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Spacetime noncommutativity and antisymmetric tensor dynamics in the early Universe
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This paper investigates the possible cosmological implications of the presence of an antisymmetric tensor
field 6 related to a lack of commutativity of spacetime coordinates at the Planck era. For this pupsse,
promoted to a dynamical variable, inspired by tensor formalism. By working to quadratic ordewia study
the field equations in a Bianchi type | Universe in two models: an antisymmetric tensor plus scalar field
coupled to gravity, or a cosmological constant and a free massless antisymmetric tensor. In the first scenario,
numerical integration shows that, in the very early Universe, the effects of the antisymmetric tensor can prevail
on the scalar field, while at late times the former approaches zero and the latter drives the isotropization of the
Universe. In the second model, an approximate solution is obtained of a nonlinear ordinary differential equa-
tion which shows how the mean Hubble parameter and the difference between longitudinal and orthogonal
Hubble parameter evolve in the early Universe.
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I. INTRODUCTION of operators associated with spacetime coordinates with a
deformation of the algebra of functions defined on space-
Spacetime noncommutativity is one of the key new hintstime. In this context classical general relativity would break
which follow from recent developments in quantum field down at the Planck scale because spacetime would no longer
theory. It has been recently realized, in particular, that a conbe described by a differentiable manifold, and at these length
sequence of string theofyt,2] is that the structure of space- scales quantum gravitational fluctuations become large and
time becomes noncommutatiy8], which can be described cannot be ignored. We stress, however, that the form of non-
loosely as an analog of a quantum phase space, in terms edmmutative geometry we are interested in is not directly
the algebra generated by noncommuting coordinategelated to current string theorig¢see below.
[Xx#,x"]=i6"*" with #*¥ an antisymmetric tensdrThe idea In the past few years several auth¢®s-11], including
behind spacetime noncommutativity is very much inspiredsome of the present authof$2-16, have considered the
by quantum mechanics. A quantum spacetime is defined bgossible effects of noncommutative geometry and Planck
replacing canonical variables with self-adjoint operatorsscale physics in cosmology. In particular, it has been shown
which obey Heisenberg-like commutation relatigmg’,x"] that deformation of spacetime and/or phase space algebras
=i#*, and can be viewed as the smearing out of a classicanay lead to several interesting features in the power spec-
manifold, with the notion of a point replaced with that of a trum of primordial perturbations produced during the infla-
Planck cell It was von Neumann who first attempted to rig- tionary era[17,18,19,2Q In all these investigations, how-
orously describe such a quantum “space” and he called thigver, *” has been taken to be constant, or withaapriori
study “pointless geometry,” referring to the fact that the no- modeled time evolution. In view of general covariance one
tion of a point in a quantum phase space is meaningles@ay expect tha#*" should be rather considered as a dy-
because of the Heisenberg uncertainty principle of quanturnamical tensor, coupled to gravity and possibly affecting the
mechanics. This led to the theory of von Neumann algebragsosmological evolution of the early Universe. This is actu-
and was essentially the birth ebncommutative geometry ally a crucial point which deserves a thorough treatment,
referring to the study of topological spaces whose commutahere summarized by relying in part upon REf6]. On the
tive C* algebras of functions are replaced by noncommutaone hand, it is true that, if one looks at the interplay between
tive algebrag3—8|. The idea of noncommutative geometry string theory and noncommutative geometry, one has to con-
was revived in the 1980s by Conngs] and others, who sider a constarB field and hence a constagt” [21]. On the
generalized the notion of a differential structure to the non-other hand, the commutator of the* is a tensor, whose
commutative setting, i.e. to arbitra* algebras. A theory transformation under boosts yields nonvanishing spacetime
on a noncommutative space replaces the noncommutativitgomponents. Moreover, possible violations of unitarity are
taken care of by imposing the conditioffs5]
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0*", and suggests starting from a nonlocal action functionaby 6*”. Concluding remarks and open problems are pre-
with * product of fields in the presence of nonvanishingsented in Sec. IV, while relevant details are given in the
spacetime curvaturgl6]. We therefore assume, hereafter, Appendix.

that the background geometry remains a classical pseudo-

Riemannian geometry endowed with a Levi-Civita connec- [I. ANTISYMMETRIC TENSOR PLUS SCALAR FIELD

tion V, while thex product of scalar fields at the same space- COUPLED TO GRAVITY

time point is defined by16] In order to describe a field dynamics which might lead to

> 4 anisotropy in the early Universe, the appropriate model is a
O(X)* h(X)= Z Z(i12)k0r171(x) . . . 9#K7(x) Bianchi type | Universdas we stated beforé one wants to
= preserve the spatial homogeneity. In this case the line ele-

ment can be written as
X(an .. -VﬂkQD)(Vul .. .Vykdx). (1.1 ,

Similarly, having treated classically the geometry, we assume dSZZdtz_iZ af(t) (dx)?, 2.1
for tensor fields that
and correspondingly the nonvanishing connection coeffi-

N1 .. Ag— AN A . . ..
FrjagFirts=ghtin ghisky \ «F : cients are(no summation over is here meant

s fp...rg

(1.2
: ! .
where I'l=s;aa;, F'Oi:;:, Vij=123, (2.2
o1 and for the Ricci tensor one has
Fay.oag EE i (i/2)K0*171(xX) . . . 9#k¥K(X) . _
k=0 a; a « A
—, RI=-4 — —). 2.3
X(Viy -V Fag o) Z a;’ (a| aj k#i Ak 23

X(VV1 .. 'VVkFrl"'rs)' (1.3 We consider a model in which there are both the antisym-
metric tensor responsible of noncommutativity of spacetime
As is stressed in Ref16], the occurrence of covariant de- and a minimally coupled massive scalar field which drives
rivatives in our definition€1.1) and(1.3) spoils associativity ~the inflation. The corresponding nonlocal action reads
of the = product. However, noncommutative effects are al-
ready present at quadratic orderdfi”, and our*” will be s:j d*xy—g| —
taken to be sufficiently small so that higher order terms in the
action functional are negligible. m2 A
Another_impo_rtant goal to_be pursged is a fully Consistent T ereT E((p* @) (0, 04|, (2.9
study of primordial perturbations, which should take into ac-
pount theo*” pgrturbgtions as We”’, generalizing Fhe forr,nal'where the part involving\ is here introduced to mimic a
ism of gauge-invariant perturbation®22] to anisotropic “time-dependent” mass term fof**, and
background metrics.
As a first step in this program, in this paper we discuss the vo=V,0,,+V,0,,+V,0,, (2.5
possible dynamical evolution of a background, time-
dependent antisymmetric teng@3—38 in two possible sce- is the field strength associated to the antisymmetric tensor
narios: a free massles#*” in presence of a cosmological ¢,,=—0,, (hereafter, Greek indices run from 0 through 3,
constant, the latter being introduced as the easiest way twhereas Latin indices run from 1 through. 3t should be
trigger an inflationary dynamics, and a more general scenarinoticed that the kinetic term fof,, is inspired by a gener-
where the noncommutative fiel@*” is coupled to a scalar alization of the Maxwell theory34] and that in Eq.(2.5
inflaton. As mentioned the presence @f* breaks the isot- only the effects of partial derivatives survi¢éow, by vir-
ropy of the Universe, and hence only spatial homogeneity isue of the definitiong1.1)—(1.3), one finds
preserved, leading in turn to a dependencel®f on time
only. In this framework the appropriate geometry for the H,pox HE 7 =H ,,,H*"7+0( 6%), (2.6)
Universe is therefore a Bianchi type | model. In Sec. Il we L
obtain a nonlinear system of the background equations in the _ 2 v oo 3
presence of inflatonyplus a coupling ?erm betvc\lleen inflation pre=e §0M 0 (VuVoe) (ViVoe) + O(67), (2.7)
and 6*”, and the energy-momentum tensor. In Sec. Il we
consider the simpler cosmological term model which how- (o* @)*(0,,* 0*")=¢%0,,0""+0O(6°). (2.9
ever can be worked out analytically, at least for those initial
conditions which are of some interest and may lead to an
early stage where the energy-momentum tensor is dominatedfOur notation agrees with the one used, for example, in [R&}.

- 4+ — wve . — o T
16nG 12 mve*H 2wt @
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Thus, to second order i&”, which is relevant sincé*" is 3 . 5V
taken to be sufficiently small, only kinetic and potential term + E Hy (p-l-)x(pﬁ"”ﬁ/w-l-é— =0, (2.18
for the scalar field contribute, but with vanishing coefficient, k=1 ¢
since the former changes by the amolif] [integration by 3
arts yields also a third term which however vanisheg if o o
F;<P(»[)yon|y] ? gl (O Ojk— 2N 0203 0))=0, Vi#j (2.19
S =i d*x\—go*"6*"(V.V.0)([V,,V,]IV,V0) a -, N
K32 prr® Lt Tl Ye 8 > —=8aG| V(p)— 9>~ 5¢%0,,0M|, (220
2.9 T A 2
and the latter changes by the amo a a a 1 N
ges By HEB) D E=87G| ZH, H T V(6) — 5 626,04
m?2 Qi  Qj k=i A 6 ~ M
-3 j d'xV=go" 6 R, ,,(3:0)(3,0). 1 |
2.10 = St HT+ 2)\<p249i,,0”}). (2.21)

Since ¢ depends only on the time variable, both EG59)  Of course, Egs(2.16 and (2.17) result from Eq.(2.13),
and(2.10 vanish in our Bianchi type | background. Thus, to whereas Eq(2.18) is obtained from Eq(2.14). The remain-

quadratic order irg*”, we end up with the local action func- ing equations are the Einstein equations where, in particular,

tional Eq. (2.19 provides a Bianchi type | Universe.
Using Eq.(2.16 one easily get#® = 6y, =0. By virtue of

_ d4x\/—_ _ R iH Huvo Eqg. (2.19 one can show that the only possible solution has
B 167G 12 #*7 only one nonvanishing component 6f;, e.g. 6;,. More-

over, since isotropy is broken and the residual invariance is

(2.11) SO(2), it is rather natural to choos®,=a,=a, , az=a, ,
with corresponding Hubble parameteks, =a, /a,, H,
=g, /a, . In this case the equations become

1 _ N, ,
+§<P;M<P'M_V(<P)_§<P 0,,0""|,

whereV(¢)=(m?/2)¢? hereafter. At this stage, the resulting
energy-momentum tensor is given by

010+ (H = 2H, ) 815+ 2\ 9?61,=0, (2.22
Th=58 — iHWHW— l(p.ﬂgo;'“-i—V(qo)-i- lc,oze,wef” 06
12 2" 2 G+ (HL+2H, ) o+ a412+5—(p=0, (2.23
l 1
+ SHo HPY + 0. 0P — 20 %0, 0P". (2.12
2 1 1 62 262
2 "2 12
_ _ _ HZ2+2H, H =87G| 5¢°+V(¢)+ 5 — el B
By using the expression@.11), (2.12 the resulting equa- 2 2 ! al
tions of motion are (2.24
V#H,,,+2N¢%0,,=0, (2.13 _ 0262,
H, +H, (H +2H,)=87G| V(e) +N ——]|,
oV a
VT e N0, 0"+ S5=0, (2.14 (2.29
: .0%2 902052
H +H (H +2H,)=87G| — +V(¢)—\ :
R.,~59,,R=87GT,,. (2.15 LR at 4

(2.26

To be consistent with the spacetime homogeneity ansatz West us define the mass parametes mpﬂ@ 187G,

assume that all fields are depending on time only. In this casg,
the above equations redhiereafterH;=a; /a) tem of differential equations. By defining

2 _ ~
N¢?600i=0, (2.16 x=elu, y=0,/(pa?), H,=H, /u,

. . 0 — \/ — 4
+ E Hk) eij_Z(Hi+Hj)0ij+2)\(tp20ijzor HL=HL/’LL' V(X)=V(MX)/M,
k=1

(2.17  and using the dimensionless time=tu we get
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y"+(H+2H )y’ +2(0%—=2H2 +V(x) + Ax?y?)y =0, ol
(2.27 |
~ 40+ 1
" o o ’ 2 oV !
X"+ (H_+2H,)x"+Axy +§=0, (2.28 30—'| ]
12 20¢ '| ]
M2 omm X v L o iom w2 2,,2
Hl+2HLHL=7+V(x)+§(y +2H,y) +Ax7y7, II
10 1
(2.29 |
0 L | _ 7
H +H, (H +2H,)=V(x)+Ax%?, (2.30 ‘\\ ____________ e
- - - 10 5 10 15 20 25
HU+HL(H +2H, ) =(y' +2H,y)?+V(x) = AX%y?,
(2.3) FIG. 1. Thex axis corresponds to thefolding parameteiN
] o ] and on they axis we plotH, andH, with dashed and continuous
where the “prime” denotes the derivative with respectito  |ine respectively; we tak¥(x)=qx?, with initial conditions:H2
The truly independent equations are given by H&s27),

=10,0,,=100d6,,/dN, =0,0=10d¢e/dN, =0, and coupling
constants\=10"4,q=10.

(2.28, (2.30 jointly with
(H.+2H,)
12

= —+\~/(x)+£(y’+2ﬁ y)2+Ax?y?+3H?
2f, | 2 2 * L)

100 f

(2.32

On recalling thee-folding definition in the orthogonal direc- 601,
|

tion, i.e. N, (7)=log(a, (7)/a, (7)), one can easily prove 1
that

|
|
|
80+ |
|
|

40+
|
d - d |
T=F 233 200,
L
> _, & 0 5 10 15 20 25
Q—HLR—FHLW. (2.34

FIG. 2. Thex axis corresponds to thefolding parameteN, ,
By using N, as the evolution parameter and definiag and on they axis we plotf;, and ¢ with dashed and continuous

~5 . line, respectively, with same initial conditions of the previous fig-

=H7 we find ure.
zﬂ+[T/(x)+)\x2y2]ﬂ+2[Ax2—22+V(x)+Ax2yz]y

dN? dN, |
[
=0, 2.3 I
(2.39 30
2X+T/ + A x%y? dx +\ 2+5\7—0 ]‘
ZN [V(X) XYJW xy*+ = =0, 2.
(2.39 |
[
2 _T(x)+ Ay L9 2+ dy +2 2+6 s
— - |
an, VoMY 2 gar) Tl T ' :

230 ol T ]

In Figs. 1-4 we show, on choosing different initial condi- 5 10 15 20 25
tions, that a range dfl, exists in which thed;, component

of the 6 field dominates on the field; of course, this results FIG. 3. We plotH, andH, as functions of the-folding param-
from a special choice of initial conditionésee following  eter N, , with V(x)=qx?, and initial conditions:H?=10,6;,

section for a more thorough discussion of underlying ispues =100d6,,/dN, =1,p=10d¢/dN, =0, and coupling constants
Moreover,H, dominates as well, i.e., there is anisotropy.\=-1075q=1.
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100 and the energy-momentum tensor reads
|
80 ‘ 1 1 \ lVL A
'l Tﬂ(a)zzHMpHV p_l_zH""PH P, (3.5
|
80f “ 1 As in the previous section, we assume Bianchi type | geom-
ol ! etry. The equations of motiof8.3) and(3.4) now read
40 | ]
\\ 3
20+ \\ 1 0|J+ kzl HK)GIJ_Z(HI+HJ)0|J:O' (36)
3
kZl Hikﬂjkzo, V|¢] (37)
FIG. 4. The fields#,, and ¢ are plotted as functions of the
e-folding parameteN, . 3 4
> —=A, 3.9
Outside this rangef,, approaches zero angd dominates =18,

driving the isotropization, which can be seen in the figures

whereH andH, reach the same constant value. a; a ay [ 1H Lo

;i ;I =, a_k - ™ ivo § nvo .

[ll. COSMOLOGICAL CONSTANT AND MASSLESS (3.9
ANTISYMMETRIC TENSOR

While the equations in the previous section can only beunllj'kg}&?npregc;?lléisﬁiﬁc“ﬁln’trllzeq%bll%\;;nnov\‘/’v;es\lﬁlcii gytr?e
solved by means of numerical methods, one can envisagegf 9 g o . g we will .
simpler scenario which embodies the main features but aIgauQEGQ‘.ZO'.A detailed gnaly5|s of the_ admissibility of this
lows for an analytic approach. For this purpose we considePau9¢ fixing is reported in the Append|x. .

a Lagrangian density for the antisymmetric tensqy, and The effect of Eqs(3.6) and(3.7) is to rgstnct severely the
defined in Eq(2.5)] either all ¢;;(0) values vanish and t_huéij is a constant
tensor, or at most only one componeht(0) is nonvanish-

ing. Since the antisymmetric tensor enters the field equations

1 1
=Vy—0| - == (R+2A)+ —H H#vP
£ g[ 167-rG( ) 12w’ only through its first- and second-order time derivatives the

case of a constar#t tensor reduces to a pureterm cosmol-
1 1 ogy and is thus uninteresting for our analysis. We therefore
=\-g| - =—=(R+2A)+ —=H,,, H*" : - - -
g[ 1677G( ) 12" #ve } consider the cas#,4(0)=0,5(0)=0, 0,5(0)#0, and we
eventually get
+0(63). 3.9 Yo
Thus, on working to quadratic order i#”, the resulting 012+ (HL—=2H,)61,=0, (3.10
action is invariant under the gauge transformations -
0
00— 0,0+ 3 X0 FoX s (3.2 H2+2H, H =A+47G—, (3.11)
aJ_
and thed,,, dynamics can be also recast in a different form
by introducing the pseudoscalar Kalb-Ramond figlda the |'-|l +H,(H +2H,)=A, (3.12
duality transformatio , x=€,,,,,H"*?, with €,,,, the vol-
ume four-form. Actually, since we are assuming homogene- 2
ity and a purely time-dependentfield this implies a time- |'.|L+ HL(HL+2HL):A+87TG—EZ. (3.13
independenty field with a linear dependence on spatial a;
coordinategsee Eq(3.19]. _ _ _ _
Using the results of the previous section in the particularEquation(3.10 determines the behavior df, in terms of
case we are considering, the resulting equations of motiothe scale factors
are
2
. . al
V#H,,,=0, (3.3 610= 6012(0) a (3.19
1 where in Eq.(3.14), by virtue of the arbitrariness in the
Ruv— 59,,R=87GT, () +Ag,.,, (3.9 a.(3.14, by

choice ofa, (0) anda, (0), we have assumed, without loss

105012-5
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of generality,a, (0)=a, (0)=1. Notice that this immedi-
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showing that()’ is directly related to the isotropy breaking.

ately gives the spacetime dependence of the Kalb-Ramonld the following we will consider an expanding Universe in

scalar field

x= 0140)x%+ xo, (3.19

where, according to E¢2.1), x3 denotes the longitudinal

both longitudinal and transverse directioif,, H, >0. In
this case we note that 2<Q'<4. We will use this infor-
mation later on. Notice thaf)’=4 would correspond to
H, =0, which is forbidden by Eq(3.17).

Equation(3.22 is a first-order inhomogeneous equation

spatial coordinate. EquatidB.15 is actually consistent with \whose solution reads

spatial homogeneity, while it breaks isotropy.

The previous equations can be recast in a simpler and

more useful form by introducing the variable

¢==log(a’a,), (3.16

W =

which represents the averagdolding. Hence one gets

2
C
HZ+2H, H =A+ —, (3.17)
2a;
(H{+3H,)(H_+2H,)=3A, (3.18
C2
(H{+3H)(H_+2H,)=3A+3—, (3.19
a

L

where c?=87G(6,5(0))? and '=d/dé&. It is also conve-
nient to set

Q
a (6= eXp{ &+ —(25)] : (3.20
and hence from Eq3.16
Q
al(§)=exp{ - g] (3.2

Furthermore, we introduce the mean Hubble paraméter,

=(H_+2H,)/3, and the asymmetry functidm=H —H, .
Sincea; (0)=a, (0)=1, Egs.(3.20 and(3.2]) yield Q1(0)
=0. Thus one gets

1 c?
E(Hz)’+3H2=A+§exp{—2§—ﬂ(§)}, (3.22
CZ
h'+3h= ﬁexp[—zg—ﬂ(g)},
(3.23

, 1, A ¢
H —§h =§+€8Xp{—2§—9(§)}, (3.249

H2(é)= £+ H?(0)— é) exp—6¢)
3 3

2 ) 4
+§C exq—Gg)f exp(4¢—Q(¢))de,
0

(3.2

which, together with Eq(3.25), gives the Hubble parameters
in terms of the functior()(£). The latter can be determined
as the solution of a second-order differential equation, ob-
tained by inserting Eq(3.25 into the differential equation
(3.23 and the Hamiltonian constraii(8.24). The latter op-
eration yields

Q!Z -1 A 2
2__ o _ J— — —
H —(1 16) S+ 5 S 26-0(8)|.

If the differential equatior{3.22) is also exploited to express
HH’, we eventually find

Q' (&€)2%\ 3A+c%exp(— 26— Q(¢))
Q" 20/ (9| 1-
(6)+20°() 16 J2A+c2exp(—2£—Q(8))
( Q)% c’exp(—2E—0(8))
-8[1— =0,
16 J2A +c2exp(—2£—Q(§))

(3.27

with initial conditions(0)=0, Q'(0)=(4/3)h(0)/H(0).

This equation can be hardly solved analytically in the
general case, but it reduces to much simpler forms in the two
regimes, when either the cosmological constant or @hg
fields dominate the energy-momentum tensor. At very early
times the latter is likely to be largely the dominant compo-
nent. We can rewrite the parametérasc?= my,c/m3,, with
myc the scale where the classical picture of spacetime mani-
fold breaks down. The order of magnitude &fcan be in-
stead constrained by the fact that it drives inflation in the late
stages, and represents in the slow-roll approximation the po-
tential of the inflaton field. This is severely bounded by the
fact that it should account for the correct amplitude of pri-
mordial perturbations. For example, for a polynomial poten-
tial V(¢)=\¢"/n, the requirement of slow-roll dynamics

where the last equation is the Hamiltonian constraint. Actuand perturbation amplitudes of the order of 20gives A

ally the functional dependence bfin terms ofH and() can
be already obtained by its very definition

(3.2

<10 *?m2, [38]. As long asmyc~mp, the value ofA is
several orders of magnitude smaller thefn so in this case
the early dynamics is fully determined Iy, . Smaller val-
ues ofmyc, such that?~ A, cannot be ruled out of course,
but in this case Eq3.27) can only be solved numerically.
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Hereafter we specialize to the casgc~mp,. At early  (3.28 no longer holds at, , see Eq(3.29, which, in view

times therefore Eq(3.27) takes the simplified form of the logarithmic behavior of (¢), for e<10 2 is approxi-
matively fixed by
, , Q'(§)?
Q") +2(Q ()41~ —5—|=0.  (3.28 1 c?
§* ~ §|OgX (335)

Since thed,,, contribution is diluted with expansion aa{ 5 02 ) o
this equation holds approximatively for values dsmaller | ¢/A<10"we geté, <15. On using Eq(3.34) it is now

than the value. such thatA ~ c2/a2 e possible to determine the evolution of the Hubble parameters
& L(&) as functions offt. From Eqs.(3.26) and(3.25 we get
O(&,) c?
~log— 2 3
§xt =5 ~log. 3.29 H2(§)~exq—6§)[H2(0)+§c2(1—ze>§,
Later expansion is instead driven By and hence, by ne- (3.39
glecting thed,,, contribution, we have h(£)~3 exg —3&)H(0)[1—3e]. (3.37)
Q' (62 Late-time evolution is ruled by Eq3.30. SinceQ’ (&)
"(€)+30 - =0. . ; LN .
Q1 +30 (§)< 1 16 0 (3.30 <4 it therefore follows that asymptotically reaches a posi-

tive constant valugl.,, so thath vanishes in the largé-

This equation of course should give back the isotropizationimit as expected. In particular, for largeEqg. (3.30 can be
phase leading to a de Sitter phase. linearized, i.e.

We begin by studying the early time evolution. Before
doing this it is worth discussing the values of initial condi- Q"(&)~—-30"(¢), (3.38
tions for Hubble parameters. From E¢3.12 and(3.13 we
see thatd,,, acts as source fax_ only, the evolution ofa, and hence it is immediate to get the approximate solution
being expected to be much slower. In other wotts, anti-
symmetric tensor drives the expansiqn of ihe_longitudinal H2(§)~£+ Hz(g*)_ﬁ) exp(—6(£—¢,)),
scale factor only The most natural choice &=0 is there- 3 3
fore H_(0)>H, (0), that is to say)’(0)=4—12¢, with € (3.39
=H, (0)/H_(0)<1. In this case the solution of E(B.28 is
particularly simple. On defining (£)=Q(&) —4¢, the latter h(&)~h(&,)exp(—=3(§—€,)). (3.40
reduces to

Note that the action functional studied in the present sec-
tion or in Sec. Il coincides with the low-energy limit of string
. (3.3) theory with a constant dilatortp lowest order in the expan-
sion of the nonlocal action functional witkh product of

L e . S _ fields Readers interested in string cosmology can be re-
Upon considering log '(£)=y(£), this equation is solved ex ferred, for example, to the work in Ref9,40. In particu-

actly by separat_lon of yarlable_s and subsequent mtegraﬂomar' the work in Ref[41] has studied string cosmology with
and yields C being an integration constant

a time-dependent antisymmetric tensor in a Bianchi type |
1 Universe, but as is stressed in Sec. IV of Héfl], since a
1+ —exply) |. pure radiation plus dilaton solution hat— const, a late-
8 time isotropic radiation-dominated solution is a contracting
(3.32 Universe. By contrast, in our model, when the Universe
reaches an isotropic stage it is still expanding.

A'(§)

1+8

N (&) =N\"%(&)

+C= y. 5
¢+C=—exp—y)—g+glog

On choosing the initial conditions

N(0)=0, \'(0)=—12, (3.33 IV. CONCLUDING REMARKS

Motivated by cosmology and noncommutative geometry,

the approximate solution at smallreads, with a very good we have investigated the effects of an antisymmetric tensor

accuracy, in a Bianchi type | early Universe. What we do only holds at
1 3 an intermediate stage where departure from ordinary space-
ANE)=— log| 1+ 12€| 1— _6> f). (3.34  time geometry can be appreciated, while Iack of assoqie}tivity
3 2 of the resulting product in curved spacetime is negligible

1= 2¢€ [16]. Moreover, such a stage implies a departure from the

models with constant®®*” which are relevant for string
For example, we have checked numerically that this solutiortheory[21]. With this understanding, our original results are
is accurate at the per thousand level up&e1(?, if €  as follows.
<10 2. These ranges fully cover the early stage. In fact Eq. (i) In the first model, where the antisymmetric tengor
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resulting from noncommutative geometry and a minimallythe lapse functiorN is equal to 1 in a Bianchi type | back-
coupled scalar field driving inflation both occur, we haveground, and thah denotes the determinant of the induced
found by numerical methods that a suitable range of thehree-metri¢

e-folding exists such tha® prevails on the scalar field and

the longitudinal Hubble parameter prevails Bn . This is _ 3

the anisotropic era, but for larger values of théolding the L_j £\hd, (A3)
antisymmetric tensor is damped and the scalar field domi- i
nates, leading in turn to isotropization. The very existence oftnd hence we find
the anisotropic era depends of course on the initial conditions

chosen, but it appears interesting to have shown explicitly = oL :1 \/ﬁg"gjsﬂrso, (A4)
how the corresponding model can be built. 060 2 ’

(i) In the second model, again in a Bianchi type | Uni-
verse, gravity with a cosmological constaktis coupled to 20— oL - (A5)
an antisymmetric tensor. The resulting nonlinear system of 66oio

equations for the Hubble parametéts&indh has been solved

by first obtaining the differential equatid.27 for the un-  Equation(A5) deserves some comments: since the Lagrang-
known functionQ2, and then finding approximate solutions ian is independent ofy; o, the momentum conjugate
when the effects of,,, prevail uponA, or the other way ~vanishes. More precisely, the® can be seen as 3 primary
around. An accurate analytic description of the process leadronstraints arising from the structure of the Lagrangian; as
ing to an isotropic final state of the Universe has been theresuch, their vanishing is only a weak equation@), because

fore obtained. w0 are well defined over the whole phase space of the
An outstanding problem in sight is now the developmenttheory, and only vanish on the constraint submanifeiz.
of cosmological perturbations’ theo88] within such a Our LagrangianA3) reads
framework, with the hope of obtaining quantitative informa-
tion on the effect of6 on the formation of structure in the L= j ETrij 0; A3, (A6)
early Universe. 2 '
ACKNOWLEDGMENTS with corresponding canonical Hamiltonian
We are indebted to Fedele Lizzi for enlightening conver- ZJ i 43y _f} i 43
sations. The work of G. Esposito has been partially sup- He= | w0y od™x—L= | 510 ™. (A7)

ported by PRIN 2002 “Sintesi”; the work of G. Mangano . . _
and G. Miele has been partially supported by COFIN 2002BY virtue of the primary constraint\5), however, the Hes-

“Fisica Astroparticellare.” sian matrix is singular, and the time evolution is only well
defined when the effective Hamiltoni&his considered. The
APPENDIX latter is given byH. plus a linear combination of primary

. . . L constraints, i.e[42]
In this appendix we consider the admissibility of the

gauge conditiorfy; =0 from the point of view of constraint . -~ _

analysis, and we begin with the simplest model, with action HIJ (EW” 0ij o+ u'mo;

functional(as in Secs. Il and lll, the starting point is a non-

local action functional, which reduces to a local action bypmoreover, we are still free to impose supplementémore

retaining only quadratic terms ") frequently called “gauge) conditions, here chosen in the
form

S= f £y=gd", (AL) 00i=0. (A9)

d3x. (A8)

with Lagrangian density:EﬁH’”Ppr in a Bianchitype | By doing so, we choose to regard the gauge conditions as
background, and field strength given by cyclic permutationgonstraint equations, in much the same way as the Coulomb
of V4 terms, according to Ed2.5). Only the effects of par- gauge can be treated as a constraint equation in Maxwell
tial derivatives survive it ,,,,, and hence we find, by virtue theory [43]. We are therefore working with an extended
of Eq. (2.1, Hamiltonian

1 . : .
— ' 0”'04’ /.LI’]TOi +\! Ooi dSX, (AlO)

12 2

. 1
L=-—H* prp:Zg 9" ik 001 0, (A2) He=

since the assumption of spatial homogeneity implies @4t  where the Lagrange multipliera',\' can be evaluated by
can only depend oh The termg' 6y o6y o is weighted with  requiring preservation in time of the primary constraints
coefficient 3-3=0 and hence does not occur in E&2). and gauge constraint®,; . For this purpose, note first that
The Lagrangiark is obtained from_ by means ofrecall that  Eq. (A4) yields
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2 Note that, by virtue of our gauge constraif#s), the set of
0ij 0=—="ij » (A11)  constraints has been turned into the second class, a feature
Vh shared by all field theories after a gauge condition has been
. _ imposed[43,44].
and hencdwith p=2/\h) For the model studied in Sec. lll, the full Hamiltonian

p constraint(3.11), when expressed in integral form, is the sum
He:f (—w”mj +,ui770i+7\i6’0i)d3x- (A12)  of Eq. (A12) and of the gravitational contribution. The latter
2 is obtained from spatial integration of

All our constraints are then trivially preserved, without giv-
ing rise to further constraints, because 3)
(167G) G,y 71 74+ Mﬂxﬂ
d B, - . N 1kl 167G~ 87G’
ﬁWOiE{WOi(X!t)lHe}%J )\J(y!t){WOi(Xit)!6Oj(y1t)}d3y
=—\(X,1), (A13)  Where Gjj=[1/(2yh)](hichj +hjihy—hijhy) is the De-
Witt supermetric on the space of Riemannian geometries on
_ - - - » s S, [45], 7' is the momentum conjugate to the induced three-
g Poi=100i (1), Hep = | m(y,D){600i(X,1), mai(y, )}y metric and ®)R is the three-dimensional scalar curvature
) (our sign for such a curvature is opposite to the one of Ref.
= pi(X,1). (Al4)  [45]).
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