PHYSICAL REVIEW D 68, 104031 (2003

Inverse approach to Einstein’s equations for nonconducting fluids
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We show that a flowtimelike congruencein any typeB; warped product spacetime is uniquely and
algorithmically determined by the condition of zero flyXhough restricted, these spaces include many cases
of interest) The flow is written out explicitly for canonical representations of the spacetimes. With the flow
determined, we explore an inverse approach to Einstein’s equations where a phenomenological fluid interpre-
tation of a spacetime follows directly from the metric irrespective of the choice of coordinates. This approach
is pursued for fluids with anisotropic pressure and shear viscosity. In certain degenerate cases this interpretation
is shown to be generically not unique. The framework developed allows the study of exact solutions in any
frame without transformations. We provide a number of examples, in various coordinates, including spacetimes
with and without unique interpretations. The results and algorithmic procedure developed are implemented as
a computer algebra program calledSOURCE
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[. INTRODUCTION obtained are given in Sec. V. Section VI is a summary.
The usual procedure for finding exact solutions of Ein- Il. ZERO FLUX

stein’s equations involves writing down a phenomenological
energy-momentum tensor, often a perfect fluid, in a set o
coordinates, frequently comoving, so that the field equation
can be integrated, often with the aid of simplifying assump- d52M=d5§ (xl,x2)+C(x“)d§ (x3,x%), 1)
tions [1,2]. In view of the difficulty of solving Einstein’s L 2

equations, inverse problems are importgBL An inverse
problem of interestnot involving the classification problem
for the Ricci tensof4] explicitly) may be stated thus. Given
a spacetimé.M,g) with manifold M and Lorentzian metric
g, what, if any, fluid flow could generateM,g) via Ein-
stein’s equations? This question is explored here for the case dsz =a(dx)?+2bdxtdx?+c(dx?)?, 2
of type B; warped product spacetimgsee below. The !

problem is of interest since, as is shown, the flaglocity  \yitp a, b andc functions of &*,x?) only. A congruence of
field) is uniquely determined subject to a zero flux condition. it timelike vectors (a “flow” in what follows) u®
With the flow determined, physical parameters, subject to & (y!,u2,0,0) have an associated unit normal fiefti(in the
fluid decomposition that includes anisotropic pressure a“‘i‘angent space at ) satisfyingn,u®=0n,n"=1 [9]. It fol-
shear viscosity, can be extracted directly from the metriG, s that n =z//(x1,x2)(u2,—ucly,0,0) ({; a normalization
irrespective of coordinates. The framework developed in thi?actor). The ?imelike condition o is

paper allows the study of exact solutions in any frame with-

out transformations. Surprisingly, little work has been done —1=a(ul)?+2butu’+c(u?)? ®)
in noncomoving frame$5]. The invariant procedure devel-

oped is algorithmic and suited to computer algebra projectand (M,g) is time orientated by the restriction

such as the Interactive Geometric Datab@evhere, given L

a metric, one might like to know if it is necessarily, for u=>0. (4)
example, a perfect fluid, or on the contrary, incompatible
with a perfect fluid. The paper is organized as follows. In
Sec. Il, we explore the zero flux condition and in Sec. Il we GPU“N .= 0 )
derive explicit forms of the velocity field for canonical coor- o TBOT
dinate types. In Sec. IV we explore the phenomenology ofareGA
the non-conducting fluid source showing that degenerate “
cases exist. Examples that illustrate the power of the results Autu?—B(uh)2+C(u?)?=0, (6)

We consider warped product spacetimes of c&s7,8].
hese can be written in the form

where C(x®) =r(x*,x?)2w(x3,x%?2, signatureE;)=0 and
signaturek,)=2¢ (e==1). Although very special, these
spaces include many of interest, for examgalk,spherical,
plane, and hyperbolic spacetimes. We write

The condition

is the Einstein tensor, can be written as

where
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Condition (5) is the defining criterion for the flows consid-
ered here. In generah, B andC are functions ok’ through

x*, assumed not to vanish simultaneously. Equati@hs(4)

and(6) determine the flow uniquely. The flow need not exist. «
For example, ifA=C=0 andB+#0 then there exists no such

flow. The assumption of “comoving coordinatesii{=0 in

the present notatigimposes restrictions on the coordinati-
zation of 34, but it is already clear from Eq6) that the

existence of such a flow requir@&=0.

Ill. U* FOR CANONICAL REPRESENTATIONS OF X,

There are four distinct canonical types of coordindtest

specific coordinatgsthat can be used to represeny. In

what follows we write outu® in each of these cases. We do

not write out quantities that follow algorithmically fromf*.

A. Kruskal-Szekeres(a=c=0)

The distinguishing characteristic here is

A=0. (8)

We can always choode<0 so that

) 1
us=— >0
2bu?

, 9

and so it follows from Eq(6) that

4 C
ul= prYe, (10)

B. Diagonal (b=0)
Herea<0, ¢c>0 and

Bc=Ca. (11
With
D=A’a+4B%c (12

it follows thatDa>0,

, 13

and

(U2)2:—

7 (14

A23?
—1+\/ —|.
Da

The requirement of “comoving” coordinates is°=0<B
=C=0.
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C. Bondi (c=0 or a=0)

It is sufficient to consider the cage=0. Now b#0 and
for b>0 x! is an “advanced” time and fob<0 x' is a
retarded” time. Now

Ab=Ca. (15
With
E=Aa’+4Bab (16)
it follows that sgn€) =sgn(@),

. 4\/K

u-= ° (17)
SRETVCU TN
UZ—E K 1+a E . (18)

The condition of comoving coordinatas®=0 requiresa
<0 andB=0. Conversely, iB=0 thenu?=0 fora<0 and
u?=—/a/b for a>0.

and

D. a#0, b#0 andc#0
With
R=A?c—2AbC+2CBc+2C?a (19
and
S=2AbcB-2AbCa+ B2c>—4BCk’+2BcCa
+C2%a%+cah?, (20)
it follows that

—R+sgn(b)yR?2—4S8C?

28

(uh? (21)

and

, —bul+ sgr(b) V(bul)2—c(a(ul)2+1)

Cc

u (22

The condition of comoving coordinate€=0 requires the
same conditions as in the previous case.

IV. PHENOMENOLOGY

The discussion in this section requires no specification of
coordinates orX.;.

A. Decomposition

Whereas conditioif5) determines the flow oR 4, it is of
interest to know when the flow reduces to that of a perfect
fluid [isotropic pressurgincluding bulk stress and zero
shear stregsor conversely, to be able to state that a given
spacetime cannot be compatible with a perfect fluid source.
The familiar case is entirely obvious. If the Einstein tensor is
diagonal with three equal components, then the metric is
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consistent with a perfect fluid in comoving coordinates. Such nganﬁzezz 8m(p;—27A) (27
a circumstance is, however, a property of the spacetime and

the coordinates in which it is exhibited, more general casewhere

are explored in this section. Witht* known, it is possible to B

reconstruct phenomenological parameters associated with a A=o,nng. (28)

decomposition of the energy-momentum tensor directly fro :
the metric. This decomposition is not always unique. nhearrangement of Eq&25), (26) and(27) gives

A phenomenological fluid interpretation of E¢), by 487 pA=G+G1—3G2+ 16mP (29)
way of Einstein's equations, follows from the well known
Eckart relation10] which gives whereP=p;—p,. If 02=0 or =0 or P=0 then Eqs(25),
(26) and(27) form a complete set of equations. More gener-
8KV T+TuPV gu,)=0 (23)  ally, however, if we attempt to solve for the complete set of

parametersd,p1,p», ) four equations are need¢ti2]. For

e e el Condictly e e emRerlie e s o spaceis considered e, it was ol
P ' . . . : X hat higher-order invariants are not independent of the linear
ered non-conductinfx=0) setting aside contrived functions

T. The energy-momentum tensor is decomposed here in t ones. Therefore, use of higher-order invariants will not t_)reak

férm [11] h.[%e d.e.generacy bu'; mer.ely gener_ate new sy;y@lkgf.ebralc
identities amongst invariantly defined quantities

TE=pUUptpin“ng+padp+pa(U“Us—n®ng) —2 Wg('24) 2. Restricted spacetimes

From Eq.(24) and Einstein’s equations it follows that for

where o is the shear associated with and » is the  the spacetimes/X!,g) considered here

phenomenological shear viscosity. It follows from H@) e

that G3=G2 for the spacetimes considered in this paper. G3G;—(Gi—G3)(G3—G3)=G5=(8m)?P(p+p,), (30

With G3=Gj it follows from Eq. (24) that eithero3=o7 _ _

or we must sety=0. Note that Eq.24) distinguishes the WhereGg=Gj+ 167 noy;. Although Eq.(30) holds in every

shear stress from an anisotropic pressure. These are somé<,g) without specific coordinates specified 2, it is not

times combined. For example, in the comoving frame in ananifestly invariant. Use of Eq30) merely generates fur-

spherically symmetric spacetime, it follows thal ther (restricted syzygies.

=diag(p,P1,P2,P2) where P1=p;—2705 and P2=p,

- 27;0%. Such a combination is not, in general, possible out-

side the comoving frame. Since anisotropic pressures do not 1. of=0

arse solely due lo shear sfesteg. n a SIaic SpNSMOaly i £-0 andp+ p, 0 then Eq(30 with P=0 gives the

@ 1z ’ Walker’s pressure isotropy conditigf3]

decomposition24) is used here.
G3Gi=(G1—G3)(G3—G3) (31)

C. Linear cases

B. Systems of equations
) ) which is here a necessary and sufficient condition for a per-
We set up systems of equations to be solved simultagy . fi,ig. A manifestly invariant condition follows from Egs.
neously for the functionsg(p;,p2,7) in terms of scalars (25), (26) and (27) which give
that follow algorithmically from the metric. It is not possible '

to build more than three independent equations in an attempt G2
to solve for (p,p;,p»,7) since, with Eq.(5), there are only P1=g (32
three independent scalars that can be constructed from the set
(GB,u%n,) [7]. and
; G+G1-G2
1. General spacetimes _
P2 167 : (33

To proceed in a manifestly invariant way we construct
scalars from the se@%,u“,n,) that are linear irG% . These  Clearly
are GAu®n [used in condition(5)], GAu®ugz, GAn“n, and
GY=G. With Eq. (24) it follows that G+G1=3G2 (34)
is a necessary and sufficient condition for a perfect fluid

G=8m(=p+p1t2p2), (25 including the exceptional case+3G1=G2 not covered by
and Eqg. (31). Equation(34) is not sensitive to the presence of a
cosmological constant term in the Einstein field equations
Gguauﬁselzgwp, (26) and plays a central role in what follow&4].

In all of what now follows up to Sec. V we assurné
In all cases we take E@26) as the definition op. Further,  #0.
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2. 9=0

The decompositior(24) is consistent with some space-
times if and only if =0. Some examples of this are shown
in Sec. V. If =0 then Eqgs(32), (33) and(34) hold as in the
previous case.

3. pp=p2=p, A#0
Equations(25), (26) and(27) now give

G+G1
P=Zar (39
and
G+G1-3G2
T T agmA (36)

so that Eq.(34) is once again a necessary and sufficient

condition for a perfect fluid. The case=0 is equivalent to
the caser’=0.

4. p1#p,, A#0
Equations(25), (26) and(27) now give

pl=£+27]A (37)
and
G+G1-G2
DZZT—WA, (38)

wheren is arbitrary. If we sety=0 then the conditiori34) is

a necessary and sufficient condition for a perfect fluid. For

other choices ofy the fluid is imperfect.

D. Nonuniqueness of the source

PHYSICAL REVIEW D 68, 104031 (2003

course all derives from the fact that in a canonical frame
there are at most three independent components of the Ein-
stein tensor for the spacetimes considered. As we show in
Sec. V, the application of the framework to some given
spacetimes known to represent perfect fluid solutions but
where A#0 shows that there are other imperfect fluid
sources possible. This is always the case where the perfect
fluid condition (34) holds andA#0. For »=0 the fluid is
perfect, for other choices of; the fluid is imperfect. For
example, the Lemae-Tolman-Bondi metric(“dust”) is
given[16,2] by

[R'(t,r)]%(dr)?

dsi, 1+f(r)

—(dt)%+ +R(t,r)2dQ?, (39

along with the constraints

. m(r)
R(t,r)= 2R(t r)+f(r), (40
R(t,r)=— m(r) (41)
(tr= R3(t,r)’
. o m’(r) m(r)R’(t,r)
R i " R 42
and
’ _ ’ ’ 2
R’(t,r)=2m (NHR(r,t)=2m(r)R'(r,t) +f'(r)R(r,t)

2R(r,t)v[2m(r)+f(r)R(r,t)]R(r,t)
(43

where "'=d/dr and -=4g/dt. Condition (34) holds, so the
source is consistent wittibut not necessarijya perfect fluid,
in fact simply dust(sinceG2=0=G+ G1) with

In the last case above, it is not possible to solve for a

unique set f,p1,pP2,7) as only three invariants are indepen-

dent for the type of spacetimes considered in this paper. An-

m'(r)

- . 44
P AaR(r DR (1 1) 49

other way to see this directly is to observe that substitution of

the expressions fgs, p; andp, as given by Eqs(26), (37)
and (38) into the energy-momentum tens(4) and multi-
plication by 8 reproduces the Einstein tenddi5]. This of

A=

B —2m’(r,t)R(r,t)+6m(r)R’(r,t)— f'(r)R?(r,t)+ 2R’ (r,t)f(r)R(r,t)

The metric(39) (with the given constrainjss also consistent
with an imperfect fluid withp;=27%A, p,=—nA, 7 arbi-
trary and

(45)

3R (r,t)R¥A(r,t)\2m(r)+f(r)R(r,t)

as is easily verified. The fact that the Letnaimetric need
not be considered as dust is not a new reglifi. Here, the
degenerate cadd#0) is shown to be generic.

V. EXAMPLES

We provide here examples in various coordinate types in

order to illustrate the results obtained.

A. Kruskal-Szekeres coordinates

Aside from the Kruskal-Szekeres metric, little use has
been made of double null coordinates. The example used
here is the Einstein—de Sitter univefds]

(U—v)?
4

dsi,=C2(u+v)* —dudv + d0?|, (46

104031-4
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whereC is a constant andQ)? is the metric of a unit sphere.

It follows thatu®=1/C(u+v)?(1,1,0,0),0”=0 and Eq(34)
holds so that the fluid is necessarily perféict fact simply
dust sinceG2=0=G+G1).

B. Bondi coordinates
The Bondi metrid 19]

dsi,=c(w,r)f(w,r)(dw)?=2c(w,r)dwdr+r2dQ?
(47)

in advanced+) or retarded(—) w hasA=C=0,B#0 for

dclaor=0 anddf/gw#0 and so there is no non-conducting
fluid source of Eq(47) under these conditions. The Vaidya

metric[20] (corresponding to a null flyxprovides a familiar
example. The metrig21]

ds2,= — 2H(u,r)(du)?— 2dudr+ur2((dx)2+ (dy)?),
(48

whereH(u,r)=(r/u+kr™u@-m/(M=1y/5>~0 andn=m(m
—1)/2 is necessarily comoving. Moreover{jaéo and Eq.
(34) holds, so the source is consistent witut not necessar-
ily) a perfect fluid. If we sey=0 then the fluid is perfect but
for other choices ofy the fluid is imperfect.

C. Comoving diagonal coordinates

PHYSICAL REVIEW D 68, 104031 (2003

ds2,= — (dt)2+R(1)F (dr)2+sin(r)?(dz)2+ f(r)2(d¢)?]
(52)

with the constraint RR+(R)?+1=0 where ‘=4/dt has
a{j:Gg:O. The conditionG2=0 gives f(r)=cosf+A)

whereA is constant. Conditiof34) does not in general hold.

Rather,p,=0 butp;=0 only for A=0.

2.9=0
The metric[26]

dsi,=S(t) "2"C(x) 2™ [ —(dt)®+ (dx)?]
+S(HCX)[T(H)"(dy)*+T(t) ""(d2)?] (53

hasG}=Gy=G; and so is obviously a perfect fluid in co-
moving coordinates. Howeves;! # o2 and so the decompo-
sition (24) holds only for »=0. Condition (34) holds in
agreement with the obvious.

D. Non-comoving diagonal coordinates

Few examples are available in non-comoving coordinates.
From the pioneering work of McVittie and Wiltshif&] we
note for example, that their solutidi6.12)

dsi,=e?@[ —(dt)2+ (dé)?+ £2d0?] (54)

— 2 . .
The next examples are in diagonal coordinates and havwherez=e(¢’—t?)/&;, and3(2) is an undetermined func-

B=C=0 so thatu® is necessarily comoving.

1. oP=0
The Robertson-Walker metric

a(t)?(dr)?

dsi,=—(dt)2+ e +r2dQ2 (49
r

gives 0?=0 and Eq.(34) holds. It follows that the fluid is
necessarily perfedt22]. Equations(26) and (27) reproduce

tion of zwith 8,,— B2+0, haso?=0 and the conditiori34)
holds so the source is necessarily a perfect fluid. Their solu-
tion (7.20

dsi,=exp Ae?t + Bzl —2¢eLt)[ — (dt) %+ (dw)?+dQ?],
(59
wherez=w+ €t, e=*+1 andA, B andL are constants, has
afa&o. Condition(34) holds so the source is consistent with

a perfect fluid(if »=0). Their solutions(6.21) and (8.11)
also have shear and E@4) holds so the solutions are com-

Friedmann's equations. In contrast, the Kantowski-Sachgatible with a perfect fluid source. As with the Davidson

metric[23]

a(t)*(dr)?
+—

1—kr?

dsi, = —(dt)? do? (50)

gives o?=0 but Eq.(34) never holds. It follows that the

fluid can never be perfect. For the general spherical static

metric

(dr)?

2402
1-2m(r)/r +redos,

dsi,=—e?*((dt)?+ (51)

metric (48), McVittie and Wiltshire solutiong6.21), (7.20
and (8.11) are also consistent with an imperfect fluid with
n#0.

From the more recent work of Senovilla and V§s4, for
example, their solutioit40)

cos " 2¥(ux)

- 2 2
dsi,=—(dt)2+(dx) +cosh2V‘1(,ut)

(dy)?

cos 2" ux)

_— 56
cosh™2""(ut) (5

(d2)?

hasGY=GZ but 0¥+ o2 and so the metri¢56) is consistent

wherea&rﬁzo, Eq.(34) does not in general hold. The fluid with the decompositiori24) only for »=0 [the same holds
has anisotropic pressure, the perfect fluid being a special cager their solutiong38) and(41)]. Equation(34) holds and so

[24]. The metric[25]

the metric(56) necessarily represents a perfect fluid.
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VI. SUMMARY

It has been shown that a flofimelike congruence®) in
any typeB,; warped product spacetime is uniquely and algo-
rithmically determined by the condition of zero flux
(Gfu"n5=0). Explicit forms ofu® have been written out
for canonical representations. Witlf known, a phenomeno-
logical interpretation of the spacetinié1,g) in terms of a
non-conducting fluid follows. The following cases are delin-
eated

(i) If »A=0 then the condition(34) is a necessary and
sufficient condition for a perfect fluid.

(ii) If p;=p,=p andA+#0 thenpis given by Eq(35) and
7 is given by Eq.36). The condition(34) is a necessary and
sufficient condition for a perfect fluid.

(i) If A#0 thenp; is given by Eq.(37) andp, is given
by Eq. (38) and 7 is a freely specified function. This is a
generic degenerate case. If conditi@d) holds then the fluid
is compatible with a perfect fluid source. #=0 the fluid is
perfect. For other choices of the fluid is imperfect.

Furthermore, the derived covariant perfect fluid condition
can be used to study exact solutions of Einstein’s equation
as well as deriving new families of solutiof&7]. Examples,
in various coordinates, including spacetimes with and With—E
out unique interpretations have been provided. The proce=
dure developed has been implemented in a computer algek?E7

program described in the Appendix. EE

n
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APPENDIX: GRSOURCE, A COMPUTER ALGEBRA
PROGRAM

GRSOURCE[29] runs under the syste®RTENSORIIWhich
in turn runs under the system Maple. The program is called
with a spacetime metric name as an ingERSOURCECalcu-
lates the velocity field and related physical quantities. More-
over, it performs an algorithmic analysis on the nature of the
fluid. The results of the evaluated quantities are displayed,
followed by a summary report on the analysis of the possible
fluid sources for the input spacetime. An example follows:

> restart; We start &RTENSORIland GRSOURCESesSion

> grtw( );

GRTENSORII Version 1.80-pre2 (R6)

Developed by Peter Musgrave, Denis Pollney and Kayll
Lake

Copyright 1994-2003 by the authors.

Latest version available from: http://grtensor.org

GRSOURCEPackage Version 1.00

Developed by Mustapha Ishak and Kayll Lake (c) 2002
2003

Help available via ?grsource

Usage: Load a metric and enter
source(metricname);

the command

104031-6
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> gloadkantosachs

Default spacetimekantosachs
For the kantosachs spacetime

Coordinates: x(up)

X 2=[r, 0, ¢, t]
Signature=2
Line element: ds

_a(t)?dr?

4 =T-kz

+a(t)?de?+a(t)?sin( 9)2d p>— dt?

Kantowski-Sachs metric, J. Math. Phys443(1966

> sourcg¢kantosachs
A general velocity field will be generated automatically from
e metric.
lease answer the following or enter exit anytime to stop the
session.

ter the timelike or null coordinate, for exampte>t;
ter the spacelike or null coordinate, for examplesr;
ter the spacelike coordinate, for exampges 6;

ter the spacelike coordinate, for examples> ¢;

For the kantosachs spacetime
u?=[0, 0, 0, 1]
uSo=-—1
flux=All components are zero
ShearTensd=All components are zero
Expansion scalar: expsc
d
aa(t)

OLul=3—_5

A= All components are zero

d 2
1 3 &a(t) +1
8 a(t)?mr
d 2 d?
1 aa(t) +2a(t) Ea(t) +1
pl=- 8 a(t)?m
d 2 2
aa(t) +2a(t) Ea(t)
P2="% a(t)2m
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7*A=0 but PFCondition was not simplified to zero, the fluid

PFCondition= 2 5 has anisotropic pressure. Further simplifications can be ap-
a(t plied to the objects calculated using the commands gralter()
Report and grdisplay().
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