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Spin polarization and color superconductivity in quark matter
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A coexistent phase of spin polarization and color superconductivity in high-density QCD is investigated
using a self-consistent mean-field method at zero temperature. The axial-vector self-energy stemming from the
Fock exchange term of the one-gluon-exchange interaction has a central role in causing spin polarization. The
magnitude of spin polarization is determined by the coupled Schwinger-Dyson equations with a superconduct-
ing gap function. As a significant feature, the Fermi surface is deformed by the axial-vector self-energy and
then rotation symmetry is spontaneously broken down. The gap function results in being anisotropic in the
momentum space in accordance with the deformation. As a result of numerical calculations, it is found that
spin polarization barely conflicts with color superconductivity, but almost coexists with it.
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I. INTRODUCTION

Recently, there has been a lot of interest in high-den
QCD, especially in quark Cooper-pair condensation phen
ena at high-density quark matter@called color superconduc
tivity ~CSC!#, in connection with, e.g., physics of heavy io
collisions and neutron stars@1–3#. Its mechanism is similar
to the BCS theory for the electron-phonon system@4#, in
which the attractive interaction of electrons is provided
phonon exchange and causes Cooper instability near
Fermi surface. As for quark matter, the quark-quark inter
tion is mediated by colored gluons, and is often appro
mated by some effective interactions, e.g., the one-glu
exchange~OGE! or the instanton-induced interaction, bo
of which give rise to the attractive quark-quark interaction
the color antisymmetric3* channel. CSC leads to spontan
ous symmetry breaking of colorSU(3) into SU(2) as a
result of condensation of quark Cooper pairs@2,3#.

In this paper we would like to address another pheno
enon expected in quark matter: spin polarization or fer
magnetism of quark matter. We examine the possibility
the spin-polarized phase with CSC in quark matter. As fa
we know, the interplay between the color superconduct
phase and other phases characterized by the nonvanis
mean fields of the spinor bilinears^c̄Gc& has not been ex
plored except for the case of chiral symmetry breaking@5#.
Our main concern here is to investigate the possibility
quark Cooper instability under the axial-vector mean fie

^c̄gmg5c& which is responsible for spin polarization o
quark matter. It would be worth mentioning in this conte
that ferromagnetism~or spin polarization! and superconduc
tivity are fundamental concepts in condensed matter phys
and their coexistent phase has been discussed for a long
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@6#. In recent progress, a superconducting phase has
discovered in ferromagnetic materials and much effort
been made to understand the coexisting mechanism@7#.

In addition to being interesting in its own right, the coe
istence problem may be related to some physical phenom
Recently, a new type of neutron stars, called as ‘‘magneta
with a super strong magnetic field of;O(1015 G) has been
discovered@8,9#. They may raise an interesting question f
the origin of the magnetic field in compact stars, since
strength is too large to regard it as a successor from prog
tor stars, unlike canonical neutron stars@10#. Since hadronic
matter spreads over inside neutron stars beyond the nu
density (r0;0.16 fm-3), it should be interesting to conside
the microscopic origin of the magnetic field in magnetars.
this context, a possibility of ferromagnetism in quark mat
due to the OGE interaction has been suggested by one o
authors~T.T.! within a variational framework@11#; a compe-
tition between the kinetic and the Fock exchange energ
gives rise to spin polarization, similarly to Bloch’s idea fo
itinerant electrons. Salient features of spin polarization in
relativistic system are also discussed in Ref.@11#. Thus, it
might be also interesting to examine the possibility of t
spin-polarized phase with CSC in quark matter, in conn
tion with magnetars.

We investigate spin polarization in the color superco
ducting phase by a self-consistent framework, in wh
quark Cooper pairs are formed under the axial-vector me
field. We shall see that this phenomenon is a manifestatio
spontaneous breaking of both colorSU(3) and rotation sym-
metries.

We adopt here the OGE interaction as an effective qua
quark interaction. Since the Fermi momentum is very large
high density, asymptotic freedom of QCD implies that t
interaction between quarks is very weak@12#. So it may be
©2003 The American Physical Society01-1
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reasonable to think that the OGE interaction has a domin
contribution for the quark-quark interaction. In the fram
work of relativistic mean-field theories, the axial-vector a
tensor mean fields, which stem from the Fock excha
terms,^c̄g5gmc& and ^c̄smnc&, may have a central role to
split the degenerate single-particle energies of the two s
states, and then leads to spin polarization, e.g., see@13# for
discussion in nuclear matter. As for quark matter, seve
types of the color singlet mean-fields appear after the F
transformation in the Fock exchange terms, but we re
only the axial-vector mean-field as the origin of spin pol
ization, because the OGE interaction by no means holds
tensor mean field due to chiral symmetry in QCD, unli
nuclear matter@13#. Presence of the axial-vector mean-fie
deforms the quark Fermi seas according to their spin deg
of freedom, and thereby the gap function should be no m
isotropic in the momentum space. We assume here an a
tropic gap functionD on the Fermi surface by a physic
consideration and solve the coupled Schwinger-Dyson eq
tions self-consistently by way of the Nambu formalism
find the axial-vector mean-fieldUA and the superconductin
gap functionD. Thus we discuss the interplay between sp
polarization and superconductivity in quark matter.

In Sec. II we give a framework to deal with the prese
subject. The explicit structure of the anisotropic gap funct
D in the color, flavor, and Dirac spaces is carefully discus
there and in the Appendix B and Appendix C. Numeric
results aboutUA and D are given in Sec. III, where phas
diagram of spin polarization and color superconductivity
given in the mass-baryon number density plane. Section
is devoted to summary and concluding remarks.

II. FORMALISM

In this section we present our formalism to treat CSC a
spin polarization. We consider quark matter with flav
SU(2) and colorSU(3) symmetries, and assume that t
interaction action is described by the OGE interaction as

I int52g2
1

2E d4xE d4yF c̄~x!gm
la

2
c~x!G

3Dmn~x,y!F c̄~y!gn
la

2
c~y!G , ~1!

where c is the quark field,Dmn(x,y) is the gauge boson
~gluon! propagator, andla (a51,2, . . . ,8) are theSU(3)
Gell-Mann matrices. Using the Nambu formalism@2,14# the
effective action is given within the mean-field approximati
as

I MF5
1

2E d4p

~2p!4 S c̄~p!

c̄c~p!
D T

G21~p!S c~p!

cc~p!
D ~2!

with the inverse quark Green function

G21~p!5S p”2m1m” 1V~p! g0D†~p!g0

D~p! p”2m2m” 1V̄~p!
D , ~3!
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wherem” 5g0m with the chemical potentialm. V is a self-
energy andD is the gap function for the quark Cooper pa
both termsV and D should be provided by the Fock ex
change terms of the OGE interaction. We define herecc(k)
and V̄ as

cc~k!5Cc̄T~2k!, ~4!

V̄[CVTC21 ~5!

with the charge conjugation matrixC which is explicitly
given by ig2g0 in Dirac representation.

The Green functionG(p) can be written straightfor-
wardly from Eq.~3! as

G~p!5S G11~p! G12~p!

G21~p! G22~p!
D ~6!

with

G11~p!5$p”2m1m” 1V~p!

2g0D~p!†g0@p”2m2m” 1V̄~p!#21D~p!%21,

~7!

G21~p!52@p”2m2m” 1V̄~p!#21D~p!G11~p!. ~8!

Following Nambu’s argument@14#, we impose the self-
consistency condition to obtain the Hartree-Fock grou
state such that the self-energy by the residual interact
SRes. , vanishes,

SRes5SMF2S Int50, ~9!

whereSMF is defined by

SMF~k!5G0
21~k!2G21~k!

52S V~k! g0D†~k!g0

D~k! V̄~k!
D ~10!

with

G0~p!5F ~p”2m1m” !21 0

0 ~p”2m2m” !21G , ~11!

andS Int is given by the use of the OGE interaction. With
the first-order approximation ing2, S Int renders

S Int~k!5g2E d4p

i ~2p!4
Dab~k2p!ĜaG~p!Ĝb ~12!
1-2
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Ĝa[S gm
la

2
0

0 CS gm
la

2 D T

C21
D

5S gm
la

2
0

0 2gm
la

T

2

D , ~13!

which is nothing else but the Fock exchange energy by
OGE interaction. Using Eqs.~9!–~12!, we obtain the self-
consistent equation forV(k) by the use of the diagonal com
ponent of the full Green function~7!,

2V~k!5~2 ig !2E d4p

i ~2p!4
@2 iD mn~k2p!#gm

3
la

2
@2 iG11~p!#gn

la

2
. ~14!

The gap equation is also obtained from the off-diagonal co
ponent as

2D~k!5~2 ig !2E d4p

i ~2p!4
@2 iD mn~k2p!#

3gm

2~la!T

2
@2 iG21~p!#gn

la

2
. ~15!

In the following sections, we present explicit forms ofV(p)
and D(p) and then solve their coupled equations~14! and
~15!.

A. Fermion propagator under the axial-vector self-energy

We, hereafter, take the static approximation for the gau
boson propagator as

Dmn~q!'2
gmn

q21M2
~16!

whereM is an effective gauge boson mass originated fr
the Debye screeningM2;Nfg

2m2/(2p2) @15#.
Since typical momentum transferuqu at high density is of

the order of the chemical potential, we may further introdu
the zero-range approximation@16# for the propagator as

Dmn~q!'2
gmn

Q21M2
, ~17!

with a typical momentum scaleQ of O(m). This approxima-
tion corresponds to the Stoner model@17#, which is popular
in solid-state physics, and stands on the same concept o
NJL model@18# as well.

To proceed, we assume, without loss of generality, t
total spin expectation value is oriented to the negativez di-
10500
e

-

e-

e
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rection in the spin-polarized phase which is caused by
finite axial-vector mean-field along thez axis.1 As shown in
Ref. @13#, rotation symmetry is spontaneously broken dow
in this phase while axial symmetry around thez axis is pre-
served. Then two Fermi seas of the different spin states
deformed accordingly.

Applying the Fierz transformation for the Fock exchan
energy term~14! we can see that there appear the col
singlet scalar, pseudoscalar, vector and axial-vector s
energies~Appendix D!. In general we must take into accou
these self-energies in V, V5Us1 ig5Ups1gmUv

m

1gmg5Uav
m with the mean-fieldsUa . Here we introduce an

ansatz: the Femri distribution holds the reflection symme
with respect to thepx2py plane, and only the mean-fiel
partsUs , Uv

0 and Uav
3 are retained inV. Later we will see

that the self-consistent solution is obtained with the ze
range approximation~17! under this ansatz.

In this paper, furthermore, we disregard the scalar me
field Us and the time component of the vector mean-fieldUv

0

for simplicity since they are irrelevant for the spin degree
freedom;Uv

0 has only a role to shift the total energy to th
chemical potential, and may not affect any other physi
properties. On the other hand,Us may significantly influence
the spin-polarization properties through changing the qu
effective mass. Instead of introducing the scalar mean-fi
explicitly, however, we treat the quark mass as a varia
parameter, and discuss its effect in the next section.

According to the above assumptions and considerati
the self-energyV in Eq. ~3! renders

V5g3g5UA , UA[Uav
3 , ~18!

with the axial-vector mean-fieldUA . Then the diagonal com
ponent of the Green functionG11(p) is written as

G11~p!5@GA
212g0D†g0G̃AD#21 ~19!

with

GA
21~p!5p”2m1m” 2g5g3UA , ~20!

G̃A
21~p!5p”2m2m” 2g5g3UA , ~21!

whereg5g35g5g3 andGA(p) is the Green function with the
axial-vector mean-fieldUA which is determined self-
consistently by way of Eq.~14!.

Before constructing the gap functionD, we first find the
single-particle spectra and their eigenspinors in the abse
of D, which is achieved by diagonalization of the opera
GA

21 . In the usual case of no spin polarization this proced
gives nothing but the free energy spectra and plane wa
Then we choose a gap structure on the basis of a phys
consideration as in the usual BCS theory.

1We shall see that only the space component of the axial-ve
mean field is responsible for spin polarization. Hereafter, we take
direction along thez axis without loss of generality.
1-3
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From the condition that detGA
21(p0)um5050 one can ob-

tain four single-particle energiese6 ~positive energies! and
2e6 ~negative energies!, which are given as

e6~p!5Ap21UA
21m262UAAm21pz

2, ~22!

where the sign factor61 being in front ofUA indicates the
energy splitting between different spin states due to the p
ence of the axial-vector self-energy, which corresponds to
exchange splittingin the non-relativistic electron system
@17#. In the following, we call the ‘‘spin’’-up~-down! states
for the states6e1 (6e2). Equation~22! also shows that
each Fermi sea for the ‘‘spin’’-up~-down! state should un-
dergo a deformation and lose rotation symmetry, onceUA is
finite. This is a genuine relativistic effect@13#; actually the
exchange splitting never produces deformation of the Fe
sea in the nonrelativistic ferromagnetism, e.g., in the Sto
model @17#.

Here, it would be interesting to see the peculiarities of
quark Fermi seas in the presence of the axial-vector s
energy. In Fig. 1 we sketch the profile of the Fermi se
projected onto thepz-pt plane (pt5Apx

21py
2) for the cases

of ~a! UA,m, ~b! UA.m and~c! m50. As is already men-
tioned these seas still hold the axial symmetry around
z-axis and the reflection symmetry with respect to thepx-py
plane. The region surrounded by the outer line show
Fermi sea of ‘‘spin’’-down quarks, and the shaded region
that of ‘‘spin’’-up quarks.

We can see in Fig. 1~a! that the Fermi seas for the ‘‘spin’’
down and ‘‘spin’’-up states are deformed in the prolate a
oblate shapes, respectively, where the minimum of
single-particle energy still resides at the originp50. When
UA.m as shown in Fig. 1~b!, there appear two minima a
th
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the points (pt ,pz)5(0,6AUA
22m2) for the ‘‘spin’’-down

quark. Hence in the massless limit,m→0, the Fermi sea is
described by two identical spheres with radiim in the mo-
mentum space, which are centered at the points (pt ,pz)
5(0,6UA) @see Fig. 1~c!#.

In what follows we use subscriptn (51,2,3,4) for nota-
tional convenience asen which means $e1 ,e2 ,e3 ,e4%
5$e2 ,e1 ,2e2 ,2e1%. We define the spinorfn(p) that
satisfies the equationGA

21(p05en2m)fn(p)50, which cor-
responds to the eigenspinor with the single-particle energen

in the absence of the quark Cooper pairing. The spinorfn(p)
is explicitly given as

θ

FIG. 1. Illustrations of the Fermi surfaces in thept-pz plane
with pt[Apx

21py
2. ~a! For m.UA1m and UA<m. Outer closed

curve corresponds to the Fermi surface of the ‘‘spin’’-down st
with single-particle energye2(p) and inner one surrounding th
shaded area to the ‘‘spin’’-up state withe1(p). ~b! The same for~a!
but UA>m. A pair of white circles connected by a dashed lin
represents the Cooper pair characterized byBn ~27!. Each particle
in the Cooper pair has a different color and flavor.~c! The Fermi
surfaces form→0. The outer~inner! contour represents the Ferm
surface fore2 (e1).
fn~p!5NnS @en2~21!nbp2UA#~px2 ipy!pz

2@~21!nbp1m#pt
2

$2@~21!nbp1m#~en2m2UA!1pz
2%~px2 ipy!

pt
2pz

D , ~23!
p
en
ion
-

nd
the
where

Nn5A@bp2~21!nm#@en1UA1~21!nbp#/~enbp!/~2pt
2pz!

andbp[Apz
21m2. It is to be noted that the spinorsfn do

not return to the spinors of free quark even whenUA→0, but
become mixtures of them, see Appendix A. Introducing
projection operator Ln5fnfn

† with properties LmLn

5Lndmn and(nLn51, we can recastGA(p) in the spectral
representation into

GA5(
n

Ln

p02en1m
g0 ~24!
e

GA
215(

n
~p02en1m!g0Ln . ~25!

B. Gap structure

In this subsection, we give the explicit form of the ga
function D in the Dirac, color, and flavor spaces, and th
calculate the diagonal component of the full Green funct
G11(p) in Eq. ~7!, provided that only the axial-vector self
energy is taken forV(p) in Eq. ~14!. In general various types
of the gap structures are possible in the Dirac, color, a
flavor spaces; they depend on the form of interaction and
quark mass@2,19#, especially on the strange quark mass@20#.
1-4
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Here we suppose a simple gap structure from a physical
sideration, disregarding the finite mass effect.

Using the spinorfn(p) we assume that the gap functio
D in Eq. ~15! has the following form in the color and flavo
spaces:

D~p!5(
n

D̃n~p!Bn~p! ~26!

with the operatorBn(p),

Bn~p!5g0f2n~p!fn
†~p!, ~27!

where the subscript2n (521,22,23,24) indicates that
the single-particle energy in the spinor is replaced by tha
opposite sign,e2n[2en , without change of ‘‘spin.’’

One can easily see what kind of quark pairs the gap fu
tion D ~26! represents. Utilizing the property
f2n8

T (2p)Cg0fn(p)}dn8n , one can find for the genera
spinorc(p)5(nan(p)fn(p) with arbitrary coefficientsan ,

c̄cBnc5cT~2p!Cg0f2nfn
†c~p!}an~2p!an~p!.

~28!

This equation clearly shows that two quarks included in
Cooper pairing have opposite momenta to each other
belong to the same energy eigenstate as illustrated in
1~b!.

Now we should note that the antisymmetric nature of
fermion self-energy imposes a constraint on the gap func
@2,21#,

CD~p!C215DT~2p!. ~29!

SinceBn satisfies the relationCBn(p)C215Bn
T(2p), D̃n(p)

must be a symmetric matrix in the spaces of internal deg
of freedom. Taking into account the property that the m
attractive channel of the OGE interaction is the color an
symmetric3* one, it must be the flavor singlet state. Thus
can choose the form of the gap function as

@D̃n~p!#ab, i j 5eab3e i j Dn~p!, ~30!

where (ab) and (i j ) are indices in three-color and two
flavor spaces, respectively. The form of gap function~30! in
the color and flavor spaces is familiar for two-flavor CS
@2,3#.

Using the properties ofLn(p) andBn(p), we then obtain
an explicit form ofG11(p) as

@G11~p!#ab,i j

5H (
n

F ~p01m2en!2
D̃n

†D̃n

p01en2m
Gg0LnJ

ab,i j

21

5(
n

p02m1en

p0
22~en2m!22 uDnu2~12d3a!1 ih

Lng0dabd i j

~31!
10500
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D̃n
†D̃n5diag~ uDnu2, uDnu2, 0! in the color space,

~32!

whereh is a positive infinitesimal.
The quasiparticle energies are obtained by looking for

poles ofG11(p),

En~p!5HA~en~p!2m!21uDn~p!u2 for color 1, 2

A~en~p!2m!2 for color 3.
~33!

The quark number densityrq is also given as

rq[2 i E d4p

~2p!4
Tr$@G11~p!2G11~p!um50#g0% ~34!

5Nf (
n51,2

E d3p

~2p!3
$u~m2en!

12vn
2~p!22@12v2n

2 ~p!#% ~35!

with

vn
2~p!5

1

2 S 12
en~p!2m

En~p! D , ~36!

where the first two terms in Eq.~35! show the quark contri-
butions, while the last term the antiquark contribution;vn

2(p)
is the occupation probability of the quark pairs with mome
tum p and represents diffuseness of the momentum distr
tion.

Similarly we can know the self-consistent solutions s
isfy our ansatz about the mean fields inV. From the above
solutions we can easily obtain that Tr@G11(p) ig5#50,
Tr@G11(p)g i #}pi , Tr@G11(p)g5g0#}pz and
Tr@G11(p)g5g1,2#}px ,py . Hence the pseudoscalar mea
field Ups , the space-component of vector mean fieldUv

i , the
axial-vector mean fieldsUav

0 andUav
1,2 are vanished after the

integration over angles.

C. Equation for the superconducting gap function

Using Eq. ~31!, the off-diagonal component of the fu
Green functionG(p), given in Eq.~8!, can be represented i
the similar way as

G21~p!52(
n

g0Bng0

p0
22~en2m!22uDnu21 ih

Dnl2t2 ,

~37!

wheret2 is the Pauli matrix in the two-flavor space. Subs
tuting Eq.~37! into the gap equation~15! and using the iden-
tity (a51

8 (la)Tl2la528/3l2, we obtain
1-5
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(
n8

Bn8~k!Dn8~k!

52 i
2

3
g2E d4p

~2p!4
Dmn~k2p!

3(
n

F gmg0Bn~p!g0gn

p0
22~en2m!22uDnu21 ih

GDn~p!,

~38!

where the factor 2/3 is simply the Fierz coefficient for t
color and flavor degrees of freedom~Appendix D!. Further-
more multiplying both sides of Eq.~38! by Bn8

† (k) and taking
trace with respect to the Dirac indices, the coupled equat
for the gap functionsDn are obtained afterp0 integration,

Dn8~k!52
2

3
g2E d3p

~2p!3
Dmn~k2p!(

n
Tn8n

mn
~k,p!

Dn~p!

2En~p!
,

~39!

where the functionTn8n
mn (k,p) is defined as

Tn8n
mn

~k,p![Tr@Bn8
†

~k!gmg0Bn~p!g0gn#

5@f̄2n8~k!gmf2n~p!#@f̄n~p!gnfn8~k!#, ~40!

a decomposition ofBn(p) in terms of gamma matrices an
its properties are given in Appendix B.

Here we take the zero-range approximation in Eq.~17!. In
terms of the polar coordinatesp5$p,up ,fp%, we can con-
sider that the gap functionDn(p) does not depend on th
horizontal anglefp due to axial-symmetry around thepz
axis. Thus we can explicitly perform the integration wi
respect to the anglefp in the gap equation~39!,

Dn8~k,uk!5
2

3
g̃2E dpdup

~2p!2
p2sinup

3(
n

Tn8n~k,uk ,p,up!
Dn~p,up!

2En~p,up!
~41!

with the effective coupling constantg̃[g/AQ21M2. As
seen from the above equation, each of the gap funct
couples with others by the functionTn8n(k,uk ,p,up) defined
as

Tn8n~k,uk ,p,up![E dfp

2p
gmnTn8n

mn
~k,p!

5
ktpt

2uen8~k!uuen~p!u

3F ~21!n81n
2m21kzpz

bpbk
11G , ~42!
10500
ns

ns

wherept[p sinup andpz[p cosup and the same forkt and
kz . The term proportional topz in Eq. ~42! will disappear
after the integration overup .

D. Equation for the axial-vector mean-fieldUA

Using Eqs.~33! and ~36!, G11(p) is recasted in the form

@G11~p!#ab, i j 5F(
n

S 12vn
2~p!

p02En1 ih
1

vn
2~p!

p01En2 ih D
3eip0hLn~p!g0Gdabd i j . ~43!

Substituting the above equation into Eq.~14!, and integrating
with respect top0, we obtain the self-consistent equation f
UA in the zero-range approximation,

UA52
2

9

Nf

2
g̃2E d3p

~2p!3

3(
n

@u„m2en~p!…12vn
2~p!#Sn~p!, ~44!

where the factor22/9 stems from the Fierz coefficient of th
color-singlet axial-vector channel of the OGE interacti
~Appendix D!, andSn(p) is the expectation value of the spi
operator,sz[2g0g5g3, with respect to the spinorfn(p):

Sn~p![Tr„g5g3Ln~p!g0…

5fn
†~p!~2sz!fn~p!

5
UA1~21!nbp

en~p!
. ~45!

ThusUA is related to the expectation value ofsz summing
over the state with momentump. An effect of the Cooper
pairing enters into Eq.~44! through the functionvn(p).

E. Weak coupling approximation

In this subsection we consider a high-density limit, whi
means the weak coupling limit due to asymptotic freedom
QCD, and then disregards the antiquark pairing and con
butions from the negative-energy sea~the Dirac sea! in Eq.
~41!. Actually it costs more energy to form the anti-qua
pairing than the quark pairing for a large chemical potent
Taking the approximation, we also disregard the contribut
from anti-quarks to calculate the quark number density
Eq. ~35! and the axial-vector mean-field Eq.~44!
consistently.2 In the following calculations we define ga
functions of the quark pairing by subscript6 which corre-
sponds to the ‘‘spin’’-up~-down! of positive-energy states a
D2[D1 andD1[D2. The other symbols with the subscrip
6 have the same meaning, e.g.,f7[f1,2.

In addition, we assume that only quarks near the Fe
surface form the Cooper pairs, and thereby replace the
function by an approximated form,

2This is equivalent to the restriction of the sum over the ind
n(n5124) to 1,2, which correspond to the positive-energy sta
with different ‘‘spins’’ specified by the subscript7.
1-6
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D6~p!→D6~p!u~d2ue62mu!, ~46!

whered is a cutoff parameter around the Fermi surface. T
functionu(d2ue6(p)2mu) is also regarded as a form facto
to regularize the integration in the gap equation@21#. The
step-function form factor mimics the asymptotic freedo
inner particles in Fermi sea costs large kinetic energy to
ate the pairing and takes large momentum transfer wh
indicates that coupling of this inner process is small. The
however, might be more realistic form factors for finite de
sity QCD, which are smoother functions of momentum a
m than ours, we think that they makes little change on qu
tative results of the CSC and spin polarization. There
models with other form factors or cut-off functions@3,5#.

Looking at the structure of the gap equation~41! with
~42!, one can find that the gap function is exac
parametrized as~Appendix C!

D6~p!5
pt

e6~p! S 7
m

bp
R1F D

[
pt

e6~p!
D̂6~p!, ~47!

whereR andF are some constants and represent the antis
metric and symmetric combinations of the gap functio
2R5bp /m(D̂22D̂1)5bp /(ptm)(e2D22e1D1) and 2F
5D̂21D̂151/pt(e2D21e1D1). Their magnitudes are de
termined by the coupled equations,

F5
2

3
g̃2E dpdup

~2p!2
p2sinup

1

4 FQ1~p!S F2
m

bp
RD

1Q2~p!S F1
m

bp
RD G ~48!

R5
2

3
g̃2E dpdup

~2p!2
p2sinup

m

2bp
F2Q1~p!S F2

m

bp
RD

1Q2~p!S F1
m

bp
RD G , ~49!

where

Q6~p!5
pt

2

e6~p!2E6~p!
u„d2ue6~p!2mu….

We can obviously see thatR→0 asm→0.
Here we examine the polar-angle dependence of the

isotropic gap function at the Fermi surfaceD6(pF,u). The
Fermi momentumpF(u) of each ‘‘spin’’ eigenstate is given
as

pt5p6
F ~u!sinu, pz5p6

F ~u! cosu

with
10500
e

;
e-
h
,

-
d
i-
e

-
;

n-

p6
F ~u!5@m22m21UA

2cos~2u!

7UAA4m2cos2u14m2sin2u2UA
2sin2~2u!#1/2,

~50!

where the subscript6 corresponds to the ‘‘spin’’-up~-down!
state again. Substituting the above formula into the gap fu
tion ~47!, we get

D6~p6
F ,u!5

p6
F ~u!sinu

m F7
m

Am21@p6
F ~u!cosu#2

R1FG .

~51!

Note that this form exhibits aP-wave pairing nature: it is a
genuine relativistic effect by the Dirac spinors~Appendix B!.
We show a schematic view of the above gap functions in F
2. As characteristic features, both the gap functions vanis
poles (u50,p) and take maximal values near equatoru
5p/2), keeping the relation,D2>D1 .3 Suppression ofD1

and enhancement ofD2 atu5p/2 for the case ofmÞ0 @Fig.
2~b!# are originated from a finite value ofR, while they van-
ish if quark is taken to be massless@Fig. 2~a!#. The aniso-
tropic gap functions give rise to the different diffuseness
the momentum distribution of the two ‘‘spin’’ eigenstate
and thereby make some effects on spin polarization, unlik
the normal phase. The anisotropic diffuseness has two eff
that it obscures the deformation in the momentum distri
tion due to their angle dependence and enlarges the di
ence of the state density between the two ‘‘spin’’ eigensta
through the relationD2>D1 .

3This feature is very similar to3P pairing in liquid 3He @22# or
nuclear matter@23#.

0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

θp (rad)

∆ ±
/µ

 m=0.1µ (b)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

∆ ±
/µ

∆+

∆ -

 (a)  m=0.0µ

FIG. 2. A schematic view of polar-angle dependence of the
functions at the Fermi surface where we set values of the gap
rameters asR50.2m, F5m, UA50.3m, ~a! for m50 and~b! for
m50.1m.
1-7



in

en
n
o

t

t

a

f
ig

of
f
e
e

or

ula-

of
ita-
ng

is
lita-

is

regu-
en-

a
,

ince
he
le

a-
the

nes

-

NAKANO, MARUYAMA, AND TATSUMI PHYSICAL REVIEW D 68, 105001 ~2003!
III. RESULTS AND DISCUSSIONS

In this section we solve the coupled Equations~44!, ~48!,
and ~49! and investigate the effects of the superconduct
gap on spin polarization.

Before going to numerical calculations ofUA , R, andF,
each of which is coupled with others by the self-consist
equations, it is instructive to see their parameter depende
by treating one of them as an input parameter. First we sh
R and F as functions of UA in Fig. 3 where m
5400,450 MeV andd50.1m. R starts from zero and almos
linearly increases withUA @Fig. 3~a!#, which is understood
by seeing thatR is proportional to the difference,D̂2

2D̂1 , due to finiteUA , see Eq.~47! or Appendix C. ThusR
is induced byUA and closely coupled with it.

As for the behavior ofF, it is barely affected byUA
~slight decreasing withUA in the numerical value! @Fig.
3~b!#. As seen from the dependence onm the magnitude ofF
is almost determined by the volume of the phase space in
gap equation, that is, bym andd. This reflects the fact thatF
is related to the sum,D̂11D̂2 ~Appendix C!. Thus we ex-
pect thatF increases with density when other parameters
fixed.

From the above results we have found thatF is not so
much influenced byUA . Next we examine the behavior o
UA andR whenF is treated to be an input parameter. In F
4 we show the parameter dependence ofUA and R on F,
wherem5450 MeV and we use three values of the cut
parameterd50.05m, 0.1m and 0.15m, and add the result o
UA in the normal phase (d50). Comparing the dependenc
of UA on F @Fig. 4~a!# with that in the normal phase, we se
a characteristic behavior for different values ofd: there are
regions whereUA is larger than that in the normal phase f
relatively smallF, and this region seems to extend withd.

0 100 200 300
0
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2000

3000

4000

UA  (MeV)

F
  (

M
eV

)

 (b)

0

100

200

300

400

500
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  (

M
eV

)

µ=400 MeV

µ=450 MeV

 (a)

FIG. 3. Parameter dependence ofR and F on UA for g̃
50.13 MeV21, m520 MeV, andd50.1m. ~a! For R and ~b! for
F. Dashed~solid! lines correspond tom5400(450) MeV. The
magnitudes ofR and F are calculated by Eqs.~49! and ~48! for
given UA .
10500
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On the other hand results from the self-consistent calc
tions show thatF becomes larger withd so that its value
corresponds to a region whereUA is comparable with or
slightly less than that in the normal phase, for any value
the chemical potential. This situation seems to be qual
tively unchanged, once the ratio of the effective coupli
constants in the axial-vector channelGaxial and the diquark
channelGdiq is kept, Gaxial :Gdiq52/9:2/3, which comes
from the Fierz transformation for color and flavor~Appendix
D!. However, if the coupling constant in each channel
taken independently, our results might be changed qua
tively.

Seeing the results forR in Fig. 4~b!, we find thatR in-
creases withd due to the growth of the phase space and
hardly affected byF except the region of smallF whereUA
varies rapidly as shown in Fig. 4~a!: it also shows thatR is
closely related toUA .

These parameter dependences also suggest that the
larization scheme for the gap equation, i.e.,the sharp mom
tum cut-off function, the form factor, etc., will give rise to
qualitative change toUA . In the present cut-off function
u(d2ue62mu), UA ~spin polarization! coexists with CSC,
except a slight competition, as will be shown later.

A. Self-consistent solutions

We demonstrate some self-consistent solutions here. S
we have little information to determine the values of t
parametersg̃ and d ~there may be other more reasonab
form factors than the present cutoff function!, and our pur-
pose is to figure out qualitative properties of spin polariz
tion in the color superconducting phase, we mainly set in

1000 2000 3000 4000
0

50

100

150

200

250

F  (MeV)

R
  (

M
eV

)

 (b)

80

82

84

86

U
A
  (

M
eV

)

δ=0.05 µ
δ=0.10 µ
δ=0.15 µ
Normal

 (a)

FIG. 4. Parameter dependence ofUA and R on F for g̃
50.13 MeV21, m520 MeV, andm5450 MeV. ~a! For UA and
~b! for R. Solid line, dotted lines, dot-dashed lines, and dashed li
correspond tod50 ~normal phase!, 0.05m, 0.10m, and 0.15m, re-
spectively. The magnitudes ofUA andR are obtained by their equa
tions for givenF.
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following calculations them asg̃50.13 MeV21 and d
50.1m, for example, which is not so far from the coupling
in NJL-like models@5,16,18#.

We first examine spin polarization in the absence of CS
In Fig. 5 we show the axial-vector mean-fieldUA , with D6

being set to be zero, as a function of baryon number den
rB([rq/3) relative to the normal nuclear densityr0
50.16 fm23 for m514;25 MeV ~dashed lines!. It is seen
that the axial-vector mean field~spin polarization! appears
above a critical density and becomes larger as baryon n
ber density gets higher. Moreover, the results for differ
values of the quark mass show that spin polarization gro
more for the larger quark mass. This is because a large q
mass gives rise to much difference in the Fermi seas of
opposite ‘‘spin’’ states, which leads to growth of the e
change energy in the axial-vector channel.

Next we solve the coupled equations~44!, ~48!, and~49!.
Results forUA , R, andF are shown in Fig. 5~solid lines!
and Fig. 6, for values of the quark massm514–25 MeV. It
is found again, by comparing these cases of the quark m
that UA is very sensitive to the quark mass and increa
with it as in the absence of CSC~Fig. 5!. For the behavior of
the gap functions,R is induced byUA and both ofF andR
increase withrB due to the growth of the Fermi surface~Fig.
6!. It is also seen thatF is not sensitive to the quark mass. T
see the bulk behavior of pairing gap as a function of bary
number density, we also show, in Fig. 7, their mean val
with respect to the polar angle on the Fermi surface,

^D6&[S E
0

p

du
sinu

2
D6

2 D 1/2

. ~52!

The mean valueŝD6& begin to split with each other at

0 2 4 6 8 10 12
0

50
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200

250

ρB/ρ0
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  (
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)

 m=25 MeV

 m=20 MeV

 (b)
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40
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 (a)  m=16 MeV

 m=15 MeV

 m=14 MeV

FIG. 5. Axial-vector mean field as a function of baryon numb

densityrB (r050.16 fm23) for g̃50.13 MeV21 andd50.1m. ~a!
For m514;16 MeV and ~b! For m520 and 25 MeV. Dashed
~solid! lines are obtained in the normal~color superconducting!
phase.
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density whereUA becomes finite. This reflects thatR is in-
duced byUA and then has a negative~positive! contribution
to D1 (D2). Here we would like to comment on the mag
nitude of ^D6&. These should be compared with the usu
uniform gap function, and may look very large values
O(GeV) in our case. However these values would be larg
reduced by taking a smooth form factor which mode
asymptotic freedom of QCD@5#; it further reduces the inte
gral value in the gap equation, compared with our sharp c
off function.

In Fig. 8 we show the expectation value of the spin o
erator per quark,̂sz /Nq&, as a function ofrB /r0 with and
without the superconducting gap. The critical density b
comes lower as the quark mass increases, and the pea
sitions of^sz /Nq& are located at relatively lower densities
each quark mass. The magnitude of^sz /Nq& is to be com-

pared with 1 for a free quark, becauseucs
†szcs /cs

†csu51 at
the rest frame for the free spinorcs . We arrange the result

r

0 5 10
0

2

4

6

8

10

12

ρB/ρ0

F
  (

G
eV

)

 (b)

0

100

200

300

R
  (

M
eV

)

m=15 MeV

m=20 MeV

 (a)

FIG. 6. R ~a! or F ~b! as a function ofrB /r0 for m515 MeV
~dashed lines! andm520 MeV ~dotted lines!. The other parameters
are the same as in Fig. 5. Note that in~b! the lines almost overlap
each other for the two quark masses.

0 2 4 6 8 10 12 14
0

2

4

6

8

10

ρB/ρ0

〈∆
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〉 (
G

eV
)

∆+ (m=15 MeV)

∆ - (m=15 MeV)

∆+ (m=20 MeV)

∆ - (m=20 MeV)

FIG. 7. Mean values of the gap functions with respect to
solid angle at the Fermi surface,^D6&, plotted as a function of
rB /r0 for m515 MeV ~solid and dotted lines! and 20 MeV~dot-
dashed and dashed lines!.
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NAKANO, MARUYAMA, AND TATSUMI PHYSICAL REVIEW D 68, 105001 ~2003!
of three quark massesm514;16 MeV by 1 MeV in Fig.
8~a! to show a high sensitivity of spin polarization to th
quark mass, which implies that the exchange energy from
attractive axial-vector interaction is strongly enhanced by
quark mass to produce the large axial-vector mean-field.
exchange energy is also enhanced by larger chemical po
tial and the resulting axial-vector mean-field increases wit
~see Fig. 5!. But the spin expectation value per quark, whi
is relative to the axial-vector mean-field per qua
(}UA /Nq), has an upper limit since the increase ofNq is far
superior to that ofUA for larger chemical potential, which
gives rise to the peak positions in Fig. 8.

The quark mass is very important in relation to the bre
ing of chiral symmetry in QCD. Models incorporating chir
dynamics have indicated that the dynamical mass beco
smaller as chiral symmetry is restored at a high dens
while the current quark mass is small and explicitly break
@24#. In our model, on the other hand, we treat the qu
massm as a variable parameter so that we may simulat
change of the dynamical mass. In order to further exam
the effect of the quark mass on spin polarization, we sh
the mass dependence at densitiesrB55r0 , rB510r0 and
rB515r0 for the cases with and without the superconduct
gap in Fig. 9. Spin polarization increases with the qu
mass in all the three densities. In the figure we exhibit o
the results for a narrow region of the mass parameterm
513;20 MeV), while as for larger masses ofO(100 MeV)
~order of the strange quark mass! spin polarization mono-
tonically increases without singular oscillations. Critical va
ues of the quark mass at which spin polarization disapp
become smaller as density increases in both cases.

In relation ofUA to m we can derive an exact result in th
massless limit,m→0. In the normal phase whereD50, Eq.
~44! becomes

0 1 2 3 4 5
0.00
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0.0000
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Normal  (a)

 m=16 MeV

 m=15 MeV

 m=14 MeV

FIG. 8. Spin expectation value per quark as a function ofrB /r0.
~a! For m514–16 MeV and~b! m520 and 25 MeV. Dashed~solid!
lines show results in the normal~color superconducting! phase.
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UA52
2

9
g̃2 (

n51,2
E d3p

~2p!3
3

3u„m2en~p!…
UA1~21!nupzu

en~p!
~53!

with

e6~p!5A~ upzu6UA!21pt
2. ~54!

The right-hand side of the above equation can be analytic
integrated to give

UA52
2

9
g̃2

4p

~2p!3
3E

0

m2UA
dpzE

0

Am22(pz1UA)2

dptpt

3
UA1pz

A~pz1UA!21pt
2

2
2

9
g̃2

4p

~2p!3
3E

0

m1UA
dpz

3E
0

Am22(pz2UA)2

dptpt

UA2pz

A~pz2UA!21pt
2

50. ~55!

Here we have assumed thatm.UA . In the massless limit,
the Fermi sea is described by two complete spheres in
momentum space with radiim, whose centers are located
(pt ,pz)5(0,6UA) @see Fig. 1~c!#. The momentum distribu-
tion for quarks in the ‘‘spin’’-down state occupies these tw
spheres, while the ‘‘spin’’-up state does their overlap reg
~shaded!. In the above integration for the ‘‘spin’’-down
quarks, the expectation value of the spin operator given
quarks with 0<pz<UA is canceled with that of quarks with
UA<pz<2UA . The remaining contribution from the region
2UA<pz<m1UA , cancels with that by the ‘‘spin’’-up
quarks. Thus we can see that spin polarization disappea
m→0 in the absence of CSC.

This analytical result thatUA→0 as m→0 can be also
understood as follows. The eigenstates of non-interac
massless fermions are classified by the definite heli
states: the positive energy state is right-handed~left-handed!
with positive ~negative! helicity, while the negative energy
state those with negative~positive! helicity. This property is
not spoiled by introducing the axial-vector mean-field, wh

14 16 18 20
0.0000

0.0002

0.0004

0.0006

m  (MeV)

〈σ
z/

N
q 

〉

Super

Normal

 ρB/ρ0=5

 ρB/ρ0=10

 ρB/ρ0=15

FIG. 9. Spin expectation value per quark as a function of
quark mass m for fixed baryon number densityrB /r055,
10, and 15.
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SPIN POLARIZATION AND COLOR . . . PHYSICAL REVIEW D 68, 105001 ~2003!
we extend the meaning of helicity; the Dirac equations
the ‘‘left-’’ and ‘‘right-handed’’ positive-energy fermion
fields cL,R are now given as

~p01p•s1UAs3!cL50, ~56!

~p02p•s1UAs3!cR50, ~57!

which give the eigenvalues,

p05Apt
21~pz1UA!2@[eL~p!#

for cL andp05Apt
21(pz2UA)2@[eR(p)# for cR . cL (cR)

is the eigenstate of generalized helicityh571 projected
onto the shifted momentump85$px ,py ,pz6UA%. If mÞ0
they form the spherical Fermi seas, see Fig. 1~c!. Here it
would be interesting to compare these eigenvalues with
limit form of e6(p) in Eq. ~22!,

e6~p!→Apt
21~ upzu6UA!2 as m→0. ~58!

Then we can see the relations:e6(p)5eL(p)u(6pz)
1eR(p)u(7pz), which clearly show that the two Fermi sea
of the eigenspinors~23! give the same Fermi seas ofcL,R for
a given chemical potentialm. Thus we can take an alterna
tive view of the Fermi seas in terms of the definite helic
states by rearranging the eigenspinor~23! properly in the
massless limit. In each Fermi sea forcL,R the particle num-
ber with the definiteh becomes the same, and thereby t
total spin-expectation value becomes vanished.

In the color superconducting phase, on the other hand
situation is different because the momentum distribution
comes diffused due to the creation of the Cooper pairs n
the Fermi surface. Form→0 andD6Þ0, Eq.~44! becomes

UA52
2

9
g̃2 (

n51,2
E d3p

~2p!3
2vn

2~p!
UA1~21!nupzu

en~p!
,

~59!

where vn
2(p) indicates the diffused part of the momentu

distribution, defined in Eq.~36!. Here we should note that th
gap functionsD6 are still nonzero even atm50. The dif-
fused part, however, give no contribution to the spin pol
ization from the viewpoint of the helicity eigenstates. T
gap function in the massless limit becomes

D6~p,u!5
pt

A~ upzu6UA!21pt
2

F, ~60!

see Fig. 2~a!. The diffuseness from the above gap functi
has an equal contribution to the two complete Fermi sphe
of chirality. Thus the total spin, which is obtained by sum
ming up these momentum distributions, should be zero in
massless limit even if the CSC is taken into account.

To summarize we show a phase diagram for the qu
mass and baryon number density in Fig. 10 where we add
result of g̃50.26 MeV21 to see the dependence on the co
pling constant. The lines indicate the critical mass at a fix
density~at regions above the lines spin polarization arise!.
10500
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We can confirm that the critical mass becomes smaller w
the increase of the density, and spin polarization occur
moderate densities (rB53;4r0) if the coupling is strong
enough even though quark mass is taken to be smaller
simulation for change of dynamical mass~restoration of chi-
ral symmetry!.

Here we would like to understand how the gap functi
affects spin polarization and brings about a slight reduct
of it. In the spin-polarized phase, the momentum distribut
is deformed from the simple spherical shape. As mentio
in Ref. @13#, the deformation is induced by finiteUA and
feeds back toUA in a self-consistent manner. In the colo
superconducting phase, diffuseness caused by the Co
pairing in the momentum distribution depends on the po
angle and then has an influence on the deformation. As
be expected from the polar-angle dependence of the
function, diffuseness tends to obscure the deformation.

From the consideration of the spin expectation values
spinors~23! near the Fermi surfaces;

f6
† ~2sz!f65

UA6Apz
21m2

e6
'

UA6Apz
21m2

m
, ~61!

wheref7[f1,2 for two ‘‘spins.’’ The difference of the spin
expectation value between two ‘‘spin’’ statesf6 is largely
affected by high-pz regions or regions near both poles (u
50,p). Thus the large deformation along thez axis seems to
enhance spin polarization.

In order to specify to what extent the Fermi sea is d
formed, we calculate the quadrupole deformation of the m
mentum distribution defined by

Q2[3^pz
2&/^p2&21. ~62!

In Fig. 11, we showQ2 as a function of UA at m
5450 MeV in the normal phase and in the color superc
ducting phase in which the gap functions are given by th
equations for fixedUA . From this result ofQ2 deformation,
we can see that the diffused part near the Fermi surface
scures the deformation then gives an opposite effect aga
Q2, and thus reduces spin polarization.

4 6 8 10

4

6

8

10

12

14

16

ρB/ρ0

C
rit
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  M
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s 
 (

M
eV

)

g̃=0.13 MeV-1

g̃=0.26 MeV-1

FIG. 10. Phase diagram inrB /r0-m plane for the effective cou-

pling constantg̃50.13 MeV21 and 0.26 MeV21. At regions above
the lines spin polarization arises. This result is obtained with
gap function, thus all the region in the phase diagram shows
color superconducting phase.
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Nevertheless the gap function has another effect on
polarization. It is to be noted that the qualitative relatio
D2>D1 , is always retained as seen from Fig. 2 and th
has a effect to enlarge the difference of the state den
between the two ‘‘spin’’ states. This effect is expected
enhance spin polarization since the difference of the s
expectation value by each spinor~61! near the equator (u
5p/2), so thatpz'0, seems to depend only on the diffe
ence of the state density. To see it in both the normal
color superconducting phases, we define thatNup (Ndown) is
the state density of the ‘‘spin’’-up~-down! state and show
their difference bydN[Ndown2Nup , only in the first two
colors, as a function ofUA in Fig. 12 atm5450 MeV. The
result indicates that the gap functions slightly enhancedN
than normal phase.

From the above discussions spin polarization is sign
cantly influenced by both the deformation and the state d
sity in each ‘‘spin’’ state. As a result of the self-consiste
calculation in the color superconducting phase, the reduc
effect on the deformation is slightly superior to the enhan
ment effect from the difference of the state densities, and
pairing effect finally reduces spin polarization than in t
normal phase. It, however, should be noted that this qua
tive conclusion about whether CSC enhances spin polar
tion than normal phase or not is very delicate and may
changed depending on the regularization scheme, as alr
mentioned. Moreover other types of pairing which are n
considered here, e.g., pairing of the ‘‘spin’’ -up and -dow
states, may gives rise to qualitatively different results, wh

0.0 0.1 0.2 0.3 0.4 0.5

0.0

0.2

0.4

0.6

UA/µ

Q
2

Super

Normal

 µ=450 MeV

FIG. 11. Quadrupole deformation of the momentum distribut

~62! as a function of UA . Parameters are fixed asg̃
50.13 MeV21, m520 MeV, and m5450 MeV. Dashed~solid!
line is given in the normal~color superconducting! phase.
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FIG. 12. Difference of the state densities in the two ‘‘spi
states plotted as a function ofUA . Legends are the same a
in Fig. 11.
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it is very difficult to see which type of pairing is energet
cally favored.

Finally we would like to comment on the coupling of th
spin polarized quark matter with the external magnetic fie
quark fields couple with the magnetic field through
anomalous magnetic moment. The magnetic interaction
described by the Gordon identity for the gauge coupl
term: gLe* /2m(c̄smnc)Fmn wheregL is a form factor and
e* an effective charge.4 In quark matter a magnetic momen
is given as the expectation value^s i j & with respect to the
ground state. In our model onlŷs12& is nonzero, and the
magnetic moment per quark is given as

Mz[^s12/Nq&

5
1

rq
(

n51,2
E d3p

~2p!3
@2vn

2~p!1u~m2en!#f̄n~p!s12fn~p!.

~63!

Note that the expectation value ofs12 by the spinor does no
depend onUA ; f̄6(p)s12f6(p)57m/bp , so thatMz re-
flects only the asymmetry in the momentum distribution d
to the axial-vector mean-field. In Fig. 13,Mz is given as a
function of baryon number density. This indicates that res
ing ground state also holds ferromagnetism~spontaneous
magnetization!.

4Here we need not consider the orbital angular momentum
uniform matter. But if a superconductor is of the ‘‘second’’ type
which London’s penetration length is larger than the cohere
length, a vortex lattice may be formed in response to the exte
field and then total magnetization is to undergo a qualitative cha
due to circulation of supercurrent@25#.
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FIG. 13. Induced magnetic moment per quark~63! as a function
of rB /r0. Parameters and legends are the same as in Fig. 5.
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IV. SUMMARY AND CONCLUDING REMARKS

In this paper we have examined spin polarization in qu
matter in the color superconducting phase. We have in
duced the axial-vector self-energy and the quark pair fi
~the gap function!, whose forms are derived from the on
gluon-exchange interaction by way of the Fierz transform
tion under the zero-range approximation. Within the relat
istic Hartree-Fock framework we have evaluated th
magnitudes in a self-consistent manner by way of
coupled Schwinger-Dyson equations.

As a result of numerical calculations spontaneous s
polarization occurs at a high density for a finite quark m
in the absence of CSC, while it never appears for mass
quarks as an analytical result. In the spin-polarized phase
single-particle energies corresponding to spin degrees
freedom, which are degenerate in the noninteracting sys
are split by the exchange energy in the axial-vector chan
Each Fermi sea of the single-particle energy deforms i
different way, which causes an asymmetry in the two Fe
seas and then induces the axial-vector mean-field in a
consistent manner. In the superconducting phase, howe
spin polarization is slightly reduced by the pairing effect; it
caused by competition between reduction of the deforma
and enhancement of the difference in the phase space
opposite ‘‘spin’’ states due to the anisotropic diffuseness
the momentum distribution.

In connection of the deformation with superconductiv
it has recently been reported@26# that in the superconductin
asymmetric nuclear matter the Fermi sea may undergo a
formation even in the spin-saturated system due to the
ference of the Fermi surface between neutrons and prot
the momentum distributions of neutrons and protons m
deform respectively to enlarge the overlapped region in
phase space, which effectively contributes to thenp- pairing.
They have shown the possibility of the deformation in
variational way; the Fermi sea of the majority of nucleo
deforms in a prolate shape, while the minority in an obl
shape. Thus the deformation property of the Fermi seas lo
very similar to our case. Nevertheless, note that our de
mation is produced by the relativistic effect. Anyway
would be interesting to look further into the common featu
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It is to be noted that if the effective coupling constant
strong enough to lower the critical quark mass, spin po
ization~magnetization! has potential to appear at rather mo
erate densities such as in the core of neutron stars, e
though CSC weakly works against it.

From the above observations it is suggested that spin
larization does not compete with CSC but can coexist with
unlike in ordinary superconductors of the electron syst
with the s-wave and spin-singlet pairing. This reflects th
fact that internal degrees of freedom of the quark field, e
the color, flavor and Dirac indices, have rich structures
satisfy the antisymmetric constraint on the quark-pair fiel

The possibility of the coexistent phase might also give
clue as for the origin of the superstrong magnetic field o
served in magnetars. We roughly estimate the expected m
netic field when magnetars are assumed to be quark s
The maximum dipole magnetic field at the star surface re

Bmax5
8p

3
mqnq~^Mz&/Nq!, ~64!

with mq and nq being the quark magnetic moment and t
quark number density, respectively; e.g., for^Mz&/Nq

;(1023) and nq;O(1 fm23), we find Bmax;O(1015 G),
which is comparable to that observed in magnetars@8,9#.

In the present paper we have not taken into account ch
symmetry, which is one of the basic concepts in QCD.
chiral symmetry is restored at finite baryon number dens
the quark mass becomes drastically smaller as density
creases. In order to simulate it we have examined the qu
mass dependence on spin polarization. In the future work
would like to consider an effect of the dynamical mass on
axial-vector self-energy.
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APPENDIX A: STRUCTURE OF SPINOR UNDER THE AXIAL-VECTOR MEAN-FIELD UA

In this appendix we rewrite the spinor~23! in terms of the free quark one and the remainder characterized byUA . We
employ the free spinorus(p) in which the two-component Pauli spinors are given as eigenvectors of the spin matrixsz ,

u6~p!5S Ae01mj6

Ae02m

upu
p•sj6

D with j15S 1

0D and j25S 0

1D , ~A1!

wheree05Ap21m2 and$s% are the Pauli spin matrices.
The spinorf1(p)[f2(p) for the ‘‘spin’’-up state is decomposed as follows:

bp~D e22UA!1m~de12bp!

pt
2pzN1

f1~p!52bpAe01mS e12bp2UA

px1 ipy
u1~p!2

bp1m

pz
u2~p! D1

Rem1~UA!

pz~px1 ipy!
, ~A2!
1-13
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wherede[e22e1 , D e[e21e1 , and

Rem1~UA!5S pz~e12bp2UA!@bp~D e22UA22e0!1mde#

2~px1 ipy!~bp1m!@bp~D e22UA22e0!1mde#

de@~e12bp2UA!pz
212bp

2~bp1m!#22bp~bp1m!@~e22UA!~e12UA!2e0
2#

pz~px1 ipy!~bp1m!de

D . ~A3!

Note that the term Rem1(UA) vanishes in the limit,UA→0. Thus one can find thatf1(p) is a mixture of the free spinors eve
whenUA50.

A decomposition of the spinorf2(p)[f1(p) for the ‘‘spin’’-down state can also be done in a similar way,

bp~D e22UA!1m~de12bp!

pt
2pzN2

f2~p!52bpAe01mS e21bp2UA

px1 ipy
u1~p!1

bp2m

pz
u2~p! D1

Rem2~UA!

pz~px1 ipy!
, ~A4!

where

Rem2~UA!5S pz~e21bp2UA!@bp~D e22UA22e0!1mde#

~px1 ipy!~bp2m!@bp~D e22UA22e0!1mde#

de@~e21bp2UA!pz
222bp

2~bp2m!#12bp~bp2m!@~e22UA!~e12UA!2e0
2#

2pz~px1 ipy!~bp2m!de

D . ~A5!
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APPENDIX B: DECOMPOSITION OF Bn„p… IN TERMS
OF THE DIRAC GAMMA MATRICES

The operatorBn(p) in Eq. ~27! consists of some gamm
matrices; it is a linear combination of1, g, g5g, s01, and
s02 in the diquark fieldc̄cBnc5cTCBnc. The last two ma-
trices give the tensor diquark fields, while these terms h
no influence on the gap equation~38! due to axial symmetry
of the Fermi seas around thepz axis: the integration ofBn(p)
with respect to the azimuthal anglefp in Eq. ~38! gives

B̃n~p![E
0

2pdfp

2p
Bn~p!

5
pt

4uen~p!ubp
@~21!npzg31~21!nm11bpg5g3#.

~B1!

Thus tensor terms disappear because they are proportion
exp(ifp) in Bn(p).

The first term on the right-hand side also has no contri
tion after symmetric integration with respect topz . The re-
mainders$1,g5g3% imply the pseudoscalar (JP502) and
vector (JP512) diquark pairings in terms of the notation i
Ref. @2#. Please note that the CSC gap~B1! results in a linear
combination of different angular momentum pairs 02 and
12 because of the lack of rotation symmetry.

Since the diquark fieldscTC(1,g5g3)c contain the off-
diagonal matrices which connect the lower component w
the upper one of the Dirac spinors, these pairings vanis
the nonrelativistic limit or in the limitm→`. HenceBn(p)
resemblesP-wave pairing as is seen in Eq.~50!, although it
has no correspondence in the nonrelativistic limit: the g
10500
e

l to

-

h
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p

function for Eq.~B1! has the nodes~vanishing atu50,p)
due to the factorpt , which is similar to 3P pairing in the
liquid 3He-A phase, but these nodes are entirely attributed
the genuine relativistic effect. This property survives even
the limit UA→0.

From Eq.~B1! we can also obtain the relation appeari
in Eq. ~40!,

gmg0B̃n~p!g0gm52B̃n~p!12m$m1~21!nbp%. ~B2!

APPENDIX C: PARAMETRIZATION OF THE GAP
FUNCTION

In this appendix we derive the parametrization~47!. The
gap equation~41! is expanded as

D6~k!5
2

3
g̃2E d3p

~2p!3

kt

2e6~k! F pt

e1~p! S 6
2m2

bkbp
11D

3
D1~p!

2E1~p!
1

pt

e2~p! S 7
2m2

bkbp
11D D2~p!

2E2~p!G .
~C1!

IntroducingD̂6(k) through the equation

D6~k!5
kt

e6~k!
D̂6~k!, ~C2!

we obtain the ‘‘gap’’ equation forD̂6(k),
1-14
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D̂6~k!5
2

3
g̃2E d3p

~2p!3

pt
2

4

3F7
2m2

bkbp
S D̂2~p!

e2~p!2E2~p!
2

D̂1~p!

e1~p!2E1~p!
D

1
D̂2~p!

e2~p!2E2~p!
1

D̂1~p!

e1~p!2E1~p!
G . ~C3!

Then we find the following properties:

D̂2~k!1D̂1~k!52F and D̂2~k!2D̂1~k!52R3
m

bk
,

~C4!

whereF ~R! is a constant which characterizes the symme
~asymmetric! combinations of the gap functionsD̂6 . Thus
we can further parametrizeD̂s(k) as

D̂6~k!57
m

bk
R1F. ~C5!

Substituting the above formula into Eq.~C3!, one can obtain
the coupled equations forF andR, Eqs.~48! and ~49!.

APPENDIX D: FIERZ TRANSFORMATION

We present the Fock exchange energy term by the O
interaction by the use of the Fierz transformation. The Gr
function with vertices on the right-hand side of Eq.~14! can
be expanded as

(
a

@GaiG11~p!Ga# i j 5(
a

~Ga! i i 8^c~p! i 8c̄~p! j 8&~Ga! j 8 j

5(
ab

Cab~Gb! i j Tr~G11Gb! ~D1!

with

Ga[gm ^ 1f lavor ^ lcolor

and

~Ga! i i 8~Ga! j 8 j5(
b

Cab~Gb! i j ~Gb! j 8 i 8 , ~D2!

where$Cab% are coefficients of a Fierz transformation~D2!
for the Dirac matrices, the identity matrix in the flavor spa
and the Gell-Mann matrices in the color space,

~gm! i i 8~gm! j 8 j5d i j d j 8 i 82
1

2
~gm! i j ~gm! j 8 i 8

2
1

2
~g5gm! i j ~g5gm! j 8 i 81~ ig5! i j ~ ig5! j 8 i 8 ,

~D3!
10500
c

E
n

,

d i i 8d j 8 j5
1

2 F 2

Nf
d i j d j 8 i 81~ta! i j ~ta! j 8 i 8G , ~D4!

~lc! i i 8~lc! j 8 j5
2

Nc
2 ~Nc

221!d i j d j 8 i 82
1

Nc
~lc! i j ~lc! j 8 i 8 .

~D5!

It should be noted that there appears no tensor term in
~D3! due to chiral symmetry in QCD. Thus, e.g., the coef
cient for the color-singlet axial-vector self-energy read
24/9 for Nf52 andNc53.

We also present a Fierz transformation for diquark fiel
The right-hand side of Eq.~15! can be expanded in a simila
way for G11,

(
a

@ḠaG21~p!Ga# i j

5(
a

~CGa
TC21! i i 8^cc~p! i 8c̄~p! j 8&~Ga! j 8 j

5(
a

~C! ik~Ga! i 8k^c̄~2p! i 8c̄~p! j 8&~Ga! j 8 j

5(
ab

f abTr@G21~p!C21Gb
TC21#~CGb

TCT! i j ~D6!

with

~Ga! i 8k~Ga! j 8 j5(
b

f ab~GbC* ! i 8 j 8~CGb! jk , ~D7!

where$ f ab% are coefficients of a Fierz transformation~D7!
and are explicitly given as

~gm! i 8k~gm! j 8 j5~C* ! i 8 j 8~C! jk2
1

2
~gmC* ! i 8 j 8~Cgm! jk

2
1

2
~gmg5C* ! i 8 j 8~Cgmg5! jk

1~ iC* g5! i 8 j 8~ iCg5! jk , ~D8!

d i 8kd j 8 j5
1

2 F 2

Nf
d i 8 j 8d jk1~ta! i 8 j 8~ta! jkG , ~D9!

~lc! i 8k~lc! j 8 j5S 12
1

Nc
D F 2

Nc
~d! i 8 j 8~d! jk1~lc

S! i 8 j 8~lc
S! jkG

2S 11
1

Nc
D ~lc

A! i 8 j 8~lc
A! jk , ~D10!

where $lc
S(A)% are symmetric~antisymmetric! matrices of

$lc%. The present gap function,D(p)5(nBn(p)Dn(p),
which is a linear combination of the gamma matrices, can
obtained by taking projection onBn(p).
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