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Supersymmetric solutions of minimal gauged supergravity in five dimensions

Jerome P. Gauntlett* and Jan B. Gutowski†
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~Received 20 May 2003; published 21 November 2003!

All purely bosonic supersymmetric solutions of minimal gauged supergravity in five dimensions are classi-
fied. The solutions fall into two classes depending on whether the Killing vector constructed from the Killing
spinor is timelike or null. When it is timelike, the solutions are determined by a four-dimensional Ka¨hler base
manifold, up to an antiholomorphic function, are necessarily not static, and generically preserve 1/2 of the
supersymmetry. When it is null we provide a precise prescription for constructing the solutions and we show
that they generically preserve 1/4 of the supersymmetry. We show that five-dimensional anti-de Sitter space
(AdS5) is the unique maximally supersymmetric configuration. The formalism is used to construct some new
solutions, including a nonsingular deformation of AdS5, which can be uplifted to obtain new solutions of type
IIB supergravity.
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I. INTRODUCTION

There has been recent progress in classifying supers
metric bosonic solutions in supergravity theories@1,2# ~for
older work using techniques specific to four dimensions,
@3#!. Such a classification is desirable as it may allow one
find new kinds of solutions that have been hitherto missed
the usual procedure of starting with an inspired ansatz
turn this could elucidate interesting new phenomena in st
or M theory. In addition such a classification allows one
precisely characterize supersymmetric geometries of inte
which is important when explicit solutions are not availab

The basic strategy is to assume the existence of a Kil
spinor, that is, assume a solution preserves at least one
persymmetry, and then consider the differential forms t
can be constructed as bilinears from the spinor. These sa
a number of algebraic and differential conditions which c
be used to determine the form of the metric and ot
bosonic fields. Geometrically, the Killing spinor, or equiv
lently the differential forms, defines a preferredG structure
and the differential conditions restrict its intrinsic torsion.1

The analysis of the most general bosonic supersymme
solutions ofD511 supergravity was initiated in@2#. It was
shown that the solutions always have a Killing vector co
structed as a bilinear from the Killing spinor and that it
either timelike or null. A detailed analysis was undertak
for the timelike case and it was shown that anSU(5) struc-
ture plays a central role in determining the local form of t
most general bosonic supersymmetric configuration. A si
lar analysis for the null case, which has yet to be carried
would then complete this classification of the most gene
supersymmetric geometries ofD511 supergravity. A finer
classification would be to carry out a similar analysis assu
ing that there is more than one Killing spinor and some
dications of how this might be tackled were discussed in@2#.

*Email address: j.p.gauntlett@qmul.ac.uk
†Email address: j.b.gutowski@qmul.ac.uk
1The utility of G structures in analyzing supersymmetric solutio

of supergravity was discussed earlier in@4,5#.
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Of course, a fully complete classification ofD511 super-
symmetric geometries would require classifying the expl
form of the solutions within the various classes, but th
seems well beyond reach at present.

While more progress onD511 or 10 supergravity is pos
sible, it seems a daunting challenge to carry through the p
gram of @2# in full. Thus, it is of interest to analyze simple
supergravity theories. In the cases where the theory arise
dimensional reduction from a higher dimensional supergr
ity theory, the analysis can be viewed as classifying a
stricted class of solutions of the higher dimensional theo
In @1# minimal supergravity inD55 was analyzed, which
arises, for example, as a truncation of the dimensional red
tion of D511 supergravity on a six torus. As inD511 su-
pergravity, the general supersymmetric solutions of theD
55 theory have either a timelike or a null Killing vector th
is constructed from the Killing spinor. In the timelike cas
there is anSU(2) structure. More precisely, it was show
that working in a neighborhood in which the Killing vector
timelike, theD55 geometry is completely determined by
hyper-Kähler base manifold, orthogonal to the orbits of th
Killing vector, along with a function and a connection on
form defined on the base that satisfy a pair of simple diff
ential equations. A similar analysis for the null case revea
that the most general solution was a plane fronted wave
termined by three harmonic functions. Although the null ca
has anR3 structure, this did not play an important role in th
analysis. In addition, it was shown that the generic solutio
for both the timelike and null case preserve 1/2 supersy
metry, but they can also be maximally supersymmetric
further analysis determined the explicit form of the mo
general maximally supersymmetric solutions.

Here we shall analyze minimal gauged supergravity
D55. This theory arises as a consistent truncation of
dimensional reduction of type IIB supergravity on a fiv
sphere@6,7#. The gauged theory has the same field conten
the ungauged theory, and given their similarity it is not s
prising that some of the analysis parallels that of@1#. How-
ever, it is interesting that there are some important diff
ences. Once again there are two classes of supersymm
solutions, the timelike class and the null class. In the timel
©2003 The American Physical Society09-1
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case, we show that the base manifold of theD55 geometry
orthogonal to the orbits of the Killing vector is now a Ka¨hler
manifold with aU(2) structure, and the solutions generica
preserve 1/2 of the supersymmetry. However, in contras
the ungauged case, the whole of the geometry is determ
by the base space up to an antiholomorphic function on
base. This formalism thus provides a very powerful meth
for the generation of new solutions. It is also interesting
highlight that we show that all of the solutions in the timeli
case are necessarily not static. There are certainly static
persymmetric solutions in the timelike case, but the sta
Killing vector of such solutions never arises as a Killin
spinor bilinear. Thus our analysis casts familiar static sup
symmetric solutions in a novel way, which is suggestive t
our formalism may lead to new kinds of solutions.

When the Killing vector is null, we show that the five
dimensional solution is again fixed up to three functions,
in the ungauged case. However, unlike the ungauged c
these functions are no longer harmonic, but rather sat
more complicated elliptic differential equations onR3.
Moreover, these solutions generically preserve only 1/4
the supersymmetry rather than 1/2.

By examining the integrability conditions for the Killing
spinor equation it is simple to show that five-dimension
anti–de Sitter space (AdS5) is the unique solution preservin
all supersymmetry. This is in contrast to the ungauged c
where there is a rich class of maximally supersymmetric
lutions.

By using this formalism, we construct some new solutio
of five dimensional gauged supergravity. As in the ungau
case, we find that many of the new solutions have clo
timelike curves. More specifically, we find a family of solu
tions corresponding to deformations of AdS5, in which the
deformation depends on a holomorphic function on a Ka¨hler
manifold equipped with the Bergmann metric. In the spec
case that the holomorphic function is constant, we find
regular deformation of AdS5 with, for a range of parameters
no closed timelike curves. We also find a 1-parameter fam
of solutions for which the geometry corresponds to a cer
double analytic continuation of the coset spaceTpq. All of
these solutions can be lifted on a five sphere to obtain s
tions of type IIB theory using the formulas in@6,7#.

The plan of this paper is as follows. In Sec. II we exam
the structure of the minimal five dimensional gauged sup
gravity, and describe the algebraic and differential co
straints which bilinears constructed out of the Killing spin
must satisfy. In Sec. III, we present a classification of
solutions when the Killing vector constructed from the Ki
ing spinor is timelike. We show how the solutions are co
pletely fixed up to an arbitrary Ka¨hler 4-manifold together
with an antiholomorphic function, and we present some n
solutions. In Sec. IV, we examine solutions for which t
Killing vector is null; again, we find a simple prescription fo
constructing solutions in this case. In Sec. V we investig
maximally supersymmetric solutions. In Sec. VI we pres
our conclusions.

II. DÄ5 GAUGED SUPERGRAVITY

The bosonic action for minimal gauged supergravity
five dimensions is@8#
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1

4pGE S 2
1

4
~5R2x2!* 12

1

2
F`* F

2
2

3A3
F`F`AD , ~1!

where F5dA is a U(1) field strength andxÞ0 is a real
constant. We will adopt the same conventions as@1#, includ-
ing a mostly minus signature for the metric. The boso
equations of motion are

5Rab12FagFb
g2 1

3 gab~F21x2!50

d* F1
2

A3
F`F50 ~2!

whereF2[FabFab. A bosonic solution to the equations o
motion is supersymmetric if it admits a supercovarian
constant spinor obeying

FDa1
1

4A3
~ga

bg24da
bgg!FbgGea

2xeabS 1

4A3
ga2

1

2
AaD eb50 ~3!

where ea is a symplectic commuting Majorana spinor. W
shall call such spinors Killing spinors. Our strategy for d
termining the most general bosonic supersymme
solutions2 is to analyze the differential forms that can b
constructed from Killing spinors. We first investigate alg
braic properties of these forms, and then their differen
properties.

From a single commuting spinorea we can construct a
scalarf, a 1-formV and three 2-formsFab[F (ab):

f eab5 ēaeb

Vaeab5 ēagaeb

Fab
ab 5 ēagabeb, ~4!

f andV are real, butF11 andF22 are complex conjugate an
F12 is imaginary. It is convenient to work with three re
two-forms defined by

F (11)5X(1)1 iX (2)

F (22)5X(1)2 iX (2)

2Note that there are spacetimes admitting a Killing spinor that
not satisfy the equations of motion. These can be viewed as s
tions of the field equations with additional sources, and supers
metry imposes conditions on these sources. It is straightforwar
determine the conditions, but for simplicity of presentation, we w
restrict ourselves to solutions of the field equations without sour
9-2
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F (12)52 iX (3). ~5!

It will be useful to record some of the identities which can
obtained from various Fierz identities.

We first note that

VaVa5 f 2 ~6!

which implies thatV is timelike, null or zero. The final pos
sibility can be eliminated using the arguments in@9#. Now f
either vanishes everywhere or it is nonvanishing at a poinp.
In the former ‘‘null case,’’ the Killing vectorV is a globally
defined null Killing vector. In the latter ‘‘timelike case’’ ther
is a neighborhood ofp in which f is nonvanishing and for
which V is timelike. We will work in such a neighborhoo
for this case, and then find the full solution by analytic co
tinuation. In later sections we will analyze the timelike a
null cases separately.

We also have

X( i )`X( j )522d i j f * V, ~7!

i VX( i )50, ~8!

i V* X( i )52 f X( i ), ~9!

Xga
( i ) Xb

( j )g5d i j ~ f 2hab2VaVb!1e i jk f Xab
(k) ~10!

where e123511 and, for a vectorY and p-form A,
( i YA)a1 , . . . ,ap21

[YbAba1 , . . . ,ap21
. Finally, it is useful to

record

Vagaea5 f ea, ~11!

and

Fab
ab gabec58 f ec(aeb). ~12!

We now turn to the differential conditions that can be o
tained by assuming thate is a Killing spinor. We differentiate
f, V, F in turn and use Eq.~3!. Starting withf we find

d f52
2

A3
i VF. ~13!

Taking the exterior derivative and using the Bianchi ident
for F then gives

LVF50, ~14!

whereL denotes the Lie derivative. Next, differentiatingV
gives

DaVb5
2

A3
Fab f 1

1

2A3
eabgdeF

gdVe1
x

2A3
~X(1)!ab ,

~15!

which impliesD (aVb)50 and henceV is a Killing vector.
Combining this with Eq.~14! implies thatV is the generator
of a symmetry of the full solution (g,F). Note that Eq.~15!
implies
10500
-

-

dV5
4

A3
f F1

2

A3
* ~F`V!1

x

A3
X(1). ~16!

Finally, differentiatingX( i ) gives

DaXbg
( i ) 52

1

A3
@2Fa

d~* X( i )!dbg22F [b
d~* X( i )!g]ad

1ha[bFde~* X( i )!g]de#1xe1i j FAaXbg
( j )

1
1

2A3
~* X( j )!abgG2

x

A3
d1iha[bVg] . ~17!

Note that Eq.~17! implies that

dX( i )5xe1i j S A`X( j )1A3

2 * X( j )D ~18!

so dX(1)50 but X(2) and X(3) are not closed. In particular
this implies that

L VX( i )5xe1i j S i VA2A3

2
f DX( j ). ~19!

It is useful to consider the effect of gauge transformatio
A→A1dL. In particular, the Killing spinor equation is lef
invariant under the transformation

e1→cosS xL

2 D e12sinS xL

2 D e2

e2→cosS xL

2 D e21sinS xL

2 D e1. ~20!

Under these transformations,f→ f , V→V andX1→X1, but
X21 iX3→e2 ixL(X21 iX3). We shall choose to work in a
gauge in which

i VA5A3

2
f ~21!

and soLVA50 and alsoL VX( i )50.
To make further progress we will examine separately

case in which the Killing vector is timelike and the case
which it is null in the two following sections.

III. THE TIMELIKE CASE

A. The general solution

In this section we shall consider solutions in a neighb
hood in whichf is nonzero and henceV is a timelike Killing
vector field. Eq.~10! implies that the 2-formsX( i ) are all
nonvanishing. Introduce coordinates such thatV5]/]t. The
metric can then be written locally as

ds25 f 2~dt1v!22 f 21hmndxmdxn ~22!
9-3



c

s
e

tr

nal

the

c-
al
the

J. P. GAUNTLETT AND J. B. GUTOWSKI PHYSICAL REVIEW D68, 105009 ~2003!
where f, v and h depend only onxm and not ont, and we
have assumed, essentially with no loss of generality,f .0.
The metricf 21hmn is obtained by projecting the full metri
perpendicular to the orbits ofV. The Riemannian 4-manifold
with coordinatesxm and metrich will be referred to as the
base spaceB.

Define

e05 f ~dt1v! ~23!

and if h defines a positive orientation onB then we define
e0`h to define a positive orientation for theD55 metric.
The two formdv only has components tangent to the ba
space and can therefore be split into self-dual and anti-s
dual parts with respect to the metrichmn :

f dv5G11G2 ~24!

where the factor off is included for convenience.
Equation~8! implies that the 2-formsX( i ) can be regarded

as 2-forms on the base space and Eq.~9! implies that they
are anti-self-dual:

* 4X( i )52X( i ), ~25!

where* 4 denotes the Hodge dual associated with the me
hmn . Equation~10! can be written

X( i )
m

pX( j )
p

n52d i j dm
n1e i jkX(k)

m
n ~26!

where indicesm,n, . . . have been raised withhmn, the in-
verse ofhmn . This equation shows that theX( i )’s satisfy the
algebra of imaginary unit quaternions.

To proceed, we use Eqs.~13! and ~16! to solve for the
gauge field strengthF. This gives

F5A3

2
de02

1

A3
G12

x

2 f
X(1). ~27!

It is convenient to write

H5A3

2
de02

1

A3
G1 ~28!

so thatF5H2(x/2f )X(1). Substituting this into Eq.~17! we
find that

DaXbg
( i ) 52

1

A3
@2Ha

d~* X( i )!dbg22H [b
d~* X( i )!g]ad

1ha[bHde~* X( i )!g]de#

1xe1i j S Aa2A 3

2 f
VaDXbg

( j ) . ~29!

We also find that
10500
e
lf-

ic

¹mXnp
(1)50

¹mXnp
(2)5PmXnp

(3)

¹mXnp
(3)52PmXnp

(2) ~30!

where¹ is the Levi-Civita connection onB with respect toh
and we have introduced

Pm5xS Am2A3

2
f vmD . ~31!

Recall thatX(1) is gauge invariant. From Eqs.~26! and ~30!
we conclude that the base space is Ka¨hler, with Kähler form
X(1). Thus the base space has aU(2) structure.

One might be tempted to conclude that the additio
presence ofX(2) andX(3) satisfying Eq.~26! implies that the
manifold actually has anSU(2) structure. However, this is
not the case sinceX(2) andX(3) are not gauge invariant. To
obtain some further insight, note that we can invert Eq.~30!
to solve forP:

Pm5 1
8 ~X(3)np¹mXnp

(2)2X(2)np¹mXnp
(3)! ~32!

from which we deduce that

dP5R ~33!

whereR is the Ricci form of the base spaceB defined by

Rmn5
1
2 X(1)pqRpqmn ~34!

and Rpqmn denotes the Riemann curvature tensor ofB
equipped with metrich. Now on any Ka¨hler four-manifold,
with anti-self-dual Ka¨hler two-formX(1) and Ricci formR,
there is always a section of the canonical bundle,X(2)

1 iX (3), with anti-self-dual two-formsX(2),X(3), satisfying
Eq. ~26!, and (¹1 iP)(X(2)1 iX (3))50. But this is equiva-
lent to the last two equations in Eq.~30!. ~Note that shifting
P by a gradient of a function on the Ka¨hler manifold shifts
X(2)1 iX (3) by a phase which precisely corresponds to
time-independent gauge transformations ofX(2)1 iX (3).!

Thus the content of Eqs.~26!, ~30! and~31! is simply that
the baseB is Kähler and that the base determinesAm

2(A3/2)f vm ~up to a gradient of a time independent fun
tion!. In fact, as we now show, all of the five-dimension
geometry is determined in terms of the geometry of
Kähler base spaceB, up to an antiholomorphic function on
the base. To see this we first substitute Eq.~31! into Eq.~33!
to get

2
1

A3
G1

mn2
x

2 f
Xmn

(1)5
1

x
Rmn . ~35!

Upon contracting Eq. ~35! with X(1)mn, and using
RmnX

(1)mn5R, we obtain

f 52
2x2

R
~36!
9-4
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whereR is the Ricci scalar curvature ofB. In particular, we
seeB cannot be hyper-Ka¨hler, as we must haveRÞ0. Sub-
stituting back into Eq.~35! we find that

G1
mn52A3

xS Rmn2
1

4
RXmn

(1)D . ~37!

Now the Bianchi identitydF50 is satisfied since

dG15
A3x

2 f 2
d f`X(1) ~38!

which is implied by Eq.~35!. The gauge field equation im
plies that

¹m¹mf 215
2

9
~G1!mn~G1!mn1

x

2A3 f
~G2!mn~X1!mn

2
2x2

3 f 2 . ~39!

If we write

G25l iX( i ), ~40!

for some functionsl i , we see that Eq.~39! fixesl1 in terms
of the base space geometry via

l15A 3

xRS 1

2
¹m¹mR1

2

3
RmnR

mn2
1

3
R2D . ~41!

Next we note that Eq.~24! implies that R(G11G2) is
closed. Hence, on taking the exterior derivative and us
Eq. ~30! we find that

T1@d~Rl2!2Rl3P#`X(2)1@d~Rl3!1Rl2P#`X(3)50,
~42!

where

T[A3

xS 2dR`R1dF1

2
¹m¹mR1

2

3
RmnR

mn

2
1

12
R2G`X(1)D ~43!

is determined by the geometry of the base. In particular,l2

5l350 is only possible ifT50. On defining

Qm5~X2!m
n~* 4T!n ~44!

and adopting complex coordinateszj ,zj̄ on B with respect to
X1, Eq. ~42! simplifies to

Q j52~] j2 iP j !@R~l22 il3!# ~45!

which fixesl22 il3 up to an arbitrary antiholomorphic func
tion. In summary, we have determinedf andG6 in terms of
the Kähler base up to an antiholomorphic function; then,
to a time independent gradient,v is determined by Eq.~24!,
and thenAm by Pm . This state of affairs should be con
10500
g

trasted with the ungauged case@1#, wheref andv satisfied a
pair of differential equations on a hyper-Ka¨hler base.

We remark that there are no solutions for whichV is hy-
persurface orthogonal; in other words there are no soluti
with dv50. To see this note that ifdv50 thenG15G2

50, and from Eq.~38! we find thatd f50. On substituting
this into Eq.~39! and usingG15G250 we obtain a con-
tradiction. This would seem problematic, as it is known th
many of the known solutions such as AdS5 and certain types
of nakedly singular black hole solutions can be written
coordinates in which the solution is static with respect
some timelike killing vector. This apparent contradiction
resolved by noting that this timelike killing vector is not th
killing vector constructed from the Killing spinor. Hence,
is clear that the coordinates which arise naturally from
construction described here are not in fact the coordinate
which the known solutions can be written in a static for
This is, however, a minor inconvenience in recovering
known solutions, since as we shall see, the two coordin
systems are typically related by rather simple coordin
transformations. Moreover, it is clear that the formalism d
scribed above is particularly useful in generating new so
tions.

We have obtained all of the constraints on the boso
quantitiesf, V, andX( i ) imposed by the Killing spinor equa
tions and the equations of motion. It remains to che
whether, conversely, the geometry we have found alw
admits Killing spinors. Now the Killing spinor equation ca
be rewritten in terms ofH as

FDa1
1

4A3
~ga

bl2da
bgl!Hbl1

A3x

4 f
~X1!alglGea

2
x

2
eabSA3

2
ga2AaD eb50 ~46!

where we have used Eq.~12!. We recall also from Eq.~11!
that we need to imposeg0ea5ea. Then, using Eq.~21!, the
t component of Eq.~46! requires that]ea/]t50, so thatea

depends only on thexm. Next we consider them component
of Eq. ~46!; it is convenient to rescale

ea5 f 1/2ha. ~47!

Using the fact that Eq.~12! implies

ha52 1
4 eabXpq

(1)ĝpqhb ~48!

we obtain

¹mha1 1
2 Pmeabhb50 ~49!

whereĝ are rescaled gamma matrices satisfying the alge

ĝmĝn1ĝnĝm522hmn ~50!

and all spatial coordinate indices are raised with respec
hmn, the inverse ofhmn . Since Eq. ~49! always has a
9-5
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solution3 on a Kähler manifold~see, e.g., Ref.@10#!, we have
shown that the geometry does indeed admit Killing spino

B. Some examples

Using the techniques described in the previous sectio
is possible to construct gauged supergravity solutions w
timelike V. In the following, we shall denote an orthonorm
basis of the Ka¨hler base spaceB by $e1,e2,e3,e4% and take
e1`e2`e3`e4 to define a positive orientation with

X15e1`e22e3`e4

X25e1`e31e2`e4

X35e1`e42e2`e3. ~51!

1. Bergmann base space and deformations of AdS5

The simplest class of examples are those for which
base spaceB is Einstein. From Eq.~37! we see that this is
equivalent toG150. Moreover, if G150 then from Eq.
~38! we obtaind f50, and without loss of generality we se
f 51, and soR522x2 and R52(x2/2)X1. Hence, from
Eq. ~41! we find l15x/A3 and we note thatQ50. Hence,
locally Eq. ~45! can be written as

] j~l22 il3!1
x2

4
] jK~l22 il3!50 ~52!

whereK is the Kähler potential ofB, so

l22 il35e2x2K/4F~ z̄! ~53!

where F( z̄) is an antiholomorphic function. Note that th
field strength takes the simple form

F5
A3

2
~l2X21l3X3!. ~54!

A simple Einstein base is obtained by taking the ba
metric to be given by the Bergmann metric

ds25dr21
3

x2 sinh2S xr

2A3
D @~s1

L!21~s2
L!2#

1
3

x2 sinh2S xr

2A3
D cosh2S xr

2A3
D ~s3

L!2 ~55!

wheresL
i are right invariant one-forms on the three sphe

and we use the same Euler angles and notation as in@1#. The
x ( i ) are given by Eq.~51! if we choose the orthonormal bas

3The term quadratic in gamma matrices in¹mha is of opposite
sign to the usual convention for the supercovariant derivat
though this is consistent with the sign appearing in Eq.~50!. Note
also that one can use the spinorial construction ofX(2),X(3) to show
that a Kähler manifold always satisfies Eq.~30!, as claimed earlier.
10500
.

it
h

e

e

e

e15dr

e25A3

x
sinhS xr

2A3
D coshS xr

2A3
D s3

L

e35A3

x
sinhS xr

2A3
D s1

L

e45A3

x
sinhS xr

2A3
D s2

L. ~56!

More explicitly we have

X15
3

x2 dFsinh2S xr

2A3
D s3

LG
X25

3

x2 cosh3S xr

2A3
D dF tanh2S xr

2A3
D s1

LG
X35

3

x2 cosh3S xr

2A3
D dF tanh2S xr

2A3
D s2

LG ,

~57!

andP52 3
2 sinh2(xr/2A3)s3

L .
For solutions withF50 ~and sol25l350 andF50)

we find v5(A3/x)sinh2(xr/2A3)s3
L . The five dimensional

geometry can be written, after shifting the Euler anglef
→f1(x/A3)t, as

ds25cosh2S xr

2A3
D dt22dr22

12

x2 sinh2S xr

2A3
D dV3

2

~58!

which is the simply the metric of AdS5 with radius 2A3/x.
In order to construct new solutions withFÞ0 we exploit

the fact that the Ka¨hler potential is well known in complex
coordinates~see, e.g., Ref.@11#!. In particular if we introduce
the complex coordinates

z15tanhS xr

2A3
D cosS u

2De( i /2)(f1c)

z25tanhS xr

2A3
D sinS u

2De( i /2)(f2c) ~59!

the Kähler potential is

K52
6

x2log~12uz1u22uz2u2!. ~60!

Thus in the real coordinates,K5(12/x2)log cosh(xr/2A3)
and hencel22 il35cosh23(xr/2A3)F( z̄). If we write F
[F12 iF2 then we find

,

9-6



S
th

a

l

as

he

to
s
es
-

ains

er-
se

ing

ke

ed

if
e

,

SUPERSYMMETRIC SOLUTIONS OF MINIMAL GAUGED . . . PHYSICAL REVIEW D68, 105009 ~2003!
dv5dFA3

x
sinh2S xr

2A3
D s3

LG1F1dF 3

x2 tanh2S xr

2A3
D s1

LG
1F2dF 3

x2 tanh2S xr

2A3
D s2

LG . ~61!

It would be interesting to explore these deformation of Ad5
in more detail. Let us just note here that if we consider
special case whenFi are constant, it is trivial to find the
explicit form of v. Interestingly, this case seems to be
completely regular deformation of AdS5. Moreover, by con-
sidering the norm of the left vector fieldsj1

L andj2
L , we find

that there are closed timelike curves, for sufficiently smalr,
whenF i

2. 4
3 x2 and they appear to be absent otherwise.

2. Base space is a product of two manifolds

Let us now consider some examples in which the b
manifold is a productB5M23N2 where M2 ,N2 are two
2-manifolds. When the base space is itself not Einstein, t
these solutions haveG1Þ0. In the first case, we takeB
5H23H2 equipped with the metric

ds25~dr21sinh2rdu2!1b2~dr21sinh2rdf2! ~62!

for b constant. Note that setting the radius of the first fac
to 1, as we have done, does not in fact result in any los
generality in the resulting five dimensional geometri
Clearly this base is Einstein iffb251. We take the orthonor
mal basis to be

e15dr, e25sinhrdu

e35bdr, e45b sinhrdf. ~63!

It is straightforward to show that for this solution

P52coth re21b21cothre4

f 5
x2b2

11b2

G15
A3~b221!

2xb2
~e1`e21e3`e4!

l15
4

A3x~11b2!

Q50. ~64!

SinceQ50 we can setl25l350, which we do for sim-
plicity. We then find that

f v5
1

2A3x~11b2!
@b22~3b221!~b213!coshrdu

1~b223!~3b211!coshrdf# ~65!

where
10500
e

e

n

r
of
.

F5
~b221!

4x~11b2!
@b22~32b2!sinhrdr `du

1~3b221!sinhrdr`df#. ~66!

After rescalingt5@(11b2)/x2b2#t8 we find

ds25Fdt81
1

2A3x~11b2!
$b22~3b221!~b213!coshrdu

1~b223!~3b211!coshrdf%G 2

2
~11b2!

x2 F 1

b2 ~dr2

1sinh2rdu2!1~dr21sinh2rdf2!G . ~67!

From these expressions we observe that the solution rem
unchanged~up to a coordinate transformation! under the op-
erationb→1/b.

There are two special cases to consider. First, whenb
51 we obtain the geometry

ds25Fd t̂1
2

A3x
~coshrdu2coshrdf!G 2

2
2

x2 @dr2

1sinh2rdu21dr21sinh2rdf2# ~68!

with F50. This an Einstein metric, admitting a Killing
spinor~it is not maximally symmetric and so it is not AdS5).
Second, if we takeb51/A3 we obtain

ds25Fd t̂2
2

A3x
coshrdfG 2

2
4

3x2@3~dr21sinh2rdu2!

1~dr21sinh2rdf2!# ~69!

with F52x21sinhrdr`du. This is the metric of AdS3
3H2, and we recover the near horizon limit of the sup
symmetric black string solution with hyperbolic transver
space@12#.

Thus our general solution, Eqs.~67! and ~66!, is a one
parameter family of supersymmetric solutions interpolat
between the Einstein metric~68! and AdS33H2. Note that
for the entire family of solutions there are closed timeli
curves in the neighborhood ofr 50 or r50 parallel to]/]u
or ]/]f respectively. Of course we know that the clos
timelike curves can be eliminated for AdS33H2 by going to
the covering space, and it would be interesting to know
this happens for the entire family of solutions. Finally, w
note that if we perform a double analytic continuationu
→ iu, f→ if, and periodically identify the time coordinate
we see from the discussion in, for example,@13#, that the
metric is that on the coset spaceTp,q5SU(2)
3SU(2)/U(1)p,q with squashing parametrized byb andp,
q are related via

b22~3b221!~b213!p2~b223!~3b211!q50.
~70!
9-7
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The second class of solutions is obtained when we t
the base space to beB5H23S2. In fact this solution can be
obtained from the expressions given above on mappinr
→ ir ~and restricting 0,r,p) andb→2 ib. We thus find
that the solution, withl25l350, can be written

ds25Fdt81
1

2A3x~12b2!
$b22~3b211!~2b2

13!coshrdu2~b213!~23b211!cosrdf%G 2

2
~b221!

x2 F 1

b2~dr21sinh2rdu2!1~dr2

1sin2rdf2!GF5
~b211!

4x~12b2!
@b22~31b2!sinhrdr

`du2~3b211!sinrdr`df#. ~71!

In contrast to the previous solution, it is clear that we m
haveb.1. Thus, in this case, it is not possible to chooseb
in such a way as to obtain an Einstein metric. By consider
the norm of the vector]f we see that the solutions hav
closed timelike curves. It is also interesting to note that
the special solutionb253 the metric becomes a direct pro
uct of a three space withH2.

For a final example of a solution with product base spa
we take the base to beB5M23R2 with metric

ds25
1

r 2S ar 21
b

r 4D z

dr21r 4S ar 21
b

r 4Ddz21dx21dy2

~72!

for positive constantsa,b; and we take an orthonormal bas

e15
1

rAar 21
b

r 4

dr, e25r 2Aar 21
b

r 4dz

e35dx, e45dy. ~73!

This solution has

P523ar 4dz

f 5
x2

12ar 2

G15
6A3ar 2

x
~e1`e21e3`e4!

l15
6A3ar 2

x

Q50. ~74!
10500
e

t

g

r

e,

For simplicity we setl25l350 and obtain

v5
24a2A3r 6

x3
dz. ~75!

The solution has F52(A3/2)dt`d f and setting z
5(z8/Ab)1(x3t/24A3ab) the metric simplifies to

ds25
x4

144a2b S ar 21
b

r 4Ddt22
12a

x2 S ar 21
b

r 4D 21

dr2

2
12ar 2

x2 ds2~R3!. ~76!

This metric is a supersymmetric ‘‘topological black hole’’@6#
and it can be obtained from taking the infinite volume lim
of the nakedly singular supersymmetric ‘‘black hole’’ sol
tion to be discussed next.

3. Black hole solutions

In order to obtain black hole solutions we shall set t
metric on the Ka¨hler base manifold to be

ds25H22dr21
r 2

4
H2~s3

L!21
r 2

4
@~s1

L!21~s2
L!2# ~77!

with orthonormal basis

e15H21dr, e25
rH

2
s3

L

e35
r

2
s1

L , e45
r

2
s2

L ~78!

and we set

H5A11
x2

12
r 2S 11

m

r 2D 3

. ~79!

With this choice ofH, Q50. Once again, this allows us t
setl25l350 for simplicity. Moreover,

P52
x2

8r 2 ~r 21m!2s3
L

v5
x

4A3r 4
~r 21m!3s3

L

f 5S 11
m

r 2D 21

l15
x

2A3r 4
~r 21m!~2r 22m!

G152
A3xm

2r 4
~r 21m!~e1`e21e3`e4!. ~80!
9-8



i-

ke
-

,
n

p
on
g

l

x

u

se

ld

di-
e

re-

SUPERSYMMETRIC SOLUTIONS OF MINIMAL GAUGED . . . PHYSICAL REVIEW D68, 105009 ~2003!
On settingf5f81(x/A3)t the spacetime geometry simpl
fies to

ds25 f 2S 11
x2

12
r 2f 23Ddt22 f 21F S 11

x2

12
r 2f 23D 21

dr2

1r 2dV3
2G ~81!

with F52A3/2dt`d f , wheredV3
2 denotes the metric on

S3. These are the supersymmetric black holes, with na
singularities, first constructed in@14# ~to get the same coor
dinates shiftr 25R22m). On taking the ‘‘infinite volume’’
limit, in which the 3-sphere blows-up toR3, we recover, up
to a coordinate transformation, metric~76! @6#. Note that on
holdingm constant and lettingx→0, we obtain, as expected
the electrically charged static black hole solution of the u
gauged theory.

We remark that all of these timelike solutions haveQ
50, which is a strong restriction on the base. It would a
pear therefore that there is a rich structure of new soluti
for which QÞ0. It would be interesting to see if the rotatin
black hole solutions examined in@15# lie within this class.

IV. THE NULL CASE

A. The general solution

In this section we shall find all solutions of minima
gaugedN51, D55 supergravity for which the functionf
introduced in Sec. II vanishes everywhere.

From Eq.~16! it can be seen thatV satisfiesV`dV50
and is therefore hypersurface-orthogonal. Hence there e
functionsu andH such that

V5H21du. ~82!

A second consequence of Eq.~15! is

VaDaV50, ~83!

soV is tangent to affinely parametrized geodesics in the s
faces of constantu. One can choose coordinates (u,v,ym),
m51,2,3, such thatv is the affine parameter along the
geodesics, and hence

V5
]

]v
. ~84!

The metric must take the form

ds25H21~Fdu212dudv !2H2gmndymdyn, ~85!

where the quantitiesH, F, andgmn depend onu andym only
~becauseV is Killing !. It is particularly useful to introduce a
null basis

e15V5H21du, e25dv1 1
2 Fdu, ei5Hêi ~86!

satisfying

ds252e1e22eiei , ~87!
10500
d

-

-
s

ist

r-

whereêi5êm
i dym is an orthonormal basis for the 3-manifo

with u-dependent metricgmn ; d i j ê
i êj5gmndymdyn.

Equations~8! and ~9! imply that X( i ) can be written

X( i )5e1`L ( i ), ~88!

where L ( i )5L ( i )
mem satisfy L ( i )

mL ( j )
ndmn5d i j . In fact, by

making a change of basis we can setL ( i )5ei , so

X( i )5e1`ei5du`êi . ~89!

We sete121235h; h251. Then Eq.~18! implies

du`dê150

du`Fdê22xS A`ê31hA3

2
Hê1`ê2D G50

du`Fdê31xS A`ê22hA3

2
Hê1`ê3D G50. ~90!

Now define d̃êi5 1
2 (]êm

i /]yn2]ên
i /]ym)dyn`dym. Then

Eq. ~90! implies that

d̃ê150

d̃ê22xS A`ê31hA3

2
Hê1`ê2D 50

d̃ê31xS A`ê22hA3

2
Hê1`ê3D 50. ~91!

Hence, in particular (ê21 i ê3)`d̃(ê21 i ê3)50, from which
it follows that there exists a complex functionS(u,y) and
real functionsx25x2(u,y), x35x3(u,y) such that

~ ê21 i ê3!m5S
]

]ym~x21 ix3! ~92!

and hence (ê21 i ê3)5Sd(x21 ix3)1cdu for some complex
function c(u,y). Similarly, there exists a real functionx1

5x1(u,y) such thatê15dx11a1du for some real function
a1. Hence, from this it is clear that we can change coor
nates fromu,ym to u,xm. Moreover, we can make a gaug
transformation of the formA→A1dL whereL5L(u,x) in
order to setX21 iX3→Sdù (dx21 idx3) whereS is now a
real function. Note that such a gauge transformation p
serves the original gauge restriction~21! that Av50.

Hence, the null basis can be simplified to
9-9
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e15V5H21du

e25dv1 1
2 Fdu

e15H~dx11a1du!

e25H~Sdx21S21a2du!

e35H~Sdx31S21a3du! ~93!

for real functions H(u,xm), S(u,xm), ai(u,xm), and Xi

5e1`ei .
Equation~13! implies thati VF50 and hence

F5F1 ie
1`ei1 1

2 Fi j e
i`ej . ~94!

To proceed, we use Eq.~16! to solve for the componentsFi j ;
we find

F1252hA3

2
H22S21¹3H

F135hA3

2
H22S21¹2H

F235hS x

2
2A3

2
H22¹1H D ~95!

where¹ denotes the flat connection onR3, ¹ i[]/]xi , and
we seta15a1 , a25a2 and a35a3. Next we consider the
constraints implied by Eq.~17!. After a long calculation we
find4 h521 together with

¹1S52xA3

2
HS ~96!

and we also find that the gauge field strength is

F5S 2
x

A3
HAu1

1

2A3
S22H22@¹2~H3a3!

2¹3~H3a2!# D du`dx12
1

2A3
H22@¹1~H3a3!

2¹3~H3a1!#du`dx21
1

2A3
H22@¹1~H3a2!

2¹2~H3a1!#du`dx31A3

2
~¹3Hdx1`dx22¹2Hdx1

`dx3!1
1

2
~A3¹1H2xH2!S2dx2`dx3 ~97!

and the gauge field potential is

4The origin of this fixed orientation is that we chose a frame su
that X( i )5e1`ei , as in Eq.~89!, rather thanX( i )52e1`ei .
10500
A5Audu1
1

xS
~¹2Sdx32¹3Sdx2!. ~98!

We require thatF5dA, which implies that

1

2A3
@¹2~H3a3!2¹3~H3a2!#

52H2S
4
3¹1~S

2
3Au!

1

2A3
@¹3~H3a1!2¹1~H3a3!#

52H2¹2Au2
H2

x
¹3S S21

]S

]uD
1

2A3
@¹1~H3a2!2¹2~H3a1!#

52H2¹3Au1
H2

x
¹2S S21

]S

]uD ~99!

and

S¹1¹1S2 1
3 ~¹1S!21S21~¹2¹2S1¹3¹3S!2S22@~¹2S!2

1~¹3S!2#50 ~100!

where we have made use of Eq.~96! in order to simplify
these equations. Observe that Eq.~99! implies the following
integrability condition:

2H

x F¹3H¹2S S21
]S

]uD2¹2H¹3S S21
]S

]uD G
5¹1@H2S4/3¹1~S2/3Au!#1¹2~H2¹2Au!

1¹3~H2¹3Au!. ~101!

In fact, it is straightforward to show that these constrai
ensure that the Bianchi identity and the gauge field equat
hold automatically. In addition, all but theuu component of
the Einstein equations also hold automatically. Theuu com-
ponent fixesF in terms of the other fields.

Finally, it remains to substitute the bosonic constrai
into the Killing spinor equation~3! and to check that the
geometry does indeed admit Killing spinors. Recall from E
~11! that the Killing spinor is annihilated byg1,

g1ea50. ~102!

Then thea52 component of the Killing spinor equatio
implies that

]ea

]v
50, ~103!

so ea5ea(u,x1,x2,x3). Next we seta51; we find that
h

9-10
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HS ]ea

]u
2a1¹1ea2S22a2¹2ea2S22a3¹3eaD

2
x

4A3
g2~g1ea1eabeb!1

xA1

2
~g1ea1eabeb!50.

~104!

Acting on Eq.~104! with g1 we find the algebraic constrain

g1ea1eabeb50. ~105!

Next seta51,2,3; it is straightforward to show that thes
components of the Killing spinor equation imply that

¹1ea5¹2ea5¹3ea50 ~106!

and substituting this back into Eq.~104! we also find

]ea

]u
50. ~107!

Hence the Killing spinor equation implies thatea is constant
and is constrained by Eqs.~102! and ~105!.

It is also useful to examine the effect on the solution
certain coordinate transformations. In particular, under
shift v5v81g(u,x) we note that the form of the solutio
remains the same, withv replaced byv8, and ai and F
replaced by

ai85ai2H23¹ ig

F85F12
]g

]u
22~a1¹1g1S22@a2¹2g1a3¹3g# !

1H23$~¹1g!21S22@~¹2g!21~¹3g!2#% ~108!

hence we see thatH3a is determined only up to a gradien
To summarize, it is possible to construct a null supersy

metric solution as follows. First chooseS(u,x) satisfying Eq.
~100!. Then use Eq.~96! to obtain H. Next find Au(u,x)
satisfying Eq.~101!. Given such anAu Eq. ~99! can always
be solved, at least locally, to giveH3a up to a gradient; this
gradient term can be removed by making a shift inv as
described above. Then the gauge potential is given by
~98!. Lastly, fix F by solving theuu component of the Ein-
stein equations. In this sense the solutions are determine
three functionsS, Au and F. The Killing spinors are con-
stant and constrained by Eqs.~102! and ~105!. Note that
these solutions are generically 1/4 supersymmetric, in c
trast with the null solutions in the ungauged supergrav
which are generically 1/2 supersymmetric.

B. Magnetic string solutions

To construct a solution to these equations, we takeS to be
independent ofu and separable,S5P(x1)Q(x2,x3), so that
from Eq. ~100! we find that

~¹2¹21¹3¹3!logQ52kQ2 ~109!
10500
f
e

-

q.

by

n-
,

and

PP̈2 1
3 ~ Ṗ!22k50 ~110!

for constant k, where here •5d/dx1. We then have
H52(2/xA3)P21Ṗ. We setAu5a15a25a350 and seek
solutions that also haveF50. The metric and the gauge fiel
strength are given by

ds252xA3P~ Ṗ!21dudv2
4

3x2 P22~ Ṗ!2~dx1!2

2
4

3x2 ~ Ṗ!2ds2~M2! ~111!

and

F52kx21dvol~M2! ~112!

whereM2 is a 2-manifold with metric

ds2~M2!5Q2@~dx2!21~dx3!2#. ~113!

BecauseQ satisfies Eq.~109!, we see thatM2 has constant
curvature and hence can be taken to beR2 if k50, S2 if k
.0 ~with radius k21/2), or H2 if k,0 @with radius
(2k)21/2]. Next we simplify the metric by definingR5 Ṗ,
and we note that Eq.~110! implies thatR5AmP2/323k for
constant m and also R2(R2/31k)22dR25P22Ṗ2(dx1)2.
Hence, on rescalingv̂529xm23/2v we obtain

ds25R1/2S R

3
1

k

RD 3/2

dudv̂2
4

3x2 S R

3
1

k

RD 22

dR2

2
4

3x2 R2ds2~M2!. ~114!

It is straightforward to show that all components of the E
stein equations are satisfied. These solutions are the b
string solutions of@12,16#. For k,0 the solution has a hori
zon at R2523k and the near horizon limit gives AdS3
3H2, which we also found in the timelike class of solution

V. INTEGRABILITY AND MAXIMAL SUPERSYMMETRY

The Killing spinor equation~3! implies the following in-
tegrability conditions on the Killing spinor:
9-11
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1

8
5Rrmn1n2

gn1n2ea52
1

4A3
~g [m

n1n214gn1d [m
n2!¹r]Fn1n2

ea

1
1

48
~22F2gmr28Fn[r

2 gn
m]

112Fmn1
Frn2

gn1n2

18Fn1n2
Fn3[rgm]

n1n2n3!ea

1
x

24
~grm

n1n2Fn1n2
24Fn[rgm]

n

26Frm!eabeb1
x2

48
grmea. ~115!

To obtain a geometry preserving maximal supersymme
we require that this integrability condition imposes no alg
braic constraints on the Killing spinor. In particular, it
required that the terms which are zeroth, first and sec
order in the gamma matrices should vanish independe
~after rewriting the terms cubic, quartic and quintic
gamma matrices in terms of quadratic, linear and zeroth
der terms, respectively!. Hence from the zeroth order term
we immediately obtainF50. The integrability condition
then simplifies considerably to give

5Rrmn1n2
5

x2

12
~grn1

gmn2
2grn2

gmn1
!, ~116!

which implies that that the five dimensional geometry m
be AdS5. This is in contrast to the case of the ungaug
theory, for which it has been shown@1# that there is a rich
structure of maximally supersymmetric solutions.

Note also that if we contract the integrability conditio
with gm we get

05S Rrm12FrnFm
n2

1

3
grm~F21x2! Dgme2

1

A3
F * S d* F

1
2

A3
F`F D G n

~2gnr2grn!e2
1

6A3
dFn1n2n3

~gr
n1n2n3

26dr
n1gn2n3!e. ~117!

Suppose we have a geometry admitting a Killing spinor a
in addition the equation of motion and Bianchi identity forF
are satisfied. By following exactly the same argument p
sented in@1# we conclude that if the Killing spinor is time
.S

.

10500
y,
-

d
ly

r-

t
d

d

-

like, then all of Einstein’s equations are automatically sa
fied while if it is null, only the11 component, in frame
~87!, might not be satisfied.

VI. CONCLUSIONS

In this paper we have presented a classification of all
persymmetric solutions of minimal five-dimensional gaug
supergravity. One of the interesting differences with the u
gauged theory is that in the timelike case much more of
solution is fixed by the geometric structure of the base ma
fold. On the other hand, in the gauged case the base mu
Kähler and not hyper-Ka¨hler, whereas in the ungauged ca
the base must be hyper-Ka¨hler. In the null case the solution
are still determined by three differential equations as in
ungauged case, but these equations are more complic
than those in the ungauged theory. In addition we ha
shown that the gauging generically reduces the proportio
supersymmetry preserved in the null case from 1/2 to 1/4
the gauged theory, AdS5 is the unique maximally supersym
metric solution, while there are a number of different pos
bilities in the ungauged case.

We have also presented some new solutions, that wo
be worth investigating further both inD55 and inD510
after uplifting with a five sphere. Many of the new solution
we have presented have closed timelike curves, as was
seen in the ungauged case, which provides additional
dence that they are commonplace amongst supersymm
solutions. It would be interesting to see if they can be
moved in our explicit solutions by going to a covering spa
either in five or ten dimensions. Moreover, all of the timeli
solutions which we have examined correspond to Ka¨hler ge-
ometries for which the tensorT given by Eq.~43! vanishes.
Clearly, there are many new solutions for whichTÞ0.

It may also be possible to use the generic form of
supersymmetric solutions to examine the geometry of bl
hole solutions. In@9#, the constraints on ungauged solutio
found in @1# were used to show that the near horizon geo
etry of all supersymmetric black holes is isometric to t
near horizon geometry of the BMPV solutions; and from th
a uniqueness theorem was proven. In contrast, it is kno
that the static asymptotically anti–de-Sitter black holes h
no horizon, as they are nakedly singular. However, th
does exist a class of rotating AdS black hole solutions wh
have horizons, and hence a similar investigation could
feasible.
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