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We study nonequilibrium evolution in a self-interacting quantum field theory invariant under space transla-
tion only by using a canonical approach based on the recently developed Liouville—von Neumann formalism.
The method is first used to obtain the correlation functions both in and beyond the Hartree approximation, for
the quantum mechanical analogue of ttmodel. The technique involves representing the Hamiltonian in a
Fock basis of annihilation and creation operators. By separating it into a solvable Gaussian part involving
quadratic terms and a perturbation of quartic terms, it is possible to find the improved vacuum state to any
desired order. The correlation functions for the field theory are then investigated in the Hartree approximation,
and those beyond the Hartree approximation are obtained by finding the improved vacuum state corrected up
to O(\?). These correlation functions take into account next-to-leading and next-to-next-to-leading order
effects in the coupling constant. We also use the Heisenberg formalism to obtain the time evolution equations
for the equal-time, connected correlation functions beyond the leading order. These equations are derived by
including the connected four-point functions in the hierarchy. The resulting coupled set of equations form part
of an infinite hierarchy of coupled equations relating the various conneepaint functions. The connection
with other approaches based on the path integral formalism is established, and the physical implications of the
set of equations are discussed with particular emphasis on thermalization.
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[. INTRODUCTION nonlinear effects which play such a crucial role in the evo-
lution dynamics.

In the past few years, a lot of attention has been focused Another important issue in this context is that of thermal-
on the investigation of classical and quantum fields evolvingzation in closed quantum systems. Is it possible for macro-
out of equilibrium. Such interest is physically well motivated scopic irreversible behavior to manifest itself starting from
because the very early history of the Universe provides manynicroscopic reversiblgunitary) quantum dynamicg 10—
scenarios where nonequilibrium effects may have played am3]? In other words, would it be possible for a closed quan-
important role. The reheating of the Universe after inflationtum system to thermalize when it is perturbed from its initial
[1], the formation and growth of domains in any genericthermal state? Can the process of thermalization be ad-
spontaneous symmetry breaking phase transj@drthe for-  equately described within the mean field description? If not,
mation of topological defec{3—8], and the possible forma- what is the role of interactionéonlinearitie$ in bringing
tion of a quark-gluon plasma during the deconfinement tranabout thermalization? Is it possible to develop a consistent
sition or disoriented chiral condensates during the chiratheoretical framework to address these important issues?
phase transitiofi9] are just some instances where the propeiSome of these questions have only recently begun to be ad-
understanding of the physical process may crucially dependressed using newly developed theoretical tools for dealing
on our understanding of nonequilibrium quantum fields. Thewith nonequilibrium quantum fieldsl0-15.
experimental accessibility of some of these phenomena, such Until recently, the issue of thermalization of a closed
as the formation of a quark-gluon plasma, made possiblguantum system was typically addressed by a separation of
through heavy-ion colliders at the BNL Relativistic Heavy the system into a subsystem made up of the nonthermal soft
lon Collider (RHIC) and CERN Large Hadron Collider modes(with longer thermalization time scaleand an envi-
(LHC), has also been a strong motivating factor behind theonment consisting of the thermal hard modesich ther-
revival of interest in nonequilibrium evolution of quantum malize on much shorter time scales compared to the soft
fields. The development of new theoretical techniques aneéhodes [10—12. The subsequent interaction between the soft
the availability of more efficient computational resourcesmodes and the environmeribften treated stochastically
have also made it possible to investigate in some detail thizads to the eventual thermalization of the subsystem made

up of soft modes. Mean field theofidartree approximation
has also been extensively and successfully used to study the

*Electronic address: sengupta@phys.ualberta.ca dynamics of nonequilibrium quantum fielfs6—19 and has
"Electronic address: khanna@phys.ualberta.ca yielded valuable insights into the early-time dynamical be-
*Electronic address: sangkim@kunsan.ac.kr havior. However, since the mean figldartreg approxima-
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tion is essentially a linear approximation, it fails to correctly three distinct temporal regimelsl3] characterized by an
capture long-time dynamical behavior where nonlinear efearly-time exponential damping, an intermediate hydrody-
fects play a dominant role. Moreover, in the mean field ap-hamic regime, and a late-time regime manifest through ex-
proximation, the different field modes interact with a spa-ponential approach to thermal equilibrium. An alternative ap-
tially homogeneous mean field with equal strength andproximation scheme has been developed by Cooper and
therefore the effects of direct scatterifvghich is responsible collaborators focusing on resummation methods based on the
for redistribution and eventual equipartition of energy amongexact Schwinger-Dyson equatiof5]. This scheme, called
different modep are neglected. Hence thermalization of thethe bare vertex approximation scheffiest studied by Kra-
system cannot be achievdd3,15. Recently, there have ichnan[27]) involves obtaining the exact Schwinger-Dyson
been some attempf20,21 to explore the possibility of ther- equations and then neglecting the vertex corrections. All the
malization within the mean field scheme by considering spamethods discussed above are based on path-integral tech-
tIaIIy inhomogeneous mean fields. The motivation was to Seﬁiques within the Ke|dysh_SChwinger closed time path for-

if th_e scattering of the fluctu_ation_mo_des with t_he modes 0fma|ism[28], and the basic dynamical equations can be quite
the inhomogeneous mean field aids in thermalization. Sa”ecomplicated to derive.

Smit, and Vink[20] proposed a density matrix describing an

ensemple of pure Gaussian initial states. By defining th_‘?ormalism to study the nonequilibrium evolution of quantum
mean field to be an ensemble average over a set of Gaussianis The Liouville—von Neuman(LvN) formalism was

density matrices, and considering the interaction between t frst applied (within the Hartree approximation schejm@

guantum fluctuation modes and the inhomogeneous mean i the earlv-time arowth of domains during a auenched
field, they showed that approximate thermalization is ob- y y 9 gag

served over intermediate time scales in the sense of partichqéecond order phase transitig29]. The LvN formalism

distribution of low-momentum modes approaching a Boseyvhich solves directly the quantum LvN equation, is another

Einstein form for a spontaneously broken theory. For longduantum picturg30,31 in addition to the Schidinger and
times, the particle distributions were found to tend toward a1€iSenberg pictures. Further, it is shown that the LvN for-
classical Boltzmann form. However, in a contrasting studyMalism provides a convenient and powerful method for ana-
Bettencourtet al. [21] showed that by considering the dy- !yzing nonequilibrium systems such as time-dependent oscil-
namics in the presence of a spatially inhomogeneous medators[30—-32 and quenched phase transitidiz9,33-33.
field, butwithoutensemble averaging over a certain class ofWe use this formalism to obtain the Gaussian vacuum and
initial conditions, the Hartree approximation fails to establishthermal evolution equations in the Hartree approximation.
a thermal Bose-EinsteifBE) particle distribution even at We develop a method for obtaining the improved vacuum
late times. In a more recent papf22], Salle and Smit state and explicitly show how to obtain equations for the first
pointed out that the energy densities used in the simulationand second order coefficients which lead to the improved
of [21] were not large enough to ensure even approximate@acuum state correct t0(\2). We then derive expressions
thermalization in the BE sense over the time scales observefbr the two-point functions by taking the expectation value of
They found that by choosing a large enough energy densitgroducts of field operators with respect to this improved
and a different set of initial conditions, BE behavior wasvacuum state. This method clearly indicates that non-
exhibited by the low-momentum modes at intermediate timeGaussian effects first make their appearanc®(@t?).
scales, even for a symmetric theory. However, even the ap- An alternative canonical approach based on the Heisen-
proximate thermalization time scale was much larger in comberg formalism is then employed to obtain a set of nonequi-
parison to that of a spontaneously broken theory. In none dibrium evolution equations for the correlation functions. Af-
these works was quantum thermalization observed for aller clarifying the relation between the LvN formalism and
modes and all energy densities, over the time scales ohhe Heisenberg picture, we take the vacuum expectation val-
served. ues of the Heisenberg equations for all possible combinations
In order to understand the complicated process of theref products of field operators and obtain a hierarchy of
malization of closed quantum field systems, one needs to geoupled equations for the ordinarypoint correlators. To
beyond the mean fieldHartree or leading order large} obtain the dynamical equations for the connected equal-time
approximation schemes. This has been attempted recently laprrelators beyond the leading order, we make use of the
many different group$13-15,23,24 More recently, time- method of cluster expansion, which allows us to express the
reversal invariant equations for correlation functions of non-ordinaryn-point correlators in terms of their connected coun-
equilibrium scalar fields have been deriid8] based on a terparts. This method provides an alternative nonperturbative
three-loop expansion of the two-particle irreduci®®l) ef-  approach for going beyond the mean field approximation. We
fective action[25,26. This method has also been extended tocompare our results with those obtained in the literature us-
O(N) symmetric field theories by carrying out a systematicing other method$24,36. In this context we consider two
1/N expansion of the 2PI effective action. The three-looprecent approaches used to obtain the evolution equations for
approximation(for the single real scalar field casand the the partition functior{36] and correlators in a quantum me-
next-to-leading-orde(NLO) expansion for the @{) model chanical model discussed by Ryzhov and YafRy) [24].
incorporates the effect of direct scattering and shows promwWe show that the canonical approach used in this paper
ising evidence of late-time thermalization. A detailed analy-yields the appropriate evolution equations, and thereby es-
sis of the nonequilibrium dynamics shows the evidence otablish a connection between various approaches for obtain-

Our main aim in this paper is to make use of canonical
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ing the nonequilibrium evolution equations fequal-time  well-known Schrdinger, Heisenberg, and interaction pic-

correlation functions. tures there is another picture for such nonequilibrium sys-
The paper is organized as follows. In the next section weems[30,31].

briefly outline the Liouville—von Neumann formalism which  First, in the Schrdinger picture, thefunctiona) Schro

will be subsequently used to study the nonequilibrium dy-dinger equatior(in units of 2 =1)

namics of the correlation functions in and beyond the Hartree

approximation. In Sec. lll, we describe in detail a quantum

mechanical model of anharmonic oscillators and use the LvN

formalism to obtain the evolution equations for the vacuum

and thermal correlation functions in the Hartree approximahas the exact quantum state

tion. In Sec. IV, we develop the LvN formalism to study the N

non-Gaussian dynamics of the quantum mechanical anhar- [V (1)=U)[¥)s (4

monic oscillator model. This section sets the stage for th% termined by th i luti i

application of the LvN formalism to study non-Gaussian dy- etermined by the unitary evolution operator

namics in the more complicated field theory model. The is- PR .

sue of stability of the LvN method, in the context of the iEU(t)zH(t)U(t). (5)

anharmonic oscillator, is discussed in Sec. IVB. In Sec. V,

the evolution equations foronlinearself-interacting scalar gq the time-dependent case, in contrast with the time-

field theory are first derived in the Hartree approximation,ingenendent case, it is not easy to find the evolution operator,
both for the nonequilibrium as well as for the thermal equi-\ypich is formally defined as

librium case. Nonequilibrium evolution beyond the leading

order is discussed in detail Sec. VI which contains the most N (ta
important results of this paper. The LvN formalism is used to um=T ex;{ —i f H(t")dt’
investigate nonequilibrium dynamics beyond the leading or-

der in Sec. VIA. In Sec. VIB, we make use of the Heisen-whereT denotes the standard time-ordered operator. Second,
berg formalism to obtain a hierarchy of nonequilibrium evo-the Heisenberg operators

lution equations for the connected-point functions. A ~ R L

comparison between our approach and other methods used in Ou(tH)=U0T(t)OgU(1) 7

the literature is carried out in Sec. VII. Section VIIl contains ] ) ]

a summary of our main results and a discussion of the physgatisfy the Heisenberg equation of motion

cal implications of the results in the context of issues like 9

thermalization in quantum fleld_ theo_ry and_ phage transitions. i—Ou(t) +[Hy(1),04(t)]1=0, 8)

The method of cluster expansi¢87] is outlined in Appen- at

dix A, where we also write down the set of equations for the

connected correlators in configuration space. The equivadnereHy(t) is the time-dependent Hamiltonian Heisenberg
lence between the RY method and the LvN formalism isoperator. The Heisenberg operakby(t) is simply given by

established in Appendix B. replacing the Schidinger operatorps andqg by py(t) and
au(t) in Eq. (1) and 7rg and ¢ by () and ¢y(t) in Eq.
(2). However, the explicit form of py(t),qu(t) and
(1), du(t) requires either the exact knowledge of the evo-

The systems under study in this paper have Hamiltoniankition operator(6) in advance or the solution to Ed8).
whose coupling constantparametensdepend on time ex- Third, we may introduce the Liouville operators

plicitly. These systems describe nonequilibrium processes in R L
the sense that the Hamiltonians do not give the correct den- OL(t)=0() 00 (t). 9

sity operatore™#"(/Z,, . To properly find the Hilbert space Thus the Liouville operators evolve the Sctiimger opera-

and densiy apertors or Such me-dependent sVSIEme, W achuar e 1 olows hen it h Lioie
Hamiltonian be defined in terms of the Sctiimger operators operators satisfy the quantum LVN equation

for a quantum mechanical system

d .
=W O)=HO[P (1) 3

: (6)

Il. LIOUVILLE —-VON NEUMANN PICTURE
FOR TIME-DEPENDENT SYSTEMS

a . . -
=0l +[O(1),H()]=0. (10

H(t)=H(ps,gs.1), (1)
We can show that any eigenstate of the Liouville operator
and for a quantum field theory

OL(O|W, =)Wy 1), (11)

H()=H(ms,¢s,1). ) | . o

s s where\ is the eigenvalue of the corresponding Schinger
Here the systems depend on time only through timeoperatorOs, satisfies the Schdinger equatior3). In fact, it
dependent coupling constarjmrametens In addition to the  follows that[30]
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All the other commutation relations vanish:

|\p(t)>=; C)\exp{iJ’ dt(\px,tdi%—ﬁ(t)hwx,w]

[a(t),a(]=[a'(t),a"(H)]=0. (18)
X|W, ,t 12 . _ .
1) (12 Equation(14) can be inverted to express the position and
where theC,’s are constants. momentum operators and p in terms of the annihilation

The essential idea of the LvN methf29-33 is that the and creation operators as
guantum LvN equation provides all the quantum and statis-

tical information of nonequilibrium systems. Technically, the f((t)z u(t)é(t)+ u*(t)éT(t),
linearity of the LvN equation allows any functional of an
operator satisfying the LvN equation to be another operator. E)(t):U(t)é(t)+U*(t)éT(t). (19

Thus we may use some suitable operddp(t) to define the )
density operatop(t)=e #°LM/z, for the time-dependent The coherent state is defined either as the eigenstaitpf

system, provided, (t) satisfies the LvN equation. In this
sense the LVN method unifies quantum statistical mechanics
with quantum mechanics. The LvN method treats the timey,in o complex eigenvalue or as the displaced state of the
dependent, nonequilibrium system exactly in the same way,,,um state given by

as the time-independent, equilibrium one. Moreover, the

a(t)|a,t)y=ala,t) (20

LvN method can be applied to nonequilibrium fermion sys- A .y
tems with a minimal modificatiofi39]. la,ty=DT(a)|0t)=e " 2> —|n,t), (21
n=0 \/m
IIl. ANHARMONIC OSCILLATOR IN THE HARTREE . _
APPROXIMATION whereD is the displacement operator

As a precursor to the investigation f* field theory, we D(a)=e" e O+a*a®, (22)
apply the LvN method to a simple quantum mechanical
model of anharmonic oscillators The coherent state can also be found using the variational

principle [41].
~ 1., wZAZ A, The coherent state then leads to the expectation values of
H=-p°*x—Xx"+-X (13 -~ -~ =, ~y
2 2 41 X, p, X4, andp-:

and dgrive the evolutic_)r_l equations for the coh<_arent state ex- X=(a,t|X|a,t)=au(t) + a* u* (),
pectation value of position and momentum variables as well
as the su_btracted two—ppint _correlators. The anhar_monic 0s- HE(a,t|f)|a,t>=aU(t)+a* U* (1),
cillator with the lower sign is a quantum mechanical ana-
logue for the second order phase transition. All the time- ~o e
dependent operators in Secs. lll, IV, and V will denote {entx e ) =x+ur (u(t),
Liouville operators, whose subscript L will be dropped. -y I T

The main idea behind the LvN method is to require the (a.t]p?a,t)=p*+u*(Hu(t). (23

pair of invariant operatort32,4( defined as The subtracted two-point correlatdra4] defined below are

A =i[u*(P—U*()X], aT()=—i[u®p—ut)x]  Dhengvenby
19 Gl 1) = (X2) — 2= U* () u(D),
to satisfy the LvN equation, i.e.,

“ ~t gpp(t):<|52>_5220*(t)u(t),

Jda . « oa PN

i—+ =0, i—+[a' =0. Say T ¢
G TAROIZ0, TGl Rm]=0. 19 Gp(1)=(XP) —xp=U* (Du (D),

Here u(t) and u*_(t) are auxiliary variables in terms of gpx(t)=g§p(t)=u*(t)0(t), (24)
which the two-point correlators will be expressed. The in-

variant operators may be made the annihilation and creatioftom which we obtain the evolution equations for the two-
operators satisfying the standard commutation relation gboint correlators,

equal times .
[gl(t),éT(t)]:l, (16) gxx(t):gxp(t)+gpx(t)y
which leads to the Wronskian condition Gpp(t) =U* ()U(t) +U* (H)u(t),
u* (Hu(t) —u* (HHu(t)=i. 17 Gup() = U* (D)U(t) +U* (H)u(t). (25)
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A. Correlation functions in coherent state

R 1 arn - R
- _ t T
The expectation value of the Hamiltonian with respect to FCT ZCTeXF[ plQa(at)+oal(t)+ " a(t) + &},
the coherent stat€0) leads to an effective Hamiltonian (30

wheree,=0/2+]|8/%/(Q). Asa(t) anda’(t) approximately
satisfy the quantum LvN equation, Ed.5), so does the den-
sity operator(30). We choos€) to satisfy the gap equation
for the unbroken symmetry

1, @i, A 1 A,
HeﬁE<H>CS:§p2i7X2+Ex4+ Egg()( +wl+ EXZ

3\
+ 2190 HOMD). (26) N
0°=w?+ 0 (31
The auxiliary fieldu(t), after differentiating Eq(15) with 4
respect tox and taking the coherent state expectation valueas discussed ifi29], the displacement operat@2) with
satisfies the equation =6/(Q) unitarily transforms the coherent thermal density
S0 matrix to a thermal one,
U+ 0?u(t) +(a,t| —la,thu()=0,  (27) o 1 o X

ox B (@)perd(@) =7 exd -~ pRa(Hawm]=pr. (32

as does its complex conjugaté (t). Inserting the expecta- _ . _
tion values obtained in E¢23) into Eq.(27), one obtains the By making use of the unitary transformation

equation for the complen(t), B (a0 D(a)=At)
o o) — -,

. A— A
2, 2. _ ~ R ~ ~
Using the above equation and the definition E2f) of the it is easy to show that
subtracted two-point correlators, we get the following

coupled set of evolution equations for the subtracted two- (>A<2>CT=;2+cotr<@)u*(t)u(t)
point correlators: 2 '

. = ~ —_— Q . -

Iux(t) gxp(t)"'gpx(t)i <p2>CT: p2+ CO'["(IBT) u* (t)u(t), (34
. A—

gpp(t)=—<iw2+ EXZ)(gxp+gpx)+o()\2)' where now

x=(a,t|X|a,t)=— (au+a*u*),

Gxp(1) = Gpp— Oxx +0O(\?). (29)

A—
+ w2+§X2

p=(a,t|p|a,t)=— (au+a*u*). (35

Itis important to note that these equations are correct only Urhe expectation value of E¢15) with respect to the coher-

to O()?) except for the first one, which is exact. This is due ent thermal staté30) leads to the equation for the complex
to the quartic term appearing in the potential, unlike the casg(t):

of the simple harmonic oscillator where the quadratic
(Gaussianform of the Hamiltonian leads to the vanishing of . , A .
all correlators greater than second order. In this case, even if ~ U(1)+| 0™+ ox+ 5 coth —-Ju*u

one starts from a Gaussian state peaked=ad for which all

the correlators greater than second order vanished, the subhe corresponding thermal two-point correlators are then
sequent evolution of the coupled set of equations would ingiven by

duce the appeara;nce of nonvanishing values for higher order 50

correlators aD(\°) and highef24]. This will be discussed i N 2 PR

later when we obtain the evolution equations fop4 field ol )= (X )er—x —cott‘( 2 )u (Hu(v),

theory beyond the leading order.

u(t)=0. (36)

- — BQ . .
—/n2 _Nn2— )y
B. Correlation functions in thermal state 9rpp(t)=(P")cT=P COt?’( 2 1 (Hud),
For the case of the anharmonic oscillator in an initial ther- Q

mal equilibrium with the positive sign for the unbroken sym- Orxp(t) = (XP)cr— Xp= cotl-( '8_) u* (tyu(t),
metry, the evolution equations for the auxiliary variable and P 2

the two-point correlators up t®(A?) can be obtained by 50
taking the expectation value with respect to the coherent - _ PRo s

thermal state: Grox(1) = grpl(t) = cOth == ju (Du(d), S
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from which we obtain the evolution equations for the thermalwe obtain the expectation value with respect to the Gaussian

two-point correlators: vacuum state that is annihilated Byt),
I ) = Irep(t) + Grp(t), 1. . A
> P px EG(t)=§ u*uiwzu*u+z(u*u)2 . (44)
O1op(t) = — | + w2+ EYZ-F icott‘(ﬁ) u*u
Grep - 2 2 2 A few comments are in order. First, the separation of the
B Hamiltonian into quadratic and quartic parts in Eg&) and
X(Grxpt Grpx) + O, (41) is reminiscent of the Caswell-Killingbeck meth@42],
which separates the Hamiltonian into a solvable part and a
Ireo(1) = G100~ G + 02+ E;z perturbation. In fact, as we shall show below, the quadratic
Txp Tpp STxx — 2 part is solvable via the LvN method even for explicitly time-

dependent systems. Second, the quadratic(gé)tinvolves
+0(\2). (39) a term proportional to the coupling constantwhich makes

any perturbation theory based on it reliable even in the

strong coupling limit ofA. This term is the same as the

Hartree approximation*— 6(g2)q%. As will be shown be-
low, the wave functiofal)s of the Hamiltonian40) are the
same as those from the Gaussian effective potential method
by Chang and Stevens$A3]. The vacuum state is also the
same as the Hartree approximation. The equivalence of the

N (B0 .
+§COt"<7)U u

In the T=0 limit, Egs.(37) and(38) reduce to the evolution
equationg28) and(29). Expressions for the subtracted two-
point correlators can then be obtained by solving Eg6)
for u(t) perturbatively in powers oX.

IV. ANHARMONIC OSCILLATOR BEYOND THE vacuum state between the LvN and Gaussian effective poten-
HARTREE APPROXIMATION tial will be shown below(see also Refl.29]).
The Hartree approximation in Sec. lll is equivalent to

In this section we apply the LvN method to the anhar- i R
monic oscillator in Sec. Ill, to go beyond the Hartree ap-Simply using the truncated quadratic p&tg as the unper-
proximation. Our stratagem is to represent the full Hamil-turbed part. Separating the quadratic dag is the essence
tonian (13) in the Fock space bas(_§.4) and to follow the  of the Hartree approximatidid4] or the variational Gaussian
standard perturbation theory by taking the quadratic terms a8pproximation(43]. In fact, the perturbatioml:lp, although

an unperturbed part and the quartic terms as a perturbatio tai ¢ f th d h turbati
For the convenience of computation, we express the repre-© contains a térm of the same order as the perturbation
itself. Then the truncated quantum LvN equation

sentation in normal ordering where all stand to the left of

a. A A a . - gat .. .
We divideH into a Gaussian paH g, the quadratic part, i—- +laHe]=0, IW—i_[aTvHG]:O (45)
and a perturbation HamiltoniaH, the remaining quartic
part, leads to the mean field equation
H=Hg+\Hp, 39 ) A
S 39 U(D) +| = w?+ Zu*uu(t) =0. (46)
where
1 2 ~ The mean field equation above can also be obtained by mini-
Py T s Bty W3 mizing Eg in Eq. (44), which proceeds by varying with re-
He=5:p% x4 5 (3% X% +Eg,  (40) g Eg in Eq. (44) p y varying

spect tou*, using su*/Su* =4/dt, and treatingu* andu
independently. The equal-time commutation relation now is

0 :i.;(4. (41) guaranteed by the Wronskian condition of HG7). The
Part Gaussian vacuum state is annihilatedaby
HereEg is the vacuum expectation value a(1)|0)g=0 (47)
Lo @ N sy : : -
EGZE(p )Gi7<x Yot I(x )G (42)  and the excited number states are obtained by apphing
Using the normal ordered operators a™(t) 49

|n1t>G: \/n—| |0!t>G'
] !
- - n! N -
. e _ (=K, kat(n—k)ak _
H(uaturah)™ —go KI(n—K)! Ut Pufa e’ These are the exact quantum states of the time-dependent
(43)  Schrainger equation only foHg:
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J ~ “
=t Inhe=He(b)[n,t)e. (49 c('>m(t)——|2 Cl P (Mt HAD]] . (56

By fixing the time-dependent phase fact82] and including Another expression for Eq53) may be obtained in a

the factor f_rom tha:-ngmber term in Eq(40), the harmonic compact form using operatoés’r anda. For each fixedm,
wave functions are given by :
we first sum ovet,

1 1 1/4 (2n+1)12 .
‘PG'n(X): \/W( 27ru*u> ( u*u) Cn;m(t)zzo )\lcﬂ;)m(t)y (57)
XH, L)e ——q f (u*u)? and then write any statfm,t)g as either an excited or a
y2u*u deexcited state of the given lowest order stat¢)s, which

(50) is realized by applying the creation or annihilation operators
a certain number of times. Hence, E§3) can be written by

where H,(x) are the Hermite polynomials and the last introducing an operatdd; as

c-number term in the exponent comes from the correspond-

ing c-number term in Eq(40). From now on we denote the N A A

wave functiong50) by |n,t)g without any loss of generality. |n,t)=m§:‘,0 Crm(Dm,the=U[a’(t),a(t);t,\][n.t)e,
These states form an orthonormal basis of the Fock space: (58)

©

&(n,tm,t)c= nm- (51)  and the Schidinger equation leads to

. . (9 n N ~ ~
A. Beyond the Hartree approximation iEU|(t,)\)+[U|(t,)\),HG]_)\Hp |n,t)G: 0.

To go beyond the Hartree approximation, we need to in-

clude the perturbation, which is now given by Using Eq.(45) and technically assuming that all time deriva-

tives act only orc numbers but not on the operatas and
a, we obtain an interaction-picture-like equation for the op-
eratorU:

N 1 R npon ~
H P:E(u*4a’r4+ 4u*3uaa+6u*2u?a’?a?
+4u*ulafad+uta?). (52)

Jd . A
There was an attempt in Rd#5] to solve Eq.(15) for the iﬁul(t,)\)=)\HpU,(t,)\). (59
full Hamiltonian including the perturbatio(62) by improv-
ing a anda’. Here we find the improved quantum states by\we then obtain the formal solution
directly solving the Schidinger equation for the full Hamil-
tonian. The perturbation excites and deexcites any Gaussian nty =0t 0N Ba(n=01 60
number statdn,t)s. As {|n,t)g} constitutes a Fock basis, In.B=UitM)In. e 2. €0
we therefore expand the exact quantum statg€l@ls

where
nt=2 X NChvImbe, (53 o.a,x):Texp[—m J qudt}. (61)
where the lowest order coefficient is HereT denotes a time ordering for the integral aidt) and

é(t) are treated as if they are constant operators.

We now find the improved vacuum state up to any order
. o . either by solving Eq(56) or by acting with the operator in
Using the fact that any staten,t)¢ individually satisfies the Eq. (61) on the Gaussian vacuum state. For instance, the

Schralinger equatior{49) for I:|G, the Schrdinger equation  improved vacuum state to ordg? is given by
(3) for the full Hamiltonian(13) leads to the set of equations

Cg(;)r)n: 5n,m . (54

o , o R |01>[2]:|0I>G+)\2 CEL(DIm,t)g
> 2 NCH mImte=2> > NCh (ONHEm, 6. m-0
=0 m=0 ' =0 m=0 ’

(55) +>\2§_‘,0 CELDIM g, (62)

Comparing the powers of, we finally obtain a hierarchy of
dynamical equations for the coefficients where the only nonvanishing coefficients are
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ken symmetrypositive sign in Eq(13)]. In that case we find

1 [t
Cgl;zl(t): —i \/Tf u*4(t"), (63)  the solution to the auxiliary mean field equati@t),
and u(t)= ie—iQt (68)
NIV
70 (t ' . .
ng;gs(t):(—i)24—\/!—J u*4(t’)Jt ur4(t"), where() is given by the gap equation
A
0=+ — (69)

5t , .
Céfé<t>=(—i)2£f U*3(t')u(t’)ft AL, 0

Then the time-dependent wave functiB0) is given by

C(Q)(t)_(_i)Zthu* Z(tr)UZ(t/)ft’u*4(tu) . A
0;4\1) ™ \/ﬁ ' Wen(X,t)=exg —i Q(n+1/2)—32(22 t
1 [t t 1 [\ 4 ) }

(2) 4y —(_iV2_— * (4113047 *Aren _ _ 2
e =2 [ wawee [ Xﬁ(w) Ho(Ja)exp — 5 g
clt)= —i)2i t 4t')ftl x4t (64) =exg —i| Q(n+1/2)— r t|Wsn(X)

O;O( _( 4| u( u ( . 32(22 G,n [}

(70

The non-Gaussian nature of the vacuum sté® can be _ .
exploited by calculating the kurtosigigher moments The =~ WhereW¢ ,(x) denotes the harmonic oscillator wave func-

two-point and four-point correlators with respect to thetion.
Gaussian vacuum statb0) are Substituting the solutio68) into Eqgs.(63) and (64), we
find the improved vacuum state correctedd\?):

(0|X?n,t)g=u*u,

)\2
| ARSRTL SN [PV
(04X 0ty o= 3(u* u)?, (65) 2 2 3202 29%305 | /¢
whereas those with respect to the improved vacuum state N 2 12)6— A % 1)
(62) are given by 27x 3,208 G 25/603 29,205 G
[2]<0,t|;(2|0,t>[2]:U*U+)\2[\/E(ng.)zuz‘f‘ ng.)z*u*z) )\2 | \/7—0)\2 | 3
’ ’ +—————[6)gt———|8)g| +O(\3).
- (CY + b aciy cthurul T
+0(\3), (66) (7D
~ Note thath)z;g, originating from the four quanta creation and
21¢0[x*0.t)2) the subsequent annihilation leads to a secular term increasing
_ 2 (D)4, ~(1)k, %4 ast. This is not a drawback of the LvN method but just a
=3(u*u)?+ AN (CHu*+ CEY u*?) consequence of the time-dependent perturbation theory

searching time-dependent states. As the coefficief®,bfg

+NHAL(CEut+ CEhruxs
(VarCgiut+ Ciyur) is the first two terms of eX\%/(2°x3Q°)t], it can be ap-

+6\/§[C§)2.)2(u*u)u2+ ng.)z*(u*u)u* 2] proximately absorbed into the overall time-dependent factor
‘ ‘ to O(\?):
+ (1230 O+ 3CE) +3CE (u* )
+0O(\%) (67) T A N t (72)
. exg —i|l s ———————|t|.
2 320% 2°%x30°
B. Stability of the LvN method This factor coincides with the time-dependent solution to the

The stability of the LvN method should be checked sincefull Schr'c';dinger equation obtained from time-independent
it is a time-dependent perturbation theory. That is, any secu?erturbation method47], where the corrected energy at

lar coefficient in Eq(53) should be removed systematically O(\?) s

to ensure a physically meaningful solution. For that purpose, 2

we compare the LvN method with the standard perturbation Ep :9_ L_ A +O(\3). (73
theory for the well-known anharmonic oscillator with unbro- (eI™2 3202 2°x30°
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The higher order terms that come from the creation of eveinstability. The anharmonic oscillatqil3) whose quadratic
numbers of quanta and subsequent annihilation of equadotential changes signs from positive to negative can be a
guanta, or vice versa, also contain secular terms proportionguantum mechanical analogue for the phase transition. After
to powers oft depending on the number of such processesthe symmetry is broken, the mean field equation
All these terms will provide the correct energy to the Sehro
dinger equation.

Another way to understand this phase factor and thereby

secular terms is to use the formal soluti@i). The operator _ _ .
has an exponential forft8] may have a period when the quadratic terma®) domi-

nates over the quartic ona (*u/2). Then theu grows ex-
LAJ,(t,A):exF{ —i)\ftﬁp(t’)ﬂ—i)\)z Eonentially asi~e®" 2w until the quartic term grows and
ecomes comparable to the quadratic one. During this period
. , all higher order correction€() beyond the Hartree approxi-
« f dt’ﬁ(t’),Jt dt”ﬂp(t”)}+0()\3)). mation grow exponentially as powers ofandu*. This dy-
namical instability ceases when the state reaches the true
(74  vacuum state and oscillates over it. Thus the dynamical in-
stability for a limited period does not cause any serious secu-
The c-number term from the commutator lar behavior as for the static system.

A2 t/ ag o~
exg — Zf dt'u4(t,)f dt”u*4(t”)[a4,aT4]

A
—w?+ su*uju=0 (77)

u+
u 2

V. ¢* FIELD THEORY IN THE HARTREE
APPROXIMATION

(41)

A2 Now we will apply the LvN method to the* field theory,

ex;{ j————t (75) but first we work out correlation functions within the Hartree
29%30° approximation in this section. Thg* field theory to be con-

) i ) sidered in this paper has the HamiltonianOrspace dimen-

is nothing but the phase factf#2). Now the time-dependent gjons

vacuum state t@®(\?) does notinvolve any secular term as

shown: - 1., 1 . m? .. \.
H(t)=f dPx §”2+§(V¢’)2+ 7¢2+ E¢4 , (79
A2 '
elEpt i(\2129%x 305t ~ R
|0t> @I [0)s+e” % 6|2>G wheren(X) = ¢(x) is the conjugate momentum operator. We
27X 3420 A
) ) divide the quantum fieldp into a classical background and
_( A _ 3\ )|4>G+ A 16) quantum fluctuations over this backgroungi(x)= ¢(x)
25/60°% 2°20° 2"x3%0° + ¢¢(x), where the classical backgroufiean field ¢(x)
) is in general considered to be spatially homogeneous. Then
V700 3 the Hamiltonian can be decomposed as

H(t)=H(t)+ He(t) + Hin(t) + SHin(t), (79
We thus have shown that the seemingly secular behavior

can be removed systematically by taking the proper timeWhere

dependent phase factor for the wave function. This phase 1 1 2 N

factor yields the correct energy for the anharmonic oscillator (t):f dPx| = w2+ = (V bo) 2+ _¢§+_¢4,

(13) to any desired order. The idea of removing the secular 2 4!

terms of higher order corrections by absorbing them into the

corrected energy is equivalent to removing the secular terms -~ (t):f i

by renormalizing the frequency in multiple-scale perturba-

tion theory[49]. We note that the LvN method proves very

accurate because the lowest order vacuum state is a Gaussian . 5 [\ on2

state that extremizes the Hamiltonian and the corrected Hint(t):f dox) 7 dedi |,

vacuum state is expanded in the Fock b§&#d. Further, the ;

LvN method is a powerful tool for finding the quantum states J 5

d°x

(1., 01 . omi N,
X_ETH +5 (Vo) ™+ i+ i),

for nonequilibrium systems that are undergoing phase transi- cSHInt (t)=

tions[29]. For the field theory case, the elimination of secu-

lar terms can be achieved using multiple-scale perturbation (80

theory and this aspect has been discussed in detf@3h
There is another kind of instability originating from the

dynamics of the system itself. Phase transitions from an extVe have divided the interaction intd;,, with even powers

plicit symmetry breaking in time provide such a dynamicalof ¢ and 6HInt with odd powers ofr; and¢; . The ¢(x) is

R 0, A A 5 AoA
7Tc77f+m ¢c¢f+§¢c(¢c+¢f)¢f}

HereH; and I:|f are the purely classical and quantum parts.
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nonvanishing only for the case when symmetry is spontanetfhen the annihilation and creation operators are also ex-
ously broken. We treat individually and collectively the pressed as
modes in the momentum space of quantum fluctuations and

the inhomogeneous background field. The momentum modes

are given by the Fourier transform of a figldperatoy and
its inverse transform,

F(x)= J [dKIF (ke

F(k)=f dPxF(x)e kX, (81)

where F denotes eitherd¢(x) and ¢(x) or ¢.(x) and
me(X), and

[dk]= ok (82)
(2m®
Then the quadratic integral takes the form
f def:Z(x)=f [dK]F(K)F(—k). (83
The Fourier modes of; and 7; will be denoted by
(i)k:j dPxg(x)e kX,
ﬁsz dPxre(x)e kX, (84)

The Hermiticity of <Ai>f and %f implies thatdAD*=<i>_k and
ﬁl:ﬂ_k.
The commutation relation of the fields

[¢(x), 7e(y)]=i6(x~Y) (85)
leads to those of modes in the momentum space,

[® I ]=i(2m)P8(K +K). (86)

a =il ef (O — @k (D],

al(t)=—i[e_ (O, —@_ () D_].
(90)

Note that the momentum space operat(i?r,s and f[k are
regarded as time-independent ones whesgé) anda/(t)

are time-dependent Liouville ones in the LvN picture. The
Gaussian vacuum is the state annihilated byag(t):
a(1)|0)6=0, (91)

or the product of the Gaussian vacuum state for ea¢h):

lo,t>e=1'k[ 0, t)e. (92)

In the Hartree approximation we consider only those qua-

dratic terms froml:|f and I:|int whose Gaussian vacuum ex-
pectation values do not vanish. Then the interaction term has
the Fourier modes

A= %f [dkl]f[dkz]f[dkg]f[dk4](27r)D

X 8(Ky+ Ko+ K+ k) do(Ky) del(ko) Dy Py,
A

5[ ek [ rakiame
X ok ko) (k) k) [ Tkl

N PN
=7 4e%) f [dK]PyD . (93

The quartic term in the Hamiltonian for the fluctuation field
¢+ can be approximated as

In terms of the annihilation and creation operators satisfying

the equal-time commutation relation

[a (1),ak(t)]=(2m)P (k' —k), (87)

as
= pr(hag(t) + ¢* (Hal (b),

1= ou(H)a(t) + ¢* (Hhal (t). (88)

Here it is assumed that _,(t) = ¢,(t) and

er (V@) —er (D@t =i. (89)

the momentum space operatérg andﬁk may be expressed |:|G: f [dk]

bt —6(dF)ch?. (94)

Then the resulting quadratic part takes the form

A
wi+ 59”%

1. . 1
EHKH—k+ E

A e o o 2 2 2
+§f [dk’](CDk/(I),k/>G q)kq)*k (C!)k:m +k )
(99
Under the field redefinitiodl. = (I1,=11_)/2 and ®.

=(<i>ki<i>_k)/2, this Hamiltonian is equivalent to that of
harmonic oscillators,
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F'G(t)zgBﬁi(t)+%9i(t)‘iﬁ(t)}, (96)

where
2 2 A 2 A ’ £ T
Qi (1) = o+ §¢C(x)+ > [dK' DD ). (97)
We may identify the classical backgrourd and 7. either

with the vacuum expectation values ¢fand = or with the
coherent state expectation valuesfgfand , respectively:

¢C(X) = <‘Aﬁ(x)>vac: <(Aﬁf(x)>csz f [dk](&k%seik‘xi

me(X) :<;T(X)>vac:<%f(x)>c55 f [dk](ﬂk(t»cseik'x’
(98)

PHYSICAL REVIEW D68, 105014 (2003

First, the two-point correlation functions in thermal equilib-
rium are related to the Bose-Einstein distribution function
(for a quantum theonyand the temperature of the systéior
a classical theonyin a fairly simple way; thereby allowing
us to use them as benchmarks to track the evolution of the
system toward thermal equilibrium. Second, it is more con-
venient to make systematic improvements to the mean field
description, by working with equations for the correlation
functions. As we shall see in Sec. VI, the mean field equa-
tions for the two-point correlation functions are part of an
infinite hierarchy of evolution equations for the connected,
equal-time,n-point correlators and are obtained by truncat-
ing this hierarchy at the level of the two-point functions.

We define the two-point subtracted correlation functions
for the fields as

91106 X ) =([h(X) — (X)L s(X") = (X)) cs
=($1(X) (X)),

where(- - -).s denotes the expectation value taken with re-

spect to the coherent state:
<(i)k>cs: agpi(t) + atk‘Ptk(t)y
(M) es= arer( )+ @ o¥ (D). (99

Now the equations for the auxiliary field variableg and

G X, X ;1) = ([ 7(X) = m () [ 76(X ) = (X ) s
=(m(X) (X)),

91206, X ;) =([h(X) — ) 75(X") = Te(X') Vs
=(i(X)7((X))y,

¢; can easily be obtained in the Hartree approximation by

making use of the LvN equations fag(t) andaj(t) for the
Hamiltonian(96). Then the LvN equations

day(t)
ot

i +[af(t),Hg()]=0,
day(t)

i— 2t He(t)]=0

(100

lead to the equations

@)+

A A
wi+ §¢§+ 5( f [dk,]QD:IS"k’HQDk(t):O'

A A
wit §¢§+ E(f [dk']goz,@k,”ﬁ(t):(z.o)
101

er(t)+

The equation for the classical backgrougg(t) is obtained

from the effective classical HamiItonich(t)+<I:Iint(t)>G
as

¢C(X!t) - V2¢C(X,t) + m2+ %(l)g(x,t)

b(x,1)=0. (102

A
3] [ 10100 |

921X ;)= ([ (X)) = m(X) ][ Dr(X) = (X ) )es
=(m(X) s(X))y. (103

The subscript “v” implies the expectation value with respect
to the vacuum state. Using the above expressions, we get

g11(XX';t) = j [dK] gk (1) gy(t)el e,
922X, X' ;1) = f [dKlg () gy(t)el 6,
g12(XX' ;)= J [dk] @i (1) @i(H)e 7,

921(X,X'it)=f [dK]@f (1) @i(t)elk X,
(104
From Eq.(104), the equal-time two-point correlation func-

tions Gjj(k,t) in momentum space can be defined through
the Fourier transform

0y 00 0= [ [aKIG, (e, (109

wherei,j=1,2. Taking the time derivative of the two-point

It is more advantageous to work with the evolution equa-correlation functions vyields the
tions for correlation functions, rather than the field equationsequations:

105014-11

following evolution



SENGUPTA, KHANNA, AND KIM PHYSICAL REVIEW D 68, 105014 (2003

. /. _ /. /. 1
gll(X,X ,t) 912(X1X ,t)+921(X,X ,t), ’y_z(k):Gll(k.t)Gzz(k,t)_Z[Glz(klt)+G21(kat)]2
G2xx'0)= [ [0KI6E (DD e et
+oF (1) py(t) ek XX, 1
-3 (108

Guxx' 0= [ [0KI6E (DD | -
as a direct consequence of the Wronskian condition(EA.

Issues of renormalization of this model have been investi-
gated in detail in Ref{50].
It is also possible to definthermaltwo-point functions by
taking the expectation value of the field operators with re-
mspect to an initial Gaussian thermal state,

+oF (D ei(t) Je ), (106

Substituting the expressions far, and ¢} in Eq. (106)
and making use of Eq105 results in the following evolu-
tion equations for the correlation functions in the momentu
space in the Hartree approximation upQ¢\?):

) - - 1 S oA -
Gui(k,t) =Gk, 1) + Gou(k,t), (d(x,1) p(X’ .t))T=§Tf[e_B°HG¢f(X) #1(x)],
(109

2 N A
wk+§¢c(t)+§gll(0:t) [GiAk,t)

Goak,t)=—
wheregB, is the initial inverse temperature of the system and

+Gay(k,t) ]+ O(N?),

o Ao A Z=Tife foe]= 3 (ny,tle foad 12]n, 1),
— — k™
wk+2 ¢C(t)+ Zgll(ovt)}Gll(kvt) (110)

Gia(k,1)=Gonk, 1) —

+0O(N\?). (107
The corresponding equations for the auxiliary field variables,
As shown in[14,23, one can define a quantity 2(k) in  are again obtained from the LvN equations using the Hamil-
terms of the momentum space two-point correlationtonian (96) but with the expectation values taken with re-
functions, which is found to be conserved in the Hartreespect to the initiathermal Gaussian ensemble. This leads to
approximation, the set of equations

. [ N N
o)+ | o+ S g+ g(f [dk](2nkr+1><p:,¢kr)}qok<t>=o,

3 [ 2 A 2 A * *
ep (D + wk+§¢c+§ f[dk](znk""l)@kr‘)ok’ @i (1)=0,

dc(X,1)=0, (111

. ) , N, N N
¢C(Xlt)_v ¢C(Xlt)+ m +§¢C(X,t)+ E f [dk](znk’+1)¢k/¢k’
wheren(T) is the Bose-Einstein distribution for a field theory system at a temperatar®8,:

1

Note that atT=0 the above set of equations reduces to Ef81) and (102). The expressions for the thermal two-point
equal-time correlation functions are also easily obtained:
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91106X ) =((X) (X)) 1 G1y(k,t)=G1(k,t) + Gy (k,t),
509k> (X x’
= | [dk * ppelk- (=x), .
f[ ]CO&( 2 7o GaAkit)=- wﬁ+%¢§(t>+%gh(o,t> [G1ak,t)
T 2
926X s =(m(X) 7(X" )1 +GJ(k,t)]+0(\?),
_f ,BOQk St ik~(x—x’) . T 2 A 5 A T T
= | [dk]cot TPk eke , Gak,t)=Gox(k,t)— wk+§¢c(t)+ Egll(o,t) Gly(k,t)
+0O(\?). (116)

916X ;) =( D) m(x'))7
The above set of equations together with E1) describe
:f [d k]cott‘( BOQK) ok o eik- (x=x") self-consistently the evolution of thteermaltwo-point cor-
2 k7K ' relation functions in the Hartree approximation. It describes
the evolution of the system initially in thermal equilibrium at
a temperaturd, after interactions are turned on at tirhe

9o (%X ;) =(m(x) d(X"))1 =0. They reduce to Eq$101) and(107) in the T=0 limit.
Q It is also possible to obtain the set of equatioh$l)—(116)

:j [dk]cotl-( Bo k)(P: ('Pkeik-(xfx’), by taking the expectation value of the LVN equations, Eq.
2 (100), with respect to the coherent thermal state with

(113 being the Gaussiafguadrati¢ part of the Hamiltonian ob-
tained after Hartree factorization of E¢78) (but without
decomposing the field into a classical background and fluc-

from which it follows that tuationsg using the same techniques employed in the example
of the anharmonic oscillator in Sec. Ill. The initial thermal

ensemble can be described adequately:ﬂéyand the solu-

Boy tion to Eq.(112) can be obtained as

Gl (k)= COtl’( T) O P

e—i()kt' (117)

QDk(t) = \/ﬁ
k

where(), is given by the gap equation

BoQ\ - .-
ng(k,t)=cotf(7 @k Pk

Bofdy) -
T = — o N A 1 Oy
Giakt) Cmf( 2 | Q§=w§+—¢§+—f [k coth? S (119
2 4 Qe 2
Bofk Fort=0, we then havep,(0)=1/y2Q. The initial thermal
T _ * ’ k k
GZl(k’t)_COtl—( 2 | PrPr (114 two-point correlation functions are then given by
We can define another conserved quantity for the thermal Gl,(k,0)= 1+ 2
. . . 1" ’ ) 1
two-point correlation functions 20 ePollk—1q
20k =GT.(k 1)GL(k 1 T (K T (k.1)1? T _ 2
(7)) (k) =Gk, 1) Gy 1t)_Z[G12( 1)+ Gk, )] Gzz(kio)—T 1+m ,
1
B e G k0= | 1 2 119
12k0)=73 +3509T1 : (119
As in the case of nonequilibrium evolution, it is straightfor-
ward to obtain the evolution equation for tiigermaltwo- It is useful to compare our results with those obtained in
point correlation functions in the Hartree approximation. Us{23,51], in the context of thermalization in classical field
ing Egs.(114) and(111), we get theories. After neglecting -dependent terms, the solution of
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Eq. (111 is ¢(t)=e '“/\2w,. With this form of ¢, , one  the hierarchy at the level of the four-point connected corre-

can easily show that in the classical limfi{0) the two- lation functions.

point correlation functions reduce to The key differences between the two formalisms lie in the
fact that while the LvN formalisntlike the Schrdinger for-

T To malism) deals with evolution of state&wvith the field and
Gu(k,0)=—, conjugate momentum operators being time independtre
@k Heisenberg formalism is associated with evolution of field
ng(k,O)=To, and conjugate momentum operatonsth the quantum states

being time independentHowever, even in the LvN formal-
iT ism, certain operators like the annihilation and creation op-
GIz(k,O)=G£I(k,O)=—O. (120 erators and any function of them satisfy the LvN time-
Wk evolution equation, distinguished from the Heisenberg

These useful relations, which are valid for a classical therma}"?iqquatlon through a difference in sign. In fact, the LN equa-

system with unbroken symmetry, have been used as a benc ons can be thought of as the backward time evolution of the

mark to study thermalization in classical field thef2g,51]. eisenberg equatiorl$g]. Furthermore, the LVN approach
It is possible to carry out numerically a spectral analysis o

1provides a perturbative method for going beyond the Gauss-
two-point, equal-time, field and momenta correlation func-ian approximation and is useful for cglcula’lting non-Gau;sian
tions and track their dynamical evolution. The flattening 0“@2?”&5;?_0?,3”}3:” gg?\vgttg r{lzs]th%Or:'etﬁewgtmeﬁe;gjr:gat't\éily
(momentum independencef the Fourier transform of the . piing . : . ’ .
7o equal-time correlation function would be an indicator of Heisenberg formgllsm provides a syste:-matlc, nonperturbative
thermalization in classical field theory. appr_oach for_ going t_)eyond the leading order Hartree ap-
' roximation in studying the nonequilibrium evolution of
p ying q

quantum fields. Inclusion of connecteepoint functions in
VI. NONEQUILIBRIUM EVOLUTION BEYOND THE the hierarchy of evolution equations is effectively equivalent
LEADING ORDER to a loop expansion in powers &f"~ %) [24].

In this section we use two different approaches to discuss
the nonequilibrium evolution beyond the leading order Har-
tree approximation. First, we use the LvN formalism to ob- In the LvN formalism discussed in the previous sections,
tain expressions for the two-point and four-point functionsthe time-dependent vacuum state is found approximately at
correct toO(A?) by including all quartic terms of the Hamil- the lowest order as the state that is annihilated by the anni-
tonian and solving the time-dependent Sclinger equation hilation operators of all momenta in the Hartree approxima-
as in Sec. IV. This method unifies both the LvN formalism tion which satisfy the LvN equation. Going beyond the lead-
and the Schrdinger picture because the LvN formalism is ing order amounts to determining the proper vacuum state of
used only in the Hartree approximation and all the non-the full nonlinear, interacting field theory, which can be ex-
Gaussian contributions from quartic terms are found in thepressed in terms of a complete set of number states of the
Schralinger picture. The second stage is similar to the interGaussian Hamiltonian at the Hartree approximation. The
action picture, although all states are expressed in terms ¢baussian vacuum state can be improved to any desired order
the time-dependent Hartree basis. It is found that the twoby including the perturbation part. Thepoint functions are
point functions have a non-Gaussian contribution at ordethen obtained by taking the expectation value of the appro-
O(\?), confirming the result that the non-Gaussian effectspriate product of field and momentum operators with respect
appear only atO(\?) [46]. Second, we make use of the to the improved vacuum state.

Heisenberg formalism to obtain a set of evolution equations The normal ordered Hamiltonian is decomposed into the
for the connected correlation functions beyond the leadingjuadratic Gaussian part and the quartic perturbation

order. We find that the set of equations form an infinite hier- L ~

archy, akin to the Bogoliubov-Born-Green-Kirkwood-Yvon H=Hg+\’Hp, (121
(BBGKY) hierarchy in statistical mechani¢s2], and incor-

porating next-to-leading order effects amounts to truncatingvhere the Gaussian part is

A. LvN formalism: Evolution beyond the leading order

(P—k‘Pk+ QDtk(P:_i_

Ae- | [dk]E

+{<P§ (Ghea

w2+£ [dkq]eF A ‘_’_l 2+£ dk:To* * (2t ot
kT35 1Pk, Piy | P—kPr[ AT 5 Ot 5 [dki]ek @i, | ki (a8

(122

A npn
i+ 3 [ Tkt oot ] a3

and the perturbation
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~ 1
_ A A A A At 3 4 3
Hp—ﬂf [dki][dka][dks][dKa] (ks + Ko+ Ka+Ka)[ @k, @k, Pk, Pk, K, Bk, k3K, T 40T Pk Pk, @i, K, Ak, Ak 3k,
Stoat oo s ot oot At o4 Stoat ot At
T R Ne R LR DOR- Pl o TS i e e LR LR D oI i iR el W L ik W

(123

We define the improved vacuum state as

> D kkE |)\C(') o Inng, ite

00=3 3 3 Nel, Inns.. e Sy oy een
R R AR K2 = \NTC Hplng,n,, ...t
(124 = R A ony.....Helnzn2 e
. . (126
where we have used a concise notation to represempar-
ticles with momentunk,, n, particles with momentunk,,
and so on, for the state and the coefficient. The summatioComparing the coefficients ok' on both sides, we get
over momentum is for modes that have nonvanishing particl@gor)] N W =080 00n. - Son---. Then Eq. (126
numbers. The subscript “G” refers to the Gaussian vacuurr}edulce2 """ o TR !
state. For the rest of this subsection, we will consider the
momentum space to be a discrete set and consequently the
Dirac delta functions will be replaced by the Kronecker delta =

functions. As we shall see, the coefficieds,, ., which E > > |)\ 'CO,. . Iy, e
determine the vacuum state of the full nonlmear theory, are - 2. -
not all nonvanishing. These coefficients are determined by * ~

requiring that the exact vacuum stal@t) satisfies the => > > )\'Cglglll)___lenl,nz, obe.
Schralinger equation for the full Hamiltonian, i.e., kg

S to

5 (127
IE|O;t>=(I:|G+)\I:|p)|O;t>. (125
Equating the coefficients of the same powerhobn both
sides, we get the following equation for the expansion coef-
Using Eq.(124) we get ficients:
|
~(I : = e .
Cg?)“l'“?'-'(t):_'ml,,..;nj, .... . Ek Clmyt v (DN, oyt el omy e
o e
(128
The vacuum state correct ®(\2) then becomes
0it)z=10iha+ N X 2 CRL @I ite
1 |"|2 ..... nJ ..... kl'k2 ..... k] .....
+22 > > CR . WIng, o0, (129
nyNo, ...y njoo. kq.ko ST L e

From Eq.(123 and Eq.(128), the only nonvanishing contribution 'ﬁgl.% n . (t) comes from the term (1/4]) dk]

X[dkal[dks][dks] (ks +kotkatKa) ¥ @i 0%y @* kAéT K al K al ks é* «,» Where the indices correspond to excitations in
modesk, ,k,,ks. The most general form of the equation for the frrst order coefficient follows fronf12@). It can be written
as
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ond order coefficients. The equation for the second order

. i
1 . . . . .
Chilng=— 21 (ND(Ne) 2 (g, .ong, ot coefficient can be written in the most general form as
' kyoky ...
* * * * .
" K+ K+ K " ” " " 2 = —j 1
<, kZ Oy + K-+ K+ K, 0Pk Py P Py Cllg=—1 2 Cllm0 i k0
1kg KiK.
stoatatat
Xa a2, 0;t), (130 A ntoat oAt oAt
ki kg kg Ky X{Ng,....nj, ... ,t|HPakiakéakéak2|0,t>.
where{nk}znkl,nkz,nks,nk4 and N. and N; are numerical (134

coefficients that depend on the relationship between the _ o _

modesk, ,k»,ks,k,. N, corresponds to the factor determined It is clear from the string of annihilation and creation opera-

by the maximum power of a creation operator, wheitdags  Ors appearing in each term in E(q23) that the second order

a combinatorial factor. It is important to note thaistinct coefficients can be divided into five classes corresponding to
first order coefficientswith distinct values oy ,ny,, etc) zero-, two-, four-, six-, and eight-particle excitations, respec-

arise when constraints are imposed on the momentum mod%%?)grgg? ggg?f-iE;rrgltdeiveexnmlga“fhlC:Slfalt?;?s to just one sec-
kq,ks,k3,k, which account for different types of scattering 9 y q
processes. In the absence of any constraiits; N;=1 and
Eq. (130 gives (2 i 1
Coo=- 41 2 C‘(J?)lkglkéylkgvlkg‘skﬁk?ké+kfv°

_ ki.ky, ...

o __I—QD* Ok Ph.Pik, Ok, +ky ks k0
0l B, Lok, 41 TR TR TRy Tk Ty Ty gtk 0

17K KKy : XNy, oo Ny, oot Ol 4+ K + K+ K" 0LK"

(131) < 1 i |k” k; k1+k2+k3+k4,O(Pkl

1020
; indi ; i 2onaaatatatoat
When the four modes appearing as indices in the creation X‘Pkg‘Pkg‘PkL{ak{akgakgakﬁakiakéakéak;‘|0?t>- (135

operators are paired, resulting in two distinct creation opera-
tors (i.e., whenkjy=k; and kj=Kkj3), N.=(1/2)? and N;
=(4C2/2)><2C2 (since there are three ways of forming two
distinct pairs of creation operatgr€£qg. (130 becomes

By making use of the commutation relations between the
annihilation and creation operators to normal order the above
string of operators, it can be easily shown that the above
equation reduces to

. 3i

1
CEh, 2 =~ 21 (V2 2(0h k) O hp0. (132 P
P ' CO;O:_ICO;lk1,1k2,1k3,1k45k1+k2+k3+k4,O(Pk1(Pk2€Dk3(Pk4-

For a single pairindi.e., when, for examplek;=k] but k (138

* 3).' NC:_‘/E and.Nf=4C2 (since th('are are 4 ways of The second order coefficients corresponding to the two-
forming a single pair out of four creation operafoasid Eq.  particle excitation case, which is contributed by the second

(130 becomes term in Eq.(123), can be written in general as
(':(1) :_G_i\/i( *2) * %S ~(2) _ . 2 (1)
0;2k1,lk2,lk3 41 (Pkl (IDkz(Pks 2kq+ko+ks,0° C{Zk};o— —4i - Co:lki'lké’lké'lki5ki+ké+ké+k:1’0
(133 kike
From the form of the string of creation operators appearing XNy, .oonj, .. it E 57k’1’+k’2’+k§+k2{x0
in Eq. (130, it is clear that the number of different coeffi- K1 Ky, ..
cients correspond to the different ways of partitioning of . At ~t
four-particle excitations in terms of excitations of lower or- X 5ké,k'2'5ké,kg5k"1,kgéokrlr@k'z'@kg@kgak;akﬂOit>,
der.
In order to derive non-Gaussian corrections to the two- (137

point functions, it is necessary to obtain the corrected . ) )
vacuum state, at least up ®(\?). For this purpose, we which leads to the equations for the following second-order

need to determine the second order coefficients. Althougfoefficient
there are many distinct second order coefficients, we will see

that only a few of them will contribute to the two-point func- c@) - _4ic®) S

tions, thereby considerably simplifying the calculations. 0L, lig 0i L) By By L, “Ka ko Hka kg 0
Nevertheless, for the sake of completeness, we explicitly out- <& * 138
line below the general method for obtaining all possible sec- kot kgt kg —ks,0Pks Phy Py Py (138
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The third term in Eq(123) leads to the following general and that associated with the eight-particle excitation case is
equation for the second-order coefficients associated with thgiven by
four-particle excitation case:

~(2)  _ __ai (1)
C{4k}?0 3i 2 Co;lki,lké,lké,1k£5ki+ké+ké+k4’1,0

i
~(2) (1)
! C 0 - C . 5! ! ’ ’
Kp kG, {8407 7 7 . kz 0: 3y B B g Ok +hp K +kG,0
10020
X<nl, ...,n' t| 2 57 " " "
i ; K/ =K+ K2+ K0 . *
MU Xy, ong, ot X O+ + K+ K 0Py
KK, ..
1720

X 8¢ 1w et et eweealalalal o),
k3vk3 k4xk4¢k1¢k2¢k3¢k4 kl k2 kl k2| > )(QD:gqD:g(P:Zél{élgélgélzéliélééléélé|O,t>
139
(139 (142
which leads to the dynamical equations for the following
four second-order coefficients:
However, none of those coefficients contribute to the expres-
sions for the two-point functions correct ®(\?). Hence,

CEh 2 =—9iI(V2)°CHY, 1 1 1 we do not list them explicitly.
b ree The normalization of the vacuum state correct to second
X O, 4kt kgt kg 00— kg + ko kgt Ky 0 order in\ is easily found in terms of the first and second
. % order coefficients:
X P, Pic, Py Py
~(2 3 1
Cg;)zkl’lkz’lksz ~18 \/ECE);%'kl’lkz’lks'lkz: [2]<O;t|0;t>[21 =1+)° [ kzk C(()l;%tl’zkzcgl;)zkl‘zkz
1:%2

X O, +Ky+ kgt Ky 00— Ky + kgt ky— ke 0
(1) (1)
+ 2 C§ 1k,1ksco;2k1,1k2,1k3

* ok 2
X Pk, P Py Py Ky K .ks ki
~(2) —_3ic®) + 2 c@)* c@
Co;:lklvlkzvlksvlka 3'CO;1k1,1k2,1k3,1k45k1+k2+k3+k4,0 kq.Kp.Kg.Kg Oy By ey ey 03y i B Ty

* *
X Oigt ks~ kg— ks 0Pks Phis Phia Py

+H{CE +CE [+O(N3). (143

~(2) —_1% (1)
C0;3k1’lk2_ 12 ( \/6) C0;1k1’1k2’1k3’1k4

We can now obtain expressions for the equal-time, two-
point functions by taking the expectation values with respect
X <p;§12<pk3gok4. (140 to this improved, albeit perturbative, vacuum state, with the
understanding that

X 2k 4kt kg 00K, + Kyt kg +ky 0

Similarly, the second order coefficients corresponding to
the six- and eight-particle excitations contributed by the last . .
two terms in Eq.(123), respectively, can be easily obtained. ngb)(k)= 210t D, (K)Pp(—k)[0;t) 7, (144
The general structure of the second order coefficients corre-
sponding to the six-particle excitation case is given by

where the subscript indices,b, ...=1,2 and<i>a is to be
C%}-o:_ a 2 Cél-)l N TR understood as the fieIdAoperatér(k)(azl) or the cc?nju—
kP 3 Ky S e T Y R A R gate momentum operatbk(k) (a=2). Moreover, we will be
working with the symmetric theory which implies théi,

LTI TR | 2 S fO. It is important to note that in_the !_vN formalism the
’ e ’ K 17Ky ka0 field and momentum operators atine independentThe

time dependence of the two-point functions arise through the
X 8y k”(’D:”(’D:"(’D:"‘Pk"él"él"é‘l”él’é‘l'él’|0;t>’ time dependence of the auxiliary field variakde It is then
AT T2 Te e T T2 Te T T2 T easy to show that the equal-time, two-point functions are
(141 given up to and includingd(\?) by the equations
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GA(k;t) = of ok

2 (1)* (1) (1)* (1)
1+ {kEK Co;zkl,zkzco;zkl,zk + %ks C0;2k1,1k2,1k3C0:2k1,1k2,1k3

1Ko 2 kg,

(L) (1) (2)* (2)
* kq ,k§<3 Kq CO;lkl’lkz’lks’lkzsco;1k1’1kz’1k3’1k4+ (Coo + CO:O)}

2 1 1 1 1
+\? ch;)l,k,lk@—k¢k+4k21 (Cg);)Z’ikzleg);)Z,k,zleDtkﬁD—k+Cg;%:,zklcg):%kzkl@: o) | TON), (149

GE(k;t) = o ¢k

2 (1) 1) (1)* 1)
1+A [kE Coz 2, C02 5" > Co;2k1,1k2,1k3co;2k1,1k2,1ks

1Kz k1.ka kg

(1) (1) (2)* (2)
+kl,k§(3,k4 CO;1k1']1<2'1k3']1<4C0;1k1’lk2’lk371k4+ (C0§0 +C0;0)] :|

+2\?

2CE) 1@ ket (CRY 5 CRY o o% e+ CEY, Chb 5 ek e |[+O0N%), (146
k1 1 1 1 1

G (ki) = o i

2 (1) (1) (1) (1)
1+x [k%(z CO;2k1’2k2C0;2k1'2k2+ kl%,k CO;2k1'1k2’1k3C0;2k1'1k2'1k3

3

+ ciH* ci +(CE¥ +cl)
kl,k§<3,k4 o'lkl'lkz'lk.%'lkzt 0'1k1’1k2’1k3'1k4 ( 0:0 0'0)

+2A2

chz;)l_k,lk¢—k¢k+ 4> (Cgl;)ztk,zk Cgl;)z_k,zk O* e it Cgl)ztzk Ct()l;)zk,zk ok @) | +ON3). (147)
kq 1 1 1 1

It is clearly evident from this set of equations that the first B. Heisenberg formalism: Evolution beyond the leading order

term corresponds to the Hartree approximation result, and | this subsection, we obtain the nonequilibrium evolution
corrections to the Hartree approximation appear only apquations for the connected correlators, by taking the
O(\?). The auxiliary field mode variable, is given by the  yacuum expectation value of the Heisenberg equations of
solution of Eq.(101) with A=0. The effect of scattering motion for various combinations of products of the field and
enters through the presence of the first and second ordég conjugate momentum operators, after making use of the
coefficients, which first appear &(\?). For example, four- cluster expansion to express the ordinasyoint functions as
particle scattering processes with overall momentum consesums of products of connectedpoint functions of lower
vation are encoded in terms involving the first order coeffi-order. This technique was used to obtain the effective poten-
The LvN formalism thus provides a tial and investigate phase transitions in spontaneously broken

. . . . ¢*theory in 1+1 and 2+ 1 dimensiong37]. We note from
systematic perturbative method for computing non-Gaussia ec. Il that the expectation value of a functional of Heisen-

(beyond Hartreecorrections to the two-point function and berg operators with respect to the vacuum state becomes
highern-point functions. Systematic corrections in powers of

A=3 can also be derived in a similar manner after including (O|F(1)|0)=(0t|FgOt), (148
terms of O(A")(n=3) in the expression for the improved

vacuum state. These expressions for the two-point functionghere F(t) is any general functidial) of operators in the
are particularly suited to obtain non-Gaussian corrections t%eisenberg picture and< is the corresponding time-
the domain size in systems undergoing a quenched Seco'ﬂ‘f‘dependent operator in thSe Sctiager picture.

order phase transition. The four-point function and higher £rom now on. to take into account NLO effects and com-
n-point functions in momentum space can also be computefare with other methods, we adopt an approach different
in a similar manner, in terms of the auxiliary field modes andfrom the LvN formalism. We take the expectation value of
the expansion coefficients up @(\?). The)\—independenF the Heisenberg equation for any functional @bf,,(t) and
terms in the four-point functions correspond to the factoriza-~ (1) as follows:
tion of the four-point function in terms of products of two- TH '

point functions and thereby represent the Hartree approxima- . jA _ - "

tion result. (0fi =Fp(1)|0)=(O[[Fn(t),H(D)][0), (149

i (1)
cients Cy; LB bk,
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where Hy(t) and Fy(t) are time-dependent operators andSet of equations for the equal-time, connected two-point
|0) is the time-independent vacuum state. Even though th&unctions. In this scheme, incorporating NNLO effects would

- ~ A . . then amount to truncating the hierarchy of evolution equa-

gxglr';gfrzr?; Olji':eHs(tIZn?)r\]/\(/jlgg(g (;rf] :ﬁ;n:;g;hi\?&zmmggrerat_ions at the six-point level. Appendix A lists the cluster ex-

P  eq viedg ary evo P pansion ofn-point functions <4) and the set of evolution
tor, we will not be required to know their explicit forms for

the purpose of the calculation below. equations for the equal-time, connectaghoint functions
In general, the evolution equat.ions for the ordinary(n$4) _in configura_tion space. It is often more_convenie_nt to
n-noint correle;tors which are defined as work with the Fourier transforms of the evolution equations.
P For that purpose, we define the Fourier transforms of the
ggn) S(Xgs e X it):<<Ai>a(X1,t)' B $b(xn ) two- and four-point functions as

=(Fua,. p(X1, ... XeiD)) (150 -
Froa sl 20D} 150 0% 03 3= [ Tk k1B K o)
are obtained by taking the vacuum expectation value of the

g . - - X ei(kl‘xl+ ko-X2)
Heisenberg equatiotafter dropping the subscript “H’ '

o) Lo e sy SR e) [ takrakgIraks ak,
dt - | a, ..., 1 == = \nat)y ’
X G (ky ko, ks, Kg)
where the subscript indices,b, ...=1,2 for our model avcd _14 2rmea
Hamiltonian andg, is to be understood as the fluctuation exd i 'i Kox. (153
field operatorg(x,t)(a=1) or the conjugate momentum =
operatorm(x,t)(a=2) in the Heisenberg picture. The sub-
script f has been removed for notational convenience. The , ) , )
fluctuation field and its conjugate momenta satisfy the usudror translationally invariant theories,
commutation relations
. . GLE (ke ko) =G (k) 8(ky +ky),
[ha(X,1), dp(Y,1)]=1 826" (X—Y). (152
For the unbroken symmetry casg,=0, only correlation  Guted(Ka,Ka,Ka,ks) =G Ky ko, ks) 8(ky+ Ko+ kst Ky),
functions of even order are nonvanishirigor a theory ex- (154

hibiting spontaneous symmetry breaking, a nonvanishing
vacuum expectation value will induce a cubic interaction
term because of which evesdd npoint functions become
nontrivial) Using the cluster expansidB7] to express ordi- - . ; .
nary n-point functions in terms of the equal-time, connected(ﬁgg)_(/'\?) yields the following evolution equations  for
n-point correlators, it is possible to obtain a set of evolutionCab  (K):

equations for the connected correlators. Because of the pres-

ence of the quartic coupling, the equations for the two-point .
functions woquld dependpupgc’m the cqonnected four-point ?unc—G(lziC)(kl)=G(1220)(k1)+G(2210)(k1)'
tions; the equations for the four-point functions would de-

pend upon the six-point functions, and so on, thereby yield-

ing an infinite hierarchy of evolution equations for the G29(k,) =GO (k) —
n-point correlators. To go beyond the Hartree approximation 2+ ‘"%~ ~22 "1
requires including the cluster expansion of the six-point N
function in terms of products of connectagpoint functions (2C) _A , e (4C) (1 L
of lower order and ignoring the effect of the connected six- X G117 (kq) 6J[dk TdK Gk K" —ka),
point function in the expansion. This amounts to taking into

account direct scattering effects and provides a systematic

way of going beyond the leading-order mean field expansion... ¢, )= —
This then yields a set of closed equations which have beerg‘22 (k)=
truncated at the four-point level. The leading orddartree \
approximation result is easily recovered by expressing the 2C 2C , ,,
four-point function as products of connected two-point func- X (G (k) + G (ko)) - EJ [dk'JLak’]
tions and ignoring the term involving the connected four- 4C) L1 Lo (4C) L1 Lo

point function in the cluster expansion. This yields a closed X (Gi11a(k" K" k1) +G3iqa(K' K" kq)). (159

which is just an indication of the conservation of momentum
at the vertices. The Fourier transform of Eé1) and Egs.

i+ 3 [ 1aK166900)

i+ 3 [ 1aK166900)
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By neglecting terms involving the connected four-pointthe equivalence of the method used in this section to obtain
functions in the above equations and, setting=0 (since  NLO equations and the LvN method used in the previous
we are discussing the symmetric theprgne recovers the sections. The evolution equations for the four-point functions
leading order(Hartree approximationevolution equations, abcd(kl k,,ks3) obtained by taking the Fourier transform of
Eq. (107), obtained in the last section. This also establisheggs. (A3)—(A7) are

G{i%h(Kq Ko, ka) = GEI1A(Kq Ko, ka) + Gi3A(K1 Ko ka) + G{iS)(Ky Ko ka) + G{1TM(Ky Ko Ka), (156
GSIDA(Ka Ko k3) = GE3I(Ka Ko ka) + GEIFA(Ka Ko k) + GE1TA ks K2  ks)
— w?(ky+ kot k3) Gii(Ky ko, ka) —NGE (k) GH) (ko) GO (ks)

A
] 1 1O Bk o e + B ) LUK ok

+ G (ko) GUAK’ Ky, ks) + G (ka) YUK Ky ko)) |, (157)

GEI(ka ko, ka) = GE53N(ky ko ka) + GE5A Ky Ko kg) — 02(ky+ Ky + ka) GiaA(Ky Ko, ka) — 02(ky) GSiTA(Ky Ko, ks)
~ NGB (k) GE(ky) G (ka) + GE) (ky) G B (ky) G (kg))

A
—5[ f [dk J(GE7 (k) G155k Kz ka) + G (ka) GATI(K' Kz ks)
+ G (ko) GUSUK' ka kg) + G (kg GLZH(K Ky kz)

f[dk'](dzc’ NGED(K1 Ko ka) + G5 (ky) G{ITA(K' Ko k)

+ G (ko) GHAK Ky, ks) + G (ka) GHAK Ky ko)) |, (158

GEA(Ky Kz kg) = GERZH(Ky Ky Ka) — 2 (ky Ko+ k3) GI3TA(Ky Kz ka) — w?(Kky) GEIFA(Ky ko, ka)
— w?(ky) G557A(ky Ko Ka)
~MGE (k1) G5 (ko) G137 (kg) + GH (k1) G (k) GV (ko)
+GE (k) GE (ky) G (Ks))

A[ f [dK' J(GH (k)G ko k) + GE (k) G{ISU(K' Kz, ka)
+GE (k) GHSIK' Ky ka) + GH(ka) GITHK' Ky kz))
+ f [dk' 1(GHV (K GGy ka ,kg) + GH (k1) GIZU(K Kz kg)
+G 57 (ko) GEITAK’ Ky ka) + GE (ka) GEITAK’ Ky k7))

J [dK JGE (k) GEal(ky ko ke) + GE (k) GRTI(K' Kz Ka)
+ 6L (ko) GETI(K ki ka) + GEL7 (k) GETI(K' K ko)) | (159
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GEoM(Ky ko kg) = — (@2(Ky + Ko+ ka) GIASH(Ky Ko k) + 02(ky) GEI5N Ky K k) + 0?(ka) Goah(Ky K ks)
+ w2(kg) G533 Ky Kz k) = M(GE (ky) G B2 (kp) G (kg) + GAC) (k) GB7 (k) G B9 (ks)
+ G (ky) G (kp) G5 (ka) + GE) (k1) GH (ky) G (ks))

—%[ f [dk GV (K) G5 ki ka ka) + G (ki) GHIZNK' ks k)
+GE (ko) GUSAK' Ky ka) + G (k3) GIIFH(K' Ky ko))
+ [ Tk 1GE k) BN Ky K o)+ GE ) GG ko)
+G 3 (ky) GHTUK' Ky ka) + GE (ka) GEITHK' Ky k7))
+ f [k HGHK)GEHA(Ky Kz k) +GE (k) GHAK Ky ks)
+ G5 (ko) GEITNK Ky, kz) + G (kg) GHA(K' Ky ko))

+ f [k JGE(K) Gk ko ka) + GR (k) GETU(K' Kz o)

+ GO (kp) GHAK Ky kg) + GE) (kg) GSRA(K' Ky ko)) |- (160

This set of equations completely determines the evolution oproach to thermalization, in a temporal domain which lies
the correlation functions beyond the leading order. Numeribeyond the domain of validity of the Hartree approximation.
cal integration of this set of equations with nonequilibrium A possible way to avoid the instabilities arising due to the
initial conditions and tracking of the subsequent dynamicalruncation of the hierarchy might involve adapting the direct
evolution of the connecteah-point functions would make it interaction approximation developed by KraichndY] in
possible to ascertain whether the proposed truncation scherfige context of turbulent fluid dynamics. We are currently
is good enough to ensure late-time thermalization of the sysexploring this possibility.

tem. The inclusion of the four-point correlators in the hierar-
chy amounts to considering terms ©{%°) in the effective
action. Since each connected-point function G

~O(#""1), inclusion of higher order connecteepoint cor- Several approaches have been developed to understand
relators in the hierarchy of evolution equations allows for athe dynamics of fields in nonequilibrium field theory. It
systematic way of incorporating quantum effects. The issugvould be useful to make a comparative study of the different
of truncation error arising from truncating the hierarchy atapproaches, specifying the relationship between the different
the four-point level needs to be addressed. This issue haethods and the relative merits and demerits of each ap-
been briefly discussed in R¢R4] where it was argued that proach. In this section, we will address this issue by compar-
truncation error would build up with time and eventually ing our approach with other methods that have been used to
invalidate the working assumption of the formal hierarchy ofobtain evolution equations for thequal-time correlation

the connected correlators given above. For the quantum meunctions. We will compare our canonical approach with two
chanical anharmonic oscillator and theN)(vector model,  specific approachd4,3¢ that have been recently discussed
the decoherence time scale for breakdown of the hierarchi the literature.

was qualitatively argued to scale with *2 and \/N, respec- Wetterich’s method36] is based on deriving an evolution
tively. However, that analysis was based on a simple (Cequation for the partition functiofor the generating func-
+1)-dimensional qguantum mechanical model, and quantitational for 1Pl graphs The time evolution of then-point

tive treatment of this aspect for a system with infinite de-correlation functions(or n-point vertex functionsis com-
grees of freedontfield theory will certainly be more com- pletely determined by the time evolution of the generating
plicated. Although inclusion of higher orden-point  functional and the microscopic dynamical equations of mo-
functions in the hierarchy does not eliminate the instabilitiestion. We will show below that the evolution equations for the
it does postpone the onset of these instabilities. This delay iequal-time correlation functions obtained using Wetterich’s
the appearance of instabilities would make it possible to gaimethod match exactly with those derived in this paper using
valuable insights into the nonequilibrium dynamics and ap-a canonical approach.

VIl. COMPARISON WITH ALTERNATIVE METHODS

105014-21



SENGUPTA, KHANNA, AND KIM PHYSICAL REVIEW D 68, 105014 (2003

For a¢* theory without spontaneous symmetry breaking, . &2 )
the evolution equation for the generating functional can be 94" (X1 ,Xz)= Shix a0 WL 1 |
oh(x1) 8j(x2)
cast in the form 36] .
=057 (x1,%2) + VIg57 (X1 ,%,)
AZ[j(X),h(x);t]=(Lei+ Lgm) Z[[(X),h(x);t], (161 —m?g$29(x;,%,)

whereL. and Ly, are the classical and quantum parts of the

(2C)
Liouvillian operator, respectively, and are given by 2 g (X1.2)9517 (%0 X1)

— = g¥10(X1 X1, X1, X,),
dej(X) 691111( 1:X1,X1,X2
dh(x) (2 )(Xl X2)
) s A & i .
2 | m2 _ =_———0 Jhit]]i—n=
+h(X)[V 5J(X) (m 5J(X)+6 EJ(X)3)]‘|’ 5h(Xl)5h(X ) IW[J ]|J h=0
=(Vi-m*) g7 (x1, %)+ (V3—m*)g§i? (X1, %2)
N 1)
3
Lam= 71 f X 05550 (162 @890 x)g 20 )
Herej(x) andh(x) are source terms for the field and conju- +007 (X2,%2) 957 (X1, %7))
gate momenta, respectively, a@flj (x),h(x);t] is the gen- A
erating  functional  for n-point  functions, Z - g(g(lﬁ)z(xl,xl,xl,x2)+g(2‘fﬁ(x1,x2,x2,xz)).
=Tr(exp{/dX{j(X)p(x) +h(x)7(X) }p), wherep is the density (164)

matrix.

It is fairly straightforward to obtain the corresponding The above set of equations for the connected two-point func-
evolution equations for the generating functional for con-tion, derived using Eq(163), is identical to Eq(A1), which
nected graph¥\[j(x),h(x);t] and the generating functional was derived using canonical methods and the cluster expan-
for 1PI graphd’[ ¢.(X),7(X);t]. [¢c(X) andm (X) are the  sion for ordinaryn-point functions. Similarly, one can show
vacuum expectation values of the field and conjugate mothat the evolution for the connected four-point function ob-
mentum in the presence of sourgdsx) and h(x), respec- tained using the above method is the same as the ones ob-
tively.] Z[j(X),h(x);t],W[j(x),h(x);t], and tained in Appendix A.

IMe(X),7m(x);t] are related by the equation More recently, Ryzhov and Yaffe developed another
WL j(x),h(x);t]=InZ[j(X),h(X);t] and the Legendre trans- method for obtaining the nonequilibrium, coupled set of evo-
form  T'[e(X),7(X);t]=—InZj(X),h(x);t]+ fd{j(X)¢p(x) lution equations for then-point correlators[24]. Their
+h(X)7«(x)]. The evolution equation fol\[]j(x),h(x);t], method is based on an expansion of the coherent state expec-
which completely determines the evolution of the connectedation value of the products of operators in terms of sub-

n-point functions, then becomes tractedn-point functions and the assumption that the initial
state is some coherent state. The central idea behind the RY
AW (X),h(x);t] method is the expansion of the Hamiltonian operator in terms
of powers of the generators of the underlying coherence
SW group, which is the Heisenberg group for t#é theory. It
fdx 1(%) +h(x)(VZ=m?) - 1) o2 o= G 2 3 aat.
Sh(x) 5](x) consists of the operatoes™,e'<), e'*'=d,(k),d,(k),1 sat

isfying the commutation relationge®,e®]=if3,e(® s(k
—k’), wheref3,= — f3,=1 are the only nonvanishing struc-
ture constants. By taking tleoherent statexpectation value

of the Heisenberg equations of motion for appropriate prod-
ucts of equal-time coherence group generators, it is possible
(163 to obtain the evolution equations for the subtraateploint
functions (or connected functionsin the same manner as
described in Sec. V. In Appendix B, the evolution equations
for the two-point function are derived in the Hartree approxi-
mation using the RY method and are shown to be equivalent
to those obtained using the LvN approach.

R SSW L oW 52W (5VV)3
N 5000 72800 5002 18I0

6

h(x) o

T

For a symmetric theorp(x)|j-o=[ 8W/8j(x)]|;-o=0 and
7(X)|h=o=[ W/ 6h(X)]|,=0=0. Using Eq.(163 we find
that

2

- i htll: VIIl. CONCLUSION
gll (X11 2) 6]()( )5]()( )&IW[Jahat]|]=h=O

(20) o In this paper we have used the LvN formalism, a canoni-
(X1.,%2) + 957 (x1,%z), cal method, to study the nonequilibrium evolution of
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equal-time, connected-point functions for a symmetrig*  O(N) symmetric field theory holds more promise in this
field theory. The usefulness and simplicity of the LVN context. In this paper we have discussed two different ca-
method in obtaining perturbative, non-Gaussian correctionaonical approachegerturbative and nonperturbatjvef go-
to the n-point correlation functions were first illustrated us- ing beyond the Hartree approximation. The perturbative LvN
ing the quantum mechanical anharmonic oscillator modelapproach developed in this paper provides an elegant method
The formalism was then applied to &* field theory and for obtaining corrections to the-point functions in terms of
used to obtain the evolution equations for the connected twopowers of the coupling constant The effect of scattering,
point function in the Hartree approximation, for nonequilib- which first appears ad(\?), is manifest through the first
rium evolution as well as for the thermal equilibrium case.and second order coefficients whose dynamical equations
We also used the LvN formalism to go beyond the Gaussiamwere derived. This method provides a straightforward
approximation and obtain expressions for the two-point funcimethod for obtaining non-Gaussian corrections to the do-
tions correct to O(\?) after calculating the improved main size in systems undergoing a quenched second order
vacuum state. Expressions for four-point and highgoint ~ phase transition. By making use of the exponentially grow-
functions can be obtained similarly after some straightforing solution of the soft modes of the theory, it is possible to
ward but tedious algebra. The corrections to the Gaussiagbtain expressions for the first and second order coefficients,
approximation were found to appear first&t\?). The non-  which in turn leads to expressions for the two-point functions
equilibrium evolution equations beyond the leading order apto various orders in\. The Fourier transform of the two-
proximation were then obtained by taking the vacuum expecpoint functions would then yield the domain size, which in-
tation value of the Heisenberg equations of motion forcludes corrections due to non-Gaussian eff¢4&. More-
appropriate products of field operators. This provides an alover, the LvN method provides an analytical, albeit
ternative and nonperturbative approach to investigate sygerturbative, method for studying the role of interactions and
tematically the nonequilibrium evolution of quantum fields, the effect of scattering on thermalization of the system. This
and yielded an infinite hierarchy of coupled equations for thds possible by obtaining perturbative corrections to the two-
connectedn-point correlators which were truncated at the point functions to various powers of and comparing the
four-point level. This involved ignoring the contribution of resulting expression with the thermal two-point correlation
connectedh-point functions =6) in the evolution and re- functions. We have also discussed in detail an alternative,
sulted in a closed set of equations involving connected twononperturbative canonical approach based on the Heisenberg
point and four-point functions. Since we restricted our invesformalism to study the nonequilibrium evolution of tle
tigation to a symmetricp* theory with vanishing vacuum field theory. This nonperturbative Heisenberg formalism re-
expectation value, all connected ouaighoint functions vanish ~ quires incorporating the effect of connected four-point func-
and have no effect on the evolution. We have also establishdibn in the nonequilibrium evolution equations. The efficacy
a connection between the canonical approach used in thif truncating the hierarchy at the four-point level in ensuring
paper and other methodi24,36 developed in the literature thermalization needs to be addressed. Recent &gk for
for deriving nonequilibrium evolution equations for equal- classical field theories has been inconclusive because of the
time correlation functions. It would be straightforward to prohibitively long time required for equilibration and also
generalize this technique for studying the nonequilibriumdue to the fact that the numerical evolution becomes unstable
evolution of spontaneously broken field theories. Symmetryong before the system thermalizes. We believe that the ca-
breaking would result in the generation of linear and cubichonical approaches developed in this paper provide a useful
terms in the potential, as a consequence of which even comlternative method for studying nonequilibrium dynamics in
nected oddn-point functions would contribute to the dy- field theory.
namical evolution.

The inadequacy of the Hartree approximation in studying

the approach to thermalization has been extensively dis- s.s. would like to thank L. Yaffe for helpful discussions.
cussed in the literature. The Hartree approximation neglects p.K. would like to thank D. N. Page for useful discussions
scattering effects and therefore cannot account for long-timgnd also appreciates the warm hospitality of the Theoretical
thermalization of the system. An elegant interpretation of thisphysics Institute, University of Alberta. The work of S.S. and
aspect has been put forward by Wetteri@6] and is based F.C. K. was supported in part by the Natural Sciences and
on the realization that the Hartree solution corresponds to gngineering Research CounéNSERQ, Canada. The work
fixed point of the theoryi.e., configurations for whicl#;Z  of S.P.K. was supported in part by the Korea Research Foun-
=0). The presence of an infinite number of conserved quandation under Grant No. KRF-2002-041-C00053 and also by
tities (fixed pointg prevents the system from escaping from the Korea Science and Engineering Foundation under Grant
these nonequilibrium fixed points and approaching the therng. 1999-2-112-003-5.

mal equilibrium fixed point unless the initial values of all

these conserved quantities coincide exactly with the ones APPENDIX A

corresponding to a thermal distribution. To take into account

the effect of scattering, which would ultimately lead to ther-  In this appendix we write down the set of evolution equa-
malization of the system, requires going beyond the Hartreéons for the connected-point functions in configuration
approximation. An approach based on the loop expansion afpace by making use of the cluster expansion for the four-
the 2PI effective actiofi13] in powers offi [or 1N for an  point and six-point functions. The cluster expansion of
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n-point functions can be formally derived from the generat-where the last two equations in the above set have been
ing functional of the interacting field theof$7]. The differ-  obtained by making use of the following cluster expansion of
ence between the ordinary and connegtgmbint correlators  the four-point functions:
first appears at the four-point level. To simplify the notation,
we represent thed and « field operators by the numbers 1
and 2, respectively. So the correlation functions
92 (xq, x2) gﬂc)(xl,xz) etc., are symbolically repre- 0i4(1,1,1,2=9{17)(1,1,1,2+39{17(1,9g{17(1,2,
sented asg{? )(1 2), 9%3°)(1,2), respectively, where the
numbers in parentheses refer to the subscript indices of the
spatial coordinates. o{441,1,1,2=0%9%(1,1,1,2+39339(1,19{3(1,2),
The equations for the two-point functions in configuration
space are easily obtained by using Etp1) and the appro-

priate cluster expansion of the four-point functions. They are 9(2?11(1,2,2,3=9(2ﬁ)1(1 11,2 +3g(2C)(2 2)g(zc)(1,2).

0i7(1,2=9¢537(1,2+9%7(1,2), (A2)
0529(1,2)=g%39(1,2) + (V2—m?)g{59)(1,1) We have used lower case letters to represent the correlation
\ functions in configuration space and upper case letters to
represent their Fourier transformed counterparts in momen-
- —g<21¢><1 D712 - 5 ofiTi(11.1.2 P P

tum space. Tha-point connected correlation functions ap-
pearing above and in the subsequent discussion are all nor-
g(2220)(1,2)=(v§ 2)g(2°)(1,2)+(V§ )g(zc)(l,z) mal ordered vacuum expectation values of products of
operators.

The evolution equations for the connected four-point
functions in configuration space can be similarly derived by
\ making use of the appropriate cluster expansion of the six-
N a0 (4C) point functions. The five independent equations for the four-

(91115(1,1,1,2+93171(1,2,2,2), (A1) point function are

——(g<20>(1 Dg$37(1,2) +9177(2,2967(1,2)

01171(1,2,3,4=05171(1,2,3,4 +9{571(1,2,3,4 +9{15}(1,2,3,4 +¢{17%(1,2,3.4, (A3)
05i1(12.3.4=0£51(1,2,34 + 95:51(1,2.3.4+0£17(1,2.3,9

+(Vi-m?)g{19(1,2,34 - 105 (1,20% (1,305 (1.4

——<g<2°><1,1)g<1‘i%<1 234+9939(1,2¢{132(1,1,34

+9%39(1,391194(1,1,2,4+9%39(1,99(19)(1,1,2,9), (Ad)
95530(1,2,34=9g5550(1,2,34+9553%(1,2,34+ (Vi-m?)g{3)(1,2,3,4 + (V- m?)g§iTl(1,2,3.4

-M052(1,297(1,30%9(1,9 +957(1,297(2,997(2.4)
(g<zc’<1,1>g&‘;‘ﬂ<1 2,34+957(1,29119)(1.1,34
+987(1,30415)(1.1.2.4+957(1,40115)(1,1,2.9)
- —(g<2C’(1,2>g&i‘P1<2 2,34+947(2,29519)(1.2,34

+929(2,39%9(1,2,2,4+939(2,4959(1,2,2,3). (A5)

Since the correlation functions are all normal ordered, the above equation is symmetric under the interchange of indices
X1<—>X2 andX3<—>X4:
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95550(1,2,3,4=9%55%(1,2,3,4+ (V- m?)g{351(1,2,3,4 + (V3—m?)g5i3)(1,2,3,4 + (V35— m?)g$4)(1,2,3,4
A e%2(1,2957(1,39537(1,9 +95(1,2957(2,3957 (2,49
+059(1,9959(2,3 057 (3.4)

- %(g‘ﬁ@( 1.1g%51(1.2.3.4+0557(1,20117}(1,1,39
+987(13g151(1.1,24+ 0117 (L4H9{15)(1,1.2.3)
- %(g‘ff)( 1,205151(1,2.3.4+0517(1,201151(2.2.3.9
+987(1396171(1,2.24+¢117(2998173(1,2.2.3)
- %(gﬁq(s,s)g‘;é%( 1,234+057(1,306171(2.3.34

+9%29(1,30%5(1,3,3,4+93°(3,49531(1,2,3,3). (A6)

The above equation is symmetric under the exchange of coordinate indices,— Xs:

95554(1,2,3.4=(Vi—m?)g{454(1,2,3,4+ (V3—m?)g§i54(1,2,3,4
+(V3-m?)gl(1,2,3,4+(Vi—m?)g$is)(1,2,3.4
—-M057(1,2957(1,39 957 (1,4 +959(1,2957 (2,395 (2,4
+959(1,3959(2,39%57(3.9+957 (1,995 (2,9 957 (3,9)

- %(gﬁ‘”(1,1>g&‘é%%(1,2,3,4+g&22°>(1,2>g&‘12%(1,1.3,4
+957(1,39015)(1,1,2.4+ 9537 (14g{155(1,1,2.9)
- %(g%ﬁc’<1,2>g&‘i?z(2,2,3,4 +0(7(2.205155(1,2.3.4
+97(2.39519(1.2.24+ 9572996174 1,2,2.3)
- %(g&’i”(l,s)g‘;i%(z,&s,z) +057(2,39617%(1,3.3.4
+969(3.3955(1,2.34+9157(399471(1,2.3.3)

A
-5 (@57 (1495512344 +957(299571(1,3.4.4

+959(3495%7(1,2,4,4+ 957 (4,40%31(1,2,3.9). (A7)
[
APPENDIX B do(x.t)=(d¢)csand that of the conjugate momentum opera-

We now show the equivalence between the LvN method®" To(X,t)=(r)cs, respectively. In order to apply the RY
and the RY method by obtaining the evolution equations fofmethod, it is necessary to isolate from the expectation va_lue
the Fourier transform of the subtracted two-point correlation® the Hamiltonian the parts that depend only on the Fourier
using the RY method in the Hartree approximation. The ex{ransforms ®p,(k,t)=do(k,t) and ®g(k,t) =1Ilo(k,t) of
pectation value of the Hamiltoniaf¥9) can be expressed in the coherent state expectation value of the fleIdAand its con-
terms of the Fourier transformby;(k,t)(i=1,2) of the co- jugate momentum operator. Using the relatigig;()).s
herent state expectation value of the fluctuation field= wg(x,t)+gzz(0,t) and <<?>f(x))cs= ¢§(x,t)+g11(0,t) and
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the Hartree factorization of the cubic and quartic terms speci- dGyy(k,t)
fied in Eq.(94), the coherent state expectation value of the ~ —— 5= Gadk,) +Gar(k/1),
full Hamiltonian can be expressed as
A= [ TR0, Tk )+, (BD
< >cs [ ] 0 0 ngz(k t) + ¢ (t)+ (Ot)
e — w
where the ellipsis corresponds to terms that are independent dt K cl 2 G
of Palkt)(i=1.2) and X[Gyak 1)+ Gau(k )]+ O((N)?),
H((I)O(kvt)ano(kvt))
1 N N (k t)
=112 24 42 0 dGio(k,t
ZHO(kit)+ wk+ 2 ¢C|( ) Zgll(Ot) l;(t ):Gzz(k,t)
B2
(B2) o \
By noting that the underlying coherence group in this case ~| @it 5 e+ 509100
is the Heisenberg group whose generatefd, e®) el ,
=, P,1 satisfy the commutation relationpe™),e(®] X Gyy(k,t) +O((N)9), (B3)
=if3,e®s(k—k’) wheref?,=—f3,=1 are the only nonva-

nlshlng structure constants and by making use of the general
form of the NLO evolution equations for the one-point andwhere we have used ™= (1/21)g?H/dd3(k,t)=(1/2)

two-point functions, we get the following self-consistent SEUx[ w2+ (N/2) B2, (1) + (N /2)g11(0t)] and H@=(1/21Y52H/

of equations t(D(()\)Z): oI15(k,t)=1/2. The set of equatiori83) are identical to the
ddy(k,t) equations(107) obtained using the LvN formalism which
ai o(k,t), clearly establishes the equivalence of the LvN and RY meth-
ods. The coherent state can be considered as the vacuum
state of the theory with its expectation value providing the
dITy(k,t) classical background. For a symmetric theory, the coherent
Tdt wk+ B2 (1) + 2911(0t) Do(k,t) state expectation value of the field and the conjugate mo-
menta vanishes, and we recover the set of equations for the
+0((N)?), two-point functions(in the Hartree limix obtained in Sec. V.
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