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Spin polarization and color superconductivity in quark matter
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A coexistent phase of spin polarization and color superconductivity in high-density QCD is investigated
using a self-consistent mean-field method at zero temperature. The axial-vector self-energy stemming from the
Fock exchange term of the one-gluon-exchange interaction has a central role in causing spin polarization. The
magnitude of spin polarization is determined by the coupled Schwinger-Dyson equations with a superconduct-
ing gap function. As a significant feature, the Fermi surface is deformed by the axial-vector self-energy and
then rotation symmetry is spontaneously broken down. The gap function results in being anisotropic in the
momentum space in accordance with the deformation. As a result of numerical calculations, it is found that
spin polarization barely conflicts with color superconductivity, but almost coexists with it.
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[. INTRODUCTION [6]. In recent progress, a superconducting phase has been
discovered in ferromagnetic materials and much effort has
Recently, there has been a lot of interest in high-densitypeen made to understand the coexisting mechaffgm

QCD, especially in quark Cooper-pair condensation phenom- In addition to being interesting in its own right, the coex-
ena at high-density quark mattgralled color superconduc- istence problem may be related to some physical phenomena.
tivity (CSQ], in connection with, e.g., physics of heavy ion Recently, a new type of neutron stars, called as “magnetars,”
collisions and neutron stafd—3]. Its mechanism is similar with a super strong magnetic field 6fO(10"® G) has been
to the BCS theory for the electron-phonon systefh in  discovered8,9]. They may raise an interesting question for
which the attractive interaction of electrons is provided bythe origin of the magnetic field in compact stars, since its
phonon exchange and causes Cooper instability near trgirength is too large to regard it as a successor from progeni-
Fermi surface. As for quark matter, the quark-quark interactor stars, unlike canonical neutron stat€)]. Since hadronic
tion is mediated by colored gluons, and is often approxi-matter spreads over inside neutron stars beyond the nuclear
mated by some effective interactions, e.g., the one-gluordensity (o~0.16 fmi°), it should be interesting to consider
exchange(OGE) or the instanton-induced interaction, both thg microscopic origin .of the magnetic flgld in magnetars. In
of which give rise to the attractive quark-quark interaction inthis context, a possibility of ferromagnetism in quark matter
the color antisymmetri€* channel. CSC leads to spontane- due to the OGE interaction has been suggested by one of the

- : authors(T.T.) within a variational framework11]; a compe-
ous symmetry breaking of cold8U(3) into SU(2) as a ... LT .
result of condensation of quark Cooper pdis3]. tition between the kinetic and the Fock exchange energies

In this paper we would like to address another phenomg.ives rise 10 spin poIa_rization, similarly to BIoch’s i_deq for
enon expected in quark matter: spin polarization or ferro itinerant electrons. Salient features of spin polarization in the

! ' ..~ —relativistic system are also discussed in Réfl]. Thus, it
magnetism of quark matter. We examine the possibility of. y Rad]

; . : ) might be also interesting to examine the possibility of the
the spln-polarlz_ed phase with CSC in quark matter. As far_ a%pin-polarized phase with CSC in quark matter, in connec-
we know, the interplay between the color superconductin

phase and other phases charactgrized by the nonvanish%gr\}vvgltiz\gzgg;tgrzbm polarization in the color supercon-
mean fields of the spinor bilineatg/T"s) has not been ex- qucting phase by a self-consistent framework, in which
plored except for the case of chiral symmetry breakiB  quark Cooper pairs are formed under the axial-vector mean-
Our main concern here is to investigate the possibility offie|d. We shall see that this phenomenon is a manifestation of
qiark Cooper instability under the axial-vector mean ﬁe|daspontaneous breaking of both co®tl(3) and rotation sym-
(y*ys) which is responsible for spin polarization of metries.

quark matter. It would be worth mentioning in this context We adopt here the OGE interaction as an effective quark-
that ferromagnetisnfor spin polarizationand superconduc- quark interaction. Since the Fermi momentum is very large at
tivity are fundamental concepts in condensed matter physiciigh density, asymptotic freedom of QCD implies that the
and their coexistent phase has been discussed for a long tintgeraction between quarks is very wedl?]. So it may be
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reasonable to think that the OGE interaction has a dominanthere =y, with the chemical potentighk. V is a self-
contribution for the quark-quark interaction. In the frame-energy and\ is the gap function for the quark Cooper pair;
work of relativistic mean-field theories, the axial-vector andboth termsV and A should be provided by the Fock ex-
tensor mean fields, which stem from the Fock exchangehange terms of the OGE interaction. We define hiik)
terms,(Jysy, ) and(yo,,¥), may have a central role to andV as

split the degenerate single-particle energies of the two spin

states, and then leads to spin polarization, e.g.[$8gfor

— T
discussion in nuclear matter. As for quark matter, several Ye(K)=Cy(—k), )
types of the color singlet mean-fields appear after the Fierz
transformation in the Fock exchange terms, but we retain v=cVv'c! (5)

only the axial-vector mean-field as the origin of spin polar-
ization, because the OGE interaction by no means holds the. . . . S -
tensor mean field due to chiral symmetry in QCD, unlikeW_Ith the_charg_e cqnjugatlon matrl_@ which is explicitly
nuclear mattef13]. Presence of the axial-vector mean-field given byiyzyo in Dlrfac representation. . .
deforms the quark Fermi seas according to their spin degrees The Green functionG(p) can be written straightfor-
of freedom, and thereby the gap function should be no moré/ardly from Eq.(3) as
isotropic in the momentum space. We assume here an aniso-
tropic gap functionA on the Fermi surface by a physical G1(p) Giip)
consideration and solve the coupled Schwinger-Dyson equa- G(p):< )
. : : Gai(p) GaiAp)
tions self-consistently by way of the Nambu formalism to
find the axial-vector mean-field , and the superconducting .
gap functionA. Thus we discuss the interplay between spinW'th
polarization and superconductivity in quark matter.

In Sec. Il we give a framework to deal with the present G(p)={p—m+4A-+V(p)
subject. The explicit structure of the anisotropic gap function _
A in the color, flavor, and Dirac spaces is carefully discussed — YA (P) Tyl p—m—A+V(p)] *A(P)} Y,
there and in the Appendix B and Appendix C. Numerical 7)
results aboutJ, and A are given in Sec. lll, where phase
diagram of spin polarization and color superconductivity is _
given in the mass-baryon number density plane. Section IV G21(P)=—[p—m— £+ V(p)] *A(p)G11(p). (8)
is devoted to summary and concluding remarks.

(6)

Following Nambu’s argumenitl4], we impose the self-
Il. FORMALISM consistency condition to obtain the Hartree-Fock ground

i i ) state such that the self-energy by the residual interaction,
In this section we present our formalism to treat CSC anelzR vanishes
es ’

spin polarization. We consider quark matter with flavor
SU(2) and colorSU(3) symmetries, and assume that the

interaction action is described by the OGE interaction as 2Res ZmF~ 2t =0, ©)
1 — A whereX ¢ is defined b
Iim=—92§f d“xf d'y| () 7 5 (x) MF Y
— Smr(K) =Gy (k) =G (k)
where ¢ is the quark field,D,,(X,y) is the gauge boson Adk) V(k)
(gluon) propagator, and\,(a=1,2,...,8) are theSU(3)
Gell-Mann matrices. Using the Nambu formali$gh14] the  with
effective action is given within the mean-field approximation
as o) {(p—mwl 0 } )
— olp)= 1)
| —Ef d¢‘p [(p) TGl(p)(¢(p) ) " 0 (B—m—4)
P2l 2mA uup) Ye(P)

and,, is given by the use of the OGE interaction. Within

. _ . . . 2
with the inverse quark Green function the first-order approximation ig<, X, renders

d

4
P abil, A\ T I
i(27)4D (k=p)IG(p)'y, (12

p—m+4+V(p) YoAT(P)vo ) @

— (k) =g2
A(p) b—m— i+ V(p) nt(K)=9 f

Gl(p)=(
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Ny rection in the spin-polarized phase which is caused by the
Ly 0 finite axial-vector mean-field along theaxis® As shown in
faz T Ref.[13], rotation symmetry is spontaneously broken down
0 C( #E) c1 in this phase while axial symmetry around thexis is pre-
Y2 served. Then two Fermi seas of the different spin states are

deformed accordingly.
Ay 0 Applying the Fierz transformation for the Fock exchange
energy term(14) we can see that there appear the color-
= , (13 singlet scalar, pseudoscalar, vector and axial-vector self-
0 s energiegAppendix D. In general we must take into account
2 these self-energies inV, V=Ug+iysUpsty, Ul

P P )
which is nothing else but the Fock exchange energy by the” 7#YsYa with the mean-fielddJ,,. Here we introduce an

OGE interaction. Using Eqg9)—(12), we obtain the self- ansatz: the Femri distribution holds the reflection symmetry

consistent equation for(k) by the use of the diagonal com- with respec(’g to thqu_ Py plar_1e, ar_ld only the me_an-field
ponent of the full Green functiof¥), partsUg, U, andUyj, are retained irV. Later we will see

that the self-consistent solution is obtained with the zero-

4 range approximatiol7) under this ansatz.
-V(k)=(— ig)zj - 4[—in”(k— Py, In this paper, furthermore, we disregard the scalar mean-
1(2) field Us and the time component of the vector mean-figft
A for simplicity since they are irrelevant for the spin degree of
xia[—iGll(p)]ny. (149 freedom;US has only a role to shift the total energy to the

chemical potential, and may not affect any other physical

The gap equation is also obtained from the off-diagonal comProperties. On the other hanld, may significantly influence
the spin-polarization properties through changing the quark

ponent as - . - .

effective mass. Instead of introducing the scalar mean-field

4 explicitly, however, we treat the quark mass as a variable

—A(k):(—ig)zf . 4[—iD“”(k— p)] parameter, and discuss its effect in the next section.
i(2) According to the above assumptions and considerations
—(\)T \, the self-energy/ in Eq. (3) renders
Xy [-iGa(P]y, . (15 ,
V=vy3ysUa, Up=Ug,, (18

In the following sections, we present explicit forms\6fp)

and A(p) and then solve their coupled equatiofig)) and with the axial-vector mean-field 5. Then the diagonal com-

ponent of the Green functio@,(p) is written as

(15).
e T, B A1
A. Fermion propagator under the axial-vector self-energy G11(P)=[Ga™~ 704 70GaA] (19
We, hereafter, take the static approximation for the gaugewith
boson propagator as
Gal(P)=p—m+ 4= ysy3Un, (20
g,uv
Du(d)~————— (16) ~ —
. o’ +M? Gal(P)=p—m—4A—¥s5y3Ua, (2D

whereM is an eﬁgctlvze gau%e 2bosor; mass originated fro”\/vheremz ysys andG,(p) is the Green function with the
the Debye screeninyl*~Ng°u®/(27°) [15]. o axial-vector mean-fieldU, which is determined self-
Since typical momentum transfgg| at high density is of consistently by way of Eq(14).
the order of the chemic_al pptential, we may further introduce  ggtore constructing the gap functian, we first find the
the zero-range approximatiga6] for the propagator as single-particle spectra and their eigenspinors in the absence
of A, which is achieved by diagonalization of the operator
Gur (17) G;l. In the usual case of no spin polarization this procedure
Q2+M?2’ gives nothing but the free energy spectra and plane waves.
Then we choose a gap structure on the basis of a physical
with a typical momentum scal@ of O(u). This approxima- consideration as in the usual BCS theory.
tion corresponds to the Stoner mod@#&V], which is popular
in solid-state physics, and stands on the same concept of the
NJL model[18] as well. We shall see that only the space component of the axial-vector
To proceed, we assume, without loss of generality, thaiean field is responsible for spin polarization. Hereafter, we take its
total spin expectation value is oriented to the negatig®-  direction along the axis without loss of generality.

D/.Lv(q)N -
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From the condition that d@t;l(po)@:o:o one can ob- () P (b) P, (c) P,
tain four single-particle energies. (positive energigsand z
— e+ (negative energigswhich are given as

et(p):\/p2+Uf\+m2i2UA\/m2+pf, (22 P,

where the sign factor-1 being in front ofU , indicates the
energy splitting between different spin states due to the pres-
ence of the axial-vector self-energy, which corresponds to the
exchange splittingin the non-relativistic electron system £, 1. lllustrations of the Fermi surfaces in tigg-p, plane
[17]. In the following, we call the “spin”-up(-down) states ity p,= JpZ+p2. (a) For u>Uu+m andU,=m. Outer closed
for the statest e, (*e_). Equation(22) also shows that cyrve corresponds to the Fermi surface of the “spin’-down state
each Fermi sea for the “spin”-up-down) state should un- with single-particle energy_(p) and inner one surrounding the
dergo a deformation and lose rotation symmetry, ddgds  shaded area to the “spin”-up state with (p). (b) The same fofa)
finite. This is a genuine relativistic effef13]; actually the  but U,=m. A pair of white circles connected by a dashed line
exchange splitting never produces deformation of the Fermiepresents the Cooper pair characterized3y(27). Each particle
sea in the nonrelativistic ferromagnetism, e.g., in the Stonein the Cooper pair has a different color and flau@. The Fermi
model[17]. surfaces fom—0. The outer(inner) contour represents the Fermi
Here, it would be interesting to see the peculiarities of thesurface fore_ (e.).
qguark Fermi seas in the presence of the axial-vector self-

energy. In Fig. 1 we sketch the profile of the Fermi seagyq points p,,p,)=(0,* \/Uf\—_mz) for the “spin”-down
. 1Mz 1 —
projected onto the,-p; plane @,=yp;+pj) for the cases quark. Hence in the massless limit— 0, the Fermi sea is

of (8 Ua<m, (b) Uy>m and(c) m=0. As is already men- described by two identical spheres with ragiiin the mo-

tioned these seas still hold the axial symmetry around th . i
z-axis and the reflection symmetry with respect to phep, Fnentum space, which are centered at the poifs pt)

plane. The region surrounded by the outer line show the (0.= L;A) f[sltlae Fig. 10). bscrimt (= 1.2 f
Fermi sea of “spin”-down quarks, and the shaded region is In what fo OWS We use su _scrlpt (=1,2,3,4) for nota-
that of “spin”-up quarks. tional convenience ase, Whlgh means{el,ez,e3,e4}
We can see in Fig.(#) that the Fermi seas for the “spin’- ={e_.e;,—e_,—e.}. We define the spinoi,(p) that
down and “spin”-up states are deformed in the prolate ancsatisfies the equatioB *(Po= €,— 1) én(P) =0, which cor-
oblate shapes, respectively, where the minimum of théesponds to the eigenspinor with the single-particle enefgy
single-particle energy still resides at the origin 0. When  in the absence of the quark Cooper pairing. The spifgp)
U,>m as shown in Fig. (b), there appear two minima at is explicitly given as

[en—(— 1)nﬂp_ UA](px_ipy)pz
~[(=1)"B,+m]p;

nlP)=/Vp n . 23
PPN (=) (e M= U+ P2 (B i) 29
pep;
|

where B

=2, (Po~€nt 1) Y0An- (25
No=V[Bp— (= 1)"m]Leq+Un+(=1)"Bp1/ (enBp)/ (207 D,)
and g,= \/p22+ m?. It is to be noted that the spinoes, do B. Gap structure

not return to the spinors of free quark even wien— 0, but
become mixtures of them, see Appendix A. Introducing the
projection operator A,,= d>n¢n with properties A A,
=ApomnandZ,A,=1, we can recasB,(p) in the spectral
representation into

In this subsection, we give the explicit form of the gap
funct|on A in the Dirac, color, and flavor spaces, and then
calculate the diagonal component of the full Green function
G14(p) in Eq. (7), provided that only the axial-vector self-
energy is taken fo¥(p) in Eq.(14). In general various types
of the gap structures are possible in the Dirac, color, and
Gp= y (24) flavor spaces; they depend on the form of interaction and the
guark mas$2,19|, especially on the strange quark mg2a|.
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Here we suppose a simple gap structure from a physical corwith
sideration, disregarding the finite mass effect.
Using the spinorg,(p) we assume that the gap function ATA =diag|A.12. |A.12. 0) inthe color space
A in Eq. (15) has the following form in the color and flavor nen dAdl% A7 0) P '(32)
spaces:

_ where 7 is a positive infinitesimal.
A(p)= Z AL(p)Bn(p) (26) The quasiparticle energies are obtained by looking for the
: poles ofG,4(p),

with the operatoB,(p),

V(en(p)— )2+ |AL(p)|?> forcolor1, 2
BolP)= 00 (P)1(P) @ BT e for color 3.

where the subscript-n (=—1,—2,—3,—4) indicates that
the single-particle energy in the spinor is replaced by that Ofl'he
opposite signg_,=— €,, without change of “spin.”

One can easily see what kind of quark pairs the gap func- .
tion A (26) represents. Utilizing the property, po= _if d*p TH[Gw(p)— Gas(P)] o]0} (39)

(33

quark number density, is also given as

¢In,(—p)Cy0¢>n(p)oc5n/n, one can find for the general 27)*
spinor (p) == ,as(p) ¢(p) with arbitrary coefficients,,,
_ . , d’p
¥cBnty =T (= P)Cyob-ndn(P)*an(—P)an(p). =N; >, S{0(u—ep)
(28) n=12J (2m)
This equation clearly shows that two quarks included in the +2Uﬁ(p)_2[1_02—n(p)]} (35
Cooper pairing have opposite momenta to each other and
belong to the same energy eigenstate as illustrated in Figyith
1(b).
Now we should note that the antisymmetric nature of the 5 1 €n(p)—u
fermion self-energy imposes a constraint on the gap function vn(p)= 5 1-—————/, (36)
En(p)
[2121]1
CA(p)C t=AT(—p). (29) where the first two terms in E¢35) show the quark contri-

butions, while the last term the antiquark contributioﬁ\(p)
SinceB, satisfies the relatiof B, (p)C 1= BI(— D), A.(p) is the occupation probability of the quark pairs with momen-

must be a symmetric matrix in the spaces of internal degreg&™ P and represents diffuseness of the momentum distribu-
of freedom. Taking into account the property that the most'o":

attractive channel of the OGE interaction is the color anti- Similarly we csn kn(r)]w the sefl_f-i:(;)r{?istent S%IUHOSS sat-
symmetric3* one, it must be the flavor singlet state. Thus welSTY our ansatz about the mean fields\in From the above

can choose the form of the gap function as solutions we can easily obtain that [T,(p)iys]=0,
Tr[G11(P) yil*pi, T G11(P) Y50l P, and
(30) Tr[G11(P) ¥5¥1,21%Px,Py- Hence the pseudoscalar mean

A = A ' . .

[An(P ], 1= €apacijAn(P) field U5, the space-component of vector mean figld, the
where @g) and (j) are indices in three-color and two- axial-vector mean fields)g, andUZ? are vanished after the
flavor spaces, respectively. The form of gap functid@) in  integration over angles.
the color and flavor spaces is familiar for two-flavor CSC
[2,3]. ] ) ) C. Equation for the superconducting gap function

Using the properties oh ,(p) andB,(p), we then obtain

an explicit form ofG,4(p) as Using Eg.(31), the off-diagonal component of the full

Green functiorG(p), given in Eq.(8), can be represented in

[G11(P) lagpiij the similar way as
~ i -1
ATA, Y0Bn 7o
- ) —— Ga(p)=—2 —Aphoy,
[; (Pot =)™ p e ) oM i T pg— (en—m)?—[Ap*+iy
' (37
. Po—mt €y ) . o )
—; 02— (e )2~ | D215y +1 nAn705aB5ij wherer, is the Pauli matrix in the two-flavor space. Substi-
0 n n 3a

tuting Eq.(37) into the gap equatiofil5) and using the iden-
(3D tity =8_,(\a)™\pha=—8/3\,, we obtain
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wherep;=p sin ¢, and p,=p cos6, and the same fok; and
> B (AL (K) k,. The term proportional t@, in Eq. (42) will disappear
n’ after the integration ovef,.

4
=—j EQZJ d’p D, (k—p) D. Equation for the axial-vector mean-fieldU 5
nv
3 (2m* Using Eqgs.(33) and(36), G14(p) is recasted in the form
7*0Bn(P) ¥07” ( 1-03(p) va(p) )
X Aq(p), G o i = — + .
; Po—(en— )= |Ap|*+in (P [GaalP) g, i En: Po—Entin  potEn—in
(38) .
X €POTA L (P) Vo | Sapdij - (43)

where the factor 2/3 is simply the Fierz coefficient for the
color and flavor degrees of freedappendix D. Further-  Substituting the above equation into Efj4), and integrating
more multiplying both sides of E¢38) by B;,(k) and taking  with respect tqy, we obtain the self-consistent equation for
trace with respect to the Dirac indices, the coupled equationda in the zero-range approximation,

for the gap functiong\,, are obtained aftep, integration,

2 Nio o
Un=-579" i
2 o &p wr oy o Aa(P) (2m)
Av(k==39 f PP Tk P
n
(39) X2 [0(u=en(P)+203(PISH(P), (49
where the functiod™” (k,p) is defined as where the factor- 2/9 stems from the Fierz coefficient of the

color-singlet axial-vector channel of the OGE interaction
Y B 1 , (Appendix D, andS,(p) is the expectation value of the spin
Toa(KP)=TIB,, (K) ¥ 70Bn(P) 07" operator,o,= — yoysys, With respect to the spinap,(p):

=[¢_ 0 (K YD (DI In(P) ¥ bn (K)], (40) Sy (P =Tr(y5y3An(P) Y0)

_ 4t
a decomposition oB,(p) in terms of gamma matrices and Pr(P)(=02) ()
its properties are given in Appendix B. Uat+(—1)"8,
Here we take the zero-range approximation in @&q). In = (49
. €n(p)
terms of the polar coordinatgs={p, 6, ,¢,}, we can con-
sider that the gap function(p) does not depend on the ThusU, is related to the expectation value @ summing
horizontal angle¢, due to axial-symmetry around the, ~ over the state with momentum An effect of the Cooper
axis. Thus we can explicitly perform the integration with pairing enters into Eq(44) through the functiorv ,(p).
respect to the anglé, in the gap equatioi39), E. Weak coupling approximation
9 dpdé In this subsection we consider a high-density limit, which
An(K,0,)= _ng —ppzsin 0, means the weak coupling limit due to asymptotic freedom of
3 (2m)? QCD, and then disregards the antiquark pairing and contri-
butions from the negative-energy sghe Dirac sepin Eq.
An(p, 0p) (41) (41). Actually it costs more energy to form the anti-quark
2En(p, 0p) pairing than the quark pairing for a large chemical potential.
Taking the approximation, we also disregard the contribution

. . . ~ from anti-quarks to calculate the quark number density in
with the effective coupling constarg=g/\/Q%+M?2. As Eq. (35 qand the axial-vectorqmean-field Eq(44)y

. __Eq.
seen from the above equation, each of the gap functiongynsistently? In the following calculations we define gap
couples with others by the functiohy n(k, 6. p, 6p) defined  fynctions of the quark pairing by subscript which corre-
as sponds to the “spin”-up-down) of positive-energy states as
A_=A; andA,=A,. The other symbols with the subscript

x; Torn(K, 0,P, 0p)

B P v + have the same meaning, €.¢-= ¢, .
Tn’n(k’ak'p’ap)zj ﬁngn'n(k’p) In addition, we assume that only quarks near the Fermi
surface form the Cooper pairs, and thereby replace the gap
KePy function by an approximated form,

2|En’(k)||6n(p)|

2m2+k D 2This is equivalent to the restriction of the sum over the index

x| (— 1)n’+n—zz +1|, (42 n(n=1-4) to 1,2, which correspond to the positive-energy states

BpBx with different “spins” specified by the subscript .
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AL(p)—AL(pP) O(5—|e~—pl), (46) 121 (a)‘ m;0.0u ‘j
10 s
whereé is a cutoff parameter around the Fermi surface. The os L SN ]
function 6(5— | e (p) — u|) is also regarded as a form factor S ’ . 1
to regularize the integration in the gap equat[@i]. The J o8 L N i
step-function form factor mimics the asymptotic freedom; 0.4 - . A\ ]
inner particles in Fermi sea costs large kinetic energy to cre- 02/’ — A W\
ate the pairing and takes large momentum transfer which 00 ! ‘ ! ‘ N
indicates that coupling of this inner process is small. There, sl T T T T T
however, might be more realistic form factors for finite den- 1oL ®) MO 1
sity QCD, which are smoother functions of momentum and 10 ]
w than ours, we think that they makes little change on quali- 2 08 [ . ]
tative results of the CSC and spin polarization. There are . T ]
models with other form factors or cut-off functiop3,5]. oal A\
Looking at the structure of the gap equati¢fl) with o2 L/~ \
(42), one can find that the gap function is exactly oo | | N
parametrized agAppendix Q 0 1 2 3
6, (rad)
A.(p)= P ( IER+ F FIG. 2. A schematic view of polar-angle dependence of the gap
€-(p) Bp functions at the Fermi surface where we set values of the gap pa-
P rameters aRR=0.2u, F=u, Up,=0.3u, (a) for m=0 and(b) for
=_"t A m=0.1u.
Ei(p)Ai(p)' (47) 1'“
. ph(6)=[u?—m?+U2cog26)
whereR andF are some constants and represent the antisym- "= A
metric and Asymrpetric combinations of the gap functions; IUA\/4M200§0+4mzsin20—Uf\sinz(zo)]l’z,
2R= ,Bp/m(A_— +)=Bpl(pim)(e_A_—€,A}) and F (50

=A_+A,=1pe_A_+e.A). Thelrmagnltudes are de-

termined by the coupled equations, where the subscript corresponds to the “spin”-ug-down)

state again. Substituting the above formula into the gap func-

5 dpcd tion (47), t
:§gzj (2w )gp Sln9p4 Q+(p)( _Bp ) ion (47), we ge
F
pi(6)sing m
m F _ P
+Q-(p) F+B—pR” (48 A.(px .0 M \/m2+[p (0)0030]2

(51)

R= —g2 P p2sin @ _[ —Q+(p)< F— —R) Note that this form exhibits ®-wave pairing nature: it is a
Bp genuine relativistic effect by the Dirac spindfsppendix B.
We show a schematic view of the above gap functions in Fig.
E+ ERH (49) 2. As characteristic features, both the gap functions vanish at
' poles (¥=0,7) and take maximal values near equater (
=/2), keeping the relatiom\ _=A , .® Suppression oA .
where and enhancement d&f _ at #= /2 for the case o+ 0 [Fig.
2(b)] are originated from a finite value &, while they van-

pt2 ish if quark is taken to be masslefdsig. 2(a)]. The aniso-
Q.(p= 5 0(5—| e~ (p)— u)). tropic gap functions give rise to the different diffuseness in
€-(P)°E=(p) the momentum distribution of the two “spin” eigenstates,
] and thereby make some effects on spin polarization, unlike in
We can obviously see thé&&—0 asm—0. the normal phase. The anisotropic diffuseness has two effects

Here we examine the polar-angle dependence of the anhat it obscures the deformation in the momentum distribu-
isotropic gap function at the Fermi surfade.(p*,6). The  tion due to their angle dependence and enlarges the differ-
Fermi momentunp©(6) of each “spin” eigenstate is given ence of the state density between the two “spin” eigenstates
as through the relatiol _=A

pi=pL(6)sing, p,=p(6) coss

3This feature is very similar t6P pairing in liquid He [22] or
with nuclear mattef23].
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FIG. 3. Parameter dependence Bf and F on U, for g _
=0.13 MeV !, m=20 MeV, ands=0.1u. (a) For R and (b) for FIG. 4. Parameter dependence dfy and R on F for g
F. Dashed(solid) lines correspond tou=400(450) MeV. The =0.13 MeV !, m=20 MeV, andu=450 MeV. (a) For U, and
magnitudes ofR and F are calculated by Eq€49) and (48) for (b) for R. Solid line, dotted lines, dot-dashed lines, and dashed lines
givenU,. correspond ta5=0 (normal phasg 0.05«, 0.10u, and 0.1%, re-

spectively. The magnitudes tf, andR are obtained by their equa-
lll. RESULTS AND DISCUSSIONS tions for givenF.

In this section we solve the coupled Equatidad), (48),
and (49) and investigate the effects of the superconductin
gap on spin polarization.

Before going to numerical calculations bf,, R, andF,
each of which is coupled with others by the self-consisten

On the other hand results from the self-consistent calcula-
Yions show thatF becomes larger withs so that its value
corresponds to a region wheké, is comparable with or
lightly less than that in the normal phase, for any value of
he chemical potential. This situation seems to be qualita-
R/ely unchanged, once the ratio of the effective coupling
onstants in the axial-vector chanr@},;, and the diquark
channelGgjq is kept, Guxial:Gyiqg=2/9:2/3, which comes
from the Fierz transformation for color and flav@ppendix
D). However, if the coupling constant in each channel is

R and F as functions of Uy in Fig. 3 where u
=400,450 MeV and5=0.1u. R starts from zero and almost
linearly increases withJ 4 [Fig. 3(@], which is understood

by seeing thatR is proportional to the differenceA - taken independently, our results might be changed qualita-
—A ., due tofiniteU,, see Eq(47) or Appendix C. ThuRR  tively.
is induced byU , and closely coupled with it. Seeing the results faR in Fig. 4(b), we find thatR in-

As for the behavior ofF, it is barely affected byU,  creases withy due to the growth of the phase space and is
(slight decreasing withJ, in the numerical value[Fig.  hardly affected byF except the region of smaf whereU
3(b)]. As seen from the dependence @rthe magnitude oF  varies rapidly as shown in Fig.(d): it also shows thaR is
is almost determined by the volume of the phase space in thelosely related tdJ .
gap equation, that is, by and é. This reflects the fact that These parameter dependences also suggest that the regu-
is related to the sunﬁ++ﬁ_ (Appendix Q. Thus we ex- larization scheme for the gap equation, i.e.,the sharp momen-
pect thatF increases with density when other parameters aréum cut-off function, the form factor, etc., will give rise to a
fixed. qualitative change tdJ,. In the present cut-off function,
From the above results we have found tRats not so  0(8—|e=—pul|), Ua (spin polarizatioh coexists with CSC,
much influenced byJ,. Next we examine the behavior of except a slight competition, as will be shown later.
U, andRwhenF is treated to be an input parameter. In Fig.
4 we show the parameter dependencelgf and R on F,
where u =450 MeV and we use three values of the cut off
parameters=0.05«, 0.1x and 0.1%, and add the result of We demonstrate some self-consistent solutions here. Since
U, in the normal phase=0). Comparing the dependence We have little information to determine the values of the
of U, on F [Fig. 4a)] with that in the normal phase, we see parametergy and & (there may be other more reasonable
a characteristic behavior for different values &fthere are  form factors than the present cutoff functjpand our pur-
regions whereJ 5 is larger than that in the normal phase for pose is to figure out qualitative properties of spin polariza-
relatively smallF, and this region seems to extend with  tion in the color superconducting phase, we mainly set in the

A. Self-consistent solutions

105001-8



SPIN POLARIZATION AND COLCR . .. PHYSICAL REVIEW D 68, 105001 (2003

40 - — 300 N
(@) Super =16 Mev (a) -
- - - Normal L 4
L — — m=15MeV e
%‘ 30 ’>‘ 200 vt m=20 MeV _
) -
€20t =3 L 1
< x
> 100 |- :
10 |
0\(\)””éu”1\0\’\\1\5”\ 0 e el R
250 FT 7 1 T T T T pul L O B B B B B B R
F _=7 12 e
P © ] Lo e
200 | m=25 MeV _] lo L '/ —
5 1 Y
r 1 r e 1
3 150 | 3 S 8r e ]
¢ ] & .l ~ ]
< 100 F 1 w | - ]
] r m=20 Mev ] w e
L ] 4 e B
E 4 L d 4
50 £ ] oL 1
ok ! ! L ol v Ll ]
0 2 4 6 8 10 12 0 5 10
PslPo PelPo

FIG. 5. Axial-vector mean field as a function of baryon number  FIG. 6. R (a) or F (b) as a function ofpg/po for m=15 MeV
densitypg (po=0.16 fm 3) for g=0.13 MeV ! and6=0.1x. (@  (dashed linesandm=20 MeV (dotted lineg. The other parameters
For m=14~16 MeV and(b) For m=20 and 25 MeV. Dashed are the same as in Fig. 5. Note that(b) the lines almost overlap
(solid) lines are obtained in the normatolor superconducting each other for the two quark masses.
phase.

5 density wherelJ , becomes finite. This reflects thRtis in-
following calculations them asy=0.13 MeV'* and &  duced byU, and then has a negatiypositive) contribution
=0.1u, for example, which is not so far from the couplings to A, (A_). Here we would like to comment on the mag-
in NJL-like models[5,16,19. nitude of (A.). These should be compared with the usual

We first examine spin polarization in the absence of CSCuniform gap function, and may look very large values of
In Fig. 5 we show the axial-vector mean-fidlth, with A O(GeV) in our case. However these values would be largely
being set to be zero, as a function of baryon number densityeduced by taking a smooth form factor which models
pe(=py/3) relative to the normal nuclear density,  asymptotic freedom of QCIE]; it further reduces the inte-
=0.16 fm 2 for m=14~25 MeV (dashed lines It is seen  gral value in the gap equation, compared with our sharp cut-
that the axial-vector mean fiel@pin polarization appears off function.
above a critical density and becomes larger as baryon num- In Fig. 8 we show the expectation value of the spin op-
ber density gets higher. Moreover, the results for differenterator per quark(o,/Ng), as a function opg/p, with and
values of the quark mass show that spin polarization growsvithout the superconducting gap. The critical density be-
more for the larger quark mass. This is because a large quadomes lower as the quark mass increases, and the peak po-
mass gives rise to much difference in the Fermi seas of twaitions of(o,/N,) are located at relatively lower densities in
opposite “spin” states, which leads to growth of the ex- each quark mass. The magnitude(of,/N,) is to be com-
change energy in the axial-vector channel. pared with 1 for a free quark, becaq.ﬂticrzwslwlng -1 at

Next we solve the coupled equatio@@®}), (48), and(49). th tf for the f : Wi th It
Results forU,, R, andF are shown in Fig. Fsolid lineg @ rest frame for the free spingi;. We arrange the results

and Fig. 6, for values of the quark mass=14—25 MeV. It

is found again, by comparing these cases of the quark mass, wf T S
that U, is very sensitive to the quark mass and increases sl /,_;..’-/-'/'_"/-/j
with it as in the absence of CSEig. 5. For the behavior of S /,_;.f/"f'/' 1
the gap functionsR is induced byU , and both ofF andR o 61 /;:"/' 1
increase withpg due to the growth of the Fermi surfageg. ERVER i ' i
6). It is also seen thdk is not sensitive to the quark mass. To r i e
see the bulk behavior of pairing gap as a function of baryon 2r 7 2 raoven |

number density, we also show, in Fig. 7, their mean values o T T S R

with respect to the polar angle on the Fermi surface, 0 2 4 6 /8 10 12 14
PelPo
= sing |\
(As)= f do——AZ | . (52) FIG. 7. Mean values of the gap functions with respect to the
0 2 solid angle at the Fermi surfacéA.), plotted as a function of

pglpo for m=15 MeV (solid and dotted lingsand 20 MeV(dot-
The mean valueg$A ) begin to split with each other at a dashed and dashed lines
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FIG. 8. Spin expectation value per quark as a functiopgfp,. en(p)
(a) Form=14-16 MeV andb) m=20 and 25 MeV. Dashe@olid)
lines show results in the normé&olor superconductingphase. with
of three quark masses=14~16 MeV by 1 MeV in Fig. e-(P)=(|p] = Un)?+pf. (54

8(a) to show a high sensitivity of spin polarization to the

quark mass, which implies that the exchange energy from th&he right-hand side of the above equation can be analytically
attractive axial-vector interaction is strongly enhanced by théntegrated to give

guark mass to produce the large axial-vector mean-field. The

exchange energy is also enhanced by larger chemical poten- U 2., 4w ;rUAd V2= (p+Up)?
tial and the resulting axial-vector mean-field increases with it AT T gY (2m)3 f ZJ

(see Fig. 5. But the spin expectation value per quark, which

dp:p;
0

is relative to the axial-vector mean-field per quark Uatp, 2., 4w utUp
(ocUA_/Nq), has an upper limit since th_e increasd}Qlfis fa_r Xm— g9 (ZT)?’SJO dp,
superior to that olU, for larger chemical potential, which z7 A t
gives rise to the peak positions in Fig. 8. o U,—

The quark mass is very important in relation to the break- X f w7 (pzmUA) dptpt% =0. (55
ing of chiral symmetry in QCD. Models incorporating chiral 0 V(Pz=Un)"+pi

dynamics have indicated that the dynamical mass becomes

smaller as chiral symmetry is restored at a high densityHiere we have assumed that-U,. In the massless limit,
while the current quark mass is small and explicitly breaks ithe Fermi sea is described by two complete spheres in the
[24]. In our model, on the other hand, we treat the quarkmomentum space with radii, whose centers are located at
massm as a variable parameter so that we may simulate 4Pt:Pz)=(0,=Up) [see Fig. 1c)]. The momentum distribu-
change of the dynamical mass. In order to further examindon for quarks n th“e _s;?,m -down state occupies these two
the effect of the quark mass on spin polarization, we Shoﬁpheres, while the “spin™-up state does their overlap region

" _ (shaded In the above integration for the “spin”-down
the_Tgssfdetﬁ)]endence a_l;thdendsm%? 5’;‘&; ps=10p ‘ant. quarks, the expectation value of the spin operator given by
P 19po TOrINE cases with and without tn€ superconduc Ing'quarks with G=p,<U, is canceled with that of quarks with
gap in Fig. 9. Spin polarization increases with the quar

. " . - =<p,=<2U,. The remaining contribution from the region,
mass in all the three densities. In the figure we exhibit onIy26A<pE </“iUA cancels Q\J/vith that by the ‘.Spin,?up
<p,< ,

the results for a narrow region of the mass parameter ( g ,arks. Thus we can see that spin polarization disappears as
=13~20 MeV), while as for larger masses©(100 MeV) 11,0 in the absence of CSC.

(order of the strange quark masspin polarization mono- This analytical result that/,—0 asm—0 can be also
tonically increases without singular oscillations. Critical val- ynderstood as follows. The eigenstates of non-interacting
ues of the quark mass at which spin polarization disappeaigassless fermions are classified by the definite helicity
become smaller as density increases in both cases. states: the positive energy state is right-handeft-handegl

In relation ofU 4 to mwe can derive an exact result in the with positive (negative helicity, while the negative energy
massless limitm—0. In the normal phase whete=0, Eq.  state those with negativg@ositive helicity. This property is
(44) becomes not spoiled by introducing the axial-vector mean-field, when
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we extend the meaning of helicity; the Dirac equations for BF T T T T T T T g
the “left-" and “right-handed” positive-energy fermion spyuyfFF/—/—m—m—mmm |
fields ¢ are now given as s L0 ]
(Pot+p-o+Upos) ¢ =0, (56) gwor ]
— 8r s
[ M e m e e e
(Po—P- 0+ Up03) yr=0, (57 g 6 — sossmert ]
4 — — — §=0.26 Mev* —
which give the eigenvalues, L ! Lo
4 6 8 10
Po= P +(p,+Up)[=eL(p)] pelpy
FIG. 10. Phase diagram js / pg-m plane for the effective cou-
for gy andpo= 7+ (p,~Un) L =er(P)] for ¢z ¢ (1) Jem P P P

pling constang=0.13 MeV ! and 0.26 MeV . At regions above

the lines spin polarization arises. This result is obtained with the
gap function, thus all the region in the phase diagram shows the
golor superconducting phase.

is the eigenstate of generalized helicity=+1 projected
onto the shifted momentum’ ={p,,p,,p,=Ua}. If u#0
they form the spherical Fermi seas, see Fi@:).1Here it
would be interesting to compare these eigenvalues with th

limit form of e..(p) in Eq. (22), We can confirm that the critical mass becomes smaller with

. _}\/ﬁ -0 the increase of the density, and spin polarization occurs at
€=(P) pe+(p2l +Un)" as m—0 8 moderate densitiesp=3~4p,) if the coupling is strong
Then we can see the relationg. (p)= e, (p)6(*p,) enough even though quark mass is taken to be smaller as a

+ ex(p) O(F p,), which clearly show that the two Fermi seas Simulation for change of dynamical massstoration of chi-
of the eigenspinor&23) give the same Fermi seas ¢f r for ~ 'al symmetry.

a given chemical potentiat. Thus we can take an alterna- _ eré we would like to understand how the gap function
tive view of the Fermi seas in terms of the definite helicity &f€CtS Spin polarization and brings about a slight reduction

states by rearranging the eigenspir@8) properly in the pf it. In the spin—polarizgd phase, th_e momentum distribgtion
massless limit. In each Fermi sea #6r  the particle num- 1S deformed from the S|mple s.ph'erlcal shape.. As mentioned
ber with the definiteh becomes the same, and thereby thell Ref. [13], the deformation is induced by finité, and
total spin-expectation value becomes vanished. feeds back thA in a seIf—_conS|stent manner. In the color

In the color superconducting phase, on the other hand, the!Perconducting phase, diffuseness caused by the Cooper
situation is different because the momentum distribution beP&ring in the momentum distribution depends on the polar
comes diffused due to the creation of the Cooper pairs nehgle and then has an influence on the deformation. As can

the Fermi surface. Fan—0 andA . #0, Eq.(44) becomes be expected from the polar-angle dependence of the gap
B function, diffuseness tends to obscure the deformation.

2., f d*p L Upt(— 1)"p,| From the consideration of the spin expectation values by
n=12

Ua=—g9 > spinors(23) near the Fermi surfaces;

23 P T e

. (61

59 . UpspZrm U Jpirm?
where v?(p) indicates the diffused part of the momentum ¢=(~02) b= € - w
distribution, defined in Eq.36). Here we should note that the

gap functionsA . are still nonzero even ah=0. The dif-  where¢.= ¢, for two “spins.” The difference of the spin
fused part, however, give no contribution to the spin polarexpectation value between two “spin” statgs. is largely
ization from the viewpoint of the helicity eigenstates. Theaffected by highp, regions or regions near both poleg (

gap function in the massless limit becomes =0,7). Thus the large deformation along thaxis seems to
enhance spin polarization.
In order to specify to what extent the Fermi sea is de-
Au(p.O)= ——F, (60 P

\/(| Pl =U % ptz formed, we calculate the quadrupole deformation of the mo-
mentum distribution defined by

see Fig. 2a). The diffuseness from the above gap function

has an equal contribution to the two complete Fermi spheres Q,=3(pAH/(p*—1. (62

of chirality. Thus the total spin, which is obtained by sum-

ming up these momentum distributions, should be zero in thgn Fig. 11, we showQ, as a function ofU, at u

massless limit even if the CSC is taken into account. =450 MeV in the normal phase and in the color supercon-
To summarize we show a phase diagram for the quarlgucting phase in which the gap functions are given by their

mass and baryon number density in Fig. 10 where we add thequations for fixedJ 5. From this result ofQ, deformation,

result ofg=0.26 MeV ! to see the dependence on the cou-we can see that the diffused part near the Fermi surface ob-

pling constant. The lines indicate the critical mass at a fixedscures the deformation then gives an opposite effect against

density (at regions above the lines spin polarization ajises Q,, and thus reduces spin polarization.
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(620 as a function of U,. Parameters are fixed a§1 z o2 L
=0.13 MeV'!, m=20 MeV, and u=450 MeV. Dashed(solid) = |
line is given in the normalcolor superconductingohase. 01 -
Nevertheless the gap function has another effect on spin 00

polarization. It is to be noted that the qualitative relation,
A_=A,, is always retained as seen from Fig. 2 and then
has a effect to enlarge the difference of the state density rG 13, Induced magnetic moment per qués) as a function
between the two “spin” states. This effect is expected t0of /5, Parameters and legends are the same as in Fig. 5.
enhance spin polarization since the difference of the spin

expectation value by each spin@l) near the equator§
=1/2), so thatp,~0, seems to depend only on the differ-
ence of the state density. To see it in both the normal an
color superconducting phases, we define Mgaf (Ngowr) is
the state density of the “spin”-ug-down state and show
their difference bydN=Ngq,,»—N,p, only in the first two
colors, as a function o , in Fig. 12 atu=450 MeV. The

Pe/o

it is very difficult to see which type of pairing is energeti-
8ally favored.

Finally we would like to comment on the coupling of the
spin polarized quark matter with the external magnetic field;
quark fields couple with the magnetic field through its
anomalous magnetic moment. The magnetic interaction is

result indicates that the gap functions slightly enhadte ~ de€scribed by the Gordon identity for the gauge coupling
than normal phase. term: g e*/2m(yo ) F*” whereg, is a form factor and

From the above discussions spin polarization is signifi-€* an effective chargéln quark matter a magnetic moment
cantly influenced by both the deformation and the state deriS given as the expectation valde;;) with respect to the
sity in each “spin” state. As a result of the self-consistentground state. In our model onkr;,) is nonzero, and the
calculation in the color superconducting phase, the reductiomagnetic moment per quark is given as
effect on the deformation is slightly superior to the enhance-
ment effect from the difference of the state densities, and the
pairing effect finally reduces spin polarization than in theMz=(012/Ng)
normal phase. It, however, should be noted that this qualita- 1 e
t!ve conclusion about whether QSC enhances spin polariza- _ — j P [zvﬁ(p)Jr 0 u— €)1 bn(P) o1201(P).-
tion than normal phase or not is very delicate and may be  pgn=i2J) (2)3
changed depending on the regularization scheme, as already
mentioned. Moreover other types of pairing which are not
considered here, e.g., pairing of the “spin” -up and -down
states, may gives rise to qualitatively different results, while

(63

Note that the exBectation value @f, by the spinor does not
— ‘ ‘ ‘ depend onJ 5 ; ¢+ (p)oiap-(p)=+m/B,, so thatM, re-

e il - flects only the asymmetry in the momentum distribution due
i il to the axial-vector mean-field. In Fig. 18], is given as a
2 02+ . function of baryon number density. This indicates that result-
< L i ing ground state also holds ferromagnetigspontaneous
Z o1l | magnetization
- [=450 MeV
0'00_0 ‘ 011 ‘ 012 ‘ 0}3 ‘ 0}4 ‘ 0}5 “Here we need not consider the orbital angular momentum for
U uniform matter. But if a superconductor is of the “second” type in

which London’s penetration length is larger than the coherence

FIG. 12. Difference of the state densities in the two “spin” length, a vortex lattice may be formed in response to the external

states plotted as a function di,. Legends are the same as field and then total magnetization is to undergo a qualitative change
in Fig. 11. due to circulation of supercurref5].
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IV. SUMMARY AND CONCLUDING REMARKS It is to be noted that if the effective coupling constant is
strong enough to lower the critical quark mass, spin polar-

me:trtletrhlisn ptazecr:c\)l\llgr h:alee?é(gr%'ﬂgsns‘)'nhz(;?r'\zl\?é'c;]na{/neqilrjl?rgi_zation (magnetizatiohhas potential to appear at rather mod-
P gp ’ rate densities such as in the core of neutron stars, even

duced the axial-vector self-energy and the quark pair fiel hough CSC weakly works against it.

(the gap functiopy whose forms are derived from the one- From the above observations it is suggested that spin po-

gluon-exchange interaction by way Of. the F_|er_z tranSfOm.]a'larization does not compete with CSC but can coexist with it,
tion under the zero-range approximation. Within the relativ-

istic Hartree-Fock framework we have evaluated theirunI|ke in ordinary superconductors of the electron system

magnitudes in a self-consistent manner bv wav of th with the sswave and spin-singlet pairing. This reflects the
9 \ . y y Sact that internal degrees of freedom of the quark field, e.g.,
coupled Schwinger-Dyson equations.

.the color, flavor and Dirac indices, have rich structures to

AS. a _result of numerlc_:al calcu_latlons spo_ntaneous SIOIr%atisfy the antisymmetric constraint on the quark-pair field.
polarization occurs at a high density for a finite quark mass The possibility of the coexistent phase might also give a

in the absence of QSC’ while it never appears for masslescs'ue as for the origin of the superstrong magnetic field ob-
quarks as an analytical result. In the spin-polarized phase thé

single-particle energies corresponding to spin degrees O§erved in magnetars. We roughly estimate the expected mag-
gie-p 9 P 9 P 9 netic field when magnetars are assumed to be quark stars.

freedor_n, which are degenerate n the noninteracting SySterI:}'he maximum dipole magnetic field at the star surface reads
are split by the exchange energy in the axial-vector channel.

Each Fermi sea of the single-particle energy deforms in a 8
different way, which causes an asymmetry in the two Fermi Bmax:?,u/qnq(<Mz>/Nq)a (64)
seas and then induces the axial-vector mean-field in a self-

consistent manner. In the superconducting phase, howeveith wq andng being the quark magnetic moment and the
spin polarization is slightly reduced by the pairing effect; itis quark number density, respectively; e.g., foM 2/Ng
caused by competition between reduction of the deformatlorL(lo—s) and ng~0(1 fm=3), we find B,,,~O(10"° G),

and enhancgment of the diﬁerence_in the_ phgse spaces fhich is comparable to that observed in magnef&arg|.
opposite “spin” st'ate.s d.ue to the anisotropic diffuseness in In the present paper we have not taken into account chiral
the momentum distribution. . . .. symmetry, which is one of the basic concepts in QCD. If
_In connection of the deformation with superconductivity qj,; symmetry is restored at finite baryon number density,
it has recently been report¢6] that in the superconducting the quark mass becomes drastically smaller as density in-

asymmetric nuclear matter the Fermi sea may undergo a deteaqes |n order to simulate it we have examined the quark

formation even in the spin-saturated system due to the d'fl'”nass dependence on spin polarization. In the future work we

ference of the Fer_m|_sur_face between neutrons and Protong;q id like to consider an effect of the dynamical mass on the
the momentum distributions of neutrons and protons may, .-\ vector self-energy

deform respectively to enlarge the overlapped region in the
phase space, which effectively contributes tortlpe pairing.
They have shown the possibility of the deformation in a
variational way; the Fermi sea of the majority of nucleons The present research of T.T. and T.M. is partially sup-
deforms in a prolate shape, while the minority in an oblateported by the REIMEI Research Resources of Japan Atomic
shape. Thus the deformation property of the Fermi seas looksnergy Research Institute, and by the Japanese Grant-in-Aid
very similar to our case. Nevertheless, note that our deforfor Scientific Research Fund of the Ministry of Education,
mation is produced by the relativistic effect. Anyway it Culture, Sports, Science and Technology1640272,
would be interesting to look further into the common feature.13640282.
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APPENDIX A: STRUCTURE OF SPINOR UNDER THE AXIAL-VECTOR MEAN-FIELD  Up

In this appendix we rewrite the spin¢23) in terms of the free quark one and the remainder characterizdd byWe
employ the free spinoug(p) in which the two-component Pauli spinors are given as eigenvectors of the spin matrix

\Eo+m§i 1 0
u-(p)= €—Mm with §+=< and §=< ) (A1)
T POt ° ’

where ey= \/p?+ m? and{ o} are the Pauli spin matrices.
The spinor¢ ., (p)= ¢,(p) for the “spin”-up state is decomposed as follows:

Bp(A €—2Up)+m(Se+28))
2
PPV 4+

N Rem,(U,)
P pxtipy)’

L= Bp—U +
¢+(P)=2BpVegt m(ww(p)— Be mu—(p))

- A2
Px 1Py Pz .
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wherede=e_—€,, Ae=e_+€,, and

Pa€: = Bo—Un)Bp(A €= 2Up— 2€0) + mée]
— (P Hipy)(Bp+ M) By(A €=2Up— 2€0) + Mde]
Sel (€= Bp=Un)ps+2B5(BptM)]—2B,(BptM)[(e-—Up) (e, —Up) — €5
PApxtipy)(Bpt+m)de

Note that the term RepfU ,) vanishes in the limitJ ,— 0. Thus one can find thak_ (p) is a mixture of the free spinors even
whenU,=0.
A decomposition of the spinap_(p) = ¢41(p) for the “spin”-down state can also be done in a similar way,

Reml( UA) = (A3)

Bo(A €—2U ) +m(Se+28,) € +Bp—Ua Bo—m Remy(U,)
_ =2B,\VeEgt+ M ———u + u_ + —, A4
ptszN_ ¢ (p) ﬂp e-0 px+|py +(p) pz (p) pz(px+|py) ( )
where
Pe_+Bp—UnBp(A €=2Ux—2¢€) + Mbe]
Remy(U,) (Pxtipy) (Bp—M)[Bp(A €=2Ux—2¢€p) + MJe] (5)
e =
TN Sel (e + By—Un)p2—283(By— M1+ 2B5(By~ M) (e~ Up)(e, ~Up) — €3]
_pz(px+ipy)(ﬂp_m)5€
|
APPENDIX B: DECOMPOSITION OF B,(p) IN TERMS function for Eq.(B1) has the nodes$vanishing atf=0,7)
OF THE DIRAC GAMMA MATRICES due to the factop,, which is similar to3P pairing in the

The operatoB,(p) in Eq. (27) consists of some gamma liquid He-A phas_e_, b_ut these nodes are entlrely_attrlbuted to

L TEe } N the genuine relativistic effect. This property survives even in
matrices; it is a linear combination df y, ysvy, 09, and the limit U »—s 0
A .

ooz in the diquark fieldyBny=y'CBy. The last two ma- From Eq.(B1) we can also obtain the relation appearing
trices give the tensor diquark fields, while these terms havg, Eq. (40)

no influence on the gap equati@®8) due to axial symmetry
of the Fermi seas around tipe axis: the integration oB,(p)

with respect to the azimuthal anglg, in Eq. (38) gives Y. YoBn(P) Yoy =2Bn(p) +2m{m+(—1)"B,}. (B2)
~ 2rde,
Bn(p)EJ EBn(p) APPENDIX C: PARAMETRIZATION OF THE GAP
0 FUNCTION
Pt In this appendix we derive the parametrizati@). The
= [(—1)"p,yz+(—1)"ml+ . PP P :
4|En(p)|18p[( VPzyst(—1) Boyss] gap equatior(41) is expanded as
(B1)
Thus t terms di b th tional to A . (k) Z"ZJ ®p _k P (+2m2 +1
us tensor terms disappear because they are proportional to A . (k)= 5g +
expl¢y) in By(p). 3 (2m)3 2e.(k) | €+(p) BkBp
_ The first term on the rlght—.hand.3|de also has no contribu- A.(p) pe [ 2m? A_(p)
tion after symmetric integration with respectpg. The re- ¥ + )
mainders{1,ysy;} imply the pseudoscalarJ{=0") and 2BE+(p) e-(P)\ Bibp 2E_(p)
vector QP=1") diquark pairings in terms of the notation in (Cy
Ref.[2]. Please note that the CSC gdgi) results in a linear
combination of different angular momentum pairs @nd A i
1~ because of the lack of rotation symmetry. IntroducingA .. (k) through the equation
Since the diquark fieldg/"C(1, ys7y3) ¢ contain the off-
diagonal matrices which connect the lower component with ki -
the upper one of the Dirac spinors, these pairings vanish in AL(k)= a(k)Ai(k)’ (C2

the nonrelativistic limit or in the limitm—oc. HenceB,(p)
resembled-wave pairing as is seen in E(O0), although it R
has no correspondence in the nonrelativistic limit: the gapve obtain the “gap” equation fol . (k),

105001-14
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. 2., dp pf 12
8.00-38 ] e 0001 =5 1 i (e (D9
2m* [ A_(p) Ai(p) 2 1
+ - i’ it 5 N _1 5"5'/‘7__ i irit .
X ﬁkﬁp<e_<p)25_(p) < (%E. (D) oD )y =5 (N~ D)8 8y = O\l o)y

(D3

(€3 It should be noted that there appears no tensor term in Eq.
(D3) due to chiral symmetry in QCD. Thus, e.g., the coeffi-
cient for the color-singlet axial-vector self-energy reads
—4/9 for Ny=2 andN;=3.

A (p) A, (p) ]
+ + :
€e_(P)’E_(P) €+(P)*EL(p)

Then we find the following properties:

R R R ~ m We also present a Fierz transformation for diquark fields.
A_(K+A_ (k\=2F and A_(k)—A_ (k)=2RX—, The right-hand side of Eq15) can be expanded in a similar
P way for Gq;,

(C4

whereF (R) is a constant which characterizes the symmetric % [Fa621(p)ra]ij
(asymmetri¢ combinations of the gap functions.. . Thus a
we can further parametrizf&s(k) as

" =2 (CTZC™ i {we(P)i 9a(P)j ) (Ta)jj
Ai(k)=:ER+F. (C5)

Substituting the above formula into E@3), one can obtain :g (CliT2in (= P)irh(p)j ) (La)yj
the coupled equations fd¢t and R, Egs.(48) and (49).

APPENDIX D: FIERZ TRANSFORMATION :% fap T G21(p)C ' TRC H(CTRCT);  (D6)

We present the Fock exchange energy term by the OGE
interaction by the use of the Fierz transformation. The GreeN'ith
function with vertices on the right-hand side of Ef4) can

be expanded as <Fa>ifk<ra>jfj=§ fan(TpC*)irj (CTp)j, (D7)

; [TaiGaa(p)alj) :é (Fa)ii’<¢(p)i’g(p)j'>(ra)j’1 where{f,,} are coefficients of a Fierz transformation?7)
and are explicitly given as

=2 Cay(Ty)jTH(Gul,) (DY) . 1
ab (Yﬂ)i/k(Y”)j'j:(C )i’j’(c)jk_z('y,uc )i'j'(CY”)jk
with 1
— 5 (7, ¥sC*)irj (Cy* ys);

I1615 7;L®1flavor®)\color 2" ° H oK

and +(iC*'ys)i/]-/(iCy5)]-k, (D8)

: (D9)

1] 2
(ra)ii’(ra)j’j:% Can(Tp)ij(Ty)jrir s (D2) 5i'k5i'J:§{N—f5i'j' ikt (Ta)irjr (Ta) i

where{C,,} are coefficients of a Fierz transformatib?2) 1\[ 2
for the Dirac matrices, the identity matrix in the flavor space, (\);/(\¢)jrj= ( 1- —) [—(5)i,j,(5)jk+()\ﬁ)i,j,()\f)jk
and the Gell-Mann matrices in the color space, Ne/[Ne

14
N,

1 NN (D10)
(')’M)ii’(’yﬂ)j’jzfsij‘sj’i’_E('yﬂ)ij('y“)j’i’ e el
1 where {\3™} are symmetric(antisymmetri¢g matrices of
- E(YSVM)ij('yS'yM)j’i"’_(i')’S)ij(i7’5)j'i’v {\¢}. The present gap functionA(p)==,Bn(p)An(p),
which is a linear combination of the gamma matrices, can be
(D3)  obtained by taking projection oB,(p).
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