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Nonequilibrium evolution of correlation functions: A canonical approach
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We study nonequilibrium evolution in a self-interacting quantum field theory invariant under space transla-
tion only by using a canonical approach based on the recently developed Liouville–von Neumann formalism.
The method is first used to obtain the correlation functions both in and beyond the Hartree approximation, for
the quantum mechanical analogue of thef4 model. The technique involves representing the Hamiltonian in a
Fock basis of annihilation and creation operators. By separating it into a solvable Gaussian part involving
quadratic terms and a perturbation of quartic terms, it is possible to find the improved vacuum state to any
desired order. The correlation functions for the field theory are then investigated in the Hartree approximation,
and those beyond the Hartree approximation are obtained by finding the improved vacuum state corrected up
to O(l2). These correlation functions take into account next-to-leading and next-to-next-to-leading order
effects in the coupling constant. We also use the Heisenberg formalism to obtain the time evolution equations
for the equal-time, connected correlation functions beyond the leading order. These equations are derived by
including the connected four-point functions in the hierarchy. The resulting coupled set of equations form part
of an infinite hierarchy of coupled equations relating the various connectedn-point functions. The connection
with other approaches based on the path integral formalism is established, and the physical implications of the
set of equations are discussed with particular emphasis on thermalization.
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I. INTRODUCTION

In the past few years, a lot of attention has been focu
on the investigation of classical and quantum fields evolv
out of equilibrium. Such interest is physically well motivate
because the very early history of the Universe provides m
scenarios where nonequilibrium effects may have played
important role. The reheating of the Universe after inflati
@1#, the formation and growth of domains in any gene
spontaneous symmetry breaking phase transition@2#, the for-
mation of topological defects@3–8#, and the possible forma
tion of a quark-gluon plasma during the deconfinement tr
sition or disoriented chiral condensates during the ch
phase transition@9# are just some instances where the pro
understanding of the physical process may crucially dep
on our understanding of nonequilibrium quantum fields. T
experimental accessibility of some of these phenomena, s
as the formation of a quark-gluon plasma, made poss
through heavy-ion colliders at the BNL Relativistic Hea
Ion Collider ~RHIC! and CERN Large Hadron Collide
~LHC!, has also been a strong motivating factor behind
revival of interest in nonequilibrium evolution of quantu
fields. The development of new theoretical techniques
the availability of more efficient computational resourc
have also made it possible to investigate in some detail
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nonlinear effects which play such a crucial role in the ev
lution dynamics.

Another important issue in this context is that of therm
ization in closed quantum systems. Is it possible for mac
scopic irreversible behavior to manifest itself starting fro
microscopic reversible~unitary! quantum dynamics@10–
13#? In other words, would it be possible for a closed qua
tum system to thermalize when it is perturbed from its init
thermal state? Can the process of thermalization be
equately described within the mean field description? If n
what is the role of interactions~nonlinearities! in bringing
about thermalization? Is it possible to develop a consis
theoretical framework to address these important issu
Some of these questions have only recently begun to be
dressed using newly developed theoretical tools for dea
with nonequilibrium quantum fields@10–15#.

Until recently, the issue of thermalization of a close
quantum system was typically addressed by a separatio
the system into a subsystem made up of the nonthermal
modes~with longer thermalization time scales! and an envi-
ronment consisting of the thermal hard modes~which ther-
malize on much shorter time scales compared to the
modes! @10–12#. The subsequent interaction between the s
modes and the environment~often treated stochastically!
leads to the eventual thermalization of the subsystem m
up of soft modes. Mean field theory~Hartree approximation!
has also been extensively and successfully used to study
dynamics of nonequilibrium quantum fields@16–19# and has
yielded valuable insights into the early-time dynamical b
havior. However, since the mean field~Hartree! approxima-
©2003 The American Physical Society14-1
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tion is essentially a linear approximation, it fails to correc
capture long-time dynamical behavior where nonlinear
fects play a dominant role. Moreover, in the mean field
proximation, the different field modes interact with a sp
tially homogeneous mean field with equal strength a
therefore the effects of direct scattering~which is responsible
for redistribution and eventual equipartition of energy amo
different modes! are neglected. Hence thermalization of t
system cannot be achieved@13,15#. Recently, there have
been some attempts@20,21# to explore the possibility of ther
malization within the mean field scheme by considering s
tially inhomogeneous mean fields. The motivation was to
if the scattering of the fluctuation modes with the modes
the inhomogeneous mean field aids in thermalization. Sa
Smit, and Vink@20# proposed a density matrix describing a
ensemble of pure Gaussian initial states. By defining
mean field to be an ensemble average over a set of Gau
density matrices, and considering the interaction between
quantum fluctuation modes and the inhomogeneous m
field, they showed that approximate thermalization is o
served over intermediate time scales in the sense of par
distribution of low-momentum modes approaching a Bo
Einstein form for a spontaneously broken theory. For lo
times, the particle distributions were found to tend towar
classical Boltzmann form. However, in a contrasting stu
Bettencourtet al. @21# showed that by considering the dy
namics in the presence of a spatially inhomogeneous m
field, butwithout ensemble averaging over a certain class
initial conditions, the Hartree approximation fails to establ
a thermal Bose-Einstein~BE! particle distribution even a
late times. In a more recent paper@22#, Salle and Smit
pointed out that the energy densities used in the simulat
of @21# were not large enough to ensure even approxim
thermalization in the BE sense over the time scales obser
They found that by choosing a large enough energy den
and a different set of initial conditions, BE behavior w
exhibited by the low-momentum modes at intermediate ti
scales, even for a symmetric theory. However, even the
proximate thermalization time scale was much larger in co
parison to that of a spontaneously broken theory. In non
these works was quantum thermalization observed for
modes and all energy densities, over the time scales
served.

In order to understand the complicated process of th
malization of closed quantum field systems, one needs to
beyond the mean field~Hartree or leading order large-N)
approximation schemes. This has been attempted recent
many different groups@13–15,23,24#. More recently, time-
reversal invariant equations for correlation functions of no
equilibrium scalar fields have been derived@13# based on a
three-loop expansion of the two-particle irreducible~2PI! ef-
fective action@25,26#. This method has also been extended
O(N) symmetric field theories by carrying out a systema
1/N expansion of the 2PI effective action. The three-lo
approximation~for the single real scalar field case! and the
next-to-leading-order~NLO! expansion for the O(N) model
incorporates the effect of direct scattering and shows pr
ising evidence of late-time thermalization. A detailed ana
sis of the nonequilibrium dynamics shows the evidence
10501
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three distinct temporal regimes@13# characterized by an
early-time exponential damping, an intermediate hydro
namic regime, and a late-time regime manifest through
ponential approach to thermal equilibrium. An alternative a
proximation scheme has been developed by Cooper
collaborators focusing on resummation methods based on
exact Schwinger-Dyson equations@15#. This scheme, called
the bare vertex approximation scheme~first studied by Kra-
ichnan@27#! involves obtaining the exact Schwinger-Dyso
equations and then neglecting the vertex corrections. All
methods discussed above are based on path-integral
niques within the Keldysh-Schwinger closed time path f
malism@28#, and the basic dynamical equations can be qu
complicated to derive.

Our main aim in this paper is to make use of canoni
formalism to study the nonequilibrium evolution of quantu
fields. The Liouville–von Neumann~LvN! formalism was
first applied~within the Hartree approximation scheme! to
study the early-time growth of domains during a quench
second order phase transition@29#. The LvN formalism
which solves directly the quantum LvN equation, is anoth
quantum picture@30,31# in addition to the Schro¨dinger and
Heisenberg pictures. Further, it is shown that the LvN f
malism provides a convenient and powerful method for a
lyzing nonequilibrium systems such as time-dependent os
lators @30–32# and quenched phase transitions@29,33–35#.
We use this formalism to obtain the Gaussian vacuum
thermal evolution equations in the Hartree approximati
We develop a method for obtaining the improved vacu
state and explicitly show how to obtain equations for the fi
and second order coefficients which lead to the improv
vacuum state correct toO(l2). We then derive expression
for the two-point functions by taking the expectation value
products of field operators with respect to this improv
vacuum state. This method clearly indicates that n
Gaussian effects first make their appearance atO(l2).

An alternative canonical approach based on the Heis
berg formalism is then employed to obtain a set of noneq
librium evolution equations for the correlation functions. A
ter clarifying the relation between the LvN formalism an
the Heisenberg picture, we take the vacuum expectation
ues of the Heisenberg equations for all possible combinat
of products of field operators and obtain a hierarchy
coupled equations for the ordinaryn-point correlators. To
obtain the dynamical equations for the connected equal-t
correlators beyond the leading order, we make use of
method of cluster expansion, which allows us to express
ordinaryn-point correlators in terms of their connected cou
terparts. This method provides an alternative nonperturba
approach for going beyond the mean field approximation.
compare our results with those obtained in the literature
ing other methods@24,36#. In this context we consider two
recent approaches used to obtain the evolution equation
the partition function@36# and correlators in a quantum me
chanical model discussed by Ryzhov and Yaffe~RY! @24#.
We show that the canonical approach used in this pa
yields the appropriate evolution equations, and thereby
tablish a connection between various approaches for obt
4-2
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ing the nonequilibrium evolution equations forequal-time
correlation functions.

The paper is organized as follows. In the next section
briefly outline the Liouville–von Neumann formalism whic
will be subsequently used to study the nonequilibrium d
namics of the correlation functions in and beyond the Hart
approximation. In Sec. III, we describe in detail a quantu
mechanical model of anharmonic oscillators and use the L
formalism to obtain the evolution equations for the vacu
and thermal correlation functions in the Hartree approxim
tion. In Sec. IV, we develop the LvN formalism to study th
non-Gaussian dynamics of the quantum mechanical an
monic oscillator model. This section sets the stage for
application of the LvN formalism to study non-Gaussian d
namics in the more complicated field theory model. The
sue of stability of the LvN method, in the context of th
anharmonic oscillator, is discussed in Sec. IV B. In Sec.
the evolution equations for anonlinearself-interacting scalar
field theory are first derived in the Hartree approximatio
both for the nonequilibrium as well as for the thermal eq
librium case. Nonequilibrium evolution beyond the leadi
order is discussed in detail Sec. VI which contains the m
important results of this paper. The LvN formalism is used
investigate nonequilibrium dynamics beyond the leading
der in Sec. VI A. In Sec. VI B, we make use of the Heise
berg formalism to obtain a hierarchy of nonequilibrium ev
lution equations for the connectedn-point functions. A
comparison between our approach and other methods us
the literature is carried out in Sec. VII. Section VIII contai
a summary of our main results and a discussion of the ph
cal implications of the results in the context of issues l
thermalization in quantum field theory and phase transitio
The method of cluster expansion@37# is outlined in Appen-
dix A, where we also write down the set of equations for t
connected correlators in configuration space. The equ
lence between the RY method and the LvN formalism
established in Appendix B.

II. LIOUVILLE –VON NEUMANN PICTURE
FOR TIME-DEPENDENT SYSTEMS

The systems under study in this paper have Hamiltoni
whose coupling constants~parameters! depend on time ex-
plicitly. These systems describe nonequilibrium processe
the sense that the Hamiltonians do not give the correct d

sity operatorse2bĤ(t)/ZH . To properly find the Hilbert space
and density operators for such time-dependent systems
have to clarify the picture of the quantum evolution. Let t
Hamiltonian be defined in terms of the Schro¨dinger operators
for a quantum mechanical system

Ĥ~ t !5Ĥ~ p̂S,q̂S,t !, ~1!

and for a quantum field theory

Ĥ~ t !5Ĥ~p̂S,f̂S,t !. ~2!

Here the systems depend on time only through tim
dependent coupling constants~parameters!. In addition to the
10501
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well-known Schro¨dinger, Heisenberg, and interaction pi
tures there is another picture for such nonequilibrium s
tems@30,31#.

First, in the Schro¨dinger picture, the~functional! Schrö-
dinger equation~in units of \51)

i
]

]t
uC~ t !&5Ĥ~ t !uC~ t !& ~3!

has the exact quantum state

uC~ t !&5Û~ t !uC&S ~4!

determined by the unitary evolution operator

i
]

]t
Û~ t !5Ĥ~ t !Û~ t !. ~5!

For the time-dependent case, in contrast with the tim
independent case, it is not easy to find the evolution opera
which is formally defined as

Û~ t !5T expF2 i E t

Ĥ~ t8!dt8G , ~6!

whereT denotes the standard time-ordered operator. Sec
the Heisenberg operators

ÔH~ t !5Û†~ t !ÔSÛ~ t ! ~7!

satisfy the Heisenberg equation of motion

i
]

]t
ÔH~ t !1@ĤH~ t !,ÔH~ t !#50, ~8!

whereĤH(t) is the time-dependent Hamiltonian Heisenbe

operator. The Heisenberg operatorĤH(t) is simply given by
replacing the Schro¨dinger operatorsp̂S and q̂S by p̂H(t) and
q̂H(t) in Eq. ~1! and p̂S and f̂S by p̂H(t) and f̂H(t) in Eq.
~2!. However, the explicit form of p̂H(t),q̂H(t) and
p̂H(t),f̂H(t) requires either the exact knowledge of the ev
lution operator~6! in advance or the solution to Eq.~8!.
Third, we may introduce the Liouville operators

ÔL~ t !5Û~ t !ÔSÛ
†~ t !. ~9!

Thus the Liouville operators evolve the Schro¨dinger opera-
tors backward in time@38#. It follows then that the Liouville
operators satisfy the quantum LvN equation

i
]

]t
ÔL~ t !1@ÔL~ t !,Ĥ~ t !#50. ~10!

We can show that any eigenstate of the Liouville operato

ÔL~ t !uCl ,t&5luCl ,t&, ~11!

wherel is the eigenvalue of the corresponding Schro¨dinger
operatorÔS, satisfies the Schro¨dinger equation~3!. In fact, it
follows that @30#
4-3
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SENGUPTA, KHANNA, AND KIM PHYSICAL REVIEW D 68, 105014 ~2003!
uC~ t !&5(
l

ClexpH i E dt^Cl ,tuF i
]

]t
2Ĥ~ t !G uCl ,t&J

3uCl ,t& ~12!

where theCl’s are constants.
The essential idea of the LvN method@29–33# is that the

quantum LvN equation provides all the quantum and sta
tical information of nonequilibrium systems. Technically, t
linearity of the LvN equation allows any functional of a
operator satisfying the LvN equation to be another opera
Thus we may use some suitable operatorÔL(t) to define the
density operatorr̂(t)5e2bÔL(t)/ZO for the time-dependen
system, providedÔL(t) satisfies the LvN equation. In thi
sense the LvN method unifies quantum statistical mecha
with quantum mechanics. The LvN method treats the tim
dependent, nonequilibrium system exactly in the same w
as the time-independent, equilibrium one. Moreover,
LvN method can be applied to nonequilibrium fermion sy
tems with a minimal modification@39#.

III. ANHARMONIC OSCILLATOR IN THE HARTREE
APPROXIMATION

As a precursor to the investigation off4 field theory, we
apply the LvN method to a simple quantum mechani
model of anharmonic oscillators

Ĥ5
1

2
p̂26

v2

2
x̂21

l

4!
x̂4 ~13!

and derive the evolution equations for the coherent state
pectation value of position and momentum variables as w
as the subtracted two-point correlators. The anharmonic
cillator with the lower sign is a quantum mechanical an
logue for the second order phase transition. All the tim
dependent operators in Secs. III, IV, and V will deno
Liouville operators, whose subscript L will be dropped.

The main idea behind the LvN method is to require t
pair of invariant operators@32,40# defined as

â~ t !5 i @u* ~ t ! p̂2u̇* ~ t !x̂#, â†~ t !52 i @u~ t ! p̂2u̇~ t !x̂#
~14!

to satisfy the LvN equation, i.e.,

i
]â

]t
1@ â,Ĥ~ t !#50, i

]â†

]t
1@ â†,Ĥ~ t !#50. ~15!

Here u(t) and u* (t) are auxiliary variables in terms o
which the two-point correlators will be expressed. The
variant operators may be made the annihilation and crea
operators satisfying the standard commutation relation
equal times

@ â~ t !,â†~ t !#51, ~16!

which leads to the Wronskian condition

u̇* ~ t !u~ t !2u* ~ t !u̇~ t !5 i . ~17!
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All the other commutation relations vanish:

@ â~ t !,â~ t !#5@ â†~ t !,â†~ t !#50. ~18!

Equation ~14! can be inverted to express the position a
momentum operatorsx̂ and p̂ in terms of the annihilation
and creation operators as

x̂~ t !5u~ t !â~ t !1u* ~ t !â†~ t !,

p̂~ t !5u̇~ t !â~ t !1u̇* ~ t !â†~ t !. ~19!

The coherent state is defined either as the eigenstate ofâ(t)

â~ t !ua,t&5aua,t& ~20!

with a complex eigenvaluea or as the displaced state of th
vacuum state given by

ua,t&5D̂†~a!u0,t&5e2a* a/2(
n50

`
an

An!
un,t&, ~21!

whereD̂ is the displacement operator

D̂~a!5e2aâ†(t)1a* â(t). ~22!

The coherent state can also be found using the variatio
principle @41#.

The coherent state then leads to the expectation value
x̂, p̂, x̂2, and p̂2:

x̄[^a,tux̂ua,t&5au~ t !1a* u* ~ t !,

p̄[^a,tu p̂ua,t&5au̇~ t !1a* u̇* ~ t !,

^a,tux̂2ua,t&5 x̄21u* ~ t !u~ t !,

^a,tu p̂2ua,t&5 p̄21u̇* ~ t !u̇~ t !. ~23!

The subtracted two-point correlators@24# defined below are
then given by

gxx~ t !5^x̂2&2 x̄25u* ~ t !u~ t !,

gpp~ t !5^ p̂2&2 p̄25u̇* ~ t !u̇~ t !,

gxp~ t !5^x̂p̂&2 x̄p̄5u̇* ~ t !u~ t !,

gpx~ t !5gxp* ~ t !5u* ~ t !u̇~ t !, ~24!

from which we obtain the evolution equations for the tw
point correlators,

ġxx~ t !5gxp~ t !1gpx~ t !,

ġpp~ t !5ü* ~ t !u̇~ t !1u̇* ~ t !ü~ t !,

ġxp~ t !5ü* ~ t !u~ t !1u̇* ~ t !u̇~ t !. ~25!
4-4
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A. Correlation functions in coherent state

The expectation value of the Hamiltonian with respect
the coherent state~20! leads to an effective Hamiltonian

Heff[^Ĥ&cs5
1

2
p̄26

v2

2
x̄21

l

4!
x̄41

1

2
gxx

(2)S 6v21
l

2
x̄2D

1
3l

4!
gxx

(2)21O~l3!. ~26!

The auxiliary fieldu(t), after differentiating Eq.~15! with
respect tox̂ and taking the coherent state expectation val
satisfies the equation

ü~ t !6v2u~ t !1^a,tu
d2Ĥ

d x̂2
ua,t&u~ t !50, ~27!

as does its complex conjugateu* (t). Inserting the expecta
tion values obtained in Eq.~23! into Eq.~27!, one obtains the
equation for the complexu(t),

ü~ t !1F6v21
l

2
x̄21

l

2
u* uGu~ t !50. ~28!

Using the above equation and the definition Eq.~24! of the
subtracted two-point correlators, we get the followi
coupled set of evolution equations for the subtracted tw
point correlators:

ġxx~ t !5gxp~ t !1gpx~ t !,

ġpp~ t !52S 6v21
l

2
x̄2D ~gxp1gpx!1O~l2!,

ġxp~ t !5gpp2gxxS 6v21
l

2
x̄2D1O~l2!. ~29!

It is important to note that these equations are correct only
to O(l2) except for the first one, which is exact. This is d
to the quartic term appearing in the potential, unlike the c
of the simple harmonic oscillator where the quadra
~Gaussian! form of the Hamiltonian leads to the vanishing
all correlators greater than second order. In this case, ev
one starts from a Gaussian state peaked atx̄50 for which all
the correlators greater than second order vanished, the
sequent evolution of the coupled set of equations would
duce the appearance of nonvanishing values for higher o
correlators atO(l3) and higher@24#. This will be discussed
later when we obtain the evolution equations for af4 field
theory beyond the leading order.

B. Correlation functions in thermal state

For the case of the anharmonic oscillator in an initial th
mal equilibrium with the positive sign for the unbroken sym
metry, the evolution equations for the auxiliary variable a
the two-point correlators up toO(l2) can be obtained by
taking the expectation value with respect to the coher
thermal state:
10501
,

-

p

e

if

ub-
-
er

-

d

nt

r̂CT5
1

ZCT
exp@2b$Vâ†~ t !â~ t !1dâ†~ t !1d* â~ t !1e0%#,

~30!

wheree05V/21udu2/(V). As â(t) andâ†(t) approximately
satisfy the quantum LvN equation, Eq.~15!, so does the den
sity operator~30!. We chooseV to satisfy the gap equation
for the unbroken symmetry

V25v21
l

4V
. ~31!

As discussed in@29#, the displacement operator~22! with a
5d/(V) unitarily transforms the coherent thermal dens
matrix to a thermal one,

D̂†~a!r̂CTD̂~a!5
1

ZT
exp@2bVâ†~ t !â~ t !#5 r̂T . ~32!

By making use of the unitary transformation

D̂†~a!â~ t !D̂~a!5â~ t !2a,

D̂†~a!â†~ t !D̂~a!5â†~ t !2a* , ~33!

it is easy to show that

^x̂2&CT5 x̄21cothS bV

2 Du* ~ t !u~ t !,

^ p̂2&CT5 p̄21cothS bV

2 D u̇* ~ t !u̇~ t !, ~34!

where now

x̄5^a,tux̂ua,t&52~au1a* u* !,

p̄5^a,tu p̂ua,t&52~au̇1a* u̇* !. ~35!

The expectation value of Eq.~15! with respect to the coher
ent thermal state~30! leads to the equation for the comple
u(t):

ü~ t !1F6v21
l

2
x̄21

l

2
cothS bV

2 Du* uGu~ t !50. ~36!

The corresponding thermal two-point correlators are th
given by

gTxx~ t !5^x̂2&CT2 x̄25cothS bV

2 Du* ~ t !u~ t !,

gTpp~ t !5^ p̂2&CT2 p̄25cothS bV

2 D u̇* ~ t !u̇~ t !,

gTxp~ t !5^x̂p̂&CT2 x̄p̄5cothS bV

2 D u̇* ~ t !u~ t !,

gTpx~ t !5gTxp* ~ t !5cothS bV

2 Du* ~ t !u̇~ t !, ~37!
4-5
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from which we obtain the evolution equations for the therm
two-point correlators:

ġTxx~ t !5gTxp~ t !1gTpx~ t !,

ġTpp~ t !52F6v21
l

2
x̄21

l

2
cothS bV

2 Du* uG
3~gTxp1gTpx!1O~l2!,

ġTxp~ t !5gTpp2gTxxF6v21
l

2
x̄2

1
l

2
cothS bV

2 Du* uG1O~l2!. ~38!

In theT50 limit, Eqs.~37! and~38! reduce to the evolution
equations~28! and~29!. Expressions for the subtracted tw
point correlators can then be obtained by solving Eqs.~36!
for u(t) perturbatively in powers ofl.

IV. ANHARMONIC OSCILLATOR BEYOND THE
HARTREE APPROXIMATION

In this section we apply the LvN method to the anh
monic oscillator in Sec. III, to go beyond the Hartree a
proximation. Our stratagem is to represent the full Ham
tonian ~13! in the Fock space basis~14! and to follow the
standard perturbation theory by taking the quadratic term
an unperturbed part and the quartic terms as a perturba
For the convenience of computation, we express the re
sentation in normal ordering where allâ† stand to the left of
â.

We divideĤ into a Gaussian partĤG, the quadratic part

and a perturbation HamiltonianĤP, the remaining quartic
part,

Ĥ5ĤG1lĤP, ~39!

where

ĤG5
1

2
: p̂2:6

v2

2
: x̂2:1

6l

4!
^x̂2&G: x̂2:1EG, ~40!

ĤP5
1

4!
: x̂4:. ~41!

HereEG is the vacuum expectation value

EG5
1

2
^ p̂2&G6

v2

2
^x̂2&G1

3l

4!
^x̂2&G

2 . ~42!

Using the normal ordered operators

:~uâ1u* â†!n: 5 (
k50

n
n!

k! ~n2k!!
u* (n2k)ukâ†(n2k)âk,

~43!
10501
l

-
-
-

as
n.
e-

we obtain the expectation value with respect to the Gaus
vacuum state that is annihilated byâ(t),

EG~ t !5
1

2 F u̇* u̇6v2u* u1
l

4
~u* u!2G . ~44!

A few comments are in order. First, the separation of
Hamiltonian into quadratic and quartic parts in Eqs.~40! and
~41! is reminiscent of the Caswell-Killingbeck method@42#,
which separates the Hamiltonian into a solvable part an
perturbation. In fact, as we shall show below, the quadra
part is solvable via the LvN method even for explicitly tim
dependent systems. Second, the quadratic part~40! involves
a term proportional to the coupling constantl, which makes
any perturbation theory based on it reliable even in
strong coupling limit ofl. This term is the same as th
Hartree approximationq̂4→6^q̂2&q̂2. As will be shown be-
low, the wave function~al!s of the Hamiltonian~40! are the
same as those from the Gaussian effective potential me
by Chang and Stevenson@43#. The vacuum state is also th
same as the Hartree approximation. The equivalence of
vacuum state between the LvN and Gaussian effective po
tial will be shown below~see also Ref.@29#!.

The Hartree approximation in Sec. III is equivalent

simply using the truncated quadratic partĤG as the unper-

turbed part. Separating the quadratic partĤG is the essence
of the Hartree approximation@44# or the variational Gaussian

approximation@43#. In fact, the perturbationlĤP, although

ĤG contains a term of the same order as the perturba
itself. Then the truncated quantum LvN equation

i
]â

]t
1@ â,ĤG#50, i

]â†

]t
1@ â†,ĤG#50 ~45!

leads to the mean field equation

ü~ t !1F6v21
l

2
u* uGu~ t !50. ~46!

The mean field equation above can also be obtained by m
mizing EG in Eq. ~44!, which proceeds by varying with re
spect tou* , using du̇* /du* 5]/]t, and treatingu* and u
independently. The equal-time commutation relation now
guaranteed by the Wronskian condition of Eq.~17!. The
Gaussian vacuum state is annihilated byâ

â~ t !u0,t&G50, ~47!

and the excited number states are obtained by applyingâ†:

un,t&G5
â†n~ t !

An!
u0,t&G. ~48!

These are the exact quantum states of the time-depen

Schrödinger equation only forĤG:
4-6
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i
]

]t
un,t&G5ĤG~ t !un,t&G. ~49!

By fixing the time-dependent phase factor@32# and including
the factor from thec-number term in Eq.~40!, the harmonic
wave functions are given by

CG,n~x!5
1

A22n!
S 1

2pu* u
D 1/4S u

Au* u
D (2n11)/2

3HnS q

A2u* u
D expF i

2

u̇*

u*
q21 i

l

8E
t

~u* u!2G ,

~50!

where Hn(x) are the Hermite polynomials and the la
c-number term in the exponent comes from the correspo
ing c-number term in Eq.~40!. From now on we denote th
wave functions~50! by un,t&G without any loss of generality
These states form an orthonormal basis of the Fock spa

G^n,tum,t&G5dnm . ~51!

A. Beyond the Hartree approximation

To go beyond the Hartree approximation, we need to
clude the perturbation, which is now given by

ĤP5
1

4!
~u* 4â†414u* 3uâ†3â16u* 2u2â†2â2

14u* u3â†â31u4â4!. ~52!

There was an attempt in Ref.@45# to solve Eq.~15! for the
full Hamiltonian including the perturbation~52! by improv-
ing â and â†. Here we find the improved quantum states
directly solving the Schro¨dinger equation for the full Hamil-
tonian. The perturbation excites and deexcites any Gaus
number stateun,t&G. As $un,t&G% constitutes a Fock basis
we therefore expand the exact quantum states as@46#

un,t&5(
l 50

`

(
m50

`

l lCn;m
( l ) ~ t !um,t&G, ~53!

where the lowest order coefficient is

Cn;m
(0) 5dn,m . ~54!

Using the fact that any stateum,t&G individually satisfies the

Schrödinger equation~49! for ĤG, the Schro¨dinger equation
~3! for the full Hamiltonian~13! leads to the set of equation

(
l 50

`

(
m50

`

il l Ċn;m
( l ) ~ t !um,t&G5(

l 50

`

(
m50

`

l lCn;m
( l ) ~ t !lĤPum,t&G.

~55!

Comparing the powers ofl, we finally obtain a hierarchy o
dynamical equations for the coefficients
10501
d-

:

-

ian

Ċn;m
( l ) ~ t !52 i (

j 50

`

Cn; j
( l 21)~ t ! G^m,tuĤP~ t !u j ,t&G. ~56!

Another expression for Eq.~53! may be obtained in a
compact form using operatorsâ† and â. For each fixedm,
we first sum overl,

Cn;m~ t !5(
l 50

`

l lCn;m
( l ) ~ t !, ~57!

and then write any stateum,t&G as either an excited or a
deexcited state of the given lowest order stateun,t&G, which
is realized by applying the creation or annihilation operat
a certain number of times. Hence, Eq.~53! can be written by
introducing an operatorÛ1 as

un,t&5 (
m50

`

Cn;m~ t !um,t&G[Û I@ â†~ t !,â~ t !;t,l#un,t&G,

~58!

and the Schro¨dinger equation leads to

F i
]

]t
Û I~ t,l!1@Û I~ t,l!,ĤG#2lĤPG un,t&G50.

Using Eq.~45! and technically assuming that all time deriv
tives act only onc numbers but not on the operatorsâ† and
â, we obtain an interaction-picture-like equation for the o
eratorÛ:

i
]

]t
Û I~ t,l!5lĤPÛ I~ t,l!. ~59!

We then obtain the formal solution

un,t&5Û I~ t,l!un,t&G~n50,1,2, . . . !, ~60!

where

Û I~ t,l!5T expF2 ilE ĤPdtG . ~61!

HereT denotes a time ordering for the integral andâ†(t) and
â(t) are treated as if they are constant operators.

We now find the improved vacuum state up to any ord
either by solving Eq.~56! or by acting with the operator in
Eq. ~61! on the Gaussian vacuum state. For instance,
improved vacuum state to orderl2 is given by

u0,t& [2]5u0,t&G1l (
m50

C0;m
(1) ~ t !um,t&G

1l2 (
m50

C0;m
(2) ~ t !um,t&G, ~62!

where the only nonvanishing coefficients are
4-7
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C0;4
(1)~ t !52 i

1

A4!
E t

u* 4~ t8!, ~63!

and

C0;8
(2)~ t !5~2 i !2

A70

4! E
t

u* 4~ t8!E t8
u* 4~ t9!,

C0;6
(2)~ t !5~2 i !2

A5

3 E t

u* 3~ t8!u~ t8!E t8
u* 4~ t9!,

C0;4
(2)~ t !5~2 i !2

3

A4!
E t

u* 2~ t8!u2~ t8!E t8
u* 4~ t9!,

C0;2
(2)~ t !5~2 i !2

1

3A2
E t

u* ~ t8!u3~ t8!E t8
u* 4~ t9!,

C0;0
(2)~ t !5~2 i !2

1

4!E
t

u4~ t8!E t8
u* 4~ t9!. ~64!

The non-Gaussian nature of the vacuum state~62! can be
exploited by calculating the kurtosis~higher moments!. The
two-point and four-point correlators with respect to t
Gaussian vacuum state~50! are

G^0,tux̂2un,t&G5u* u,

G^0,tux̂4u0,t&G53~u* u!2, ~65!

whereas those with respect to the improved vacuum s
~62! are given by

[2]^0,tux̂2u0,t& [2]5u* u1l2@A2~C0;2
(2)u21C0;2

(2)* u* 2!

1~C0;0
(2)* 1C0;0

(2)19C0;4
(1)* C0;4

(1) !u* u#

1O~l3!, ~66!

[2]^0,tux̂4u0,t& [2]

53~u* u!21A4!l~C0;4
(1)u41C0;4

(1)* u* 4!

1l2$A4!~C0;4
(2)u41C0;4

(2)* u* 4!

16A2@C0;2
(2)~u* u!u21C0;2

(2)* ~u* u!u* 2#

1~123C0;4
(1)* C0;4

(1)13C0;0
(2)* 13C0;0

(2) !~u* u!2%

1O~l3!. ~67!

B. Stability of the LvN method

The stability of the LvN method should be checked sin
it is a time-dependent perturbation theory. That is, any se
lar coefficient in Eq.~53! should be removed systematical
to ensure a physically meaningful solution. For that purpo
we compare the LvN method with the standard perturba
theory for the well-known anharmonic oscillator with unbr
10501
te

e
u-

e,
n

ken symmetry@positive sign in Eq.~13!#. In that case we find
the solution to the auxiliary mean field equation~46!,

u~ t !5
1

A2V
e2 iVt, ~68!

whereV is given by the gap equation

V25v21
l

4V
. ~69!

Then the time-dependent wave function~50! is given by

CG,n~x,t !5expF2 i S V~n11/2!2
l

32V2D tG
3

1

A22n!
S V

p D 1/4

Hn~AVq!expF2
V

2
q2G

5expF2 i S V~n11/2!2
l

32V2D tGCG,n~x!,

~70!

whereCG,n(x) denotes the harmonic oscillator wave fun
tion.

Substituting the solution~68! into Eqs.~63! and ~64!, we
find the improved vacuum state corrected toO(l2):

u0,t& [2]5expF2 i S V

2
2

l

32V2D tGF S 11 i
l2

2933V5
t D u0&G

1
l2

2733A2V6
u2&G2S l

25A6V3
2

A3l2

29A2V6D u4&G

1
l2

27332V6
u6&G1

A70l2

21233V6
u8&GG1O~l3!.

~71!

Note thatC0;0
(2) originating from the four quanta creation an

the subsequent annihilation leads to a secular term increa
as t. This is not a drawback of the LvN method but just
consequence of the time-dependent perturbation the
searching time-dependent states. As the coefficient ofu0,t&G
is the first two terms of exp@il2/(2933V5)t#, it can be ap-
proximately absorbed into the overall time-dependent fac
to O(l2):

expF2 i S V

2
2

l

32V2
2

l2

2933V5D tG . ~72!

This factor coincides with the time-dependent solution to
full Schrödinger equation obtained from time-independe
perturbation method@47#, where the corrected energy a
O(l2) is

E[2]5
V

2
2

l

32V2
2

l2

2933V5
1O~l3!. ~73!
4-8
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The higher order terms that come from the creation of e
numbers of quanta and subsequent annihilation of eq
quanta, or vice versa, also contain secular terms proporti
to powers oft depending on the number of such process
All these terms will provide the correct energy to the Sch¨-
dinger equation.

Another way to understand this phase factor and ther
secular terms is to use the formal solution~61!. The operator
has an exponential form@48#

Û I~ t,l!5expS 2 ilE t

ĤP~ t8!1~2 il!2

3F E t

dt8Ĥ~ t8!,E t8
dt9ĤP~ t9!G1O~l3! D .

~74!

The c-number term from the commutator

expF2
l2

~4! !2E t

dt8u4~ t8!E t8
dt9u* 4~ t9!@ â4,â†4#G

→expF i
l2

2933V5
tG ~75!

is nothing but the phase factor~72!. Now the time-dependen
vacuum state toO(l2) does notinvolve any secular term a
shown:

u0,t& [2]5eiE [2] tH u0&G1e2 i (l2/2933V5)tF l2

2733A2V6
u2&G

2S l

25A6V3
2

A3l2

29A2V6D u4&G1
l2

27332V6
u6&G

1
A70l2

21233V6
u8&GG J 1O~l3!. ~76!

We thus have shown that the seemingly secular beha
can be removed systematically by taking the proper tim
dependent phase factor for the wave function. This ph
factor yields the correct energy for the anharmonic oscilla
~13! to any desired order. The idea of removing the secu
terms of higher order corrections by absorbing them into
corrected energy is equivalent to removing the secular te
by renormalizing the frequency in multiple-scale perturb
tion theory@49#. We note that the LvN method proves ve
accurate because the lowest order vacuum state is a Gau
state that extremizes the Hamiltonian and the correc
vacuum state is expanded in the Fock basis@47#. Further, the
LvN method is a powerful tool for finding the quantum stat
for nonequilibrium systems that are undergoing phase tra
tions @29#. For the field theory case, the elimination of sec
lar terms can be achieved using multiple-scale perturba
theory and this aspect has been discussed in detail in@33#.

There is another kind of instability originating from th
dynamics of the system itself. Phase transitions from an
plicit symmetry breaking in time provide such a dynamic
10501
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instability. The anharmonic oscillator~13! whose quadratic
potential changes signs from positive to negative can b
quantum mechanical analogue for the phase transition. A
the symmetry is broken, the mean field equation

ü1F2v21
l

2
u* uGu50 ~77!

may have a period when the quadratic term (2v2) domi-
nates over the quartic one (lu* u/2). Then theu grows ex-
ponentially asu'evt/A2v until the quartic term grows and
becomes comparable to the quadratic one. During this pe
all higher order correctionsC( l ) beyond the Hartree approxi
mation grow exponentially as powers ofu andu* . This dy-
namical instability ceases when the state reaches the
vacuum state and oscillates over it. Thus the dynamical
stability for a limited period does not cause any serious se
lar behavior as for the static system.

V. f4 FIELD THEORY IN THE HARTREE
APPROXIMATION

Now we will apply the LvN method to thef4 field theory,
but first we work out correlation functions within the Hartre
approximation in this section. Thef4 field theory to be con-
sidered in this paper has the Hamiltonian inD space dimen-
sions

Ĥ~ t !5E dDxF1

2
p̂21

1

2
~¹f̂!21

m2

2
f̂21

l

4!
f̂4G , ~78!

wherep̂(x)5f6 (x) is the conjugate momentum operator. W
divide the quantum fieldf̂ into a classical background an
quantum fluctuations over this background,f̂(x)5fc(x)
1f̂ f(x), where the classical background~mean! field fc(x)
is in general considered to be spatially homogeneous. T
the Hamiltonian can be decomposed as

Ĥ~ t !5Hc~ t !1Ĥ f~ t !1Ĥ int~ t !1dĤ int~ t !, ~79!

where

Hc~ t !5E dDxF1

2
pc

21
1

2
~¹fc!

21
m2

2
fc

21
l

4!
fc

4G ,
Ĥ f~ t !5E dDxF1

2
p̂ f

21
1

2
~¹f̂ f !

21
m2

2
f̂ f

21
l

4!
f̂ f

4G ,
Ĥ int~ t !5E dDxFl4 fc

2f̂ f
2G ,

dĤ int~ t !5E dDxFpcp̂ f1m2fcf̂ f1
l

3!
fc~fc

21f̂ f
2!f̂ f G .

~80!

HereHc and Ĥ f are the purely classical and quantum par

We have divided the interaction intoĤ int with even powers

of f̂ f anddĤ int with odd powers ofp̂ f andf̂ f . Thefc(x) is
4-9
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nonvanishing only for the case when symmetry is sponta
ously broken. We treat individually and collectively th
modes in the momentum space of quantum fluctuations
the inhomogeneous background field. The momentum mo
are given by the Fourier transform of a field~operator! and
its inverse transform,

F~x!5E @dk#F~k!eik•x,

F~k!5E dDxF~x!e2 ik•x, ~81!

where F denotes eitherf̂ f(x) and p̂ f(x) or fc(x) and
pc(x), and

@dk#5
dDk

~2p!D
. ~82!

Then the quadratic integral takes the form

E dDxF̂2~x!5E @dk#F̂~k!F̂~2k!. ~83!

The Fourier modes off̂ f and p̂ f will be denoted by

F̂k5E dDxf̂ f~x!e2 ik•x,

P̂k5E dDxp̂ f~x!e2 ik•x. ~84!

The Hermiticity of f̂ f and p̂ f implies that F̂k
†5F̂2k and

P̂k
†5P̂2k .
The commutation relation of the fields

@f̂ f~x!,p̂ f~y!#5 id„x2y… ~85!

leads to those of modes in the momentum space,

@F̂k8 ,P̂k#5 i ~2p!Dd~k81k!. ~86!

In terms of the annihilation and creation operators satisfy
the equal-time commutation relation

@ âk8~ t !,âk
†~ t !#5~2p!Dd~k82k!, ~87!

the momentum space operatorsF̂k andP̂k may be expressed
as

F̂k5wk~ t !âk~ t !1w2k* ~ t !â2k
† ~ t !,

P̂k5ẇk~ t !âk~ t !1ẇ2k* ~ t !â2k
† ~ t !. ~88!

Here it is assumed thatw2k(t)5wk(t) and

ẇk* ~ t !wk~ t !2wk* ~ t !ẇk~ t !5 i . ~89!
10501
e-

nd
es

g

Then the annihilation and creation operators are also
pressed as

âk~ t !5 i @wk* ~ t !P̂k2ẇk* ~ t !F̂k#,

âk
†~ t !52 i @w2k~ t !P̂2k2ẇ2k~ t !F̂2k#.

~90!

Note that the momentum space operatorsF̂k and P̂k are
regarded as time-independent ones whereasâk(t) and âk

†(t)
are time-dependent Liouville ones in the LvN picture. T
Gaussian vacuum is the state annihilated by allâk(t):

âk~ t !u0,t&G50, ~91!

or the product of the Gaussian vacuum state for eachâk(t):

u0,t&G5)
k

u0k ,t&G. ~92!

In the Hartree approximation we consider only those q

dratic terms fromĤ f and Ĥ int whose Gaussian vacuum ex
pectation values do not vanish. Then the interaction term
the Fourier modes

Ĥ int5
l

4E @dk1#E @dk2#E @dk3#E @dk4#~2p!D

3d~k11k21k31k4!fc~k1!fc~k2!F̂k3
F̂k4

→ l

4E @dk1#E @dk2#~2p!D

3d~k11k2!fc~k1!fc~k2!E @dk3#F̂k3
F̂2k3

5
l

4
fc

2~x!E @dk#F̂kF̂2k . ~93!

The quartic term in the Hamiltonian for the fluctuation fie
f f can be approximated as

f̂ f
4→6^f̂ f

2&Gf̂ f
2 . ~94!

Then the resulting quadratic part takes the form

ĤG5E @dk#F1

2
P̂kP̂2k1

1

2 S vk
21

l

2
fc

2

1
l

2E @dk8#^F̂k8F̂2k8&GD F̂kF̂2kG ~vk
25m21k2!.

~95!

Under the field redefinitionP̂6k5(P̂k6P̂2k)/2 and F̂6k

5(F̂k6F̂2k)/2, this Hamiltonian is equivalent to that o
harmonic oscillators,
4-10
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ĤG~ t !5(
k

F1

2
P̂k

2~ t !1
1

2
Vk

2~ t !F̂k
2~ t !G , ~96!

where

Vk
2~ t !5vk

21
l

2
fc

2~x!1
l

2E @dk8#^F̂k8F̂2k8&G. ~97!

We may identify the classical backgroundfc andpc either
with the vacuum expectation values off̂ and p̂ or with the
coherent state expectation values off̂ f andp̂ f , respectively:

fc~x!5^f̂~x!&vac5^f̂ f~x!&cs[E @dk#^F̂k&cse
ik•x,

pc~x!5^p̂~x!&vac5^p̂ f~x!&cs[E @dk#^P̂k~ t !&cse
ik•x,

~98!

where ^•••&cs denotes the expectation value taken with
spect to the coherent state:

^F̂k&cs5akwk~ t !1a2k* w2k* ~ t !,

^P̂k&cs5akẇk~ t !1a2k* ẇ2k* ~ t !. ~99!

Now the equations for the auxiliary field variableswk and
wk* can easily be obtained in the Hartree approximation

making use of the LvN equations forâk(t) andâk
†(t) for the

Hamiltonian~96!. Then the LvN equations

i
]âk

†~ t !

]t
1@ âk

†~ t !,ĤG~ t !#50,

i
]âk~ t !

]t
1@ âk~ t !,ĤG~ t !#50 ~100!

lead to the equations

ẅk~ t !1Fvk
21

l

2
fc

21
l

2 S E @dk8#wk8
* wk8D Gwk~ t !50,

ẅk* ~ t !1Fvk
21

l

2
fc

21
l

2 S E @dk8#wk8
* wk8D Gwk* ~ t !50.

~101!

The equation for the classical backgroundfc(t) is obtained

from the effective classical HamiltonianHc(t)1^Ĥ int(t)&G
as

f̈c~x,t !2¹2fc~x,t !1Fm21
l

3!
fc

2~x,t !

1
l

2 S E @dDk8#wk8
* wk8D Gfc~x,t !50. ~102!

It is more advantageous to work with the evolution equ
tions for correlation functions, rather than the field equatio
10501
-

y

-
.

First, the two-point correlation functions in thermal equili
rium are related to the Bose-Einstein distribution functi
~for a quantum theory! and the temperature of the system~for
a classical theory! in a fairly simple way; thereby allowing
us to use them as benchmarks to track the evolution of
system toward thermal equilibrium. Second, it is more co
venient to make systematic improvements to the mean fi
description, by working with equations for the correlatio
functions. As we shall see in Sec. VI, the mean field eq
tions for the two-point correlation functions are part of
infinite hierarchy of evolution equations for the connecte
equal-time,n-point correlators and are obtained by trunc
ing this hierarchy at the level of the two-point functions.

We define the two-point subtracted correlation functio
for the fields as

g11~x,x8;t ![^@f̂ f~x!2fc~x!#@f̂ f~x8!2fc~x8!#&cs

[^f̂ f~x!f̂ f~x8!&v ,

g22~x,x8;t ![^@p̂ f~x!2pc~x!#@p̂ f~x8!2pc~x8!#&cs

[^p̂ f~x!p̂ f~x8!&v ,

g12~x,x8;t ![^@f̂ f~x!2fc~x!#@p̂ f~x8!2pc~x8!#&cs

[^f̂ f~x!p̂ f~x!&v ,

g21~x,x8;t ![^@p̂ f~x!2pc~x!#@f̂ f~x8!2fc~x8!#&cs

[^p̂ f~x!f̂ f~x8!&v . ~103!

The subscript ‘‘v’’ implies the expectation value with respe
to the vacuum state. Using the above expressions, we g

g11~x,x8;t !5E @dk#wk* ~ t !wk~ t !eik•(x2x8),

g22~x,x8;t !5E @dk#ẇk* ~ t !ẇk~ t !eik•(x2x8),

g12~x,x8;t !5E @dk#ẇk* ~ t !wk~ t !eik•(x2x8),

g21~x,x8;t !5E @dk#wk* ~ t !ẇk~ t !eik•(x2x8).

~104!

From Eq.~104!, the equal-time two-point correlation func
tions Gi j (k,t) in momentum space can be defined throu
the Fourier transform

gi j ~x,x8;t !5E @dk#Gi j ~k,t !eik•(x2x8), ~105!

where i , j 51,2. Taking the time derivative of the two-poin
correlation functions yields the following evolutio
equations:
4-11
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ġ11~x,x8;t !5g12~x,x8;t !1g21~x,x8;t !,

ġ22~x,x8;t !5E @dk#@ẅk* ~ t !ẇk~ t !

1ẇk* ~ t !ẅk~ t !#eik•(x2x8),

ġ12~x,x8;t !5E @dk#@ẅk* ~ t !wk~ t !

1ẇk* ~ t !ẇk~ t !#eik•(x2x8). ~106!

Substituting the expressions forẅk and ẅk* in Eq. ~106!
and making use of Eq.~105! results in the following evolu-
tion equations for the correlation functions in the moment
space in the Hartree approximation up toO(l2):

Ġ11~k,t !5G12~k,t !1G21~k,t !,

Ġ22~k,t !52Fvk
21

l

2
fc

2~ t !1
l

2
g11~0,t !G@G12~k,t !

1G21~k,t !#1O~l2!,

Ġ12~k,t !5G22~k,t !2Fvk
21

l

2
fc

2~ t !1
l

2
g11~0,t !GG11~k,t !

1O~l2!. ~107!

As shown in@14,23#, one can define a quantityg22(k) in
terms of the momentum space two-point correlat
functions, which is found to be conserved in the Hartr
approximation,
10501
e

g22~k!5G11~k,t !G22~k,t !2
1

4
@G12~k,t !1G21~k,t !#2

52
1

4
~ ẇk* wk2wk* ẇk!

2

5
1

4
, ~108!

as a direct consequence of the Wronskian condition, Eq.~17!.
Issues of renormalization of this model have been inve
gated in detail in Ref.@50#.

It is also possible to definethermaltwo-point functions by
taking the expectation value of the field operators with
spect to an initial Gaussian thermal state,

^f̂~x,t !f̂~x8,t !&T5
1

Z Tr@e2b0ĤGf̂ f~x!f̂ f~x8!#,

~109!

whereb0 is the initial inverse temperature of the system a

Z[Tr@e2b0ĤG#5 (
nk50

`

^nk ,tue2b0Vk(âk
†âk11/2)unk ,t&.

~110!

The corresponding equations for the auxiliary field variabl
are again obtained from the LvN equations using the Ham
tonian ~96! but with the expectation values taken with r
spect to the initialthermalGaussian ensemble. This leads
the set of equations
nt
ẅk~ t !1Fvk
21

l

2
fc

21
l

2 S E @dk#~2nk811!wk8
* wk8D Gwk~ t !50,

ẅk* ~ t !1Fvk
21

l

2
fc

21
l

2 S E @dk#~2nk811!wk8
* wk8D Gwk* ~ t !50,

f̈c~x,t !2¹2fc~x,t !1Fm21
l

3!
fc

2~x,t !1
l

2 S E @dk#~2nk811!wk8
* wk8D Gfc~x,t !50, ~111!

wherenk(T) is the Bose-Einstein distribution for a field theory system at a temperatureT51/b0:

nk~T!5
1

eb0Vk21
. ~112!

Note that atT50 the above set of equations reduces to Eqs.~101! and ~102!. The expressions for the thermal two-poi
equal-time correlation functions are also easily obtained:
4-12
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g11
T ~x,x8;t ![^f̂~x!f̂~x8!&T

5E @dk#cothS b0Vk

2 Dwk* wke
ik•(x2x8),

g22
T ~x,x8;t ![^p̂~x!p̂~x8!&T

5E @dk#cothS b0Vk

2 D ẇk* ẇke
ik•(x2x8),

g12
T ~x,x8;t ![^f̂~x!p̂~x8!&T

5E @dk#cothS b0Vk

2 D ẇk* wke
ik•(x2x8),

g21
T ~x,x8;t ![^p̂~x!f̂~x8!&T

5E @dk#cothS b0Vk

2 Dwk* ẇke
ik•(x2x8),

~113!

from which it follows that

G11
T ~k,t !5cothS b0Vk

2 Dwk* wk ,

G22
T ~k,t !5cothS b0Vk

2 D ẇk* ẇk ,

G12
T ~k,t !5cothS b0Vk

2 D ẇk* wk ,

G21
T ~k,t !5cothS b0Vk

2 Dwk* ẇk . ~114!

We can define another conserved quantity for the ther
two-point correlation functions

~gT!22~k!5G11
T ~k,t !G22

T ~k,t !2
1

4
@G12

T ~k,t !1G21
T ~k,t !#2

5
1

4
. ~115!

As in the case of nonequilibrium evolution, it is straightfo
ward to obtain the evolution equation for thethermal two-
point correlation functions in the Hartree approximation. U
ing Eqs.~114! and ~111!, we get
10501
al

-

Ġ11
T ~k,t !5G12

T ~k,t !1G21
T ~k,t !,

Ġ22
T ~k,t !52Fvk

21
l

2
fc

2~ t !1
l

2
g11

T ~0,t !G@G12
T ~k,t !

1G21
T ~k,t !#1O~l2!,

Ġ12~k,t !5G22
T ~k,t !2Fvk

21
l

2
fc

2~ t !1
l

2
g11

T ~0,t !GG11
T ~k,t !

1O~l2!. ~116!

The above set of equations together with Eq.~111! describe
self-consistently the evolution of thethermal two-point cor-
relation functions in the Hartree approximation. It describ
the evolution of the system initially in thermal equilibrium
a temperatureT0, after interactions are turned on at timet
50. They reduce to Eqs.~101! and~107! in the T50 limit.
It is also possible to obtain the set of equations~111!–~116!
by taking the expectation value of the LvN equations, E
~100!, with respect to the coherent thermal state withHG
being the Gaussian~quadratic! part of the Hamiltonian ob-
tained after Hartree factorization of Eq.~78! ~but without
decomposing the field into a classical background and fl
tuations! using the same techniques employed in the exam
of the anharmonic oscillator in Sec. III. The initial therm

ensemble can be described adequately byĤG and the solu-
tion to Eq.~111! can be obtained as

wk~ t !5
1

A2Vk

e2 iVkt, ~117!

whereVk is given by the gap equation

Vk
25vk

21
l

2
fc

21
l

4E @dk8#
1

Vk8

coth
b0Vk8

2
. ~118!

For t50, we then havewk(0)51/A2Vk. The initial thermal
two-point correlation functions are then given by

G11
T ~k,0!5

1

2Vk
F11

2

eb0Vk21
G ,

G22
T ~k,0!5

Vk

2 F11
2

eb0Vk21
G ,

G12
T ~k,0!5

i

2 F11
2

eb0Vk21
G . ~119!

It is useful to compare our results with those obtained
@23,51#, in the context of thermalization in classical fie
theories. After neglectingl-dependent terms, the solution o
4-13
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Eq. ~111! is wk(t)5e2 ivkt/A2vk. With this form ofwk , one
can easily show that in the classical limit (\→0) the two-
point correlation functions reduce to

G11
T ~k,0!5

T0

vk
2

,

G22
T ~k,0!5T0 ,

G12
T ~k,0!5G21

T* ~k,0!5
iT0

vk
. ~120!

These useful relations, which are valid for a classical ther
system with unbroken symmetry, have been used as a be
mark to study thermalization in classical field theory@23,51#.
It is possible to carry out numerically a spectral analysis
two-point, equal-time, field and momenta correlation fun
tions and track their dynamical evolution. The flattening o
~momentum independence! of the Fourier transform of the
pp equal-time correlation function would be an indicator
thermalization in classical field theory.

VI. NONEQUILIBRIUM EVOLUTION BEYOND THE
LEADING ORDER

In this section we use two different approaches to disc
the nonequilibrium evolution beyond the leading order H
tree approximation. First, we use the LvN formalism to o
tain expressions for the two-point and four-point functio
correct toO(l2) by including all quartic terms of the Hamil
tonian and solving the time-dependent Schro¨dinger equation
as in Sec. IV. This method unifies both the LvN formalis
and the Schro¨dinger picture because the LvN formalism
used only in the Hartree approximation and all the no
Gaussian contributions from quartic terms are found in
Schrödinger picture. The second stage is similar to the in
action picture, although all states are expressed in term
the time-dependent Hartree basis. It is found that the t
point functions have a non-Gaussian contribution at or
O(l2), confirming the result that the non-Gaussian effe
appear only atO(l2) @46#. Second, we make use of th
Heisenberg formalism to obtain a set of evolution equati
for the connected correlation functions beyond the lead
order. We find that the set of equations form an infinite hi
archy, akin to the Bogoliubov-Born-Green-Kirkwood-Yvo
~BBGKY! hierarchy in statistical mechanics@52#, and incor-
porating next-to-leading order effects amounts to trunca
10501
al
ch-

f
-
t

s
-
-

-
e
r-
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s

s
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g

the hierarchy at the level of the four-point connected cor
lation functions.

The key differences between the two formalisms lie in t
fact that while the LvN formalism~like the Schro¨dinger for-
malism! deals with evolution of states~with the field and
conjugate momentum operators being time independent!, the
Heisenberg formalism is associated with evolution of fie
and conjugate momentum operators~with the quantum states
being time independent!. However, even in the LvN formal-
ism, certain operators like the annihilation and creation
erators and any function of them satisfy the LvN tim
evolution equation, distinguished from the Heisenbe
equation through a difference in sign. In fact, the LvN equ
tions can be thought of as the backward time evolution of
Heisenberg equations@38#. Furthermore, the LvN approac
provides a perturbative method for going beyond the Gau
ian approximation and is useful for calculating non-Gauss
effects on domain growth in theories with perturbative
small self-coupling constant@46#. On the other hand, the
Heisenberg formalism provides a systematic, nonperturba
approach for going beyond the leading order Hartree
proximation in studying the nonequilibrium evolution o
quantum fields. Inclusion of connectedn-point functions in
the hierarchy of evolution equations is effectively equivale
to a loop expansion in powers of\ (n21) @24#.

A. LvN formalism: Evolution beyond the leading order

In the LvN formalism discussed in the previous sectio
the time-dependent vacuum state is found approximatel
the lowest order as the state that is annihilated by the a
hilation operators of all momenta in the Hartree approxim
tion which satisfy the LvN equation. Going beyond the lea
ing order amounts to determining the proper vacuum stat
the full nonlinear, interacting field theory, which can be e
pressed in terms of a complete set of number states of
Gaussian Hamiltonian at the Hartree approximation. T
Gaussian vacuum state can be improved to any desired o
by including the perturbation part. Then-point functions are
then obtained by taking the expectation value of the app
priate product of field and momentum operators with resp
to the improved vacuum state.

The normal ordered Hamiltonian is decomposed into
quadratic Gaussian part and the quartic perturbation

Ĥ5ĤG1l2ĤP, ~121!

where the Gaussian part is
ĤG5E @dk#F1

2 H ẇ2kẇk1S vk
21

l

2E @dk1#wk1
* wk1Dw2kwkJ â2kâk1

1

2 H ẇ2k* ẇk* 1S vk
21

l

2E @dk1#wk1
* wk1Dw2k* wk* J â2k

† âk
†

1H ẇk* ẇk1S vk
21

l

2E @dk1#wk1
* wk1Dwk* wkJ âk

†âkG ~122!

and the perturbation
4-14



NONEQUILIBRIUM EVOLUTION OF CORRELATION . . . PHYSICAL REVIEW D68, 105014 ~2003!
ĤP5
1

4!E @dk1#@dk2#@dk3#@dk4#d~k11k21k31k4!@wk1
wk2

wk3
wk4

âk1
âk2

âk3
âk4

14w2k1
* wk2

wk3
wk4

â2k1

† âk2
âk3

âk4

16w2k1
* w2k2

* wk3
wk3

â2k1

† â2k2

† âk3
âk4

14w2k1
* w2k2

* w2k3
* wk4

â2k1

† â2k2

† â2k3

† âk4
1w2k1

* w2k2
* w2k3

* w2k4
* â2k1

† â2k2

† â2k3

† â2k4

† #.

~123!
tio
ic
um
th
y
lta

ar
b

t

ef-
We define the improved vacuum state as

u0,t&5(
l 50

`

(
n1 ,n2 , . . . ,

(
k1 ,k2 , . . .

l lC0,n1 , . . .
( l ) un1 ,n2 , . . . ;t&G

~124!

where we have used a concise notation to representn1 par-
ticles with momentumk1 , n2 particles with momentumk2,
and so on, for the state and the coefficient. The summa
over momentum is for modes that have nonvanishing part
numbers. The subscript ‘‘G’’ refers to the Gaussian vacu
state. For the rest of this subsection, we will consider
momentum space to be a discrete set and consequentl
Dirac delta functions will be replaced by the Kronecker de
functions. As we shall see, the coefficientsC0,n1 , . . .

l , which

determine the vacuum state of the full nonlinear theory,
not all nonvanishing. These coefficients are determined
requiring that the exact vacuum stateu0,t& satisfies the
Schrödinger equation for the full Hamiltonian, i.e.,

i
]

]t
u0;t&5~ĤG1lĤP!u0;t&. ~125!

Using Eq.~124! we get
10501
n
le

e
the

e
y

(
l 50

`

(
n1 ,n2 , . . . ,

(
k1 ,k2 , . . .

il l Ċ0,n1 , . . .
( l ) un1 ,n2 , . . . ;t&G

5(
l 50

`

(
n1 ,n2 , . . . ,

(
k1 ,k2 , . . .

l l 11C0,n1 , . . .
( l ) ĤPun1 ,n2 , . . . ;t&G .

~126!

Comparing the coefficients ofl l on both sides, we ge
C0;n1 ,n2 , . . . ,nj , . . .

(0) 5d0,n1
d0,n2

•••d0,nj
•••. Then Eq. ~126!

reduces to

(
l 51

`

(
n1 ,n2 , . . . ,

(
k1 ,k2 , . . .

il l Ċ0,n1 , . . .
( l ) un1 ,n2 , . . . ;t&G

5(
l 51

`

(
n1 ,n2 , . . . ,

(
k1 ,k2 , . . .

l lC0,n1 , . . .
( l 21) ĤPun1 ,n2 , . . . ;t&G .

~127!

Equating the coefficients of the same power ofl on both
sides, we get the following equation for the expansion co
ficients:
in
Ċ0;n1 ,n2 , . . .
( l ) ~ t !52 i (

m18 , . . . ,mj 8 , . . . ,
(

k18 , . . . ,kj8 , . . .

C0;m18 , . . .mj 8 , . . .
( l 21) ~ t ! G^n1 , . . . ,nj , . . . ;tuĤPum18 , . . . ,mj 8 , . . . ;t&G .

~128!

The vacuum state correct toO(l2) then becomes

u0;t& [2]5u0;t&G1l (
n1 ,n2 , . . . ,nj , . . . ,

(
k1 ,k2 , . . . ,kj , . . .

C0;n1 , . . . ,nj , . . .
(1) ~ t !un1 , . . . ,nj , . . . ;t&G

1l2 (
n1 ,n2 , . . . ,nj , . . . ,

(
k1 ,k2 , . . . ,kj , . . .

C0;n1 , . . . ,nj , . . .
(2) ~ t !un1 , . . . ,nj , . . . ;t&G . ~129!

From Eq.~123! and Eq.~128!, the only nonvanishing contribution toC0;n1 , . . . ,nj , . . .
(1) (t) comes from the term (1/4!)*@dk1#

3@dk2#@dk3#@dk4#d(k11k21k31k4)w2k1
* w2k2

* w2k3
* w2k4

* â2k1

† â2k2

† â2k3

† â2k4

† , where the indices correspond to excitations

modesk1 ,k2 ,k3. The most general form of the equation for the first order coefficient follows from Eq.~128!. It can be written
as
4-15
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Ċ0;$nk%
(1) 52

i

4!
~Nf !~Nc! (

k18 ,k28 . . .

^n1 , . . . ,nj , . . . ;tu

3 (
k19 ,k29 , . . .

dk
191k

291k
391k

49,0wk
19

* wk
29

* wk
39

* wk
49

*

3âk
19

†
âk

29
†

âk
39

†
âk

49
† u0;t&, ~130!

where $nk%[nk1
,nk2

,nk3
,nk4

and Nc and Nf are numerical
coefficients that depend on the relationship between
modesk1 ,k2 ,k3 ,k4 . Nc corresponds to the factor determine
by the maximum power of a creation operator, whereasNf is
a combinatorial factor. It is important to note thatdistinct
first order coefficients~with distinct values ofnk1

,nk2
, etc.!

arise when constraints are imposed on the momentum m
k1 ,k2 ,k3 ,k4 which account for different types of scatterin
processes. In the absence of any constraints,Nc5Nf51 and
Eq. ~130! gives

Ċ0;1k1
,1k2

,1k3
,1k4

(1) 52
i

4!
wk1

* wk2
* wk3

* wk4
* dk11k21k31k4,0 .

~131!

When the four modes appearing as indices in the crea
operators are paired, resulting in two distinct creation ope
tors ~i.e., when k295k19 and k495k39), Nc5(A2)2 and Nf

5(4C2
/2)32C2

~since there are three ways of forming tw
distinct pairs of creation operators!; Eq. ~130! becomes

Ċ0;2k1
,2k2

(1) 52
3i

4!
~A2!2~wk1

* wk2
* !2dk11k2,0 . ~132!

For a single pairing~i.e., when, for example,k295k19 but k49
Þk39), Nc5A2 and Nf54C2

~since there are 4C2
ways of

forming a single pair out of four creation operators! and Eq.
~130! becomes

Ċ0;2k1
,1k2

,1k3

(1) 52
6i

4!
A2~wk1

* 2!wk2
* wk3

* d2k11k21k3,0 .

~133!

From the form of the string of creation operators appear
in Eq. ~130!, it is clear that the number of different coeffi
cients correspond to the different ways of partitioning
four-particle excitations in terms of excitations of lower o
der.

In order to derive non-Gaussian corrections to the tw
point functions, it is necessary to obtain the correc
vacuum state, at least up toO(l2). For this purpose, we
need to determine the second order coefficients. Altho
there are many distinct second order coefficients, we will
that only a few of them will contribute to the two-point func
tions, thereby considerably simplifying the calculation
Nevertheless, for the sake of completeness, we explicitly
line below the general method for obtaining all possible s
10501
e

es

n
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ond order coefficients. The equation for the second or
coefficient can be written in the most general form as

Ċ0;$nk%
(2) 52 i (

k18 ,k28 , . . .

C0;$mk8%
(1) dk

181k
281k

381k
48,0

3^n1 , . . . ,nj , . . . ;tuĤPâk
18

†
âk

28
†

âk
38

†
âk

48
† u0;t&.

~134!

It is clear from the string of annihilation and creation ope
tors appearing in each term in Eq.~123! that the second orde
coefficients can be divided into five classes correspondin
zero-, two-, four-, six-, and eight-particle excitations, resp
tively. The zero-particle excitation case leads to just one s
ond order coefficient given by the equation

Ċ0;0
(2)52

i

4! (
k18 ,k28 , . . .

C0;1k18
,1k28

,1k38
,1k48

(1) dk
181k

281k
381k

48,0

3^n1 , . . . ,nj , . . . ;tu (
k19 ,k29 , . . .

dk
191k

291k
391k

49,0wk
19

3wk
29
wk

39
wk

49
âk

19
âk

29
âk

39
âk

49
âk

18
†

âk
28

†
âk

38
†

âk
48

† u0;t&. ~135!

By making use of the commutation relations between
annihilation and creation operators to normal order the ab
string of operators, it can be easily shown that the ab
equation reduces to

Ċ0;0
(2)52 iC0;1k1

,1k2
,1k3

,1k4

(1) dk11k21k31k4,0wk1
wk2

wk3
wk4

.

~136!

The second order coefficients corresponding to the tw
particle excitation case, which is contributed by the seco
term in Eq.~123!, can be written in general as

Ċ$2k%;0
(2) 524i (

k18 ,k28 , . . .

C0;1k18
,1k28

,1k38
,1k48

(1) dk
181k

281k
381k

48,0

3^n1 , . . . ,nj , . . . ;tu (
k19 ,k29 , . . .

d2k
191k

291k
391k

49,0

3dk
28 ,k

29
dk

38 ,k
39
dk

48 ,k
49
wk

19
* wk

29
wk

39
wk

49
âk

19
†

âk
18

† u0;t&,

~137!

which leads to the equations for the following second-or
coefficient

Ċ0;1k1
,1k5

(2) 524iC0;1k1
,1k2

,1k3
,1k4

(1) dk11k21k31k4,0

3dk21k31k42k5,0wk5
* wk2

wk3
wk4

. ~138!
4-16



l
t

ng

t
as
d.
rr

e is

es-

nd
d

o-
ect
the

e

the

are

NONEQUILIBRIUM EVOLUTION OF CORRELATION . . . PHYSICAL REVIEW D68, 105014 ~2003!
The third term in Eq.~123! leads to the following genera
equation for the second-order coefficients associated with
four-particle excitation case:

Ċ$4k%;0
(2) 523i (

k18 ,k28 , . . .

C0;1k18
,1k28

,1k38
,1k48

(1) dk
181k

281k
381k

48,0

3^n1 , . . . ,nj , . . . ;tu (
k19 ,k29 , . . .

d2k
192k

291k
391k

49,0

3dk
38 ,k

39
dk

48 ,k
49
wk

19
* wk

29
* wk

39
wk

49
âk

19
†

âk
29

†
âk

18
†

âk
28

† u0;t&,

~139!

which leads to the dynamical equations for the followi
four second-order coefficients:

Ċ0;2k1
,2k2

(2) 529i ~A2!2C0;1k1
,1k2

,1k3
,1k4

(1)

3dk11k21k31k4,0d2k11k21k31k4,0

3wk1
* wk2

* wk3
wk4

,

Ċ0;2k1
,1k2

,1k5

(2) 5218iA2C0;1k1
,1k2

,1k3
,1k4

(1)

3dk11k21k31k4,0d2k11k31k42k5,0

3wk1
* wk5

* wk3
wk4

,

Ċ0;1k1
,1k2

,1k5
,1k6

(2) 523iC0;1k1
,1k2

,1k3
,1k4

(1) dk11k21k31k4,0

3dk31k42k52k6,0wk5
* wk6

* wk3
wk4

,

Ċ0;3k1
,1k2

(2) 5212i ~A6!C0;1k1
,1k2

,1k3
,1k4

(1)

3d22k11k31k4,0dk11k21k31k4,0

3wk1
* 2wk3

wk4
. ~140!

Similarly, the second order coefficients corresponding
the six- and eight-particle excitations contributed by the l
two terms in Eq.~123!, respectively, can be easily obtaine
The general structure of the second order coefficients co
sponding to the six-particle excitation case is given by

Ċ$6k%;0
(2) 52

2i

3 (
k18 ,k28 , . . .

C0;1k18
,1k28

,1k38
,1k48

(1) dk
181k

281k
381k

48,0

3^n1 , . . . ,nj , . . . ;tu (
k19 ,k29 , . . .

d2k
192k

292k
391k

49,0

3dk
48 ,k

49
wk

19
* wk

29
* wk

39
* wk

49
âk

19
†

âk
29

†
âk

39
†

âk
18

†
âk

28
†

âk
38

† u0;t&,

~141!
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and that associated with the eight-particle excitation cas
given by

Ċ$8k%;0
(2) 52

i

4!
(

k18 ,k28 , . . .

C0;1k18
,1k28

,1k38
,1k48

(1) dk
181k

281k
381k

48,0

3^n1 , . . . ,nj , . . . ;tu (
k19 ,k29 , . . .

dk
191k

291k
391k

49,0wk
19

*

3wk
29

* wk
39

* wk
49

* âk
19

†
âk

29
†

âk
39

†
âk

49
†

âk
18

†
âk

28
†

âk
38

†
âk

48
† u0;t&.

~142!

However, none of those coefficients contribute to the expr
sions for the two-point functions correct toO(l2). Hence,
we do not list them explicitly.

The normalization of the vacuum state correct to seco
order in l is easily found in terms of the first and secon
order coefficients:

[2]^0;tu0;t& [2]511l2F H (
k1 ,k2

C0;2k1
,2k2

(1)* C0;2k1
,2k2

(1)

1 (
k1 ,k2 ,k3

C0;2k1
,1k2

,1k3

(1)* C0;2k1
,1k2

,1k3

(1)

1 (
k1 ,k2 ,k3 ,k4

C0;1k1
,1k2

,1k3
,1k4

(1)* C0;1k1
,1k2

,1k3
1k4

(1) J
1$C0;0

(2)* 1C0;0
(2)%G1O~l3!. ~143!

We can now obtain expressions for the equal-time, tw
point functions by taking the expectation values with resp
to this improved, albeit perturbative, vacuum state, with
understanding that

Gab
(2)~k!5 [2]^0;tuF̂a~k!F̂b~2k!u0;t& [2] , ~144!

where the subscript indicesa,b, . . . 51,2 andF̂a is to be

understood as the field operatorF̂(k)(a51) or the conju-

gate momentum operatorP̂(k)(a52). Moreover, we will be
working with the symmetric theory which implies thatfc

50. It is important to note that in the LvN formalism th
field and momentum operators aretime independent. The
time dependence of the two-point functions arise through
time dependence of the auxiliary field variablew. It is then
easy to show that the equal-time, two-point functions
given up to and includingO(l2) by the equations
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G11
(2)~k;t !5wk* wkF11l2H (

k1 ,k2

C0;2k1
,2k2

(1)* C0;2k1
,2k2

(1) 1 (
k1 ,k2 ,k3

C0;2k1
,1k2

,1k3

(1)* C0;2k1
,1k2

,1k3

(1)

1 (
k1 ,k2 ,k3 ,k4

C0;1k1
,1k2

,1k3
,1k4

(1)* C0;1k1
,1k2

,1k3
,1k4

(1) 1~C0;0
(2)* 1C0;0

(2) !J G
1l2F2C0;12k,1k

(2) w2kwk14(
k1

~C0;22k,2k1

(1)* C0;22k,2k1

(1) w2k* w2k1C0;2k,2k1

(1)* C0;2k,2k1

(1) wk* wk!G1O~l3!, ~145!

G21
(2)~k;t !5wk* ẇkF11l2H (

k1 ,k2

C0;2k1
,2k2

(1)* C0;2k1
,2k2

(1) 1 (
k1 ,k2 ,k3

C0;2k1
,1k2

,1k3

(1)* C0;2k1
,1k2

,1k3

(1)

1 (
k1 ,k2 ,k3 ,k4

C0;1k1
,1k2

,1k3
,1k4

(1)* C0;1k1
,1k2

,1k3
,1k4

(1) 1~C0;0
(2)* 1C0;0

(2) !J G
1l2F2C0;12k,1k

(2) w2kẇk14(
k1

~C0;22k,2k1

(1)* C0;22k,2k1

(1) ẇ2k* w2k1C0;2k,2k1

(1)* C0;2k,2k1

(1) wk* ẇk!G1O~l3!, ~146!

G22
(2)~k;t !5ẇk* ẇkF11l2H (

k1 ,k2

C0;2k1
,2k2

(1)* C0;2k1
,2k2

(1) 1 (
k1 ,k2 ,k3

C0;2k1
,1k2

,1k3

(1)* C0;2k1
,1k2

,1k3

(1)

1 (
k1 ,k2 ,k3 ,k4

C0;1k1
,1k2

,1k3
,1k4

(1)* C0;1k1
,1k2

,1k3
,1k4

(1) 1~C0;0
(2)* 1C0;0

(2) !J G
1l2F2C0;12k,1k

(2) ẇ2kẇk14(
k1

~C0;22k,2k1

(1)* C0;22k,2k1

(1) ẇ2k* ẇ2k1C0;2k,2k1

(1)* C0;2k,2k1

(1) ẇk* ẇk!G1O~l3!. ~147!
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It is clearly evident from this set of equations that the fi
term corresponds to the Hartree approximation result,
corrections to the Hartree approximation appear only
O(l2). The auxiliary field mode variablewk is given by the
solution of Eq. ~101! with l50. The effect of scattering
enters through the presence of the first and second o
coefficients, which first appear atO(l2). For example, four-
particle scattering processes with overall momentum con
vation are encoded in terms involving the first order coe
cients C0;1k1

,1k2
,1k3

,1k4

(1) . The LvN formalism thus provides a

systematic perturbative method for computing non-Gaus
~beyond Hartree! corrections to the two-point function an
highern-point functions. Systematic corrections in powers
l>3 can also be derived in a similar manner after includ
terms of O(ln)(n>3) in the expression for the improve
vacuum state. These expressions for the two-point funct
are particularly suited to obtain non-Gaussian correction
the domain size in systems undergoing a quenched se
order phase transition. The four-point function and high
n-point functions in momentum space can also be compu
in a similar manner, in terms of the auxiliary field modes a
the expansion coefficients up toO(l2). The l-independent
terms in the four-point functions correspond to the factori
tion of the four-point function in terms of products of two
point functions and thereby represent the Hartree approxi
tion result.
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B. Heisenberg formalism: Evolution beyond the leading order

In this subsection, we obtain the nonequilibrium evoluti
equations for the connected correlators, by taking
vacuum expectation value of the Heisenberg equations
motion for various combinations of products of the field a
its conjugate momentum operators, after making use of
cluster expansion to express the ordinaryn-point functions as
sums of products of connectedn-point functions of lower
order. This technique was used to obtain the effective po
tial and investigate phase transitions in spontaneously bro
f4 theory in 111 and 211 dimensions@37#. We note from
Sec. II that the expectation value of a functional of Heise
berg operators with respect to the vacuum state become

^0uF̂H~ t !u0&5^0,tuF̂Su0,t&, ~148!

where F̂H(t) is any general function~al! of operators in the

Heisenberg picture andF̂S is the corresponding time
independent operator in the Schro¨dinger picture.

From now on, to take into account NLO effects and co
pare with other methods, we adopt an approach differ
from the LvN formalism. We take the expectation value
the Heisenberg equation for any functional off̂H(t) and
p̂H(t) as follows:

^0u i
]

]t
F̂H~ t !u0&5^0u@ F̂H~ t !,ĤH~ t !#u0&, ~149!
4-18
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where ĤH(t) and F̂H(t) are time-dependent operators a
u0& is the time-independent vacuum state. Even though

explicit form of ĤH(t) andF̂H(t) in terms of the Schro¨dinger
operators requires knowledge of the unitary evolution ope
tor, we will not be required to know their explicit forms fo
the purpose of the calculation below.

In general, the evolution equations for the ordina
n-point correlators which are defined as

ga, . . . ,b
(n) ~x1 , . . . ,xn ;t !5^f̂a~x1 ,t !•••f̂b~xn ,t !&

[^F̂H;a, . . . ,b~x1 , . . . ,xn ;t !& ~150!

are obtained by taking the vacuum expectation value of
Heisenberg equation~after dropping the subscript ‘‘H’’!

d^F̂a, . . . ,b&
dt

5
1

i
^@ F̂a, . . . ,b~x1 , . . . ,xn ;t !,Ĥ#&, ~151!

where the subscript indicesa,b, . . . 51,2 for our model
Hamiltonian andf̂a is to be understood as the fluctuatio
field operatorf̂ f(x,t)(a51) or the conjugate momentum
operatorp̂ f(x,t)(a52) in the Heisenberg picture. The su
script f has been removed for notational convenience. T
fluctuation field and its conjugate momenta satisfy the us
commutation relations

@f̂a~x,t !,f̂b~y,t !#5 idabd
D~x2y!. ~152!

For the unbroken symmetry case,fc50, only correlation
functions of even order are nonvanishing.~For a theory ex-
hibiting spontaneous symmetry breaking, a nonvanish
vacuum expectation value will induce a cubic interacti
term because of which evenodd n-point functions become
nontrivial.! Using the cluster expansion@37# to express ordi-
nary n-point functions in terms of the equal-time, connect
n-point correlators, it is possible to obtain a set of evoluti
equations for the connected correlators. Because of the p
ence of the quartic coupling, the equations for the two-po
functions would depend upon the connected four-point fu
tions; the equations for the four-point functions would d
pend upon the six-point functions, and so on, thereby yie
ing an infinite hierarchy of evolution equations for th
n-point correlators. To go beyond the Hartree approximat
requires including the cluster expansion of the six-po
function in terms of products of connectedn-point functions
of lower order and ignoring the effect of the connected s
point function in the expansion. This amounts to taking in
account direct scattering effects and provides a system
way of going beyond the leading-order mean field expans
This then yields a set of closed equations which have b
truncated at the four-point level. The leading order~Hartree
approximation! result is easily recovered by expressing t
four-point function as products of connected two-point fun
tions and ignoring the term involving the connected fo
point function in the cluster expansion. This yields a clos
10501
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set of equations for the equal-time, connected two-po
functions. In this scheme, incorporating NNLO effects wou
then amount to truncating the hierarchy of evolution eq
tions at the six-point level. Appendix A lists the cluster e
pansion ofn-point functions (n<4) and the set of evolution
equations for the equal-time, connectedn-point functions
(n<4) in configuration space. It is often more convenient
work with the Fourier transforms of the evolution equation
For that purpose, we define the Fourier transforms of
two- and four-point functions as

gab
(2C)~x1 ,x2!5E @dk1#@dk2#G̃ab

(2C)~k1 ,k2!

3ei (k1•x11k2•x2),

gabcd
(4C) ~x1 ,x2 ,x3 ,x4!5E @dk1#@dk2#@dk3#@dk4#

3G̃abcd
(4C) ~k1 ,k2 ,k3 ,k4!

3expF i S (
i 51

i 54

ki•xi D G . ~153!

For translationally invariant theories,

G̃ab
(2C)~k1 ,k2!5Gab

(2C)~k1!d~k11k2!,

G̃abcd
(4C) ~k1 ,k2 ,k3 ,k4!5Gabcd

(4C) ~k1 ,k2 ,k3!d~k11k21k31k4!,
~154!

which is just an indication of the conservation of momentu
at the vertices. The Fourier transform of Eq.~A1! and Eqs.
~A3!–~A7! yields the following evolution equations fo
Gab

(2C)(k):

Ġ11
(2C)~k1!5G12

(2C)~k1!1G21
(2C)~k1!,

Ġ21
(2C)~k1!5G22

(2C)~k1!2Fv2~k1!1
l

2E @dk8#G11
(2C)~k8!G

3G11
(2C)~k1!2

l

6E@dk8#@dk9#G1111
(4C)~k8,k9,2k1!,

Ġ22
(2C)~k1!52Fv2~k1!1

l

2E @dk8#G11
(2C)~k8!G

3„G12
(2C)~k1!1G21

(2C)~k1!…2
l

6E @dk8#@dk9#

3„G1112
(4C)~k8,k9,k1!1G2111

(4C)~k8,k9,k1!…. ~155!
4-19
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By neglecting terms involving the connected four-po
functions in the above equations and, settingfc50 ~since
we are discussing the symmetric theory!, one recovers the
leading order~Hartree approximation! evolution equations,
Eq. ~107!, obtained in the last section. This also establis
10501
t

s

the equivalence of the method used in this section to ob
NLO equations and the LvN method used in the previo
sections. The evolution equations for the four-point functio
Gabcd

(4C) (k1 ,k2 ,k3) obtained by taking the Fourier transform o
Eqs.~A3!–~A7! are
Ġ1111
(4C)~k1 ,k2 ,k3!5G2111

(4C)~k1 ,k2 ,k3!1G1211
(4C)~k1 ,k2 ,k3!1G1121

(4C)~k1 ,k2 ,k3!1G1112
(4C)~k1 ,k2 ,k3!, ~156!

Ġ2111
(4C)~k1 ,k2 ,k3!5G2211

(4C)~k1 ,k2 ,k3!1G2121
(4C)~k1 ,k2 ,k3!1G2112

(4C)~k1 ,k2 ,k3!

2v2~k11k21k3!G1111
(4C)~k1 ,k2 ,k3!2lG11

(2C)~k1!G11
(2C)~k2!G11

(2C)~k3!

2
l

2 F E @dk8#„G11
(2C)~k8!G1111

(4C)~k1 ,k2 ,k3!1G11
(2C)~k1!G1111

(4C)~k8,k2 ,k3!

1G11
(2C)~k2!G1111

(4C)~k8,k1 ,k3!1G11
(2C)~k3!G1111

(4C)~k8,k1 ,k2!…G , ~157!

Ġ2211
(4C)~k1 ,k2 ,k3!5G2221

(4C)~k1 ,k2 ,k3!1G2212
(4C)~k1 ,k2 ,k3!2v2~k11k21k3!G1211

(4C)~k1 ,k2 ,k3!2v2~k1!G2111
(4C)~k1 ,k2 ,k3!

2l„G12
(2C)~k1!G11

(2C)~k2!G11
(2C)~k3!1G21

(2C)~k1!G11
(2C)~k2!G11

(2C)~k3!…

2
l

2 F E @dk8#„G11
(2C)~k8!G1211

(4C)~k1 ,k2 ,k3!1G12
(2C)~k1!G1111

(4C)~k8,k2 ,k3!

1G11
(2C)~k2!G1121

(4C)~k8,k1 ,k3!1G11
(2C)~k3!G1121

(4C)~k8,k1 ,k2!…

1E @dk8#„G11
(2C)~k8!G2111

(4C)~k1 ,k2 ,k3!1G21
(2C)~k1!G1111

(4C)~k8,k2 ,k3!

1G11
(2C)~k2!G2111

(4C)~k8,k1 ,k3!1G11
(2C)~k3!G2111

(4C)~k8,k1 ,k2!…G , ~158!

Ġ2221
(4C)~k1 ,k2 ,k3!5G2222

(4C)~k1 ,k2 ,k3!2v2~k11k21k3!G1221
(4C)~k1 ,k2 ,k3!2v2~k1!G2121

(4C)~k1 ,k2 ,k3!

2v2~k2!G2211
(4C)~k1 ,k2 ,k3!

2l„G12
(2C)~k1!G12

(2C)~k2!G11
(2C)~k3!1G21

(2C)~k1!G12
(2C)~k2!G11

(2C)~k3!

1G21
(2C)~k1!G21

(2C)~k2!G11
(2C)~k3!…

2
l

2 F E @dk8#„G11
(2C)~k8!G1221

(4C)~k1 ,k2 ,k3!1G12
(2C)~k1!G1121

(4C)~k8,k2 ,k3!

1G12
(2C)~k2!G1121

(4C)~k8,k1 ,k3!1G11
(2C)~k3!G1122

(4C)~k8,k1 ,k2!…

1E @dk8#„G11
(2C)~k8!G2121

(4C)~k1 ,k2 ,k3!1G21
(2C)~k1!G1121

(4C)~k8,k2 ,k3!

1G12
(2C)~k2!G2111

(4C)~k8,k1 ,k3!1G11
(2C)~k3!G2112

(4C)~k8,k1 ,k2!…

1E @dk8#„G11
(2C)~k8!G2211

(4C)~k1 ,k2 ,k3!1G21
(2C)~k1!G2111

(4C)~k8,k2 ,k3!

1G21
(2C)~k2!G2111

(4C)~k8,k1 ,k3!1G11
(2C)~k3!G2211

(4C)~k8,k1 ,k2!…G , ~159!
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Ġ2222
(4C)~k1 ,k2 ,k3!52„v2~k11k21k3!G1222

(4C)~k1 ,k2 ,k3!1v2~k1!G2122
(4C)~k1 ,k2 ,k3!1v2~k2!G2212

(4C)~k1 ,k2 ,k3!

1v2~k3!G2221
(4C)~k1 ,k2 ,k3!…2l„G12

(2C)~k1!G12
(2C)~k2!G12

(2C)~k3!1G21
(2C)~k1!G12

(2C)~k2!G12
(2C)~k3!

1G21
(2C)~k1!G21

(2C)~k2!G12
(2C)~k3!1G21

(2C)~k1!G21
(2C)~k2!G21

(2C)~k3!…

2
l

2 F E @dk8#„G11
(2C)~k8!G1222

(4C)~k1 ,k2 ,k3!1G12
(2C)~k1!G1122

(4C)~k8,k2 ,k3!

1G12
(2C)~k2!G1122

(4C)~k8,k1 ,k3!1G12
(2C)~k3!G1122

(4C)~k8,k1 ,k2!…

1E @dk8#„G11
(2C)~k8!G2122

(4C)~k1 ,k2 ,k3!1G21
(2C)~k1!G1122

(4C)~k8,k2 ,k3!

1G12
(2C)~k2!G2112

(4C)~k8,k1 ,k3!1G12
(2C)~k3!G2112

(4C)~k8,k1 ,k2!…

1E @dk8#„G11
(2C)~k8!G2212

(4C)~k1 ,k2 ,k3!1G21
(2C)~k1!G2112

(4C)~k8,k2 ,k3!

1G21
(2C)~k2!G2112

(4C)~k8,k1 ,k3!1G12
(2C)~k3!G2211

(4C)~k8,k1 ,k2!…

1E @dk8#„G11
(2C)~k8!G2221

(4C)~k1 ,k2 ,k3!1G21
(2C)~k1!G2211

(4C)~k8,k2 ,k3!

1G21
(2C)~k2!G2211

(4C)~k8,k1 ,k3!1G21
(2C)~k3!G2211

(4C)~k8,k1 ,k2!…G . ~160!
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This set of equations completely determines the evolution
the correlation functions beyond the leading order. Num
cal integration of this set of equations with nonequilibriu
initial conditions and tracking of the subsequent dynami
evolution of the connected,n-point functions would make it
possible to ascertain whether the proposed truncation sch
is good enough to ensure late-time thermalization of the s
tem. The inclusion of the four-point correlators in the hier
chy amounts to considering terms ofO(\3) in the effective
action. Since each connectedn-point function G(nC)

;O(\n21), inclusion of higher order connectedn-point cor-
relators in the hierarchy of evolution equations allows fo
systematic way of incorporating quantum effects. The is
of truncation error arising from truncating the hierarchy
the four-point level needs to be addressed. This issue
been briefly discussed in Ref.@24# where it was argued tha
truncation error would build up with time and eventua
invalidate the working assumption of the formal hierarchy
the connected correlators given above. For the quantum
chanical anharmonic oscillator and the O(N) vector model,
the decoherence time scale for breakdown of the hierar
was qualitatively argued to scale with\21/2 andAN, respec-
tively. However, that analysis was based on a simple
11)-dimensional quantum mechanical model, and quan
tive treatment of this aspect for a system with infinite d
grees of freedom~field theory! will certainly be more com-
plicated. Although inclusion of higher ordern-point
functions in the hierarchy does not eliminate the instabiliti
it does postpone the onset of these instabilities. This dela
the appearance of instabilities would make it possible to g
valuable insights into the nonequilibrium dynamics and
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proach to thermalization, in a temporal domain which li
beyond the domain of validity of the Hartree approximatio
A possible way to avoid the instabilities arising due to t
truncation of the hierarchy might involve adapting the dire
interaction approximation developed by Kraichnan@27# in
the context of turbulent fluid dynamics. We are curren
exploring this possibility.

VII. COMPARISON WITH ALTERNATIVE METHODS

Several approaches have been developed to unders
the dynamics of fields in nonequilibrium field theory.
would be useful to make a comparative study of the differ
approaches, specifying the relationship between the diffe
methods and the relative merits and demerits of each
proach. In this section, we will address this issue by comp
ing our approach with other methods that have been use
obtain evolution equations for theequal-time correlation
functions. We will compare our canonical approach with tw
specific approaches@24,36# that have been recently discuss
in the literature.

Wetterich’s method@36# is based on deriving an evolutio
equation for the partition function~or the generating func-
tional for 1PI graphs!. The time evolution of then-point
correlation functions~or n-point vertex functions! is com-
pletely determined by the time evolution of the generat
functional and the microscopic dynamical equations of m
tion. We will show below that the evolution equations for th
equal-time correlation functions obtained using Wetteric
method match exactly with those derived in this paper us
a canonical approach.
4-21
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SENGUPTA, KHANNA, AND KIM PHYSICAL REVIEW D 68, 105014 ~2003!
For af4 theory without spontaneous symmetry breakin
the evolution equation for the generating functional can
cast in the form@36#

] tZ@ j ~x!,h~x!;t#5~Lcl1Lqm!Z@ j ~x!,h~x!;t#, ~161!

whereLcl andLqm are the classical and quantum parts of t
Liouvillian operator, respectively, and are given by

Lcl5E dxF j ~x!
d

dh~x!

1h~x!H ¹2
d

d j ~x!
2S m2

d

d j ~x!
1

l

6

d3

d j ~x!3D J G ,

Lqm5
l

4!E dxFh3~x!
d

d j ~x!G . ~162!

Here j (x) andh(x) are source terms for the field and conj
gate momenta, respectively, andZ@ j (x),h(x);t# is the gen-
erating functional for n-point functions, Z
5Tr„exp$*dx@ j(x)f(x)1h(x)p(x)#%r…, wherer is the density
matrix.

It is fairly straightforward to obtain the correspondin
evolution equations for the generating functional for co
nected graphsW@ j (x),h(x);t# and the generating functiona
for 1PI graphsG@wc(x),pc(x);t#. @wc(x) andpc(x) are the
vacuum expectation values of the field and conjugate m
mentum in the presence of sourcesj (x) and h(x), respec-
tively.# Z@ j (x),h(x);t#,W@ j (x),h(x);t#, and
G@wc(x),pc(x);t# are related by the equatio
W@ j (x),h(x);t#5 ln Z@ j(x),h(x);t# and the Legendre trans
form G@wc(x),pc(x);t#52 ln Z@ j(x),h(x);t#1*dx@ j(x)wc(x)
1h(x)pc(x)#. The evolution equation forW@ j (x),h(x);t#,
which completely determines the evolution of the connec
n-point functions, then becomes

] tW@ j ~x!,h~x!;t#

5E dxF j ~x!
dW

dh~x!
1h~x!~¹22m2!

dW

d j ~x!

2
l

6
h~x!H d3W

d j ~x!3
13

dW

d j ~x!

d2W

d j ~x!2
1S dW

d j ~x! D
3J G

1
l

4!E dxFh3~x!
dW

d j ~x!G . ~163!

For a symmetric theorywc(x)u j 50[@dW/d j (x)#u j 5050 and
pc(x)uh50[@dW/dh(x)#uh5050. Using Eq.~163! we find
that

ġ11
(2C)~x1 ,x2![

d2

d j ~x1!d j ~x2!
] tW@ j ,h;t#u j 5h50

5g12
(2C)~x1 ,x2!1g21

(2C)~x1 ,x2!,
10501
,
e
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d

ġ21
(2C)~x1 ,x2![

d2

dh~x1!d j ~x2!
] tW@ j ,h;t#u j 5h50

5g22
(2C)~x1 ,x2!1¹1

2g12
(2C)~x1 ,x2!

2m2g11
(2C)~x1 ,x2!

2
l

2
g11

(2C)~x1 ,x2!g11
(2C)~x1 ,x1!

2
l

6
g1111

(4C)~x1 ,x1 ,x1 ,x2!,

ġ22
(2C)~x1 ,x2!

[
d2

dh~x1!dh~x2!
] tW@ j ,h;t#u j 5h50

5~¹1
22m2!g12

(2C)~x1 ,x2!1~¹2
22m2!g21

(2C)~x1 ,x2!

2
l

2
„g11

(2C)~x1 ,x1!g12
(2C)~x1 ,x2!

1g11
(2C)~x2 ,x2!g21

(2C)~x1 ,x2!…

2
l

6
„g1112

(4C)~x1 ,x1 ,x1 ,x2!1g2111
(4C)~x1 ,x2 ,x2 ,x2!….

~164!

The above set of equations for the connected two-point fu
tion, derived using Eq.~163!, is identical to Eq.~A1!, which
was derived using canonical methods and the cluster ex
sion for ordinaryn-point functions. Similarly, one can show
that the evolution for the connected four-point function o
tained using the above method is the same as the ones
tained in Appendix A.

More recently, Ryzhov and Yaffe developed anoth
method for obtaining the nonequilibrium, coupled set of ev
lution equations for then-point correlators @24#. Their
method is based on an expansion of the coherent state ex
tation value of the products of operators in terms of su
tractedn-point functions and the assumption that the init
state is some coherent state. The central idea behind the
method is the expansion of the Hamiltonian operator in ter
of powers of the generators of the underlying cohere
group, which is the Heisenberg group for thef4 theory. It

consists of the operatorse(1),e(2),e(3)[F̂1(k),F̂2(k),1̂ sat-
isfying the commutation relations@e(1),e(2)#5 i f 12

3 e(3)d(k
2k8), wheref 12

3 52 f 21
3 51 are the only nonvanishing struc

ture constants. By taking thecoherent stateexpectation value
of the Heisenberg equations of motion for appropriate pr
ucts of equal-time coherence group generators, it is poss
to obtain the evolution equations for the subtractedn-point
functions ~or connected functions! in the same manner a
described in Sec. V. In Appendix B, the evolution equatio
for the two-point function are derived in the Hartree appro
mation using the RY method and are shown to be equiva
to those obtained using the LvN approach.

VIII. CONCLUSION

In this paper we have used the LvN formalism, a cano
cal method, to study the nonequilibrium evolution
4-22



N
on
s-
e

w
b-
e
ia
nc

or
si

ap
e
fo
a

sy
s
th
he
f

wo
es

h
th

l-
to
m
tr

bi
co
-

in
di
ec
im
hi

to

a
m
e
ll
ne
un
r

tre
n

ca-

vN
thod

,
t
ions
rd

do-
rder
w-
to
nts,
ns
-
n-

eit
nd
his
o-

on
ive,
berg

re-
c-

cy
ng

f the
o
able
ca-
eful
in

s.
ns
ical
nd
and

un-
by

rant

a-

ur-
of

NONEQUILIBRIUM EVOLUTION OF CORRELATION . . . PHYSICAL REVIEW D68, 105014 ~2003!
equal-time, connectedn-point functions for a symmetricf4

field theory. The usefulness and simplicity of the Lv
method in obtaining perturbative, non-Gaussian correcti
to the n-point correlation functions were first illustrated u
ing the quantum mechanical anharmonic oscillator mod
The formalism was then applied to af4 field theory and
used to obtain the evolution equations for the connected t
point function in the Hartree approximation, for nonequili
rium evolution as well as for the thermal equilibrium cas
We also used the LvN formalism to go beyond the Gauss
approximation and obtain expressions for the two-point fu
tions correct to O(l2) after calculating the improved
vacuum state. Expressions for four-point and highern-point
functions can be obtained similarly after some straightf
ward but tedious algebra. The corrections to the Gaus
approximation were found to appear first atO(l2). The non-
equilibrium evolution equations beyond the leading order
proximation were then obtained by taking the vacuum exp
tation value of the Heisenberg equations of motion
appropriate products of field operators. This provides an
ternative and nonperturbative approach to investigate
tematically the nonequilibrium evolution of quantum field
and yielded an infinite hierarchy of coupled equations for
connectedn-point correlators which were truncated at t
four-point level. This involved ignoring the contribution o
connectedn-point functions (n>6) in the evolution and re-
sulted in a closed set of equations involving connected t
point and four-point functions. Since we restricted our inv
tigation to a symmetricf4 theory with vanishing vacuum
expectation value, all connected oddn-point functions vanish
and have no effect on the evolution. We have also establis
a connection between the canonical approach used in
paper and other methods@24,36# developed in the literature
for deriving nonequilibrium evolution equations for equa
time correlation functions. It would be straightforward
generalize this technique for studying the nonequilibriu
evolution of spontaneously broken field theories. Symme
breaking would result in the generation of linear and cu
terms in the potential, as a consequence of which even
nected oddn-point functions would contribute to the dy
namical evolution.

The inadequacy of the Hartree approximation in study
the approach to thermalization has been extensively
cussed in the literature. The Hartree approximation negl
scattering effects and therefore cannot account for long-t
thermalization of the system. An elegant interpretation of t
aspect has been put forward by Wetterich@36# and is based
on the realization that the Hartree solution corresponds
fixed point of the theory~i.e., configurations for which] tZ
50). The presence of an infinite number of conserved qu
tities ~fixed points! prevents the system from escaping fro
these nonequilibrium fixed points and approaching the th
mal equilibrium fixed point unless the initial values of a
these conserved quantities coincide exactly with the o
corresponding to a thermal distribution. To take into acco
the effect of scattering, which would ultimately lead to the
malization of the system, requires going beyond the Har
approximation. An approach based on the loop expansio
the 2PI effective action@13# in powers of\ @or 1/N for an
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O(N) symmetric field theory# holds more promise in this
context. In this paper we have discussed two different
nonical approaches~perturbative and nonperturbative! of go-
ing beyond the Hartree approximation. The perturbative L
approach developed in this paper provides an elegant me
for obtaining corrections to then-point functions in terms of
powers of the coupling constantl. The effect of scattering
which first appears atO(l2), is manifest through the firs
and second order coefficients whose dynamical equat
were derived. This method provides a straightforwa
method for obtaining non-Gaussian corrections to the
main size in systems undergoing a quenched second o
phase transition. By making use of the exponentially gro
ing solution of the soft modes of the theory, it is possible
obtain expressions for the first and second order coefficie
which in turn leads to expressions for the two-point functio
to various orders inl. The Fourier transform of the two
point functions would then yield the domain size, which i
cludes corrections due to non-Gaussian effects@46#. More-
over, the LvN method provides an analytical, alb
perturbative, method for studying the role of interactions a
the effect of scattering on thermalization of the system. T
is possible by obtaining perturbative corrections to the tw
point functions to various powers ofl and comparing the
resulting expression with the thermal two-point correlati
functions. We have also discussed in detail an alternat
nonperturbative canonical approach based on the Heisen
formalism to study the nonequilibrium evolution of thef4

field theory. This nonperturbative Heisenberg formalism
quires incorporating the effect of connected four-point fun
tion in the nonequilibrium evolution equations. The effica
of truncating the hierarchy at the four-point level in ensuri
thermalization needs to be addressed. Recent work@23# for
classical field theories has been inconclusive because o
prohibitively long time required for equilibration and als
due to the fact that the numerical evolution becomes unst
long before the system thermalizes. We believe that the
nonical approaches developed in this paper provide a us
alternative method for studying nonequilibrium dynamics
field theory.
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APPENDIX A

In this appendix we write down the set of evolution equ
tions for the connectedn-point functions in configuration
space by making use of the cluster expansion for the fo
point and six-point functions. The cluster expansion
4-23
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n-point functions can be formally derived from the gener
ing functional of the interacting field theory@37#. The differ-
ence between the ordinary and connectedn-point correlators
first appears at the four-point level. To simplify the notatio
we represent thef andp field operators by the numbers
and 2, respectively. So the correlation functio
gff

(2C)(x1 ,x2), gpf
(2C)(x1 ,x2), etc., are symbolically repre

sented asg11
(2C)(1,2), g21

(2C)(1,2), respectively, where th
numbers in parentheses refer to the subscript indices of
spatial coordinates.

The equations for the two-point functions in configurati
space are easily obtained by using Eq.~151! and the appro-
priate cluster expansion of the four-point functions. They

ġ11
(2C)~1,2!5g12

(2C)~1,2!1g21
(2C)~1,2!,

ġ21
(2C)~1,2!5g22

(2C)~1,2!1~¹1
22m2!g12

(2C)~1,1!

2
l

2
g11

(2C)~1,1!g11
(2C)~1,2!2

l

6
g1111

(4C)~1,1,1,2!,

ġ22
(2C)~1,2!5~¹1

22m2!g12
(2C)~1,2!1~¹2

22m2!g21
(2C)~1,2!

2
l

2
„g11

(2C)~1,1!g12
(2C)~1,2!1g11

(2C)~2,2!g21
(2C)~1,2!…

2
l

6
„g1112

(4C)~1,1,1,2!1g2111
(4C)~1,2,2,2!…, ~A1!
10501
-

,

he

e

where the last two equations in the above set have b
obtained by making use of the following cluster expansion
the four-point functions:

g1111
(4) ~1,1,1,2!5g1111

(4C)~1,1,1,2!13g11
(2C)~1,1!g11

(2C)~1,2!,

g1112
(4) ~1,1,1,2!5g1112

(4C)~1,1,1,2!13g11
(2C)~1,1!g12

(2C)~1,2!,

g2111
(4) ~1,2,2,2!5g2111

(4C)~1,1,1,2!13g11
(2C)~2,2!g21

(2C)~1,2!.

~A2!

We have used lower case letters to represent the correla
functions in configuration space and upper case letters
represent their Fourier transformed counterparts in mom
tum space. Then-point connected correlation functions a
pearing above and in the subsequent discussion are all
mal ordered vacuum expectation values of products
operators.

The evolution equations for the connected four-po
functions in configuration space can be similarly derived
making use of the appropriate cluster expansion of the
point functions. The five independent equations for the fo
point function are
f indices
ġ1111
(4C)~1,2,3,4!5g2111

(4C)~1,2,3,4!1g1211
(4C)~1,2,3,4!1g1121

(4C)~1,2,3,4!1g1112
(4C)~1,2,3,4!, ~A3!

ġ2111
(4C)~1,2,3,4!5g2211

(4C)~1,2,3,4!1g2121
(4C)~1,2,3,4!1g2112

(4C)~1,2,3,4!

1~¹1
22m2!g1111

(4C)~1,2,3,4!2lg11
(2C)~1,2!g11

(2C)~1,3!g11
(2C)~1,4!

2
l

2
„g11

(2C)~1,1!g1111
(4C)~1,2,3,4!1g11

(2C)~1,2!g1111
(4C)~1,1,3,4!

1g11
(2C)~1,3!g1111

(4C)~1,1,2,4!1g11
(2C)~1,4!g1111

(4C)~1,1,2,3!…, ~A4!

ġ2211
(4C)~1,2,3,4!5g2221

(4C)~1,2,3,4!1g2212
(4C)~1,2,3,4!1~¹1

22m2!g1211
(4C)~1,2,3,4!1~¹2

22m2!g2111
(4C)~1,2,3,4!

2l„g12
(2C)~1,2!g11

(2C)~1,3!g11
(2C)~1,4!1g21

(2C)~1,2!g11
(2C)~2,3!g11

(2C)~2,4!…

2
l

2
„g11

(2C)~1,1!g1211
(4C)~1,2,3,4!1g12

(2C)~1,2!g1111
(4C)~1,1,3,4!

1g11
(2C)~1,3!g1121

(4C)~1,1,2,4!1g11
(2C)~1,4!g1121

(4C)~1,1,2,3!…

2
l

2
„g21

(2C)~1,2!g1111
(4C)~2,2,3,4!1g11

(2C)~2,2!g2111
(4C)~1,2,3,4!

1g11
(2C)~2,3!g2111

(4C)~1,2,2,4!1g11
(2C)~2,4!g2111

(4C)~1,2,2,3!…. ~A5!

Since the correlation functions are all normal ordered, the above equation is symmetric under the interchange o
x1↔x2 andx3↔x4:
4-24
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ġ2221
(4C)~1,2,3,4!5g2222

(4C)~1,2,3,4!1~¹1
22m2!g1221

(4C)~1,2,3,4!1~¹2
22m2!g2121

(4C)~1,2,3,4!1~¹3
22m2!g2211

(4C)~1,2,3,4!

2l„g12
(2C)~1,2!g12

(2C)~1,3!g11
(2C)~1,4!1g21

(2C)~1,2!g12
(2C)~2,3!g11

(2C)~2,4!

1g21
(2C)~1,3!g21

(2C)~2,3!g11
(2C)~3,4!…

2
l

2
„g11

(2C)~1,1!g1221
(4C)~1,2,3,4!1g12

(2C)~1,2!g1111
(4C)~1,1,3,4!

1g12
(2C)~1,3!g1121

(4C)~1,1,2,4!1g11
(2C)~1,4!g1122

(4C)~1,1,2,3!…

2
l

2
„g11

(2C)~1,2!g2121
(4C)~1,2,3,4!1g21

(2C)~1,2!g1121
(4C)~2,2,3,4!

1g12
(2C)~1,3!g2111

(4C)~1,2,2,4!1g11
(2C)~2,4!g2112

(4C)~1,2,2,3!…

2
l

2
„g11

(2C)~3,3!g2211
(4C)~1,2,3,4!1g21

(2C)~1,3!g2111
(4C)~2,3,3,4!

1g21
(2C)~1,3!g2111

(4C)~1,3,3,4!1g11
(2C)~3,4!g2211

(4C)~1,2,3,3!…. ~A6!

The above equation is symmetric under the exchange of coordinate indicesx1↔x2↔x3:

ġ2222
(4C)~1,2,3,4!5~¹1

22m2!g1222
(4C)~1,2,3,4!1~¹2

22m2!g2122
(4C)~1,2,3,4!

1~¹3
22m2!g2212

(4C)~1,2,3,4!1~¹4
22m2!g2221

(4C)~1,2,3,4!

2l„g12
(2C)~1,2!g12

(2C)~1,3!g12
(2C)~1,4!1g21

(2C)~1,2!g12
(2C)~2,3!g12

(2C)~2,4!

1g21
(2C)~1,3!g21

(2C)~2,3!g12
(2C)~3,4!1g21

(2C)~1,4!g21
(2C)~2,4!g21

(2C)~3,4!…

2
l

2
„g11

(2C)~1,1!g1222
(4C)~1,2,3,4!1g12

(2C)~1,2!g1122
(4C)~1,1,3,4!

1g12
(2C)~1,3!g1122

(4C)~1,1,2,4!1g12
(2C)~1,4!g1122

(4C)~1,1,2,3!…

2
l

2
„g21

(2C)~1,2!g1122
(4C)~2,2,3,4!1g11

(2C)~2,2!g2122
(4C)~1,2,3,4!

1g12
(2C)~2,3!g2112

(4C)~1,2,2,4!1g12
(2C)~2,4!g2112

(4C)~1,2,2,3!…

2
l

2
„g21

(2C)~1,3!g2112
(4C)~2,3,3,4!1g21

(2C)~2,3!g2112
(4C)~1,3,3,4!

1g11
(2C)~3,3!g2212

(4C)~1,2,3,4!1g12
(2C)~3,4!g2211

(4C)~1,2,3,3!…

2
l

2
„g21

(2C)~1,4!g2211
(4C)~2,3,4,4!1g21

(2C)~2,4!g2211
(4C)~1,3,4,4!

1g21
(2C)~3,4!g2211

(4C)~1,2,4,4!1g11
(2C)~4,4!g2221

(4C)~1,2,3,4!…. ~A7!
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APPENDIX B

We now show the equivalence between the LvN meth
and the RY method by obtaining the evolution equations
the Fourier transform of the subtracted two-point correlatio
using the RY method in the Hartree approximation. The
pectation value of the Hamiltonian~79! can be expressed i
terms of the Fourier transformsF0i(k,t)( i 51,2) of the co-
herent state expectation value of the fluctuation fi
10501
d
r
s
-

d

f0(x,t)[^f̂ f&cs and that of the conjugate momentum ope

tor p0(x,t)[^p̂ f&cs, respectively. In order to apply the RY
method, it is necessary to isolate from the expectation va
of the Hamiltonian the parts that depend only on the Fou
transforms F01(k,t)5F0(k,t) and F02(k,t)5P0(k,t) of
the coherent state expectation value of the field and its c
jugate momentum operator. Using the relations^p̂ f

2(x)&cs

5p0
2(x,t)1g22(0,t) and ^f̂ f

2(x)&cs5f0
2(x,t)1g11(0,t) and
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the Hartree factorization of the cubic and quartic terms sp
fied in Eq. ~94!, the coherent state expectation value of t
full Hamiltonian can be expressed as

^Ĥ~ t !&cs5E @dk#H̄„F0~k,t !,P0~k,t !…1•••, ~B1!

where the ellipsis corresponds to terms that are indepen
of F0i(k,t)( i 51,2) and

H̄„F0~k,t !,P0~k,t !…

5
1

2
P0

2~k,t !1Fvk
21

l

2
fcl

2 ~ t !1
l

2
g11~0,t !G F0

2~k,t !

2
.

~B2!

By noting that the underlying coherence group in this c
is the Heisenberg group whose generatorse(1),e(2),e(3)

[p̂k ,f̂k ,1̂ satisfy the commutation relations@e(1),e(2)#
5 i f 12

3 e(3)d(k2k8) wheref 12
3 52 f 21

3 51 are the only nonva-
nishing structure constants, and by making use of the gen
form of the NLO evolution equations for the one-point a
two-point functions, we get the following self-consistent s
of equations toO„(l)2

…:

dF0~k,t !

dt
5P0~k,t !,

dP0~k,t !

dt
52Fvk

21
l

2
fcl

2 ~ t !1
l

2
g11~0,t !GF0~k,t !

1O„~l!2
…,
.
e

.
,

tt.

,

es
Ri
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t

dG11~k,t !

dt
5G12~k,t !1G21~k,t !,

dG22~k,t !

dt
52Fvk

21
l

2
fcl

2 ~ t !1
l

2
g11~0,t !G

3@G12~k,t !1G21~k,t !#1O„~l!2
…,

dG12~k,t !

dt
5G22~k,t !

2Fvk
21

l

2
fcl

2 ~ t !1
l

2
g11~0,t !G

3G11~k,t !1O„~l!2
…, ~B3!

where we have usedH̄ (11)[(1/2!)]2H̄/]F0
2(k,t)5(1/2)

3@vk
21(l/2)fcl

2 (t)1(l/2)g11(0,t)# and H̄ (22)[(1/2!)]2H̄/
]P0

2(k,t)51/2. The set of equations~B3! are identical to the
equations~107! obtained using the LvN formalism which
clearly establishes the equivalence of the LvN and RY me
ods. The coherent state can be considered as the vac
state of the theory with its expectation value providing t
classical background. For a symmetric theory, the cohe
state expectation value of the field and the conjugate m
menta vanishes, and we recover the set of equations for
two-point functions~in the Hartree limit! obtained in Sec. V.
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