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Inverse approach to Einstein’s equations for nonconducting fluids
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We show that a flow~timelike congruence! in any typeB1 warped product spacetime is uniquely and
algorithmically determined by the condition of zero flux.~Though restricted, these spaces include many cases
of interest.! The flow is written out explicitly for canonical representations of the spacetimes. With the flow
determined, we explore an inverse approach to Einstein’s equations where a phenomenological fluid interpre-
tation of a spacetime follows directly from the metric irrespective of the choice of coordinates. This approach
is pursued for fluids with anisotropic pressure and shear viscosity. In certain degenerate cases this interpretation
is shown to be generically not unique. The framework developed allows the study of exact solutions in any
frame without transformations. We provide a number of examples, in various coordinates, including spacetimes
with and without unique interpretations. The results and algorithmic procedure developed are implemented as
a computer algebra program calledGRSOURCE.
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I. INTRODUCTION

The usual procedure for finding exact solutions of E
stein’s equations involves writing down a phenomenologi
energy-momentum tensor, often a perfect fluid, in a se
coordinates, frequently comoving, so that the field equati
can be integrated, often with the aid of simplifying assum
tions @1,2#. In view of the difficulty of solving Einstein’s
equations, inverse problems are important@3#. An inverse
problem of interest~not involving the classification problem
for the Ricci tensor@4# explicitly! may be stated thus. Give
a spacetime~M,g! with manifold M and Lorentzian metric
g, what, if any, fluid flow could generate~M,g! via Ein-
stein’s equations? This question is explored here for the c
of type B1 warped product spacetimes~see below!. The
problem is of interest since, as is shown, the flow~velocity
field! is uniquely determined subject to a zero flux conditio
With the flow determined, physical parameters, subject t
fluid decomposition that includes anisotropic pressure
shear viscosity, can be extracted directly from the me
irrespective of coordinates. The framework developed in
paper allows the study of exact solutions in any frame w
out transformations. Surprisingly, little work has been do
in noncomoving frames@5#. The invariant procedure deve
oped is algorithmic and suited to computer algebra proje
such as the Interactive Geometric Database@6# where, given
a metric, one might like to know if it is necessarily, fo
example, a perfect fluid, or on the contrary, incompati
with a perfect fluid. The paper is organized as follows.
Sec. II, we explore the zero flux condition and in Sec. III w
derive explicit forms of the velocity field for canonical coo
dinate types. In Sec. IV we explore the phenomenology
the non-conducting fluid source showing that degene
cases exist. Examples that illustrate the power of the res
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obtained are given in Sec. V. Section VI is a summary.

II. ZERO FLUX

We consider warped product spacetimes of classB1 @7,8#.
These can be written in the form

dsM
2 5dsS1

2 ~x1,x2!1C~xa!dsS2

2 ~x3,x4!, ~1!

where C(xa)5r (x1,x2)2w(x3,x4)2, signature(S1)50 and
signature(S2)52e ~e561!. Although very special, these
spaces include many of interest, for example,all spherical,
plane, and hyperbolic spacetimes. We write

dsS1

2 5a~dx1!212bdx1dx21c~dx2!2, ~2!

with a, b andc functions of (x1,x2) only. A congruence of
unit timelike vectors ~a ‘‘flow’’ in what follows ! ua

5(u1,u2,0,0) have an associated unit normal fieldna ~in the
tangent space ofS1) satisfyingnaua50,nana51 @9#. It fol-
lows that na5c(x1,x2)(u2,2u1,0,0) ~c a normalization
factor!. The timelike condition onua is

215a~u1!212bu1u21c~u2!2 ~3!

and ~M,g! is time orientated by the restriction

u1.0. ~4!

The condition

Ga
buanb50, ~5!

whereGa
b is the Einstein tensor, can be written as

Au1u22B~u1!21C~u2!250, ~6!

where

A[G1
12G2

2 , B[G1
2 , C[G2

1 . ~7!
©2003 The American Physical Society31-1
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Condition ~5! is the defining criterion for the flows consid
ered here. In general,A, B andC are functions ofx1 through
x4, assumed not to vanish simultaneously. Equations~3!, ~4!
and~6! determine the flow uniquely. The flow need not exi
For example, ifA5C50 andBÞ0 then there exists no suc
flow. The assumption of ‘‘comoving coordinates’’ (u250 in
the present notation! imposes restrictions on the coordina
zation of S1, but it is already clear from Eq.~6! that the
existence of such a flow requiresB50.

III. Ua FOR CANONICAL REPRESENTATIONS OF S1

There are four distinct canonical types of coordinates~not
specific coordinates! that can be used to representS1. In
what follows we write outua in each of these cases. We d
not write out quantities that follow algorithmically fromua.

A. Kruskal-Szekeres„aÄcÄ0…

The distinguishing characteristic here is

A50. ~8!

We can always chooseb,0 so that

u252
1

2bu1
.0, ~9!

and so it follows from Eq.~6! that

u15A4 C

4Bb2
. ~10!

B. Diagonal „bÄ0…

Herea,0, c.0 and

Bc5Ca. ~11!

With

D[A2a14B2c ~12!

it follows that Da.0,

u15A1

2
S 21

a
1AA2

Da
D , ~13!

and

~u2!25
1

2c
S 211AA2a2

Da
D . ~14!

The requirement of ‘‘comoving’’ coordinates isu250⇔B
5C50.
10403
.

C. Bondi „cÄ0 or aÄ0…

It is sufficient to consider the casec50. Now bÞ0 and
for b.0 x1 is an ‘‘advanced’’ time and forb,0 x1 is a
‘‘retarded’’ time. Now

Ab5Ca. ~15!

With

E[Aa214Bab ~16!

it follows that sgn(E)5sgn(A),

u15A4 A

E, ~17!

and

u252
1

2b SA4 E
A D S 11aAA

E D . ~18!

The condition of comoving coordinatesu250 requiresa
,0 andB50. Conversely, ifB50 thenu250 for a,0 and
u252Aa/b for a.0.

D. aÅ0, bÅ0 and cÅ0

With

R[A2c22AbC12CBc12C2a ~19!

and

S[2AbcB22AbCa1B2c224BCb212BcCa

1C2a21caA2, ~20!

it follows that

~u1!25
2R1sgn~b!AR 224SC2

2S ~21!

and

u25
2bu11sgn~b!A~bu1!22c~a~u1!211!

c
. ~22!

The condition of comoving coordinatesu250 requires the
same conditions as in the previous case.

IV. PHENOMENOLOGY

The discussion in this section requires no specification
coordinates onS1.

A. Decomposition

Whereas condition~5! determines the flow onS1, it is of
interest to know when the flow reduces to that of a perf
fluid @isotropic pressure~including bulk stress! and zero
shear stress#, or conversely, to be able to state that a giv
spacetime cannot be compatible with a perfect fluid sou
The familiar case is entirely obvious. If the Einstein tensor
diagonal with three equal components, then the metric
1-2
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INVERSE APPROACH TO EINSTEIN’S EQUATIONS . . . PHYSICAL REVIEW D 68, 104031 ~2003!
consistent with a perfect fluid in comoving coordinates. Su
a circumstance is, however, a property of the spacetime
the coordinates in which it is exhibited, more general ca
are explored in this section. Withua known, it is possible to
reconstruct phenomenological parameters associated w
decomposition of the energy-momentum tensor directly fr
the metric. This decomposition is not always unique.

A phenomenological fluid interpretation of Eq.~5!, by
way of Einstein’s equations, follows from the well know
Eckart relation@10# which gives

8pkna~“aT1Tub
“bua!50 ~23!

wherek is the thermal conductivity andT the temperature
profile. The flows considered here can therefore be con
ered non-conducting~k50! setting aside contrived function
T. The energy-momentum tensor is decomposed here in
form @11#

Tb
a5ruaub1p1nanb1p2db

a1p2~uaub2nanb!22hsb
a ,
~24!

where sb
a is the shear associated withua and h is the

phenomenological shear viscosity. It follows from Eq.~1!
that G3

35G4
4 for the spacetimes considered in this pap

With G3
35G4

4 it follows from Eq. ~24! that eithers3
35s4

4

or we must seth[0. Note that Eq.~24! distinguishes the
shear stress from an anisotropic pressure. These are s
times combined. For example, in the comoving frame in
spherically symmetric spacetime, it follows thatTb

a

5diag(r,P1,P2,P2) where P15p122hs2
2 and P25p2

22hs3
3. Such a combination is not, in general, possible o

side the comoving frame. Since anisotropic pressures do
arise solely due to shear stresses~e.g., in a static spherically
symmetric spacetime,sa

b50 but p1Þp2 in general!, the full
decomposition~24! is used here.

B. Systems of equations

We set up systems of equations to be solved simu
neously for the functions (r,p1 ,p2 ,h) in terms of scalars
that follow algorithmically from the metric. It is not possibl
to build more than three independent equations in an atte
to solve for (r,p1 ,p2 ,h) since, with Eq.~5!, there are only
three independent scalars that can be constructed from th
(Ga

b ,ua,na) @7#.

1. General spacetimes

To proceed in a manifestly invariant way we constru
scalars from the set (Ga

b ,ua,na) that are linear inGa
b . These

areGa
buanb @used in condition~5!#, Ga

buaub , Ga
bnanb and

Ga
a[G. With Eq. ~24! it follows that

G58p~2r1p112p2!, ~25!

and

Ga
buaub[G158pr. ~26!

In all cases we take Eq.~26! as the definition ofr. Further,
10403
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Ga
bnanb[G258p~p122hD! ~27!

where

D[sa
bnanb . ~28!

Rearrangement of Eqs.~25!, ~26! and ~27! gives

48phD5G1G123G2116pP ~29!

whereP[p12p2. If sa
b50 or h[0 or P[0 then Eqs.~25!,

~26! and~27! form a complete set of equations. More gen
ally, however, if we attempt to solve for the complete set
parameters (r,p1 ,p2 ,h) four equations are needed@12#. For
the class of spacetimes considered here, it was shown in@7#
that higher-order invariants are not independent of the lin
ones. Therefore, use of higher-order invariants will not bre
the degeneracy but merely generate new syzygies~algebraic
identities amongst invariantly defined quantities!.

2. Restricted spacetimes

From Eq.~24! and Einstein’s equations it follows that fo
the spacetimes (M,g) considered here

G̃2
1G̃1

22~G̃1
12G̃3

3!~G̃2
22G̃3

3![G5̃5~8p!2P~r1p2!, ~30!

whereG̃b
a5Gb

a116phsb
a . Although Eq.~30! holds in every

~M,g! without specific coordinates specified onS1, it is not
manifestly invariant. Use of Eq.~30! merely generates fur
ther ~restricted! syzygies.

C. Linear cases

1. sa
bÄ0

If sa
b50 andr1p2Þ0 then Eq.~30! with P50 gives the

Walker’s pressure isotropy condition@13#

G2
1G1

25~G1
12G3

3!~G2
22G3

3! ~31!

which is here a necessary and sufficient condition for a p
fect fluid. A manifestly invariant condition follows from Eqs
~25!, ~26! and ~27! which give

p15
G2

8p
, ~32!

and

p25
G1G12G2

16p
. ~33!

Clearly

G1G153G2 ~34!

is a necessary and sufficient condition for a perfect fl
including the exceptional caseG13G15G2 not covered by
Eq. ~31!. Equation~34! is not sensitive to the presence of
cosmological constant term in the Einstein field equatio
and plays a central role in what follows@14#.

In all of what now follows up to Sec. V we assumesa
b

Þ0.
1-3
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2. hÆ0

The decomposition~24! is consistent with some space
times if and only ifh[0. Some examples of this are show
in Sec. V. Ifh[0 then Eqs.~32!, ~33! and~34! hold as in the
previous case.

3. p1Äp2Æp, DÅ0

Equations~25!, ~26! and ~27! now give

p5
G1G1

24p
~35!

and

h5
G1G123G2

48pD
~36!

so that Eq.~34! is once again a necessary and sufficie
condition for a perfect fluid. The caseD50 is equivalent to
the casesa

b50.

4. p1Åp2 , DÅ0

Equations~25!, ~26! and ~27! now give

p15
G2

8p
12hD ~37!

and

p25
G1G12G2

16p
2hD, ~38!

whereh is arbitrary. If we seth[0 then the condition~34! is
a necessary and sufficient condition for a perfect fluid. F
other choices ofh the fluid is imperfect.

D. Nonuniqueness of the source

In the last case above, it is not possible to solve fo
unique set (r,p1 ,p2 ,h) as only three invariants are indepe
dent for the type of spacetimes considered in this paper.
other way to see this directly is to observe that substitution
the expressions forr, p1 andp2 as given by Eqs.~26!, ~37!
and ~38! into the energy-momentum tensor~24! and multi-
plication by 8p reproduces the Einstein tensor@15#. This of
s
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course all derives from the fact that in a canonical fra
there are at most three independent components of the
stein tensor for the spacetimes considered. As we show
Sec. V, the application of the framework to some giv
spacetimes known to represent perfect fluid solutions
where DÞ0 shows that there are other imperfect flu
sources possible. This is always the case where the pe
fluid condition ~34! holds andDÞ0. For h[0 the fluid is
perfect, for other choices ofh the fluid is imperfect. For
example, the Lemaıˆtre-Tolman-Bondi metric~‘‘dust’’ ! is
given @16,2# by

dsM
2 52~dt!21

@R8~ t,r !#2~dr !2

11 f ~r !
1R~ t,r !2dV2, ~39!

along with the constraints

Ṙ~ t,r !5A2
m~r !

R~ t,r !
1 f ~r !, ~40!

R̈~ t,r !52
m~r !

R2~ t,r !
, ~41!

R̈8~ t,r !52
m8~r !

R2~ t,r !
12

m~r !R8~ t,r !

R3~ t,r !
, ~42!

and

Ṙ8~ t,r !5
2 m8~r !R~r ,t !22 m~r !R8~r ,t !1 f 8~r !R2~r ,t !

2R~r ,t !A@2 m~r !1 f ~r !R~r ,t !#R~r ,t !
,

~43!

where 8[]/]r and •[]/]t. Condition ~34! holds, so the
source is consistent with~but not necessarily! a perfect fluid,
in fact simply dust~sinceG2505G1G1) with

r5
m8~r !

4pR2~r ,t !R8~r ,t !
. ~44!

The metric~39! ~with the given constraints! is also consistent
with an imperfect fluid withp152hD, p252hD, h arbi-
trary and
D52
22m8~r ,t !R~r ,t !16m~r !R8~r ,t !2 f 8~r !R2~r ,t !12R8~r ,t ! f ~r !R~r ,t !

3R8~r ,t !R3/2~r ,t !A2 m~r !1 f ~r !R~r ,t !
~45!
as
sed
as is easily verified. The fact that the Lemaıˆtre metric need
not be considered as dust is not a new result@17#. Here, the
degenerate case~DÞ0! is shown to be generic.

V. EXAMPLES

We provide here examples in various coordinate type
order to illustrate the results obtained.
in

A. Kruskal-Szekeres coordinates

Aside from the Kruskal-Szekeres metric, little use h
been made of double null coordinates. The example u
here is the Einstein–de Sitter universe@18#

dsM
2 5C 2~u1v !4S 2dudv1

~u2v !2

4
dV2D , ~46!
1-4
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whereC is a constant anddV2 is the metric of a unit sphere
It follows thatua51/C(u1v)2(1,1,0,0),sa

b50 and Eq.~34!
holds so that the fluid is necessarily perfect~in fact simply
dust sinceG2505G1G1).

B. Bondi coordinates

The Bondi metric@19#

dsM
2 5c2~w,r ! f ~w,r !~dw!262c~w,r !dwdr1r 2dV2

~47!

in advanced~1! or retarded~2! w hasA5C50,BÞ0 for
]c/]r 50 and] f /]wÞ0 and so there is no non-conductin
fluid source of Eq.~47! under these conditions. The Vaidy
metric @20# ~corresponding to a null flux! provides a familiar
example. The metric@21#

dsM
2 522H~u,r !~du!222dudr1ur2n~~dx!21~dy!2!,

~48!

whereH(u,r )5(r /u1krmu(22m)/(m21))/2.0 andn5m(m
21)/2 is necessarily comoving. Moreover,sa

bÞ0 and Eq.
~34! holds, so the source is consistent with~but not necessar
ily ! a perfect fluid. If we seth[0 then the fluid is perfect bu
for other choices ofh the fluid is imperfect.

C. Comoving diagonal coordinates

The next examples are in diagonal coordinates and h
B5C50 so thatua is necessarily comoving.

1. sa
bÄ0

The Robertson-Walker metric

dsM
2 52~dt!21

a~ t !2~dr !2

12kr2
1r 2dV2 ~49!

gives sa
b50 and Eq.~34! holds. It follows that the fluid is

necessarily perfect@22#. Equations~26! and ~27! reproduce
Friedmann’s equations. In contrast, the Kantowski-Sa
metric @23#

dsM
2 52~dt!21

a~ t !2~dr !2

12kr2
1dV2 ~50!

gives sa
b50 but Eq. ~34! never holds. It follows that the

fluid can never be perfect. For the general spherical st
metric

dsM
2 52e2F(r )~dt!21

~dr !2

122m~r !/r
1r 2dV2, ~51!

whereassa
b50, Eq.~34! does not in general hold. The flui

has anisotropic pressure, the perfect fluid being a special
@24#. The metric@25#
10403
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dsM
2 52~dt!21R~ t !2@~dr !21sin~r !2~dz!21 f ~r !2~df!2#

~52!

with the constraint 2RR̈1(Ṙ)21150 where .[]/]t has
sa

b5Gf
f50. The conditionGz

z50 gives f (r )5cos(r1A)
whereA is constant. Condition~34! does not in general hold
Rather,p250 but p150 only for A50.

2. hÆ0

The metric@26#

dsM
2 5S~ t !22mC~x!22m22@2~dt!21~dx!2#

1S~ t !C~x!a@T~ t !n~dy!21T~ t !2n~dz!2# ~53!

hasGx
x5Gy

y5Gz
z and so is obviously a perfect fluid in co

moving coordinates. However,sy
yÞsz

z and so the decompo
sition ~24! holds only for h50. Condition ~34! holds in
agreement with the obvious.

D. Non-comoving diagonal coordinates

Few examples are available in non-comoving coordina
From the pioneering work of McVittie and Wiltshire@5# we
note for example, that their solution~6.12!

dsM
2 5e2b(z)@2~dt!21~dj!21j2dV2# ~54!

wherez5e(j22t2)/j0
2, andb(z) is an undetermined func

tion of z with bzz2bz
2Þ0, hassa

b50 and the condition~34!
holds so the source is necessarily a perfect fluid. Their s
tion ~7.20!

dsM
2 5exp~Aez/L1Bz/ l 22eLt !@2~dt!21~dv!21dV2#,

~55!

wherez5v1et, e561 andA, B and L are constants, ha
sa

bÞ0. Condition~34! holds so the source is consistent wi
a perfect fluid~if h[0!. Their solutions~6.21! and ~8.11!
also have shear and Eq.~34! holds so the solutions are com
patible with a perfect fluid source. As with the Davidso
metric ~48!, McVittie and Wiltshire solutions~6.21!, ~7.20!
and ~8.11! are also consistent with an imperfect fluid wi
hÞ0.

From the more recent work of Senovilla and Vera@5#, for
example, their solution~40!

dsM
2 52~dt!21~dx!21

cos112n~mx!

cosh2n21~mt !
~dy!2

1
cos122n~mx!

cosh22n21~mt !
~dz!2 ~56!

hasGy
y5Gz

z but sy
yÞsz

z and so the metric~56! is consistent
with the decomposition~24! only for h[0 @the same holds
for their solutions~38! and~41!#. Equation~34! holds and so
the metric~56! necessarily represents a perfect fluid.
1-5
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VI. SUMMARY

It has been shown that a flow~timelike congruenceua) in
any typeB1 warped product spacetime is uniquely and alg
rithmically determined by the condition of zero flu
(Ga

buanb50). Explicit forms of ua have been written ou
for canonical representations. Withua known, a phenomeno
logical interpretation of the spacetime~M,g! in terms of a
non-conducting fluid follows. The following cases are del
eated

~i! If hD50 then the condition~34! is a necessary an
sufficient condition for a perfect fluid.

~ii ! If p1[p2[p andDÞ0 thenp is given by Eq.~35! and
h is given by Eq.~36!. The condition~34! is a necessary an
sufficient condition for a perfect fluid.

~iii ! If DÞ0 thenp1 is given by Eq.~37! andp2 is given
by Eq. ~38! and h is a freely specified function. This is
generic degenerate case. If condition~34! holds then the fluid
is compatible with a perfect fluid source. Ifh[0 the fluid is
perfect. For other choices ofh the fluid is imperfect.

Furthermore, the derived covariant perfect fluid conditi
can be used to study exact solutions of Einstein’s equat
as well as deriving new families of solutions@27#. Examples,
in various coordinates, including spacetimes with and w
out unique interpretations have been provided. The pro
dure developed has been implemented in a computer alg
program described in the Appendix.
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APPENDIX: GRSOURCE, A COMPUTER ALGEBRA
PROGRAM

GRSOURCE@29# runs under the systemGRTENSORIIwhich
in turn runs under the system Maple. The program is ca
with a spacetime metric name as an input.GRSOURCEcalcu-
lates the velocity field and related physical quantities. Mo
over, it performs an algorithmic analysis on the nature of
fluid. The results of the evaluated quantities are display
followed by a summary report on the analysis of the poss
fluid sources for the input spacetime. An example follows

. restart; We start aGRTENSORIIandGRSOURCEsession

. grtw~ !;
GRTENSORIIVersion 1.80-pre2 (R6)
Developed by Peter Musgrave, Denis Pollney and Ka

Lake
Copyright 1994–2003 by the authors.
Latest version available from: http://grtensor.org
GRSOURCEPackage Version 1.00
Developed by Mustapha Ishak and Kayll Lake (c) 200–

2003
Help available via ?grsource
Usage: Load a metric and enter the comma

source(metricname);
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. qload~kantosachs!;

Default spacetime5kantosachs

For the kantosachs spacetime

Coordinates: x(up)

x a5@r , u, f, t#

Signature52

Line element: ds2

ds25
a~ t !2dr2

12Kr 2 1a~ t !2du21a~ t !2sin~u!2df22dt2

Kantowski-Sachs metric, J. Math. Phys.7, 443~1966!

. source~kantosachs!;
A general velocity field will be generated automatically fro
the metric.
Please answer the following or enter exit anytime to stop
session.
Enter the timelike or null coordinate, for example,t;.t;
Enter the spacelike or null coordinate, for example,r ;.r ;
Enter the spacelike coordinate, for example,u;.u;
Enter the spacelike coordinate, for example,f;.f;

For the kantosachs spacetime

ua5@0, 0, 0, 1#

uSq521

flux5All components are zero

ShearTensora
b5All components are zero

Expansion scalar: expsc

Q@u#53

d

dt
a~ t !

a~ t !

D5All components are zero

r5
1

8

3F d

dt
a~ t !G2

11

a~ t !2p

p152
1

8

F d

dt
a~ t !G2

12a~ t !F d2

dt2
a~ t !G11

a~ t !2p

p252
1

8

F d

dt
a~ t !G2

12a~ t ! F d2

dt2
a~ t !G

a~ t !2p
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PFCondition52
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h*D50 but PFCondition was not simplified to zero, the flu
has anisotropic pressure. Further simplifications can be a
plied to the objects calculated using the commands gralte
and grdisplay( ).
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