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A detailed description of how black holes grow in full, nonlinear general relativity is presented. The starting
point is the notion ofdynamical horizons. Expressions of fluxes of energy and angular momentum carried by
gravitational waves across these horizons are obtained. Fluxes are local and the energy flux is positive. A
change in the horizon area is related to these fluxes. A notion of angular momentum and energy is associated
with cross sections of the horizon and balance equations, analogous to those obtained by Bondi and Sachs at
null infinity, are derived. These in turn lead to generalizations of the first and second laws of black hole
mechanics. The relation between dynamical horizons and their asymptotic states—the isolated horizons—is
discussed briefly. The framework has potential applications to numerical, mathematical, astrophysical and
quantum general relativity.
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I. INTRODUCTION

The properties of stationary, 4-dimensional black ho
have been well understood for quite some time. In
Einstein-Maxwell theory, for example, the situation is asto
ishingly simple: We know that there is aunique4-parameter
family of stationary solutions and, furthermore, these so
tions are known explicitly, in a closed form, given by th
Kerr-Newman metrics and associated Maxwell fields@1#.
Large families of stationary but distorted black holes are a
known, where the distortion is caused by rings of matter a
magnetic fields@2#. Finally, a framework has recently bee
introduced to probe properties of black holes which
themselves in equilibrium but in space-times with nontriv
dynamics in the exterior region@3–5#. In particular, thisiso-
lated horizonframework enables one to assign mass and
gular momentum to black holes in terms of values of
fields on the horizon itself, without any reference to infini
and has also led to a generalization of the zeroth and
laws of black hole mechanics@6,7#.

However, in nature, black holes are rarely in equilibriu
They grow by swallowing stars and galactic debris as wel
electromagnetic and gravitational radiation. For such fu
dynamical black holes, essentially there has been only
major result inexactgeneral relativity. This is the celebrate
area theorem, proved by Hawking in the early 1970s@8,9#: if
matter satisfies the dominant energy condition, the are
the black hole event horizon can never decrease. This t
rem has been extremely influential because of its simila
with the second law of thermodynamics. However, it is
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qualitative result; it does not provide an explicit formula f
the amount by which the area increases in physical si
tions. Now, the first law of black hole mechanics,

dE5~k/8pG!da1VdJ, ~1.1!

does relate the change in the area of an isolated horizo
that in the energy and angular momentum, as the black h
makes a transition from one equilibrium state to a nea
one. This suggests that there may well be a fully dynam
version of Eq.~1.1! which relates the change in the blac
hole area to the energy and angular momentum fluxes, as
black hole makes a transition from a given state to one wh
is far removed. Thus, we are naturally led to ask: Can
results obtained in the isolated horizon framework be
tended to fully dynamical situations?

Attractive as this possibility seems, one immediately e
counters a serious conceptual and technical problem.
expression requires, in particular, a precise notion of the
of gravitational energy across the horizon. Already at n
infinity, the expression of the gravitational energy flux
subtle: one needs the framework developed by Bondi, Sa
Newman, Penrose and others to introduce a viable, ga
invariant expression of this flux@10–12#. In the strong field
regime, there is no satisfactory generalization of this fram
work and no satisfactory, gauge invariant notion of gravi
tional energy flux beyond perturbation theory. Thus, one
pears to be stuck right at the start.

Yet, there are at least two general considerations that s
gest that an extension of the first law to fully dynamic
situations should be possible. Consider a stellar colla
leading to the formation of a black hole. At the end of t
process, one has a black hole and, from general phys
considerations, one expects that the energy in the final b
©2003 The American Physical Society30-1
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hole should equal the total matter plus gravitational ene
that fell across the horizon. Thus, at least the total integra
flux across the horizon should be well defined. Indeed
should equal the depletion of the energy in the asympt
region, i.e., the difference between the Arnowitt-Des
Misner ~ADM ! energy and the energy radiated across fut
null infinity. The second consideration involves the Penro
inequalities which were motivated by cosmic censorsh
The ADM mass should be greater than or equal to half
radius of the apparent horizon on any~partial! Cauchy slice
@13#. ~Special cases of this conjecture have been proved
cently @14#.! Heuristically, the inequality leads us to think o
the apparent horizon radius as a measure of the mass
interior, whence one is led to conclude that the change in
area is due to influx of energy. Thus, it is tempting to ho
that something special may happen at the surface of a b
hole enabling one to define the flux of energy and angu
momentum across it, thereby giving a precise meaning
these physical expectations.

The question then is this: how should we define the s
face of the black hole? The obvious candidate is the ev
horizon. Unfortunately, this is not a viable possibility b
cause event horizons are extremely global and teleolog
Consider for example the gravitational collapse of a t
spherical shell. The event horizon first forms in the inter
of the shell and then expands out. Thus, in the initial pha
it lies in a flat space-time region and expands outin antici-
pation that the shell will cross it, even though neither the
matter nor the gravitational radiation falls across it before
hits the shell. Thus, one cannot hope to find a quasi-lo
fully dynamical generalization of the first law using eve
horizons. However, there is an alternative, suggested by
strategy used routinely in numerical simulations of bla
hole formation or coalescence. There, one avoids the p
lems associated with the global and teleological nature of
event horizon by locating apparent horizons at each t
during evolution.1 Can one then use apparent horizons
obtain the desired generalization of Eq.~1.1!? Now, apparent
horizons can and do jump during evolution. However, in
numerical simulations, there are epochs during which
world tubetAH traced out by apparent horizons is smoo
The rough, intuitive idea is to use these world tubes as
black hole surfaces across which energy and angular mom
tum fluxes are to be calculated.

We will incorporate these heuristics in a precise not
calleddynamical horizons. However, the definition will only
involve conditions on a 3-surfaceH, extracted from the
known properties oftAH . In particular, the definition will not
make any reference to space-time foliations and apparen
rizons thereon. Indeed, the definition will be quasi-loc

1In this paper, the term ‘‘apparent horizon’’ is used in the sen
employed in numerical relativity: it is the outermost margina
trapped surface on a given~partial! Cauchy slice. By contrast
Hawking and Ellis@9# define an apparent horizon as the bound
of a trapped region associated with the Cauchy slice~i.e., of a
connected region through each point of which there passes an
trapped surface lying in the slice!.
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Thus, given a region of space-time, one can tell whethe
not it admits dynamical horizons, without any knowledge
the geometry and matter fields in the exterior region. Sim
larly, given a specific 3-dimensional sub-manifold, one c
decide whether it is a dynamical horizon by examini
space-time fields defined on it, without the knowledge
geometry and matter fields away from the surface. By c
struction, the world tubestAH will provide examples of dy-
namical horizons which are most useful to numerical rela
ity. However, using Hayward’s@15# notion of trapping
boundaries, one can also associate with a generic evol
black hole a more invariantly defined orcanonicaldynami-
cal horizon. From a general conceptual viewpoint, it m
seem more natural to restrict oneself just to these canon
dynamical horizons. However, for ‘‘practical’’ applications
this would be too restrictive. For although these horizons
not refer to global notions such as null infinity, they a
nonetheless difficult to locate in a given space-time. A k
strength of the approach is that our analysis is not tied jus
them but encompassesall dynamical horizons. In particular
we will be able to introduce flux formulas and an integr
generalization of the first law~1.1! which will hold on all
dynamical horizons, including the ones of interest to nume
cal relativity.

The paper is organized as follows. In Sec. II we introdu
the main definitions, motivate the conditions and explain
relation to Hayward’s trapping horizons. In Sec. III we d
rive anarea balance law, relating the change in the area o
the dynamical horizon to the flux of matter energy and a p
geometrical, positive definite term. We then interpret t
geometrical term as the flux of gravitational energy and sh
that it satisfies the criteria one normally uses to establish
viability of the Bondi flux formula at null infinity. Section IV
introduces the notion of angular momentum and Sec. V
tends the area balance law using angular momentum con
erations to an integral form of the first law. Using strateg
that have been successful in the isolated horizon framew
we also introduce a definition of horizon energy and sh
that it matches well with the flux formulas to provide a
energy balance law analogous to that at null infinity, but n
in the strong field regime of dynamical horizons. While t
horizon would be dynamical in the time dependent phase
black hole formation or soon after two black holes merg
one expects it to settle down and reach equilibrium at l
times. Thus, one would expect isolated horizons to be
asymptotic states of dynamical horizons. In Sec. VI we
plore the relation between the two. Section VII summariz
the overall situation, suggests applications of dynamical
rizons to numerical, mathematical and quantum relativ
and lists problems in these areas whose resolution wo
shed much new light on how black holes grow and se
down to their final states.

To preserve the flow of the discussion in the main pap
some issues have been postponed to the appendixes. Ap
dix A discusses the simplest explicit examples of dynami
horizons and their passage to equilibrium. For completen
in Appendix B we discuss the time-like analogs of dynami
horizons which arise in cosmological contexts.
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The main results of this work were briefly reported
@16,17#. Here we present the details, proofs and extension
those results.

II. DEFINITIONS AND THE METHOD

In this section we will introduce the basic definitions, e
plain in some detail the motivation behind them, discuss
relation between dynamical horizons and closely related
tions of trapping horizons introduced by Hayward@15#, and
outline the main idea on which calculations in the subsequ
sections are based.

A. Definition and motivation

Definition 1.A smooth, three-dimensional, space-like su
manifold H in a space-timeM is said to be adynamical
horizon if it can be foliated by a family of closed 2-surface
such that, on each leafS, the expansionQ (,) of one null
normal,a vanishes and the expansionQ (n) of the other null
normalna is strictly negative.2

Thus, basically a dynamical horizonH is a space-like
3-manifold which is foliated by closed, marginally trappe
2-surfaces. Note first that, in contrast to event horizons,
namical horizons can be located quasi-locally; knowledge
full space-time is not required. Thus, for example, while
event horizon may well be developing in the room in whi
you are now sittingin anticipation of a future gravitational
collapse, you can rest assured thatno dynamical horizonhas
everdeveloped in that room. Next, since event horizons
defined as the future boundary of the causal past of fu
null infinity, the notion is tied to asymptotically flat spac
times. Being quasi-local, the notion of dynamical horizo
does not refer to the asymptotic structure at all and is me
ingful also in spatially compact space-times. On the other
hand, while in asymptotically flat space-times black holes
characterizedby event horizons, there is no one-to-one c
respondence between black holes and dynamical horiz
First of all, we expect thatstationary black holes do not
admit dynamical horizons because these space-times
non-dynamical. In time dependent situations, if the domin
energy condition holds and the space-time is asymptotic
predictable, dynamical horizons lie inside the event horiz
However, in the interior of an expanding event horizon, th
may be many dynamical horizons. Nonetheless, in the se
made precise in Sec. II B, under fairly general conditions o
can associate with each evolving black hole an outermos
canonical dynamical horizon. For conceptual reasons,
natural to focus just on this canonical one. However,
results will apply toall dynamical horizons; indeed, it is thi
fact that makes the framework powerful in practice, e.g.,
applications to numerical relativity.

Apart from the requirement thatH be foliated by margin-
ally trapped surfaces, the definition contains three conditio

2This notion of dynamical horizons is slightly more general th
that used in the Brief Reports@16,17# where the foliation was fixed
and the topology of the leaves of the foliation was required to
S2.
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The first asks that the 2-surfaces which constitute the lea
of the foliation be closed. This condition is necessary to
sure the convergence of various integrals we will perfor
The second asks that the expansionQ (n) be strictly negative.
This condition is quite weak because, in essence, it sim
enables one to identifyna as the inward pointing null nor-
mal. Thus, hadQ (n) been positive, we would be in the whit
hole situation rather than the black hole one. Nonethel
the conditionis restrictive in a minor way: it rules out the
degenerate case in whichQ (n) vanishes. As we will show
below, the area of the trapped surfaces increases ifQ (n) is
negative and remains constant if it vanishes. Thus, by rem
ing the degenerate case, we are basically ignoring the n
dynamical situation. One might consider intermediate d
namical situations in whichQ (n) vanishes on a portion o
each marginally trapped surface and is negative elsewh
In this case, the total area would still increase. Our m
results will continue to be valid in these intermediate cas

The third condition is thatH be space-like. Intuitively, it
is clear that ifH were time-like, it would not be a boundar
of a black hole region because light rays originating onH
would propagate on both sides of the space-time separ
by H. So, the non-triviality lies in the fact that this conditio
rules out the possibility thatH could be null. To probe how
much of a restriction this is physically, let us proceed
dropping the requirement thatH be space-like but keeping
the other conditions in Definition 1. Denote byVa a vector
field which is tangential toH, everywhere orthogonal to th
foliation by marginally trapped surfaces and preserves
foliation. We can always choose the normalization of,a and
na such that,ana522 andVa5,a2 f na for somef. Since
V•V54 f , it follows that H is, respectively, space-like, nu
or time-like, depending on whetherf is positive, zero or
negative. We will argue that under conditions that capture
physics we have in mind, genericallyf would be non-
negative. Let us begin by noting that the definition ofVa

immediately implies LVQ (,)50, whence, L,Q (,)
5 fLnQ (,) . Therefore, the Raychaudhuri equation for,a im-
plies

fLnQ (,)52s22Rab,a,b ~2.1!

wheres is the shear of,a. Now, given the scenario we hav
in mind, it is physically reasonable to assume that the c
vergenceQ (,) of ,a becomes negative as one moves alo
na to the interior of the marginally trapped surfaces, when
LnQ (,),0. If matter satisfies the dominant energy con
tion, the right side of~2.1! is non-positive, whence we con
clude thatf is non-negative; as expected the time-like case
ruled out. Finally, as we will show in Sec. III, if the flux o
energy acrossH is non-zero on any one leaf of the foliatio
of H, the right side of Eq.~2.1! cannot vanish identically on
that leaf. Thus, under the intended dynamical situationf
would be strictly positive somewhere on each leaf, whencH
would be space-like there. By requiring thatH be space-like
everywhere we are ignoring the case in which portions
marginally trapped surfaces lie on a space-like horizon
the remainder on a null horizon. This case will be discus
elsewhere@18# but we will comment on how some of th

e

0-3



m
he
ti
. V

on
on

lify

s
n

s

y

le
re
a

th

t
al
hi
y
pe
e
om

r

e
d
ai

n

er
e

he
he
to

he
-

-

le,
e

ull.
en-

f
a

t

y of
cal
,

i-

ng
the

es
ary
is

it

oci-

r a

at-
d
to
nt
ves

ll

be

A. ASHTEKAR AND B. KRISHNAN PHYSICAL REVIEW D 68, 104030 ~2003!
main results are modified in this case. Finally, the assu
tion thatH is space-like also rules out situations in which t
horizon reaches equilibrium and the energy flux across en
cross sections vanishes. These will be considered in Sec

To summarize, apart from the possibility thatH may be
partially null as discussed separately in Sec. VI and in@18#,
for evolving black holes the conditions imposed in Definiti
1 are natural and incorporate most of the physical situati
we have in mind. The world tubestAH of apparent horizons
resulting from ‘‘nice’’ foliations of numerically simulated
space-times will probably satisfy our conditions and qua
as dynamical horizons.~For random foliations, the intuitive
conditionLnQ (,),0 may be violated, whencetAH may well
be partially time-like.! But the notion of dynamical horizon
appears to be more general in the sense that we do not k
of a result to the effect that given a dynamical horizonH, the
space-time must admit a foliation for which cross sectionS
of H are apparent horizons~rather than just marginally
trapped surfaces, which they certainly are!. Finally, explicit
examples of dynamical horizons are provided by the Vaid
metrics discussed in some detail in Appendix A.~In this case,
the topology of the cross sectionsS is S2 and the generic
conditionLnQ (,),0 is satisfied in the dynamical black ho
region.! Thus, overall, the requirements in the Definitions a
rather mild. In the remainder of this paper we will see th
the conditions are also sufficiently strong in the sense
the Definition has a rich variety of consequences.

B. Hayward’s trapping horizons

To capture the notion of a black hole without reference
infinity, Hayward @15# constructed an ingenious quasi-loc
framework. Dynamical horizons are closely related to
notion of trapping horizons. In this section, we will clarif
the relation between the two. This discussion will be es
cially useful to Sec. VI because trapping horizons provid
natural arena for analyzing the transition at late times fr
dynamical to isolated horizons.

Definition 2.A future, outer, trapping horizon~FOTH! is a
3-manifold,H8, foliated by closed surfacesS8 such that~i!
the expansion of one future directed null normal,a to the
foliation vanishes,Q (,)50; ~ii ! the expansion of the othe
future directed null normal,na is negative,Q (n),0; ~iii ! the
directional derivative ofQ (,) along na is negative;LnQ (,)
,0.

Here, condition~ii ! captures the idea thatH8 is a future
horizon ~i.e., of the black hole rather than white hole typ!
and condition~iii ! encodes the idea that it is ‘‘outer’’ an
serves to distinguish black hole type horizons from cert
cosmological ones@15# which are not ruled out by condition
~ii !.

Our discussion of Sec. II B shows thatH8 is either space-
like or null, being null if and only if the shears of ,a as well
as the matter fluxTab,a,b acrossH vanishes. Aspace-like
FOTH is a dynamical horizon on which the additional co
dition Ln Q (,),0 holds. Similarly, a dynamical horizonsat-
isfyingLnQ (,),0 is a space-like FOTH. Thus, while neith
Definition implies the other, there is a large overlap betwe
dynamical horizons and FOTHs. In genericdynamicsitua-
10403
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tions pertaining to black holes, one is likely to encounter
horizons which satisfy both sets of conditions, i.e., lie in t
intersectionof the two sets. In fact, since one expects t
region to the immediate future of the dynamical horizon
be trapped, a stronger version ofLn Q (,),0 should be sat-
isfied: if t̂a is a future directed normal toH andWa is any

vector such thatWat̂a,0, thenLWQ (,),0.
The advantage of Definition 1 is that it refers only to t

intrinsic structure ofH, without any conditions on the evo
lution of fields in directions transverse toH. As we will see,
this makes it natural to analyze the structure ofH using only
the constraint~or initial value! equations. Reciprocally, Defi
nition 2 has the advantage that it permitsH8 to be space-like
or null. In a spherical collapse of a scalar field, for examp
while H is useful only in the regions where the flux of th
scalar field energy acrossH8 is non-zero,H8 is useful also in
the region where it vanishes and the horizon becomes n
~See Sec. VI and the explicit examples discussed in App
dix A.!

Finally, we recall Hayward’s@15# notions related to a
trapping boundary. Atrapped regionis a connected subset o
space-time through each pointp of which there passes
closed trapped surface~such thatQ (,),0 andQ (n),0). An
inextendabletrapped regionT is a trapped region that canno
be extended. Atrapping boundary]T is the boundary of an
inextendable trapped regionT. Physically,T can be regarded
as a black hole region of the space-time and]T, as the
surface of that black hole. To establish a desired propert
this surface, Hayward had to introduce a further techni
notion: A limit sectionof the trapping boundary is a smooth
closed sub-manifold of]T which can be obtained as a un
form limit of closed trapped surfaces lying inT. With these
definitions at hand, Hayward showed that if a trappi
boundary is smooth and foliated by limit sections, then
following conditions hold on each leaf:~i! The expansion of
one of the null normal, say,a, vanishes,Q (,)50; ~ii ! the
expansion of the second null normal satisfiesQ (n)<0; and
~iii ! LnQ (,)<0. Thus, if we ignore the degenerate cas
where equalities hold in the last two equations, the bound
is a FOTH. In this sense then, generically, if the black hole
genuinely dynamical, the trapping boundary]T would be a
dynamical horizon, and if it has reached equilibrium,
would be a weakly isolated horizon@6#. In the former case,
]T would represent the canonical dynamical horizon ass
ated with the black hole under consideration.

C. Notation and strategy

In the next four sections of this paper, we will conside
dynamical horizonH and explore its properties. IfH admits
more than one foliation by marginally trapped surfaces s
isfying Definition 1, we will just choose any one of them an
use it throughout our calculations. Our results will apply
all such foliations. At appropriate places, we will comme
on the expressions which are foliation independent. Lea
of the fixed foliation will be calledcross sectionsof H.

Let us begin by specifying notation. For simplicity, a
manifolds will be assumed to be smooth~i.e. Ck11 with k
>3) and orientable and all fields will be assumed to
0-4
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smooth~i.e., Ck). The space-time metricgab has signature
(2,1,1,1) and its derivative operator will be denoted b
¹. The Riemann tensor is defined byRabc

dWd
ª2¹[a2

¹b]Wc , the Ricci tensor byRabªRacb
c and the sca-

lar curvature byRªgabRab . We will assume the field equa
tions

Rab2
1

2
Rgab1Lgab58pGTab . ~2.2!

~With these conventions, de Sitter space-time has a pos
cosmological constantL.! We assume thatTab satisfies the
dominant energy condition~although, as the reader can ea
ily tell, several of the results will hold under weaker restr
tions!. To keep the discussion reasonably focussed, we
not consider gauge fields with non-zero charges on the h
zon. Inclusion of these fields is not difficult but introduces
number of subtleties and complications which are irrelev
for numerical relativity and astrophysics. They will be di
cussed elsewhere.

Geometry of the dynamical horizonH is pictorially rep-
resented in Fig. 1. The unit normal toH will be denoted by
t̂a; gabt̂

at̂b521. The intrinsic metric and the extrinsic cu
vature of H are denoted byqabªgab1 t̂at̂b and Kab

ªqa
cqb

d¹ct̂d , respectively.D is the derivative operator onH
compatible withqab , Rab its Ricci tensor andR its scalar
curvature. The unit space-like vector orthogonal toS and
tangent toH is denoted byr̂ a. Quantities intrinsic toS will
be generally written with a tilde. Thus, the two-metric onS is
q̃ab and the extrinsic curvature ofS,H is K̃ab

ªq̃a
cq̃b

dDcr̂ d ; the derivative operator on (S,q̃ab) is D̃ and

its Ricci tensor isR̃ab . Finally, in the next four sections w
will fix the rescaling freedom in the choice of null norma

FIG. 1. H is a dynamical horizon, foliated by marginally trappe

surfacesS. t̂a is the unit time-like normal toH and r̂ a the unit
space-like normal withinH to the foliations. AlthoughH is space-

like, motions alongr̂ a can be regarded as time evolution with r
spect to observers at infinity. In this respect, one can think ofH as
a hyperboloid in Minkowski space andS as the intersection of the
hyperboloid with space-like planes.H joins on to a weakly isolated

horizonD with null normal ,̄a, at a cross sectionSo .
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ª t̂ a1 r̂ a andna

ª t̂ a2 r̂ a ~so that,ana522). This
convention will have to be modified in the discussion
transition to equilibrium of Sec. VI.

We first note an immediate consequence of the definiti
SinceQ (,)50 andQ (n),0, it follows that

K̃5q̃abDar̂ b5
1

2
q̃ab¹a~,b2nb!52

1

2
Q (n).0. ~2.3!

Hence the areaaS of S increases monotonically alongr̂ a.
Thus the second law of black hole mechanics holds onH.
Our first task is to obtain an explicit expression for t
change of area.

Our main analysis is based on the fact that, sinceH is a
space-like surface, the Cauchy data (qab ,Kab) on H must
satisfy the usual scalar and vector constraints

HSªR1K22KabKab516pGT̄abt̂
a t̂ b ~2.4!

HV
a
ªDb~Kab2Kqab!58pGT̄bct̂c qa

b ,
~2.5!

where

T̄ab5Tab2
1

8pG
Lgab ~2.6!

and Tab is the matter stress-energy tensor. The strategy
hind the key calculations in the next three sections is entir
straightforward: We will fix two cross sectionsS1 andS2 of
H, multiply HS andHV

a with appropriate lapse and shift field
and integrate the result on a portionDH,H which is
bounded byS1 andS2.

Remark.As noted in Sec. II B, the notions of dynamic
horizons and FOTHs are closely related and, in physica
interesting situations involving evolving black holes, bo
sets of conditions will be satisfied. However, there are k
differences between our analysis based on dynamical h
zons and Hayward’s analysis@15# based on FOTHs. While
our analysis will be based on the standard 311 decomposi-
tion, Hayward’s framework is based on a 212 decomposi-
tion. The 212 framework is better suited for analyzing mo
general horizons whereH is partially time-like and partially
null but has the disadvantage that it fails to make it ma
festly clear that the fields of interest are defined just by
horizon geometry and are independent of extensions use
H. In terms of results, our final result on the topology
cross sections is the same as that of@15#. However, results in
the rest of the paper are quite different. Specifically, our fl
formulas are new, our discussion includes angular mom
tum, our generalization of black hole mechanics is differe
and our definition of the horizon energy and balance laws
new.

III. ENERGY FLUXES AND AREA BALANCE

Let us now turn to the task of relating the change in a
to the flux of energy acrossH. Along the way, we will estab-
lish that the topology of the cross sectionsSof H is severely
restricted in the case whenL>0.
0-5
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A. Area increase and topology ofS

As is usual in general relativity, the notion of energy
tied to a choice of a vector field. The definition of a dynam
cal horizon provides a preferred direction field; that alo
,a. To fix the proportionality factor, or the lapseN, let us
first introduce the area radiusR, a function which is constan
on eachS and satisfiesaS54pR2. Since we already know
that area is monotonically increasing,R is a good coordinate
on H. Now, the 3-volumed3V on H can be decomposed a
d3V5u]Ru21dRd2V where ] denotes the gradient onH.
Therefore, as we will see, our calculations will simplify if w
chooseNR5u]Ru. In this section we will make this simple
choice, obtain an expression for the change in area and s
that the topology of the cross sectionsS is severely restricted
In Sec. III C we will generalize thisarea balance lawto
include a more general family of lapses.

Since the area increase formula plays an important
throughout the paper, we will provide a detailed derivatio
Fix two cross sectionsS1 andS2 of H and denote byDH the
portion ofH they bound. We are interested in calculating t
flux of energy associated withj (R)

a 5NR,a acrossDH. We
denote the flux ofmatterenergy acrossDH by F matter

(R) as

F matter
(R)

ªE
DH

Tabt̂
aj (R)

b d3V. ~3.1!

By taking the appropriate combination of~2.4! and~2.5! we
obtain

F matter
(R) 5

1

16pGE
DH

NR~HS12r̂ aHV
a !d3V

5
1

16pGE
DH

NR~R1K22KabKab

12r̂ aDbPab!d3V ~3.2!

wherePab is defined as

Pab5Kab2Kqab. ~3.3!

SinceH is foliated by compact 2-manifoldsS, we can per-
form a 211 decomposition of various quantities onH. First,
the Gauss-Codacci equation relating the space-time cu
ture to the intrinsic curvature ofH leads to

2Gabr̂
ar̂ b52R̃1K̃22K̃abK̃

ab ~3.4!

whereGab is the Einstein tensor of (H,qab), and the defini-
tion of the Riemann tensor gives

Rabr̂
ar̂ b522r̂ aD [aDb] r̂

b5Daaa1K̃22K̃abK̃
ab

~3.5!

where

aa
ª r̂ bDbr̂ a2 r̂ aDbr̂ b. ~3.6!

Combining Eqs.~3.4! and ~3.5!, we can obtain a useful ex
pression relating the scalar curvatures onH andS:
10403
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R52~Rab2Gab! r̂
ar̂ b5R̃1K̃22K̃abK̃

ab12Daaa.
~3.7!

Transvecting the momentum constraint equation withr̂ b
gives

r̂ bDaPab5Daba2PabDar̂ b ~3.8!

where

ba
ªKabr̂ b2Kr̂ a. ~3.9!

Substituting the results of Eqs.~3.7! and ~3.8! into the inte-
grand of the right side of Eq.~3.2! yields

HS12r̂ aHV
a5R̃1K̃22K̃abK̃

ab1K22KabK
ab22PabDar̂ b

12Daga ~3.10!

where

ga
ªaa1ba. ~3.11!

For further simplification, let us bear in mind that we w
eventually use the key property that the cross sectionsS are
marginally trapped surfaces, i.e.Q (,)50. In terms of the
extrinsic curvaturesKab andK̃ab , the expansion can be writ
ten as

Q (,)5K2Kabr̂
ar̂ b1K̃. ~3.12!

To recast the extrinsic curvature terms in Eq.~3.10! using
Q (,) , it is convenient to perform a decomposition of the tw
extrinsic curvatures:

K̃ab5 1
2 K̃q̃ab1S̃ab ~3.13!

Kab5Aq̃ab1Sab12W̃(ar̂ b)1Br̂ar̂ b , ~3.14!

whereS̃ab is the trace-free part ofK̃ab ; Sab is the trace-free
part of the projection ofKab into S; W̃a is the projection of
Kabr̂

b into S; Aª 1
2 Kabq̃

ab andBªKabr̂
ar̂ b. Note thatSab ,

S̃ab andW̃a aretwo-dimensionaltensors intrinsic to the cros
section S. Substituting the above decompositions in E
~3.10! F matter

(R) and using Eq.~3.12!, we obtain

HS12r̂ aHV
a5R̃2sabs

ab22W̃aW̃a22W̃ar̂ bDbr̂ a

1 1
2 Q (,)~Q (,)14B!12Daga ~3.15!

wheresab5Sab1S̃ab is the shear of the null vector,a5 t̂a

1 r̂ a, i.e.sabªq̃a
mq̃b

n¹m,n2 1
2 q̃abq̃

mn¹m,n . Our task in the
remainder of this calculation is to simplify the right side
this equation.
0-6
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DYNAMICAL HORIZONS AND THEIR PROPERTIES PHYSICAL REVIEW D68, 104030 ~2003!
With this goal in mind, let us now turn our attention to th
vectorga defined in Eqs.~3.11!, ~3.6!, and~3.9!:

ga5aa1ba5 r̂ bDbr̂ a2 r̂ aDbr̂ b1Kabr̂ b2Kr̂ a

5 r̂ bDbr̂ a1W̃a2Q (,) r̂
a. ~3.16!

Finally, it is convenient to re-express the acceleration term

r̂ aDar̂ b5~NR!21D̃bNR . ~3.17!

Then, Eq.~3.15! can be rewritten as

HS12r̂ aHV
a5R̃2sabs

ab22zaza12D̃aza

1
1

2
Q (,)~4K23Q,)!22r̂ aDaQ (,)

~3.18!

where the vectorza, tangent to the cross sections, is defin
as

za
ªW̃a1D̃aln NR5q̃ abr̂ c¹c,b . ~3.19!

Equation~3.18! is completely general; it holds on any fol
ated space-like surface. We now wish to use the fact
surface of interest is in fact a dynamical horizon. Integrat
on the portionDH of the horizonH, using the fact that the
cross sectionsSare compact andQ (,) vanishes, we are led to
a remarkably simple result:

F matter
(R) 5

1

16pGE
DH

NR~R̃2sabs
ab22zaza!d3V.

~3.20!

Using the abbreviationsusu2
ªsabs

ab and uzu2
ªzaza, this

can be rewritten as

E
DH

NRR̃d3V516pGE
DH

T̄abt̂
aj (R)

b d3V

1E
DH

NR$usu212uzu2%d3V. ~3.21!

This is the key equation we were seeking to obtain quan
tive expression for the change in the horizon area in fu
dynamic processes. It will have several important appli
tions. In the remainder of this section we will focus on t
first of these: its implications for the topology ofS.

Let us first recall that the volume elementd3V on H can
be written asd3V5NR

21dRd2V whered2V is the area ele-
ment onS. Therefore, the integral on the left-hand side b
comes

E
DH

NRR̃d3V5E
R1

R2
dR R R̃d2V5I~R22R1!.

~3.22!

HereR1 andR2 are the~geometrical! radii of S1 andS2; we
have used the Gauss-Bonnet theorem in the second step
10403
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I is the Gauss invariant of the closed, orientable 2-manif
S. ~Our choice of lapse was made to enable this step in
calculation.! Substituting back in Eq.~3.21! we obtain

I~R22R1!516pGE
DH

S Tab2
L

8pG
gabD t̂ aj (R)

b d3V

1E
DH

NR$usu212uzu2%d3V ~3.23!

where we have used the definition~2.6! of T̄ab . The discus-
sion of topology ofS is naturally divided in to three cases
depending on~the sign of! the cosmological constant.

Case 1. L.0. Now, since the stress energy tensorTab is
assumed to satisfy the dominant energy condition, the r
side is manifestly positive definite. Since we already kn
that area increases alongr̂ a, we haveR22R1.0. Hence it
follows that I must be positive, whence the closed, orie
able 2-manifoldsS are necessarily topological 2-spheres a
I58p. Equation~3.23! now becomes

R22R1

2G
5E

DH
S Tab2

L

8pG
gabD t̂ aj (R)

b d3V

1
1

16pGE
DH

NR$usu212uzu2%d3V. ~3.24!

Case 2. L50. Now the right side of Eq.~3.23! is neces-
sarily non-negative. Hence, the topology ofS is either that of
a 2-sphere~if the right side is positive! or that of a 2-torus~if
the right side vanishes!. As mentioned in Sec. II C, this con
straint on topology was obtained by Hayward@15# using a
212 framework.

The torus topology can occur if and only ifTab,b, sab
andza all vanish everywhere onH. Going back to Eq.~3.15!,
we conclude that the scalar curvatureR̃ of S must also van-
ish on every cross section.3 Also, using the fact thatH is
space-like, it now follows from Eq.~2.1! that in this case
LnQ (,)50 everywhere onH. Thus, in this case the dynam
cal horizon cannot be a FOTH. Furthermore, sinceQ (,) ,sab
andRab,b all vanish onH, the Raychaudhuri equation now
implies thatL,Q (,) also vanishes. These strong restrictio
imply that this is a degenerate case. For such horizons
though we know that the area must increase, Eq.~3.23! trivi-
alizes whence we do not have a quantitative formula for
amount by which the area increases. For generic dynam
horizons, the topology isS2 and the quantitative relation i
given by

1

2G
~R22R1!5E

DH
Tabt̂

aj (R)
b d3V

1
1

16pGE
DH

NR$usu212uzu2%d3V.

~3.25!
3We thank J. Lewandowski for this observation. In view of the

highly restrictive conditions, toroidal dynamical horizons appear
be unrelated to the toroidal topology of cross sections of the ev
horizon discussed by Shapiro, Teukolsky, Winicour and oth
@19,20#.
0-7
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A. ASHTEKAR AND B. KRISHNAN PHYSICAL REVIEW D 68, 104030 ~2003!
Case 3. L,0. In this case there is no control on the si
of the right-hand side of Eq.~3.23!. Hence,a priori any
topology is permissible. Stationary solutions with quite ge
eral topologies are known for black holes which are loca
asymptotically anti–de Sitter. Event horizons of these so
tions are the potential asymptotic states of these dynam
horizons in the distant future.

In the remainder of this paper we will restrict our detaile
calculations to the case of 2-sphere topology.

Remark.The above considerations provide an interest
constraint on the topology of marginally trapped surface
L>0. As it stands, the discussion is restricted to the top
ogy of cross sections of dynamical horizonsH. However, it
is straightforward to generalize these results. Considerany

3-manifold H̄, foliated by compact 2-surfacesS̄. Then, by
integrating~3.18! only on one leafS̄ of the foliation ~rather
than onDH̄), in place of Eq.~3.23! we obtain

I516pGE
S̄
S Tab2

L

8pG
gabD t̂ a,bd2V

1E
S̄
S usu212uzu22

1

2
Q (,)~4K23Q (,)!

12r̂ aDaQ (,)Dd2V. ~3.26!

Now, if one leafS̄o of the foliation is marginally trapped an
if r̂ aDaQ (,)>0 on S̄o , we conclude that the topology ofS̄o
must be that of aS2 if L.0 and of aS2 or aT2 if L50. T2

is a degenerate case in the sense explained above. Note
no assumption on the expansionQ (n) of na has been used
here.

SinceH̄ was arbitrary, we can also reach a conclusion
the topology of any marginally trapped surfaceS in a space-
time satisfying the dominant energy condition: eitherS is
topologicallyS2 or T2 or its ~first order! deformation along
any space-like, outward direction leads to a trapped surf
~A space-like directionVa will be said to beoutward if
Va,a.0.! In particular, then, if the topology is more com
plicated, the surface cannot lie on a trapping boundary. T
is essentially Hawking’s result@8#.

B. Gravitational energy flux

Let us now interpret the various terms appearing in
area balance law. For simplicity of presentation, we will fi
focus on the caseL50 and comment on theL5” 0 cases at
the end.

The left side of Eq.~3.25! provides us with the change i
the horizon radius caused by the dynamical process u
consideration. Since the expansionQ (,) vanishes, this is also
the change in theHawking massas one moves from the cros
sectionS1 to S2. The first integral on the right side of thi
equation is the fluxF matter

(R) of matter energy associated wit
the vector fieldj (R)

a . The second term is purely geometric
and since it accompanies the term representing the m
energy flux, we propose to interpret it as the fluxF grav

(R) of
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a energy in the gravitational radiation

F grav
(R)

ª

1

16pGE
DH

NR$usu212uzu2%d3V. ~3.27!

While the interpretation is naturally suggested by the a
balance law~3.25!, the key question is as follows: Is thi
proposal physically viable? The purpose this section is
argue that the answer is in the affirmative in the sense th
passes the ‘‘standard’’ tests one uses to demonstrate th
ability of the Bondi flux formula at null infinity.

Gauge invariance.Since we did not have to introduce an
structure, such as coordinates or tetrads, which is auxiliar
the problem, the expression is obviously gauge invaria
This is to be contrasted with definitions involving pseud
tensors or background fields.

Positivity.The energy flux is manifestly non-negative.
the case of the Bondi flux, positivity played a key role in t
early development of the gravitational radiation theory.
was perhaps the most convincing evidence that gravitatio
waves are not coordinate artifacts but carryphysicalenergy;
as Bondi put it, ‘‘one can heat water with them.’’

It is surprising that a simple, manifestly non-negative e
pression can exist in the strong field regime of dynami
horizons. We did argue in Sec. I that, since the energy is
from the asymptotic region, one does expect an appropria
defined notion of gravitational energy flux across the surf
of the black hole to be well defined and positive. But the w
in which the details work out is quite subtle. For examp
since the issue is that of controlling signs, one may
tempted to conjecture that this positivity is a property of t
black hole region where the expansionQ (,) of the outgoing
normal is non-positive, i.e., of a definite sign. However, th
conjecture turns out to be false. To show this, let us carry
the analysis of Sec. III A on a general, foliated space-l
surfaceH̄. We can still obtain Eq.~3.18! but, as is clear from
Eq. ~3.26!, in place of theF grav

(R) of Eq. ~3.27! the final ex-
pression would be

F̄grav
(R)

ª

1

16pGE
DH

NRH us212uzu21
1

2
Q (,)~4K23Q (,)!

12r̂ aDaQ (,)J d3V. ~3.28!

The key point is that ifH̄ is not a dynamical horizon, the
sign of the last two terms cannot be controlled, not ev
when H̄ lies in the black hole region and is foliated b
trapped~rather than marginally trapped! surfacesS̄. Thus,
the positivity ofF grav

(R) is a rather subtle property, not share
by 3-surfaces which are foliated by non-trapped surfaces,
those which are foliated by trapped surfaces; one need
foliation precisely by marginally trapped surfaces. Thus, the
property is delicately matched to the definition of dynamic
horizons. This is but one instance of the mysterious ability
0-8
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DYNAMICAL HORIZONS AND THEIR PROPERTIES PHYSICAL REVIEW D68, 104030 ~2003!
Einstein’s equations to realize physical expectations thro
geometrical structures in completely unforeseen and su
ways.4

Locality. All fields used in it are defined by thelocal
geometrical structures on cross sections ofH. This is a non-
trivial property, shared also by the Bondi-flux formula. How
ever, it is not shared in other contexts. For example,
proof of the positive energy theorem by Witten@21# provides
a positive definite energy density on Cauchy surfaces.
since it is obtained by solving an elliptic equation with a
propriate boundary conditions at infinity, this energy dens
is a highly non-local function of geometry. Locality ofF grav

(R)

enables us to associate it with the energy of gravitatio
waves instantaneously falling across any cross sectionS.

Vanishing in spherical symmetry.The fourth criterion is
that the flux should vanish in presence of spherical sym
try. Suppose the cross sectionsS of H are spherically sym-
metric. Since the only spherically symmetric vector field a
trace-free, second rank tensor field on a 2-sphere are the
fields,sab50 andza50.

Relation to perturbation theory.The fifth criterion comes
from perturbation theory. One can envisage a situation
which the dynamical horizon is, in an appropriate physi
sense,weaklydynamical. In this case, it can be regarded a
perturbation of a non-expanding horizon@6# ~see Sec. VI!. It
is then natural to ask if in this case the gravitational fl
~3.27! reduces to the expression derived from perturbat
theory off Kerr horizons. The answer is in the affirmative

Balance law.The Bondi-Sachs energy flux also has t
important property that there is alocally defined notion of
the Bondi-energyE(C) associated with any 2-sphere cro
sectionC of future null infinity and the differenceE(C1)
2E(C2) equals the Bondi-Sachs flux through the portion
null infinity bounded byC2 and C1. Does the expression
~3.27! share this property? The answer is in the affirmati
as noted in the beginning of this section, the integrated
is precisely the difference between thelocally definedHawk-
ing mass associated with the cross section. In Sec. V we
extend these considerations to include angular momentu

Hamiltonian interpretation.Finally, the Bondi-Sachs en
ergy flux has an additional attractive property which suppo
its interpretation, although it is not a direct, physical, viab
ity criterion: Using a Hamiltonian framework, one can sho
that it is the generator of a Bondi-Metzner-Sachs tim
translation on the gravitational phase space@11,12#. Does the
gravitational flux~3.27! also enjoy this property? Recentl
Booth and Fairhurst@22# have shown that the answer is
the affirmative.

4Some of the well-known examples are the well posedness of
Cauchy problem, the positive energy theorems at spatial and
infinity, positivity of the Bondi flux at null infinity, and more open
ended issues such as cosmic censorship and Penrose inequa
Not only did the list of considerations that led Einstein to his fie
equations not include these issues but even the physical relev
of most of them was not appreciated for decades after the disco
of general relativity. Yet, quite mysteriously, the field equations
corporate them correctly.
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It is very surprising that there should be a meaning
expression for the gravitational energy flux in the strong fi
regime where gravitational waves can no longer be en
aged as ripples on a flat space-time. Taken together, the p
erties discussed above provide a strong support in favo
the interpretation of Eq.~3.27! as thej (R)-energy flux carried
by gravitational waves into the portionDH of the dynamical
horizon. Nonetheless, it is important to continue to think
new criteria and make sure that Eq.~3.27! passes these test
For instance, in physically reasonable, stationary, vacu
solutions to Einstein’s equations, one would expect that
flux should vanish. However, on dynamical horizons the a
must increase. Thus, one is led to conjecture that these sp
times do not admit dynamical horizons. While special ca
of this conjecture have been proved, a general proof is
lacking.

So far, we have set the cosmological constantL to zero.
Even whenL is non-zero, it seems natural to continue
interpret~3.27! as thej (R) energy flux of carried by gravita
tional waves into the portionDH of the dynamical horizon.
However, now there is an additional, purely geometrical c
tribution to the area change of Eq.~3.24! coming from the
cosmological repulsion or attraction induced by the cosm
logical constant. IfL is positive, the area of the cross se
tions S of H would continue to grow just because of th
cosmological expansion even when there is no flux of gra
tational or matter energy acrossDH, while if L is negative,
it would decrease.

To conclude this section, we will comment on some issu
related to the physical interpretation of the flux formu
Note first that the flux refers to aspecificvector fieldj (R)

a and
measures the change in the Hawking mass associated
the cross sections. This need not be a good measure o
physical mass in presence of angular momentum~see Sec.
V!. Secondly, one can envisage a situation in which the p
tion DH bounded byS2 andS1 of a dynamical horizon ad-
mits two distinct foliations in the both of which share th
leavesS1 and S2, or, a situation in which two distinct dy
namical horizonsH1 andH2 share the 2-spheresS2 andS1.
In these cases, the observer fieldsj (R) are distinct. Although
the total fluxes corresponding to the two fields do agree
they are given by the change in horizon radius as one g
from S1 to S2—the split between the matter contribution an
the gravitational wave contribution would be different. Th
is not surprising because we are in a strong field region
it is not inappropriate for two observers to disagree on h
much energy is contained in matter and how much in gra
tational radiation. Indeed,a priori, what is surprising is that
the sum of the two contributions is the same, i.e., there is
area balance law. Nonetheless, while interpreting fluxes,
fact that the energy refers to specific observers defined oH
is an important caveat that should be kept in mind.

Next, let us consider the various terms in the integrand
our flux formula~3.27!. The presence of the shear termusu2
seems natural from one’s expectations based on perturba
theory at the event horizon of the Kerr family@23,24#. What
about the termuzu2? Sinceza5q̃anr̂ m¹m,n , this term could
arise only becauseH is space-like rather than null: On a nu
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A. ASHTEKAR AND B. KRISHNAN PHYSICAL REVIEW D 68, 104030 ~2003!
surface, the analog ofr̂ a is parallel to,a, whence the analog
of za vanishes identically. To bring out this point, let u
consider a more general case than the one considered in
paper and allow the cross sectionsS to lie on a horizon
which is partially null and partially space-like. Then, using
212 formulation used by Hayward, one can conclude t
flux on the null portion is givenentirely by the termusu2

@18#. However, on the space-like portion, the termuzu2 does
not in general vanish. Indeed, on a dynamical horizon
cannotvanish in presence of rotation: the angular mom
tum is given by the integral ofzawa , wherewa is the rota-
tional symmetry.

C. Generalization of the area balance law

At future null infinity I1, there is a well-defined
4-dimensional translation sub-groupT of the asymptotic
symmetry group~called the Bondi-Metzner-Sachs grou!
and there is a well-defined notion of energy associated w
each time translation inT. Observers following these vecto
fields can be physically interpreted as the asymptotically
ertial ones. In Secs. III A and III B, we associated ene
with observers following the vector fieldsNR,a. Are there
more general families with which we can similarly assign
notion of energy?

At the dynamical horizonH we are in the strong field
regime, whence there is no longer a universal group of h
zon symmetries. But we can build intuition from the we
developed theory of weakly isolated horizonsD. In this case,
to begin with, one encounters three universality classe
horizon symmetries@7#. Physically, the most interesting cas
is that of type II isolated horizons in which the symmet
group is 2-dimensional, with generatorsc,a1Vwa, where
c,V are constants, while,a,wa are tangential toD and gen-
erate a combination of a time translation and a rotation
globally stationary, axi-symmetric space-times, these are
strictions toD of the two Killing fields but generically they
are defined just at the horizon. Nonetheless, they can be
very effectively in the Hamiltonian framework to introduc
the notion of the horizon energy and angular momentum.
dynamical horizonsH, it is natural to extend these notions
such a way that whenH reaches equilibrium and becomes
isolated horizon, the dynamical horizon framework tends
the isolated horizon one. An obvious strategy is to make
coefficientsc and V dynamical, i.e.,R dependent. In this
section we will focus only on the analog of the coefficientc,
i.e., ignore rotation as in@6#. Inclusion of rotation and the
analog ofV will be carried out in Sec. V.

Let us then generalize our vector fieldsNR,a as follows:
use, in place ofR, a general functionr (R). Recall first that
NR satisfiesDaR5NRr̂ a so that we haveNRd3V5dRd2V.
Therefore, for more general functionsr (R) which are con-
stant on each leafSof the foliation, we are led to chooseNr

throughDar 5Nrr̂ a . If we use a different radial functionr 8,
then the lapse is rescaled according to the relation

Nr 85
dr8

dr
Nr . ~3.29!
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Thus, although the lapse itself will in general be a functi
of all three coordinates onH, therelative factorbetween any
two permissible lapses can be a function only ofr. This is the
simplest generalization that seems appropriate to the tra
tion from isolated to dynamical horizons.

Given a lapseNr , following the terminology used in the
isolated horizon framework, the resulting vector fields
j (r )

a
ªNr,

a will be said to bepermissible. Thus,j (R)
a used in

Sec. III A is just one permissible vector field which~on di-
mensional grounds! happens to be the convenient one to
late the changeR22R1 in the horizon radius to the flux o
energy acrossDH. By repeating the calculation of Sec. III A
it is easy to arrive at a generalization of Eq.~3.24! for any
permissible vector field

S r 2

2G
2

r 1

2GD5E
DH

T̄abt̂
aj (r )

b d3V

1
1

16pGE
DH

Nr$usu212uzu2%d3V, ~3.30!

where the constantsr 1 and r 2 are values the functionr as-
sumes on the fixed cross sectionsS1 andS2. ~Note, inciden-
tally, that the lapseNr may well vanish on open regions.
may also be negative in which case we would haver 2,r 1.!
This generalization of Eq.~3.23! will be useful in Sec. VI.

Here, we simply note a special case of physical intere
r 54pR2. In this case, Eq.~3.30! directly gives us a formula
for the change in the horizon area~rather than in the horizon
radius!

S a2

4G
2

a1

4GD5
1

2EDH
T̄abt̂

aj (r )
b d3V

1
1

32pGE
DH

Nr$usu212uzu2%d3V. ~3.31!

Note, however, that, as is expected from dimensional r
sons, the right-hand side doesnot have the interpretation o
the energy flux acrossDH even in the caseL50. However,
since black hole thermodynamics tells us that the~leading
contribution to the! entropy is given bya/4,Pl

2 , one may
wish to interpret the right-hand side as theentropy flux
throughDH ~in the \51 units!.

Remark.In the definition of a dynamical horizon, we re
quiredQ (n),0 which guaranteed thatuDRu5” 0, i.e., thatR
is a good coordinate onH. This was used in the derivation o
~3.23! in Sec. III A. However, we can weaken the definitio
and ask only thatQ (n)<0. In this case, we can introduce
function x such that the marginally trapped 2-surfaces
labeled byx5const anduDxu5” 0 and repeat the calculation
of Sec. III A to obtain the analog of Eq.~3.23! in which R is
replaced byx. We can then note that althoughR need not be
a good coordinate onH, it is nonetheless a smooth functio
of the coordinatex whence, the calculation of this sectio
can be repeated to obtain the area balance~3.23!. Thus, the
area balance law holds also under the weaker assump
Q (n)<0. If Q (n).0, we can reverse the argument to get
area decrease law appropriate for white holes.
0-10
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DYNAMICAL HORIZONS AND THEIR PROPERTIES PHYSICAL REVIEW D68, 104030 ~2003!
IV. ANGULAR MOMENTUM

To obtain the integral version of the first law~1.1!!, we
need the notion of angular momentum and angular mom
tum flux. It turns out that the angular momentum analysis
rather straightforward and is, in fact, applicable to an ar
trary space-like hypersurface. Fixany vector fieldwa on H
which is tangential to all the cross sectionsS of H. Contract
both sides of~2.5! with wa. Integrate the resulting equatio
over the regionDH, perform an integration by parts and u
the identityLwqab52D (awb) to obtain

1

8pG R
S2

Kabw
ar̂ bd2V2

1

8pG R
S1

Kabw
ar̂ bd2V

5E
DH

S Tabt̂
awb1

1

16pG
PabLwqabDd3V ~4.1!

where, as before,Pab
ªKab2Kqab. ~Note that we could re-

place T̄ab with Tab becausegabt̂
awb50. Thus the cosmo-

logical constant plays no role in this section.! It is natural to
identify the surface integrals with the generalized angu
momentumJw associated with cross sectionsS and set

JS
w52

1

8pG R
S
Kabw

ar̂ bd2V, ~4.2!

where we have chosen the overall sign to ensure compa
ity with conventions normally used in the asymptotically fl
context. The term ‘‘generalized’’ emphasizes the fact that
vector fieldwa need not be an axial Killing field even onS;
it only has to be tangential to our cross sections.

The flux of this angular momentum due to matter fie
and gravitational waves are, respectively,

J matter
w 52E

DH
Tabt̂

awbd3V, ~4.3!

J grav
w 52

1

16pGE
DH

PabLwqabd
3V, ~4.4!

and we get the balance equation

JS2

w 2JS1

w 5J matter
w 1J grav

w . ~4.5!

As expected, ifwa is a Killing vector of the three-metric
qab , then the gravitational angular momentum flux vanish
J g

w50. For the discussion of the integral version of the fi
law, it is convenient to introduce theangular momentum cur
rent

j w
ª2Kabw

ar̂ b ~4.6!

so that the angular momentum formula becomes

JS
w5

1

8pG R
S
j wd2V. ~4.7!

We conclude with four remarks.
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~i! Interpretation ofza. We can use the expression ofJS
w

to interpret the vector fieldza which features in the gravita
tional energy flux:za50 onH if and only if JS

w50 for every
wa which is divergence-free~i.e. preserves the volume ele
ment! on S.

~ii ! Relation to other expressions.Let us restrict ourselves
to vector fieldswa which are divergence-free on each cro
sectionS. The angular momentumJS

w associated with these
wa have the following interesting property. Fix a cross se
tion S of H and consider an asymptotically flat, parti
Cauchy surfaceM in the space-timeM with inner boundary
S. Denote its Cauchy data by (q̄ab ,K̄ab). Then, we can ex-
tendwa to a vector fieldfa which is an asymptotic rotationa
symmetry of (M ,q̄ab) and repeat the above calculation b
replacingDH with M. The surface integral at infinity is the
the standard ADM angular momentum associated withfa.
The angular momentum assigned toS is

J̄S
w52

1

8pG R
S
K̄abw

ar̄ bd2V, ~4.8!

wherer̄ a is the unit normal toS in M. By expressingKab and
K̄ab in terms of¹a,b and¹anb , it is straightforward to show
that JS

w5 J̄S
w . Thus, given a divergence-freewa on S, the

notion of angular momentum associated withS is unambigu-
ous. Finally, if wa is the restriction toS of a space-time
Killing vector defined in a neighborhood ofS, one can define
the angular momentum via Komar integral and it agrees w
JS

w .
~iii ! Dependence onwa. In the above calculation we did

not assume thatwa is a Killing field on H. However,JS
w

would represent thephysicalangular momentum at the ‘‘in-
stant’’ S only if wa is a Killing field of at least (S,q̃ab).
Supposewa has this property both onS1 andS2, but not on
all of DH. Still, because of the balance law~4.1!, the total
flux is well defined and is in fact independent of the way
which wa is extended offS1 andS2.

~iv! Gauge fields.We indicated in Sec. II C that there ar
subtleties associated with gauge fields. Considerations of
gular momentum illustrate this point. In the above treatme
we just interpreted*DHTabt̂

awbd3V as the flux of matter
angular momentum acrossDH. But a priori there is some
freedom to shuffle terms between the 3-dimensional flux
tegrals and the 2-dimensional ‘‘angular momentum charg
integrals. Our choice ensures that, as at infinity, the 2-sph
angular momentum charge integralsJS

w depend only on geo-
metric fields and not on matter. However, Hamiltonian co
siderations often show that, in order for angular moment
to be the generator of rotations on the phase space, su
reshuffling is in fact necessary in the case of gauge fie
Thus, the angular momentum charge integral can in fact
pend on gauge fields as well.~In the case of isolated hori
zons, this is demonstrated in detail in@7#.! The required shuf-
fling will not affect any of the equations but would chang
interpretations of terms in presence of gauge matter field
0-11
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A. ASHTEKAR AND B. KRISHNAN PHYSICAL REVIEW D 68, 104030 ~2003!
V. INTEGRAL VERSION OF THE FIRST LAW AND THE
HORIZON MASS

This section is divided into three parts. In the first w
obtain an integral generalization of the first law~1.1!. In the
second, we restrict ourselves to axisymmetric dynamical
rizons and introduce, for each cross sectionS, a canonical
notion of energy~which may be interpreted as the instan
neous mass! and derive a balance law. In the third, we d
cuss the distinction between laws of ‘‘black hole mechani
and of ‘‘black hole thermodynamics.’’

A. Generalization of the first law of black hole mechanics

Let us now combine the results of Secs. III and IV
obtain thephysical process versionof the first law onH. As
in Sec. III B, we will first consider the caseL50 and then
comment on the role played by the non-zero cosmolog
constant.

To begin with, let us ignore angular momentum and co
sider the vector fieldj (R)

a of Sec. III A. For each cross sec
tion S of H, there is a well-defined notion of horizon energ
Ej(R)(S) ~given just by the Hawking mass!. Because of the
influx of matter and gravitational energy,Ej(R) will change
by an amountDEj(R)5F matter

(R) 1F grav
(R) as we move from a

cross sectionS1 to another cross sectionS2. Then, the infini-
tesimal form of Eq.~3.25!,

dR

2G
5dEj(R), ~5.1!

suggests that we defineeffective surface gravityk̄R associ-
ated withj (R)

a as

k̄Rª
1

2R
~5.2!

so that the infinitesimal expression is recast into the fami
form

S k̄R

8pG
D da5dEj(R) ~5.3!

wherea is the area of a generic cross section.@This conclu-
sion could also have been reached from Eq.~3.31!#. For a
general choice of the radial functionr, the infinitesimal ver-
sion of Eq.~3.30! yields a generalized first law5
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k̄ r

8pG
da5dEj(r ), ~5.4!

provided we define the effective surface gravityk̄ r of j (r )
a by

k̄ r5
dr

dR
k̄R where j (r )

a 5Nr,
a5

dr

dR
j (R)

a . ~5.5!

Note that this rescaling freedom in surface gravity is co
pletely analogous to the rescaling freedom which exists
Killing horizons, or, more generally, isolated horizons@6,7#.
There, on the horizon,a can be rescaled by a constant a
surface gravity rescales by the same constant. The new
ture in the present case is that we have the freedom to res
NR,a and the surface gravity by afunction of the radius R
rather than just a constant. This is just what one would
pect in a dynamical situation sinceR plays the role of time
alongH. Finally, note that the differentials appearing in E
~5.4! are theactual variationsof physical quantities along
the dynamical horizon due to an infinitesimal change inr.
This is to be contrasted with derivations of the first law bas
on phase space variations@6,7,25#, where one compare
quantities defined on distinct~isolated or Killing! horizons
belonging to distinct space-times. Since quantities define
distinct equilibrium configurations are compared, there o
obtains a passive form of the first law. By contrast, Eq.~5.4!
is an active or aphysical process versionof the first law.
Hence Eq.~3.30! is a finite versionof the first law in the
absence of rotation. As in the case of isolated horizons@6#,
even in the absence of rotation, there are many permiss
vector fields and each gives rise to a first law.

Next, let us include rotation. As discussed in Sec. III
the general strategy is motivated by the isolated horiz
framework. Pick a vector fieldwa on H such thatwa is tan-
gent to the cross sections ofH, has closed orbits and ha
affine length 2p.6 ~At this point, wa need not be a Killing
vector ofqab .) The isolated horizons considerations sugg
that it is now appropriate to replacej (r )

a by vector fieldsta

which are of the formta5Nr,
a2Vwa whereNr is a permis-

sible lapse associated with a radial functionr andV an ar-
bitrary function ofR. ~On an isolated horizon, the analogs
these two fields are constants.! Such vector fieldsta will be
said to bepermissible.Let us now evaluate the quantit
*DHTabt̂

atbd3V by taking a linear combination of Eqs
~3.30! and ~4.1!. We obtain
se.

s

r 22r 1

2G
1

1

8pG H R
S2

V j wd2V2 R
S1

V j wd2V2E
V1

V2
dV R

S
j wd2VJ

5E
DH

Tabt̂
atbd3V1

1

16pGE
DH

Nr~ usu212uzu2!d3V2
1

16pGE
DH

VPabLwqabd
3V. ~5.6!

5Ej(r ) has the dimension of energy only ifr has the same dimension asR. In the following discussion, we will assume this to be the ca
6More precisely,wa is a globally defined Killing field forsomemetric—not necessarily the physical one,q̃ab—on each 2-sphere cros

sectionS of H.
0-12
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DYNAMICAL HORIZONS AND THEIR PROPERTIES PHYSICAL REVIEW D68, 104030 ~2003!
These are our balance equations in the presence of ang
momentum.There are infinitely many balance equations b
cause there are infinitely many permissible vector fields
Sec. V B we will show that when the horizon metricqab is
axisymmetric, one can choose a preferred vector fieldto

a

~which is adapted to the Kerr time-translation Killing field
a precise sense.! For this vector field, given a cross sectionS,
we will provide an explicit expression of the energyES

to such
that the left side of Eq.~5.6! can be reexpressed as the d
ferenceES2

to 2ES1

to , whence we are led to a preferred balan

equation:

ES2

to 2ES1

to 5E
DH

Tabt̂
ato

bd3V

1
1

16pGE
DH

No~ usu212uzu2!d3V

2
1

16pGE
DH

VoPabLwqabd
3V. ~5.7!

Let us return to the general case considered in Eq.~5.6!.
Assuming there is a well-defined notionEt of the horizon
energy at each cross section, with the right side of Eq.~5.6!
its flux, we can now obtain the first law for mechanics f
dynamical horizons. Let us restrict ourselves to infinitesim
DH. Then, the three terms in the curly brackets combine
give d(VJ)2JdV and Eq.~5.6! reduces to

dr

2G
1VdJ[

k̄ r

8pG
da1VdJ5dEt. ~5.8!

This is just the familiar first law but now in the setting o
dynamical horizons. Since the differentials in this equat
are variations of physical quantities alongH, this can be
viewed as aphysical process versionof the first law of black
hole mechanics. Note that for each allowed choice of la
Nr , angular velocityV(r ) and vector fieldwa on H, we
obtain a permissible time vector fieldta5Nr,

a2Vwa anda
corresponding first law. For isolated horizons@6,7# the situ-
ation is similar; there are infinitely many permissible vec
fields and a first law for each of them. The main difference
that we are now in a dynamical situation and~5.8! tells us
what happens instantaneously on the dynamical horizon~at
the ‘‘instant’’ represented by the cross sectionS). The first
law in @6,7# describes transitions from one equilibrium sit
ation to a nearby one and refers to the isolated horizon
whole. Again, the generalization from that time independ
situation consists of allowing the lapse and the angular
locity to becomeR dependent, i.e., dynamical. Therefore, f
vector fieldsta for which there is a satisfactory notion o
horizon energyEt ~as forta5to

a introduced in Sec. V B!, Eq.
~5.6! yields anintegral, physical process version generaliz
tion of the familiar, differential first laws of isolated horizo
mechanics:
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2G
1

1

8pG H R
S2

V j wd2V2 R
S1

V j wd2V

2E
V1

V2
dV R

S
j wd2VJ 5ES2

t 2ES1

t . ~5.9!

Thus, if a suitable notion of horizon energyES
t can be found,

the same equation~5.6! can be used to obtain an energ
balance equation~5.7! similar to that of Bondi and Sachs, bu
now at the dynamical horizon,andan integral generalization
~5.9! of the active form of the first law of black hole mecha
ics.

Finally, let us consider the case when the cosmolog
constant is non-zero. Then, the integral version of the fi
law is given simply by replacingTab in Eq. ~5.6! by T̄ab . In
the infinitesimal version, we now obtain

k̄ r

8pG
@12LR2#da1VdJ5dEt. ~5.10!

Thus, the only effect that a cosmological constant has is
modify the expression of effective surface gravity. This
completely analogous to what happens to the standard
law on Killing or isolated horizons.

We conclude with two remarks.
~i! More general permissible vector fields.Since we se-

lected the vector fieldsta using intuition derived from iso-
lated horizons, we were led to ask thatNr /NR and V be
functions only ofR. But it is rather easy to allow more gen
eral N,V and thus extend the notion of permissible vec
fields. Sett̄ a5N,a2Vwa, whereN is any smooth function
on H, not necessarily tied to a radial functionr. Then, we
obtain an obvious generalization of the balance equa
~5.6!. Furthermore, we can set the effective surface gravity
be

k̄ j̄5S 1

8p R NNR
21R̃d2VD k̄R ~5.11!

and again obtain the first law~5.8! with k r replaced bykj̄ .
Our restriction onV being only a function ofR corre-

sponds to considering rigidly rotating fieldsta ~where, how-
ever, the angular speed of rotation is allowed to vary as
moves from one cross section to another!. This restriction is
necessary to recover the familiar infinitesimal form of t
first law and also for the definition of the horizon energy
Sec. V B. However, as far as the integral first law is co
cerned, one can easily accommodate differential rotation
allowing V to be a function also of angular coordinates.

~ii ! The Q (n)<0 case.It is easy to verify that the main
result of this section goes through even if the conditi
Q (n),0 is weakened to allowQ (n)<0. The reasoning is the
same as that in the remark at the end of Sec. III.

B. Horizon mass

Recall first the situation at null infinity. Given a tim
translationt in the Bondi Metzner Sachs group and a cro
0-13
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A. ASHTEKAR AND B. KRISHNAN PHYSICAL REVIEW D 68, 104030 ~2003!
sectionS of I1, we can define Bondi energyES
t such that the

difference between the energy associated with any two c
sections equals the Bondi flux through the region ofI1 that
they bound@10–12#. On dynamical horizons, the right sid
of Eq. ~5.6! provides us with the analog of the Bondi flux.
is natural to ask if there is also asatisfactorynotion of en-
ergyES

t associated with each cross sectionS. In this section,
we will address this issue using dual considerations: find
preferred fields for which a mathematically viable notion
ES

t exists and admits a satisfactory physical interpretatio
We will first restrict ourselves to the caseL50 and show
that the both goals can be met for axisymmetric dynam
horizons.

Given any permissible vector fieldta on H, we can just
solve the ordinary differential equation onH,

dEt

dR
5

R

G
k̄ r~R!1V

dJ

dR
, ~5.12!

derived from Eq.~5.8!, and obtain an expressionES
t on any

cross sectionS. But in general the result will not be expres
ible in terms of geometric quantities defined locally onS. If
it is, we will have a mathematically viable notion ofES

t . Our
second requirement is that the resultingES

t should have a
direct physical interpretation.

The first example is provided by dynamical horizonsH on
which the intrinsic metricqab of H is spherically symmetric.
Then, it is natural to chooseV50 andR as the radial coor-
dinate so that the preferred vector field isto

a5NR,a with

effective surface gravityk̄R51/2R. In this case, the integra
tion of the flux yields

ES
t 5

R

2G
, ~5.13!

where the integration constant has been chosen such thaES
t

tends to the isolated horizon mass when the matter flux v
ishes and the horizon reaches equilibrium. Since we arri
at this expression by integrating the differential equat
~5.8!, and since the right side of this equation does not re
to matter fields at all, the expression ofES

t is purely geomet-
ric. In fact, since the expansionQ (,) vanishes onS, as noted
before,ES

t is precisely the Hawking mass ofS. In the spheri-
cally symmetric case, this is a physically viable measure
energy in the black hole; thus both our goals are met. F
thermore, by restricting the balance law~5.6! to this case, we
conclude

ES2

t 2ES1

t 5E
DH

Tabt̂
atbd3V. ~5.14!

Thus, Eq.~5.6! has a clearcut interpretation in this case: t
flux of gravitational energy vanishes, and the increase
Et(S) is fully accounted for by the matter fluxF matter

(R) . Note
that this was obtained assuming spherical symmetryonly of
(H,qab).

Beyond spherical symmetry, the gravitational energy fl
would not be zero, whence the balance equation will be n
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trivially generalized. We can begin with distorted but no
rotating dynamical horizons, i.e., ones on which the angu
momentum current densityq̃abKbcr̂

c vanishes. Again, it is
appropriate to setV50. Furthermore, from isolated horizo
considerations, we know that the distortion doesnot affect
surface gravity@6#. Therefore we can again setr 5R. Thus,
the discussion is reduced to that in the spherically symme
case. Again, the isolated horizon framework supports the
terpretation of the Hawking mass as the horizon mass in
case as well. The difference from spherical symmetry is t
now there may be gravitational radiation. Thus, in the d
torted case, the balance equation derived from~5.6! is more
general

ES2

t 2ES1

t 5E
DH

Tabt̂
atbd3V

1
1

16pGE
DH

NR~ usu212uzu2!d3V.

~5.15!

~However, because the angular momentum current vanis
the expression ofza simplifies to:za5q̃abDbln NR.)

Finally let us incorporate rotation. Physically, the mo
interesting case is the one in whichqab is axisymmetric, with
wa as its axial Killing vector.~In what follows, we will work
with this fixedwa. The dependence onwa of various physi-
cal quantities such as the angular momentum will now
dropped.! To specify a preferred vector fieldto

a , we need to

specifyk̄ r andV. The idea is to apply, on each cross secti
S of H, the strategy used in the isolated horizon framewo
to select apreferredpermissible vector fieldto

a :
~i! Calculate the angular momentumJS defined by the

axial Killing field wa. This provides us with a functionJ(R)
on the horizonH.

~ii ! Set

k̄ r5ko~R!ª
R424G2J2

2R3AR414G2J2
. ~5.16!

This is achieved by solving fordr/dR52Rk̄o(R), which
determinesr andNr ; and

~iii ! chooseV such that

V5Vo~R!ª
2GJ

RAR414G2J2
. ~5.17!

This functional dependence ofk̄ r and V on R and J is ex-
actly that of the Kerr family. That is, given a cross sectionS,
we chooseto

a , which has the same effective surface grav
and angular velocity at that cross section as the surface g
ity and angular velocity thatthe time-translation Killing field
has on the horizon of the Kerr solution with the same a
and angular momentum. Our task now is to integrate
~5.12!. For this, let us first recall the properties of the sta
dard Smarr formula for the Kerr family:
0-14
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DYNAMICAL HORIZONS AND THEIR PROPERTIES PHYSICAL REVIEW D68, 104030 ~2003!
M ~R,J!ª2S koa

8pG
1VoJD5

AR414G2J2

2GR
. ~5.18!

The functionM of two variablesR,J has the property tha
under arbitrary variations of the two parameters the first l
dM5(ko/8pG)da1VdJ, is satisfied. Therefore, it follows
that

Eto~R!ªM „R,J~R!… ~5.19!

satisfies the differential equation~5.12!. Furthermore, it is
the unique solution which reduces to the expression~5.13! in
the case of spherical symmetry@whenJ(R)50 identically#.

This notion of horizon energy has some attractive prop
ties. First, it depends only on geometrical fields on ea
cross section and the dependence is local. Yet, as note
Sec. V A, thanks to the constraint part of Einstein’s eq
tions, changes inEto over finite regionsDH of H can be
related to the expected fluxes:

ES2

to 2ES1

to 5F grav
(to)

1F matter
(to) , ~5.20!

where the flux of gravitational energyF grav
(to) is local and posi-

tive definite @see Eq.~5.7!#. ~The gravitational angular mo
mentum flux which, in general, has indeterminate sign v
ishes due to axisymmetry.! Finally, as mentioned in Sec. III
Booth and Fairhurst have recently shown that this expres
of the dynamical horizon energy emerges from a system
Hamiltonian framework on space-timesM with a dynamical
horizonH as inner boundary@22#.

Note that, as a function of its angular momentum a
area, each cross sectionS is assigned simply thatES

to which it
would have in the Kerr family. Physically, this is a simp
and attractive property. Furthermore, because of its close
lation to the Kerr time translation,touS represents that ‘‘time
translation for which the horizon is at rest at the instantS.’’
Therefore, we will refer toE(to) as themass functionon the
~axisymmetric! dynamical horizonH and setEto5M (R).
~The overall strategy is the same as that used in the isol
horizon framework@7#.! Thus, among the infinitely many
first laws ~5.8!, there is a canonical one:

dM5
k̄o

8pG
da1VodJ. ~5.21!

We conclude this section with a discussion of the pos
bility that a dynamical horizon can have an excess of ang
momentum and violate the Kerr boundJ<GM2 and the pos-
sibility of extracting rotational energy from the black hole7

In the usual Kerr solution, it is forbidden to violate the i
equality J<GM2. However, none of the equations we d
rived rule out the possibility that a dynamical horizon m
be formed with a cross sectionS on which the Kerr limit is

7For the discussion that follows, it is convenient to note that in
Kerr family the limiting, extremal Kerr horizon results when 2GJ
5R252G2M2.
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violated, i.e., 2JG.R2. On thisS, we will haveko,0 @see
Eq. ~5.16!# so that, with our prescription for constructingto ,
k̄ r would be negative~whencer would be a decreasing func
tion of R). But the prescription for selectingto

a still goes
through and the dynamical horizon mass, given by

M ~R!5
ARD

4 14G2J2

2GRD
~5.22!

which is well-defined, positive. Let us first consider the ca
whenTab vanishes on the horizon. Then, because of axisy
metry, J is constant. On the other hand, the area always
creases. What happens to surface gravity? In the Kerr
lowed region it is positive and in the Kerr forbidden regio
negative. Are we driven toward the Kerr allowed region
further away from it? A simple calculation yields

S ]ko

]R D
J

.0 if R2,Ro
2

,0 if R2.Ro
2 .

~5.23!

whereRo
2;5.085JG. This is also shown graphically in Fig

2 as a plot ofko(R) versusR for a fixed value ofJ. There-
fore, on the Kerr-forbidden side, under time evolutionR in-
creases whence the surface gravity also increases, i.e.
comes less negative, and we are pushed toward the extr
point. When the radius increases so thatR2.5.085JG, sur-
face gravity starts decreasing but this is essentially irrelev
because we are now on the Kerr-allowed side where sur

e

FIG. 2. A plot of the Kerr surface gravityko @from Eq. ~5.16!#
as a function ofR ~with JG set equal to 1 for definiteness!. The part
ko,0 is theKerr forbiddenside whileko.0 is theKerr allowed
regime. SinceR increases monotonically with time, this grap
shows that the dynamical horizon always evolves toward the K
allowed region under time evolution.
0-15
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A. ASHTEKAR AND B. KRISHNAN PHYSICAL REVIEW D 68, 104030 ~2003!
gravity is always positive~and tends to zero as area tends
infinity, keepingJ fixed!. These considerations suggest tha
black hole may well be formed in the Kerr-forbidden regi
and then settle down to a Kerr hole as time evolves.

Since we putTab50, this process can happen even
vacuum general relativity, e.g., in black hole mergers. At fi
this seems counterintuitive because there are heuristic a
ments which suggest that the black hole cannot radiate m
angular momentum than energy, whence if it is initia
formed withJ.GM2, it would not be able to settle down t
a Kerr state in the distant future. However, what can hap
is the following. Initially, one may haveJ.GM2 but there
may be energy trapped between the black hole and the ‘‘p
of the potential’’ outside the horizon, which may fall in th
black hole, increasing its mass significantly but keeping
angular momentum the same, thereby moving its state
ward the Kerr allowed regime. Finally, in the presence
matter, the fluxF matter

(to) need not be positive definite becau
if V5” 0, the vector fieldto

a is space-like at the horizon. In
this case the in-falling matter could pour negative angu
momentum into the black hole, thereby decreasing its m

Thus, it is rather surprising that there is no obvious o
struction for a dynamical horizon to be first formed in t
Kerr forbidden region and yet fulfill the physical expectati
that the final, equilibrium state should be a Kerr horizon. W
should emphasize, however, that the issue of whether th
compatible with solutions to the constraint equations onH is
yet to be analyzed. In physically interesting situations, th
is a further very non-trivial restriction: one is interested on
in those horizons that arise in the dynamical evolution
physically appropriate initial data on Cauchy surfaces. No
theless, the fact that there is no obvious obstruction sugg
that the issue should be analyzed further.

We conclude with two remarks.
~i! The cosmological constant.Our discussion can be gen

eralized to theL5” 0 case in a rather straightforward mann
by replacing the current, Kerr expressions ofko(R) and
Vo(R) by those from Kerr–de Sitter and Kerr–anti-de Sit
space-times.

~ii ! Physical relevance of to
a . In this section we introduced

a family of physically motivated vector fieldsto
a and showed

that the corresponding energyES
to is determined by fields

defined locally onS. However, this is by no means the on
vector field with this property. To a certain extent, an analo
at null infinity is provided by the Bondi-Metzner-Sachs s
pertranslations: There is an infinite dimensional family
supertranslations, each associated with a local flux
2-sphere supermomentum integral, and a balance law@11#.
Although the supermomenta and their fluxes do carry ph
cal information, it is the 4-momentum and its flux that
most important physically and admits a direct and transp
ent interpretation. Similarly, on dynamical horizons, of
permissible vector fieldsta leading to local energy expres
sionsES

t , it is likely that to
a would be the most relevant on

from physical considerations. In particular, one expects
in the asymptotic future the dynamical horizon would tend
a Kerr isolated horizon@7,26# andES

to would tend to the mass
of that Kerr space-time.
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C. Mechanics versus thermodynamics

In stationary space-times—and more generally, in the i
lated horizon framework—the horizon geometry is time
dependent and this in particular implies that the surface g
ity k is constant on the horizon. In the physical proce
version of the first law,dE5(k/8pG)da1VdJ, one con-
siders transitions from a time independent state to a nea
time independent state. Conceptually, this is the same se
as in laws of equilibrium thermodynamics. As in the case
the first law of thermodynamics, the second term represe
mechanical work done on the horizon while the first te
does not; it is interpreted as the analog of the termTdSrep-
resenting the ‘‘heat absorbed by the black hole.’’ The spec
form of this term shows that, in infinitesimal processes
volving black holes, the change in surface gravity can
ignored just as the change in the temperature is ignore
the transitions envisaged by the first law.

By contrast, in this paper we considered fully dynamic
situations in which the horizon geometry can be very
from being stationary. We obtained two closely related
sults, the balance equation~5.7! and the integral generaliza
tion ~5.9! of the first law. The first can be directly interprete
as a statement of conservation of energy, in that it descr
how the energy of the dynamical horizon changes becaus
the influx of matter and gravitational waves. The second
an integral version of the first law of black hole mechan
because it tells us how the changes in the characteristic
the black hole—the area and the angular momentum—
correlated with changes in its energy.

Let us focus on the second. The angular momentum t
can again be interpreted as mechanical work done on
black hole. What about the term representing the chang
area? Is there again a close analogy with thermodynam
To analyze this issue, we must consider fullynon-
equilibrium thermodynamical processes. Generically,
system does not have time to come to equilibrium in th
processes and there is no canonical notion of its tempera
Therefore, while one can still interpret the differenceE2
2E12(work) as the heat absorbed by the system, in gen
there is no longer a clean split of this term into a temperat
part and a change in entropy part. If the process is such
the system remains close to equilibrium throughout the p
cess, i.e., can be thought of as making continuous transit
between a series of equilibrium states, then the differe
can be expressed as*TdS, where the temperatureT varies
slowly during the transition.

The situation on dynamical horizons is analogous.8 On
general dynamical horizons, the time dependence can
strong, and physically one does not expect the termES2

to

2ES1

to 2(work) to admit a natural split into a temperatu

part and a change in entropy part. Indeed, if the horiz
geometry is changing very rapidly, it cannot be considered
be in a near-equilibrium state whence it would be inapp

8This point was emphasized by S. Fairhurst at the Black Hole
workshop, held at Honey Harbor, Canada in May 2003 and at
Penn State Decennial conference in June 2003.
0-16
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DYNAMICAL HORIZONS AND THEIR PROPERTIES PHYSICAL REVIEW D68, 104030 ~2003!
priate to associate an instantaneous physical temperatu
it. How does one reconcile this with the fact that in Eq.~5.6!

the differenceis expressed as*k̄ rda? The resolution lies in

the fact thatk̄ r is only the effectivesurface gravity. More
precisely, in striking contrast to what happens inequilibrium

configurations represented by isolated horizons,k̄ r does not
have thegeometrical interpretation of surface gravity; a
shown in Sec. VI, it can only be interpreted as the 2-sph
average of a geometrical surface gravity associated with
tain vector fields onH. This is a reflection of the limitation

that, in highly dynamical situations,k̄ r should not have a
direct interpretation of instantaneous, physical temperatu

One would expect such an interpretation to be meanin
only if the time dependence is weak, i.e., on weak
dynamical horizons which can be regarded as perturbat
of isolated horizons. In this case, the geometrical surf
gravity @22# ~see Sec. VI! would be approximately constan

and thus approximately equal its average,k̄ r . In this situa-
tion, one can regard the horizon as making continuous t
sitions from one equilibrium state to another and then
geometrical surface gravity appears to be a good analo
the ~slowly varying! temperature. In these situations, the d
namical first law~5.6! can be simplified by keeping term
only up to second order in perturbations away from isolat
@27#. In this approximation,ES2

to 2ES1

to 2(work) can be inter-
preted as ‘‘*kda’’ where k has a geometrical interpretatio
as surface gravity. Hence, the simplified version of~5.9! can
be regarded as the integral version of the first law of bla
hole thermodynamics.

These considerations have interesting implications for
notion of black hole entropy in dynamical situations. B
cause the horizon area increases in dynamical processe
view of the second law of thermodynamics it is tempting
identify a suitable multiple horizon area with entropy. In tim
independent situations, this interpretation is confirmed a
by the first law~1.1! because the term (k/8pG)da is analo-
gous to the termTdSin the first law of thermodynamics. Th
above discussion suggests that the interpretation should
tinue to be valid also on weakly dynamical horizons. It
therefore interesting to analyze if the black hole entropy d
vations based on the counting of micro-states, such as t
of @28#, can be extended to this case. For highly dynam
situations, on the other hand, the situation is less clear. In
case of event horizons, for example, one would not exp
this formula for entropy to be meaningful because, as m
tioned in Sec. I, an event horizon can be formed and grow
a flat space region in anticipation of a future gravitation
collapse. It is difficult to imagine how a quasi-local countin
of micro-states can account for this phenomenon. The cas
highly dynamical horizons falls in-between. On the o
hand, the case for identification of entropy with a multiple
area is now much weaker than on weakly dynamical h
zons for reasons discussed above. On the other hand, s
what surprisingly, the term (r 22r 1)/2G of Eq. ~5.9! can be

expressed as (1/8pG)*k̄ rda even in the fully dynamical re-
gime. Furthermore, since the growth of areais related to the
energy flux across the horizon, it may well be possible tha
10403
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quasi-local counting argument along the lines of@28# can be
constructed in this case.

VI. TRANSITION TO EQUILIBRIUM

The conventions we used in all the calculations up to t
stage are well suited to the space-like character ofH. When
H reaches equilibrium, there is no longer a flux of matter
gravitational energy across it whence~with appropriate nor-
malization! the shear and the matter flux vanishes. Equat
~2.1! now implies that the horizon must become null. Fu
thermore, since the expansionQ (,) vanishes, it is anon-
expanding horizonin the sense of@5,6#. The goal of this
section is to analyze the transition from a dynamical horiz
to a non-expanding one. In most physical situations, beca
of back scattering, one can expect the equilibrium to
reached only asymptotically, i.e., in the infinite future.~For
exceptions, see the examples discussed in Appendix!
However, as we will see, the case of asymptotic equilibri
is technically simpler but the subtleties involved in th
matching at a finite time are more instructive.

A. The non-expanding horizon

Let us then consider a 3-manifoldM, topologically S2

3R which is the union of a dynamical horizonH and a
non-expanding horizonD ~see Fig. 1!. Thus,H is space-like
and foliated by a family of marginally trapped surfacesS,
while D is null. We denote the past boundary ofD by S0
which will be assumed to be the~uniform! future limit of the
cross sectionsSof H. We will assume that~i! the space-time
metric gab is Ck for some k>2; ~ii ! M is a Ck11 sub-
manifold; and~iii ! the pull-backqab to M of gab admits an
axial Killing field wa.

Let us first considerD. It has the property that the expan
sion ofanyof its null normals vanishes. However, to extra
physics, one needs to endow it with an additional structu
SinceD is null, it follows that ,̄a¹a,̄b5k ,̄,̄b for any of its
null normals,̄a. The extra structure consists of an equiv
lence class@ ,̄# of null normals whose acceleration, or su
face gravityk ,̄ , is constanton D, where,̄a and (,̄8)a are
equivalent if and only if (,̄8)a5c,̄a wherec is a constant on
D. Such a choice canalwaysbe made but it is far from being
unique@5#. ~The freedom is exhibited in Sec. VI B.! The pair
(D,@ ,̄#), where@ ,̄# satisfies this condition, defines aweakly
isolated horizon.

On weakly isolated horizons, one can introduce the not
of energy and angular momentum such that the zeroth
the first laws of black hole mechanics hold. Not only is t
angular momentumJD

w conserved as one would expect b
cause of ‘‘isolation,’’ but its value turns out to be indepe
dent of the specific choice of@ ,̄# made in the transition from
the non-expanding horizon to the weakly isolated one.
define energy, one needs to introduce ‘‘permissible’’ vec
fields ta @6,7# and there is an infinite family of these. How
ever, on any weakly isolated horizon (D,@ ,̄#), one can
choose a canonical one,t0

a5 ,̄0
a2V0wa, such that the surface

gravity of ,̄0
a and the angular velocityV0 are determined by
0-17
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A. ASHTEKAR AND B. KRISHNAN PHYSICAL REVIEW D 68, 104030 ~2003!
the areaaD and the angular momentumJD
w exactly as on the

Kerr horizon. Again, when this choice is made, the value
ED

t0 is independent of the specific equivalence class@ ,̄# cho-
sen in the transition from non-expanding to weakly isola
horizons. In this sense, the angular momentum and the m
are properties of non-expanding horizons themselves,
though in the intermediate stages in the calculation one
to pick a weakly isolated horizon structure.

However, the vector fieldst0
a do vary with the choice of

admissible@ ,̄#; they all just happen to lead to the same va
of energy. In our case,D is the limit of a dynamical horizon
H, whence it is natural to pick thatt0

a on D which arises as
the limit of the canonical vector fieldto

a on H ~introduced in
Sec. V B!. This will in turn fix the weakly isolated horizon
structure onD uniquely.

B. An intermediate construction on the dynamical horizon

To carry out the matching, we need to introduce so
additional structure onH. This structure will enable us to
take the limits toS0 and also clarify the meaning of th
‘‘effective surface gravity’’ introduced in Sec. V A.

Throughout our calculations so far, we used the unit n
mal t̂a to H and the unit normalr̂ a within H to the cross
sectionsS. In particular the null vectors,a,na, which played
a dominant role throughout, are the sum and difference
these normals. This structure is well suited to the space-
character ofH. However, when we consider the transitio
becauseD is null, these fields either diverge or vanish as
approachS0. Therefore, to study the limit to equilibrium, w
need to rescale these fields suitably.

With this goal in mind, let us begin by introducing
smooth vector fieldV̄a which can be regarded as a smoo
~space-like! extension toH of a suitable,̄a on D. As dis-
cussed in Sec. VI A, we would like,̄a on D such that its
surface gravityk ,̄ equals the Kerr valueko(aD ,JD). Such
vector fields always exist and the freedom in their choice
given by @5#

,̄8a5~11Ae2kov!,̄a ~6.1!

if ko5” 0 and

,̄8a5B,̄a ~6.2!

ko50, wherev is the affine parameter of,̄a and the func-
tions A,B on D satisfy: L,̄A50, L,̄B50 and (11A)
.0, B.0. On H, it is natural to require thatV̄a be parallel
to r̂ a and map cross sections ofH to themselves. This con
dition determinesV̄a up to a rescaling by a function ofR.
Given any one of theseV̄a, one can use the freedom ava
able in the choice of,̄a on D to pick one that will match
smoothly withVa on H.

Fix one of these vector fieldsV̄a and define multiplesn̄a

and ,̄a of ,a and na via Van̄a522 and ,̄an̄a522. By
construction, the barred fields are smooth onM. Using the
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fact that V̄a is parallel to r̂ a, we haveV̄a5 ,̄a2b2n̄a for
some smooth functionb. Since V̄aV̄a54b2, and sinceV̄a

becomes null atS0, it follows that b tends to zero as we
approachS0 alongH and stays zero onD. It is easy to check
that the null fields,̄a and n̄a are related to our original,a

andna through,̄a5b,a andn̄a5b21na. Since barred fields
are smooth acrossS0, it follows that ,a diverges andna

tends to zero as we approachS0. SinceR is constant onD,
we also know thatdR and henceNR andNr all go to zero as
we approachS0 alongH. In Sec. VI C we will show that they
do so at the ‘‘same rate’’ asb. Since,̄a5b,a, this will es-
tablish that the fieldNr,

a used in the construction ofto
a on H

admits a limit toS0. @Throughout this discussion,Nr will be
the lapse featuring in the expression of the canonical ve
field to

a5Nr,
a2V(R)wa on H.#

C. Matching of physical quantities

Let us begin by showing that the limit of the angul
momentumJS

w of cross sectionsS of H equals the angula
momentumJD

w defined onD. The angular momentum on an
cross sectionS of H is given by~4.2!:

JS
w52

1

8pG R
S
Kabw

ar̂ bd2V. ~6.3!

Using the definition ofKab and expanding the vectorst̂a and
r̂ a in terms of,̄a andn̄a which are well defined on all ofM,
we can rewrite the integrand as

Kabw
ar̂ b5v̄awa2wa¹aln b, ~6.4!

wherev̄a is the pull-back toM of 2 1
2 n̄b¹a,̄b. Hence, using

the fact thatwa is divergence-free onS, we obtain

JS
w52

1

8pG R
S
v̄awad2V. ~6.5!

Since the integrand is smooth, the future limit ofJS
w as we

approachS0 is obtained by just evaluating the right side o
S0. This is precisely the angular momentumJD

w associated
with the non-expanding horizon@7#. Thus, the angular mo
mentum defined onH matches smoothly with that defined o
D.

Let us consider the energy.ES
to on any cross sectionSof H

and ED
t0 on D are functions of the angular momentum a

area and their form is determined by the functional dep
dence on area and angular momentum of the mass func
in Kerr metrics. Since the area and angular moment
match smoothly, we are immediately led to the conclus
that ES

to matches smoothly withED
t0 asS approachesS0.

Finally, we will show that the vector fieldto
a on H matches

smoothly to a ‘‘permissible’’ vector fieldt0
a on D. While

these fields do not have a direct physical significance as
as final results are concerned, since energyES

to on H is asso-

ciated with the vector fieldto
a andED

t0 is associated witht0
a ,
0-18



tw
e

s
on

a

-
e

ca

te

r

to
ad
e

ta
n

d

the
e

all

on-
o-
se,
ng
. A
-

ion

-
n
e
qui-
is

n
ed,

e.
ar
ve

g
d
nt
to

ng

DYNAMICAL HORIZONS AND THEIR PROPERTIES PHYSICAL REVIEW D68, 104030 ~2003!
for conceptual completeness, we need to verify that the
vector fields match atS0. To explore the relation between th
two, the key idea is to use the property

LV̄ẽab52
1

2
b2Q (n̄)ẽab ~6.6!

on H, where ẽab is the intrinsic area 2-form on the cros
sectionsS. Integrating this equation on any one cross secti
usinga54pR2, and the fact thatdr/dR52Rk̄ r , we obtain

dr52F Rk̄ r

4pR R
S
b2Q (n̄)d

2VGdv ~6.7!

on H wherev is the affine parameter alongV̄a which takes
constant values on cross sections onH. SinceNr5udru and
1/2b5udvu, it now follows that

Nr

b
1

Rk̄ r

8pRb2 RS
b2Q (n̄)d

2V50. ~6.8!

Now, the second term admits a smooth limit toS0, whence
the limit of Nr /b is also well defined.~Furthermore, sinceb
is positive andQ (n̄) negative onH, it follows that the limit is
nowhere zero.! This in turn implies thatto

a5Nr,
a2Vowa

also admits a well-defined limit toS0.
Our final task is to show that this vector field admits

smooth extension to a permissible vector fieldt0
a5 ,̄0

a

2V0wa on D, where,̄0
a has Kerr surface gravityko andV0

is the Kerr angular velocity. SinceNr,
a has a smooth, no

where vanishing limit, one can always use the rescaling fr
dom in Eqs.~6.1! and ~6.2! to choose the desired,̄0

a . The
matching ofV0 is guaranteed simply by settingV05Vo .
Thus, there is a smooth vector field onM which is a permis-
sible evolution field onD and agrees with the ‘‘canonical’’t0

a

on H. Furthermore, this construction provides us with a
nonical weakly isolated horizon structure@ ,̄0# on D.

Thus, the results for transition to equilibrium at a fini
time can be summarized as follows. Assuming thatM
5HøD is Ck11, and the rotational vector fieldwa on M is
Ck, one finds that~i! there is aCk matching of the angula
momentumJS

w on H with JD
w on D; ~ii ! there is a unique

weakly isolated horizon structure@ ,̄0# on H such that the
canonically chosen vector fieldto

a on H has aCk matching
with t0

a on D; and ~iii ! the corresponding energiesES
to and

ED
t0 match in aCk manner.
If the horizon reaches equilibrium only asymptotically,M

is space-like everywhere and becomes null only asymp
cally. In this case, we can just use the structure we alre
have onH from Secs. III to V to describe dynamics. Th
discussion of this section implies that the asymptotic s
should be identified with the weakly isolated horizo
(D,@,#) where the equivalence class@,# is determined byto

a

on H. With this identification, the asymptotic limit is reache
smoothly.

We conclude with two remarks.
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~i! Surface gravity.Following Booth and Fairhurst@27#,
one can define surface gravity ofV̄ on H

k V̄ª2
1

2
n̄bV̄a¹aV̄b ~6.9!

which matches smoothly with the surface gravityko on D.
Furthermore, one can use it to restrict the freedom in
choice of V̄a considerably by requiring that the 2-surfac
average ofk V̄ be the effective surface gravityk̄ r5ko intro-
duced in Sec. V A

R
S
kVd2V5ko„R,J~R!…aS ~6.10!

whereaS is the area of the cross sectionS. Then the only
remaining freedom is that of a constant

V̄a→S 11c exp2
1

2E kodv D V̄a ~6.11!

wherev is the affine parameter alongV̄ andc a constant. In
the case when equilibrium is reached only asymptotically,
these vector fields tend to the same null vector.

~ii ! Slowly evolving horizons.Heuristically, one expects
that near the transition surfaceS0 , H would become weakly
dynamical and can be regarded as a perturbed, n
expanding horizon. However, strictly, weakly dynamical h
rizons can and should be defined in their own right becau
as Appendix A shows, a dynamical horizon can have stro
time dependence arbitrarily close to the transition surface
notion of ‘‘slowly evolving horizons’’ has already been in
troduced in@27# and our introduction of the vector fieldV̄a

was motivated by that analysis. However, in the calculat
of energy,@27# uses only aspace-likevector field analogous
to V̄a in place of our null vectorNr,

a. Hence that analysis is
basedonly on the momentum constraint~2.5!; the Hamil-
tonian constraint~2.4! plays no role. This is probably be
causeV̄a5 ,̄a2b2n̄a and, in the leading order approximatio
studied in@27#, the n̄a term can be neglected. However, th
detailed relation between our discussion of passage to e
librium and that discussion of slowly evolving horizons
yet to be understood.

VII. DISCUSSION

Let us begin with a brief summary. A dynamical horizo
is a space-like 3-manifold, foliated by 2-dimensional clos
marginally trapped surfacesS ~called cross sections! on
which the expansion of the inward null normal is negativ
While the definition is so simple and conditions in it appe
to be quite weak, dynamical horizons turned out to ha
remarkable properties. Specifically, we were able to~i! pro-
pose a definition of the flux of gravitational energy fallin
across a portionDH of H bounded by two cross sections an
show that it is local, manifestly positive and gauge invaria
~i.e. does not depend on any structure that is not intrinsic
the problem!; ~ii ! provide a detailed area balance law relati
0-19
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the change in the area ofH to the flux of energy across it
~iii ! show that the cross sectionsSof H have the topologyS2

if the cosmological constantL is positive and ofS2 or T2 if
it is zero. TheT2 case is degenerate in the sense that ma
as well as gravitational energy fluxes vanish, the intrin
metric on each cross section is flat, the shear of
~expansion-free! null normal,a vanishes and the derivative
of the expansion along both null normals vanish;~iv! intro-
duce the notion of angular momentum associated with e
cross section and of the flux across portionsDH of the ho-
rizon bounded by two cross sections;~v! provide an integral
generalization of the first law of black hole mechanics
fully dynamical situations;~vi! for axisymmetric horizons,
give a prescription to find a vector fieldto

a on H and intro-

duce a notion of energyES
to for each cross sectionSsuch that

an easily interpretable balance law holds: if the portionDH
of the horizon is bounded byS2 and S1, then ES2

to 2ES1

to

5F DH
to , whereES

to and the fluxF DH
to are both local and have

physically attractive properties; and~vii ! analyze in detail the
passage to equilibrium during which a dynamical horiz
becomes a weakly isolated one.

Let us highlight a few features of the framework and t
results.

~i! Our analysis isnot motivated by nor directly related to
the issue of finding quasi-local mass in general relativity. O
results pertain to very special 2-surfaces—the cross sec
of dynamical horizons—and cannot be applied in more g
eral context. Nonetheless, there is a general expectation
a dynamical black hole space-time would admit a large nu
ber of dynamical horizons and it is somewhat surprising t
they all have such nice properties.

~ii ! While the definition of the dynamical horizons a
sumes that the expansionQ (n) of the inward pointing null
normal should be negative, most of the detailed results
through also in the case whenQ (n)<0. Under the stronge
assumption the area monotonically increases. Under
weaker assumption we only know that it cannot decrease
the balance laws and the generalization of black hole
chanics still goes through. IfQ (n)>0, we are in the white
hole situation in which the results again apply with approp
ate sign changes.

~iii ! The preferred vector fieldto has been chosen with th
physical problems of black hole formation and coalesce
in mind. In particular, the energyES

to associated with a cros
sectionS is preciselythe mass of the Kerr space-time whic
has the same area and angular momentum asS; one regardsS
as being ‘‘instantaneously Kerr.’’ The surprising fact is th
even in the fully dynamical regime, the difference betwe
energies associated with two cross sections is given b
local, geometrically defined flux. In the non-rotating cas
Eto reduces to the Hawking mass. But in the rotating ca
the Kerr mass seems to be a better measure of the phy
energy of the horizon~associated with the vector fieldto

a).
~iv! What is the situation in higher dimensions? Since o

results stemmed from the constraint part of Einstein’s eq
tions in the metric variables, the method is directly app
cable also in higher dimensions. But the form of resu
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would be different. In particular, since the topological restr
tion made a crucial use of the Gauss-Bonnet theorem, it
not go through; since the black hole uniqueness theo
fails, there will be many distinct preferred vector fieldsto

a

and the most convenient choice will be dictated by the i
lated horizon to which the dynamical one settles down
and some of the equations may now acquire Weyl ten
terms.

Finally, these results open up new avenues for further
search in numerical, mathematical and quantum relativ
We will conclude by pointing out some of these.

Numerical and mathematical relativity.In a gravitational
collapse or a black hole merger, one expects the dynam
horizon in the distant future to asymptotically approach
weakly isolated horizon. Can one establish that this expe
tion is correct? If so, what can one say about the rate
approach? While this issue can be studied analytically,
merical simulations provide an ideal setting to analyze
because the world tube of apparent horizons arises t
naturally and provides the dynamical horizon. There exis
simple, local characterization of the Kerr isolated horiz
@26#. Under what conditions is one guaranteed that
asymptotic isolated horizon is the Kerr horizon? On an i
lated horizon one can define multipoles invariantly@29# and
the definition can be carried over to each cross section of
dynamical horizon. What can one say about the rate
change of these multipoles? For example, from the kno
edge of the horizon quadrupole and its relation to the K
quadrupole, can one gain insight into the maximum amo
of energy that can be emitted in gravitational radiation?
the quasi-normal ringing of the final black hole coded in t
rate of change of the horizon multipoles, as was suggeste
somewhat heuristic considerations in the early numer
simulations@30# of non-rotating black holes?

Geometric analysis.SinceH is space-like, one can con
sider the standard initial value problem on it. Can one ch
acterize the solutions to the constraint equations such
(H,qab ,Kab) is a dynamical horizon?@It is trivial to check
that the data cannot be time symmetric~i.e. Kab cannot be
zero onH) but one could consider the constant mean cur
ture case.# A full characterization would provide a complet
control on the geometry of the world tube of apparent ho
zons that will emerge inall possiblenumerical simulations.
One can further ask: Can one isolate the freely specifia
data in a useful way? Are these naturally related to the fre
specifiable data on weakly isolated horizons@5#? In the
spherically symmetric case, these issues are straightforw
to address and an essentially complete solution is known
would be very interesting to answer these questions in
axisymmetric case.

Another potential application is to the proof of Penro
inequalities which say that the total~ADM ! mass of space-
time must be greater than half the radius of the appa
horizon on any Cauchy slice. In the time symmetric ca
~i.e., when the extrinsic curvature on the Cauchy slice v
ishes! this conjecture was recently proved by Huisken a
Ilmamen, and Bray@14#. Our analysis provides two flows
which may be potentially useful to extend the analysis
yond the time-symmetric case. The first is associated w
0-20
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the Hawking mass and was discussed in Sec. III A:
~3.25! shows that the Hawking mass increases monotonic
along a dynamical horizon. Furthermore, one expects tha
dynamical horizon would settle down to a weakly isolat
horizon in the future. For isolated horizons which extend
the way toi 1, under certain regularity conditions the horizo
mass is the future limit of the Bondi mass@3#. Thus, using
our flow, one should be able to prove a stronger version
the Penrose inequality where the ADM mass is replaced
the future limit of the Bondi mass. The second flow is as
ciated with the Kerr mass and was discussed in Sec. V. In
non-rotating case, this is the same as the first flow. But in
rotating case, the Kerr mass is greater than the Hawk
mass whence it would provide a further strengthening of
Penrose inequality. Note that the Kerr mass increases m
tonically only if one begins with a cross sectionS of H on
which 2GJ,R2. But if we initially violate this condition,
the flow drives the system towards satisfaction of this
equality.

Quantum relativity.As the vast mathematical literature o
black hole mechanics shows, the infinitesimal version~1.1!
of the first law has had a deep conceptual influence.
finite version~5.9! may have similar ramifications in non
equilibrium situations. The Hamiltonian framework of Boo
and Fairhurst@22# could be used as a point of departure f
describing quantum black holes beyond equilibrium sit
tions. Can one, in particular, extend the non-perturba
quantization of isolated horizons of@28,29# to describe quan-
tum, dynamical horizons? To calculate their entropy?
naturally incorporate back reaction in the Hawking proce
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APPENDIX A: EXAMPLES: THE VAIDYA SOLUTIONS

The Vaidya metrics provide simple, explicit examples
dynamical horizons. Furthermore, when the flux of the n
matter field vanishes, one obtains an isolated horizon. Th
fore, the metrics also provide explicit examples of the tra
sition from the dynamical to isolated horizons discussed
Sec. VI. In Appendix A 1 we describe the Schwarzschi
Vaidya dynamical horizon and in Appendix A 2, we includ
the cosmological constant.
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1. The Schwarzschild-Vaidya metrics

In the ingoing Eddington-Finkelstein coordinate
(v,r ,u,f) the 4-metric is given by

gab52S 12
2GM~v !

r D¹av¹bv12¹(av¹b)r

1r 2~¹au¹bu1sin2u¹af¹bf! ~A1!

where M (v) is any smooth non-decreasing function ofv.
This is a solution of Einstein’s equations with zero cosm
logical constant, the stress energy tensorTab being given by

Tab5
Ṁ ~v !

4pr 2
¹av¹bv ~A2!

where Ṁ5dM/dv. Clearly, Tab satisfies the dominant en
ergy condition ifṀ>0 and vanishes if and only ifṀ50.

Let us focus our attention on the metric 2-spheres giv
by v5const,r 5const. The outgoing and ingoing null no
mals to these 2-spheres can be taken to be, respectively

,̄a5S ]

]v D a

1
1

2 S 12
2GM

r D S ]

]r D
a

and n̄a522S ]

]r D
a

~A3!

~so that,̄an̄a522 as in the main text!. The expansion of the
outgoing null normal,̄a is given by

Q ( ,̄)5
r 22GM~v !

r 2
. ~A4!

Thus, the only spherically symmetric marginally trapped s
faces are the 2-spheresv5const andr 52GM(v). The ques-
tion is if these surfaces are cross sections of a dynam
horizon. On each of these surfaces, the expansion of the
going normalna is negative,Q (n̄)524/r . Furthermore, at
the marginally trapped surfaces,Ln̄u ( ,̄)522/r 2,0. Be-
cause of spherical symmetry the shear of,̄a ~and n̄a) van-
ishes identically. Finally,Tab,̄a,̄b.0 if and only if Ṁ.0.
Hence it follows from our general discussion in Sec. II
@see Eq.~2.1!# that the surfaceH given by

r 52GM~v ! with Ṁ.0 ~A5!

is a dynamical horizon. WhenṀ vanishes, the surfacer
52GM(v) becomes null and a non-expanding horiz
~which is, in fact, an isolated horizon!. The full surfacer
52GM(v) is a future outer trapping horizon~FOTH! of
Hayward’s@15#.

The null normals,̄a and n̄a are well suited for studying
the approach to equilibrium, i.e., the transition from the d
namical to the isolated horizon discussed in Sec. VI. T
interpolating vector fieldV̄a is now given by

V̄a5S ]

]v D a

12GṀS ]

]r D
a

[ ,̄a2GṀn̄a ~A6!

so thatb25GṀ. The degree of smoothness of the matchi
between the isolated and the dynamical horizons is dicta
by differentiability of Ṁ at S0. Thus, if Ṁ is Ck on S0,
0-21
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physical fields will match in aCk fashion. Finally, because o
spherical symmetry the surface gravityk V̄ of V̄a is constant
on each cross section and is given by 1/2R(v); the canonical
vector field t0

a5(]/]v)a on D matches smoothly with the
canonical vector fieldto

a5(]/]v)a on H; the angular momen
tum vanishes; and the horizon mass is given byM (v).

To study the structure ofH by itself, as in the main body
of the paper, a different normalization of null vectors is mo
convenient. For completeness, we list all the relevant ve
fields:

t̂a5
1

2AGṀ
¹ar 2AGṀ¹av, r̂ a5

1

2AGṀ
¹ar 1AGṀ¹av

na522AGṀ¹av, ,a5
1

AGṀ
¹ar

r̂ a5
1

2AGṀ
S ]

]v
D a

1AGṀS ]

]r
D a

,

t̂a5
1

2AGṀ
S ]

]v
D a

2AGṀS ]

]r
D a

na522AGṀS ]

]r
D a

, ,a5
1

AGṀ
S ]

]v
D a

. ~A7!

Let us take (r ,u,f) as coordinates on the dynamical horizo
The radial coordinater is also the area coordinateR in this
case, whenceNR andk̄R of the main text will be denoted jus
by Nr and k̄ r , respectively.Nr is given simply by

Nr5AGṀ. ~A8!

Therefore, the matter flux is

F matter
(r ) 5E

DH
NrTabt̂

a,bd3V5
1

8pGE
DH

1

r 2
drd2V

5
r 22r 1

2G
. ~A9!

The gravitational flux, of course, vanishes because of sph
cal symmetry.

Remark.In the above discussion, we restricted ourselv
to dynamical horizons whose cross sections are spheric
symmetric. It is natural to ask if the space-time admits oth
non-spherical dynamical horizons. Surprisingly, this quest
is not easy to analyze because very little is known ab
non-spherical marginally trapped surfaces even in
Schwarzschild space-time. However, we will show th
within the v5const surfaces, there is no marginally trapp
2-surface which lies entirely outside the surfacer 52M (v)
considered here. It would be interesting to know if the spa
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time admits other dynamical horizons and, if so, whether
one discussed here is Hayward’s trapping boundary@15#, dis-
cussed in Sec. II B.

Let us then look for a closed 2-surfaceS8 given by r
52GM(v)2h(u,f) which is marginally trapped. By con
struction, it lies on the constantv slices. Let,̃a and ña be
null normals to this 2-surface. One can show thatña5n̄a but
,̃aÞ ,̄a. It can also be shown that the ingoing null expansi
to is still Q (ñ)524/r while the outgoing expansion become

Q (̃,)52
h

r 2
1

D0h

r 2
1

uD0hu2

r 3
~A10!

whereD0 and D0 are, respectively, the standard Laplaci
and derivative operator on the unit 2-sphere in (u,f) coor-
dinates. By settingQ ( ,̃)50 we obtain the following partial
differential equation forh(u,f):

D0h2h52
uD0hu2

r
. ~A11!

As expected,h50 is clearly a solution; but is it the uniqu
solution? Integrate both sides of Eq.~A11! using the standard
unit 2-sphere volume element and obtain the inequa
rS8h.0. This tells us that we cannot have solutions to E
~A11! with h everywhere negative. In other words, we cann
have marginally trapped surfaces which lie completely o
side r 52GM(v). Of course, the analysis is incomplete b
cause it does not preclude surfaces which lie only partia
outside r 52GM nor surfaces which do not lie on thev
5const slices; these issues are currently under investiga

2. Inclusion of the cosmological constant

The example presented in the preceding section can
generalized to include a cosmological constantL. For defi-
niteness, we restrict ourselves theL.0 case. The Vaidya
metric in the presence of a cosmological constant is

gab52S 12
2GM~v !

r
2

Lr 2

3 D¹av¹bv12¹(av¹b)r

1r 2~¹au¹bu1sin2u¹af¹bf!. ~A12!

As before,M (v) is a non-decreasing function ofv. WhenM
is a constant, this is just the usual Schwarzschild–de S
solution. As we shall see below, this solution admits a bla
hole horizon only if the inequality 9L(GM)2<1 is satisfied.
In the remainder of this section we shall always assume
GM never exceeds the value (9L)21/2. The Einstein tensor
for the metric given above is

Gab52Lgab1
2GṀ

r 2
¹av¹bv. ~A13!

As before, the stress energy tensorTab is
0-22
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Tab5
Ṁ ~v !

4pr 2
¹av¹bv ~A14!

and Ṁ>0 is required in order to satisfy the null energ
condition. In this case there are two horizons: the usual bl
hole horizon and also a cosmological horizon which
given by the solutions of the equation

f ~v,r !ª12
2GM~v !

r
2

Lr 2

3
50. ~A15!

This is a cubic equation inr and when 0,9L(GM)2,1, it
admits precisely two real and positive solutions given by

r c5
2

AL
cosS p2a

3 D and r b5
2

AL
cosS p1a

3 D
~A16!

wherea5cos21@A9L(GM)2#. The black hole horizon is lo-
cated atr b and the cosmological horizon atr c . In general,
r b<r c and when 9L(GM)251, the two horizons coincide
r b5r c5A3/L. When 9L(GM)2.1, then Eq.~A15! does
not admit any real positive solutions. Assuming thatM is an
increasing function ofv, it is easy to see thatr b increases
with time and r c decreases with time and both horizo
merge in the limitGM2→1/9L.

The derivatives off (v,r ) are

f 85
] f

]r
5

2GM

r 2
2

2Lr

3
and ḟ 5

] f

]v
52

2GṀ

r
,0.

~A17!

At the horizons, whenf 50, the expression forf 8 simplifies
to

f 8u f 505
12Lr 2

r
. ~A18!

The derivativef 8 is positive at the black hole horizon an
negative at the cosmological horizon.

As before, let us look for all possible spherically symm
ric marginally trapped surfaces. The null normals to ther
5const,v5const surfaces can be taken to be

,̄a5S ]

]v D a

1
f

2 S ]

]r D
a

and n̄a522S ]

]r D
a

. ~A19!

The expansions of these null normals are

Q ( ,̄)5
f

r
and Q (n̄)52

4

r
. ~A20!

Thus we see thatQ (n̄) is always negative andQ ( ,̄) vanishes
precisely at the two horizons. Furthermore,

Ln̄Q ( ,̄)u f 5052
2 f 8

r
~A21!
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which tells us thatLn̄Q ( ,̄),0 at r 5r b and .0 at r 5r c .
Thus, if Ṁ.0, the surfacer 5r b is space-like and is a dy
namical horizon whiler 5r c is time-like and is, in fact, a
time-like dynamical horizonas discussed in Appendix B.

In the remainder of this section, we focus only on t
black hole horizon. All the remaining equations in this se
tion are valid only atr 5r b . The unit normal to the horizon
is

t̂a5
1

Au2 ḟ f 8u
@ ḟ ¹av1 f 8¹ar # and

t̂a5
1

Au2 ḟ f 8u
F f 8S ]

]v
D a

1 ḟ S ]

]r
D aG . ~A22!

The constantr surfaces are the preferred cross sections of
horizon and the unit space-like normalr̂ a to these cross sec
tions is

r̂ a5
1

Au2 ḟ f 8u
@2 ḟ ¹av1 f 8¹ar # and

r̂ a5
1

Au2 ḟ f 8u
F f 8S ]

]v
D a

2 ḟ S ]

]r
D aG .

~A23!

The properly rescaled null normals are

,a5
2u f 8u

Au2 ḟ f 8u
S ]

]v
D a

and na5
2 ḟ

Au2 ḟ f 8u
S ]

]r
D a

.

~A24!

The lapse function corresponding to the radial coordinatr,
which in this case is also the area radius, is given by

Nr5U ḟ

2 f 8
U1/2

5A GṀ

u12Lr 2u
~A25!

and thus the properly rescaled vector field corresponding
the radial coordinater is to

a5Nr,
a5(]/]v)a.

To calculate the flux law, let us first computeTabt̂
a,b:

Tabt̂
a,b5S 2Ṁ

r 2 D u f 8u

Au2 ḟ f 8u
•

2u f 8u

Au2 ḟ f 8u
5

f 8

r
5

12Lr 2

r 2
.

~A26!

Therefore, the matter flux across the dynamical horizon

F matter
(r ) 5E

DH
NrTabt̂

a,bd3V5
1

8pG
E

DH
S 1

r 2
2L D drd2V

~A27!

and the mass function on the horizon is
0-23
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Et0~r !5
r

2G
2

Lr 3

6G
5M ~v !, ~A28!

whence, as expected, the infinitesimal form of the first l
takes the form~5.10!.

APPENDIX B: TIME-LIKE ANALOGS OF DYNAMICAL
HORIZONS

In the analysis presented in this paper, the space-like c
acter of the dynamical horizon played a crucial role. Ho
ever, as we saw in Appendix A 2, the time-like case c
occur in cosmological contexts. We do not expect the ma
or the gravitational fluxes to be generally positive definite
this case whence, in particular, the topology of cross sect
need not be restricted. However, for simplicity of presen
tion, we shall consider only the case of spherical topolo
the generalization to higher genus cross sections is obvi

Definition. A smooth, three-dimensional, time-like su
manifold H in a space-time is said to be atime-like dynami-
cal horizon if it is foliated by a family of space-like
2-spheres such that on each leaf, the expansionu (,) of a null
normal,a vanishes while the expansionu (n) of the other null
normalna is strictly negative.

The notation will follow the space-like case as much
possible. The main difference is thatr̂ a and t̂a now have
different meanings.r̂ a is no longer tangential toH, it is in-
stead the unit space-like vectornormal to H. Similarly, t̂a is
the unit time-like vectortangential to H and orthogonal to
the cross sections ofH. As before, the null normals are

,a5 t̂a1 r̂ a and na5 t̂a2 r̂ a. ~B1!

As one would expect, the time-like case involves ma
quantities which are analogues of their space-like coun
parts, usually withr̂ a and t̂a interchanged. These quantitie
will be denoted with primes.

What happens to the area increase law now? Lookin
the expressions for the expansions of the null normals,
can easily check that

Dat̂a5u (,)1u (n),0. ~B2!

This clearly shows that the area of the cross sectionsde-

creasesalong t̂a.
As in the space-like case, the analysis of the flux law w

be based on the constraint equations onH. In the time-like
case, the only difference in the constraint equations is a
change in the scalar constraint@compare with Eqs.~2.4! and
~2.5!#

HS8ª2R1K22KabKab516pGT̄abr̂
ar̂ b ~B3!

HV8
a
ªDb~Kab2Kqab!58pGT̄bcr̂ c qa

b , ~B4!

where, as in the main text,T̄ab is related to the matter stres
energyTab via T̄ab5Tab2(1/8pG)Lgab . Once again, we
focus our attention on the energy flux along the vectorj (t)

a
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5Nt,
a where the lapse functionNt is now tied to the choice

of a time coordinatet on H by the equation

Dat5Ntt̂a ~B5!

where level surfaces oft are the cross sections ofH and we
have the same rescaling freedom in the lapse as before.
expression for the matter energy flux alongj (t)

a is now given
by

F matter
(t)

ªE
DH

T̄abr̂
aj (r )

b d3V

5
1

16pG
E

DH
Nt~2R1K22KabKab

12t̂aDbPab!d3V, ~B6!

the only difference from the space-like being the differe
sign of the scalar curvature term.

Using the Gauss-Codacci equation relating the curvatu
of H andS,H leads to

2R52~Rab2Gab!t̂
at̂b52R̃1K̃22K̃abK̃

ab12Daa8a

~B7!

where

a8a5 t̂bDbt̂a2 t̂aDbt̂b. ~B8!

The momentum constraint is unchanged and so the flux
comes

F matter
(t)

ª

1

16pG
E

DH
Nt~2R̃1K̃22K̃abK̃ab1K22KabK

ab

22PabDat̂b12Dag8a!d3V, ~B9!

whereg8a5a8a1b8a andb8a5Kabt̂b2K t̂a.
The decomposition of the extrinsic curvaturesKab and

K̃ab proceeds exactly as before. However, the analogue
Eqs.~3.17! and ~3.16! now have some negative signs:

t̂aDat̂b52
D̃bNt

Nt

and ga5q̃b
agb5 t̂bDbt̂a2W̃a.

~B10!

The simplified flux equation then becomes

F matter
(t) 5

1

16pG
E

DH
Nt~2R̃2usu212uz8u2!d3V

~B11!

wherez8a is the analog ofza:

z8a5q̃abt̂c¹c,b . ~B12!

The area balance law now reads
0-24
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R1
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D 52E
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T̄abr̂

aj (t)
b d3V

2
1

16pG
E

DH
Nt$usu222uz8u2%d3V, ~B13!
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where r̂ a and za are space-like. Therefore, even though t
area decreases monotonically, neither the matter term no
geometrical terms on the right side have definite signs. T
is yet another illustration of the fact that the form of the ar
balance law~3.23! for dynamical horizons is very special.
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