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We study the worldvolume supersymmetriesNd® branes in the maximally supersymmetric plane wave
background of M theory. For certain embeddings the standard probe analysis indicates that the worldvolume
theory has less than 16 supersymmetries. We show that at the quadratic level the worldvolume theory admits
additional linearly realized supersymmetries, and that the spectra of the branes are organized into multiplets of
these symmetries. We find, however, that these supersymmetries are not respected by worldvolume interac-
tions. Our analysis was motivated by recent work showing Enditranes in the maximally supersymmetric
plane wave background of type IIB string theory admit supersymmetries beyond those of the probe analysis.
The construction of the additional supercharges in this case was specific to a string worldsheet that is a strip
and the present results suggest that string interactions do not preserve these symmetries.
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[. INTRODUCTION two different classes: thB_ and D, branes. This classifi-

cation originates from the specific form of tleorldsheekx

One of the most elementary questions that one can askermionic boundary conditions, but one can also understand
about a supersymmetric theory is “what are the supersymit from the features of the spectrum. v branes, the mass
metric states of the theory.” In superstring theory a class oparameteru of the plane wave lifts some of the degeneracy
supersymmetric states is representedbypranes. Recent of states present in the flat space limit. In particular, the
work on branes in the maximally supersymmetric planelowest lying states which in the flat space limit formda
wave background type IIB string theory shows that this issue= 10 vector multiplet(i.e., a multiplet with 8+ 8 degrees of
is more subtle than the corresponding analysis in flat spacéreedom with the same lightcone enerBy) now split as
times. A tree-level open string analysis of boundary condi-1+4+6+4+1 (see Table 1 of2]). On the other hand, the
tions and spectra ifil,2] revealed that certain branes have lowest lying states fob | branes are as degenerate as in flat
more supersymmetries than the probe analysis §®eJhis  space(see Table 3 of2]).
implies that either the standard probe analysis needs to be The branes under investigation are located at a constant
amended or that the extra supersymmetries are not respectgénsverse position and wrap specific directions. According
by string interactions. One of the aims of the present work iso the probe analysi€) , branes always break all kinemati-
to settle this issue. cal supersymmetriesD _ branes preserve eight kinematical

Recall that in string perturbation theoBy branes specify supercharges along with an additional eight dynamical super-
boundary conditions for open strings. In the Green-Schwarzharges only when the brane is located at the origin In
formalism the spacetime supersymmetries preserved by thee string theory analysid], however, one finds eight alter-
D-brane manifest themselves as global symmetries of thaative supercharges for tiie, branes and for thB _ branes
worldsheet action. Some of the global symmetries of thdocated away from the origin. A clue for the existence of the
open worldsheet directly descend from corresponding symextra supersymmetries was that the spectrum of the brane
metries of the closed string. These symmetries are exactlgxhibits more symmetries than the probe analysis suggests.
the ones found by the probe analysis. It was foun§ili|2], In particular, the spectrum dd_ branes at and away from
however, that in certain cases the worldsheet action admitse origin is identical up to an overall additiv@ositive
additional supersymmetries and that the spectrum of theonstant in the lightcone energg].
theory is organized with respect to the extra supersymmetries Notice that the existence of exttacal Noether currents
as well. corresponding to the new supersymmetries is not an auto-

The branes in the type 1B plane wave can be divided intomatic consequence of the degeneracy of the spectrum. In-

*Email address: dzf@math.mit.edu We call kinematical supersymmetries the supercharges that
"Email address: skenderi@science.uva.nl square to the lightcone momentum, and dynamical the ones that
*Email address: taylor@phys.uu.nl square to the lightcone Hamiltonidplus other charges
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deed, the string states of th&, branes also appear to be cate additional terms which are at least quadratic in the
organized in multiplets of “dynamical supercharges.” How- fields. The remaining transformations have an inhomoge-
ever, these charges are associated withlocalcurrentg2]. neous term
The extra eight supersymmetries Or, branes are com-
pletely new symmetries, unrelated to the closed string sym- 60=B+--, (1.2
metries. They satisfy the standard lightcone superalgebra,
i.e., they square to the lightcone momentum. The extra eighihere 3 is field independent, and the associatedan be
supersymmetries foD_ branes are a combination of the identified with the Goldstone fermion associated with the
corresponding closed string supersymmetries and new trangreaking of supersymmetry.
formation rules. The new supercharges when evaluated on- The probe analysis by construction counts the number of
shell are identical to the corresponding supercharges of thgnearly realized supersymmetries that arise from a combina-
brane at the origin2]. It follows that the corresponding su- tion of target space supersymmetries with kappa symmetry.
peralgebras are also identi¢ab to certainc-number shifts  This does not exclude, however, the possibility that there are
In particular, the new supercharges square to the lightcongxtra nongeneric symmetries when the brane is in particular
Hamiltonian plus rotational charges plug-aumber that has backgrounds. The string theory analysis [ih,2] can be
the interpretation of the energy of an open string in a harviewed as an example of such phenomenon: because of spe-
monic oscillator potential with ends at the constant positiorgja| properties of the backgrouriie., the worldsheet action
of the brane. Thig-number contribution is also the on-shell jg quadratic in fieldsthe worldsheet theory exhibits more
value of an additional worldsheet chafgee Eqs(4.31) and symmetries than in generic situations.
(4.32 of [1]]. The extra linearly realized supersymmetries can be com-
The construction of the extra supercharges crucially useg@letely new symmetries, unrelated to the supersymmetries
the fact that the gauge fixed worldsheet action is quadratic iassociated with target space supersymmetries. Alternatively,
the fields and that the worldsheet is a strip. The former is g the brane in special backgrounds exhibits a new gauge
special property of strings propagating in the type IIB planeinvariance that allows one to gauge away the Goldstone fer-
wave background. The latter indicates that the extension ghion then the corresponding symmetry would be linearly
the extra symmetries to higher genus surfaces is not immeealized. Both mechanisms are suggested by the string theory
diate, and that string interactions may invalidate them. computation in[1]: the former is the analogue of the new
Consistency requires that the string theory and prob&inematical supersymmetries b, branes and the latter is
analysis yield the same results. Recall that the worldvolumehe analogue of the restoration of dynamical supersymme-
theory of D branes captures the low-lying open string exci-tries for D_ branes using worldsheet symmetries. We will
tations and theiflow-energy interactions. In particular, the see that both mechanisms are realized, albeit only at the qua-
spectrum of small fluctuations around tBebrane embed- dratic approximation of the worldvolume theories.
ding should coincide with the zero slope limit of the open  The purpose of this paper is to analyze the issue of world-
string spectrum. As mentioned, the open string spectrum i§olume supersymmetries in detail. Instead of working with
more supersymmetric than the probe analysis implies. It folthe worldvolume theory of the type 1IB branes, however,
lows that the quadratic part of thB-brane action should we will analyze the same issues fdr2 branes for which the
exhibit additional supersymmetries. If string interactions re-worldvolume theory is much simplefsince there are no
spect the extra symmetries then the worldvolume interactiongauge fields The probe analysis for this case has been
should also respect them. Conversely, if we show that th@uorked out in[4] (see alsd5]). The results for supersym-
worldvolume interactions do not preserve the extra symmemetric M2 embeddings are directly analogous to the results
tries then this shqvvs that string interactions do not respegh [3]. Recall that in the maximally supersymmetric plane
the extra symmetries. wave of M theory the transverse to the lightcone coordinates
Recall that the brane worldvolume theories are by Consplit as 3+6. TheM2 branes that wrap the lightcone direc-
struction invariant under target space supersymmetry anflons and one of the three coordinates preserve 16 super-
they also possess a local kappa symmetry invariance. UpQtharges when located at the origin of transverse space but
gauge fixing the kappa symmetry, the target space supersymnly eight when located away from it. These are the ana-
metry turns into worldvolume supersymmetry. The planejogues of D_ branes and we will refer to them ad_2
wave backgrounds we discuss in this paper admit 32 supepranes.M2 branes that wrap the lightcone coordinates and
charges. This means that the worldvolume theory is by congne of the six coordinates preserve no supersymmetry and
struction invariant under_32 fermioni_c symmetries. Howevergre the analogue db . branes. They will be referred to as
at most 16 of them are linearly realized, i.e., they are of thay , 2 pranes. We will see here that their fluctuation spectra
schematic formthe exact expressions are given in the maing,e similar to those of the correspondidg andD . branes.
text) Of course in this case there is no computation correspond-
ing to the string theory analysis [11,2] so strictly speaking
SXA~ T e+t --- 50~THA9 XA+ uTAXPe+- - there is noa priori reason for expecting the worldvolume
theory to exhibit extra supersymmetries. Since the probe
(1.1 computations forM and D branes are similar, we expect
extra supersymmetries at the quadratic level of fluctuations
where € is the supersymmetry parameter and the dots indief the M2 probe action, and our calculations confirm this.

106001-2



WORLDVOLUME SUPERSYMMETRIES FOR BRANES IN . .. PHYSICAL REVIEW B8, 106001 (2003

Conversely our results in Secs. IV and V indicate that the “—et=1 ef=gh ——_1g
: : : - e =e, =1 €=o, €, =730+,
extra supersymmetries fail at the interacting level, and we
expect the same to be true fDrbranes. _
o w+A: - % Gy (2.9

This paper is organized as follows. We review the prop-
erties of the plane wave background in Sec. Il and discus . : e :
the computatiF())n of the gauge f?xed supermembrane action iﬁGm” denotes the spacetime melriche Killing spinors are
Sec. lll. In Sec. IV we consider the spectrum and worldvol-
ume supersymmetries & _2 branes while Sec. V addresses
the same issues fdvl .2 branes. In the discussion section,
Sec. VI, we review our results and comment on the implica-
tions for D branes in type IIB plane waves and for the sta- XeXF‘(
bility of the branes.

1+_(Xara 2XF)F+123)ext{fz +F+—123)

—x+r123> €0 (2.5

wheree, is a constant spinor.
Il. THE PLANE WAVE BACKGROUND

. . IIl. SUPERMEMBRANE ACTION
The maximally supersymmetric plane wave background
of 11-dimensional supergravity [§] The supermembrane actiphO] is
9
ds?=—2dx dx + >, (dx*)2 S=—f d¢ —detg,wf B, (3.9
A=1

where the induced Worldvolume supermetric  ©,,

42 (x)2+2 (x®)2 | (dx*) =I1' 113 7,s andIl!,= 3,ZME}, . HerezM = (X", ¢) are the
coordlnates of the target superspace &hare the worldvol-
(2.)  ume coordinates. The explicit expression Bin the coset

Fi125= = = Cije= — X" €iji background ig7]
where a specific gauge choice for the 3-form gauge gauge 1 1
field C is made. B= gerDeSDetCrst—J dtor E(t)OE"(t) DES(t),
For coset spaces such as the plane wave exact expressions 0 (3.2
for the supervielbein were computed|in] (see alsd8]) :
16 wheret is auxiliary andE(t),E'(t) are obtained from the
n supervielbeins by the shii—té.
E=Do+ E 1 (2n+1)! MD9, This action is invariant under the kappa symmetry trans-
(2.2  formations[10]
15
1
E=e'+ 0" De+22 ZTZ)IGI”M”DH. sZVEy=0, SZVEY=[(1-T)«]?, 3.3
where
Here (r,a) are tangent space vector and spinor indices, re-
spectively, and i, «) are the corresponding curved indices. 1 et
In these expressiofs I'=35 \/—HMH 1L (3.9
DO=do+e T;" OF g+ 1 0"T56, which satisfied’?=1 and Tr(")=0. The action is also in-
variant under superspace diffeomorphisgg” = —KM(2)
which act as
TStw _ 513141 (F?tuu_B(sFSFtuu]), (23)

SEN=KNaNERN + duKNER,
M=2(Trstuw )Fstuv(6I'r)— 1288 ['rs6) SBuno=KgBume + 39K B o, (3.5

The bosonic vielbein and the spin connection are : - :
P whereKM(Z) is a Killing supervector, along with worldvol-

ume diffeomorphisms

Note that we will use here the usual Wess-Zumino.gauge tor the SZM = n,uaﬂzM, 8G,0,= 173,00+ 20,11 -
plane wave superspace, namefy= 5% 6. An alternative choice (3.6)
would be the Killing spinor adapted gauf# 6°=K?% 6* where the
Killing spinors of the curved target space afe=K2e2 with con-  The action also admits other symmetries, such as tensor
stante§ . In contrast to the AdS backgrounds considerefPinthis ~ gauge transformations, but these will not play a role here. To
choice does not appear to lead to substantial simplifications in théeading order the kappa symmetry and supersymmetry trans-
supervielbeins or the worldvolume action. formations of the supermembrane action are
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5.0=(1-T)k, 6X™=—6I'"5,6, (3.7 M_2: x5'=0, T, _,e0=—¢€y, 16 supercharges,
(3.13
S.0=¢, O XM=—€l'mg, (3.8
. . M_2: xé’aﬁo above andl'"e,=0, 8 supercharges,
where € are the Killing spinors of the target space.5). (3.14
Implicit in Egs. (3.3) and (3.5) are corrections to these ex-

pressions which are higher orderdrand can be neglected in M.2: no preserved supercharges. (3.15

what follows.
. It is guaranteed that supersymmetries of the embedding
A. Embeddings are preserved by the kinetic and interaction Lagrangians of
Membrane embeddings are given by solutions of thdluctuations(in both X™ and #) about the static configura-
bosonic field equations of E¢3.1), tions in Eq.(3.10. By construction the embedding SUSY'’s

satisfy §6=0 when #=0. They are therefore realized lin-
1 b um b on " early on fluctuations. The principal question investigated be-
f%(\/—_ﬂ’“ 3,XM) + y*73,X"3, XPT' 1 low is whether there are new linear fermionic symmetries of
Y the fluctuations about displacedl _2 branes andM , 2

1 branes which effectively increase the number of super-
=31 L S\ (3.9  charges beyond those counted in E@13—(3.15.
where y,,=3,X"3,X"Gp,, is the induced worldvolume B. Gauge fixing
metric andI'[,, is the Christoffel symbol of the plane wave  The next step of our investigation requires gauge fixing of
metric. _ . _ ~ both worldvolume diffeomorphisms andsymmetry. We en-
The solutions of interest here have been discussédlin  countered some initially puzzling issues of compatibility of
so our discussion will be brief. These solutions are gauge-fixing conditions with the specific embeddigs.0).
, ) These issues were not known to the previous investigators
M_2: Xt=¢t u={+,—1, XA=xi, A’={i',a}, we consulted, so we will describe them in some detail.
It was shown in[12,13 that the plane wave membrane
M. 2. XE=gh ={+ — 4, XA = A A ={i.a’l, §Ct|on is quadratic in fer_mlons in lightcone gauge, justasitis
* &, n=i ) 0 {i.a’} in flat spacg10]. Here lightcone gauge consists of the con-
310 gitions
where in each cas@&’ runs over directions transverse to the + F_ ot
. =0, X'= . 0,,=0, 0,,=—detg,,,
brane,i’=2,3 anda’=5, ... ,9. P°7 Gm g Gpa
The supersymmetries of branes at the origin vs branes (3.1

displaced along the parabolic “potential” in the transverse

directions are one of the main concerns of this paper. Alnge that these conditions do not entirely fix the worldvol-

though the plane wave space-time is homogeneous, rigiflne diffeomorphisms; the group of area preserving diffeo-
translations in transverse directions are not isometries. S@\orshisms remain

branes atxg =0 andx #0 are not related by symmetry  Given the simplicity of the action in lightcone gauge, this

where (r,aP) with p=1,2 are the worldvolume coordinates.

and are physically distinct. gauge appears at first sight to be the natural choice for us.
The condition for unbroken supersymmetry{ id] However, the embeddings in which we are interested are
degenerate in this gauge. To prove this consider a bosonic

0=25660=€(X)+(1—y*)k(X), (3.1)  embedding and gauge fiX*=p*r. Then the induced

worldvolume metric is
wherey* is I' evaluated at the embedding aads the Kill-

ing spinor of the background evaluated at the embedding. Y= —2p . X"+ (3. XM+ (p)3G, .,

Clearly one can choose(X) to cancel the effect of the (1 (3.17)

—v*)e(X) projection of the Killing spinor, so the condition B

reduces to Yop= P X"+ XA9pXA, ypq= dpX XA,
Y e=—e. (3.12 Now impose the next condition from Ed@3.16, namely

¥-p=0; this condition will determin&™ from the remaining
For M_2 branes,y*=TI", _,, and forM .2 branesy* scalarsX” (see[14] for detail9. The final condition in Eq.
=T, _,. Using the decomposition of the Killing spinors (3.16) is needed to remove the square raot detg,, and
(2.5 into eigenspinors ofy* given in Eqgs.(4.23 and (5.6 give a polynomial action. However, even before imposing
one can easily solve E¢3.12. The situation on supersym- this, one finds
metries of the embeddings in E@®.10 may be summarized
as follows: det(g,,)=9,, detgyy). (3.18
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Since the configurations in E¢3.10 describe branes ex- Given these problems, we choose to work instead with the

tended in K*,X~,XA), there is a single worldvolume direc- Physical gauge, namely* 6= 6, which can manifestly al-

tion X* transverse to the lightcone. The induced brane me ways be reached in the neighborhood of the embedding.

. ! . Given the complexity of the supervielbeins we will work
rics are thus deg(_anerat_e fpr our gmbeddmgs, e~ only to quadratic order in the fermions. Fortunately this turns
=0 and are thus inadmissible in lightcone gauge.

- . out to be sufficient to investigate the question of enhanced
It may seem surprising that these embeddings are degen- 9 q

erate in this gauge, given that they are clearly not degenera eupersymmetry for displaced 2 branes and4 , 2 branes.

in the static gaugX™ = ¢= andX”= ¢, which is necessarily
related to the lightcone gauge by a worldvolume diffeomor- . .
phism (3.6). However, the Jacobian of the transformation It is straightforward to compute the supermembrane

+ . . . , theory on the plane wave supergeometry specified by Eqg.
from (£,&%) to (7,0P) is zero. This follows from imposing ' . .
the conditions (2.2) to quadratic order in the fermions. From E¢®.2) and

(2.3) we obtain

C. Action to quadratic order in fermions

+_ At — _ nt — A A -
£ =p'7 0=—pidpf +9.£9¢, (319 I, = 9,X"e, + 0D, 6+ 0( %), (3.22
which enforceX”=p* 7 andy,,=0, respectively. h

Thus we must give up lightcone gauge for the bosons iynere
favor of the static gauge which is immediate for our embed-
dings. However, we might consider a “hybrid” gauge in
which the bosonic static gauge conditions are combined with _ Tstw . . .
lightcone gauge for the fermion§’{ 6=0). The matrix M and;’r;_Tr dFS“.‘” .trl]:rofm th_|s expression we obtag), , to
vanishes in this gaudd 2] so the supervielbeins in E(.2) quadratic order in the fermions
are quadratic in the fermions. The square rqotdetg,,
will still contain terms up to orde#'®, but the Lagrangian is
still much simpler than for other fermionic gauges. _ Ma vwh . .

However, this hybrid gauge is also singular in the neigh-\’\/her_e Yuv ~‘9"X raVX Gmn i the induced wo.rldvolum_e
borhoods of our embeddings. To prove that a given fermioni¢netric andI'y=e,I", are curved gamma matrices. Using
gauge is admissible one needs to show that there alway§ese results we obtain
exists a kappa symmetry transformation to bring any theta

into this gauge. In the case at hand this requires that S= _f d3¢—dety, dety, ,(1+ y*"9 X”_~0an) 0+0(6%)
y7a% Y73 v
F*[6+(1-T)x]=0 (3.20

D,0=0,0+3,X"(epT,+ im0 (3.23

0=V, +200,X" T D, 0+0(6%,  (3.24

1
admits solutions fok which remove all 16arbitrary) com- +f d¢ va<gclmn‘9hxl‘9uxm‘9vxn
ponents of¢™, whered™=—1T"T76.

Now let I'=y*+ 6" where y* is I' evaluated on the
classical embedding anél” contains field fluctuations; then
y*2=1 and (1+ y*) are projectors of rank 16. For the em-
beddings(3.10, v* isT',_; or I', _,; thus[y*,I'*]=0.
These two facts immediately imply

11—
—EormanoaMxmayxw o6 . (3.29

IV. M_2 BRANES

. We now discuss the case bf_2 branes along+, —, 1).
(1+y*)I'"(6—6l'k)=0. (3.2)  The physical gauge corresponds to

This means that the kappa transformations needed to remove Xk=¢r T, ,0=0, 4.1

the eight components of theta satisfyiptd* = 6" are non-

perturbative in thatc~(SI')"'6". The conclusion is that whereu=(+,—,1). We are interested in both the brane at

the fermion lightcone gauge is singular at the embeddings ahe origin and the brane away from the origin. Recall that the

interest. worldvolume scalars parametrize the transverse position of
The singularity of the hybrid gauge near the embedding ishe brane. To obtain the action for the brane at the origin we

also mamfes_t on gauge fixing within the functlonal Integr"’}I'expand arounokﬁf = #=0, whereas for the brane localized at
When one tries to introduce ghosts for the hybrid gauge fix- ,/

ing one finds as usual that one needs an infinite number dfo We instead expand around; :_Xé , 0=0 whereA’
ghosts for ghosts. Leaving this well-known problem aside,= (i',&) runs over all transverse directions.

one also finds that the leading term in the ghost action is Clearly the action for the brane at the origin is given by
cubic in the fields for 24 out of the 32 ghost componentsEd- (329 and to obtain the action for the brane away from
Thus the ghost action does not admit a traditional perturbathe origin we simply have to shifk”’ by xé . It will be
tive formulation, which is directly connected to the observa-useful to introduce a double grading to count the order in
tion above that the compensating kappa transformation ifluctuations and in the constant positigg. The action and
nonperturbative. variation are then split into terms of definite order and we
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will denote them a§g and 53, where the superscriptde- ~ at constant nonzero transverse position one needs to expand

notes the order of fluctuating fields and the subsagiple-  instead about®’ =x5 . The resulting action to quadratic
notes the order of the constant positions. For instance, therder in the fluctuations is

qguadratic part of the action for the brane at the origin will be
denoted byS3, etc.

To explicitly evaluate the action we need to knﬁyﬁ

andh#’=—dety,,y*".

Shitted™ So+ S5,

1 , _
3 “ 1 S§=—§Af d3(0-X~)2-26"9_6], (4.5
D”0= (9#+(?MB+ 1_2(F23+2r123)_ZC7AG++F_A 5;L+
I T
+ 5T 235, 0, A= Z5(4(x0)*+(x5)?),
h**=-%__, h™'=%,, h7'=%..+G ¥ 1, wherei’ =2,3.
(4.2) Note that Eq.(4.5 can be obtained from Ed4.3) pro-
T vided that in the latteG, , is kept exact. Although terms
T T T I YUT Yk T B Y- (x*")2(9xB")2 are clearly subleadingquartid and do not
—1G2 5 contribute at quadratic order for the brane at the origin they
+4+ V== ’ ! .
do contribute to the quadratic termy )?(4X®")? appearing
- ) B in the action for the shifted brane.
h™ " =—1-3%1-3G.,% _,
B. Interactions
11_q_1 % _lw o
h*=1-2G sy~ 2 ¥ 7+-, We next compute a subset of the interaction terms. For the
5 3 Loa _ brane at the origin there are no cubic interaction terms; the
where — B=pu/6(XT_3=XT'_,=3XT"_53), Yuv  leading order interactions are quartic. The terms quartic in
=(9MXA a,X"", and we have only kept terms quadratic in bosonic fluctuations can be obtained straightforwardly by ex-
fluctuations. panding they— 7. To obtain the terms quartic in fermion
fluctuations one would need to extend the results of Sec.
A. Quadratic action Il C. This is a somewhat tedious computati@which could,
) ) ) ! , however, be done using the results of Secs. Il and Ror-
The action to quadratic order in the fields is tunately, it is sufficient for our purpogas we explain beloyw
1 L to consider only quartic terms that are quadratic in both
Si= —f d3¢ 1+ —y%V)aMxA'anA'JrzerMDMa bosonic and fermionic fluctuations. The Dirac term contribu-
2 tions to these are
+ 2 3_ 3 2 — I
X9, X290 X3— 9, X39_X2)|. 4.3 Sé(D):_f By a0, 0—7, 6,00
wherey(o),,, andT"* are the fluctuation independent part of +(Fe1t Gy YOI 0
the induced metriey,,, and y*"9,X"T";,, respectively. Note +3/,1§(—F*(?1+F1(9+)0

that we takee®™ ~1=1. Notice that the fermion kinetic term
receives a contribution both from the Dirac and the Wess-
Zumino part of the action. The Dirac operator appearing in
Eqg. (4.3 can be written as

1~ Y2 nb 1
+§'}’110(F a_—T (?1)0

- 43 w(y__ 00~ B0+75_,60123)
I*D,=T " d_+T" 9, +I9+ 3G, ,T o 4

1 _
41Tt (4.4) —EGHwy,,e(rlal—F*a,)e

The last term couples the eight physical worldvolume 1 _

spinors, i.e., the S@) part is not diagonal. + 701G+ 06+-). (4.9
The action(4.3) describes fluctuations of a brane located

at the origin in the transverse directions; he@, , =

— 1?9 (x1)2. To describe fluctuations of a brane embeddedThe relevant Wess-Zumino term contributions are
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I A uB Recall that the 169 satisfyI', _;0=6.° Let us further de-
SS(WZ):_J d¢| 5 e or™ = 9,00,X% 9, X compose the fermions into eigenspinorsldf
rto===+6". (4.13

1 _
-1 wd_X39, XPgrzaby
Multiplying Eq. (4.12 by ' T * yields

- a 2 a 2\ g 13 1
+ S (92X _XT= X%, X°) 0T =0 00 =—3ul%_6, (4.14

O where we used the relatiods” 9" =0 andI'” #~ =0. Since
+5(91X°0_X%) 06— 23]+ |, (4.7 T commutes with'>® we can further decomposg™ into
eigenspinors of %,

where the ellipses in both contributions denote terms con-

he 289 _ i
taining (6T *- -+ 6) which are irrelevant in what followéhe I=0.==10.. (4.19
ellipses do not contaiil' 7). We thus obtain

For the brane at nonzero transverse position there are cu-
bic interaction terms. The relevant terms are those which are 06.=%iud_63 (4.16

linear in bosonic and quadratic in fermionic fluctuations:
which is of the same form as the scalar field equatBg). It
ngf dgg( —B[( XA'\2_ 20T+ 0] remains to discus8* components of.. Multiplying the fer-
1 - - mion field equation(4.11) by I'* yields

1 T ! ! —_
+ 5 Bar (9 XAy 0T B g, 90 =—3T"9,0". (4.17)

, (4.8 Providedp™ #0 this equation determine®”™ from 6. Thus

M il ava there are eight independent fermion modes.
B= %(4)(0 X' +%X%), So for both bosonic and fermionic fluctuations we need to
solve equations of the form
2
BB’:IZ_S(4XiO,6i’B’+X86aB’)' DQD:iC(g*(P’ (413
for various values oft. Decomposing into Fourier modes
C. Fluctuation spectrum along the lightconee=exp(p* x~+ip x")¢(x}), this be-
comes
We now use the quadratic actio®3) and(4.5) to work
out the fluctyatlon spectra of the branes. The bosonic equa- [2ptp —L(p*)2ui(xh)2+ ai—A]cp(xl)zo,
tions of motion following from Eqgs(4.3) and (4.5 are (4.19
OX2=0, O¢=—iud_g, (4.9  with
where

2
M o
A=(p")P35 |42 (X)2+ 2 ()| —cp”
O=(—20,9_—G, >+, (4.10 i’ a
— + _ +
and ¢=(X?+iX?3) is a complex scalar. Note that the scalars =2p AH-cp, (4.20

X2 andX?® are coupled by the Wess-Zumino term so one has here thex!’ and @ h ant t i
to diagonalize their equations of motion. Hef@, . = where thex, andX, are the constant ransverse positions

T 2/9(xM) 2+ h e i in Eq.(4. ; abou_t which the brane is fluc_tuating. Recall that the eigen-
foP; ()S:g:]g at ﬁ]]evz)rgi?]A 's given in Eq.(4.5 and is zero functions of the harmonic oscillator satisfy

The Dirac equation is (0§+[1+2n_%(p+)2ﬂz(xl)z])Hn(X1):0_ (4.21)
0=I*D,0=("9_+T"9,+T"9, The Gaussian part of the Hermite function behaves as

exd —tup’(x})?] and decays exponentially. Notice that we

1 + 1 +23
+2G ITd =z ul ™). 41D (ake p*>0. Thus thep~ eigenvalue is determined as

Iterating we get

- - SNotice that in later sections we use the notatibn_,6* =
0=I"D,I'*D,0=06+ 3 (uI'**+3,G, . T*")d_e. + 6~ and in this notation the 16 are thed~ ones. In order to avoid
(4.12 clumsy notation such ag>'* we suppress this superscript below.
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i 1 Notice that the kappa symmetry transformatid8s’) have
p =(1+2ne+AH-7c. (4.22  their own gauge invariance: taking— «x+(1+T)«’, for a
local spinork’(x), leaves the transformation rules invariant.
We gauge fix this invariance by setting = 0.

Demanding that a combined kappa symmetry and super-
symmetry transformation preserves the gauje=0 re-
quires that we choose the parameters such that

The spectra of fluctuations are characterized by thei
(p~,n) eigenvalues for a givep™. From Eq.(4.22 one
finds that the lowegp~ eigenvalues for givep* (i.e., those
for which n=0) for the fluctuations are, respectively,

T=—1¢. 4.2
¢ + %,LL K 2 € ( 5)
6, +iu T_he worldvolume supersymmetry transformations are now
given by
X% AH+ %,u +0
. . 50=e+(1—r)(—%e*),
. e _ (4.26
b i SXN =N o- o~ (1-T)( -3¢ ).

Furthermore raising’] by one unit increases thef eigen- In what follows we will Only be concerned with the transfor-

value byu/3. This analysis shows that the transverse positiorination rules up to terms linear in the fluctuations. The reason
enters the spectrum only as a universal shift in the p~ is that we are only interested in whether the transformation
eigenvalue for all bosonic and fermionic fluctuations. Thusrules contain an inhomogeneous tefwhich means the su-
the brane away from the origin is as supersymmetric as thBersymmetry is nonlinearly realizedr not. Notice that the
brane at the origin, just as in the corresponding computatio§ymmetry ruleg3.7) themselves receive higher order correc-

of D-brane spectra in the maximally supersymmetric typelions in 6, as noted at the end of Sec. lll.
IIB plane wave in[2]. The field dependent’ expanded to leading order about

the embedding is

D. Worldvolume supersymmetry F:F+,1+F+,A,31XA’ +F,1A,(9+XA’ +F1+A/(9,XA'
We now discuss in detail the worldvolume supersymme-

tries of these branes. The emergence of worldvolume super- + 1 G++F_1A,&_XA'. (4.27
symmetry from spacetime supersymmetry on gauge fixing
kappa symmetry was first discussed in detail in the contexThis I' contains all the terms needed to obtain the transfor-
of the four-dimensional supermembrandg 15]. The discus- mation rules to linear order in fluctuations. The resulting
sion here follows closely that dfL6]: we determine which combined transformations are then
combined kappa and supersymmetry transformations leave

the gauge fixed action invariant. S50= %F’U‘FA/(?MXA,E_-F €,
Let us split bothk and € into eigenspinors ofl', _4, (4.28
definingl’, _ ;A" =+\" for any spinor\. The appropriate A A '
- - . . XN =201 €,
splitting of the Killing spinors is
e=¢ +e, wherel'#= y**a,X"e; I, (but only the fluctuation indepen-

dent part contributesande® ande™ are given in Eq(4.23.
Note that these combined transformations do not preserve

the static gaugésince X“= 0I'*e" is nonzerg and thus a

compensating diffeomorphisn8.6) with parametern*=

_ ﬂ(xapa_2Xi’ri’)r+23ew/12)x*F23€g . (423 —0I'*€e" is needed to maintain the gauge. The latter implies
12 further terms in the combined transformatio@s28 which

are, however, always at least quadratic in the fluctuating

fields and can be neglected below.

€ =

1+ %[‘ +23X1> e(M/lz)erFZS,(#,6)X+F12366

+

1+ %F”?’xl) e—(,u/12)x+1"23—(,u/6)x+l"123€a-
1. Symmetries to quadratic order

+ ﬁ(xara_z)(i’Fi’)r+23e—(m12)x*F23€a , Let us now consider the supersymmetries of the quadratic
12 actions, for branes located both at and away from the origin.
In the former case the action is given in E4.3) and in the
wherei’=2,3. latter case in Eq(4.5).
As discussed, we fix kappa symmetry by setting The explicit form of the symmetries follows from substi-
tuting the Killing spinors into Eq(4.28 and keeping terms
0 =0. (4.249  to the appropriate order. This gives
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1“’ ! ’
5560= EWA 9 XM 1+ %r+23x1) 86=2, (Xo+Y)"Hn(0,dY,e). (4.33
n

% e(,L/lz)x+ 23— (uie)x* r12366 +

14 ﬁrugxl) The issue is whether the new transformation rules contain
inhomogeneous pieces or not. If they do then the correspond-
ing supersymmetries will be nonlinearly realized.

Let us now return to our specific case. Notice that to
obtain all terms that are at most linear in fluctuations for the

_ +123_ +1123
w @~ (112X T2 (u/e)x*T 63

il XaFa_ZXi'Fi')r+23e—(m12)x+r23ea , brane away from the origin we need to know certain terms
12 that are higher order in fluctuations for the SUSY variation
(4.29 for the brane at the origin. The only quantities that contain
5(1)XA/=2§FA/ 1+ ﬁl“+23x1 e(,u/lZ)X+F23—(M/G)X+F123€5’ undifferentiatedX”” areG, , and spin-connectiom,” , so
one has to keep track of the dependence on them.

The transformation rules that depend g acquire new
where the subscrigt in the variations] denotes the order of contributions linear in fluctuation but they still contain the
field fluctuations and the superscriptdenotes the order of inhomogeneous term given in E¢.29. These supersym-
the constant positions. Of these transformationsehérans- ~ metries are nonlinearly realized and they will not be dis-
formations are clearly inhomogeneous and nonlinearly realeussed further. The supersymmetries that depene,oare
ized (see second lineThe ¢, transformations are, however, given by
linearly realized; these correspond to the 16 worldvolume . .
supersymmetries of the brane at the origin found in the probe Oshifted™ O T 52+ 82, (4.39
analysis.

Now consider expanding about constant transverse posi-

_ M ara oui il 423, (w/12)x T2 —
tions; the action is given in Eq4.5). The supersymmetry 510= 12Xl "= 2% I "= €0

transformations follow from shifting the field¥”" in the (4.39
previous expressions. To show this explicitly notice that the \
action at the origirs® is of the schematic form 830=— 1 AT A g _xA'e (W12XTT%e - (4.36
where A is given in Eq.(4.5). The 856 term originates from
9= [ 3 xF .00, 4.30 Als gien in B4.(4.3. The 2,6 term orlg
n the term indy6 containingl’ ., =I' ; — 3G, . I'_. The super-

] o symmetry transformation ofA" remains unchanged. Thg
where we suppress space-time indices Er;\cliare €Xpres-  transformations now contain an inhomogeneous piece for
sions that depend of and on derivatives oX* but not on spinors such thal'* e, #0. Thus only eight worldvolume
undifferentiatedk®". In other words we make explicit in Eq. supersymmetries seem to be linearly realized, in agreement
(4.30 the dependence on undifferentiatéf . Similarly the ~ With the probe analysis. .
supersymmetry rules are of the form The analysis so far explicitly confirms general expecta-

tions: the linearly realized supersymmetries are exactly the
ones predicted by Eq3.12. We now show, however, that
SX=2, X"G,(6,dX,€), 86=2, X"H,(6,dX€) for the brane away from the origin and to quadratic approxi-
n " 3 mation in fluctuations the worldvolume theory admits eight
(4.3 additional linearly realized supersymmetries. As discussed
above, the invariance of the action at the origin implies a

for appropriateG, andHy, (e is the supersymmetry param- corresponding invariant for the brane away from the origin,

eten. The explicit form of the lowest ordd¥,,, G,,, andH
can be read off from Eqg4.3) and (4.29 but we will not oLt 894 812+ S2)=0 4.3
need them. We now shift the brane away from the origin by (8o 01+ 62)(Sp+ %) =0. (4.37

setting X=xo+Y, where for clarity we call the fluctuating Thjs |eads to a number of relations obtained by collecting

partY, terms that contain the same number of fields and are of the
same order irxy:
o n
It is simple to show that invariance of E(.30 under Eq. 81S5=0, (4.39
(4.31) implies that Eq.(4.32 is invariant under
5555+ 8355=0, (4.40
BY:En: (Xo+Y)"G,(6,dY,¢€), 5(1) 2_0. (4.41)
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That these relations should hold follows from the general S=S§+ 5§+ 53+ S§+ (4.45
argument given earlier but we have also explicitly verified

them. Equatiori4.38) is the supersymmetry invariance of the where (relevant parts Ofsg and Sf are given in Eqgs(4.6),
brane at the origin. What is important is E@.39 which  (4.7), and (4.8. We have seen in the previous section that
says that the action for the brane at the origin is symmetricgcl’sg:o: 523% Furthermore, it is also true by inspection
by itself under the inhomogeneous symmetry transformatiomnat

7. This follows from the fact that the action for the brane s
shifted away from the origin does not contain a term linear in 615, =0. (4.49

Xq. Furthermore, this symmetry extends to a symmetry of . ) ]
the brane away from the origin, see E4.41). For this to be et us now discusSg. A direct computation shows tha{Sg

true it is crucial that the shifted rules do not contain The IS not zero. In fact the appropriate extension of E437)
invariance of the shifted action undé implies that implies the relation

0 1 22\
Snom= 85+ 63 (4.42 (82S5+ 8651+ 81S5) =0, (4.47)

is also a symmetry of the shifted action by itsfels can also Where the explicit form ob7 (not needed hejdollows from
be verified using Eqg4.38 and(4.40]. This is, however, a €xtending the previous arguments to higher order. One can
homogeneous transformation generated by alkg6 so the verify explicitly that each term in the above is nonvanishing.
quadratic approximation of the worldvolume theory for ~1N€ issue is, however, whether there is an appropriate
brane away from origin admits 16 linear supersymmetries. deformation ofs?,

The invariance of the action undéf is a special case of
the “semilocal” invariance 5=8+, ”53 (4.48

p.q
86=T"x(x"), (4.43 _ ) _ )
for appropriatep and g, that leaves the interacting action

wherey(x*) is an arbitrary spinor that depends onlyoh. invariant. Notice that:S?SE,l contains three fluctuating fields
One may check that the quadratic part of the action is invariand is linear in the constant positions. This means that terms
ant under this transformation. There is also a similar bosonigf the same order as°S; are only produced bysS? and

semilocal” invariance ‘5232 [just as in Eq(4.47)]. In order not to upset the lowest
1
SXA = A (x+) (4.42) order invariancéi.e., the invariance osg) the new transfor-
' ' mation should be at least quadratic in fluctuations. The only

wheref”’(x*) are arbitrary functions at*. This additional ~ Possible deformatiords which leaves invariant the lowest
“gauge” invariance allows one to gauge away the inhomo-order action is3; itself, but such a deformation leads us back
geneous term leading to an additional set of eight linear reto the original supersymmetry variations.
alized supersymmetries. We are thus led to look for a variatiaff such that

These considerations explain why the spectrum of the
shifted brane is as supersymmetric as that of the brane at the ~ ~
origin. Furthermore, oﬁe c}r:m understand the shifted values of 6(1’SS+ 553320‘:’ 5(1)38: By 52{ZM‘:’5€53~0-
p~ for the fluctuations of the former as follows. The struc- (4.49
ture of the superalgebra implies that the anticommutation of
Shom With itself should generat@amongst other terms related where ~ means equality when the lowest order equations
to the rotation chargesa transformation corresponding to hold. We thus obtain that a necessary and sufficient condition
P~. Since{ 5%, 55}~ A and{ 5%, 551 =0 thep™ values for the  for & to be extendible to a symmetry of the leading interac-
brane away from the origin are clearly shifted by a termtions is that6?S; vanishes weakly.

2

proportional toA as we found. Notice thats? does not mix terms with a different number
) of fermions. This means that the variation of termsfrthat
2. Interactions are quadratic irf should vanish separately from the variation

We now turn to the question of whether the extra superof terms quartic in 6. Clearly the terms containing
symmetries are respected by interactions. By constructiodl’ *---6), where the ellipses do not contdifi, are trivi-
the full action is invariant under the symmetries generated bylly invariant underé(l) [because Il ')?2=0]. Thus we only
€o - A sufficient and necessary condition for there to be ameed to examine the remaining terms; this is the reason why
extension of the homogeneous symme#y42 to the full  only these terms were listed in Sec. IV B. Now notice that
theory is hence that the inhomogeneous symmeéftyex-  the structure of the bosonic fluctuation terms in the Dirac and
tends to a symmetry of the interacting theory. In other words\Wess-Zumino part oSé Eqgs.(4.6) and(4.7) respectively, is
there should be a deformation fzﬁﬁ (possibly containing different: the latter is antisymmetric under the exchange of
fluctuating field$ which leaves the action of the interacting two bosons while the former is symmetric. This means that
theory invariant. the two sets of terms cannot mix with each other under the
The action for the interacting theory of the shifted brane iss? variation, except possibly through the use of lowest order
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field equations. The latter, however, are diagonalXér(a ~
=4,...,9). It follows that a necessary condition for the D,.0=
extension ofﬁ‘l) (and thus of the extra supersymmetyiggo

Mo t123 12
9t 0B+ | (I 71521

a symmetry of the leading interactions is that #jevariation 3G T s — il‘ r+izs g
of the terms in Eq(4.6) that do not depend oX? and X3 4OACHHE A Cut ot 4 na| 7
vanishes weakly.
Explicit computation yields (5.
, where a’'=5,...,9 and  B=pu/6(XT 1%
8Sp= —J d*E@x'T (92 X0 ™ +910-XT') 6X? —1xa'T+12®")  gypstituting these expressions into the ac-

tion one finds the following action to quadratic order:

1
+ S I OXY T (79 +1191) 0 1 N —
32:—f dgf(l"' EVfLoﬁayxA d,XA +20r#‘9,u0)'
—g_XaOXa[ (I~ +T1Y)0), (4.50 (5.2)

wherey is defined bys}6=I"x, 516 is given in EQ(4.35,  yhereA’ labels the eight transverse scalars angl,., and
andy’ = (0, + ul4l'?® x. The last line is proportional to the =

/2 i :
lowest order field equations. To check whether the term inl(; oualri(ra\ asofgn;/heen fflcl)Jrctt:;Tc;nzs ?gart]ﬁé I\l!)(z)atcekﬂ;shrtxzerlgalrsngr? d-
the first line is a total derivative up to lowest order field piing 9

equations we use the lemma that a term is a total derivativgamond(RR) flux to quadratic order. This leads to a degen-

of a local field if and only if its Euler-Lagrange derivatfve €racy in the spectrum; the equations of motion are

with respect to all fields vanishd$or a proof see, for in- N ~

stance, Sec. 4.4 dfl7]). One finds by inspection that the OX* =0, T'*9,6=0, (5.3
Euler-Lagrange derivative with respect #ds nonvanishing _ . ) _

(even when the free field equations Holwe therefore con- @nd thus following the previous analysis one finds that all
clude that the variationSﬁSé does not vanish weakly and eight physical bosons and fermions have a ground state en-

1 : ) : .
thus that the extra supersymmetries are not respected by ifit 9y Of AH +5u. As previously adyertlsed this spectrum is
teractions. akin to that of theD , branes considered ir,2].

The target space supersymmetries are realized to this or-

V. M.2 BRANES der on the brane as

-2
(+, —, 4) and compute the action to quadratic order in fer- (5.4
mions in the physical gaugg, . _,6=46. One can use the
general expression given in Sec. Il, along with explicit ex-where the relevant splitting is nolv, _,e* = + ¢*. Decom-
pressions posing the Killing spinors one finds

+_ Lo Ll
€ —(C05<6X )CO{:LZX

_ B
12"

We consider in this section @ , 2 brane oriented along 50=L1THTA 9, XN e +e, oXN=20I"¢,

|
-T4 sin(%x*) sin(lﬂzx*)
(xaT? - 2xiri)r123cos( X
Fm{ —sin(%x*) cos(%x*

a'ra’ _ oyipivein Fowt | 47123 00d X+
x*r 2x1")sm(12x) xT CO{lZX)

Ladyns +
2% ) )60

4 Moo oo+
+T cos(Gx )sm(lzx )

+ x4 sin(

+

_ B
12"

)65 55

and

“The Euler-Lagrange derivative of a local functibis defined assf/sp=oflap—a,[f1d(d,P)]+---.
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_r12d ainl o+ Mo 4ond o ainl 2ot
r 3{sm(esx cos(lzx +T cos(Gx )sm(lzx )

(xa'Ta’ — 2xi1"i)sin(£x+) —x4F123cos< Lae’

12 12
cos( 6 X )cos( X

a'al_ oyipin123 Ladpont
x* T 2x'T'HI° cos(lzx

€ =

Mo
+12F

+

+

dcinl P ot | ainl 2oyt
+T SIH(GX )sm(lzx)

_ B
12"

+x4sin(1ﬁ2x+) )60 . (5.6

The splitting indicates that all 32 target space supersymmewhich can only be satisfied for som# (to be determined
tries are realized nonlinearly regardless of the brane locatiomrovided that5°S®~0 up to terms which vanish on-shell
this follows from the inhomogeneous first terms in the firstwith respect to the lowest order field equations.
and third lines ofe™ ande™. However, 5°S® contains the term

Unlike the case studied in the previous section, we do not
find in this case extra symmetries that can be used to remove 3 1 3= aab' 123 — b o
the inhomogeneous parts of the transformations. Further- 6°S :_Eﬂf dv¢gfor €0 (94X 9_X*)+--].
more, the spectrum suggests that the supersymmetries of the (5.10
M ,2 branes should not be directly related to the Killing
spinors. This follows from the fact that the symmetries of th

) ) _ "CThis is the only term in the variation which contains bith
spectrum manifestly commute with the lightcone Hamil-

b’ H ’ ’ ;

tonian, according to the degeneracy found above, while thémdx | (with b #ha ) and ttr:us c'annot'cr?ncel agalnsltdother
target space supercharges do not commute with the Iightcorjfsrms' tcannot, however, be written either as a total deriva-
Hamiltonian[18,19. Also in the corresponding string analy- UV OF as a term proportional to the lowest order field equa-
sis in [1,2] the restored kinematical symmetries were notlonS: which can be most easily seen using the Euler-
directly related to the target space kinematical symmetries.Lagra”ge test of the previous section, and thus it violates the

These considerations lead us to the following homogeSYMMetry.
neous symmetries of the action

VI. DISCUSSION

5P0= ET‘MFA’a XA € SOXA’ :zgrA’Ea . (5.7 We have studied in this paper the worldvolume supersym-
2 a metries forM2 branes in the maximally supersymmetric
plane wave background of M theory. By construction, the
where the constant parametej satisfiesI'*e, =0. This M2 worldvolume theory has as many supersymmetries as
gives eight linearly realized symmetries irrespective of thethe background. However, only a subset of them are linearly
brane location. Note also that these symmetries are directlfealized. We explicitly constructed all worldvolume super-
analogous to the restored kinematical symmetries ofxhe symmetries using standard methods and found results in
branes discussed [A,2]. agreement with the probe analysis, i.e., the number of lin-
To determine whether interactions respect these symmesarly realized supersymmetries matched the probe results.
tries one needs to compute the action to next order. In this We showed, however, that the quadratic approximation to
case there are cubic interaction terms given by the worldvolume theory admits additional linearly realized
supersymmetries. In the caseMf 2 branes localized away
1 — _ from the origin this came about by the use of an extra
83=§,uf d3¢(a9_X2 ora 1239—o_X'oI,I'*1%% “semilocal” invariance that the quadratic action possesses.
This “gauge” invariance allows one to gauge away the in-
— homogeneous term from certain supersymmetry rules, thus
_0-'4X|0Fir+1236)_ﬂJ’ d3ex* er?(9,X'9,X?9,X%).  providing eight additional linearly realized supersymmetries.
In the case ofM .2 branes the additional supersymmetries
(5.8 were completely new symmetries, unrelated to target space
supersymmetries. In both cases, we explicitly computed the
Now suppose that the symmet(.7) can be extended to the spectrum of small fluctuations and showed that it is orga-
full action. This implies that there is a transformatiéh  nized into multiplets of the additional supersymmetries. In

=%+ 8"+ -+ such that both cases we showed that the new supersymmetries are not
respected by the worldvolume interactions.
8983+ 81s?=0, (5.9 This investigation was motivated by the analysigfi2,3]
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of D branes on the maximally supersymmetric plane wavdions the quadratic part of the worldvolume theory admits
background of type IIB string theory. The probe analy8fs more supersymmetries and the spectrum is more supersym-
leads to results analogous to those b2 branes. Moreover, Metric than one would naively expect. It seems likely that
as in the cases studied here the open string spectrum appet§re is corresponding supersymmetry enhancement in other
to be organized by more supercharges than given by thap-wave backgrounds, given the similar generic form of the

probe analysis. Corresponding additional exceptional supeh'”'ng spinors.
charges were constructed fi,2] as additional Noether . Since interactions do not respect the extra supersymme-
9 ' tries, the masses of the states are expected to be split by

charges. The _additional .fermionic symmetries depend ClUguantum corrections. As masses are mapped to conformal
cially on special properties of the plane wave backgroundjimension in the gravity/gauge theory correspondence this
and the fact that the string worldsheet was considered to bewgould translate into a prediction for anomalous dimensions.
strip.

The results if1,2,3] imply that theD-brane worldvolume ACKNOWLEDGMENTS
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suggest that the extra symmetries in the case bfanes are APPENDIX: CONVENTIONS

not respected by string interactions and one could verify this The gamma matrices satisfy",I'S} = 27,5 where 7, is
by repeating the computation described here for the worldthe tangent space metric. They can be taken to be real in the
volume theory ofD branes. Majorana representation. Gamma matrices with multiple in-

An interesting question is whether the branes studied herdices denote antisymmetrized products with unit strength.
as well as the correspondirig branes in the type IIB plane The Dirac conjugate is defined by=iy'T'° for a generic
wave are stable. Consider the casédD _ branes localized spinor . HereI'? is the charge conjugation matrix which
away from the origin. These branes have the same mass degatisfies [°)'=—I'°. An important property of gamma ma-
sity as the corresponding branes at the origin, i.e., the worldtrices inD =11 is that the matrix'°I", ..., is symmetric for

I ‘e 1 p
volume {/—dety is independent of the position of the brane, p=1,2,5 and antisymmetric fgr=0,3,4 (the casep>5 are
and there is no classical force that acts on them. Howevefg|ated by duality to thege
their excitations have an excess of energy that depends on a ;seful explicit basis for gamma matrices in terms of
the position of the brane. This suggests that the brane W”i‘SO(2,1)>< SO(9) matrices is
emit the extra energy and recoil to the origin. In the case of
D branes a possible decay channel is via emission of closed t=yTry, I'l=yley, A = 1,® yA’, (A1)
strings® Since the position of th® brane is arbitrary one L
may consider the brane localized very far from the origin sotith y'=a°, v2y*=(io®+ "), and
that the excess energy is very large and semiclassical meth- 0 A
. o 1 0

ods may be applicable. A _ y=< 8 ) (A2)

It would be interesting to understand under which condi- (c®Ht 0 ' 0 -1

Here theyA' form a real representation of $&). With these
SWe thank J. Maldacena for discussions about this point. choicesI', _;=1,®y. Note thatv2l'*=(I'°+ 19,

[1] K. Skenderis and M. Taylor, “Open strings in the plane wave [9] R. Kallosh, “Superconformal actions in Killing gauge,”
background I: Quantization and symmetries,” hep-th/0211011. hep-th/9807206; P. Claus, Phys. Rev58 066003(1999.
[2] K. Skenderis and M. Taylor, J. High Energy Phy¥, 006  [10] E. Bergshoeff, E. Sezgin, and P. Townsend, Phys. Leit8®

(2003. 65 (1987; Ann. Phys.(N.Y.) 185 330(1988.

[3] K. Skenderis and M. Taylor, J. High Energy Phys, 025 [11] E. Bergshoeff, M. Duff, C. Pope, and E. Sezgin, Phys. Lett. B
(2002. 199 69 (1987.

[4] N. Kim and J.-T. Yee, Phys. Rev. 87, 046004(2003. [12] K. Dasgupta, M. Sheikh-Jabbari, and M. Van Raamsdonk, J.

[5] J. Mas and A. Ramallo, J. High Energy Phgs, 021 (2003. High Energy Phys05, 056 (2002.

[6] J. Kowalski-Glikman, Phys. Letl34B, 194 (1984. [13] K. Sugiyama and K. Yoshida, Nucl. PhyB644, 113 (2002.

[7] B. de Wit, K. Peeters, J. Plefka, and A. Sevrin, Phys. Lett. B[14] M. J. Duff, T. Inami, C. N. Pope, E. Sezgin, and K. S. Stelle,
443 153(1998. Nucl. Phys.B297, 515(1988.

[8] B. de Wit, K. Peeters, and J. Plefka, Nucl. Phi3&32 99 [15] A. Achlcarro, J. Gauntlett, K. Itoh, and P. Townsend, Nucl.
(1998. Phys.B314, 129(1989.

106001-13



FREEDMAN, SKENDERIS, AND TAYLOR PHYSICAL REVIEW D68, 106001 (2003

[16] R. Kallosh, Phys. Rev. b7, 3214 (1998; Nucl. Phys. B [18] P. Chrusciel and J. Kowalski-Glikman, Phys. Lettt9B 107

(Proc. Supp). 68, 197 (1998. (1984).
[17] G. Barnich, F. Brandt, and M. Henneaux, Phys. RR§8 439 [19] J. Figueroa-O’Farrill and G. Papadopoulos, J. High Energy
(2000. Phys.08, 036 (200)).

106001-14



