 ,

h11512 1
2 G11g̃222 1

2 g̃112g̃12 ,

where B5m/6 (X2G232X3G222 1
2 XaG223a), g̃mn

5]mXA8]nXA8, and we have only kept terms quadratic
fluctuations.

A. Quadratic action

The action to quadratic order in the fields is

S0
252E d3jF11

1

2
g~0!

mn]mXA8]nXA812ūG̃mDmu

1mX1~]1X2]2X32]1X3]2X2!G . ~4.3!

whereg (0)mn and G̃m are the fluctuation independent part

the induced metricgmn andgmn]nXnG̃n , respectively. Note
that we takee12151. Notice that the fermion kinetic term
receives a contribution both from the Dirac and the We
Zumino part of the action. The Dirac operator appearing
Eq. ~4.3! can be written as

G̃mDm5~G2]21G1]11G1]11 1
2 G11G1]2

1 1
2 mG1123!. ~4.4!

The last term couples the eight physical worldvolum
spinors, i.e., the SO~8! part is not diagonal.

The action~4.3! describes fluctuations of a brane locat
at the origin in the transverse directions; hereG115
2m2/9 (x1)2. To describe fluctuations of a brane embedd
10600
he
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at constant nonzero transverse position one needs to ex

instead aboutXA85x0
A8 . The resulting action to quadrati

order in the fluctuations is

Sshifted5S0
21S2

2,

S2
252

1

2
AE d3j@~]2XA8!222ūG1]2u#, ~4.5!

A5
m2

36
~4~x0

i 8!21~x0
a!2!,

wherei 852,3.
Note that Eq.~4.5! can be obtained from Eq.~4.3! pro-

vided that in the latterG11 is kept exact. Although terms
(xA8)2(]XB8)2 are clearly subleading~quartic! and do not
contribute at quadratic order for the brane at the origin th

do contribute to the quadratic term (x0
A8)2(]XB8)2 appearing

in the action for the shifted brane.

B. Interactions

We next compute a subset of the interaction terms. For
brane at the origin there are no cubic interaction terms;
leading order interactions are quartic. The terms quartic
bosonic fluctuations can be obtained straightforwardly by
panding theA2g. To obtain the terms quartic in fermio
fluctuations one would need to extend the results of S
III C. This is a somewhat tedious computation~which could,
however, be done using the results of Secs. II and III!. For-
tunately, it is sufficient for our purpose~as we explain below!
to consider only quartic terms that are quadratic in b
bosonic and fermionic fluctuations. The Dirac term contrib
tions to these are

S0~D !
4 52E d3j„ḡ22ūG2]1u2ḡ12ūG1]1]u

1~ g̃111G11g̃21!ūG1]2u

1g̃21ū~2G2]11G1]1!u

1
1

2
g̃11ū~G2]22G1]1!u

1
1

4
m~g̃22ūG223u1g̃21ūG123u!

2
1

2
G11g̃22ū~G1]12G2]2!u

1
1

4
]1G11g̃22ūu1¯…. ~4.6!

The relevant Wess-Zumino term contributions are
1-6



on

c
a

u

rs
ha

to

s

ns
en-

as
e

.

WORLDVOLUME SUPERSYMMETRIES FOR BRANES IN . . . PHYSICAL REVIEW D68, 106001 ~2003!
S0~WZ!
4 52E d3jS 1

2
emnlūGA8B8]mu]nXA8]lXB8

2
1

12
m]2Xa]1XbūG23abu

1
1

12
m@~]1Xa]2X22]2Xa]1X2!ūG13au

15~]1X2]2X3!ūu22↔3#1¯ D , ~4.7!

where the ellipses in both contributions denote terms c
taining (ūG1

¯u) which are irrelevant in what follows~the
ellipses do not containG2).

For the brane at nonzero transverse position there are
bic interaction terms. The relevant terms are those which
linear in bosonic and quadratic in fermionic fluctuations:

S1
35E d3jS 2B@~]2XA8!222ūG1]2u#

1
1

2
BB8~]2XA8!ūG1A8B8u D ,

~4.8!

B5
m2

36
~4x0

i 8Xi 81x0
aXa!,

BB85
m2

18
~4x0

i 8d i 8B81x0
adaB8!.

C. Fluctuation spectrum

We now use the quadratic actions~4.3! and~4.5! to work
out the fluctuation spectra of the branes. The bosonic eq
tions of motion following from Eqs.~4.3! and ~4.5! are

hXa50, hf52 im]2f, ~4.9!

where

h5~22]1]22G11]2
2 1]1

2!, ~4.10!

andf5(X21 iX3) is a complex scalar. Note that the scala
X2 andX3 are coupled by the Wess-Zumino term so one
to diagonalize their equations of motion. HereG115
2@m2/9(x1)21A# whereA is given in Eq.~4.5! and is zero
for a brane at the origin.

The Dirac equation is

05G̃mDmu5~G2]21G1]11G1]1

1 1
2 G11G1]22 1

4 mG123!u. ~4.11!

Iterating we get

05G̃nDnG̃mDmu5hu1 1
2 ~mG231]1G11G1!]2u.

~4.12!
10600
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Recall that the 16u satisfy G121u5u.3 Let us further de-
compose the fermions into eigenspinors ofG1,

G1u656u6. ~4.13!

Multiplying Eq. ~4.12! by G2G1 yields

hu252 1
2 mG23]2u2, ~4.14!

where we used the relationsG1u150 andG2u250. Since
G1 commutes withG23 we can further decomposeu2 into
eigenspinors ofG23,

G23u6
256 iu6

2 . ~4.15!

We thus obtain

hu6
257 1

2 im]2u6
2 ~4.16!

which is of the same form as the scalar field equation~4.9!. It
remains to discussu1 components ofu. Multiplying the fer-
mion field equation~4.11! by G1 yields

]2u152 1
2 G1]1u2. ~4.17!

Providedp1Þ0 this equation determinesu1 from u2. Thus
there are eight independent fermion modes.

So for both bosonic and fermionic fluctuations we need
solve equations of the form

hw5 ic]2w, ~4.18!

for various values ofc. Decomposing into Fourier mode
along the lightcone,w5exp(ip1 x21ip2x1)w(x1), this be-
comes

@2p1p22 1
9 ~p1!2m2~x1!21]1

22D#w~x1!50,
~4.19!

with

D5~p1!2
m2

36 F4(
i 8

~x0
i 8!21(

a
~x0

a!2G2cp1

[2p1DH2cp1, ~4.20!

where thex0
i 8 and x0

a are the constant transverse positio
about which the brane is fluctuating. Recall that the eig
functions of the harmonic oscillator satisfy

~]1
21@112n2 1

9 ~p1!2m2~x1!2# !Hn~x1!50. ~4.21!

The Gaussian part of the Hermite function behaves
exp@21

6mp1(x1)2# and decays exponentially. Notice that w
takep1.0. Thus thep2 eigenvalue is determined as

3Notice that in later sections we use the notationG121u65
6u6 and in this notation the 16u are theu2 ones. In order to avoid
clumsy notation such asu6

2,6 we suppress this superscript below
1-7
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p25~112n!
m

6
1DH2

1

2
c. ~4.22!

The spectra of fluctuations are characterized by th
(p2,n) eigenvalues for a givenp1. From Eq. ~4.22! one
finds that the lowestp2 eigenvalues for givenp1 ~i.e., those
for which n50) for the fluctuations are, respectively,

f 1 1
2 m

u1
2

1 1
4 m

Xa DH1 1
6 m 10

u2
2

2 1
4 m

f̄ 2 1
2 m

Furthermore raisingn by one unit increases thep2 eigen-
value bym/3. This analysis shows that the transverse posit
enters the spectrum only as a universal shiftDH in the p2

eigenvalue for all bosonic and fermionic fluctuations. Th
the brane away from the origin is as supersymmetric as
brane at the origin, just as in the corresponding computa
of D-brane spectra in the maximally supersymmetric ty
IIB plane wave in@2#.

D. Worldvolume supersymmetry

We now discuss in detail the worldvolume supersymm
tries of these branes. The emergence of worldvolume su
symmetry from spacetime supersymmetry on gauge fix
kappa symmetry was first discussed in detail in the con
of the four-dimensional supermembrane in@15#. The discus-
sion here follows closely that of@16#: we determine which
combined kappa and supersymmetry transformations le
the gauge fixed action invariant.

Let us split bothk and e into eigenspinors ofG121 ,
defining G121l656l6 for any spinorl. The appropriate
splitting of the Killing spinors is

e5e21e1,

e25S 11
m

6
G123x1De~m/12!x1G232~m/6!x1G123

e0
2

2
m

12
~xaGa22xi 8G i 8!G123e~m/12!x1G23

e0
1 , ~4.23!

e15S 11
m

6
G123x1De2~m/12!x1G232~m/6!x1G123

e0
1

1
m

12
~xaGa22xi 8G i 8!G123e2~m/12!x1G23

e0
2 ,

wherei 852,3.
As discussed, we fix kappa symmetry by setting

u250. ~4.24!
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Notice that the kappa symmetry transformations~3.7! have
their own gauge invariance: takingk→k1(11G)k8, for a
local spinork8(x), leaves the transformation rules invarian
We gauge fix this invariance by settingk150.

Demanding that a combined kappa symmetry and su
symmetry transformation preserves the gaugeu250 re-
quires that we choose the parameters such that

k252 1
2 e2. ~4.25!

The worldvolume supersymmetry transformations are n
given by

du5e1~12G!~2 1
2 e2! ,

~4.26!
dXA852 ēGA8u2 ūGA8~12G!~2 1

2 e2! .

In what follows we will only be concerned with the transfo
mation rules up to terms linear in the fluctuations. The rea
is that we are only interested in whether the transformat
rules contain an inhomogeneous term~which means the su
persymmetry is nonlinearly realized! or not. Notice that the
symmetry rules~3.7! themselves receive higher order corre
tions in u, as noted at the end of Sec. III.

The field dependentG expanded to leading order abo
the embedding is

G5G1211G12A8]1XA81G21A8]1XA81G11A8]2XA8

1 1
2 G11G21A8]2XA8. ~4.27!

This G contains all the terms needed to obtain the trans
mation rules to linear order in fluctuations. The resulti
combined transformations are then

du5 1
2 G̃mGA8]mXA8e21e1,

~4.28!
dXA852ūGA8e2,

whereG̃m5gmn]nXnen
r G r ~but only the fluctuation indepen

dent part contributes! ande1 ande2 are given in Eq.~4.23!.
Note that these combined transformations do not prese

the static gauge~sincedXm5 ūG̃me1 is nonzero! and thus a
compensating diffeomorphism~3.6! with parameterhm5

2 ūG̃me1 is needed to maintain the gauge. The latter impl
further terms in the combined transformations~4.28! which
are, however, always at least quadratic in the fluctuat
fields and can be neglected below.

1. Symmetries to quadratic order

Let us now consider the supersymmetries of the quadr
actions, for branes located both at and away from the ori
In the former case the action is given in Eq.~4.3! and in the
latter case in Eq.~4.5!.

The explicit form of the symmetries follows from subst
tuting the Killing spinors into Eq.~4.28! and keeping terms
to the appropriate order. This gives
1-8
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d0
1u5

1

2
G̃mA8]mXA8S 11

m

6
G123x1D

3e~m/12!x1G232~m/6!x1G123
e0

21S 11
m

6
G123x1D

3e2~m/12!x1G232~m/6!x1G123
e0

1

1
m

12
~XaGa22Xi 8G i 8!G123e2~m/12!x1G23

e0
2 ,

~4.29!

d0
1XA852ūGA8S 11

m

6
G123x1De~m/12!x1G232~m/6!x1G123

e0
2 ,

where the subscriptp in the variationdp
q denotes the order o

field fluctuations and the superscriptq denotes the order o
the constant positions. Of these transformations thee0

1 trans-
formations are clearly inhomogeneous and nonlinearly r
ized ~see second line!. Thee0

2 transformations are, howeve
linearly realized; these correspond to the 16 worldvolu
supersymmetries of the brane at the origin found in the pr
analysis.

Now consider expanding about constant transverse p
tions; the action is given in Eq.~4.5!. The supersymmetry
transformations follow from shifting the fieldsXA8 in the
previous expressions. To show this explicitly notice that
action at the originS0 is of the schematic form

S05E (
n

XnFn~u,dX!, ~4.30!

where we suppress space-time indices andFn are expres-
sions that depend onu and on derivatives ofXA8 but not on
undifferentiatedXA8. In other words we make explicit in Eq
~4.30! the dependence on undifferentiatedXA8. Similarly the
supersymmetry rules are of the form

dX5(
n

XnGn~u,dX,e!, du5(
n

XnHn~u,dX,e!

~4.31!

for appropriateGn and Hn ~e is the supersymmetry param
eter!. The explicit form of the lowest orderFn , Gn , andHn
can be read off from Eqs.~4.3! and ~4.29! but we will not
need them. We now shift the brane away from the origin
settingX5x01Y, where for clarity we call the fluctuating
part Y,

Sshift5E (
n

~x01Y!nFn~u,dY!. ~4.32!

It is simple to show that invariance of Eq.~4.30! under Eq.
~4.31! implies that Eq.~4.32! is invariant under

dY5(
n

~x01Y!nGn~u,dY,e!,
10600
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du5(
n

~x01Y!nHn~u,dY,e!. ~4.33!

The issue is whether the new transformation rules con
inhomogeneous pieces or not. If they do then the correspo
ing supersymmetries will be nonlinearly realized.

Let us now return to our specific case. Notice that
obtain all terms that are at most linear in fluctuations for
brane away from the origin we need to know certain ter
that are higher order in fluctuations for the SUSY variati
for the brane at the origin. The only quantities that cont

undifferentiatedXA8 areG11 and spin-connectionv1
2A8 , so

one has to keep track of the dependence on them.
The transformation rules that depend one0

1 acquire new
contributions linear in fluctuation but they still contain th
inhomogeneous term given in Eq.~4.29!. These supersym
metries are nonlinearly realized and they will not be d
cussed further. The supersymmetries that depend one0

2 are
given by

dshifted5d0
11d1

01d2
1, ~4.34!

d1
0u5

m

12
~x0

aGa22x0
i 8G i 8!G123e2~m/12!x1G23

e0
2 ,

~4.35!

d2
1u52 1

4 AG1A8]2XA8e2~m/12!x1G23
e0

2 , ~4.36!

whereA is given in Eq.~4.5!. Thed2
1u term originates from

the term ind0
1u containingG̃15G12 1

2 G11G2 . The super-

symmetry transformation ofXA8 remains unchanged. Thee0
2

transformations now contain an inhomogeneous piece
spinors such thatG1e0

2Þ0. Thus only eight worldvolume
supersymmetries seem to be linearly realized, in agreem
with the probe analysis.

The analysis so far explicitly confirms general expec
tions: the linearly realized supersymmetries are exactly
ones predicted by Eq.~3.12!. We now show, however, tha
for the brane away from the origin and to quadratic appro
mation in fluctuations the worldvolume theory admits eig
additional linearly realized supersymmetries. As discus
above, the invariance of the action at the origin implies
corresponding invariant for the brane away from the orig

~d0
11d1

01d2
1!~S0

21S2
2!50. ~4.37!

This leads to a number of relations obtained by collect
terms that contain the same number of fields and are of
same order inx0 :

d0
1S0

250, ~4.38!

d1
0S0

250, ~4.39!

d0
1S2

21d2
1S0

250, ~4.40!

d1
0S2

250. ~4.41!
1-9
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That these relations should hold follows from the gene
argument given earlier but we have also explicitly verifi
them. Equation~4.38! is the supersymmetry invariance of th
brane at the origin. What is important is Eq.~4.39! which
says that the action for the brane at the origin is symme
by itself under the inhomogeneous symmetry transforma
d1

0. This follows from the fact that the action for the bran
shifted away from the origin does not contain a term linea
x0 . Furthermore, this symmetry extends to a symmetry
the brane away from the origin, see Eq.~4.41!. For this to be
true it is crucial that the shifted rules do not containd3 . The
invariance of the shifted action underd0

1 implies that

dhom5d0
11d2

1 ~4.42!

is also a symmetry of the shifted action by itself@as can also
be verified using Eqs.~4.38! and~4.40!#. This is, however, a
homogeneous transformation generated by all 16e0

2 , so the
quadratic approximation of the worldvolume theory f
brane away from origin admits 16 linear supersymmetrie

The invariance of the action underd1
0 is a special case o

the ‘‘semilocal’’ invariance

du5G1x~x1!, ~4.43!

wherex(x1) is an arbitrary spinor that depends only onx1.
One may check that the quadratic part of the action is inv
ant under this transformation. There is also a similar boso
‘‘semilocal’’ invariance

dXA85 f A8~x1!, ~4.44!

wheref A8(x1) are arbitrary functions ofx1. This additional
‘‘gauge’’ invariance allows one to gauge away the inhom
geneous term leading to an additional set of eight linear
alized supersymmetries.

These considerations explain why the spectrum of
shifted brane is as supersymmetric as that of the brane a
origin. Furthermore, one can understand the shifted value
p2 for the fluctuations of the former as follows. The stru
ture of the superalgebra implies that the anticommutation
dhom with itself should generate~amongst other terms relate
to the rotation charges! a transformation corresponding t
P2. Since$d0

1,d2
1%;A and$d2

1,d2
1%50 thep2 values for the

brane away from the origin are clearly shifted by a te
proportional toA as we found.

2. Interactions

We now turn to the question of whether the extra sup
symmetries are respected by interactions. By construc
the full action is invariant under the symmetries generated
e0

2 . A sufficient and necessary condition for there to be
extension of the homogeneous symmetry~4.42! to the full
theory is hence that the inhomogeneous symmetryd1

0 ex-
tends to a symmetry of the interacting theory. In other wor
there should be a deformation ofd1

0 ~possibly containing
fluctuating fields! which leaves the action of the interactin
theory invariant.

The action for the interacting theory of the shifted brane
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S5S0
21S2

21S0
41S1

31¯ , ~4.45!

where~relevant parts of! S0
4 andS1

3 are given in Eqs.~4.6!,
~4.7!, and ~4.8!. We have seen in the previous section th
d1

0S0
2505d1

0S2
2. Furthermore, it is also true by inspectio

that

d1
0S1

350. ~4.46!

Let us now discussS0
4. A direct computation shows thatd1

0S0
4

is not zero. In fact the appropriate extension of Eq.~4.37!
implies the relation

~d1
0S0

41d0
1S1

31d1
2S0

2!50, ~4.47!

where the explicit form ofd1
2 ~not needed here! follows from

extending the previous arguments to higher order. One
verify explicitly that each term in the above is nonvanishin

The issue is, however, whether there is an appropr
deformation ofd1

0,

d5d1
01(

p,q
d̃p

q , ~4.48!

for appropriatep and q, that leaves the interacting actio
invariant. Notice thatd1

0S0
4 contains three fluctuating field

and is linear in the constant positions. This means that te
of the same order asd1

0S0
4 are only produced byd̃0

1S1
3 and

d̃1
2S0

2 @just as in Eq.~4.47!#. In order not to upset the lowes
order invariance~i.e., the invariance ofS0

2) the new transfor-
mation should be at least quadratic in fluctuations. The o
possible deformationd̃0

1 which leaves invariant the lowes
order action isd0

1 itself, but such a deformation leads us ba
to the original supersymmetry variations.

We are thus led to look for a variationd̃1
2 such that

d1
0S0

41 d̃1
2S0

250⇔d1
0S0

452
dS0

2

dZM d̃1
2ZM⇔d1

0S0
4'0,

~4.49!

where ' means equality when the lowest order equatio
hold. We thus obtain that a necessary and sufficient condi
for d1

0 to be extendible to a symmetry of the leading intera
tions is thatd1

0S0
4 vanishes weakly.

Notice thatd1
0 does not mix terms with a different numbe

of fermions. This means that the variation of terms inS0
4 that

are quadratic inu should vanish separately from the variatio
of terms quartic in u. Clearly the terms containing
( ūG1

¯u), where the ellipses do not containG2, are trivi-
ally invariant underd1

0 @because (G1)250]. Thus we only
need to examine the remaining terms; this is the reason
only these terms were listed in Sec. IV B. Now notice th
the structure of the bosonic fluctuation terms in the Dirac a
Wess-Zumino part ofS0

4, Eqs.~4.6! and~4.7! respectively, is
different: the latter is antisymmetric under the exchange
two bosons while the former is symmetric. This means t
the two sets of terms cannot mix with each other under
d1

0 variation, except possibly through the use of lowest or
1-10
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field equations. The latter, however, are diagonal forXa (a
54, . . . ,9). It follows that a necessary condition for th
extension ofd1

0 ~and thus of the extra supersymmetries! into
a symmetry of the leading interactions is that thed1

0 variation
of the terms in Eq.~4.6! that do not depend onX2 and X3

vanishes weakly.
Explicit computation yields

d1
0SD52E d3j„2x̃8G1~]2

2 XaG21]1]2XaG1!uXa

1
1

2
]2~XaXa!x̃8G1~G2]21G1]1!u

2]2XahXax̃G1~G21G1!u…, ~4.50!

wherex is defined byd1
0u5G1x, d1

0u is given in Eq.~4.35!,
andx85(]11m/4G23)x. The last line is proportional to the
lowest order field equations. To check whether the term
the first line is a total derivative up to lowest order fie
equations we use the lemma that a term is a total deriva
of a local field if and only if its Euler-Lagrange derivative4

with respect to all fields vanishes~for a proof see, for in-
stance, Sec. 4.4 of@17#!. One finds by inspection that th
Euler-Lagrange derivative with respect tou is nonvanishing
~even when the free field equations hold!. We therefore con-
clude that the variationd1

0S0
4 does not vanish weakly an

thus that the extra supersymmetries are not respected b
teractions.

V. M¿2 BRANES

We consider in this section anM 12 brane oriented along
~1, 2, 4! and compute the action to quadratic order in f
mions in the physical gaugeG124u5u. One can use the
general expression given in Sec. II, along with explicit e
pressions
10600
n

e

in-

-

-

D̃mu5F]m1]mB1S m

12
~G2112312G123!

2
1

4
]AG11G2AD dm12

m

12
G4G1123dm4Gu,

~5.1!

where a855, . . . ,9 and B5m/6(XiG iG
1123

2 1
2 Xa8G1123a8). Substituting these expressions into the a

tion one finds the following action to quadratic order:

S252E d3jS 11
1

2
g~0!

mn]mXA8]nXA812ūG̃m]mu D ,

~5.2!

whereA8 labels the eight transverse scalars andg (0)mn and

G̃m are as given for theM 22 brane. Note that there is n
coupling of the fluctuations to the background Ramon
Ramond~RR! flux to quadratic order. This leads to a dege
eracy in the spectrum; the equations of motion are

hXA850, G̃m]mu50, ~5.3!

and thus following the previous analysis one finds that
eight physical bosons and fermions have a ground state
ergy of DH1 1

6m. As previously advertised this spectrum
akin to that of theD1 branes considered in@1,2#.

The target space supersymmetries are realized to this
der on the brane as

du5 1
2 G̃mGA8]mXA8e21e1, dXA852ūGA8e2,

~5.4!

where the relevant splitting is nowG124e656e6. Decom-
posing the Killing spinors one finds
e15XcosS m

6
x1D cosS m

12
x1D2G4 sinS m

6
x1D sinS m

12
x1D

2
m

12
G1F ~xa8Ga822xiG i !G123cosS m

12
x1D1x4 sinS m

12
x1D G Ce0

1

1XG123F2sinS m

6
x1D cosS m

12
x1D1G4 cosS m

6
x1D sinS m

12
x1D G

2
m

12
G1F ~xa8Ga822xiG i !sinS m

12
x1D2x4G123cosS m

12
x1D G Ce0

2 ~5.5!

and

4The Euler-Lagrange derivative of a local functionf is defined asd f /df5] f /]f2]m@] f /](]mf)#1¯ .
1-11
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e25X2G123FsinS m

6
x1D cosS m

12
x1D1G4 cosS m

6
x1D sinS m

12
x1D G

1
m

12
G1F ~xa8Ga822xiG i !sinS m

12
x1D2x4G123cosS m

12
x1D G Ce0

1

1XcosS m

6
x1D cosS m

12
x1D1G4 sinS m

6
x1D sinS m

12
x1D

2
m

12
G1F ~xa8Ga822xiG i !G123cosS m

12
x1D1x4 sinS m

12
x1D G Ce0

2 . ~5.6!
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The splitting indicates that all 32 target space supersym
tries are realized nonlinearly regardless of the brane locat
this follows from the inhomogeneous first terms in the fi
and third lines ofe1 ande2.

Unlike the case studied in the previous section, we do
find in this case extra symmetries that can be used to rem
the inhomogeneous parts of the transformations. Furt
more, the spectrum suggests that the supersymmetries o
M 12 branes should not be directly related to the Killin
spinors. This follows from the fact that the symmetries of t
spectrum manifestly commute with the lightcone Ham
tonian, according to the degeneracy found above, while
target space supercharges do not commute with the lightc
Hamiltonian@18,19#. Also in the corresponding string analy
sis in @1,2# the restored kinematical symmetries were n
directly related to the target space kinematical symmetrie

These considerations lead us to the following homo
neous symmetries of the action

d0u5
1

2
G̃mGA8]mXA8e0

2 , d0XA852ūGA8e0
2 , ~5.7!

where the constant parametere0
2 satisfiesG1e0

250. This
gives eight linearly realized symmetries irrespective of
brane location. Note also that these symmetries are dire
analogous to the restored kinematical symmetries of theD1

branes discussed in@1,2#.
To determine whether interactions respect these sym

tries one needs to compute the action to next order. In
case there are cubic interaction terms given by

S35
1

2
mE d3j~]2Xa8ūGa8123u2]2Xi ūG iG

4123u

2]4Xi ūG iG
1123u!2mE d3jx1emnr~]mX1]nX2]rX3!.

~5.8!

Now suppose that the symmetry~5.7! can be extended to th
full action. This implies that there is a transformationd
5d01d11¯ such that

d0S31d1S250, ~5.9!
10600
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which can only be satisfied for somed1 ~to be determined!
provided thatd0S3'0 up to terms which vanish on-she
with respect to the lowest order field equations.

However,d0S3 contains the term

d0S352
1

2
mE d3j@ūG4a8b8123e0

2~]4Xb8]2Xa8!1¯#.

~5.10!

This is the only term in the variation which contains bothXa8

andXb8 ~with b8Þa8) and thus cannot cancel against oth
terms. It cannot, however, be written either as a total deri
tive or as a term proportional to the lowest order field eq
tions, which can be most easily seen using the Eu
Lagrange test of the previous section, and thus it violates
symmetry.

VI. DISCUSSION

We have studied in this paper the worldvolume supersy
metries for M2 branes in the maximally supersymmetr
plane wave background of M theory. By construction, t
M2 worldvolume theory has as many supersymmetries
the background. However, only a subset of them are line
realized. We explicitly constructed all worldvolume supe
symmetries using standard methods and found result
agreement with the probe analysis, i.e., the number of
early realized supersymmetries matched the probe resul

We showed, however, that the quadratic approximation
the worldvolume theory admits additional linearly realiz
supersymmetries. In the case ofM 22 branes localized away
from the origin this came about by the use of an ex
‘‘semilocal’’ invariance that the quadratic action possess
This ‘‘gauge’’ invariance allows one to gauge away the
homogeneous term from certain supersymmetry rules, t
providing eight additional linearly realized supersymmetri
In the case ofM 12 branes the additional supersymmetri
were completely new symmetries, unrelated to target sp
supersymmetries. In both cases, we explicitly computed
spectrum of small fluctuations and showed that it is or
nized into multiplets of the additional supersymmetries.
both cases we showed that the new supersymmetries ar
respected by the worldvolume interactions.

This investigation was motivated by the analysis in@1,2,3#
1-12
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of D branes on the maximally supersymmetric plane wa
background of type IIB string theory. The probe analysis@3#
leads to results analogous to those forM2 branes. Moreover
as in the cases studied here the open string spectrum ap
to be organized by more supercharges than given by
probe analysis. Corresponding additional exceptional su
charges were constructed in@1,2# as additional Noethe
charges. The additional fermionic symmetries depend c
cially on special properties of the plane wave backgrou
and the fact that the string worldsheet was considered to
strip.

The results in@1,2,3# imply that theD-brane worldvolume
theory should admit more supersymmetries, albeit only at
quadratic level if the interactions break the extra symmetr
In this paper we found that theM2 branes do exhibit extra
supersymmetries but only at the quadratic order. The me
nism of supersymmetry enhancement mimics the co
sponding string theory construction. Our results stron
suggest that the extra symmetries in the case ofD branes are
not respected by string interactions and one could verify
by repeating the computation described here for the wo
volume theory ofD branes.

An interesting question is whether the branes studied h
as well as the correspondingD branes in the type IIB plane
wave are stable. Consider the case ofM /D2 branes localized
away from the origin. These branes have the same mass
sity as the corresponding branes at the origin, i.e., the wo
volumeA2detg is independent of the position of the bran
and there is no classical force that acts on them. Howe
their excitations have an excess of energy that depend
the position of the brane. This suggests that the brane
emit the extra energy and recoil to the origin. In the case
D branes a possible decay channel is via emission of clo
strings.5 Since the position of theD brane is arbitrary one
may consider the brane localized very far from the origin
that the excess energy is very large and semiclassical m
ods may be applicable.

It would be interesting to understand under which con

5We thank J. Maldacena for discussions about this point.
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tions the quadratic part of the worldvolume theory adm
more supersymmetries and the spectrum is more supers
metric than one would naively expect. It seems likely th
there is corresponding supersymmetry enhancement in o
pp-wave backgrounds, given the similar generic form of t
Killing spinors.

Since interactions do not respect the extra supersym
tries, the masses of the states are expected to be spl
quantum corrections. As masses are mapped to confo
dimension in the gravity/gauge theory correspondence
would translate into a prediction for anomalous dimensio
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APPENDIX: CONVENTIONS

The gamma matrices satisfy$G r ,Gs%52h rs whereh rs is
the tangent space metric. They can be taken to be real in
Majorana representation. Gamma matrices with multiple
dices denote antisymmetrized products with unit streng
The Dirac conjugate is defined byc̄5 ic tG0 for a generic
spinor c. Here G0 is the charge conjugation matrix whic
satisfies (G0) t52G0. An important property of gamma ma
trices inD511 is that the matrixG0Ga1¯ap

is symmetric for

p51,2,5 and antisymmetric forp50,3,4 ~the casesp.5 are
related by duality to these!.

A useful explicit basis for gamma matrices in terms
SO(2,1)3SO(9) matrices is

G65g6
^ g, G15g1

^ g, GA8512^ gA8, ~A1!

with g15s3, &g65( is26s1), and

gA85S 0 sA8

~sA8! t 0
D , g5S 18 0

0 218
D . ~A2!

Here thegA8 form a real representation of SO~8!. With these
choicesG121512^ g. Note that&G65(G06G10).
’’
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