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Fermion production in time-dependent fields
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The exact fermion propagator in a classical time-dependent gauge field is derived by solving the equation of
motion for the Dirac Green’s functions. From the retarded propagator obtained in this way the momentum
spectrum for the produced fermion pairs is calculated. Different approximations and the exact solution for the
propagator and the momentum spectrum are presented.
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I. INTRODUCTION

Particle production in classical bosonic fields has bee
topic of continuing interest in quantum electrodynam
~QED! and quantum chromodynamics~QCD!. It is relevant
for the physics of the early Universe@1# as well as of ul-
trarelativistic heavy-ion collisions and the quark-glu
plasma@2# ~QGP!. A lot of effort is made to study the QGP’
production and equilibration@3# in nuclear collision experi-
ments at the Relativistic Heavy-Ion Collider~RHIC! at the
Brookhaven National Laboratory~BNL! and the Large Had-
ron Collider ~LHC! under construction at CERN. The exi
tence of such a state of matter is predicted by lattice Q
calculations at high temperatures@4#.

At ultrarelativistic energies, the two nuclei are highly Lo
entz contracted. When they pass through each other, a c
moelectric field is formed due to the exchange of soft gluo
@5#. This is a natural extension of the color flux-tube mod
or the string model which are widely applied to high-ener
pp, e1e2, andpA collisions@6#. Many other recent publica
tions, e.g.,@7–10#, are based on the hypothesis that the init
state in heavy-ion collisions is dominated by gluons wh
on account of the large occupation number can be treate
a classical background field.

The larger the occupation number^ck
†ck& of the bosonic

sector of a physical system, the better it can be describe
a classical field. Hereck andck

† are the bosonic field annihi
lation and creation operators for particles of momentumk.
Especially if the occupation number is much larger than o
the commutator of the creation and annihilation operator
hence quantum effects can be neglected:@ck

† ,ck#51
!^ck

†ck&. The field operators can be approximated by co
plex numbers; i.e., they are treated classically.

For gluons in a heavy-ion collision at RHIC withAs
5130 GeV the initial occupation number for gluons of a
erage transverse momentumukWTu'1 GeV in the center of the
collisions is roughly equal to 1.5@11#. Although this number
is not much larger than unity, the classical field as the exp
tation value of the gauge field still constitutes the main c
tribution as compared to the fluctuations of the gauge fie
The occupation number for lower transverse momenta is
higher and the classical concept is an even better approx
tion. For larger transverse momenta the occupation num
is smaller and thus the quantum fluctuations are more im
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tant there. As the above value for the occupation numbe
the average transverse momentum is larger than one, kee
only classical bosons is justified as a first approximati
One can investigate quantum fluctuations in a subseq
step.

The high-occupation number bosonic fields are of the
der A;g21. Thus processes with multiple couplings to th
classical field are not parametrically suppressed by power
the coupling constantg. Without an additional scale, the
have to be taken into account to all orders. Under the p
requisite of weak coupling, the most important quantum p
cesses involve only terms of the classical action which are
second order in the quantum fields. These are the ferm
and the antifermion fields as well as the field of the boso
quantum fluctuations. The coefficient of the second or
terms for a given field constitutes the inverse of the cor
sponding two-point Green’s function. Inversion for select
boundary conditions yields the particle’s propagat
The propagators contain all the information on tw
~quantum-!particle reactions in the presence of classi
fields to all orders in the coupling constantg. These reactions
are scattering off the classical field or particle production
vacuum polarization.

In the following let us consider particle production. I
quantum electrodynamics this means the production
electron-positron pairs. Analogously, in quantum chromo
namics quark-antiquark pairs can be produced. However,
to the non-linearity of the field tensor pairs of gluonic qua
tum fluctuations are produced, too. In fields of the magnitu
A;g21 the production of both kinds of pairs is equally par
metrically favored. This paper only deals with the producti
of fermions and antifermions. It is possible that in a giv
situation the bosonic sector is covered by the concept o
classical field sufficiently well. Corrections to the high
momentum sector could be perturbatively accessible@12#.

No concept of a classical field exists for the fermion
sector. There the occupation number has always to be
than unity due to the Pauli principle. A purely perturbati
treatment could only describe the high-momentum sec
The soft part would not be treated consistently.

An alternative to the perturbative approach for partic
production is Schwinger’s constant-field method@13# which
is an exact one-loop non-perturbative approach. This met
can also be understood as semiclassical tunneling acros
mass gap@14#. However, this scheme is based on the
©2003 The American Physical Society05-1
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DENNIS D. DIETRICH PHYSICAL REVIEW D68, 105005 ~2003!
sumption of a slowly varying classical field. If the fiel
changes too rapidly in space or time, the production of
mions is again not described properly. A different concep
needed that is independent of energy or time scales, res
tively. Such a concept is especially important, if the tim
scale for a process is to be determined by a self-consis
calculation. If an approach is applied for such an investi
tion, which relies already on an assumption about the t
scale, the result is likely to be misleading. For example
the decay time scale for a classical field is to be calcula
based on particle production, perturbative concepts are lik
to lead to times which are too short, while the Schwing
method tends to predict a development of the system th
too slow.

For a concise treatment other methods are necessary
act results are desirable but hard to obtain. As mentio
before, neglecting bosonic quantum fluctuations the beha
of the fermions is governed by their two-point functions
the classic background field. It can be obtained by solv
the equation of motion for the Dirac Green’s functio
G(x,y) exactly:

@ ig•]~x!1g•A~x!2m#G~x,y!5d (4)~x2y!. ~1!

There are other ways to derive the full propagator, for
stance by resumming all terms of the perturbative serie
by adding up a set of~at all times complete! wave-function
solutions of the Dirac equation.

In arbitrary fields a few general approximations a
known. Neglecting the field in the equation of motion lea
to the free Green’s functionG0(x2y). The standard pertur
bative series is a sum of terms containing powers of
background fieldA between free Green’s functions. Th
asymptotic behavior of the free Green’s function determi
that of the approximated full Green’s function. Another a
proach which applies in an arbitrary field is the static a
proximationGS(x,y). It is obtained by neglecting the spati
part of the covariant derivative in the differential equatio
The remaining ordinary differential equation can be solv
by direct integration. Yet another approach can be found
@15#.

The following investigation concerns the case where
classical field depends arbitrarily on one rectilinear coor
nateA5A(n•x). The equation of motion for the propagato
shall be solved directly. If such solutions are investigat
care has to be taken: the result could be any Green’s func
which is not necessarily a propagator. If a propagator
been obtained, the imposed boundary conditions determ
whether the result is the retarded or the Feynman propag
or one of their related singular functions.

A solution in a field depending on one rectilinear coor
nate can also be seen as an approximation for the case w
the strongest dependence is on this rectilinear coordinate
the dependence on all the others is much weaker.

It will be explored whether an approximation scheme c
be found that is independent of assumptions on time an
energy scales over a large range of parameters. The inv
gated approximations are the Born, the weak-field,
strong-field, and the Abelian approximation. The weak-fi
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approach is an expansion in powers of the gauge fieldA
based on the free propagator and valid forA!v. v stands
for the on-shell energy of the described particles. The stro
field approximation is justified forv!A and consists of an
expansion in powers of the on-shell energy. For the Abel
approach the commutators of the elements of the Cliff
and the charge algebra are neglected.

Section II includes the exact solution of the equation
motion for the Dirac Green’s function and gives several a
proximations to the full solution. Section III contains th
application of the previous findings to the problem of partic
production and the comparison of the different schemes
the exact result. In Sec. IV the contents of the paper
summarized.

Throughout the paper the metric isgmn5diag(1,21,21,
21), angular momenta are measured in units of\, and ve-
locities in fractions of the speed of lightc. From hereon, the
coupling constant is included in the classical field:gAold

m

5Anew
m .

II. DETERMINATION OF THE PROPAGATOR

Let us consider homogeneous solutionsGH(x,y) of
Dirac’s equation~1!. In the special class of fields which onl
depend on one rectilinear coordinaten•x this equation can
be Fourier transformed~three dimensionally! into an ordi-
nary differential equation:

F i ~g•n!
d

d~n•x!
1g•k1g•A~n•x!2mGGH~n•x,n•y,k!

50, ~2!

with the conserved three-dimensional momentum coordin
k5k2n](k•x)/](n•x)orthogonal ton and wherek stands
for the four-momentum. As a furtheransatzthe matrix func-
tion GH(n•x,n•y,k) is to be a functional of another matri
function gH(n•x,n•y,k) with a special property for the de
rivative

d

d~n•x!
GH@gH~n•x,n•y,k!#

5F d

d~n•x!
gH~n•x,n•y,k!GGH@gH~n•x,n•y,k!#,

~3!

which looks like the derivative of an exponential functio
but is not quite due to the matrix structure. Provided a fu
tion gH(n•x,n•y,k) exists which satisfies Eq.~3!, the form
of the functionalGH@gH(n•x,n•y,k)# can be determined
Exploiting the above property leads to a factorizati
in Eq. ~2!:

F i ~g•n!
d

d~n•x!
gH~n•x,n•y,k!1g•k1g•A~n•x!2mG

3GH@gH~n•x,n•y,k!#50. ~4!
5-2
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FERMION PRODUCTION IN TIME-DEPENDENT FIELDS PHYSICAL REVIEW D68, 105005 ~2003!
Given the existence of a solutionGH other than the trivial
solution, its matrix structure can be inverted. Multiplicatio
with the inverse of the solution from the right then yields
differential equation for the functiongH ,

i ~g•n!
d

d~n•x!
gH~n•x,n•y,k!1g•k1g•A~n•x!2m50.

~5!

This ordinary differential equation can be solved by dire
integration where the initial conditiongH(n•x5n•y,
n•y,k)50 is chosen,

gH~n•x,n•y,k!5 i
g•n

n2 E
n•y

n•x

d~n•j!@g•k1g•A~n•j!2m#.

~6!

Here it is necessary to requiren2Þ0. Otherwise, the matrix
g•n does not posses an inverse because of det$g•n%
5(n2)2. For cases withn250 a different treatment is nec
essary.

In general, the argument functiongH does not commute
with itself at different pointsn•x. This is not~only! due to
non-Abelian charges which might be included in the vec
field A but to the non-commutative nature of the elements
the Clifford algebra. Thus the solution of Eq.~3! is not an
exponential function but a path-ordered exponential:

GH@gH~n•x,n•y,k!#5P exp$gH~n•x,n•y,k!%. ~7!

A sufficient but not necessary condition for its existence
that the norm of the integrand in Eq.~6! is bounded. It has to
be noted that the invariance of an integral under the sim
taneous exchange of the integration boundaries and the
version of the sign cannot be used in Eq.~6! because the path
ordering would be reversed.

If a more general initial condition had been chosen in E
~6! the additional addendgH(n•y,n•y,k) would have lacked
an ordering parameter necessary for the path order
Hence, it could only be treated by always setting it to t
right-hand side~rhs! of the remaining path-ordered expone
tial. This would have led to an extra factor3exp$gH(n•y,
n•y,kW)%. As here a homogeneous differential equation is
vestigated this factor does not lead to independent soluti

Hereafter one has only to distinguish between the ca
n2.0 and n2,0, because every fieldA5A(n•x) can be
transformed into a field A5A(n8•x) with sgn(n2)
5sgn(n82) by a Lorentz transformation. Overall factors
front of the normal vectors can be absorbed in a redefini
of the vector potentialA. So, for the sake of simplicity it
suffices to investigate one special case per class of fie
This is going to be done for the cases ofnm5(1,0,0,0) and
nm5(0,0,0,1). In situations wheren250, rotations in three-
space can turn any normal vectorn into nm5(1,0,0,
21)/A2.
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A. Time-like coordinates

For a purely time-dependent field, the solution f
gH(x0 ,y0 ,kW ) in Eq. ~6! is given by

gH~x0 ,y0 ,kW !5 ig0E
y0

x0
dj0@g j kj1g•A~j0!2m#, ~8!

with j P$1,2,3%. Constructing the matrix function
GH(x0 ,y0 ,kW ) by setting Eq.~8! into Eq. ~7! leads to

GH~x0 ,y0 ,kW !5P expH ig0E
y0

x0
dj0@g j kj1g•A~j0!2m#J .

~9!

In the following, various approximations are studied in ord
to learn more about the above solution.

1. Weak-field approximation

It is useful to investigate the case of a vanishing gau
field A50. One then sees that the argumentgH

0 (x02y0 ,kW )
now commutes with itself at different space-time points. T
path-ordered exponential can now be replaced by an ex
nential function. The exponential function of matrices can
recast into exponential functions of scalar arguments mu
plied with matrices:

GH
0 ~x02y0 ,kW !5g0

g0v1g j kj2m

2v
e1 iv(x02y0)

1g0
g0v2g j kj1m

2v
e2 iv(x02y0), ~10!

with v5AukW u21m2.
Standard perturbation theory for small gauge fieldsA

!v which can be interpreted as an ultraviolet approximat
is obtained by expanding the exact solution in powers ofA.
Prior to this, it has to be rewritten in order to include a
powers of the momenta and the mass with every factor of
field. The path-ordered exponential can be expressed as

GH~x0 ,y0 ,kW !5 lim
N→`

P)
n50

N21

$11 ig0Dj0
(n)

3@g j kj1g•A~j0
(n)!2m#%. ~11!

The interval@x0 ,y0# is decomposed intoN disjoint pieces
with the lengthsDj0

(n) which need not be equal and eac
with an inner pointj0

(n) . These are arranged according
x05j0,j1,•••,jN,jN115y0 for x0,y0 or x05j0.j1
.•••.jN.jN115y0 for x0.y0 . P indicates that the fac-
tors are ordered with respect to the indexn where the term
with the lowest index is put furthest to the left. The expre
sion can now be sorted with respect to powers of the fieldA,
5-3
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GH~x0 ,y0 ,kW !5 lim
N→`

(
l 50

N

(
n150

N21

(
n25n111

N21

. . . (
nl5nl 2111

N21

)
L50

n121

~11 ig0Dj0
(L)@g j kj2m# !3@ ig0g•A~j0

(n1)
!Dj0

(n1)
#

3 )
L5n111

n221

~11 ig0Dj0
(L)@g j kj2m# !3@ ig0g•A~j0

(n2)
!Dj0

(n2)
#3•••

3 )
L5nl 2111

nl21

~11 ig0Dj0
(L)@g j kj2m# !3@ ig0g•A~j0

(nl 21)
!Dj0

(nl 21)
# )

L5nl11

N21

~11 ig0Dj0
(L)@g j kj2m# !.

~12!

For l 50 there are no further sums overni . Sums and products are not taken into account if the starting index is greate
the ending index. In the limitN→` the outer sum over the powersl of the gauge fieldA becomes an infinite sum, th
intermediate sums turn into integrals over simplices, and the products give path-ordered exponentials. In fact, their a
commute at every point, thus the path ordering can be dropped here

GH~x0 ,y0 ,kW !5(
l 50

` E
y0

x0
dj1E

y0

j1
dj2•••E

y0

j l 21
dj lexp$ ig0@g j kj2m#~x02j1!%3@ ig0g•A~j1!#exp$ ig0@g j kj2m#~j12j2!%

3@ ig0g•A~j2!#3•••3exp$ ig0@g j kj2m#~j l 212j l !%3@ ig0g•A~j l !#exp$ ig0@g j kj2m#~j l2y0!%. ~13!
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This expression is a uniformly and absolutely converg
series representation for a path-ordered exponential,

GH~x0 ,y0 ,kW !5GH
0 ~x02y0 ,kW !P expH E

y0

x0
dj0GH

0 ~y02j0 ,kW !

3@ ig0g•A~j0!#GH
0 ~j02y0 ,kW !J . ~14!

The above derivation is a special case of a more gen
identity for the type of path-ordered exponentials enco
tered here~see the Appendix!. The expansion of this formula
in powers ofA yields

GH~x0 ,y0 ,kW !5GH
0 ~x02y0 ,kW !1E

y0

x0
dj0GH

0 ~x02j0 ,kW !

3@ ig0g•A~j0!#GH
0 ~j02y0 ,kW !

1E
y0

x0
dj0E

y0

j0
dh0GH

0 ~x02j0 ,kW !

3@ ig0g•A~j0!#GH
0 ~j02h0 ,kW !

3@ ig0g•A~h0!#GH
0 ~h02y0 ,kW !1•••.

~15!

Up to now, only the solutionGH(x0 ,y0 ,kW ) of the homo-
geneous Dirac equation in the mixed representation has
investigated. According to the equation of motion~1! the
inhomogeneous solutioniG(x0 ,y0 ,kW )g0 must jump by one
at x05y0. The retarded propagatorGR(x0 ,y0 ,kW ) vanishes
for negative time differencesx02y0,0. Due to the previous
requirement on the argumentgH(x05y0 ,y0 ,kW )50 one has
for the homogeneous solutionGH(x05y0 ,y0 ,kW )51. Hence,
10500
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the following condition has to be fulfilled in order to rela
the latter and the retarded propagator:

iGR~x0 ,y0 ,kW !g05u~x02y0!GH~x0 ,y0 ,kW !. ~16!

It should be noted that if the case of a different, mo
general coordinate withn2.0 should have been investigate
at this point, the additional requirementn0.0 would be
needed here in order to ensure that really theretardedpropa-
gator is obtained. However, this can always be achieved b
redefinition of the functional form of the vector potential.

All results obtained for the homogeneous solution
Dirac’s equation in the present mixed representation
linked directly to the Green’s functionGR(x0 ,y0 ,kW ) by Eq.
~16!. After putting Eq.~15! into the previous expression, th
Heaviside function can be multiplied to every free homog
neous solutionGH

0 (z0 ,kW ),

iGR~x0 ,y0 ,kW !g0

5u~x02y0!GH
0 ~x02y0 ,kW !

1E
y0

x0
dj0u~x02j0!GH

0 ~x02j0 ,kW !

3@ ig0g•A~j0!#u~j02y0!GH
0 ~j02y0 ,kW !

1E
y0

x0
dj0E

y0

j0
dh0u~x02j0!GH

0 ~x02j0 ,kW !

3@ ig0g•A~j0!#u~j02h0!GH
0 ~j02h0 ,kW !

3@ ig0g•A~h0!#u~h02y0!GH
0 ~h02y0 ,kW !1•••.

~17!
5-4
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FERMION PRODUCTION IN TIME-DEPENDENT FIELDS PHYSICAL REVIEW D68, 105005 ~2003!
This is possible due to the idempotency of the Heavis
function and the fact thatu(x02j0)u(j02y0)5u(x02y0)
if j0P@x0 ,y0#. Subsequently, in accordance with Eq.~16!,
the result can be reexpressed in terms of free Greens’s f
tions

iGR~x0 ,y0 ,kW !5 iGR
0~x02y0 ,kW !1E

x0

y0
dj0iGR

0~x02j0 ,kW !

3@ ig•A~j0!# iGR
0~j02y0 ,kW !

1E
x0

y0
dj0E

j0

y0
dh0iGR

0~x02j0 ,kW !

3@ ig•A~j0!# iGR
0~j02h0 ,kW !

3@ ig•A~h0!# iGR
0~h02y0 ,kW !1•••. ~18!

Note that in the literature slightly different definitions e
ist for the propagator which account for the various occ
rences of the imaginary uniti. The full retarded propagato
GR(x0 ,y0 ,kW ) inherits the asymptotic behavior of the free r
tarded propagatorGR

0(x02y0 ,kW ) by virtue of the above for-
mula ~18!.

The full Feynman, i.e. time-ordered propagator, canno
expressed as a path-ordered exponential because it is de
with mixed boundary conditions: for the positive ener
components atx0→2` and for the negative energy comp
nents atx0→1`. This can also be seen from the free Fey
man propagator

iGF
0~x02y0 ,kW !5u~x02y0!

g0v2g j kj1m

2v
e2 iv(x02y0)

1u~y02x0!
g0v1g j kj2m

2v
e1 iv(x02y0)

~19!

which is a singular object in this and every mixed repres
tation. That can be understood by looking at Fig. 1. Thus
impossible to take its logarithm and express it as an ex
nential function. This is why the Feynman propagator can
be equal to a path-ordered exponential of the form~9!.

Figure 1 shows the contour integrations in the complexk0
plane which have to be carried out in order to determine
contributions from the different poles of the correspond
propagator in momentum representation to that propagato
the mixed representation. Every pole included inside a c
tour results in an additive contribution to the free propaga
proportional to one of the matricesg•k6m. On shell, i.e. for
k25m2, these are singular. The circles in Fig. 1 belong to
retarded~black! and the advanced~white! propagators. It is
important to note that either none of the poles is included
a contour or both. This means that if one of these two pro
gators is non-zero, the two singular matrices occur in a n
trivial linear combination, which yields an invertible matr
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structure. This is different for the Feynman propagator a
its relatives. There only one pole at a time is included in
contour. Thus these propagators are always non-invertib

2. Strong-field approximation

The previous expansion which is appropriate for we
fields A(t)!v could be interpreted as a ultraviolet approx
mation. An infrared expansion requires a strong fieldA(t)
@v. It can be obtained by applying the resummation f
mula of the Appendix in a different way. Resumming a
scattering processes with the field for each power of the m
mentum, one obtains

GH~x0 ,y0 ,kW !

5P expH i E
y0

x0
dj0g0g•A~j0!J

3P expF E
y0

x0
dj0P expH i E

j0

y0
du0g0g•A~u0!J

3$ ig0@g j kj2m#%P expH i E
y0

j0
du0g0g•A~u0!J G .

~20!

Now, one could start to expand the outer path-orde
exponential in powers of the momentum term:

Imk0

Rek0

FIG. 1. Contour integration in the complexk0 plane for the
determination of the Green’s function with the correct asympto
behavior. The circles indicate the pairs of positions to which
poles are moved off the real axis by virtue of the correspondine
prescription for the retarded~black! and the advanced~white!
propagator. The squares show the position of the poles for the F
man ~white! and the reverse Feynman~black! propagators. For the
retarded and the advanced propagators two poles or no pole i
side a given contour. For the Feynman and reverse Feynman pr
gators exactly one pole is always inside any contour.
5-5
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GH~x0 ,y0 ,kW !5P expH i E
y0

x0
dj0g0g•A~j0!J 1E

y0

x0
dj0P expH i E

j0

y0
du0g0g•A~u0!J $ ig0@g j kj2m#%

3P expH i E
x0

j0
du0g0g•A~u0!J 1E

y0

x0
dj0E

y0

j0
dh0P expH i E

j0

y0
du0g0g•A~u0!J

3$ ig0@g j kj2m#%P expH i E
h0

j0
du0g0g•A~u0!J $ ig0@g j kj2m#%P expH i E

x0

h0
du0g0g•A~u0!J 1•••.

~21!
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This corresponds to an expansion in powers of the
shell energyv which can be understood by noting th
(g0@g j kj2m#)25v2. The weak-field approximation is
based on the investigation of a given number of the
otherwise freely propagating—particle with the field whi
could be termed ‘‘accelerations.’’ The strong-field approa
comes up to an expansion in powers of what could be ca
the ‘‘inertia’’ becausev equals the~asymptotic! relativistic
mass. In the lowest order of the strong-field approximat
the propagation of a particle without relativistic mass is go
erned only by the field. The higher order terms accord
deviations due to non-vanishingv.

3. Abelian approximation

All of the above approximations in form of an expansi
with respect to some part of the exponent are based on
~A4!. This is different for the Abelian approximatio
scheme~s!, i.e. a commutative approximation with respect
the Clifford and the charge group algebra. The lowest or
GH

A0(x0 ,y0 ,kW ) of the Abelian approximation is given b
omitting the path-ordering in Eq.~9!,

GH
A0~x0 ,y0 ,kW !5expH ig0E

y0

x0
dj0@g j kj1g•A~j0!2m#J .

~22!

Higher order approximations are not given by additi
terms but by splitting Eq.~22! at an ordered set of points,

GH
AN~x0 ,y0 ,kW !5P)

n50

N

expH ig0E
jn11

jn
dj0

3@g j kj1g•A~j0!2m#J , ~23!

with x05j0,j1,•••,jN,jN115y0 for x0,y0 or x0
5j0.j1.•••.jN.jN115y0 for x0.y0 . P denotes that
the factors are ordered with respect to the indexn with the
lowest index furthest to the left. The choice of the interm
diate pointsjn is not unique, but in the limit of infinitely
small intervals the result always becomes exact,
10500
-

h
d

n
-
r

q.

r

-

lim
N→`

GH
AN~x0 ,y0 ,kW !

5 lim
N→`

)
n50

N

expH ig0E
jn11

jn
dj0@g j kj1g•A~j0!2m#J

5 lim
N→`

)
n50

N H 11 ig0~jn2jn11!@g j kj1g•A~j0!2m#

1OS ~x02y0!2

N2 D J
5P expH ig0E

y0

x0
dj0@g j kj1g•A~j0!2m#J

5GH~x0 ,y0 ,kW !. ~24!

To estimate the error for an interval width ofy02x0
52D, compare the lowest order result to the first ord
where the interval is divided into two halves exactly,

DGH
A5GH

A0~0,2D,kW !2GH
A1~0,2D,kW !

5GH
A0~0,2D,kW !

2GH
A0~0,D,kW !GH

A0~D,2D,kW !. ~25!

With the help of the Baker-Campbell-Hausdorff formula

DGH
A5exp$gH~0,2D,kW !%2exp$gH~0,2D,kW !

1@gH~0,D,kW !,gH~D,2D,kW !#1O~D4!%

52@gH~0,D,kW !,gH~D,2D,kW !#1O~D4!

52@gH~0,D,kW !,gH~0,2D,kW !#1O~D4!

52@gH~0,D,kW !,dgH~0,D,kW !/dD#D1O~D4!.

~26!

The first occurrence ofO(D4) results from a Taylor ex-
pansion of secondary and higher commutators. Thus, in le
ing order of the width of the intervalD, the error is propor-
tional to the commutator of the exponentgH and its first
derivative at an intermediate point of the interval. For a co
5-6
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stant integranddgH(0,D,kW )/dD, i.e. for a constant gaug
field A, the Abelian approximation is exact. Highe
order terms are required for fields that lead to a comm

tator @gH(0,D,kW ),dgH(0,D,kW )/dD#D not small against

GH
A0(0,2D,kW ). ~This comparison must be based on the de

nition of an adequate norm.!
This result can be compared to the error estimate for

standard form of expressing a path-ordered exponential
product of linear factors@see Eq.~11!#. For that representa
tion one finds

DGH5112gH~0,D,kW !

2@11gH~0,D/2,kW !#@11gH~0,3D/2,kW !#1O~D2!

5@2gH~0,D,kW !2gH~0,D/2,kW !2gH~0,3D/2,kW !#

2gH~0,D/2,kW !gH~0,3D/2,kW !1O~D2!

52gH~0,D,kW !21@gH~0,D,kW !,dgH~0,D,kW !/dD#D/2

1O~D2!. ~27!

Contrary toDGH
A , DGH does not become zero for a co

stant gauge field. In leading order it depends on the ac
value of the exponentgH . Thus, its convergence becom
slow not only for rapid changes of the gauge field but a
for large values of the field and/or large energies. Even
free propagator then needs many terms to be approxim
sufficiently well.

B. Space-like coordinates

The general solution scheme for a classical field, depe
ing on an arbitrary rectilinear coordinaten•x leading to Eq.
~7! with the argument~6!, always yields a Green’s functio
whose boundary conditions are given on a plane normal tn.
Boundary conditions for propagators are given on surfa
with time-like normal vectorsn2.0. Hence, for a field only
depending on thex3 coordinate @nm5(0,0,0,1)#, only a
Green’s function, but not a propagator, is given by Eqs.~7!
and ~6!.

This can also be seen directly. The solution for the ar
mentgH(x3 ,y3 ;k0 ,kWT) according to Eq.~6! is given by

gH~x3 ,y3 ;k0 ,kWT!

52 ig3E
y3

x3
dj3@g0k01gJkJ1g•A~j3!2m#,

~28!

with an implicit sum overJP$1,2%. Repeating the steps tha
led to the free homogeneous solution of the Dirac equatio
the casen2.0 in Eq. ~10! yields
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GH
0 ~x32y3 ;k0 ,kWT!

5g3
2g3A~k0!22mT

21g0k01gJkJ2m

2A~k0!22mT
2

3e2 iA(k0)22mT
2(x32y3)

1g3
2g3A~k0!22mT

22g0k02gJkJ1m

2A~k0!22mT
2

3e1 iA(k0)22mT
2(x32y3), ~29!

with the transverse massmT5AukWTu21m2. This expression,
multiplied with u(x32y3) in order to obtain a Green’s func
tion from the homogeneous solution, is not proportional
the free retarded propagator in this mixed representation

C. Light-like coordinates

As mentioned before, the present way to derive a hom
geneous solution cannot be followed if the four-vectorn is
light-like, because in that caseg•n has no inverse. However
for light-like coordinates there is a different approach th
leads to a solution forGH . In the case where the norma
vector isnm5(1,0,0,21)/A2 Eq. ~2! becomes

H ig2

d

dx2
1g1@k21A2~x2!#2gW T•@kWT1AW T~x2!#

1g2A1~x2!2mJ GH~x2 ,y2 ;k2 ,kWT!50, ~30!

with v65@v06v3#/A2 and v65v7 where v
P$g,x,k,A(x2)%. Noting thatg1g2/2 andg2g1/2 are two
projection operators which project into disjoint subspaces
the Clifford algebra and satisfy the completeness relat
g1g21g2g152 the matrix functionGH(x2 ,y2 ;k2 ,kWT)
can be split into 2GH(x2 ,y2 ;k2 ,kWT)5g1G2(x2 ,y2 ;
k2 ,kWT)1g2G1(x2 ,y2 ;k2 ,kWT) with G6(x2 ,y2 ;k2 ,kWT)
5g6GH(x2 ,y2 ;k2 ,kWT). The argument will be suppresse
in the following but until the end of this section the abo
mixed representation is addressed. Using this decompos
in Eq. ~30! leads to

i
g2g1

2

d

dx2
G21

g1g2

2
~k21A2!G1

2@gW T•~kWT1AW T!1m#GH1
g2g1

2
A1G250. ~31!

Use has been made of the idempotency of the projec
(g6g7/2)25g6g7/2 and their projection propertie
(g6g7/2)g750 and (g6g7/2)g65g6 . From here, two
equations can be obtained with the help of the project
operators
5-7
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i
d

dx2
G21A1G22

1

2
@gW T•~kWT1AW T!1m#g2G150

~k21A2!G12
1

2
@gW T•~kWT1AW T!1m#g1G250.

~32!

The second equation is purely algebraic and can be use
replaceG1 in the first,

i
d

dx2
G21

1

2
@gW T•~kWT1AW T!1m#~k21A2!21

3@gW T•~kWT1AW T!2m#G250. ~33!

When postulating a connection between the matrix funct
G2 and anotherg2 in direct analogy to Eq.~3! the resulting
differential equation is given by

i
d

dx2
g252

1

2
@gW T•~kWT1AW T!1m#~k21A2!21

3@gW T•~kWT1AW T!2m#2A1 . ~34!

The equation can be solved by direct integration. As
ready argued before, in general the functionalG2@g2# is
given by the path-ordered exponential of its argumentg2 . In
the present situation already the absence of non-Abe
charges turns it into an ordinary exponential because the
only contains the neutral element for multiplication of t
Clifford algebra. The other component of the matrix functi
is given by the second of the equations~32!. Finally a ho-
mogeneous solution of the differential equation~30! has the
form

GH~x2 ,y2 ;k2 ,kWT!

5
1

2 S g12
1

2
g2g1@k21A2~x2!#21

3$gW T•@kWT1AW T~x2!#2m% D
3P expF i E

y2

x2

dj2S 1

2
$gW T•@kWT1AW T~j2!#1m%

3@k21A2~j2!#21$gW T•@kWT1AW T~j2!#2m%

1A1~j2! D G . ~35!

If one tries to construct a propagator with the help of t
homogeneous solution it can only be retarded or advance
the light-like coordinatex2 . Alternative approaches can b
found in @20#. In the next section the production of fermion
antifermion pairs is described based on the results for
fermion propagator in a field that depends on a time-l
coordinate.
10500
to

n

l-

n
it

in

e
e

III. FERMION-ANTIFERMION PAIR PRODUCTION

Here the results for the full propagator in an external fie
depending on one rectilinear time-like coordinate are app
to the problem of particle production due to vacuum pol
ization. First it is argued where such a propagator is of us
describing the physics of fermions in a heavy-ion collisio
Second, a detailed comparison of the different approxima
schemes with the full solution for a given model field
presented.

This calculation can be understood in a twofold way. O
the one hand the field could be really an external field in
sense of the production of particles via vacuum polarizati
It is determined by the dynamics of the physical syst
without taking the back reaction of the particle creation in
account. This field is used to calculate how many partic
would be produced in its presence. This approach is justi
if the process of particle production constitutes merely
small perturbation. Whether this condition is fulfilled has
be checked afterwards.

On the other hand, the field could already be a se
consistent solution of a system of equations. For this solu
for the classical field one would like to know how man
particles were created in the process. In the present scen
such a set of equations would include the Yang-Mills eq
tions with the expectation value for the current of produc
fermions and antifermionŝJn& and an~initially present! ex-
ternal currentJext

n

]mFmn2 i @A m,Fmn#5Jext
n 1^Jn&, ~36!

with the gauge fieldA m and the corresponding field tenso
Fmn5]mAn2]nAm2 i @Am ,An# in the adjoint representa
tion. The expectation value for the current can be obtain
from the causal propagator@21#:

^Jn&;tr$gnGC~x,x!%, ~37!

where the trace is only running over the matrices of the C
ford algebra and with the definition: GC(x,x)
5 lime→0@GC(x1ne,x)1GC(x,x1ne)#/2 with n2.0.
Higher-order radiative corrections are suppressed by pow
of the coupling constant which are not compensated by p
ers of the classical field. The causal propagator can be r
pressed as a linear combination of the retarded, the
vanced, and the on-shell propagator,

GC~x,y!5
1

2
@GR~x,y!1GA~x,y!1GS~x,y!#. ~38!

The advanced propagator can be obtained from the hom
neous solutionGH(x0 ,y0 ,kW ) for the equation of motion for
the Dirac Green’s function by the relation

iGA~x0 ,y0 ,kW !g052u~y02x0!GH~x0 ,y0 ,kW !. ~39!

The on-shell propagator can be reexpressed in terms of
retarded and advanced one-particle scattering operators@16#
5-8
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GS~x,y!5E d4k

~2p!4
2pd~k22m2!GR

0~q!TR~q,k!

3~g•k1m!TA~k,p!GA
0~p!. ~40!

The scattering operators are defined according to Eq.~43!. In
the present framework all required propagators are know
functionals of the classical gauge fields. Hence, Eq.~36! with
Eq. ~37! constitutes an integro-differential equation for t
classical gauge field. Its solution would yield the form of t
field. The expectation value for the produced fermions a
antifermions could be calculated from this field.

Let us consider a model for the classical radiation-field
an ultrarelativistic heavy-ion collision. According to Bjorke
@17#, the mid-rapidity region in a heavy-ion collision is cha
acterized by boost invariant quantities, i.e. boost invari
along the beam direction. Let us consider a central collis
in a symmetric system in the center-of-mass frame. For
solute values of the longitudinal coordinateuzu smaller than
the kinematic timet in this frame of reference the depe
dence on proper timet5At22z2 is approximated well by a
dependence on the kinematic timet ~see Fig. 2!. Most of the
energy is deposited duringt,t in close to the collision point

FIG. 2. Time dependence as an approximation to the situa
found in the central region of a boost-invariant system. The pro
time t is constant on the hyperbolas.
re
irs

ce
ac

10500
as

d

t
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b-

at z50 @7#. Hence, in good approximation, fort.t in and
uzu,t in , an in general proper-timet dependent energy den
sity can be reexpressed as an energy density dependin
kinematic timet. Let the entire energy density be initiall
stored in an electric field of the formEh(t) ~component
along the hyperbolas!. In the present approach, this fact
consistently approximated by a storage of the energy
Ez(t). In temporal gauge (A050) or even in Lorentz gauge
this is equivalent to a gauge fieldAz(t). For this form of
gauge field, the retarded propagator has been derived in
previous section.

In order to proceed, one needs to know how to descr
particle production based on a given propagator. With
Fourier transform of the retarded propagator,

GR~x,y!5E d4p

~2p!4

d4q

~2p!4
e2 iq•xe1 ip•yGR~q,p! ~41!

one can write the implicit definition of the correspondin
one-particle scattering operatorT in momentum space as

GR~q,p!5~2p!4d (4)~q2p!GR
0~p!

1GR
0~q!3T~q,p!3GR

0~p!. ~42!

Explicitly, it is given by

T~q,p!5g•A~q2p!1E d4k

~2p!4

d4l

~2p!4

3g•A~q2k!GR~k,l !g•A~ l 2p!. ~43!

In the following T always denotes theretardedone-particle
scattering operator. The Born approximation, the expans
to lowest order in the fields, is given by

TB~q,p!5g•A~q2p!. ~44!

This term is always contained in the scattering operator. T
different approximation schemes discussed in the prece
section lead to differences in the remaining non-Bornian p
in Eq. ~43!. In the presence of a purely time-dependent fie
the retarded one-particle scattering operator becomes

n
r

T~q,p!5~2p!3d (3)~qW 2pW !Fg•A~q02p0!1E dx0dy0e1 iq0x0e2 ip0y0g•A~x0!GR~x0 ,y0 ,pW !g•A~y0!G
5~2p!3d (3)~qW 2pW !T~q0 ,p0!5~2p!3d (3)~qW 2pW !@T B~q0 ,p0!1T NB~q0 ,p0!#, ~45!
ms
r
s-

op-
with the non-Bornian partT NB(q0 ,p0). Due to the
occurrence of the Diracd distribution the conservation
of the total three-momentum becomes obvious. In pu
ly time-dependent fields the fermion-antifermion pa
are always produced in aback-to-back configuration.
Terms of higher order in the gauge field—for instan
in the weak-field expansion—can be obtained by repl
-

-

ing the full propagator in the scattering operator by ter
from Eq. ~18!. Analogously, replacing the full propagato
by various approximations leads to the corre
ponding approximations for the one-particle scattering
erator.

From the retarded one-particle scattering operatorTR the
expectation value of produced pairs can be obtained
5-9
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^n&5E d3q

2~2p!3q0

d3p

2~2p!3p0

uū~q!TR~q,2p!v~p!u2,

~46!

where a summation over the spin degrees of freedom of
unit spinors ū(q) and v(p) is understood and wherep0

5AupuW 21m2 and q05AuquW 21m2. For the special form of
the scattering operator in spatially homogeneous purely ti
dependent situations this simplifies to

^n&5
V

4~2p!3E d3p

p0
2

uū~p0 ,2pW !T~p0 ,2p0!v~p0 ,1pW !u2,

~47!

where use has been made of the relation@d (3)(pW 2qW )#2

5Vd (3)(pW 2qW )/(2p)3. Carrying out the spin summatio
leads to

4~2p!3

V

d^n&

d3p
5trH T~p0 ,2p0!

g0p01g j pj2m

p0

3g0T †~p0 ,2p0!g0
g0p02g j pj1m

p0
J .

~48!

In order to gain some insight into the behavior of the diffe
ential expectation value~or momentum spectrum! and some
information on the quality of the different approximation
without having to solve the Yang-Mills equations~36! be-
forehand, the different formulas are going to be evaluated
a special choice of the field

Am~ t !5g3mAine2t/t0u~ t !. ~49!

Many other forms could have been taken. This choice w
also inspired by a numerical study@18# which indicates that
the field decays in a similar fashion. In any case, the ac
form of the classical field has to be determined in a s
consistent calculation.

For this field, the one-particle scattering operator in Bo
approximation~44! is given by

T B~2v!5
g3Aint0

112i t 0v
. ~50!

The following sections show the various approximations
the remaining part of the retarded one-particle scattering
erator in the field~49!.

1. The weak-field approximation

The lowest-order weak-field term of the full propagator
given by the free propagator@Eq. ~16! together with Eq.
~10!#. Here, the non-Bornian part of the one-particle scat
ing operator is
10500
e
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T UV52 ig3
g0v1g j kj2m

2v
g3T 1

UV

2 ig3
g0v2g j kj1m

2v
g3T 2

UV , ~51!

with

T 6
UV5Ain

2 E
0

`

dx0E
0

x0
dy0eiv(x01y0)e6 iv(x02y0)e2x0 /t0e2y0 /t0

5
~Aint0!2/2

@12 ivt0#@12 i ~v6v!t0#
. ~52!

2. The strong-field approximation

For any purely time-dependent field, the general expr
sion for the homogeneous solution in the lowest-ord
strong-field approximation:

GH
IR~x0 ,y0 ,kW !5P expH i E

y0

x0
dj0g0g•A~j0!J ~53!

is not much simpler to evaluate than the exact solution. Ho
ever, for a field of constant directionAm(t)5Am3 f (t) the
path ordering can be dropped. In the lowest-order stro
field approximation the non-Bornian part of the one-parti
scattering operator is

T IR52 i
g02g3

2
T 1

IR2 i
g01g3

2
T 2

IR , ~54!

with

T 6
IR5Ain

2 E
0

`

dx0E
0

x0
dy0eiv(x01y0)e2x0 /t0e2y0 /t0

3exp$7 iAint0@e2x0 /t02e2y0 /t0#%

5~Aint0!2 (
m50

`
~7 iAint0!m

m!

1

m112 ivt0

3 (
n50

`
~6 iAint0!n

n!

1

n1m1222ivt0
, ~55!

where use has been made of the uniform convergence o
exponential series for bounded arguments. With form
6.5.29 in@19#:

g* ~a,z!5
1

G~a! (
n50

`
~2z!n

~a1n!n!
~56!

for a bounded norm ofAint0

T 6
IR5~Aint0!2 (

m50

`
~7 iAint0!m

m!

1

m112 ivt0

3g* ~m1222ivt0 ,7 iAint0!G~m1222ivt0!.

~57!

Formula 6.5.4 in@19#
5-10
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g* ~a,z!5
z2a

G~a!
g~a,z! ~58!

leads to

T 6
IR52~7Aint0!2ivt0 (

m51

`
1

m!

g~m1122ivt0 ,7 iAint0!

12 ivt0 /m
.

~59!

In the case of multiple charges,Ain can be decomposed ac
cording toAin5Ain

a Ta where theTa are the generators of th
corresponding algebra. Due to the requirement of unita
these generators have to be Hermitian. This is also true
any linear combination of the generators with real coe
cients. Thus every matrixAin

a Ta with real Ain
a can be diago-

nalized, yielding

Ain
a Ta5 (

n51

N

lnun&^nu, ~60!

with the eigenvaluesln and theN orthonormal eigenvector
un&. The un&^nu are projectors onto subspaces of differe
charges. Thus one gets

T 6
IR52 (

n51

N

un&^nu~7lnt0!2ivt0

3 (
m51

`
1

m!

g~m1122ivt0 ,7 ilnt0!

12 ivt0 /m
. ~61!

3. The modified strong-field approximation

In the present situation the special form of the field allo
for a variation of the strong-field approximation, where t
component of the momentum parallel to the field—in th
casek3—is included in the exponent of the lowest-order e
pressionA3→A31k3:

GH
IR8~x0 ,y0 ,kW !5P expH i E

y0

x0
dj0g0g3@k31A3~j0!#J .

~62!

In the lowest-order modified strong-field approximation t
additional part of the one-particle scattering operator bey
the Born approximation is

T IR852 i
g02g3

2
T 1

IR82 i
g01g3

2
T 2

IR8 , ~63!

with

T 6
IR85Ain

2 E
0

`

dx0E
0

x0
dy0ei (v6k3)(x01y0)e2x0 /t0e2y0 /t0

3exp$7 iAint0@e2x0 /t02e2y0 /t0#%. ~64!

Repeating the above steps leads to
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T 6
IR852 (

n51

N

un&^nu~7lnt0!2ivt0

3 (
m51

`
1

m!

g~m1122ivt0 ,7 ilnt0!

12 i ~v6k3!t0 /m
. ~65!

4. The Abelian approximation

In the lowest-order Abelian approximation the interacti
part of the retarded propagator is

T A51 iT 1
A 1 iT 2

A , ~66!

with

T 6
A 5Ain

2 E
0

`

dx0E
0

x0
dy0eiv(x01y0)e6 iV(x02y0)

3e2x0 /t0e2y0 /t0
g0V6@gJkJ2g3K31m#

2V
, ~67!

with the generalized energyV5AmT
21K3

2 and the general-
ized momentum K35k31Aint0(e2x0 /t02e2y0 /t0)/(x0
2y0).

Decomposition with respect to multiple charges leads

T 6
A 5 (

n51

N

un&^nuln
2E

0

`

dx0E
0

x0
dy0eiv(x01y0)

3e6 iVn(x02y0)e2x0 /t0e2y0 /t0

3
g0Vn6@gJkJ2g3~K3!n1m#

2Vn
, ~68!

with the generalized energyVn5AmT
21(K3)n

2 and the gen-
eralized momentum (K3)n5k31lnt0(e2x0 /t02e2y0 /t0)/(x0
2y0) belonging to the respective eigenvalueln . The modi-
fication to the longitudinal momentum is equal to the ari
metic average of the gauge field over the interval@x0 ,y0#.
Hence the Abelian approximation can be interpreted as
description of the propagation of the fermions with their a
ithmetically averaged canonical momentum. In the we
field expansion they are propagated with their asympto
kinematic momentum. Higher orders in the Abelian appro
mation scheme make better approximations similar to a F
rier series. The particle is propagated with its canonical m
mentum averaged over every piece of the trajectory. T
finer the partitioning of the path, the closer the average
nonical momentum is to its actual value in a particular int
val. In the weak-field perturbative approximation scheme
particle is always propagated with its asymptotic kinetic m
mentum. For higher orders it only interacts with the fie
more and more often.

For the strong-field approximation and the modifi
strong-field approximation the replacement of the pa
ordered exponential by an exponential function is only p
sible due to the special form of the field. In the Abelia
approximation scheme this exchange is possible in the p
ence of an arbitrary field.
5-11
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The decomposition with respect to the charge projector
also possible for the full non-Bornian part and the omnipr
ent Born part of the one-particle scattering operatorT B

5(n51
N un&^nuT n

B . Hence, the whole operator can always
decomposed with respect to the same projectorsT
5(n51

N un&^nu@T n
B1T n

NB#. In the squared expression need
to calculate the expectation value the contributions belong
to the different projectors do not mix. They lead to a su
over the expectation values for the different charge s
spaces

trcH (
n851

N

un8&^n8uTn8 (
n951

N

un9&^n9uTn9
* J

5 (
n851

N

uTn8u
2trc$un8&^n8u%5 (

n851

N

uTn8u
2,

where trc denotes the trace over the generators of the cha
group. If the eigenvectorsun8& are normalized, the remainin
trace is equal to unity. Due to these facts, it suffices to co
pare the contributions from the different approximati
schemes for one of the sub-spaces.

It is always possible to measure all momenta, energ
and gauge field strengths in units of a scale parameter
the dimension of momentum. Then all lengths and tim
have to be given in units of inverse momenta. In the follo
ing, the eigenvalue belonging to the corresponding subsp
is chosen as a scale parameter and is going to be c
Ain /g again. The calculations are carried out assuming
all the energy of the system is included in one of the s
spaces.

The expected energy density produced in a central he
ion collision at LHC ~Pb-Pb at As55.5 TeV) is e
'1000 GeV/fm3 @7–9#. For the strong coupling constan
one expectsas'0.15 @9#. If all the energy density was de
posited in the field sector a rough estimate for the ini
gauge field magnitude would beAin'AgA2e'2 GeV. For
RHIC ~Au-Au at As5200 GeV) the typical coupling con
stant is aroundas'0.33 and the initial energy densitye
'50 GeV/fm3. This would lead toAin'1 GeV. With decay
times in the range from 0.1 fm/c to 0.5 fm/c this leads
Aint0 between 0.5 and 5.0. Here only massless particles
investigated.

The expressions for the Born~50! and the weak-field ap
proximation~51! can be evaluated straightforwardly. For th
strong-field~54! and the modified strong-field approach~63!
the few first terms of the infinite series representations s
fice for obtaining an accurate result. The integrals for
Abelian approximation have to be treated with standard
merical methods. The exact solution requires the handlin
path-ordered exponentials and subsequent integrations.

The general aspects of the exact solution for the mom
tum spectrum~48! are best seen in Figs. 3~a! and 4. As a
function of the transverse momentumkT it peaks once and
shows no further relative extrema or other distinct structu
For increasing values of the parameterAint0 @from Fig. 4~a!
over Fig. 3~a! to Fig. 4~b!# the peak in the transverse mo
mentum spectrum becomes more pronounced for a fi
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value of the longitudinal momentumk3. In other words it
increases in height and decreases in width@see especially the
different scale of the transverse momentum axis in Fig. 4~b!#.
Actually, the differential expectation value is a function
the variable vt0. Hence the width of the transverse
momentum spectrum for massless particles at mid rapi
scales exactly inversely proportionally tot0. The same holds
still after v andt0 have been rescaled withAin . For fields of
a functional form analogous to that of the present spe
model field the peak height seems to be strictly monoto
cally decreasing with increasing longitudinal momentum,
is suggested in Fig. 3~a!. Further, at zero transverse mome
tum no particles are produced; the fermions and antifermi
are never produced with momenta along the direction of
field but preferentially with momenta perpendicular to t
field.

A comparison of the different approaches shows that
large momenta all approximations and the exact solut
tend towards the Born result. This is due to the form of t
one-particle scattering operator~43!. Together with the Born
approximation all other graphs tend toward zero for high
particle energies. As shown in Fig. 3~b! the Born approach
overestimates the exact value for low momenta but unde
timates it for high momenta. The weak-field approximati
is an improvement compared to the Born approach for m
values of the transverse momentum. Looking at Fig. 3~c! the
strong field and the modified strong field are generally clo
to the exact result than the weak-field approximation. Ho
ever, for more general forms of time-dependent fields
propagators in these schemes are not much simpler to
with than the full one. The modified strong-field approxim
tion even ceases to be available because the terms longi
nal and transverse might no longer be well defined with
spect to the field. For all momenta the Abelia
approximation scheme@see Fig. 3~d!# is closest to the exac
values. The largest deviations are found for small energ
and large values of the parameterAint0 @compare Figs. 3~d!,
4~a!, and 4~b!#. The reason is that there the situation is ma
mally non-Abelian, i.e. there the condition, where the typic
commutator of the exponentgH(x0 ,y0 ,kW ) at different points
is negligible with respect to the typical propagator, is le
well satisfied@see also Eq.~26!#. While for low values of
Aint0 the Born approximation is reasonably good it is n
appropriate for large values@see Fig. 4#.

IV. SUMMARY

The exact homogeneous solutions for the Dirac equa
in a gauge field depending on one rectilinear coordinate
been presented. An alternative way had to be taken fo
dependence on a light-like coordinate. In the case where
coordinate was time-like, the retarded propagator has b
constructed from the homogeneous solution. The analog
result for a space-like coordinate was seen to constitu
Dirac Green’s function but not a propagator.

For the situation of a time-like coordinate various a
proximation schemes for the exact solution have been de
mined. Explicitly, these are the weak-field approximatio
the strong-field approach, and the Abelian approximati
5-12
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FIG. 3. Momentum spectrum of produced massless fermion-antifermion pairs versus transverse momentum and with the d
t0Ain52.0: ~a! The exact result for different values of the longitudinal momentum. In plots~b!, ~c!, and~d! the longitudinal momentum is
fixed atk350.1Ain . ~b! The exact result~solid! compared to the Born~dashed! and the weak-field~gray! approximation.~c! The exact result
~solid! compared to the strong-field~dashed! and the modified strong-field~gray! approximation.~d! The exact result~solid! compared to the
Abelian ~dashed! approximation.

FIG. 4. Momentum spectrum~solid! of produced massless fermion-antifermion pairs versus transverse momentum compared to th
~dashed! and the Abelian~gray! approximation for fixed longitudinal momentumk350.1Ain and for different values of the decay time:~a!
Aint050.5 and~b! Aint054.0. In plot ~b! the enhanced strong-field approximation~dashed gray! is shown, too.
105005-13
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DENNIS D. DIETRICH PHYSICAL REVIEW D68, 105005 ~2003!
Additionally, a larger variety of approximations can be o
tained with the help of the general resummation formula

Subsequently, the retarded fermion propagator and all
lowest orders of the various approximation schemes in
presence of a gauge field depending on one rectilinear ti
like coordinate have been used to calculate the momen
spectrum of produced fermion-antifermion pairs. The res
ing expressions are evaluated for a decaying model field
the results are mutually compared for parameters expecte
be found in ultrarelativistic heavy-ion collisions. In this sit
ation an additional modified strong-field approximati
could be obtained.

In the present situation, the exact momentum spectrum
a singly peaked function of the transverse momentum w
no further distinct structure. The quality of the approxim
tions increases from the Born approach over the lowest-o
weak field, strong field, and modified strong field, towar
the Abelian approximation. It should be mentioned that
more general situations the strong field and the modi
strong field approaches are not much simpler to evaluate
the full result. The model parameter isAint0. It is the product
of the initial magnitude of the gauge fieldAin and the decay
time scale of the field. For the smallest expected values
Born approximation is still acceptable. Nevertheless,
other schemes like the Abelian or the enhanced strong
are even better. For the highest values of the decay time
the latter come close to the exact result. Hence, in orde
ensure the maximum possible independence from the s
parameterAint0 without having to evaluate the exact solutio
it would be best to use the Abelian approximation for se
consistent calculations.
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APPENDIX: GENERAL RESUMMATION FORMULA

In general, a path-ordered exponential with an integra
depending on a single variablej0 can be rewritten in the
following way:

P expH E
y0

x0
dj0@B~j0!1C~j0!#J

5(
l 50

` E
y0

x0
dj1E

y0

j1
dj2 . . . E

y0

j l 21
dj l

3P expH E
j1

x0
dj0B~j0!J C~j1!

3P expH E
j2

j1
dj0B~j0!J C~j2!•••

#3P expHE
j l

j l 21
dj0B~j0!J C~j l !P expHE

y0

j l
dj0B~j0!J .

~A1!

Making use of the group property valid for the prese
path-ordered exponentials,

P expH E
z0

x0
dj0B~j0!J 3P expH E

y0

z0
dj0B~j0!J

5P expH E
y0

x0
dj0B~j0!J ~A2!

the above equation can be reexpressed as
P expH E
y0

x0
dj0@B~j0!1C~j0!#J

5P expH E
y0

x0
dj0B~j0!J (

l 50

` E
y0

x0
dj1E

y0

j1
dj2•••E

y0

j l 21
dj lP expH E

x0

y0
dj0B~j0!J

3P expH E
j1

x0
dj0B~j0!J C~j1!P expH E

y0

j1
dj0B~j0!J P expH E

x0

y0
dj0B~j0!J P expH E

j2

x0
dj0B~j0!J C~j2!

3P expH E
y0

j2
dj0B~j0!J 3•••3P expH E

x0

y0
dj0B~j0!J P expH E

j l

x0
dj0B~j0!J C~j l !P expH E

y0

j l
dj0B~j0!J

5P expH E
y0

x0
dj0B~j0!J P expFP expH E

x0

y0
dz0B~z0!J E

x0

y0
dj0P expH E

j0

x0
dz0B~z0!J C~j0!P expH E

y0

j0
dz0B~z0!J G .

~A3!

Again, by virtue of the group property the most compact form is given by
5-14
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P expH E
y0

x0
dj0@B~j0!1C~j0!#J 5P expH E

y0

x0
dj0B~j0!J P expF E

y0

x0
dj0P expH E

j0

y0
dz0B~z0!J C~j0!P expH E

y0

j0
dz0B~z0!J G .

~A4!
e
ur

a
ri

l

h

ing

be
Summarizing, more general resummations are possibl
which the dominant quantity can be chosen arbitrarily. F
ther, the above steps can be repeated so as to resum
obtained quantity several times, e.g. after splittingC(j0) into
a dominant part and a deviation.

The above result can also be obtained in another w
Write the Fourier transformed Dirac equation in a gene
form, where the dependence onkW will not be denoted in the
following:

F d

dx0
2B~x0!2C~x0!GGH~x0 ,y0!50. ~A5!

With the ansatz

GH~x0 ,y0!5U~x0 ,y0!ĜH~x0 ,y0! ~A6!

and the product rule for differentiation, one obtains

F d

dx0
U~x0 ,y0!GĜH~x0 ,y0!1U~x0 ,y0!F d

dx0
ĜH~x0 ,y0!G

2@B~x0!1C~x0!#U~x0 ,y0!ĜH~x0 ,y0!50. ~A7!

When postulating thatU(x0 ,y0) satisfies the differentia
equation

d

dx0
U~x0 ,y0!2B~x!U~x0 ,y0!50, ~A8!
ys

us

D

o-

,

s.

p.
-
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the above expression reduces to

U~x0 ,y0!F d

dx0
ĜH~x0 ,y0!G2C~x0!U~x0 ,y0!ĜH~x0 ,y0!50.

~A9!

This formula can be transformed by multiplying wit
U21(x0 ,y0) from the left

F d

dx0
ĜH~x0 ,y0!G2U21~x0 ,y0!C~x0!U~x0 ,y0!ĜH~x0 ,y0!

50. ~A10!

As has been shown above, the solutions for the preced
equation and Eq.~A8! are given by

Ĝ~x0 ,y0!5P expH E
y0

x0
dj0U21~j0 ,y0!C~j0!U~j0 ,y0!J

~A11!
and

U~x0 ,y0!5P expH E
y0

x0
dj0B~j0!J , ~A12!

respectively. Making use of the group property~A2!, the last
line of Eq. ~A3! is reproduced. These derivations can
repeated for any variablen•x. Only for n250 the Dirac
equation cannot be written in the generic form~A5!.
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