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Supersymmetric solutions of minimal gauged supergravity in five dimensions
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All purely bosonic supersymmetric solutions of minimal gauged supergravity in five dimensions are classi-
fied. The solutions fall into two classes depending on whether the Killing vector constructed from the Killing
spinor is timelike or null. When it is timelike, the solutions are determined by a four-dimensioh&ridase
manifold, up to an antiholomorphic function, are necessarily not static, and generically preserve 1/2 of the
supersymmetry. When it is null we provide a precise prescription for constructing the solutions and we show
that they generically preserve 1/4 of the supersymmetry. We show that five-dimensional anti-de Sitter space
(AdSg) is the unique maximally supersymmetric configuration. The formalism is used to construct some new
solutions, including a nonsingular deformation of Ad®hich can be uplifted to obtain new solutions of type
IIB supergravity.
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[. INTRODUCTION Of course, a fully complete classification Bf=11 super-
symmetric geometries would require classifying the explicit
There has been recent progress in classifying supersynierm of the solutions within the various classes, but this
metric bosonic solutions in supergravity theor[d@s2] (for ~ seems well beyond reach at present.
older work using techniques specific to four dimensions, see While more progress oB =11 or 10 supergravity is pos-
[3]). Such a classification is desirable as it may allow one teible, it seems a daunting challenge to carry through the pro-
find new kinds of solutions that have been hitherto missed bgram of[2] in full. Thus, it is of interest to analyze simpler
the usual procedure of starting with an inspired ansatz. lisupergravity theories. In the cases where the theory arises via
turn this could elucidate interesting new phenomena in stringlimensional reduction from a higher dimensional supergrav-
or M theory. In addition such a classification allows one toity theory, the analysis can be viewed as classifying a re-
precisely characterize supersymmetric geometries of interesgfricted class of solutions of the higher dimensional theory.
which is important when explicit solutions are not available.In [1] minimal supergravity inD=5 was analyzed, which
The basic strategy is to assume the existence of a Killingirises, for example, as a truncation of the dimensional reduc-
spinor, that is, assume a solution preserves at least one siien of D=11 supergravity on a six torus. As =11 su-
persymmetry, and then consider the differential forms thapergravity, the general supersymmetric solutions of Ehe
can be constructed as bilinears from the spinor. These satisfy 5 theory have either a timelike or a null Killing vector that
a number of algebraic and differential conditions which canis constructed from the Killing spinor. In the timelike case
be used to determine the form of the metric and othethere is anSU(2) structure. More precisely, it was shown
bosonic fields. Geometrically, the Killing spinor, or equiva- that working in a neighborhood in which the Killing vector is
lently the differential forms, defines a preferr&structure timelike, theD=5 geometry is completely determined by a
and the differential conditions restrict its intrinsic torsfon. hyper-Kaler base manifold, orthogonal to the orbits of the
The analysis of the most general bosonic supersymmetriKilling vector, along with a function and a connection one-
solutions ofD =11 supergravity was initiated if2]. It was  form defined on the base that satisfy a pair of simple differ-
shown that the solutions always have a Killing vector con-ential equations. A similar analysis for the null case revealed
structed as a bilinear from the Killing spinor and that it is that the most general solution was a plane fronted wave de-
either timelike or null. A detailed analysis was undertakentermined by three harmonic functions. Although the null case
for the timelike case and it was shown that®b)(5) struc-  has anRk® structure, this did not play an important role in the
ture plays a central role in determining the local form of theanalysis. In addition, it was shown that the generic solutions
most general bosonic supersymmetric configuration. A simifor both the timelike and null case preserve 1/2 supersym-
lar analysis for the null case, which has yet to be carried outnetry, but they can also be maximally supersymmetric. A
would then complete this classification of the most generafurther analysis determined the explicit form of the most
supersymmetric geometries &=11 supergravity. A finer general maximally supersymmetric solutions.
classification would be to carry out a similar analysis assum- Here we shall analyze minimal gauged supergravity in
ing that there is more than one Killing spinor and some in-D=5. This theory arises as a consistent truncation of the
dications of how this might be tackled were discussef®in  dimensional reduction of type IIB supergravity on a five
spherd6,7]. The gauged theory has the same field content as
the ungauged theory, and given their similarity it is not sur-

*Email address: j.p.gauntlett@gmul.ac.uk prising that some of the analysis parallels thaf bf How-

"Email address: j.b.gutowski@gmul.ac.uk ever, it is interesting that there are some important differ-

The utility of G structures in analyzing supersymmetric solutions ences. Once again there are two classes of supersymmetric
of supergravity was discussed earlief#5]. solutions, the timelike class and the null class. In the timelike
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case, we show that the base manifold of Bhe 5 geometry 1 1 1

orthogonal to the orbits of the Killing vector is now aldar S=—— ( — = (PR—x?)*1—=F/AxF
manifold with aU(2) structure, and the solutions generically 4nG 4 2

preserve 1/2 of the supersymmetry. However, in contrast to

the ungauged case, the whole of the geometry is determined B iF/\F/\A 1)
by the base space up to an antiholomorphic function on the 33 '

base. This formalism thus provides a very powerful method

for the generation of new solutions. It is also interesting toyhere F=dA is a U(1) field strength ang+0 is a real
highlight that we show that all of the solutions in the timelike cqnstant. We will adopt the same conventiongdsinclud-

case are necessarily not static. There are certainly static SHig a mostly minus signature for the metric. The bosonic
persymmetric solutions in the timelike case, but the Staticequations of motion are

Killing vector of such solutions never arises as a Killing
e o oo ool WP SRugt 2P daus(F 4110
our formalism may lead to new kinds of solutions.

When the Killing vector is null, we show that the five- d*F+ iF/\FzO ©)
dimensional solution is again fixed up to three functions, as J3
in the ungauged case. However, unlike the ungauged case,

these functions are no longer harmonic, but rather satisfyvhereF2E|:aB|:aﬁ_ A bosonic solution to the equations of

more complicated elliptic differential equations di°.  motion is supersymmetric if it admits a supercovariantly
Moreover, these solutions generically preserve only 1/4 otgnstant spinor obeying

the supersymmetry rather than 1/2.

By examining the integrability conditions for the Killing 1
spinor equation it is simple to show that five-dimensional D,+ —(7{57—4557,7)%7 e
anti—de Sitter space (Adpis the unique solution preserving 4\3
all supersymmetry. This is in contrast to the ungauged case
where there is a rich class of maximally supersymmetric so- al 1 1 b
lutions. T XE€ m?’a— A €=0 €

By using this formalism, we construct some new solutions

of five dimensional gauged supergravity. As in the ungaugegyhere ¢* is a symplectic commuting Majorana spinor. We
case, we find that many of the new solutions have closeghall call such spinors Killing spinors. Our strategy for de-
tlmellke curves. More SpeCiﬁca”Y, we find a famlly of solu- termining the most genera| bosonic Supersymmetric
tions corresponding to deformations of AdSn which the o ytiong is to analyze the differential forms that can be
deformation depends on a holomorphic function on &l&  constructed from Killing spinors. We first investigate alge-
manifold equipped with the Bergmann metric. In the speciabyajc properties of these forms, and then their differential
case that the holomorphic function is constant, we find & perties.

regular deformation of AdSwith, for a range of parameters, From a single commuting spina® we can construct a
no closed timelike curves. We also find a 1-parameter fam"yscalarf, a 1-formV and three 2-formsbab= @b-

of solutions for which the geometry corresponds to a certain

double analytic continuation of the coset spadd. All of feab=ach

these solutions can be lifted on a five sphere to obtain solu-
tions of type IIB theory using the formulas |8,7].

The plan of this paper is as follows. In Sec. Il we examine
the structure of the minimal five dimensional gauged super- ab_ b
gravity, and describe the algebraic and differential con- Pop= € Vape (4)
straints which bilinears constructed out of the Killing spinor .
must satisfy. In Sec. Ill, we present a classification of the’ :gu_jv_are real, butb'* and®** are complex conjugate and
solutions when the Killing vector constructed from the Kill- $~* IS imaginary. It is convenient to work with three real
ing spinor is timelike. We show how the solutions are com-tWo-forms defined by
pletely fixed up to an arbitrary Kaer 4-manifold together
with an antiholomorphic function, and we present some new
solutions. In Sec. IV, we examine solutions for which the
Killing vector is null; again, we find a simple prescription for
constructing solutions in this case. In Sec. V we investigate
maximally supersymmetric solutions. In Sec. VI we present
our conclusions.

ab_ _a b
V, e =€y, €

D= XD +jx®@

PRI—xD_jx@

Note that there are spacetimes admitting a Killing spinor that do
not satisfy the equations of motion. These can be viewed as solu-
Il. D=5 GAUGED SUPERGRAVITY tions of the field equations with additional sources, and supersym-
metry imposes conditions on these sources. It is straightforward to

The bosonic action for minimal gauged supergravity indetermine the conditions, but for simplicity of presentation, we will
five dimensions i$8] restrict ourselves to solutions of the field equations without sources.
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PA=—ix®), (5
5 (FAV) + 22 x®), (16)
It will be useful to record some of the identities which can be \/_ \/— V3
obtained from various Fierz identities. . ] o o
We first note that Finally, differentiatingX gives
AVAES £ (6)

o o _ D Xf= - %[ZFQ%*X‘”)@M—2F[55(*x“>>,]a5
which implies thatV is timelike, null or zero. The final pos-

sibility can be eliminated using the argumentq &. Now f

either vanishes everywhere or it is nonvanishing at a gmint + 7P XD) 5]+ b
In the former “null case,” the Killing vectoiV is a globally “ nee
defined null Killing vector. In the latter “timelike case” there
is a neighborhood op in which f is nonvanishing and for
which V is timelike. We will work in such a neighborhood
for this case, and then find the full solution by analytic con-
tinuation. In later sections we will analyze the timelike andNote that Eq(17) implies that
null cases separately.

Aaxﬁy(l)

L ox® X sty v 1
\/5( )aﬁ'y _ﬁ Na[pYy] - ( 7)

We also have . - . 3 .
' . dXM=yetil| AAXD + E*)((J) (18)
XOAXD = —28;f*V, (7)
i X0=0 @® SO dX®=0 but X® and X® are not closed. In particular,

this implies that

iy XM =—fxO (9) 3
5o LyXD= 1"(i A— \/:f)x(i). 19
XOXDY= 5 (27,5~ Vo Vg +epfXE (10 VAT v 2 (19

where €;,5=+1 and, for a vectorY and p-form A, It is useful to consider the effect of gauge transformations
(|YA)a1 EyﬁAﬁal a1 Finally, it is useful to A—A+dA. In particular, the Killing spinor equation is left
ap 1= ¥ By, .., o

record invariant under the transformation
a a_ a A A
Vayter=te, (11) 51—>cos(X )el—sm(X )62
2 2
and
o _ b A A
CI)aﬁy Bet=8fec@eh), (12 Ezﬁco{% €2+ sin %) el (20

We now turn to the differential conditions that can be ob-

tained by assuming thatis a Killing spinor. We differentiate  Under these transformations,- f, V—V and X*— X!, but

f, V, @ in turn and use Eq3). Starting withf we find X2+iX3—e XA (X?+iX3). We shall choose to work in a
gauge in which

2
df=——iyF. (13 3
V3 VA= /5 (21)
Taking the exterior derivative and using the Bianchi identity _
for F then gives and so£,A=0 and alsol ,X"=0.
To make further progress we will examine separately the
LyF=0, (14 case in which the Killing vector is timelike and the case in

) o . o which it is null in the two following sections.
where £ denotes the Lie derivative. Next, differentiatiivg
gives lll. THE TIMELIKE CASE

D.V,— ¢ 1 oy X (X A. The general solution
+—=¢€, € 4+ —= afB . . . . . .
- \/— PN 2\3 b In this section we shall consider solutions in a neighbor-

(15 hood in whichf is nonzero and hencéis a timelike Killing
vector field. EqQ.(10) implies that the 2-form() are all

which implies D, V=0 and hence/ is a Killing vector.  nonyanishing. Introduce coordinates such ¥ata/Jt. The
Combining this with Eq(14) implies thatV is the generator metric can then be written locally as

of a symmetry of the full solutiond,F). Note that Eq(15)
implies ds?=f2(dt+ w)?—f~ th,,dxMdx" (22
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wheref, o andh depend only orx™ and not ont, and we
have assumed, essentially with no loss of generdiityD.

The metricf ~*h,,, is obtained by projecting the full metric

perpendicular to the orbits &f. The Riemannian 4-manifold
with coordinatesx™ and metrich will be referred to as the
base spac®8.
Define
e’=f(dt+ w) (23
and if » defines a positive orientation ddthen we define
e\ 7 to define a positive orientation for tHe=5 metric.

PHYSICAL REVIEW 8, 105009 (2003
1
VaX(D=0
2)_ 3
VX = PenX(Y
VX (g = = PenX() (30

whereV is the Levi-Civita connection oB with respect tch
and we have introduced

3
PmZX( An— \[Efwm) .

(31)

The two formde only has components tangent to the baseRecall thatX(*) is gauge invariant. From Eq&26) and (30)
space and can therefore be split into self-dual and anti-selfve conclude that the base space islea, with Kzhler form

dual parts with respect to the mettig,,:

fdo=G"+G~ (24
where the factor of is included for convenience.

Equation(8) implies that the 2-form¥ () can be regarded
as 2-forms on the base space and &.implies that they
are anti-self-dual:

*4x(i): — X (25

where* , denotes the Hodge dual associated with the metric

hm,. Equation(10) can be written

x(i)mpx(i)pn: - 818, "+ fijkx(k)mn (26)
where indicesm,n, ... have been raised with™", the in-
verse ofh.,,. This equation shows that th€"’s satisfy the
algebra of imaginary unit quaternions.

To proceed, we use Eq§l3) and (16) to solve for the
gauge field strengtk. This gives

3 1 X
— A0 T et ()
F \[zde \/§G T X, (27)
It is convenient to write
3 1
H= \ﬁd e —G*
2 J3

so thatF = H — (y/2f) XM, Substituting this into Eq(17) we
find that

(28)

: 1 ) .
DX, =~ —=[2H2(+XO) 55, = 2H[5°(+ XD) 1 15

V3

+ na[BH 65(* X(I))y] 55]
+xell| A —\/iv xd.
a” N ofVa| By

We also find that

(29

X, Thus the base space ha®)&2) structure.

One might be tempted to conclude that the additional
presence oK(? andX(®) satisfying Eq.(26) implies that the
manifold actually has a®U(2) structure. However, this is
not the case sinc¥® andX®® are not gauge invariant. To
obtain some further insight, note that we can invert &)
to solve forP:

Pm=& (XY X = X@mPy, X(D) (32)
from which we deduce that
dP=R (33

wherefR is the Ricci form of the base spa8edefined by

Rmn= %X(l)qupqmn (34
and R,qmn denotes the Riemann curvature tensor Bf
equipped with metrid. Now on any Kaler four-manifold,
with anti-self-dual Kaler two-formX*) and Ricci form,
there is always a section of the canonical bundé?
+iX®, with anti-self-dual two-formsx(®),X(®), satisfying
Eq. (26), and V+iP)(X®+iX®)=0. But this is equiva-
lent to the last two equations in E€B0). (Note that shifting
P by a gradient of a function on the 'Kker manifold shifts
X@+iX® by a phase which precisely corresponds to the
time-independent gauge transformationsxé? +ix(®).)

Thus the content of Eq$26), (30) and(31) is simply that
the baseB is Kahler and that the base determinés,
—(V3/2)f oy, (up to a gradient of a time independent func-
tion). In fact, as we now show, all of the five-dimensional
geometry is determined in terms of the geometry of the
Kahler base spacB, up to an antiholomorphic function on
the base. To see this we first substitute 4) into Eq.(33)
to get

1
—Ecﬁmn Exg}g—;%mn. (35)
Upon contracting Eq. (35 with X®™ and using
R XPM'=R, we obtain
2)(2
f——? (36)
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whereR is the Ricci scalar curvature &. In particular, we
seeB cannot be hyper-Kaer, as we must havR# 0. Sub-
stituting back into Eq(35) we find that

3 1
Gern:_ \/;( Rmn— ZRX%r)]) (37)
Now the Bianchi identityd F=0 is satisfied since
3
dG* :&dmx(” (39

2f2

which is implied by Eq.35). The gauge field equation im-
plies that

2 X _
v, V7§ 1:§(G+)m“(e+)mn+2—®(6 Jma(XH™"
2)(2
-2 (39)
If we write
G =AXO, (40)

for some functions\!, we see that Eq39) fixes\! in terms

of the base space geometry via

\ 2 [ gmy Rt 2P A S R2
xR\ 2 mt 3 mn R 3 '

A= (41)

Next we note that Eq(24) implies thatR(G"+G™) is

closed. Hence, on taking the exterior derivative and using

Eq. (30) we find that

T+[d(RA?) = RA3PIAX@ +[d(RN®) + RAZP]AX®) =0,
(42)

where
T=

3
\ﬁ(—dR/\erd
b%

1
- _R2 (1)
12 }/\X

1 m 2 mn
EVmV R+ gmmn%

(43

is determined by the geometry of the base. In particwar,
=\3=0 is only possible ifT=0. On defining
®m:(x2)mn(*4T)n (44)

and adopting complex coordinateiszTon B with respect to
X!, Eq.(42) simplifies to
0;=—(d;—iP)[R(\*=i\3%)] (45)

which fixesh>— i\ up to an arbitrary antiholomorphic func-
tion. In summary, we have determinédndG= in terms of

PHYSICAL REVIEW [¥8, 105009 (2003

trasted with the ungauged cdsd, wheref andw satisfied a
pair of differential equations on a hyper-Kar base.

We remark that there are no solutions for whiglis hy-
persurface orthogonal; in other words there are no solutions
with dw=0. To see this note that dw=0 thenG" =G~
=0, and from Eq(38) we find thatdf=0. On substituting
this into Eq.(39) and usingG*=G~ =0 we obtain a con-
tradiction. This would seem problematic, as it is known that
many of the known solutions such as Ad&hd certain types
of nakedly singular black hole solutions can be written in
coordinates in which the solution is static with respect to
some timelike killing vector. This apparent contradiction is
resolved by noting that this timelike killing vector is not the
killing vector constructed from the Killing spinor. Hence, it
is clear that the coordinates which arise naturally from the
construction described here are not in fact the coordinates in
which the known solutions can be written in a static form.
This is, however, a minor inconvenience in recovering the
known solutions, since as we shall see, the two coordinate
systems are typically related by rather simple coordinate
transformations. Moreover, it is clear that the formalism de-
scribed above is particularly useful in generating new solu-
tions.

We have obtained all of the constraints on the bosonic
quantitiesf, V, andX(") imposed by the Killing spinor equa-
tions and the equations of motion. It remains to check
whether, conversely, the geometry we have found always
admits Killing spinors. Now the Killing spinor equation can
be rewritten in terms oH as

Ea

1 3x
Do+ ——= (1= Y H g + —= (XY ¥
4J§(7 Y )H gy 4f( )Y

(46)

where we have used E¢l2). We recall also from Eq(11)

that we need to imposg®e®= €2, Then, using Eq(21), the
t component of Eq(46) requires thate®/dt=0, so thate?

depends only on the™. Next we consider then component
of Eq. (46); it is convenient to rescale

pr - fllzna. (47)
Using the fact that Eq12) implies
7= = 5 eX) P (48)
we obtain
Vn?+ 3P re?®n?=0 (49

wherey are rescaled gamma matrices satisfying the algebra

'A)’m:yn+jyna’m:_2hmn (50

the Kéhler base up to an antiholomorphic function; then, up

to a time independent gradiens,is determined by Eq24),

and thenA,, by P,,. This state of affairs should be con-

and all spatial coordinate indices are raised with respect to
h™" the inverse ofh,,. Since Eq.(49 always has a

105009-5



J. P. GAUNTLETT AND J. B. GUTOWSKI PHYSICAL REVIEW D58, 105009 (2003

solutior? on a Kaler manifold(see, e.g., Ref10]), we have el=dr
shown that the geometry does indeed admit Killing spinors.

) 3 Xxr X' L
B. Some examples e°=\/— sinhh —=|cos o3
. . . . o X 12y3 2\3
Using the techniques described in the previous section, it
is possible to construct gauged supergravity solutions with 3 ;
timelike V. In the following, we shall denote an orthonormal e3= \/: Sim—( X_> ot
basis of the Khler base spacB by {e!,e? e%e*} and take X 23
et/\e?/\e®/\e* to define a positive orientation with
3 r
xt=elNe?—e3Ne? et= \/: sinh as. (56)
b% 23

X?=elN\e3+e?Ne? o
More explicitly we have

X3=elA\e*—e?/Ae’. (51)
3 ) xr
_ Xl=—d smhz(—) o5
1. Bergmann base space and deformations of AdS 2\/§
The simplest class of examples are those for which the i
base spac® is Einstein. From Eq(37) we see that this is , 3 Xr Xr
equivalent toG*=0. Moreover, ifG"=0 then from Eq. Xo= % cosi? 2\/— d| tant? 273 "
(38) we obtaindf=0, and without loss of generality we set -
f=1, and soR=—2y? and "= —(x%/2)X*. Hence, from - 1
Eq. (41) we find \'=x/\/3 and we note tha® =0. Hence, X3= 3 cosh X_r) d tanﬁ(x_r) ot
locally Eq. (45) can be written as X 23/ | 243 2]
2 (57)
a; (>\2—|>\3)+ JK(N2=iN?)=0 (52 andP=—sinti(x1/2y3)0%.
For solutions with7=0 (and son?=\3=0 andF=0)
whereK is the Kaler potential ofB, so we find o= (y3/x)sintf(x1/2y/3)c . The five dimensional
geometry can be written, after shifting the Euler angle
N2—iN3=e XKAL(Z) (53— ¢+ (x/\3), as
where F(z) is an antiholomorphic function. Note that the Xr 12 Xr
field strength takes the simple form dSZ:COSf?(ﬁ) —dr?— ? smr?( 23 d93
3 (58)

_ V7 N 2y2, y3y3
F 2 (AEXEHATXE). (54 which is the simply the metric of AdSwith radius 2,/3/.

_ . _ . . _ In order to construct new solutions with+ 0 we exploit
A simple Einstein base is obtained by taking the basehe fact that the Klaler potential is well known in complex

metric to be given by the Bergmann metric coordinategsee, e.g., Refl1]). In particular if we introduce
the complex coordinates
3
ds’=dr?+ — sint? )[(0' )2+ (05)?]

X \/§ ! 2 letan X_r) CO{ 2) e(i/z)((b""ﬁ)

3 23 ’
. Xxr Xxr

+— smr?( —) cosﬁ( —) (c5)? (55
X 2.3 23] ° X\ (0 s
z’=tan 5552 eli2)(¢=¥) (59

wherea| are right invariant one-forms on the three sphere
and we use the same Euler angles and notation [dd.iThe . -
i ; X . the Kahler potential is
x" are given by Eq(51) if we choose the orthonormal basis P
6
K=——log(1—|z*~|2?). (60)
3The term quadratic in gamma matrices Vg, is of opposite X

sign to the usual convention for the supercovariant derivative . . 2
though this is consistent with the sign appearing in &€6). Note Thus in the real coordinate® = (12/x7)log COShﬁ(r/z‘/g)

also that one can use the spinorial constructiok @}, X to show  and hence\2—iX3=cosh 3(xr/2\3)F(2). If we write F
that a Kénler manifold always satisfies E¢B0), as claimed earlier. =F;—iF, then we find

105009-6



SUPERSYMMETRIC SOLUTIONS OF MINIMAL GAUGED. .. PHYSICAL REVIEW [¥8, 105009 (2003

3 . Xr 3 Xr _ (B*—1) a2\
do=d \/;smhz(m o5 |+ Fd Ftanﬁ(ﬁ ot F_W['B (3—B?)sinhrdr/A\de
+(3B%—1)sinhpdp/\d¢]. (66)
+ 7 = tani] X ot 61)
% 23] 2| After rescalingt=[(1+ 82)/x282]t" we find

It would be interesting to explore these deformation of AdS

in more detail. Let us just note here that if we consider thed52=[dt’+
special case whertF; are constant, it is trivial to find the

explicit form of w. Interestingly, this case seems to be a
completely regular deformation of AgSMoreover, by con-
sidering the norm of the left vector fiel@gg and& , we find
that there are closed timelike curves, for sufficiently small
whenj’-"i2>§x2 and they appear to be absent otherwise.

1
-2 2_1 2 h
2\/§X(1+ﬁ2){ﬂ (3B°—1)(B“+3)coshrd o

2
+(B%-3)(38%+1)coshpd b}

2
(1+/3)[1 052

XZ

+sintfrd 62) + (dp?+ sinthd¢>2)}. (67)

2. Base space is a product of two manifolds . ] .
From these expressions we observe that the solution remains

Let us now consider some examples in which the basg,-hangedup to a coordinate transformatipander the op-
manifold is a producB=M,XN, where M,,N, are two eration 3— 1/

2-manifolds. When the base space is itself not Einstein, then tnare are two special cases to consider. First, when
these solutions hav&*+0. In the first case, we takB =1 we obtain the geometry ’
=H?x H? equipped with the metric

2
—(dr2a i 2 20421 2 ~ 2 2
ds?=(dr?+sintfrd 6%) + B(dp?+ sinttpd¢?)  (62) d2=| di+ = (coshrd 6— coshpd ) -5 [dr?
for B constant. Note that setting the radius of the first factor X
to 1, as we have done, does not in fact result in any loss of + sinkPrd 62+ dp?+ sinfPpd ¢?] (68)

generality in the resulting five dimensional geometries.
Clearly this base is Einstein if$?=1. We take the orthonor- with F=0. This an Einstein metric, admitting a Killing

mal basis to be

el=dr, e?=sinhrdg

e3=pdp, e*=pBsinhpdde. (63
It is straightforward to show that for this solution
P=—cothre?+ B~ cothpe*
. xX°B°
1+
3(B%*-1
Gr= M(el/\ezwt eN\e?)
2xB°
L 4
V3x(1+p%)
0=0. (64)

Since®=0 we can seti’=\3=0, which we do for sim-
plicity. We then find that

R P Y S
1) 2\/§X(1+B2)[IB (3B8“—1)(B°+3)coshrd g
+(B%2—3)(38%+1)coshpd¢] (65)

where

spinor(it is not maximally symmetric and so it is not AgS
Second, if we takgg=1/\/3 we obtain

2
ds’=| dt— \/_%Xcoshpmﬁ —3iX2[3(dr2+sinhzrd 6%)
+(dp?+sinttpd¢p?)] (69

with F=—x~Isinhrdr/Ad¢. This is the metric of Ad$

X H2, and we recover the near horizon limit of the super-
symmetric black string solution with hyperbolic transverse
spacg12].

Thus our general solution, Eq&7) and (66), is a one
parameter family of supersymmetric solutions interpolating
between the Einstein metri68) and AdSxH2. Note that
for the entire family of solutions there are closed timelike
curves in the neighborhood ot=0 or p=0 parallel tod/ 96
or dld¢ respectively. Of course we know that the closed
timelike curves can be eliminated for Ag&H? by going to
the covering space, and it would be interesting to know if
this happens for the entire family of solutions. Finally, we
note that if we perform a double analytic continuatién
—i0, ¢—ig¢, and periodically identify the time coordinate,
we see from the discussion in, for examgl&3], that the
metric is that on the coset spacdP=SU(2)

X SU(2)/U(1), q with squashing parametrized 8 andp,
g are related via

B~ 4(3B8%—1)(B%+3)p—(B>—3)(38%+1)q=0.
(70)
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The second class of solutions is obtained when we tak&or simplicity we seti?=X\*=0 and obtain
the base space to t&=H?x S?. In fact this solution can be
obtained from the expressions given above on mapping 2402318
—ip (and restricting & p<) and 8— —iB. We thus find 0=

that the solution, with\>=X%=0, can be written X

dz. (75)

The solution has F=—(3/2)dt/Adf and setting z

d<2=|dt’ + 3 1 . (B2(38%+1)(— B2 =(z'1JB) + (x°t/243aB) the metric simplifies to
23x(1—
X x* 2, B o 122 o 2
) , 2 d32=m<ar +r—4)dt —7 ar +r—4 dr
+3)coshrd 6— (B°+3)(—3B°+1)cospd o}
12ar?
— ——ds’(R®). (76)

211
_ (’i(—z)[[?(dr% sintPrd 62) + (dp?

This metric is a supersymmetric “topological black ho[&]
(B2+1) s . and it can be obtained from taking the infinite volume limit
F= W[ﬁ (3+ B%)sinhrdr of the nakedly singular supersymmetric “black hole” solu-
tion to be discussed next.
Ad@—(3B2+1)sinpdp/\d¢]. (71

+sirfpd¢?)

3. Black hole solutions

In contrast to the previous solution, it is clear that we must . .
o o . In order to obtain black hole solutions we shall set the
haves>1. Thus, in this case, it is not possible to chogse . . :
. . . ) . T metric on the Khler base manifold to be
in such a way as to obtain an Einstein metric. By considering

the norm of the vectow, we see that the solutions have r2 r2
closed timelike curves. It is also interesting to note that for ds?=H 2dr?+ ZH2(05)2+ Z[(c&)zﬂag)z] (77
the special solutiofg?= 3 the metric becomes a direct prod-
2
uct of a three space with*. . . with orthonormal basis
For a final example of a solution with product base space,
we take the base to &= M ,Xx R? with metric H
1 -1 2 r L
e'=H"dr, e =503
1 B
ds?=—————dr?+r4 ar2+r—4 dZ2+dx?+dy?
2 2, & oy L
(72)
for positive constants, 8; and we take an orthonormal basis and we set
2 3
X M
1 B H:\/1+—r2 1+ . (79
el=————dr, e2=r2\/ar2+r—4dz 12 r2
B
r\/ ar?+ -2 With this choice ofH, ®=0. Once again, this allows us to
r setA?=\3=0 for simplicity. Moreover,
3_ 4_
e=dx, e"=dy. (73 ¥2
_ . P:—m(fzﬂt)z”é
This solution has
P=—3ar%dz b%
— (r2+ )30_L
. 4\/§r4 M 3
f= X
12ar? w7t
f: 1+ r7
6y3ar?
G'= \/; (etN\e?+e3/\e?)
M= R m2r )
1o 6\/§ar2 r
X
3
Gt=- \/—X'u(r2+,u)(el/\e2+e3/\e4). (80)
0=0. (74) 2rt
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On settingg=¢" + (x/ V/3)t the spacetime geometry simpli- whereé' = ¢! dy™ is an orthonormal basis for the 3-manifold
fies to with u-dependent metrig/y,,; &;j€'€ =y, dy™dy".

2 Equations(8) and (9) imply that X() can be written

X 2
263 | q12_ -1
1+ 12" f )dt f

X

-1
ds?=f2 1+ 1—2r2f‘3) dr?

XO=e*ALD, (89
+r2d92} 81 - - ,
3 @) where LO=L0_e™ satisfy L1 L) sM™"= 51, In fact, by

making a change of basis we can k&t=¢', so
with F=— \/3/2dt\df, wheredQ3 denotes the metric on g g

S®. These are the supersymmetric black holes, with naked _ _ N
singularities, first constructed {i14] (to get the same coor- XO=e"Ne'=du/\e'. (89)
dinates shiftr?>=R?— 4). On taking the “infinite volume”
limit, in which the 3-sphere blows-up t®°, we recover, up \we sete. 10— 7 7°=1. Then Eq(18) implies
to a coordinate transformation, metfié6) [6]. Note that on
holding u constant and letting— 0, we obtain, as expected, ~
the electrically charged static black hole solution of the un- du/\de =0
gauged theory.
We remark that all of these timelike solutions ha@e

=0, which is a strong restriction on the base. It would ap- du/\{déz—x(A/\é% n\ﬁHél/\éz)
2

pear therefore that there is a rich structure of new solutions =0
for which® # 0. It would be interesting to see if the rotating
black hole solutions examined JAi5] lie within this class. 3
du/\| de’+ y| ANe?— n\/:HélAé3) =0. (90
IV. THE NULL CASE 2

A. The general solution —— N i
Now define de'=3(de,/dy"—de,/ay™dy"Ady™. Then

In this section we shall find all solutions of minimal Eq. (90) implies that

gaugedN=1, D=5 supergravity for which the functioh

introduced in Sec. Il vanishes everywhere. .
From Eg.(16) it can be seen tha¥ satisfiesV/A\dV=0 de'=0

and is therefore hypersurface-orthogonal. Hence there exist

functionsu andH such that

~ - 3 ., .
V=H"'du. (82 dez—X<A/\e3+7;\[§Hel/\e2)=0
A second consequence of Hd5) is

VeD V=0, (83 doit y

- 3 .-
VA EHel/\e3 =0. (91)
soV is tangent to affinely parametrized geodesics in the sur-
faces of constant. One can choose coordinates,,y™),

m=1,2,3, such thav is the affine parameter along these
geodesics, and hence

Hence, in particularé®+ie®) /A\d(e?+ie®) =0, from which
it follows that there exists a complex functi@®{u,y) and
real functionsx?=x2(u,y), x3=x3(u,y) such that

Jd
V=—. (84) g
(é2+ié3)m=5(9—m(x2+ix3) (92)
The metric must take the form y

ds’=H"'(Fdu®+2dudy) — H?y,dy™dy", (85  and henced?®+ie3)=Sdx2+ix®) + ¢du for some complex
function ¢(u,y). Similarly, there exists a real functiox
=xX(u,y) such thate'=dx*+a’du for some real function
al. Hence, from this it is clear that we can change coordi-
nates fromu,y™ to u,x™. Moreover, we can make a gauge
transformation of the forrh— A+dA whereA =A(u,x) in
order to seX?+iX3—Sdu\(dx?+idx3) whereSis now a
satisfying real function. Note that such a gauge transformation pre-
o serves the original gauge restricti¢?) thatA,=0.
ds?=2ete —¢€e, (87) Hence, the null basis can be simplified to

where the quantitiell, 7, andvy,,, depend oru andy™ only
(becauseV is Killing). It is particularly useful to introduce a
null basis

e"=V=H ldu, e =dv+irfdu, e'=He' (86)
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et=V=H du 1
A=A du+ X—S(VZSdﬁ—Vgsd%). (98)

e =dv+3Fdu

We require thaF=dA, which implies that
el=H(dx*+aldu)

1
=H(Sd®+S ta2du) —=[Va(H%3)— Va(H%y)]
2\3
e3=H(Sd»¥+S 'a’du) (93 . )
. . =—H?S3V,(SBA
for real functionsH(u,x™), S(u,x™), a'(u,x™), and X' 1(S5A)
=e" /e
Equation(13) implies thati,,F =0 and hence \/—[Vg(H a,)—Vy(H3as)]
: o 2
F:F+ie+/\el+%Fijel/\e]. (94)
H? _,0S
To proceed, we use E(L6) to solve for the componenks; ; =—H2V,A,— —V3 st
. au
we find
Fio=— \EHZSW H i[Vl(H3az)—Vz(H3a1)]
12 n 2 3 2\/5
3 H? 98
Fi=7\/5H S 1VH =—H2V3A, + Ve ST (99
Y 3 and
Fos=n|5— —HZVlH) (95)
2 2 SV,V,S—1(V19)2+ S (V,V,8+V,;V,S) — S (V,5)?
whereV denotes the flat connection dt?, V;=4/dx', and +(V39)?]=0 (100

we seta'=a;, a’=a, anda®=a;. Next we consider the
constraints implied by Eq17). After a long calculation we where we have made use of E6) in order to simplify

find* »=—1 together with these equations. Observe that E2p) implies the following
integrability condition:
3
V15=—X\[§HS (96) 2H _,9S .S
~ V3HV, S™1—|-V,HV,4 S? m

and we also find that the gauge field strength is
:Vl[H284/3V1(82/3Au)]+V2(H2V2Au)

1 2
X HA +—S’2H’2[V2(H3a3) +V3(HV3A,). (101

F:(_ﬁ 23

In fact, it is straightforward to show that these constraints
1 ensure that the Bianchi identity and the gauge field equations
—V3(H3a2)]) duNdx'— —=H?[V(H%y) hold automatically. In addition, all but theu component of
23 the Einstein equations also hold automatically. Thiecom-
1 ponent fixesF in terms of the other fields.
—V3(H3%,;)]duNdx?+ —=H [V (H%a,) Finally, it remains to substitute the bosonic constraints
V3 into the Killing spinor equation3) and to check that the
geometry does indeed admit Killing spinors. Recall from Eq.

3 - : : 2
—V,(H3%,)]duNdx3+ \/;(VaHXm/\dXZ_VZdel (11) that the Killing spinor is annihilated by™*,

y"e?=0. (102
Adx3) + E(ﬁv H— yH?) S2dx?/A\dx3 97) - . ,
2 X Then thea=— component of the Killing spinor equation
implies that

and the gauge field potential is .
Je
—=0, (103
Jv

“The origin of this fixed orientation is that we chose a frame such
thatX=e* /A€, as in Eq.(89), rather tharXV= —e* /\¢'. s0 €= e3(u,x},x?,x%). Next we seta=+; we find that
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e and
H m—alVlea—S_zanzea—S_2a3V36a
r 1/ p\2 —
X —(Al_a ab_b XA+ 1_a ab_by _ PP—g(P) —k=0 (110)
- — e+ e*Pe’ )+ ——(y €+ €%°€”)=0.
p \/57 (y )+ =y )
(1049 for constantk, where here-=d/dx!. We then have
. L . _ . H=—(2/x\y3)P 'P. We setA,=a'=a?=a’=0 and seek
Acting on Eq.(104) with y™ we find the algebraic constraint g ions that also hav&=0. The metric and the gauge field
strength are given by

yre?+ ePe=0. (105
Next seta=1,2,3; it is straightforward to show that these 4
components of the Killing spinor equation imply that ds?=—y 3P(P)‘1dudv—§z P~2(P)%(dx%)?
Vlea:VZEa:V36a:O (106) 4
— = (P)2ds’(M 111

and substituting this back into E¢L04) we also find 3)(2( ) (M2) (119

Je?

EZO (107) and

Hence the Killing spinor equation implies theft is constant

and is constrained by Eq6102) and(105). F=—kyx *dvol(M),) (112
It is also useful to examine the effect on the solution of

certain coordinate transformations. In particular, under the ) ) ) )

shift v=v’+g(u,x) we note that the form of the solution WhereM, is a 2-manifold with metric

remains the same, with replaced byv’, and a; and F

replaced by

ds’(M2)=Q?[(dx*)*+ (dx®)?]. (113
aj=a,—H %Vig
9 BecauseQ satisfies Eq(109), we see thaM2 has con;tant
F=F+ 2£—2(a1V19+5*2[a2V29+a3V39]) curvature and _hencgltlzan be taker) tolFeif k=_0, s? |f_ k
>0 (with radius k™), or H? if k<O [with radius
+H 3{(V19)2+S [ (V,9)%2+(V39)%]} (108  (—k)"3. Next we simplify the metric by definin@R= P,

and we note that Eq110) implies thatR= /uP?°— 3k for
hence we see that®a is determined only up to a gradient. constantx and also R2(R%/3+k) ~2dR2= P~ 2P2(dx})2.
To summarize, it is possible to construct a null SUPErsymMy, o on rescalinf= — 9y~
metric solution as follows. First chooS§gu,x) satisfying Eq. ' 9 XH
(100. Then use Eq(96) to obtain H. Next find A,(u,x)
satisfying Eq.(101). Given such amA; Eqg. (99) can always

%y we obtain

3/2 -2
be solved, at least locally, to givé®a up to a gradient; this ds?2=RYq —+ —| dudo— iz E+E dR?2
gradient term can be removed by making a shiftviras 3 R 3x“13 R
described above. Then the gauge potential is given by Eq. 4
(98). Lastly, fix F by solving theuu component of the Ein- R2ds?(M,). (114

T 3.2
stein equations. In this sense the solutions are determined by 3x
three functionsS, A, and F. The Killing spinors are con-

stant and constrained by Eg&L02 and (105. Note that . . .
these solutions are generically 1/4 supersymmetric, in conlt is straightforward to show that all components of the Ein-

trast with the null solutions in the ungauged supergravity,Ste,in equat.ions are satisfied. These soluti_ons are the plack

which are generically 1/2 supersymmetric. string solzutlons 0f12,16. Fork<0 th_e solgtlo_n h_as a hori-
zon at R*=—3k and the near horizon limit gives AgS

o . X H2, which we also found in the timelike class of solutions.

B. Magnetic string solutions

To construct a solution to these equations, we takebe

independent ofi and separable=P(x')Q(x?x%), so that v, INTEGRABILITY AND MAXIMAL SUPERSYMMETRY
from Eqg. (100 we find that . ) . o o
The Killing spinor equatior(3) implies the following in-
(V,V,+V3Vgy)logQ=—kQ? (1090  tegrability conditions on the Killing spinor:
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like, then all of Einstein’s equations are automatically satis-

1 1
=R, Y1268 = — —— (12 + 49”15 )V . F, , € fied while if it is null, only the ++ component, in frame
g ey 4\/5(7/[# VP, (87), might not be satisfie)é. °
N 4—8(—2':27#,)—8':3@7”#] | VI. CONCLUSIONS o
In this paper we have presented a classification of all su-
+12F,, F,, y'1"2 persymmetric solutions of minimal five-dimensional gauged
v supergravity. One of the interesting differences with the un-
+8F, , Fo(pYu 23 e gauged theory is that in the timelike case much more of the
e solution is fixed by the geometric structure of the base mani-
X fold. On the other hand, in the gauged case the base must be
+ 2—4()’WV1V2FV1V2—4FV[,)7,L]V Kahler and not hyper-Kaler, whereas in the ungauged case
the base must be hyper-Klar. In the null case the solutions
X2 are still determined by three differential equations as in the
—6F )€ e+ Egypﬂfa- (119  ungauged case, but these equations are more complicated

than those in the ungauged theory. In addition we have

To obtain a geometry preserving maximal supersymmetryshown that the gauging generically reduces the proportion of
we require that this integrability condition imposes no alge-supersymmetry preserved in the null case from 1/2 to 1/4. In
braic constraints on the Killing spinor. In particular, it is the gauged theory, AdSs the unique maximally supersym-
required that the terms which are zeroth, first and seconfnetric solution, while there are a number of different possi-
order in the gamma matrices should vanish independentipilities in the ungauged case.

(after rewriting the terms cubic, quartic and quintic in We have also presented some new solutions, that would
gamma matrices in terms of quadratic, linear and zeroth o worth investigating further both iD=5 and inD=10

der terms, respectivelyHence from the zeroth order term after uplifting with a five sphere. Many of the new solutions
we immediately obtaifF=0. The integrability condition We have presented have closed timelike curves, as was also

then simplifies considerably to give seen in the ungauged case, which provides additional evi-
dence that they are commonplace amongst supersymmetric
s X2 solutions. It would be interesting to see if they can be re-

puvivy Tz(gpvlng_gmgwl)’ (116 moved in our explicit solutions by going to a covering space
either in five or ten dimensions. Moreover, all of the timelike
which implies that that the five dimensional geometry mustsolutions which we have examined correspond thlage-
be AdS. This is in contrast to the case of the ungaugedometries for which the tensdr given by Eq.(43) vanishes.

theory, for which it has been showd] that there is a rich  Clearly, there are many new solutions for whitk 0.

structure of maximally supersymmetric solutions. It may also be possible to use the generic form of the
Note also that if we contract the integrability condition supersymmetric solutions to examine the geometry of black
with y* we get hole solutions. I 9], the constraints on ungauged solutions

found in[1] were used to show that the near horizon geom-
" . etry of all supersymmetric black holes is isometric to the
yer ﬁ x| d*F near horizon geometry of the BMPV solutions; and from this
a uniqueness theorem was proven. In contrast, it is known

0=|R,,+2F, F " ! F2+x2
= Mou pru _§gﬂl’«( X°)

2 v 1 that the static asymptotically anti—de-Sitter black holes have
+—FAF (Zgw—yp,,)os——dFylyz,,s(y:l”zv3 no horizon, as they are nakedly singular. However, there
V3 613 does exist a class of rotating AdS black hole solutions which
66"y e, (117 haveT horizons, and hence a similar investigation could be
o feasible.
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