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Spacetime noncommutativity and antisymmetric tensor dynamics in the early Universe
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This paper investigates the possible cosmological implications of the presence of an antisymmetric tensor
field u related to a lack of commutativity of spacetime coordinates at the Planck era. For this purpose,u is
promoted to a dynamical variable, inspired by tensor formalism. By working to quadratic order inu, we study
the field equations in a Bianchi type I Universe in two models: an antisymmetric tensor plus scalar field
coupled to gravity, or a cosmological constant and a free massless antisymmetric tensor. In the first scenario,
numerical integration shows that, in the very early Universe, the effects of the antisymmetric tensor can prevail
on the scalar field, while at late times the former approaches zero and the latter drives the isotropization of the
Universe. In the second model, an approximate solution is obtained of a nonlinear ordinary differential equa-
tion which shows how the mean Hubble parameter and the difference between longitudinal and orthogonal
Hubble parameter evolve in the early Universe.
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I. INTRODUCTION

Spacetime noncommutativity is one of the key new hi
which follow from recent developments in quantum fie
theory. It has been recently realized, in particular, that a c
sequence of string theory@1,2# is that the structure of space
time becomes noncommutative@3#, which can be described
loosely as an analog of a quantum phase space, in term
the algebra generated by noncommuting coordina
@xm,xn#5 iumn with umn an antisymmetric tensor.1 The idea
behind spacetime noncommutativity is very much inspi
by quantum mechanics. A quantum spacetime is defined
replacing canonical variables with self-adjoint operat
which obey Heisenberg-like commutation relations@xm,xn#
5 iumn, and can be viewed as the smearing out of a class
manifold, with the notion of a point replaced with that of
Planck cell. It was von Neumann who first attempted to ri
orously describe such a quantum ‘‘space’’ and he called
study ‘‘pointless geometry,’’ referring to the fact that the n
tion of a point in a quantum phase space is meaning
because of the Heisenberg uncertainty principle of quan
mechanics. This led to the theory of von Neumann algeb
and was essentially the birth ofnoncommutative geometry,
referring to the study of topological spaces whose comm
tive C* algebras of functions are replaced by noncommu
tive algebras@3–8#. The idea of noncommutative geomet
was revived in the 1980s by Connes@5# and others, who
generalized the notion of a differential structure to the n
commutative setting, i.e. to arbitraryC* algebras. A theory
on a noncommutative space replaces the noncommutat

*Electronic address: digrezia@na.infn.it
†Electronic address: giampiero.esposito@na.infn.it
‡Electronic address: funel@fe.infn.it
§Electronic address: mangano@na.infn.it
i Electronic address: gennaro.miele@na.infn.it
1Hereafter we use the natural units\5c51.
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of operators associated with spacetime coordinates wit
deformation of the algebra of functions defined on spa
time. In this context classical general relativity would bre
down at the Planck scale because spacetime would no lo
be described by a differentiable manifold, and at these len
scales quantum gravitational fluctuations become large
cannot be ignored. We stress, however, that the form of n
commutative geometry we are interested in is not direc
related to current string theories~see below!.

In the past few years several authors@9–11#, including
some of the present authors@12–16#, have considered the
possible effects of noncommutative geometry and Pla
scale physics in cosmology. In particular, it has been sho
that deformation of spacetime and/or phase space alge
may lead to several interesting features in the power sp
trum of primordial perturbations produced during the infl
tionary era@17,18,19,20#. In all these investigations, how
ever,umn has been taken to be constant, or with ana priori
modeled time evolution. In view of general covariance o
may expect thatumn should be rather considered as a d
namical tensor, coupled to gravity and possibly affecting
cosmological evolution of the early Universe. This is ac
ally a crucial point which deserves a thorough treatme
here summarized by relying in part upon Ref.@16#. On the
one hand, it is true that, if one looks at the interplay betwe
string theory and noncommutative geometry, one has to c
sider a constantB field and hence a constantumn @21#. On the
other hand, the commutator of thexm is a tensor, whose
transformation under boosts yields nonvanishing spacet
components. Moreover, possible violations of unitarity a
taken care of by imposing the conditions@16#

umnumn.0, «mnrsumnurs50.

From the point of view of general formalism, it is therefo
legitimate to address the question of whether a broader n
commutative picture can be consistently built. This implie
departure from current models which only exploit a const
©2003 The American Physical Society12-1
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DI GREZIA et al. PHYSICAL REVIEW D 68, 105012 ~2003!
umn, and suggests starting from a nonlocal action functio
with * product of fields in the presence of nonvanishi
spacetime curvature@16#. We therefore assume, hereafte
that the background geometry remains a classical pse
Riemannian geometry endowed with a Levi-Civita conn
tion ¹, while the* product of scalar fields at the same spa
time point is defined by@16#

w~x!* c~x![(
k50

`
1

k!
~ i /2!kum1n1~x! . . . umknk~x!

3~¹m1
. . . ¹mk

w!~¹n1
. . . ¹nk

c!. ~1.1!

Similarly, having treated classically the geometry, we assu
for tensor fields that

Fl1 ..ls* Fl1 . . . ls[gl1r 1 . . . glsr sFl1 . . . ls* Fr 1 . . . r s
,
~1.2!

where

Fl1 . . . ls* Fr 1 . . . r s
[(

k50

`
1

k!
~ i /2!kum1n1~x! . . . umknk~x!

3~¹m1
. . . ¹mk

Fl1 . . . ls
!

3~¹n1
. . . ¹nk

Fr 1 . . . r s
!. ~1.3!

As is stressed in Ref.@16#, the occurrence of covariant de
rivatives in our definitions~1.1! and~1.3! spoils associativity
of the * product. However, noncommutative effects are
ready present at quadratic order inumn, and ourumn will be
taken to be sufficiently small so that higher order terms in
action functional are negligible.

Another important goal to be pursued is a fully consist
study of primordial perturbations, which should take into a
count theumn perturbations as well, generalizing the forma
ism of gauge-invariant perturbations@22# to anisotropic
background metrics.

As a first step in this program, in this paper we discuss
possible dynamical evolution of a background, tim
dependent antisymmetric tensor@23–38# in two possible sce-
narios: a free masslessumn in presence of a cosmologica
constant, the latter being introduced as the easiest wa
trigger an inflationary dynamics, and a more general scen
where the noncommutative fieldumn is coupled to a scala
inflaton. As mentioned the presence ofumn breaks the isot-
ropy of the Universe, and hence only spatial homogeneit
preserved, leading in turn to a dependence ofumn on time
only. In this framework the appropriate geometry for t
Universe is therefore a Bianchi type I model. In Sec. II w
obtain a nonlinear system of the background equations in
presence of inflaton plus a coupling term between inflat
and umn, and the energy-momentum tensor. In Sec. III
consider the simpler cosmological term model which ho
ever can be worked out analytically, at least for those ini
conditions which are of some interest and may lead to
early stage where the energy-momentum tensor is domin
10501
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by umn. Concluding remarks and open problems are p
sented in Sec. IV, while relevant details are given in t
Appendix.

II. ANTISYMMETRIC TENSOR PLUS SCALAR FIELD
COUPLED TO GRAVITY

In order to describe a field dynamics which might lead
anisotropy in the early Universe, the appropriate model i
Bianchi type I Universe~as we stated before! if one wants to
preserve the spatial homogeneity. In this case the line
ment can be written as

ds25dt22(
i 51

3

ai
2~ t ! ~dxi !2, ~2.1!

and correspondingly the nonvanishing connection coe
cients are~no summation overi is here meant!

G i j
0 5d i j ȧiai , G 0i

i 5
ȧi

ai
, ; i , j 51,2,3, ~2.2!

and for the Ricci tensor one has

R0
052(

i 51

3
äi

ai
, Ri

j52d i
j S äi

ai
1

ȧi

ai
(
kÞ i

ȧk

ak
D . ~2.3!

We consider a model in which there are both the antisy
metric tensor responsible of noncommutativity of spaceti
and a minimally coupled massive scalar field which driv
the inflation. The corresponding nonlocal action reads

S5E d4xA2gF2
R

16pG
1

1

12
Hmns* Hmns1

1

2
w ;m* w ;m

2
m2

2
w* w2

l

2
~w* w!* ~umn* umn!G , ~2.4!

where the part involvingl is here introduced to mimic a
‘‘time-dependent’’ mass term forumn, and

Hmns[¹muns1¹nusm1¹sumn ~2.5!

is the field strength associated to the antisymmetric ten
umn52unm ~hereafter, Greek indices run from 0 through
whereas Latin indices run from 1 through 3!. It should be
noticed that the kinetic term forumn is inspired by a gener-
alization of the Maxwell theory@34# and that in Eq.~2.5!
only the effects of partial derivatives survive.2 Now, by vir-
tue of the definitions~1.1!–~1.3!, one finds

Hmns* Hmns5HmnsHmns1O~u3!, ~2.6!

w* w5w22
1

8
umnurs~¹m¹rw!~¹n¹sw!1O~u3!, ~2.7!

~w* w!* ~umn* umn!5w2umnumn1O~u3!. ~2.8!

2Our notation agrees with the one used, for example, in Ref.@35#.
2-2
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Thus, to second order inumn, which is relevant sinceumn is
taken to be sufficiently small, only kinetic and potential te
for the scalar field contribute, but with vanishing coefficie
since the former changes by the amount@16# @integration by
parts yields also a third term which however vanishes ifw
5w(t) only#

dSK5
1

32E d4xA2gumnurs~¹r¹tw!~@¹m ,¹n#¹s¹tw!,

~2.9!

and the latter changes by the amount@16#

dSm5
m2

32E d4xA2gumnursR smn
t ~]tw!~]rw!.

~2.10!

Sincew depends only on the time variable, both Eqs.~2.9!
and~2.10! vanish in our Bianchi type I background. Thus,
quadratic order inumn, we end up with the local action func
tional

S5E d4xA2gF2
R

16pG
1

1

12
HmnsHmns

1
1

2
w ;mw ;m2V~w!2

l

2
w2umnumnG , ~2.11!

whereV(w)[(m2/2)w2 hereafter. At this stage, the resultin
energy-momentum tensor is given by

Ta
b5da

bF2
1

12
HmnsHmns2

1

2
w ;mw ;m1V~w!1

l

2
w2umnumnG

1
1

2
HamnHbmn1w ;aw ;b22lw2uanubn. ~2.12!

By using the expressions~2.11!, ~2.12! the resulting equa-
tions of motion are

,mHmns12lw2uns50, ~2.13!

,m,mw1lwumnumn1
dV

dw
50, ~2.14!

Rmn2
1

2
gmnR58pGTmn . ~2.15!

To be consistent with the spacetime homogeneity ansatz
assume that all fields are depending on time only. In this c
the above equations read~hereafterHi[ȧi /ai)

lw2u0i50, ~2.16!

ü i j 1S (
k51

3

HkD u̇ i j 22~Hi1H j !u̇ i j 12lw2u i j 50,

~2.17!
10501
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e
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k51

3

HkD ẇ1lwumnumn1
dV

dw
50, ~2.18!

(
k51

3

~ u̇ iku̇ jk22lw2u iku jk!50, ; iÞ j ~2.19!

(
i

äi

ai
58pGS V~w!2ẇ22

l

2
w2umnumnD , ~2.20!

äi

ai
1

ȧi

ai
(
kÞ i

ȧk

ak
58pGS 1

6
HmnsHmns1V~w!2

l

2
w2umnumn

2
1

2
HinsHins12lw2u inu inD . ~2.21!

Of course, Eqs.~2.16! and ~2.17! result from Eq.~2.13!,
whereas Eq.~2.18! is obtained from Eq.~2.14!. The remain-
ing equations are the Einstein equations where, in particu
Eq. ~2.19! provides a Bianchi type I Universe.

Using Eq.~2.16! one easily getsu0i5u0i50. By virtue of
Eq. ~2.19! one can show that the only possible solution h
only one nonvanishing component ofu i j , e.g. u12. More-
over, since isotropy is broken and the residual invarianc
SO(2), it is rather natural to choosea15a2[a' , a3[aL ,
with corresponding Hubble parametersH'[ȧ' /a' , HL

[ȧL /aL . In this case the equations become

ü121~HL22H'!u̇1212lw2u1250, ~2.22!

ẅ1~HL12H'!ẇ1l
wu12

2

a'
4

1
dV

dw
50, ~2.23!

H'
2 12H'HL58pGS 1

2
ẇ21V~w!1

1

2

u̇12
2

a'
4

1l
w2u12

2

a'
4 D ,

~2.24!

Ḣ'1H'~HL12H'!58pGS V~w!1l
w2u12

2

a'
4 D ,

~2.25!

ḢL1HL~HL12H'!58pGS u̇12
2

a'
4

1V~w!2l
w2u12

2

a'
4 D .

~2.26!

Let us define the mass parameterm[mPl /A8p51/A8pG.
In terms of this quantity we can write a dimensionless s
tem of differential equations. By defining

x[w/m, y[u12/~ma'
2 !, H̃'[H' /m,

H̃L[HL /m, Ṽ~x![V~mx!/m4,

and using the dimensionless timet[tm we get
2-3
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y91~H̃L12H̃'!y812~lx222H̃'
2 1Ṽ~x!1lx2y2!y50,

~2.27!

x91~H̃L12H̃'!x81lxy21
dṼ

dx
50, ~2.28!

H̃'
2 12H̃'H̃L5

x82

2
1Ṽ~x!1

1

2
~y812H̃'y!21lx2y2,

~2.29!

H̃'8 1H̃'~H̃L12H̃'!5Ṽ~x!1lx2y2, ~2.30!

H̃L81H̃L~H̃L12H̃'!5~y812H̃'y!21Ṽ~x!2lx2y2,
~2.31!

where the ‘‘prime’’ denotes the derivative with respect tot.
The truly independent equations are given by Eqs.~2.27!,
~2.28!, ~2.30! jointly with

~H̃L12H̃'!

5
1

2H̃'

S x82

2
1Ṽ~x!1

1

2
~y812H̃'y!21lx2y213H̃'

2 D .

~2.32!

On recalling thee-folding definition in the orthogonal direc
tion, i.e. N'(t)[ log„a'(t)/a'(t i)…, one can easily prove
that

d

dt
5H̃'

d

dN'

, ~2.33!

d2

dt2
5H̃'

2 d2

dN'
2

1H̃'8
d

dN'

. ~2.34!

By using N' as the evolution parameter and definingz

[H̃'
2 we find

z
d2y

dN'
2

1@Ṽ~x!1lx2y2#
dy

dN'

12@lx222z1Ṽ~x!1lx2y2#y

50, ~2.35!

z
d2x

dN'
2

1@Ṽ~x!1lx2y2#
dx

dN'

1lxy21
dṼ

dx
50,

~2.36!

dz

dN'

5Ṽ~x!1lx2y22
1

2
zF S dx

dN'
D 2

1S dy

dN'

12yD 2

16G .
~2.37!

In Figs. 1–4 we show, on choosing different initial cond
tions, that a range ofN' exists in which theu12 component
of theu field dominates on thew field; of course, this results
from a special choice of initial conditions~see following
section for a more thorough discussion of underlying issu!.
Moreover, HL dominates as well, i.e., there is anisotrop
10501
.
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FIG. 1. Thex axis corresponds to thee-folding parameterN'

and on they axis we plotHL andH' with dashed and continuou

line, respectively; we takeṼ(x)5qx2, with initial conditions:H'
2

510,u125100,du12/dN'50,w510,dw/dN'50, and coupling
constantsl51024,q510.
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FIG. 2. Thex axis corresponds to thee-folding parameterN' ,
and on they axis we plotu12 and w with dashed and continuou
line, respectively, with same initial conditions of the previous fi
ure.
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FIG. 3. We plotHL andH' as functions of thee-folding param-

eter N' , with Ṽ(x)5qx2, and initial conditions:H'
2 510,u12

5100,du12/dN'51,w510,dw/dN'50, and coupling constants
l521025,q51.
2-4



re

b
ge
a

id

rm

ne

ial

la
tio

m-

e
s

ions
the

ore

s

e

SPACETIME NONCOMMUTATIVITY AND . . . PHYSICAL REVIEW D 68, 105012 ~2003!
Outside this range,u12 approaches zero andw dominates
driving the isotropization, which can be seen in the figu
whereHL andH' reach the same constant value.

III. COSMOLOGICAL CONSTANT AND MASSLESS
ANTISYMMETRIC TENSOR

While the equations in the previous section can only
solved by means of numerical methods, one can envisa
simpler scenario which embodies the main features but
lows for an analytic approach. For this purpose we cons
a Lagrangian density for the antisymmetric tensorumn and
gravity including a cosmological constant term@with Hmnr

defined in Eq.~2.5!#

L5A2gF2
1

16pG
~R12L!1

1

12
Hmnr* HmnrG

5A2gF2
1

16pG
~R12L!1

1

12
HmnrHmnrG

1O~u3!. ~3.1!

Thus, on working to quadratic order inumn, the resulting
action is invariant under the gauge transformations

umn→umn1]mxn2]nxm , ~3.2!

and theumn dynamics can be also recast in a different fo
by introducing the pseudoscalar Kalb-Ramond fieldx via the
duality transformation]mx5emnrsHnrs, with emnrs the vol-
ume four-form. Actually, since we are assuming homoge
ity and a purely time-dependentu field this implies a time-
independentx field with a linear dependence on spat
coordinates@see Eq.~3.15!#.

Using the results of the previous section in the particu
case we are considering, the resulting equations of mo
are

,mHmns50, ~3.3!

Rmn2
1

2
gmnR58pGTmn~u!1Lgmn , ~3.4!

0 5 10 15 20 25
0

20

40

60

80

100

FIG. 4. The fieldsu12 and w are plotted as functions of th
e-folding parameterN' .
10501
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and the energy-momentum tensor reads

Tm
n ~u!5

1

2
HmlrHnlr2

dm
n

12
HlsrHlsr. ~3.5!

As in the previous section, we assume Bianchi type I geo
etry. The equations of motion~3.3! and ~3.4! now read

ü i j 1S (
k51

3

HkD u̇ i j 22~Hi1H j !u̇ i j 50, ~3.6!

(
k51

3

u̇ iku̇ jk50, ; iÞ j ~3.7!

(
i 51

3
äi

ai
5L, ~3.8!

äi

ai
1

ȧi

ai
(
kÞ i

ȧk

ak
5L24pGS HinsHins2

1

3
HmnsHmnsD .

~3.9!

Unlike the previous section, Eq.~2.16! is now replaced by a
gauge-fixing condition. In the following we will use th
gaugeu0i50. A detailed analysis of the admissibility of thi
gauge fixing is reported in the Appendix.

The effect of Eqs.~3.6! and~3.7! is to restrict severely the
possible choice of initial conditions foru̇ i j . In particular
either all u̇ i j (0) values vanish and thusu i j is a constant
tensor, or at most only one componentu̇ i j (0) is nonvanish-
ing. Since the antisymmetric tensor enters the field equat
only through its first- and second-order time derivatives
case of a constantu tensor reduces to a pureL-term cosmol-
ogy and is thus uninteresting for our analysis. We theref
consider the caseu̇13(0)5 u̇23(0)50, u̇12(0)Þ0, and we
eventually get

ü121~HL22H'!u̇1250, ~3.10!

H'
2 12H'HL5L14pG

u̇12
2

a'
4

, ~3.11!

Ḣ'1H'~HL12H'!5L, ~3.12!

ḢL1HL~HL12H'!5L18pG
u̇12

2

a'
4

. ~3.13!

Equation~3.10! determines the behavior ofu12 in terms of
the scale factors

u̇125 u̇12~0!
a'

2

aL
, ~3.14!

where in Eq.~3.14!, by virtue of the arbitrariness in the
choice ofaL(0) anda'(0), we have assumed, without los
2-5
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of generality,a'(0)5aL(0)51. Notice that this immedi-
ately gives the spacetime dependence of the Kalb-Ram
scalar field

x5 u̇12~0!x31x0 , ~3.15!

where, according to Eq.~2.1!, x3 denotes the longitudina
spatial coordinate. Equation~3.15! is actually consistent with
spatial homogeneity, while it breaks isotropy.

The previous equations can be recast in a simpler
more useful form by introducing the variable

j[
1

3
log~a'

2 aL!, ~3.16!

which represents the averagee-folding. Hence one gets

H'
2 12H'HL5L1

c2

2aL
2

, ~3.17!

~H'8 13H'!~HL12H'!53L, ~3.18!

~HL813HL!~HL12H'!53L13
c2

aL
2

, ~3.19!

where c2[8pG( u̇12(0))2 and 8[d/dj. It is also conve-
nient to set

aL~j!5expH j1
V~j!

2 J , ~3.20!

and hence from Eq.~3.16!

a'~j!5expH j2
V~j!

4 J . ~3.21!

Furthermore, we introduce the mean Hubble parameterH
[(HL12H')/3, and the asymmetry functionh[HL2H' .
SinceaL(0)5a'(0)51, Eqs.~3.20! and ~3.21! yield V(0)
50. Thus one gets

1

2
~H2!813H25L1

c2

3
exp$22j2V~j!%, ~3.22!

h813h5
c2

H
exp$22j2V~j!%,

~3.23!

H22
1

9
h25

L

3
1

c2

6
exp$22j2V~j!%, ~3.24!

where the last equation is the Hamiltonian constraint. Ac
ally the functional dependence ofh in terms ofH andV can
be already obtained by its very definition

h[HS aL8

aL
2

a'8

a'
D 5

3

4
HV8, ~3.25!
10501
nd

d

-

showing thatV8 is directly related to the isotropy breaking
In the following we will consider an expanding Universe
both longitudinal and transverse directions,HL , H'.0. In
this case we note that22<V8,4. We will use this infor-
mation later on. Notice thatV854 would correspond to
H'50, which is forbidden by Eq.~3.17!.

Equation~3.22! is a first-order inhomogeneous equatio
whose solution reads

H2~j!5
L

3
1S H2~0!2

L

3 Dexp~26j!

1
2

3
c2exp~26j!E

0

j

exp~4z2V~z!!dz,

~3.26!

which, together with Eq.~3.25!, gives the Hubble parameter
in terms of the functionV(j). The latter can be determine
as the solution of a second-order differential equation,
tained by inserting Eq.~3.25! into the differential equation
~3.23! and the Hamiltonian constraint~3.24!. The latter op-
eration yields

H25S 12
V82

16 D 21S L

3
1

c2

6
exp„22j2V~j!…D .

If the differential equation~3.22! is also exploited to expres
HH8, we eventually find

V9~j!12V8~j!S 12
V8~j!2

16 D 3L1c2exp„22j2V~j!…

2L1c2exp~22j2V~j!!

28S 12
V8~j!2

16 D c2exp„22j2V~j!…

2L1c2exp„22j2V~j!…
50,

~3.27!

with initial conditionsV(0)50, V8(0)5(4/3)h(0)/H(0).
This equation can be hardly solved analytically in t

general case, but it reduces to much simpler forms in the
regimes, when either the cosmological constant or theumn

fields dominate the energy-momentum tensor. At very ea
times the latter is likely to be largely the dominant comp
nent. We can rewrite the parameterc2 asc25mNC

4 /mPl
2 , with

mNC the scale where the classical picture of spacetime m
fold breaks down. The order of magnitude ofL can be in-
stead constrained by the fact that it drives inflation in the l
stages, and represents in the slow-roll approximation the
tential of the inflaton field. This is severely bounded by t
fact that it should account for the correct amplitude of p
mordial perturbations. For example, for a polynomial pote
tial V(f)5lfn/n, the requirement of slow-roll dynamic
and perturbation amplitudes of the order of 1025 gives L
<10212mPl

2 @38#. As long asmNC;mPl the value ofL is
several orders of magnitude smaller thanc2, so in this case
the early dynamics is fully determined byumn . Smaller val-
ues ofmNC , such thatc2;L, cannot be ruled out of course
but in this case Eq.~3.27! can only be solved numerically.
2-6
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Hereafter we specialize to the casemNC;mPl . At early
times therefore Eq.~3.27! takes the simplified form

V9~j!12„V8~j!24…S 12
V8~j!2

16 D50. ~3.28!

Since theumn contribution is diluted with expansion asaL
2 ,

this equation holds approximatively for values ofj smaller
than the valuej* such thatL;c2/aL

2(j* ), i.e.

j* 1
V~j* !

2
; log

c2

L
. ~3.29!

Later expansion is instead driven byL and hence, by ne
glecting theumn contribution, we have

V9~j!13V8~j!S 12
V8~j!2

16 D50. ~3.30!

This equation of course should give back the isotropizat
phase leading to a de Sitter phase.

We begin by studying the early time evolution. Befo
doing this it is worth discussing the values of initial cond
tions for Hubble parameters. From Eqs.~3.12! and~3.13! we
see thatumn acts as source foraL only, the evolution ofa'

being expected to be much slower. In other words,the anti-
symmetric tensor drives the expansion of the longitudi
scale factor only. The most natural choice atj50 is there-
fore HL(0)@H'(0), that is to sayV8(0)54212e, with e
5H'(0)/HL(0)!1. In this case the solution of Eq.~3.28! is
particularly simple. On definingl(j)[V(j)24j, the latter
reduces to

l9~j!5l82~j!S 11
l8~j!

8 D . ~3.31!

Upon considering logl8(j)[y(j), this equation is solved ex
actly by separation of variables and subsequent integra
and yields (C being an integration constant!

j1C52exp~2y!2
y

8
1

1

8
logS 11

1

8
exp~y! D .

~3.32!

On choosing the initial conditions

l~0!50, l8~0!5212e, ~3.33!

the approximate solution at smalle reads, with a very good
accuracy,

l~j!52
1

12
3

2
e

logX1112eS 12
3

2
e D j C. ~3.34!

For example, we have checked numerically that this solu
is accurate at the per thousand level up toj5102, if e
,1022. These ranges fully cover the early stage. In fact E
10501
n

l

n,

n

.

~3.28! no longer holds atj* , see Eq.~3.29!, which, in view
of the logarithmic behavior ofl(j), for e,1022 is approxi-
matively fixed by

j* ;
1

3
log

c2

L
. ~3.35!

If c2/L<1012 we getj* <15. On using Eq.~3.34! it is now
possible to determine the evolution of the Hubble parame
as functions ofj. From Eqs.~3.26! and ~3.25! we get

H2~j!;exp~26j!FH2~0!1
2

3
c2S 12

3

4
e D jG ,

~3.36!

h~j!;3 exp~23j!H~0!@123e#. ~3.37!

Late-time evolution is ruled by Eq.~3.30!. SinceV8(j)
,4 it therefore follows that asymptoticallyV reaches a posi-
tive constant valueV` , so thath vanishes in the large-j
limit as expected. In particular, for largej Eq. ~3.30! can be
linearized, i.e.

V9~j!;23V8~j!, ~3.38!

and hence it is immediate to get the approximate solutio

H2~j!;
L

3
1S H2~j* !2

L

3 Dexp„26~j2j* !…,

~3.39!

h~j!;h~j* !exp„23~j2j* !…. ~3.40!

Note that the action functional studied in the present s
tion or in Sec. II coincides with the low-energy limit of strin
theory with a constant dilaton,to lowest order in the expan
sion of the nonlocal action functional with* product of
fields. Readers interested in string cosmology can be
ferred, for example, to the work in Refs.@39,40#. In particu-
lar, the work in Ref.@41# has studied string cosmology wit
a time-dependent antisymmetric tensor in a Bianchi typ
Universe, but as is stressed in Sec. IV of Ref.@41#, since a
pure radiation plus dilaton solution hasf→ const, a late-
time isotropic radiation-dominated solution is a contracti
Universe. By contrast, in our model, when the Univer
reaches an isotropic stage it is still expanding.

IV. CONCLUDING REMARKS

Motivated by cosmology and noncommutative geome
we have investigated the effects of an antisymmetric ten
in a Bianchi type I early Universe. What we do only holds
an intermediate stage where departure from ordinary sp
time geometry can be appreciated, while lack of associati
of the resulting* product in curved spacetime is negligib
@16#. Moreover, such a stage implies a departure from
models with constantumn which are relevant for string
theory@21#. With this understanding, our original results a
as follows.

~i! In the first model, where the antisymmetric tensoru
2-7
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resulting from noncommutative geometry and a minima
coupled scalar field driving inflation both occur, we ha
found by numerical methods that a suitable range of
e-folding exists such thatu prevails on the scalar field an
the longitudinal Hubble parameter prevails onH' . This is
the anisotropic era, but for larger values of thee-folding the
antisymmetric tensor is damped and the scalar field do
nates, leading in turn to isotropization. The very existence
the anisotropic era depends of course on the initial conditi
chosen, but it appears interesting to have shown explic
how the corresponding model can be built.

~ii ! In the second model, again in a Bianchi type I Un
verse, gravity with a cosmological constantL is coupled to
an antisymmetric tensor. The resulting nonlinear system
equations for the Hubble parametersH andh has been solved
by first obtaining the differential equation~3.27! for the un-
known functionV, and then finding approximate solution
when the effects ofumn prevail uponL, or the other way
around. An accurate analytic description of the process le
ing to an isotropic final state of the Universe has been th
fore obtained.

An outstanding problem in sight is now the developme
of cosmological perturbations’ theory@38# within such a
framework, with the hope of obtaining quantitative inform
tion on the effect ofu on the formation of structure in th
early Universe.
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APPENDIX

In this appendix we consider the admissibility of th
gauge conditionu0i50 from the point of view of constrain
analysis, and we begin with the simplest model, with act
functional ~as in Secs. II and III, the starting point is a no
local action functional, which reduces to a local action
retaining only quadratic terms inumn)

S5E LA2gd4x, ~A1!

with Lagrangian densityL[ 1
12 HmnrHmnr in a Bianchi type I

background, and field strength given by cyclic permutatio
of ¹u terms, according to Eq.~2.5!. Only the effects of par-
tial derivatives survive inHmnr , and hence we find, by virtue
of Eq. ~2.1!,

L5
1

12
HmnrHmnr5

1

4
gi j gklu ik,0u j l ,0 , ~A2!

since the assumption of spatial homogeneity implies thatumn

can only depend ont. The termgi j u0i ,0u0 j ,0 is weighted with
coefficient 32350 and hence does not occur in Eq.~A2!.
The LagrangianL is obtained fromL by means of~recall that
10501
e

i-
f
s

ly

of

d-
e-

t

-
-

2

n

s

the lapse functionN is equal to 1 in a Bianchi type I back
ground, and thath denotes the determinant of the induc
three-metric!

L5E LAhd3x, ~A3!

and hence we find

p i j [
dL

du i j ,0
5

1

2
Ahgir gjsu rs,0 , ~A4!

p0i[
dL

du0i ,0
'0. ~A5!

Equation~A5! deserves some comments: since the Lagra
ian is independent ofu0i ,0 , the momentum conjugate tou0i
vanishes. More precisely, thep0i can be seen as 3 primar
constraints arising from the structure of the Lagrangian;
such, their vanishing is only a weak equation ('0), because
p0i are well defined over the whole phase space of
theory, and only vanish on the constraint submanifold@42#.

Our Lagrangian~A3! reads

L5E 1

2
p i j u i j ,0d

3x, ~A6!

with corresponding canonical Hamiltonian

Hc[E p i j u i j ,0d
3x2L5E 1

2
p i j u i j ,0d

3x. ~A7!

By virtue of the primary constraints~A5!, however, the Hes-
sian matrix is singular, and the time evolution is only we
defined when the effective HamiltonianĤ is considered. The
latter is given byHc plus a linear combination of primary
constraints, i.e.@42#

Ĥ5E S 1

2
p i j u i j ,01m ip0i Dd3x. ~A8!

Moreover, we are still free to impose supplementary~more
frequently called ‘‘gauge’’! conditions, here chosen in th
form

u0i'0. ~A9!

By doing so, we choose to regard the gauge conditions
constraint equations, in much the same way as the Coulo
gauge can be treated as a constraint equation in Max
theory @43#. We are therefore working with an extende
Hamiltonian

He[E S 1

2
p i j u i j ,01m ip0i1l iu0i Dd3x, ~A10!

where the Lagrange multipliersm i ,l i can be evaluated by
requiring preservation in time of the primary constraintsp0i
and gauge constraintsu0i . For this purpose, note first tha
Eq. ~A4! yields
2-8
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u i j ,05
2

Ah
p i j , ~A11!

and hence~with r[2/Ah)

He5E S r

2
p i j p i j 1m ip0i1l iu0i Dd3x. ~A12!

All our constraints are then trivially preserved, without gi
ing rise to further constraints, because

d

dt
p0i[$p0i~xW ,t !,He%'E l j~yW ,t !$p0i~xW ,t !,u0 j~yW ,t !%d3y

52l i~xW ,t !, ~A13!

d

dt
u0i[$u0i~xW ,t !,He%'E m l~yW ,t !$u0i~xW ,t !,p0l~yW ,t !%d3y

5m i~xW ,t !. ~A14!
e
n-

d
d

rg

nd

nd
-

d

ys

. D

gy

.V

10501
Note that, by virtue of our gauge constraints~A9!, the set of
constraints has been turned into the second class, a fe
shared by all field theories after a gauge condition has b
imposed@43,44#.

For the model studied in Sec. III, the full Hamiltonia
constraint~3.11!, when expressed in integral form, is the su
of Eq. ~A12! and of the gravitational contribution. The latte
is obtained from spatial integration of

~16pG!Gi jkl p̃
i j p̃kl1

Ah(3)R

16pG
1L

Ah

8pG
,

where Gi jkl [@1/(2Ah)#(hikhjl 1hil hjk2hi j hkl) is the De-
Witt supermetric on the space of Riemannian geometries
S @45#, p̃ i j is the momentum conjugate to the induced thre
metric and (3)R is the three-dimensional scalar curvatu
~our sign for such a curvature is opposite to the one of R
@45#!.
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