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Fermion production in time-dependent fields
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The exact fermion propagator in a classical time-dependent gauge field is derived by solving the equation of
motion for the Dirac Green’s functions. From the retarded propagator obtained in this way the momentum
spectrum for the produced fermion pairs is calculated. Different approximations and the exact solution for the
propagator and the momentum spectrum are presented.
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[. INTRODUCTION tant there. As the above value for the occupation number at
the average transverse momentum is larger than one, keeping
Particle production in classical bosonic fields has been anly classical bosons is justified as a first approximation.
topic of continuing interest in quantum electrodynamicsOne can investigate quantum fluctuations in a subsequent
(QED) and quantum chromodynami¢QCD). It is relevant  step.
for the physics of the early Univerdd] as well as of ul- The high-occupation number bosonic fields are of the or-
trarelativistic heavy-ion collisions and the quark-gluonder A~g~!. Thus processes with multiple couplings to the
plasma 2] (QGP. A lot of effort is made to study the QGP’s classical field are not parametrically suppressed by powers of
production and equilibratiofi3] in nuclear collision experi- the coupling constang. Without an additional scale, they
ments at the Relativistic Heavy-lon CollidéRHIC) at the have to be taken into account to all orders. Under the pre-
Brookhaven National LaboratoNL) and the Large Had- requisite of weak coupling, the most important quantum pro-
ron Collider (LHC) under construction at CERN. The exis- C€SS€s involve only terms of the classical action which are of

tence of such a state of matter is predicted by lattice QcrFecond order in the quantum fields. These are the fermion
calculations at high temperaturgs. and the antifermion fields as well as the field of the bosonic

At ultrarelativistic energies, the two nuclei are highly Lor- quantum fluctuations. The coefficient of the second order

entz contracted. When they pass through each other, a chrigrms .for a given field constitute§ the inver_se of the corre-
moelectric field is formed due to the exchange of soft gluon pontc:ijlng tWO—p((j)'II’.lt Gfeeﬂ lsdfunc::on. Invgrlspn for selected
[5]. This is a natural extension of the color flux-tube model?oundary —conditions yields ‘the —particle’s propagator.

or the string model which are widely applied to high-energy ' "€ propaga?olrs contain all tEe informationf OT ‘V.Vo'l
op, e*e~, andpA collisions[6]. Many other recent publica- _(duantumjparticle reactions in the presence of classica

tions, e.g.[7—10, are based on the hypothesis that the initialﬁelds to all orders in the coupling constaptThese reactions

state in heavy-ion collisions is dominated by gluons which®'€ scattering'off.the classical field or particle production by
acuum polarization.

on account of the large occupation number can be treated kL ; . . .
a classical background field In the following let us consider particle production. In
The larger the occupation numeITck> of the bosonic quantum electrodynamics this means the production of
K belectron—posnron pairs. Analogously, in quantum chromody-

sector of a physical system, the better it can be described N mi / .
a classical field. Here, andc; are the bosonic field annihi- amics quark-an_thuark pairs can be progiuced. However, due
: K k to the non-linearity of the field tensor pairs of gluonic quan-

E‘gogcg?ld i?rtiae“g(r:]cgpgtri?)tr?r:,umggaigﬂiiholfarrncézn'[ernr;‘r?rgnetum fluctuations are produced, too. In fields of the magnitude
thepcommyutator of thepcreation and annihilationgoperator anAwgil the production of both kinds of pairs is equally para-

+ - ﬂwetrically favored. This paper only deals with the production
henc:‘re quantum effects can be neglect@tk,ck]—l of fermions and antifermions. It is possible that in a given
<(ckcy)- The field operators can be approximated by com;tation the bosonic sector is covered by the concept of a
plex numbers; i.e., they are treated classically. classical field sufficiently well. Corrections to the high-

For gluons in a heavy-ion collision at RHIC withs  momentum sector could be perturbatively accesgiba.
=130 GeV the initial occupation number for gluons of av-  No concept of a classical field exists for the fermionic
erage transverse momentyky|~1 GeV in the center of the sector. There the occupation number has always to be less
collisions is roughly equal to 1.B8L1]. Although this number than unity due to the Pauli principle. A purely perturbative
is not much larger than unity, the classical field as the expecreatment could only describe the high-momentum sector.
tation value of the gauge field still constitutes the main con-The soft part would not be treated consistently.
tribution as compared to the fluctuations of the gauge field. An alternative to the perturbative approach for particle
The occupation number for lower transverse momenta is ygtroduction is Schwinger’s constant-field metHd®] which
higher and the classical concept is an even better approximés an exact one-loop non-perturbative approach. This method
tion. For larger transverse momenta the occupation humberan also be understood as semiclassical tunneling across the
is smaller and thus the quantum fluctuations are more impomass gad14]. However, this scheme is based on the as-
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sumption of a slowly varying classical field. If the field approach is an expansion in powers of the gauge ffeld
changes too rapidly in space or time, the production of ferbased on the free propagator and valid fo€w. w stands
mions is again not described properly. A different concept isor the on-shell energy of the described particles. The strong-
needed that is independent of energy or time scales, respefield approximation is justified fom<A and consists of an
tively. Such a concept is especially important, if the timeexpansion in powers of the on-shell energy. For the Abelian
scale for a process is to be determined by a self-consistemaipproach the commutators of the elements of the Clifford
calculation. If an approach is applied for such an investigaand the charge algebra are neglected.
tion, which relies already on an assumption about the time Section Il includes the exact solution of the equation of
scale, the result is likely to be misleading. For example, ifmotion for the Dirac Green’s function and gives several ap-
the decay time scale for a classical field is to be calculategiroximations to the full solution. Section Il contains the
based on particle production, perturbative concepts are likelgpplication of the previous findings to the problem of particle
to lead to times which are too short, while the Schwingerproduction and the comparison of the different schemes to
method tends to predict a development of the system that ihe exact result. In Sec. IV the contents of the paper are
too slow. summarized.
For a concise treatment other methods are necessary. Ex- Throughout the paper the metric g¢*=diag(1-1,—1,
act results are desirable but hard to obtain. As mentioned-1), angular momenta are measured in unité pand ve-
before, neglecting bosonic quantum fluctuations the behavidocities in fractions of the speed of light From hereon, the
of the fermions is governed by their two-point functions in coupling constant is included in the classical fietp% 4
the classic background field. It can be obtained by solving= AL
the equation of motion for the Dirac Green’s function
G(x,y) exactly:
Il. DETERMINATION OF THE PROPAGATOR
[iy-a(x)+y-A)—m]G(x,y) = 6P (x~y). (1) Let us consider homogeneous solutiofg(x,y) of
Dirac’s equation1). In the special class of fields which only
There are other ways to derive the full propagator, for in-depend on one rectilinear coordinatex this equation can
stance by resumming all terms of the perturbative series dbe Fourier transformedthree dimensionallyinto an ordi-
by adding up a set ofat all times completewave-function nary differential equation:
solutions of the Dirac equation.
In arbitrary fields a few general approximations are [ d
known. Neglecting the field in the equation of motion leads '(Y'H)WJF)" k+y-A(N-X)—m|Gy(N-X,n-y, k)
to the free Green’s functio®°(x—y). The standard pertur-
bative series is a sum of terms containing powers of the =0, (2
background fieldA between free Green’s functions. The
asymptotic behavior of the free Green’s function determinesvith the conserved three-dimensional momentum coordinate
that of the approximated full Green’s function. Another ap- x=k—nd(k-x)/d(n-x)orthogonal ton and wherek stands
proach which applies in an arbitrary field is the static ap-for the four-momentum. As a furth@nsatzthe matrix func-
proximationGS(x,y). It is obtained by neglecting the spatial tion G,,(n-x,n-y,«) is to be a functional of another matrix
part of the covariant derivative in the differential equation.function gy(n-x,n-y, ) with a special property for the de-
The remaining ordinary differential equation can be solvedivative
by direct integration. Yet another approach can be found in
[15].
The following investigation concerns the case where the LGH[gH(n'x,wy,K)]
) . o " . d(n-x)
classical field depends arbitrarily on one rectilinear coordi-
nateA=A(n-x). The equation of motion for the propagators

shall be solved directly. If such solutions are investigated, = WQH(H‘X,H‘V,K) Gulgn(n-x,n-y,x)],
care has to be taken: the result could be any Green’s function
which is not necessarily a propagator. If a propagator has 3)

been obtained, the imposed boundary conditions determine
whether the result is the retarded or the Feynman propagatavhich looks like the derivative of an exponential function,
or one of their related singular functions. but is not quite due to the matrix structure. Provided a func-
A solution in a field depending on one rectilinear coordi-tion gy(n-x,n-y,«) exists which satisfies E@3), the form
nate can also be seen as an approximation for the case wharethe functionalGy[gn(n-x,n-y,x)] can be determined.
the strongest dependence is on this rectilinear coordinate artekploiting the above property leads to a factorization
the dependence on all the others is much weaker. in Eq. (2):
It will be explored whether an approximation scheme can
be found that is independent of assumptions on time and/or | d
energy scales over a large range of parameters. The investi-{ (- n)mgH(n'X,n'y,KH Yy k+y-A(N-X)—m
gated approximations are the Born, the weak-field, the
strong-field, and the Abelian approximation. The weak-field XGylgu(n-x,n-y,x)]=0. 4
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Given the existence of a soluti@sy other than the trivial A. Time-like coordinates
SO.|utI0n,'ItS matrix structure can be mvertgd. Multlpl!catlon For a purely time-dependent field, the solution for
with the inverse of the solution from the right then yields a (x K) in Eq. (6) is given b
differential equation for the functiogy, 9H{Xo.Yo. q- 9 y

; (00K =17° [ “deal i+ - Ale) -, @)
0
i(y-n)mgH(n-x,n-y,K)Jry-K+ y-A(n-x)—m=0.

(5 with je{1,2,3. Constructing the matrix function

This ordinary differential equation can be solved by direct®H(X0:Yo.k) by setting Eq(8) into Eq. (7) leads to

integration where the initial conditiongy(n-x=n-y,

n-y,x)=0 is chosen, . . Xo .

Vi) GH(XO,YO,k)=PeXp{I70L déol Y'kj+y-A(§o) —m] ;.
0

(€)

. fy. n n-x
gH(n~x,n~y,f<)=l—2f din-HLy-«+y-A(n-§—m]. _ _ o o
n® Jny In the following, various approximations are studied in order
(6)  to learn more about the above solution.

Here it is necessary to requiré+#0. Otherwise, the matrix
v-n does not posses an inverse because ofydef
=(n?)2. For cases witm?=0 a different treatment is nec- It is useful to investigate the case of a vanishing gauge
essary. field A=0. One then sees that the argumgﬁ(xo—yo,lz)

In general, the argument functia@y does not commute now commutes with itself at different space-time points. The
with itself at different pointsn-x. This is not(only) due to  path-ordered exponential can now be replaced by an expo-
non-Abelian charges which might be included in the vectomential function. The exponential function of matrices can be
field A but to the non-commutative nature of the elements ofecast into exponential functions of scalar arguments multi-
the Clifford algebra. Thus the solution of E() is not an  plied with matrices:
exponential function but a path-ordered exponential:

1. Weak-field approximation

0w+ vik —
> Y w yk m . _
G =P G (x,— k —,),0_ J e*io(xo—Yo)
HLGH(N-X, Ny, k)] expgn(n-x,n-y,k)}.  (7) H(Xo=Yo.k) 20

0, — ~ik.
0V 0= YKEM iutovo, (10)

A sufficient but not necessary condition for its existence is 20
that the norm of the integrand in E@) is bounded. It has to
be noted that the invariance of an integral under the simul- =
. Wi — JIk12 L m2
taneous exchange of the integration boundaries and the ifith ©= |K|#+m?.

version of the sign cannot be used in E8).because the path ~ Standard perturbation theory for small gauge fiekls
ordering would be reversed. < which can be interpreted as an ultraviolet approximation

If a more general initial condition had been chosen in EqiS obtained by expanding the exact solution in poweré.of

(6) the additional addeng,,(n-y,n-y, x) would have lacked Prior to this, it has to be rewritten in order to include all
an ordering parameter necessary for the path ordering@Wers of the momenta and the mass with every factor of the

Hence, it could only be treated by always setting it to the ield. The path-ordered exponential can be expressed as
right-hand siderhs) of the remaining path-ordered exponen-

tial. This would have led to an extra factotexp{gy(n-y, R N-1
n-y,k)}. As here a homogeneous differential equation is in- Gh(Xo,Y0,K) = lim PHO {1+iy ALY
vestigated this factor does not lead to independent solutions. N—ee 12

, Hereafterzone has only to d|st|n_gwsh between the cases X[y‘kj-l— y~A(§g‘))—m]}. (11)
n“>0 andn<<0, because every field=A(n-x) can be
transformed into a field A=A(n’-x) with sgnn?)

=sgn(’?) by a Lorentz transformation. Overall factors in The interval[x,,yo] is decomposed int? disjoint pieces
front of the normal vectors can be absorbed in a redefinitiowith the IengthsAgg”) which need not be equal and each
of the vector potentialA. So, for the sake of simplicity it with an inner pointgg“). These are arranged according to
suffices to investigate one special case per class of fieldg,=&;<&é;<- - - <EN<En+1=VYo fOr Xg<Yg Or Xg= &> &;
This is going to be done for the casesrdf=(1,0,0,0) and >...>& > & 1=Y, for Xo>Y,. P indicates that the fac-
n“=(0,0,0,1). In situations whene®=0, rotations in three- tors are ordered with respect to the indexvhere the term
space can turn any normal vector into n*=(1,0,0, with the lowest index is put furthest to the left. The expres-
—1)/42. sion can now be sorted with respect to powers of the feld
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N N-1 N-1 N-1 -1
Guxoyo.K=lim > 3 X ... TT (1+i9°AgR[yik —m]) X[i 9%y AESD) A £
N— =0 =0 np=ny+1 m=n_;+1 L=0
no—1
X ln_[H (1+iy°A [ yk —m]) X [110y-A(ET?) Al x -
-

n-1 N-1
x L @i adlyk—m)x[iy°y- A" )ag" M1 T1 (1+iy°ag [y ik —m).
=n+

L=n_q1+1
(12)

Forl =0 there are no further sums ovgr. Sums and products are not taken into account if the starting index is greater than
the ending index. In the limiN— the outer sum over the powelsof the gauge fieldA becomes an infinite sum, the
intermediate sums turn into integrals over simplices, and the products give path-ordered exponentials. In fact, their arguments
commute at every point, thus the path ordering can be dropped here

o ” Xo 131 &1 ) )
Gu(Xoyo. K= | déy | e | dgexpli v vk —ml(xo— £} X[1 10y A Jexpli v Yk —ml(£1— £)}
=0 Jy, Y
- 0 0

Yo

X[y A(&) ] - - - xexpli Y[ Yk —m](&-1— &P < [0y A(&) Jexpli v L Yk —mI(§—yo)}.  (13)

This expression is a uniformly and absolutely convergingthe following condition has to be fulfilled in order to relate
series representation for a path-ordered exponential, the latter and the retarded propagator:

iGRr(Xo0,Y0,K) Y= 0(Xo—Y0)Gr(Xo,Yo,K).  (16)

N N Xo N
GH<xO,yo,k>=G%<xO—yo,k>Pexpl' fy déGR(Yo— &0.K)
0

X[i‘}’O?"A(fo)]G%(go_yo,E)]- (14

It should be noted that if the case of a different, more
general coordinate with?>>0 should have been investigated
at this point, the additional requirement>0 would be
needed here in order to ensure that reallyrdtardedpropa-

The above derivation is a special case of a more genergjator is obtained. However, this can always be achieved by a
identity for the type of path-ordered exponentials encountedefinition of the functional form of the vector potential.

tered herdsee the Appendjx The expansion of this formula
in powers ofA yields

N N X0 N
Gi(X0.Yo.K) = G2 (Xo— oK)+ fy d£0G0 (X0~ £0.K)
0

X[17%y-A(0)1GH(é0—Yo.K)

Xo o o
+1 d d7eG2(Xg— &g, K
fyo fofy() 70GH(Xo— &0,K)
X[ Y%y A(&)1GH(é0— 70,K)
X[ 7%y A(76)1GH (70— Yo,K) + - - -

(15
Up to now, only the squtionGH(xo,yO,lZ) of the homo-

geneous Dirac equation in the mixed representation has been

investigated. According to the equation of moti¢h the
inhomogeneous solutio’rG(xo,yO,IZ) ¥° must jump by one

at Xo=Yo. The retarded propagatdBR(xo,yo,IZ) vanishes
for negative time differenceg,—y,<<0. Due to the previous

requirement on the argumegp(x():yo,yo,IZ):O one has
for the homogeneous squti@hH(xozyo,yo,IZ)zl. Hence,

All results obtained for the homogeneous solution of
Dirac’s equation in the present mixed representation are

linked directly to the Green’s functioGR(xo,yo,IZ) by Eq.
(16). After putting Eqg.(15) into the previous expression, the
Heaviside function can be multiplied to every free homoge-

neous solutiorG%(Z,.k),

iGR(XmYOJZ)YO
= (X0~ Y0) R (Xo—Yo.K)

XO 0 o
+f déoO(Xg— &0)G(Xo— €0.K)
Yo
X[ 9%y A(£0)10(E0—Y0)GH(&0— Yo, K)
X I3 .
+ [ ago [ st £982%0— 0.0
Yo Yo

X[ 92y A(£0)10(E0— 10)GH(é0— 70,K)

X[y A(76)16( 70— Yo) GR( 10— Yo, K) + - - -
(17)
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This is possible due to the idempotency of the Heaviside
function and the fact thab(xy— &) 0(£0—Yo) = 0(Xo—Yo) mk,
if éoe[Xg,Yo]- Subsequently, in accordance with EG6),
the result can be reexpressed in terms of free Greens’s func-
tions

. Lo N Yo . -
lGR<x0,yo,k>=uG%(xO—yo,k>+f d£0iGY(Xo— £0.K)

X0

X[i7-A(£0) liGS(E&—Yo.K) ® O rek

Yo Yo N
+ on dfoLO d70i GY(Xo— &o,K)
X[iy-A(£0)lIGR(&0— 10.,K)

X[iy-A(70)liGX( 70— Yo,K)+---. (18)

FIG. 1. Contour integration in the compleyg plane for the

N hat in the li liahtly diff definiti determination of the Green’s function with the correct asymptotic
. ote that in the |teratulre slightly ditterent de |n|t|ons €X- hehavior. The circles indicate the pairs of positions to which the
ist for the propagator which account for the various occur-

- - A poles are moved off the real axis by virtue of the corresponding
rences of the imaginary unit The full retarded propagator ,escription for the retardedblack and the advancedwhite)

Gr(X0,Yo k) inherits the asymptotic behavior of the free re- propagator. The squares show the position of the poles for the Feyn-

tarded propagatc@%(xo—yo,IZ) by virtue of the above for- Man(white) and the reverse Feynmdblack propagators. For the

mula (18). retarded and the advanced propagators two poles or no pole is in-
The full Feynman, i.e. time-ordered propagator, cannot béide a given contour. For_ the Feynmap and reverse Feynman propa-

expressed as a path-ordered exponential because it is defin@°'s exactly one pole is always inside any contour.

with mixed boundary conditions: for the positive energy

components at,— —o and for the negative energy compo-

nents ai,— + . This can also be seen from the free Feyn_structure. This is different for the Feynman propagator and
man propagator its relatives. There only one pole at a time is included in a

contour. Thus these propagators are always non-invertible.

% . Yo — yi kj+m ot ye) 2. Strong-field approximation
1GE(X0~Y0,K)= (X0~ Yo) 20 e The previous expansion which is appropriate for weak
fields A(t)<w could be interpreted as a ultraviolet approxi-
etio(xo—Yo) mation. An infrared expansion requires a strong fiaid)
2w >w. It can be obtained by applying the resummation for-
(19) mula of the Appendix in a different way. Resumming all
scattering processes with the field for each power of the mo-
which is a singular object in this and every mixed represenmentum, one obtains
tation. That can be understood by looking at Fig. 1. Thus it is
impossible to take its logarithm and express it as an expo-
nential function. This is why the Feynman propagator cannot GH(XOnyO:E)
be equal to a path-ordered exponential of the f¢@m
Figure 1 shows the contour integrations in the comggx _ ¥ o
plane which have to be carried out in order to determine the ~ = 7~ &XP i | d&y y-A(&o)
. . . . Yo
contributions from the different poles of the corresponding
propagator in momentum representation to that propagator in Xo (Yo o
the mixed representation. Every pole included inside a con- XPex f déoPex 'J déoy”y-A(6o)
- . . Yo o
tour results in an additive contribution to the free propagator
proportional to one of the matrices k=m. On shell, i.e. for o (& 0
k?=m?, these are singular. The circles in Fig. 1 belong to the X{iyTy'kj—ml;Pex 'fy dboy"y-A(o) ¢ |-
retarded(black) and the advance(white) propagators. It is 0
important to note that either none of the poles is included in (20
a contour or both. This means that if one of these two propa-
gators is non-zero, the two singular matrices occur in a non- Now, one could start to expand the outer path-ordered
trivial linear combination, which yields an invertible matrix exponential in powers of the momentum term:

0 k. —
Yy o+ yki—m
+ 0(Yo—Xo)——5 ———
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N [ %o 0 X0 [ Yo 0 o i
Gh(Xo,Yo.K)=Pexp i [ déy v -A(éy)+ | déPexpi ; dboy”y-A(0o) {iv"[v'kj—ml}
Yo Yo 0

Xo o (Yo
+J dgof dﬂolpexp{|f dﬁo'yo'yA( 00)}
Yo Yo o

X{ivo[v"kj—m]}PeXp{ifgodﬁovoy-A(ﬁo)}{iVo[vjkj—m]}PeXp{ifﬂodﬁovoy-A(ﬁo)]+
70 Xo

)
XPeX% | f dﬂoyo'yA( 00)
X0

(21)

This corresponds to an expansion in powers of the on- i, GAN(XO,yO’lz)
shell energyw which can be understood by noting that . H
(Y’[Ykj—m])*=w? The weak-field approximation is
based on the investigation of a given number of the— , o[ J.
otherwise freely propagating—particle with the field which = lim T expiiy f ;. 4&lykiFy-AlGo) ~m]
could be termed “accelerations.” The strong-field approach N vt

comes up to an expansion in powers of what could be called _
the “inertia” becausew equals the(asymptoti¢ relativistic - = lim H 1+i9%(&,— £, D[ YK+ y-A(&) —m]
mass. In the lowest order of the strong-field approximation N—o ¥=0
the propagation of a particle without relativistic mass is gov- 5
erned only by the field. The higher order terms accord for +O (Xo—Yo)
deviations due to non-vanishing. N2
. . . X .
3. Abelian approximation :Pexp{ i yoj Odgo[ YK+ y- A(&)—m]

All of the above approximations in form of an expansion Yo

with respect to some part of the exponent are based on Eq. =Gy (Xo0,Yo K). (24)

(Ad). This is different for the Abelian approximation

schemés), i.e. a commutative approximation with respectto  To estimate the error for an interval width of— X,
the Clifford and the charge group algebra. The lowest ordee=2A, compare the lowest order result to the first order
G %(xq,Yo,K) Of the Abelian approximation is given by where the interval is divided into two halves exactly,

om|tt|ng the path-ordering in Ed9), A A
AGH=G%(0,2A,k)— G;(0,2A k)

GﬁO(xo,yo,@:exp{ i 70 f xodfo[vjkj+ Y'A(fo)_m]]- =G(0,24.K)
Yo

22 GY(0,A,K)GL(A,2A K). (25)

. N . ... With the help of the Baker-Campbell-Hausdorff formula
Higher order approximations are not given by additive
terms but by splitting Eq(22) at an ordered set of points, AGﬁzexp[gH(O,%,IZ)}—exp[gH(O,ZA,IZ)

+[gn(0A,K),gn(A,24,K) ]+ O(A%)}

N
- &y
GﬁN(Xo,VO,k):PH eXp{i)’OJ d
v=0 &

v+1

=—[gn(0,A,K),g1(A,24,k) ]+ O(A%)

. =— K )1+ 0(A*

X[')/ka'f")/'A(go)_m]], (23) [gH(OIAIk)ng(O!mlk)] O(A )
=—[gn(0,A,K),dg,(0,A,K)/dATA +O(A%).
(26)

With Xo=§o<&1<- - - <&y<&n+1=Yo for Xo<yo Or Xo
=&p> &> - > ENEn 1= Yo for Xg>Yyo. P denotes that The first occurrence of(A%) results from a Taylor ex-
the factors are ordered with respect to the indewith the  pansion of secondary and higher commutators. Thus, in lead-
lowest index furthest to the left. The choice of the interme-ing order of the width of the interval, the error is propor-
diate points¢, is not unique, but in the limit of infinitely tional to the commutator of the exponegf, and its first
small intervals the result always becomes exact, derivative at an intermediate point of the interval. For a con-
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stant integrandng(O,A,IZ)/dA, i.e. for a constant gauge Gﬂ(x3—y3:ko,I2T)
field A, the Abelian approximation is exact. Higher
order terms are required for fields that lead to a commu- 7 (ko)2—m3+ y%kg+ y’ky;—m
tator [gy(0,A,k),dgy(0,A,K)/dAJA not small against -7 2(ko)2—m2
GAO(O 2A IZ). (This comparison must be based on the defi-
H [} [} s 2_ .2 _
nition of an adequate norin. X e~V (ko)"=mr(x3=y3)

This result can be compared to the error estimate for the

3 T2 O
standard form of expressing a path-ordered exponential as a 3~ Y N(ko)"—mr— y Ko~ y'ky+ m

product of linear factorgsee Eq.11)]. For that representa- ’ 2\/(k0)2—m$
tion one finds
et \/(ko)Z*mTz(XB*h), (29)
AGL=1+20u4(0A k) with the transverse mass;= v|kg|2+m?2. This expression,
_ > ” 2 multiplied with 8(x3—Y3) in order to obtain a Green'’s func-
[1+9u(0,A72K)][1+9g4(0,34/2K) ]+ O(A%) tion from the homogeneous solution, is not proportional to
=[2g4(0,A IZ)—gH(O AJ2 IZ)—gH(O 20/2 IZ)] the free retarded propagator in this mixed representation.

~gn(0,A/2K)gn(0,30/2K) + O(A?) C. Light-like coordinates

= _gH(O,A,E)ZJr[gH(O,A,E),dgH(O,A,E)/dA]Alz As mentioned before, the present way to derive a homo-
) geneous solution cannot be followed if the four-veatais
+O(A9). (27)  light-like, because in that case n has no inverse. However,

for light-like coordinates there is a different approach that
leads to a solution foGy . In the case where the normal
Contrary toAG}}, AGy, does not become zero for a con- vector isn*“=(1,0,01)/1/2 Eq.(2) becomes

stant gauge field. In leading order it depends on the actual
value of the exponeng,,. Thus, its convergence becomes
slow not only for rapid changes of the gauge field but also
for large values of the field and/or large energies. Even the
free propagator then needs many terms to be approximated +y_AL(X_)—m{Gu(x_,y_ k_ ,ET):o, (30)
sufficiently well.

d ..
by g T y+lk-FA-(X)]=yr- [kt Ar(x-)]

with  v.=[vo*vs]/y2 and v.=v® where v
B. Space-like coordinates e{y.x,k,A(x_)}. Noting thaty, y_/2 andy_vy,/2 are two
The general solution scheme for a classical field, dependRrojection operators which project into disjoint subspaces of
ing on an arbitrary rectilinear coordinate x leading to Eq. the Clifford algebra and satisfy the completeness Eelatlon
(7) with the argument6), always yields a Green’s function Y+ Y-+ vy-vy+=2 the matrix functionGy(x_,y_ ;k_ Ky)
whose boundary conditions are given on a plane normal to can be split into By(x_,y_ k. ,Kr)=7y.G_(x_,y_;
Boundary conditions for propagators are given on surfaceg g )+ G, (x_,y_:k_,K;) with G.(x_,y_:k_,Ky)
with time-like normal vectors?>0. Hence, for a field only

depending on thex; coordinate[n*#=(0,0,0,1), only a =7:Gu(x,y- ik k). The argument will be suppressed

Green’s function, but not a propagator, is given by HGs. in_the following bgt ur_1ti| the end of thi_s sec_tion the aboyg
and (6). _mlxed representation is addressed. Using this decomposition
This can also be seen directly. The solution for the argu!n Eq. (30) leads to
mentgy(Xs,Ys;Ko.k7) according to Eq(6) is given by
; e e Y ae
gn(X3,Y3;Ko,Kr) 2 dx_ ~ 2 -t

Y-7+
2

X3 . R N
:_Wafy dég[ yokot+ ¥k + - A(£3) —ml, —[y1- (kt+ A7)+ m]Gy+ A,.G_=0. (31

3

(28)
Use has been made of the idempotency of the projectors
(y+v=/2)>=y.y-12 and their projection properties

with an implicit sum oveld € {1,2}. Repeating the steps that (y.vy-/2)y-=0 and (y.y+/2)y.=vy.. From here, two
led to the free homogeneous solution of the Dirac equation iequations can be obtained with the help of the projection
the casen?>0 in Eq. (10) yields operators
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d 1 . . . I1l. FERMION-ANTIFERMION PAIR PRODUCTION
idTG,+A+G,— E[yT.(kT+AT)+m]y,G+=O
B Here the results for the full propagator in an external field

1 depending on one rectilinear time-like coordinate are applied
(k_+A_)G, — =[yr- (k+ A7) +m]y,G_=0. to the problem of particle production due to vacuum polar-
2 ization. First it is argued where such a propagator is of use in
(32 describing the physics of fermions in a heavy-ion collision.
o _ Second, a detailed comparison of the different approximation
The second equation is purely algebraic and can be used t@hemes with the full solution for a given model field is
replaceG, in the first, presented.

This calculation can be understood in a twofold way. On
the one hand the field could be really an external field in the
sense of the production of particles via vacuum polarization.
.. It is determined by the dynamics of the physical system

X[yr-(kr+Ar)—m]G_=0. (33 without taking the back reaction of the particle creation into
account. This field is used to calculate how many particles
When postulating a connection between the matrix functiorwould be produced in its presence. This approach is justified
G_ and anotheg_ in direct analogy to Eq(3) the resulting  if the process of particle production constitutes merely a
differential equation is given by small perturbation. Whether this condition is fulfilled has to
be checked afterwards.

On the other hand, the field could already be a self-
consistent solution of a system of equations. For this solution
for the classical field one would like to know how many

X[ yr- (Kr+ A7) —m]—A, . (34)  particles were created in the process. In the present scenario
such a set of equations would include the Yang-Mills equa-
The equation can be solved by direct integration. As altions with the expectation value for the current of produced

ready argued before, in general the functio@al[g_] is fermions and antifermion&J,) and an(initially presenj ex-
given by the path-ordered exponential of its argungent In ~ ternal currentlg,,

the present situation already the absence of non-Abelian

charges turns it into an ordinary exponential because then it MF = [A* Fu]=dext (37, (36)
only contains the neutral element for multiplication of the

Clifford algebra. The other component of the matrix functionwith the gauge field4* and the corresponding field tensor
is given by the second of the equatiof®). Finally a ho- 7, =4, ,4,-9,4,—i[A,.A4,] in the adjoint representa-
mogeneous solution of the differential equati@d) has the  tion. The expectation value for the current can be obtained

d 1. . -
|dTGJ—E[yT~(kT+AT)+m](k,+A,) !

- d 1. . - -
IdTg—:_E['}’T'(kT+AT)+m](k—+A—) !

form from the causal propagatf?1]:
Gu(x_,y_:k_ ky) (I ~tr{y"Ge(x,x)}, (37
_ s -1 where the trace is only running over the matrices of the Clif-
2 ( Ve y- vk H A )] ford algebra and with the definition: G¢(X,X)

=lim,_ o[ Ge(Xx+ne,x)+Ge(x,x+ne)])/2  with n?>0.
X{;,T,[QTJFAT(X)]_m}) Higher-order radiative corrections are suppressed by powers

of the coupling constant which are not compensated by pow-

ers of the classical field. The causal propagator can be reex-

X_ 1 . . Bk
xPex;{iJ dg(_{;,T,[gTJFAT(g)]JFm} pressed as a linear combination of the retarded, the ad-
y_ 2 vanced, and the on-shell propagator,

X[K_+A_(£)] Yyr-[ke+Ar(E-)]—m} 1
Ge(x.Y)= 5[Gr(x.y) + Ga(x,y) + G(x.y)].  (38)
+A+<5>H. (35)

The advanced propagator can be obtained from the homoge-

If one tries to construct a propagator with the help of thisn€0US solutiorGy(Xo,Yo,k) for the equation of motion for
homogeneous solution it can only be retarded or advanced i€ Dirac Green's function by the relation

the light-like coordinatex_ . Alternative approaches can be . .

found in[20]. In the next section the production of fermion- iGA(X0,Y0,K) Y= —0(yo—X0)Gn(Xo,Yo.K). (39
antifermion pairs is described based on the results for the

fermion propagator in a field that depends on a time-likeThe on-shell propagator can be reexpressed in terms of the
coordinate. retarded and advanced one-particle scattering operdt6fs
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at z=0 [7]. Hence, in good approximation, fde>t;, and
|z|]<ti,, an in general proper-time dependent energy den-
sity can be reexpressed as an energy density depending on
kinematic timet. Let the entire energy density be initially
stored in an electric field of the forr&,(7) (component
along the hyperbolasin the present approach, this fact is
consistently approximated by a storage of the energy in
E,(t). In temporal gaugeA,=0) or even in Lorentz gauge
this is equivalent to a gauge field,(t). For this form of
gauge field, the retarded propagator has been derived in the
previous section.

In order to proceed, one needs to know how to describe
article production based on a given propagator. With the
ourier transform of the retarded propagator,

z

FIG. 2. Time dependence as an approximation to the situatio
found in the central region of a boost-invariant system. The proper
time 7 is constant on the hyperbolas.

d4p d4q —ig-xatip-

GR(va):J (277)4(277)49 47%e"PYGg(q,p) (42)

d4k . T —_— .

- 2_ 20 one can write the implicit definition of the corresponding

Gs(x) f (277)427T5(k M) GRATR(A.k) one-particle scattering operat@rin momentum space as
X (y-k+m)Za(k,p)G(p). (40) Gr(0,p)=(2m)*5“(q—p)GR(p)
0 0

The scattering operators are defined according to4g}. In +GRr(Q)X7(A,p) X GR(P). (42)

the present framework all required propagators are known @Bxplicitly, it is given by
functionals of the classical gauge fields. Hence, (B6) with

Eq. (37) constitutes an integro-differential equation for the d*k  d4l
classical gauge field. Its solution would yield the form of the 7(q,p)=vy-A(qQ—p)+ f PYRVIPRY
field. The expectation value for the produced fermions and (2m)" (2)

antifermions cpuld be calculated from this field_. - X y-A(q—K)Ggr(k,1) y- Al —p). (43

Let us consider a model for the classical radiation-field in
an ultrarelativistic heavy-ion collision. According to Bjorken In the following 7 always denotes theetarded one-particle
[17], the mid-rapidity region in a heavy-ion collision is char- scattering operator. The Born approximation, the expansion
acterized by boost invariant quantities, i.e. boost invarianto lowest order in the fields, is given by
along the beam direction. Let us consider a central collision -~
in a symmetric system in the center-of-mass frame. For ab- 7(a.p)=7-A(G-p). (44)
solute values of the longitudinal coording® smaller than  This term is always contained in the scattering operator. The
the kinematic timet in this frame of reference the depen- different approximation schemes discussed in the preceding
dence on proper time= \t?>—Zz? is approximated well by a section lead to differences in the remaining non-Bornian part
dependence on the kinematic timésee Fig. 2 Most of the  in Eq. (43). In the presence of a purely time-dependent field
energy is deposited during<t;, close to the collision point the retarded one-particle scattering operator becomes

ﬂq,p>=(2w>35<3>(&—5)[y-A(qo—po>+ f dxodyoe " 190%0e~Po¥oy. A(X0) Gr(Xo,Y0,P) ¥+ A(Yo)

=(2m)%8®)(q—p) Tdo,po) = (2m)26®(q— p)[ 78(do. Po) + TB(do, Po) 1, (45)

with the non-Bornian part7"8(qy,po). Due to the ing the full propagator in the scattering operator by terms
occurrence of the Diracd distribution the conservation from Eg. (18). Analogously, replacing the full propagator

of the total three-momentum becomes obvious. In pureby various approximations leads to the corres-
ly time-dependent fields the fermion-antifermion pairsponding approximations for the one-particle scattering op-
are always produced in @ack-to-back configuration. erator.

Terms of higher order in the gauge field—for instance From the retarded one-particle scattering operdfothe

in the weak-field expansion—can be obtained by replacexpectation value of produced pairs can be obtained
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d3q d*p  — V_ 370w+7jkj_m 3,0V
n)= u Ta(q, — 2, 7Y i A —— 4 7Y
(n) f 2 2m)s 2(277)3po| () 7Zr(9,—p)v(p)| 20 +
(46) Yw—ylk;+m
_i,y3%,y3ﬂV, (51)

where a summation over the spin degrees of freedom of the

unit spinorsu(q) and v(p) is understood and wherp,  with

=/|p|2+m? and qo= V|q]2+m?. For the special form of . ‘o

the scattering operator in spatially homogeneous purely timeTjV:Aiznf dxof dyye'“CotYolg*ie(o=Yog=*o/tog Yo to
dependent situations this simplifies to N 0 0

. _ (Ainto) /2 &)
(n)= f —2p|U(po,—5)7'(po,—po)v(po,+|5)|2, [1-iwtl[1-i(w*w)to]
4(2m)3 Po
(47) 2. The strong-field approximation

. For any purely time-dependent field, the general expres-
where use has been made of the relatjgi®(p—q)]> sion for the homogeneous solution in the lowest-order

=V (p—q)/(2m7)3. Carrying out the spin summation Strong-field approximation:

leads to Xo
4 GIHR(XO,YO,k):PeXW’i f dfoy°~y~A(§o>] (53)
4(2m)° d(n) ¥’pot ¥'p;—m Yo
Vo a3 =tr| 7(po, ~Po) Po is not much simpler to evaluate than the exact solution. How-
, ever, for a field of constant directioA,(t)=A X f(t) the
ot Oyopo—YJijrm path ordering can be dropped. In the lowest-order strong-
Xy T (Po,~Po) Y Po ' field approximation the non-Bornian part of the one-particle
scattering operator is
(48) g op
0 3 0 3
. Y —v R Y + Y R
In order to gain some insight into the behavior of the differ- TR=—i 2 TR 2 TR, (54)

ential expectation valugr momentum spectrunmand some

information on the quality of the different approximations with

without having to solve the Yang-Mills equatiori36) be- . .

forehand, the different formulas are going to be evaluated for TR- A2 f dXoJ Odyoeiw(xo+yo)e—xo Itog—Yo!to
a special choice of the field - "o 0

X exp{ FiA to[e X0 lo—g Yo/lo]}

AL () =0z,Aie”"00(1). (49)
5 (FiApto* 1

Many other forms could have been taken. This choice was = (Ainto) 20 P wtl-iot

also inspired by a numerical stufl$8] which indicates that a ' 0

the field decays in a similar fashion. In any case, the actual * (+iA T

. . . . (—'Amto) 1
form of the classical field has to be determined in a self- X E - , (55)
=0 ! v+ u+2—2iwt,

consistent calculation.
For this field, the one-particle scattering operator in Born, hare use has been made of the uniform convergence of the

approximation(44) is given by exponential series for bounded arguments. With formula
5 6.5.29 in[19]:
Y Ainto
TB(20)= N0 (50) 1 2 (—gn
1+ 2|t0w »y*(alz): z ( ) (56)
I'(a) =0 (a+n)n!

The following sections show the various approximations of
the remaining part of the retarded one-particle scattering o
erator in the field49).

for a bounded norm of\,tg

FiAto)” 1

TR=(Ajnto)? Zo (

1. The weak-field approximation n= m! ptl-ioty
The lowest-order weak-field term of the full propagator is Xy*(nt2—2iwty, FiAto)['(n+2-2iwty).
given by the free propagatdEq. (16) together with Eq. (57)
(10)]. Here, the non-Bornian part of the one-particle scatter-
ing operator is Formula 6.5.4 if19]
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—a

I'(a)

y*(a,2)= y(a,2) (59

leads to

) “ o1 Y(pu+1-2iwty, FiAtg)
R__(—n. 2iwty J—
TE=—(FAinto) /;1 P l-iwty/p

(59

In the case of multiple charges,,, can be decomposed ac-
cording toA;,= A, T? where theT? are the generators of the

PHYSICAL REVIEW B8, 105005 (2003

N

= 2 [n)(n|(F\qto)* o

n=1

Tr
=+

Sl 1-i(exky)te/p

(65

4. The Abelian approximation

In the lowest-order Abelian approximation the interacting
part of the retarded propagator is

corresponding algebra. Due to the requirement of unitarity
these generators have to be Hermitian. This is also true fqfth

any linear combination of the generators with real coeffi-

cients. Thus every matrikf,

nalized, yielding

T2 with real A7, can be diago-

N
ART*= 2 Aoln)(nl, (60)

TrA=+iTh+iT", (66)
Ti=A, f mdxo f XOdyoe‘“"xoﬂo)eii“‘xffyo)
0 0
0) + [ Ik . — 3K o+
< e *oltog-Yolto Y Qx[yky—yKs m]' 67

2Q

with the eigenvalues,, and theN orthonormal eigenvectors With the generalized energf) = ymr+K3 and the general-

In). The |n)(n| are projectors onto subspaces of differentized

charges. Thus one gets

N
TR=— 21 InY{(n|(F\ptg)2eto

lem l-iwty/u

(61)

3. The modified strong-field approximation

In the present situation the special form of the field allows
for a variation of the strong-field approximation, where the
component of the momentum parallel to the field—in this

casek;—is included in the exponent of the lowest-order ex-
pressionAz— Az +Kj:

"déoy®y kst As(£0)] |

GIHR/(XO,YO,E)ZPexp[i
Yo
(62

In the lowest-order modified strong-field approximation the

additional part of the one-particle scattering operator beyon
the Born approximation is

0 3 0 3
Y=Y v YTV R
5 TR —i TR

R _
T [ >

(63
with
TR _p2 f “dxg f " dy,ei(@ k)0 + Yol g~ xo/tog Yoo
- 0 0

X exp{ FiAjto[e X0 lo—g Yo/lo]}, (64)

Repeating the above steps leads to

momentum  Ky=kz+ A to(e X0 to—e Yo'to)/(x,

—Yo)-
Decomposition with respect to multiple charges leads to

N
« Xo )
=2 |n><n|)\ﬁf dXof dyge' ot Yo)
- n=1 0 0
% @F1n(Xo—Y0) @~ %0 /tog=Yo/to

" Y= [ vk ¥3(Ka)p+m]
20, '

(68)

with the generalized energ ,= \/mT2+(K3)n2 and the gen-
eralized momentumK3),=kz+ A pto(e X0 to—e Yo/to)/(x,
—Yo) belonging to the respective eigenvalug. The modi-
fication to the longitudinal momentum is equal to the arith-
metic average of the gauge field over the interwg,y].
Hence the Abelian approximation can be interpreted as the
description of the propagation of the fermions with their ar-
ithmetically averaged canonical momentum. In the weak-
field expansion they are propagated with their asymptotic
kinematic momentum. Higher orders in the Abelian approxi-

ation scheme make better approximations similar to a Fou-
ier series. The particle is propagated with its canonical mo-
mentum averaged over every piece of the trajectory. The
finer the partitioning of the path, the closer the average ca-
nonical momentum is to its actual value in a particular inter-
val. In the weak-field perturbative approximation scheme the
particle is always propagated with its asymptotic kinetic mo-
mentum. For higher orders it only interacts with the field
more and more often.

For the strong-field approximation and the modified
strong-field approximation the replacement of the path-
ordered exponential by an exponential function is only pos-
sible due to the special form of the field. In the Abelian
approximation scheme this exchange is possible in the pres-
ence of an arbitrary field.
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The decomposition with respect to the charge projectors isalue of the longitudinal momenturk,. In other words it
also possible for the full non-Bornian part and the omnipresincreases in height and decreases in wjdte especially the
ent Born part of the one-particle scattering operaf®r  different scale of the transverse momentum axis in Fig)]4
=3N_.|n)(n|T2. Hence, the whole operator can always beActually, the differential expectation value is a function of
decomposed with respect to the same projectdfs the variable wt,. Hence the width of the transverse-
:§§:l|n><n|[7ﬁ+74:8]_ In the squared expression neededmomentum spectrum for massless particles at mid rapidity
to calculate the expectation value the contributions belongingcales exactly inversely proportionallytg@ The same holds
to the different projectors do not mix. They lead to a sumstill after » andt, have been rescaled with, . For fields of
over the expectation values for the different charge suba functional form analogous to that of the present special
spaces model field the peak height seems to be strictly monotoni-
cally decreasing with increasing longitudinal momentum, as
is suggested in Fig.(d). Further, at zero transverse momen-
E In")}{(n"| Ty E In"W(n"| 7%, tum no particles are produced; the fermions and antifermions
= are never produced with momenta along the direction of the

N N field but preferentially with momenta perpendicular to the
2 nNen' = 2 field.
ngl [ ZoFrefIn )} zl Kl A comparison of the different approaches shows that for
large momenta all approximations and the exact solution
where tg denotes the trace over the generators of the chargend towards the Born result. This is due to the form of the
group. If the eigenvectolis’) are normalized, the remaining one-particle scattering operat@¥3). Together with the Born
trace is equal to unity. Due to these facts, it suffices to comapproximation all other graphs tend toward zero for higher
pare the contributions from the different approximationparticle energies. As shown in Fig(® the Born approach
schemes for one of the sub-spaces. overestimates the exact value for low momenta but underes-

It is always possible to measure all momenta, energiegimates it for high momenta. The weak-field approximation
and gauge field strengths in units of a scale parameter witls an improvement compared to the Born approach for most
the dimension of momentum. Then all lengths and timessalues of the transverse momentum. Looking at F{g) the
have to be given in units of inverse momenta. In the follow-strong field and the modified strong field are generally closer
ing, the eigenvalue belonging to the corresponding subspaae the exact result than the weak-field approximation. How-
is chosen as a scale parameter and is going to be callesier, for more general forms of time-dependent fields the
Ai, /g again. The calculations are carried out assuming thapropagators in these schemes are not much simpler to deal
all the energy of the system is included in one of the subwith than the full one. The modified strong-field approxima-
spaces. tion even ceases to be available because the terms longitudi-

The expected energy density produced in a central heavyral and transverse might no longer be well defined with re-
ion collision at LHC (Pb-Pb at s=5.5TeV) is € spect to the field. For all momenta the Abelian
~1000 GeV/fni [7-9]. For the strong coupling constant approximation schemgsee Fig. 8d)] is closest to the exact
one expectsrg~0.15[9]. If all the energy density was de- values. The largest deviations are found for small energies
posited in the field sector a rough estimate for the initialand large values of the paramefgpt, [compare Figs. @),
gauge field magnitude would b~ \/g§725~2 GeV. For 4(a), and 4b)]. The reason is that there the situation is maxi-
RHIC (Au-Au at \/s=200 GeV) the typical coupling con- mally non-Abelian, i.e. there the condition, where the typical
stant is aroundag~0.33 and the initial energy density = commutator of the exponeut,(Xo,Yo, k) at different points
~50 GeV/f?. This would lead taA;,~1 GeV. With decay is negligible with respect to the typical propagator, is least
times in the range from 0.1 fm/c to 0.5 fm/c this leads towell satisfied[see also Eq(26)]. While for low values of
Ainto between 0.5 and 5.0. Here only massless particles ar&,t, the Born approximation is reasonably good it is not
investigated. appropriate for large valudsee Fig. 4.

The expressions for the Boi®0) and the weak-field ap-
proximation(51) can be evaluated straightforwardly. For the
strong-field(54) and the modified strong-field approa@8)
the few first terms of the infinite series representations suf- The exact homogeneous solutions for the Dirac equation
fice for obtaining an accurate result. The integrals for then a gauge field depending on one rectilinear coordinate has
Abelian approximation have to be treated with standard nubeen presented. An alternative way had to be taken for a
merical methods. The exact solution requires the handling oflependence on a light-like coordinate. In the case where this
path-ordered exponentials and subsequent integrations.  coordinate was time-like, the retarded propagator has been

The general aspects of the exact solution for the momenreonstructed from the homogeneous solution. The analogous
tum spectrum(48) are best seen in Figs(88 and 4. As a result for a space-like coordinate was seen to constitute a
function of the transverse momentuky it peaks once and Dirac Green’s function but not a propagator.
shows no further relative extrema or other distinct structures. For the situation of a time-like coordinate various ap-
For increasing values of the paramefgst, [from Fig. 4a)  proximation schemes for the exact solution have been deter-
over Fig. 3a) to Fig. 4b)] the peak in the transverse mo- mined. Explicitly, these are the weak-field approximation,
mentum spectrum becomes more pronounced for a fixethe strong-field approach, and the Abelian approximation.

N

IV. SUMMARY
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(solid) compared to the strong-fiel[dashegland the modified strong-fiel@ray) approximation(d) The exact resultsolid) compared to the
Abelian (dashed approximation.
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Additionally, a larger variety of approximations can be ob-am particularly indebted to J. Reinhardt and D. Rischke for
tained with the help of the general resummation formula. their efforts in helping me to complete this work. It has been
Subsequently, the retarded fermion propagator and all thénancially supported by the Graduierterderung des Lan-
lowest orders of the various approximation schemes in th€es Hessen and by the Gesellschaft &chwerionenfor-

presence of a gauge field depending on one rectilinear timeéchung.
like coordinate have been used to calculate the momentum
spectrum of produced fermion-antifermion pairs. The result- APPENDIX: GENERAL RESUMMATION FORMULA

ing expressions are evaluated for a decaying model field and |n general, a path-ordered exponential with an integrand
the results are mutually compared for parameters expected tfepending on a single variablg, can be rewritten in the
be found in ultrarelativistic heavy-ion collisions. In this situ- following way:
ation an additional modified strong-field approximation ‘o
could be obtained.

In the present situation, the exact momentum spectrum iz:,D eXW’ fyo ng[B(gOHC(EO)]]
a singly peaked function of the transverse momentum with .
no further distinct structure. The quality of the approxima- -y Xodg Fldg F'*ldg
tions increases from the Born approach over the lowest-order =0 Jy, 1 Yo 20 !
weak field, strong field, and modified strong field, towards
the Abelian approximation. It should be mentioned that in
more general situations the strong field and the modified
strong field approaches are not much simpler to evaluate than
the full result. The model parameterAg,t,. It is the product
of the initial magnitude of the gauge fiekl,, and the decay
time scale of the field. For the smallest expected values the ; ;
Born approximation is still acceptable. Nevertheless, the -1 '
other schemes like the Abelian or the enhanced strong field xPex;)[Ll ngB(go)} C(gl)PeXpUyodgoB(&))}'
are even better. For the highest values of the decay time only
the latter come close to the exact result. Hence, in order to (A1)
ensure the maximum possible independence from the scale Making use of the group property valid for the present
parameteA,t, without having to evaluate the exact solution path-ordered exponentials,
it would be best to use the Abelian approximation for self-

Yo

xpexp{ f;"dgoB(go)]cw

&
XPGXD{ L dfoB(fo)]C(éz)‘ =
2

1 H X Z
consistent calculations. Pexﬁ’f OdgoB(go)]xPexp‘f OdgoB(go)]
2o Yo
ACKNOWLEDGMENTS «
0
Helpful discussions with A. Dang, S. Hofmann, K. Ka- =P eXp{ , dfoB(fo)} (A2)
0

jantie, A. Mishra, J. Reinhardt, D. Rischke, J. Ruppert, and
S. Schramm are gratefully acknowledged. In this context, the above equation can be reexpressed as

Pexp{ yxodgo[B(fo) + C(go)]}
0

Xo ” Xo &1 é1-1 0
=7>exp[ fy d§OB<§o)}|EO y dflfy dgz---fy' dfuPeXp[ fy dgoB(fo)}
0 = 0 0 0 X0

Xo 31 Yo X0
XPEXP[f d&oB(£o) | C(&1)Pex f d&oB(&o) [ Pex f d&oB(&o) | Pex f d§oB(§o)]C(§z)
& Yo Xo &

& Yo X0 &
XPeXP[ déoB(fo)J X XPGXW’ f déoB(fo)PDEXP[ J’ dgoB(fo)} C(f|)7DeXP[ f dfoB(fo)]
Yo Xg 5] Yo

Xo Yo Yo Xo o
=Pex f d&oB(&p) | Pex Pexp[f dz,B(zp) f déoPex f dz,B(zp) C(fo)Pexp[f dz,B(zp)
Yo X0 X0 o Yo

(A3)

Again, by virtue of the group property the most compact form is given by
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X0
=73exp[ Jy ngB(go)} Pex;{
0

Pexpl jyxodfo[B(éo) +C(&o)]
0

J

Xo Yo )
ngPeXp[ L dzOB(zo)]C(go)Pexp{ fy dZoB(Zo)}
) )

PHYSICAL REVIEW B8, 105005 (2003

(A4)

Summarizing, more general resummations are possible ithe above expression reduces to

which the dominant quantity can be chosen arbitrarily. Fur-
ther, the above steps can be repeated so as to resum t
obtained quantity several times, e.g. after split@(d&,) into

a dominant part and a deviation.

Write the Fourier transformed Dirac equation in a generic

form, where the dependence rwill not be denoted in the
following:

d
K‘B(Xo)_c(xo) Gy (Xg,Yo)=0. (A5)
0
With the ansatz
Gh(X0.Y0) =U(X0,Y0)Gr(X0.Yo) (A6)

and the product rule for differentiation, one obtains

Gh(Xo,Yo) + U(X0,Y0)

d d .
EU(XO:VO) d_XOGH(Xano)}

—[B(Xo) + C(X0) U (X0,Y0) Gh(Xo,Y0) = 0.

When postulating thatU(xq,yo) satisfies the differential
equation

(A7)

d
——U(X0,Yo) —B(X)U(Xg,Y0) =0, (A8)

tﬁXanO)

The above result can also be obtained in another way.,

and

—C(X0)U(X0,Y0)Gr(Xo,Y0) = 0.
(A9)

d .
d_XOGH(XOryO)

his formula can be transformed by multiplying with
U~ Y(xg,Yo) from the left

d . ~
[EGH(XO -YO)} —U " 1(X0,Y0)C(X0)U(X0,Y0) GH(Xo,Yo)

=0. (A10)

As has been shown above, the solutions for the preceding
equation and Eq(A8) are given by

G(Xo,Yo) :PeXP[ fyxodfou “1(&,Y0)C(&n)U(& ,YO)]

(A1)

U(Xo,yo)=7>exp[ fyXOdEOB(go)}, (A12)
0

respectively. Making use of the group propei®2), the last
line of Eq. (A3) is reproduced. These derivations can be
repeated for any variabla-x. Only for n?=0 the Dirac

dxo equation cannot be written in the generic fotAb).
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