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A detailed description of how black holes grow in full, nonlinear general relativity is presented. The starting
point is the notion oflynamical horizonsExpressions of fluxes of energy and angular momentum carried by
gravitational waves across these horizons are obtained. Fluxes are local and the energy flux is positive. A
change in the horizon area is related to these fluxes. A notion of angular momentum and energy is associated
with cross sections of the horizon and balance equations, analogous to those obtained by Bondi and Sachs at
null infinity, are derived. These in turn lead to generalizations of the first and second laws of black hole
mechanics. The relation between dynamical horizons and their asymptotic states—the isolated horizons—is
discussed briefly. The framework has potential applications to numerical, mathematical, astrophysical and
quantum general relativity.
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[. INTRODUCTION qualitative result; it does not provide an explicit formula for
the amount by which the area increases in physical situa-
The properties of stationary, 4-dimensional black holedions. Now, the first law of black hole mechanics,
have been well understood for quite some time. In the
Einstein-Maxwell theory, for example, the situation is aston- SE=(k/8mG)sa+04J, (1.1
ishingly simple: We know that there isumique4-parameter
family of stationary solutions and, furthermore, these solu-does relate the change in the area of an isolated horizon to
tions are known explicitly, in a closed form, given by the that in the energy and angular momentum, as the black hole
Kerr-Newman metrics and associated Maxwell fie[d$. makes a transition from one equilibrium state to a nearby
Large families of stationary but distorted black holes are alsmne. This suggests that there may well be a fully dynamical
known, where the distortion is caused by rings of matter andersion of Eq.(1.1) which relates the change in the black
magnetic fieldd?2]. Finally, a framework has recently been hole area to the energy and angular momentum fluxes, as the
introduced to probe properties of black holes which areblack hole makes a transition from a given state to one which
themselves in equilibrium but in space-times with nontrivialis far removed. Thus, we are naturally led to ask: Can the
dynamics in the exterior regidr3—5]. In particular, thisso-  results obtained in the isolated horizon framework be ex-
lated horizonframework enables one to assign mass and antended to fully dynamical situations?
gular momentum to black holes in terms of values of the Attractive as this possibility seems, one immediately en-
fields on the horizon itself, without any reference to infinity, counters a serious conceptual and technical problem. The
and has also led to a generalization of the zeroth and firsxpression requires, in particular, a precise notion of the flux
laws of black hole mechanid$,7]. of gravitational energy across the horizon. Already at null
However, in nature, black holes are rarely in equilibrium.infinity, the expression of the gravitational energy flux is
They grow by swallowing stars and galactic debris as well asubtle: one needs the framework developed by Bondi, Sachs,
electromagnetic and gravitational radiation. For such fullyNewman, Penrose and others to introduce a viable, gauge
dynamical black holes, essentially there has been only onivariant expression of this fluxt0—12. In the strong field
major result inexactgeneral relativity. This is the celebrated regime, there is no satisfactory generalization of this frame-
area theorem, proved by Hawking in the early 19[@&89]: if work and no satisfactory, gauge invariant notion of gravita-
matter satisfies the dominant energy condition, the area dfonal energy flux beyond perturbation theory. Thus, one ap-
the black hole event horizon can never decrease. This thepears to be stuck right at the start.
rem has been extremely influential because of its similarity Yet, there are at least two general considerations that sug-
with the second law of thermodynamics. However, it is agest that an extension of the first law to fully dynamical
situations should be possible. Consider a stellar collapse
leading to the formation of a black hole. At the end of the
*Electronic address: ashtekar@gravity.psu.edu process, one has a black hole and, from general physical
"Electronic address: badkri@aei.mpg.de considerations, one expects that the energy in the final black
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hole should equal the total matter plus gravitational energyrhus, given a region of space-time, one can tell whether or
that fell across the horizon. Thus, at least the total integratedot it admits dynamical horizons, without any knowledge of
flux across the horizon should be well defined. Indeed, ithe geometry and matter fields in the exterior region. Simi-
should equal the depletion of the energy in the asymptotidarly, given a specific 3-dimensional sub-manifold, one can
region, i.e., the difference between the Arnowitt-Deser-decide whether it is a dynamical horizon by examining
Misner (ADM) energy and the energy radiated across futurespace-time fields defined on it, without the knowledge of
null infinity. The second consideration involves the Penrosggeometry and matter fields away from the surface. By con-
inequalities which were motivated by cosmic censorshipstruction, the world tubes,y will provide examples of dy-
The ADM mass should be greater than or equal to half thenamical horizons which are most useful to numerical relativ-
radius of the apparent horizon on afpartia) Cauchy slice ity. However, using Hayward'd15] notion of trapping
[13]. (Special cases of this conjecture have been proved rédsoundaries, one can also associate with a generic evolving
cently[14].) Heuristically, the inequality leads us to think of black hole a more invariantly defined oanonicaldynami-
the apparent horizon radius as a measure of the mass in ital horizon. From a general conceptual viewpoint, it may
interior, whence one is led to conclude that the change in theeem more natural to restrict oneself just to these canonical
area is due to influx of energy. Thus, it is tempting to hopedynamical horizons. However, for “practical” applications,
that something special may happen at the surface of a blagkis would be too restrictive. For although these horizons do
hole enabling one to define the flux of energy and angulapet refer to global notions such as null infinity, they are
momentum across it, thereby giving a precise meaning teonetheless difficult to locate in a given space-time. A key
these physical expectations. . strength of the approach is that our analysis is not tied just to
The question then is this: how should we define the Suryem byt encompassedi dynamical horizons. In particular,
face of the black hole? The obvious candidate is the evenfe \jj pe able to introduce flux formulas and an integral
horizon. Unfortunately, this is not a viable possibility be- eneralization of the first lawd.1) which will hold on all

cause event horizons are extremel_y global and telemog'c.agynamical horizons, including the ones of interest to numeri-
Consider for example the gravitational collapse of a thmCal relativity

spherical shell. The event horizon first forms in the interior The paper is organized as follows. In Sec. Il we introduce

of the shell and then expands out. Thus, in the initial phaseth in definiti tivate th dit d lain th
it lies in a flat space-time region and expands iouantici- € main definitions, motivate the conditions and expiain the

pation that the shell will cross ,iteven though neither the '€lation to Hayward's trapping horizons. In Sec. Ill we de-
matter nor the gravitational radiation falls across it before V€ anarea balance lawrelating the change in the area of
hits the shell. Thus, one cannot hope to find a quasi-locaf"® dynamical horizon to the flux of matter energy and a pure
fully dynamical generalization of the first law using event 9eometrical, positive definite term. We then interpret the
horizons. However, there is an alternative, suggested by thgeometrical term as the flux of gravitational energy and show
strategy used routinely in numerical simulations of blackthat it satisfies the criteria one normally uses to establish the
hole formation or coalescence. There, one avoids the propdability of the Bondi flux formula at null infinity. Section IV
lems associated with the global and teleological nature of th#troduces the notion of angular momentum and Sec. V ex-
event horizon by locating apparent horizons at each timéends the area balance law using angular momentum consid-
during evolution® Can one then use apparent horizons to€rations to an integral form of the first law. Using strategies
obtain the desired generalization of Ef.1)? Now, apparent that have been successful in the isolated horizon framework,
horizons can and do jump during evolution. However, in allWe also introduce a definition of horizon energy and show
numerical simulations, there are epochs during which théhat it matches well with the flux formulas to provide an
world tube 7 traced out by apparent horizons is smooth.€nergy balance law analogous to that at null infinity, but now
The rough, intuitive idea is to use these world tubes as thé the strong field regime of dynamical horizons. While the
black hole surfaces across which energy and angular momeRorizon would be dynamical in the time dependent phase of
tum fluxes are to be calculated. black hole formation or soon after two black holes merge,
We will incorporate these heuristics in a precise notionON€ expects it to settle down and reach equilibrium at late
calleddynamical horizonsHowever, the definition will only ~times. Thus, one would expect isolated horizons to be the
involve conditions on a 3-surfackl, extracted from the asymptotic states of dynamical horizons. In Sec. VI we ex-
known properties of . In particular, the definition will not  Plore the relation between the two. Section VIl summarizes
make any reference to space-time foliations and apparent h§€ overall situation, suggests applications of dynamical ho-

rizons thereon. Indeed, the definition will be quasi-local.fizons to numerical, mathematical and quantum relativity
and lists problems in these areas whose resolution would

shed much new light on how black holes grow and settle

UIn this paper, the term “apparent horizon” is used in the sensedOWn to their final states. . o ,
employed in numerical relativity: it is the outermost marginally ~ 10 Preserve the flow of the discussion in the main paper,

trapped surface on a givefpartia) Cauchy slice. By contrast, SOMe issues have been postponed to the appendixes. Appen-
Hawking and Ellis[9] define an apparent horizon as the boundarydix A discusses the simplest explicit examples of dynamical
of a trapped region associated with the Cauchy sliee, of a  horizons and their passage to equilibrium. For completeness,
connected region through each point of which there passes an out#t Appendix B we discuss the time-like analogs of dynamical
trapped surface lying in the slige horizons which arise in cosmological contexts.
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The main results of this work were briefly reported in The first asks that the 2-surfaces which constitute the leaves
[16,17). Here we present the details, proofs and extensions dff the foliation be closed. This condition is necessary to en-

those results. sure the convergence of various integrals we will perform.
The second asks that the expansidgp, be strictly negative.
Il. DEFINITIONS AND THE METHOD This condition is quite weak because, in essence, it simply

) ) o ] o enables one to identifp® as the inward pointing null nor-
In this section we will introduce the basic definitions, ex- p,5/. Thus, ha® ) been positive, we would be in the white

plain in some detail the motivation behind them, discuss thg,yje situation rather than the black hole one. Nonetheless,
relation between dynamical horizons and closely related noge conditionis restrictive in a minor way: it rules out the

tions of trapping horizons introduced by Haywddb], and  jegenerate case in whidB ,, vanishes. As we will show
outline the main idea on which calculations in the subsequenigiow. the area of the trapped surfaces increasekif is

sections are based. negative and remains constant if it vanishes. Thus, by remov-
o o ing the degenerate case, we are basically ignoring the non-
A. Definition and motivation dynamical situation. One might consider intermediate dy-

Definition 1.A smooth, three-dimensional, space-like sub-namical situations in whict® ) vanishes on a portion of
manifold H in a space-timeM is said to be adynamical —€ach marginally trapped surface and is negative elsewhere.
horizonif it can be foliated by a family of closed 2-surfaces !N this case, the total area would still increase. Our main
such that, on each led the expansior® ;, of one null results will continue to be valid in these intermediate cases.

normal ¢2 vanishes and the expansiéh,, of the other null The third condition is thaH be space-like. Intuitively, it
normaln? is strictly negativé is clear that ifH were time-like, it would not be a boundary
Thus, basically a dynamical horizod is a space-like of a black hole region beca_luse light rays orig_inating Hbn
3-manifold which is foliated by closed, marginally trapped Would propagate on both sides of the space-time separated
2-surfaces. Note first that, in contrast to event horizons, dyPY H- S0, the non-triviality lies in the fact that this condition

namical horizons can be located quasi-locally; knowledge ofules out the possibility that could be null. To probe how
full space-time is not required. Thus, for example, while anuch of a restriction this is physically, let us proceed by

event horizon may well be developing in the room in whichdroPping the requirement th&t be space-like but keeping
you are now sittingn anticipation of a future gravitational the other conditions in Definition 1. Denote b a vector
collapse you can rest assured tha dynamical horizorhas f|e!d _vvh|ch is tangentlal td1, everywhere orthogonal to the .
everdeveloped in that room. Next, since event horizons ardoliation by marginally trapped surfaces and preserves this
defined as the future boundary of the causal past of futuréPliation. We can always choose the normalizatiorf dfand
null infinity, the notion is tied to asymptotically flat space- N* such thatt®n,=—2 andV?®=¢2—fn® for somef. Since
times. Being quasi-local, the notion of dynamical horizonsY-V=4f, it follows thatH is, respectively, space-like, null
does not refer to the asymptotic structure at all and is mearf2f time-like, depending on whethéris positive, zero or
ingful also in spatially compact space-time®n the other ~Nnegative. We will argue that under cpndltlons that capture the
hand, while in asymptotically flat space-times black holes ar@hysics we have in mind, generically would be non-
characterizecby event horizons, there is no one-to-one cor-N€gative. Let us begin by noting that the definition \6t
respondence between black holes and dynamical horizongnmediately —implies £,0)=0, whence, L0,
First of all, we expect thastationary black holes do not =f£,0 ). Therefore, the Raychaudhuri equation ¢8rim-
admit dynamical horizons because these space-times aPii€s
non-dynamical. In time dependent situations, if the dominant
energy condition holds and the space-time is asymptotically
predictable, dynamical horizons lie inside the event horizon.
However, in the interior of an expanding event horizon, theravhereo is the shear of®. Now, given the scenario we have
may be many dynamical horizons. Nonetheless, in the sende mind, it is physically reasonable to assume that the con-
made precise in Sec. Il B, under fairly general conditions ong/ergence® ,, of £# becomes negative as one moves along
can associate with each evolving black hole an outermost 01 to the interior of the marginally trapped surfaces, whence
canonical dynamical horizon. For conceptual reasons, it i€,0)<0. If matter satisfies the dominant energy condi-
natural to focus just on this canonical one. However, oution, the right side of2.1) is non-positive, whence we con-
results will apply toall dynamical horizons; indeed, it is this clude thaff is non-negative; as expected the time-like case is
fact that makes the framework powerful in practice, e.g., forruled out. Finally, as we will show in Sec. llI, if the flux of
applications to numerical relativity. energy acrossl is non-zero on any one leaf of the foliation
Apart from the requirement that be foliated by margin-  of H, the right side of Eq(2.1) cannot vanish identically on
ally trapped surfaces, the definition contains three conditionghat leaf. Thus, under the intended dynamical situatidns,
would be strictly positive somewhere on each leaf, whetice
would be space-like there. By requiring thdtbe space-like
2This notion of dynamical horizons is slightly more general than€verywhere we are ignoring the case in which portions of
that used in the Brief Reporfd6,17 where the foliation was fixed marginally trapped surfaces lie on a space-like horizon and
and the topology of the leaves of the foliation was required to bethe remainder on a null horizon. This case will be discussed
S elsewherg 18] but we will comment on how some of the

L0 )= — 0% — Rypt 2" (2.2
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main results are modified in this case. Finally, the assumptions pertaining to black holesone is likely to encounter
tion thatH is space-like also rules out situations in which thehorizons which satisfy both sets of conditions, i.e., lie in the
horizon reaches equilibrium and the energy flux across entirmtersectionof the two sets. In fact, since one expects the
cross sections vanishes. These will be considered in Sec. Vilegion to the immediate future of the dynamical horizon to
To summarize, apart from the possibility thdtmay be  be trapped, a stronger version 8f 0 <0 should be sat-

partially null as discussed separately in Sec. VI anfllBl,  jsfieq: if 72 is a future directed normal t5 and W® is any

for evolving black holes the conditions imposed in Definition A
. . . yector such thaW®r,<0, thenL,® ;) <0.
1 are natural and incorporate most of the physical situations The advantage of Definition 1 is that it refers only to the

we have in mind. The world tubes,, of apparent horizons intrinsic structure ofH, without any conditions on the evo-

resulting from “nice” foliations of numerically simulated uti elds in direct i
space-times will probably satisfy our conditions and qualify ution of f|e. S In directions transverse kb As we wilt see,
this makes it natural to analyze the structurddafising only

as dynamical horizongFor random foliations, the intuitive the constraintor initial valug equations. Reciprocally, Defi-

conditionL,0 () <0 may be violated, whence,, may well nition 2 has the advantage that it perntits to be space-like
be partially time-like) But the notion of dynamical horizons . .
or null. In a spherical collapse of a scalar field, for example,

appears to be more general in the sense that we do not know . . . .
. . . while H is useful only in the regions where the flux of the
of a result to the effect that given a dynamical horiztrthe ) . . .
. X . ) . scalar field energy acro$s’ is non-zeroH' is useful also in
space-time must admit a foliation for which cross sectigns : . i )
the region where it vanishes and the horizon becomes null.

of H are apparent horizongrather than just marginally e . .
trapped surfaces, which they certainly Jarginally, explicit é?fi )Sec. VI and the explicit examples discussed in Appen-

examples of dynamical horizons are provided by the Vaidya Finally, we recall Hayward'§15] notions related to a

metrics discussed in some detail in Appendix K. this case, trapbing boundary. Arapped reaionis a connected subset of
the topology of the cross sectio®is S? and the generic bping y. Arapp 9 :
space-time through each poipt of which there passes a

condition £,,0 ;)< 0 is satisfied in the dynamical black hole
region) Thus, overall, the requirements in the Definitions aredlosed trapped surfadsuch that® <0 and® ) <0). An

rather mild. In the remainder of this paper we will see thatlnextendabletrapped' regionv is a trap_ped region that cannot
the conditions are also sufficiently strong in the sense that?e extended. Arapping b(_)undarya'_r Is the boundary of an
the Definition has a rich variety of consequences. Inextendable trapped regidn Physically,T can be regarded

as a black hole region of the space-time afi, as the
surface of that black hole. To establish a desired property of
B. Hayward’s trapping horizons this surface, Hayward had to introduce a further technical

To capture the notion of a black hole without reference tonotlon: Alimit sectionof the trapping boundary is a smooth,

infinity, Hayward[15] constructed an ingenious quasi-local closed sub-manifold 0#T which can be obtained as a uni-

framework. Dynamical horizons are closely related to hisform limit of closed trapped surfaces lying i With these

notion of trapping horizons. In this section, we will clarify definitions at hand, Hayward showed that if a trapping

. . ! . boundary is smooth and foliated by limit sections, then the

the relation between the two. This discussion will be espe; . . ) .

. - . - following conditions hold on each leafi) The expansion of

cially useful to Sec. VI because trapping horizons provide a a . Db

. - . one of the null normal, say®, vanishes® ,,=0; (ii) the

natural arena for analyzing the transition at late times fromex ansion of the second null normal satisfes.<0- and
dynamical to isolated horizons. P ="

- . . : (i) £,®=<0. Thus, if we ignore the degenerate cases
3-n|13aer?i?(l)tllgnH2"Af:)lfitgljtl:a %lyiﬁ’ggzzpézgfgggoiﬁgr ;);ts(iz)a where equalities hold in the last two equations, the boundary
the expans',ion, of one future directed null nornfdlto the Is a F.OTH' In this_ sense then, generically, if the black hole is
foliation vanishes® ) =0; (i) the expansion of the other genuinely dynamical, the trapping boundaiy would be a

future directed null normah? is negative® (<O (iii) the dynamical horizon, and if it has reached equilibrium, it

directional derivative 0. alonané is nevative:r. 6 would be a weakly isolated horizdi®]. In the former case,
<0 © 9 9 =00 9T would represent the canonical dynamical horizon associ-

Here, condition(ii) captures the idea that’ is a future ated with the black hole under consideration.
horizon (i.e., of the black hole rather than white hole type
and condition(iii) encodes the idea that it is “outer” and
serves to distinguish black hole type horizons from certain In the next four sections of this paper, we will consider a
cosmological oneBl5] which are not ruled out by condition dynamical horizorH and explore its properties. H admits
(ii). more than one foliation by marginally trapped surfaces sat-

Our discussion of Sec. Il B shows thdt is either space- isfying Definition 1, we will just choose any one of them and
like or null, being null if and only if the shear of {2 as well  use it throughout our calculations. Our results will apply to
as the matter flux,,¢2¢® acrossH vanishes. Aspace-like  all such foliations. At appropriate places, we will comment
FOTH is a dynamical horizon on which the additional con-on the expressions which are foliation independent. Leaves
dition £, ® ;<0 holds. Similarly, a dynamical horizasat-  of the fixed foliation will be callectross sectionsf H.
isfying £,,0 ;<0 is a space-like FOTH. Thus, while neither  Let us begin by specifying notation. For simplicity, all
Definition implies the other, there is a large overlap betweemanifolds will be assumed to be smodite. C¥** with k
dynamical horizons and FOTHSs. In genedgnamicsitua- =3) and orientable and all fields will be assumed to be

C. Notation and strategy
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via ¢3:=72+r 2 andn?:=72—r 2 (so that¢®n,= — 2). This
convention will have to be modified in the discussion of
transition to equilibrium of Sec. VI.

A We first note an immediate consequence of the definition.
Since® =0 and® <0, it follows that

K =qabp ¢ l"‘ab 1
K=q Darb=§ Va(fb—nb)=—§(n)>0. (23)

Hence the areag of S increases monotonically alont?.
Thus the second law of black hole mechanics holdsHon
Our first task is to obtain an explicit expression for the
change of area.

Our main analysis is based on the fact that, siHces a
space-like surface, the Cauchy datg,{,K,,) on H must
satisfy the usual scalar and vector constraints

FIG. 1. H is a dynamical horizon, foliated by marginally trapped
surfacesS 72 is the unit time-like normal taH andr 2 the unit
space-like normal withirH to the foliations. AlthougtH is space-
like, motions along 2 can be regarded as time evolution with re-
spect to observers at infinity. In this respect, one can thinK af

He=R+K2— KK p=16mGTopr27® (2.9

H3=Dp(K¥®—Kg?*) =87GT**7, g7,

a hyperboloid in Minkowski space arfflas the intersection of the (2.9
hyperboloid with space-like planeld. joins on to a weakly isolated where
horizon A with null normal€?, at a cross sectio8, . 1

. . . . Tab=Tab— 5—= AGap (2.6)
smooth(i.e., C¥). The space-time metrig,, has signature woa gnG TR

(—,+,+,+) and its derivative operator will be denoted by .

v. The Riemamn tensor is defined byRucWs [T e O I e etions o entiely

— e — c _

=2V[a_VoyWe, the RiCcl tensor biRap:=Racy” and the sca straightforward: We will fix two cross sectior® andS, of

H, multiply Hg andH$ with appropriate lapse and shift fields

and integrate the result on a portichkHCH which is

1 bounded byS; andS,.

Rap— ERgab+Agab=87rGTab. (2.2 Remark.As noted in Sec. Il B, the notions of dynamical

horizons and FOTHSs are closely related and, in physically

(With these conventions, de Sitter space-time has a positiv@teresting situations involving evolving black holes, both
cosmological constant.) We assume thaf,, satisfies the sets of conditions will be satlsflod. However, there are key_
dominant energy conditiotalthough, as the reader can eas-differences between our analysis based on dynamlcal_ hori-
ily tell, several of the results will hold under weaker restric- 20NS and Hayward's analysja5] based on FOTHs. While
tions). To keep the discussion reasonably focussed, we wilPur analysis will be based on the standart13decomposi-
not consider gauge fields with non-zero charges on the horflon, Hayward's framework is based on &2 decomposi-
zon. Inclusion of these fields is not difficult but introduces ation- The 2+-2 framework is better suited for analyzing more
number of subtleties and complications which are irrelevangeneral horizons wherd is partially time-like and partially

for numerical relativity and astrophysics. They will be dis- null but has the disadvantage that it fails to make it mani-
cussed elsewhere. festly clear that the fields of interest are defined just by the

Geometry of the dynamical horizaH is pictorially rep- ~ horizon geometry and are independent of extensions used off

resented in Fig. 1. The unit normal kb will be denoted by H. In terms of_results, our final result on the topology of
~ath_ cross sections is the same as thatld|. However, results in

7% Gap7"7 =~ 1. The intrinsic metric and the extrinsic cur- "o "ot the paper are quite different. Specifically, our flux
vature of H are denoted byQap:=9apt7a™n and Kap  formulas are new, our discussion includes angular momen-
:=q5qiV, 74, respectivelyD is the derivative operator od  tum, our generalization of black hole mechanics is different,
compatible withg,,, Rap its Ricci tensor andr its scalar  and our definition of the horizon energy and balance laws are
curvature. The unit space-like vector orthogonalS@nd  new.

tangent toH is denoted by 2. Quantities intrinsic tdS will
be generally written with a tilde. Thus, the two-metric 8is lll. ENERGY FLUXES AND AREA BALANCE

Yab f‘gd Athe extrlosw. curvature OfSSH _'5~ Kab Let us now turn to the task of relating the change in area
:=Qa 0y Delg; the derivative operator onS(dap) IS D and o the flux of energy acrosgs. Along the way, we will estab-
its Ricci tensor isk,,. Finally, in the next four sections we lish that the topology of the cross sectid®sf H is severely
will fix the rescaling freedom in the choice of null normals restricted in the case whekh=0.

lar curvature byR:=g?"R,,. We will assume the field equa-
tions

104030-5
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A. Area increase and topology ofS

As is usual in general relativity, the notion of energy is
tied to a choice of a vector field. The definition of a dynami-

PHYSICAL REVIEW D 68, 104030(2003

R=2(Rap— Gap)Fr°=R+K2— K ,K2°+ 2D 0.
(3.7)

cal horizon provides a preferred direction field; that alongTransvecting the momentum constraint equation vxﬁgh

€2. To fix the proportionality factor, or the lapdé, let us

first introduce the area radil a function which is constant
on eachS and satisfiesg=47R2. Since we already know
that area is monotonically increasirfgjs a good coordinate

on H. Now, the 3-volumed®V on H can be decomposed as

d®v=|¢R| 'dRPV where ¢ denotes the gradient oH.

Therefore, as we will see, our calculations will simplify if we
chooseNg=|dR|. In this section we will make this simple

gives
r,D,P2=D_B2—P2D,r, (3.9
where

B:=Kr —Kr?. (3.9

choice, obtain an expression for the change in area and show

that the topology of the cross sectidhis severely restricted.
In Sec. Ill C we will generalize thisrea balance lawto
include a more general family of lapses.

Substituting the results of Egé3.7) and (3.9) into the inte-
grand of the right side of Eq3.2) yields

Since the area increase formula plays an important roleHg+ 2r ;H3 =R+ K?— K ,,K2P+ K2 — K ,,K2"—2P3"D 1
throughout the paper, we will provide a detailed derivation.

Fix two cross sectionS; andS, of H and denote bAH the

+2D,9% (3.10

portion ofH they bound. We are interested in calculating the

flux of energy associated WitE?R)z Nr{? acrossAH. We
denote the flux ofmatterenergy acrosaH by 7%, as

fﬁﬁgner‘: fAHTabAT ag?R)dsv- (3.1

By taking the appropriate combination (£.4) and (2.5 we
obtain

1 -
fganztter: 16WGJAHNR(HS+2raH®)d3V

= WJAHNR”H K2— K%K 4,
+2r,DpP2?)d3V (3.2
whereP2? is defined as
pab=KaP—K 2", (3.3

SinceH is foliated by compact 2-manifoldS, we can per-
form a 2+ 1 decomposition of various quantities b First,

where

y2i=a?+ B2, (3.11
For further simplification, let us bear in mind that we will
eventually use the key property that the cross sect®arse
marginally trapped surfaces, i.€=0. In terms of the
extrinsic curvature& 5, andK ., the expansion can be writ-
ten as

@(():K_Kabi: ai; b+R. (312
To recast the extrinsic curvature terms in E§.10 using
0, itis convenient to perform a decomposition of the two
extrinsic curvatures:

Rab: %Raab+§ab (3.13

Kab: Aaab+ Sab+ 2\7\/(an) + B?an y

(3.19

whereS,,, is the trace-free part & ., S,y is the trace-free

the Gauss-Codacci equation relating the space-time CUNV@5art of the projection oK, into S; W, is the projection of

ture to the intrinsic curvature dfl leads to
2Gapr 0= —R+K2—K,pK?® (3.9

wheregG,,, is the Einstein tensor ofH,q,;,), and the defini-
tion of the Riemann tensor gives

RabFan: - ZFaD[an]Fb: Daa’a+R2_RabRab

(3.9

where
a®:=rPD ra—rap,rb. (3.6)

Combining Eqgs(3.4) and(3.5), we can obtain a useful ex-
pression relating the scalar curvaturestband S

Kapr into S A:=2K,,02° andB:=K,,r2r°. Note thatS,,,

S,, andW, aretwo-dimensionatensors intrinsic to the cross

section S. Substituting the above decompositions in Eq.
(3.10 FR,.,and using Eq(3.12, we obtain

Hg+2r H3=R— 04p02°— 2W,W23— 2WAr°D, 1,

+ %(e)(®(€)+48)+2Da’ya (313
where o= S,p+ Sap IS the shear of the null vectd?= 72
+12, i.6. 0 ap=0a"0" Vil n— 2 0apd™ Vi€, . Our task in the
remainder of this calculation is to simplify the right side of
this equation.
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With this goal in mind, let us now turn our attention to the 7 is the Gauss invariant of the closed, orientable 2-manifold
vector y* defined in Eqgs(3.1), (3.6), and(3.9): S (Our choice of lapse was made to enable this step in the
A ~ . calculation) Substituting back in Eq(3.21) we obtain
2= al+ B2=rPDrd—raDyrP+ K3, —Kr,

A -
I(R;—Ry)= 1677@[ Tap— %gab) T af?R)d3V

=FbDbFa+\7\/a_®(g)Fa. (316) AH
Finally, it is convenient to re-express the acceleration term as
y P + LHNR{|0|2+ 2|¢|2d3v (3.23
r?Darp=(Ng) 'DpNg. (3.17) _
_ where we have used the definiti¢®.6) of T,,. The discus-
Then, Eq.(3.19 can be rewritten as sion of topology ofS is naturally divided in to three cases,
A~ ab a = . depending orithe sign of the cosmological constant.
Hst+2rgHy=R—0ap0"" =273+ 2D3{ Case 1 A>0. Now, since the stress energy tendgy, is
1 assumed to satisfy the dominant energy condition, the right
+ E®(€)(4K—3®€))_2FaDa®(€) side is manifestly positive definite. Since we already know

that area increases alom§, we haveR,—R;>0. Hence it
(3.19  follows thatZ must be positive, whence the closed, orient-
able 2-manifoldsS are necessarily topological 2-spheres and
where the vector?, tangent to the cross sections, is definedZ=8=. Equation(3.23 now becomes

as Rz—Rl_J (T A
2=+ DI Ng=§ 27 °V.¢,, . (3.19 2G  Jaul '@ G e

T3 3V

Equation(3.18 is completely general; it holds on any foli-

ated space-like surface. We now wish to use the fact that
surface of interest is in fact a dynamical horizon. Integrating
on the portionAH of the horizonH, using the fact that the =~ Case 2A=0. Now the right side of E(3.23) is neces-

cross sectionSare compact an® , vanishes, we are led to Sarily non-negative. Hence, the topologySis either that of
a remarkably simple result: a 2-sphergif the right side is positivior that of a 2-torusif

the right side vanishgsAs mentioned in Sec. Il C, this con-

+LJ Ng{|o]|2+ 2?1 d3V. (3.24
167G Jany T B

1 _ straint on topology was obtained by Haywditb] using a
fﬁgner:mf NR(R— 0ap0P = 242L5)d?V. 2+2 framework.

T JAH The torus topology can occur if and only T,,¢°, o,

(320 and/? all vanish everywhere oH. Going back to Eq(3.15),

Using the abbreviationkr|2:=o 4,02 and |{|?:=£,¢2, this ~ We conclude that the scalar curvatdteof S must also van-
can be rewritten as ish on every cross sectidnAlso, using the fact thaH is
space-like, it now follows from Eq(2.1) that in this case
- — b L,0 =0 everywhere ofd. Thus, in this case the dynami-
f NgRA®V = 16776[ Tap 2E(Rd°V cal horizon cannot be a FOTH. Furthermore, siflgg) o4,
AH AR andR,,¢® all vanish onH, the Raychaudhuri equation now
implies that£,®  also vanishes. These strong restrictions
+f Ngllo|?+2[¢]?}d®V. (3.2)  imply that this is a degenerate case. For such horizons, al-
AH though we know that the area must increase,(B@3) trivi-

This is the K tion we wer King to obtain ntit alizes whence we do not have a quantitative formula for the
IS 1S e Key equation we were Seeking o obtain quantitag , , ¢ by which the area increases. For generic dynamical
tive expression for the change in the horizon area in full

! . . Uhorizons, the topology i§? and the quantitative relation is
dynamic processes. It will have several important apphca-given by

tions. In the remainder of this section we will focus on the

first of these: its implications for the topology &f B ~ oAb 43
Let us first recall that the volume elemaiitV on H can 5G (Re— Ry)= AHTabT §RdV

be written asd®V=Ng'dRPV whered?V is the area ele-

ment onS. Therefore, the integral on the left-hand side be- 2 2 43

comes * 167G AHNR{|U| +2[{[7dV.

(3.29

3We thank J. Lewandowski for this observation. In view of these
(3.22 highly restrictive conditions, toroidal dynamical horizons appear to
be unrelated to the toroidal topology of cross sections of the event
HereR; andR, are the(geometrical radii of S; andS,; we  horizon discussed by Shapiro, Teukolsky, Winicour and others
have used the Gauss-Bonnet theorem in the second step; ang,2q.

~ R ~
f NRRd3V:f “dR § RAdV=T(R,—Ry).
AH Ry
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Case 3A<0. In this case there is no control on the sign g?R) energy in the gravitational radiation
of the right-hand side of Eq(3.23. Hence,a priori any
topology is permissible. Stationary solutions with quite gen-
eral topologies are known for black holes which are locally
asymptotically anti—de Sitter. Event horizons of these solu-
tions are the potential asymptotic states of these dynamical

1
Ry, — 2 243
fgrav'—l&.rGJAHNRﬂd +2|§| HdeV. (3.27

horizons in the distant future. While the interpretation is naturally suggested by the area
In the remainder of this paper we will restrict our detailed balance law(3.25), the key question is as follows: Is this
calculations to the case of 2-sphere topology. proposal physically viable? The purpose this section is to

Remark.The above considerations provide an interestingargue that the answer is in the affirmative in the sense that it
constraint on the topology of marginally trapped surfaces ifpasses the “standard” tests one uses to demonstrate the vi-
A=0. As it stands, the discussion is restricted to the topolability of the Bondi flux formula at null infinity.
ogy of cross sections of dynamical horizads However, it Gauge invarianceSince we did not have to introduce any
is straightforward to generalize these results. Consagr  structure, such as coordinates or tetrads, which is auxiliary to
3-manifold H, foliated by compact 2-surfacés Then, by the problem, the expression is obviously gauge invariant.
integrating(3.18 only on one leafS of the foliation (rather This is to be contrasted with definitions involving pseudo-

N . tensors or background fields.
than onAH), in place of Eq.(3.23 we obtain Positivity. The energy flux is manifestly non-negative. In

A the case of the Bondi flux, positivity played a key role in the
T7=167G J‘( Tab— —gab)}afbdzv early development of the gravitational radiation theory. It
S 87G was perhaps the most convincing evidence that gravitational
1 waves are not coordinate artifacts but cgohysicalenergy;
+ j«( |2+ 2[2]12= 50 (1) (4K =30 1)) as Bondi put it, “one can heat water with them.”
S 2 It is surprising that a simple, manifestly non-negative ex-
) pression can exist in the strong field regime of dynamical
+2raDa®(€)>d2V. (3.26  horizons. We did argue in Sec. | that, since the energy is lost
from the asymptotic region, one does expect an appropriately
) — o i defined notion of gravitational energy flux across the surface
Now, if one leafS, of the foliation is marginally trapped and of the black hole to be well defined and positive. But the way
if raDaG)(e)zO onS,, we conclude that the topology &, in which the details work out is quite subtle. For example,
must be that of & if A>0 and of aS* or aT?if A=0.T?  since the issue is that of controlling signs, one may be
is a degenerate case in the sense explained above. Note th@pted to conjecture that this positivity is a property of the
no assumption on the expansiéh,, of n® has been used black hole region where the expansién,, of the outgoing
here. normal is non-positive, i.e., of a definite sign. However, this
SinceH was arbitrary, we can also reach a conclusion orconjecture turns out to be false. To show this, let us carry out
the topology of any marginally trapped surfe®@ a space- the ana&/sis of Sec. lll A on a general, foliated space-like
time satisfying the dominant energy condition: eitt®is  surfaceH. We can still obtain Eq(3.18) but, as is clear from
topologically S? or T2 or its (first orde) deformation along Eq. (3.26), in place of theZ R of Eq. (3.27) the final ex-

any space-like, outward direction leads to a trapped surfac@ression would be o

(A space-like directionv® will be said to beoutward if

Va¢,>0.) In particular, then, if the topology is more com-

plicated, the surface cannot lie on a trapping boundary. This R) 1 5 , 1

is essentially Hawking'’s resul8]. Jagrav:=—16WGfAHNR |o®+2[¢]°+ 50)(4K=30)

B. Gravitational energy flux 4 orap ®(€)] FEY, (3.29
a . .
Let us now interpret the various terms appearing in the

area balance law. For simplicity of presentation, we will first

focus on the casd =0 and comment on thd #0 cases at o e ) _
the end. The key point is that ifH is not a dynamical horizon, the

The left side of Eq(3.25 provides us with the change in Sign of the last two terms cannot be controlled, not even
the horizon radius caused by the dynamical process undevhen H lies in the black hole region and is foliated by
consideration. Since the expansiop,) vanishes, this is also  trapped(rather than marginally trappedurfacesS. Thus,
the change in thélawking massis one moves from the Cross the positivity of #{, is a rather subtle property, not shared
sectionS, to S,. The first integral on the right side of this 1 3_surfaces which are foliated by non-trapped surfaces, nor
equation is the fluxF (), of matter energy associated with those which are foliated by trapped surfaces; one needs a
the vector fieldé(, . The second term is purely geometrical foliation precisely by marginally trapped surfaceEhus, the
and since it accompanies the term representing the matt@roperty is delicately matched to the definition of dynamical
energy flux, we propose to interpret it as the flﬁ)&fg‘v of  horizons. This is but one instance of the mysterious ability of
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Einstein’s equations to realize physical expectations through It is very surprising that there should be a meaningful
geometrical structures in completely unforeseen and subtlexpression for the gravitational energy flux in the strong field
ways? regime where gravitational waves can no longer be envis-

Locality. All fields used in it are defined by thimcal  aged as ripples on a flat space-time. Taken together, the prop-
geometrical structures on cross sectionglofThis is a non-  erties discussed above provide a strong support in favor of
trivial property, shared also by the Bondi-flux formula. How- the interpretation of EQ:3.27) as the¢ g)-energy flux carried
ever, it is not shared in other contexts. For example, théy gravitational waves into the portiahH of the dynamical
proof of the positive energy theorem by Wittg21] provides  horizon. Nonetheless, it is important to continue to think of
a positive definite energy density on Cauchy surfaces. Buhew criteria and make sure that E§.27) passes these tests.
since it is obtained by solving an elliptic equation with ap- For instance, in physically reasonable, stationary, vacuum
propriate boundary conditions at infinity, this energy densitysolutions to Einstein’s equations, one would expect that the
is a highly non-local function of geometry. Locality G?grg\, flux should vanish. However, on dynamical horizons the area
enables us to associate it with the energy of gravitationainust increase. Thus, one is led to conjecture that these space-
waves instantaneously falling across any cross se&ion times do not admit dynamical horizons. While special cases

Vanishing in spherical symmetr¥he fourth criterion is  of this conjecture have been proved, a general proof is still
that the flux should vanish in presence of spherical symmetacking.
try. Suppose the cross sectiofof H are spherically sym- So far, we have set the cosmological constarto zero.
metric. Since the only spherically symmetric vector field andeyen whenA is non-zero, it seems natural to continue to
#ir:l%es-f(rree,:sgc;nnéigga:ng tensor field on a 2-sphere are the querpret(s.zn_ as the¢ (g, energy flux of carried by gravita-

1 Cab : ) o tional waves into the portiodH of the dynamical horizon.

Relation to perturbation theorylhe fifth criterion comes  yo\vever, now there is an additional, purely geometrical con-
from perturbation theory. One can envisage a situation ifip tion to the area change of E€B.24 coming from the
which the dynamical horizon is, in an appropriate physicalosmological repulsion or attraction induced by the cosmo-
senseweaklydynamical. In this case, it can be regarded as gqic| constant. IfA is positive, the area of the cross sec-
perturbation of a non-expanding horizf8i (see Sec. VLIt yiong s of H would continue to grow just because of the
is then natural to ask if in this case the gravitational ﬂuxcosmological expansion even when there is no flux of gravi-
(3.27) reduces to the expression derived from perturbationiional or matter energy acrodd, while if A is negative,
theory off Kerr horizons. The answer is in the affirmative. i \\ould decrease.
_ Balance law.The Bondi-Sachs energy flux also has the " 14 concjude this section, we will comment on some issues
important property that there islacally defined notion of \q|51e4 to the physical interpretation of the flux formula.
the Bondl—energ)E(C) a;qulated with any 2-Sphere Cross ot first that the flux refers togpecificvector fieldgf‘R) and
sectionC of future null |r)f|n|ty and the dlfferencE(C?) measures the change in the Hawking mass associated with
N E(.CZ.) gquals the Bondi-Sachs flux through the p"”"?” 0fthe cross sections. This need not be a good measure of the
null infinity bounded byC, and C,. Does the expression . qical mass in presence of angular momentsee Sec.
(3.27) share this property? The answer is in the affirmativey/y” gecondly, one can envisage a situation in which the por-
as noted in the beginning of this section, the integrated ﬂ“’fion AH bounded byS, andS, of a dynamical horizon ad-

is precisely the difference between theally definedHawk- o o distinct foliations in the both of which share the
ing mass associated with the cross section. In Sec. V we W'Fgavessl andS,, or, a situation in which two distinct dy-

extend these considerations to include angular momentum. ., horizondd, andH , share the 2-spher&; ands,.

Hamiltonian interp_retation.Fina_IIy, the Bondi-S_achs €N |n these cases, the observer fiefgls are distinct. Although
ergy flux has an additional attractive property Wh'.Ch suppo.rtﬁhe total fluxes corresponding to the two fields do agree—
its interpretation, although it is not a direct, physical, V|ab|l—they are given by the change in horizon radius as one goes

ity criterion: Using a Hamiltonian framework, one can show . . N
that it is the generator of a Bondi-Metzner-Sachs time_from S, to S,—the split between the matter contribution and

translation on the aravitational bhase s 12, Does the the gravitational wave contribution would be different. This
S 9 P ; PEIE12]. is not surprising because we are in a strong field region and
gravitational flux(3.27) also enjoy this property? Recently,

; .7’ it is not inappropriate for two observers to disagree on how
i%ogf]ﬁ?rrr:(;til?/?rhursEZZ] have shown that the answer is in much energy is contained in matter and how much in gravi-

tational radiation. Indeed priori, what is surprising is that
the sum of the two contributions is the same, i.e., there is an

area balance law. Nonetheless, while interpreting fluxes, the

4
c Sorrr:e of tl?le weltlr-]knowr?tfexamples atrﬁ the well i)ose(i.nless gf thEct that the energy refers to specific observers defineld on
auchy problem, fne posiive energy theorems at spatial and nujy 5, important caveat that should be kept in mind.

infinit itivity of the Bondi flux at null infinity, and mor n- - . . .
Y, positivity of the Bondi flux at null i y, and more open- Next, let us consider the various terms in the integrand of
ended issues such as cosmic censorship and Penrose inequalities.

2
Not only did the list of considerations that led Einstein to his field our flux formula(3.27). The presence of the shear tehrl

equations not include these issues but even the physical relevangg®mMs natural from one’s expectations based on perturbation

of most of them was not appreciated for decades after the discovetryrﬂeory at the event horizon of the Kerr fam[193,24. What

of general relativity. Yet, quite mysteriously, the field equations in-about the ternj|2? Since*=q3"r™V,,¢,,, this term could
corporate them correctly. arise only becausH is space-like rather than null: On a null
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surface, the ana|og (Bﬁ is para||e| toea, whence the ana|0g Thus, although the Iapse itself will .in general be a function
of 2 vanishes identically. To bring out this point, let us of all three coordinates oA, therelative factorbetween any
consider a more general case than the one considered in tHi¥O Permissible lapses can be a function only ofhis is the
paper and allow the cross sectioBsto lie on a horizon simplest generalization that seems appropriate to the transi-
which is partially null and partially space-like. Then, using ation from isolated to dynamical horizons. _
2+2 formulation used by Hayward, one can conclude that Given a lapseN,, following the terminology used in the
flux on the null portion is giverentirely by the term|o]|?2 isolated horizon framework, the resulting vector fields by
[18]. However, on the space-like portion, the tefgt? does  £(n*=Nr{® will be said to bepermissible Thus, £{r) used in
not in general vanish. Indeed, on a dynamical horizon, itSec. lll Ais just one permissible vector field whicon di-
cannotvanish in presence of rotation: the angular momen.mensional groundshappens to be the convenient one to re-
tum is given by the integral of?¢,, where¢? is the rota- late the chang&®,—R; in the horizon radius to the flux of
tional symmetry. energy acrosdH. By repeating the calculation of Sec. lll A,
it is easy to arrive at a generalization of E8.24) for any
permissible vector field
C. Generalization of the area balance law

r r — .

At future null infinity 17, there is a well-defined, 2= =f TanT 20 A3V
. ) . . 2G 2G AH

4-dimensional translation sub-group of the asymptotic

symmetry group(called the Bondi-Metzner-Sachs group 1

and there is a well-defined notion of energy associated with + 16776,[ N{|o|?+2[¢|%d3V, (3.30

each time translation ifi. Observers following these vector AH

flel_ds can be physically interpreted as the asymptotlcally INYhere the constants;, andr, are values the function as-
ertial ones. In Secs. Il A and Il B, we associated energ

Ysumes on the fixed cross sectid®sandS,. (Note, inciden-
with observers following the vector fielddgf?. Are there B S ( '

| famili ith which imilar] . tally, that the lapséN, may well vanish on open regions. It
more general families with which we can simiiarly assign a,y,5y 150 be negative in which case we would hayer.)
notion of energy?

. . . , Thi lizati f Eq.3.23 will ful i . VL
At the dynamical horizorH we are in the strong field 's generalization of E¢3.23 will be useful in Sec

. h th ) I . | f hori Here, we simply note a special case of physical interest:
regime, whence there Is no longer a universal group ot NOr _ 4 »p2 1 this case, Eq(3.30 directly gives us a formula

zon symmetries. But we can build intu_ition from.the well- for the change in the horizon aréather than in the horizon
developed theory of weakly isolated horizaks|n this case, rfadius)

to begin with, one encounters three universality classes o
horizon symmetrie§7]. Physically, the most interesting case
is that of type Il isolated horizons in which the symmetry
group is 2-dimensional, with generatac?+ Q) ¢?, where
c,Q) are constants, whilé?, ¢? are tangential t&A and gen-
erate a combination of a time translation and a rotation. In
globally stationary, axi-symmetric space-times, these are re-

strictions to_A of the two Killing fields but generically they Note, however, that, as is expected from dimensional rea-
are defined just at the horizon. Nonetheless, they can be usefg  the right-hand side doast have the interpretation of
very effectively in the Hamiltonian framework to introduce the energy flux acrossH even in the casd =0. However
the notion of the horizon energy and angular momentum. FoLj e hiack hole thermodynamics tells us that freading
dynamical horizon4d, it is natural to extend these notions in contribution to thg entropy is given bya/4¢2,, one may

Pl

such a way that wheH reaches equilibrium and becomes an, ish to interpret the right-hand side as tleatropy flux
isolated horizon, the dynamical horizon framework tends t%hroughAH (in thei=1 units

the isolated horizon one. An obvious strategy is to make the Remark.In the definition of a dynamical horizon, we re-

coef_ﬂmentsc_and Q dynamical, i.e.,R dependent. In _th|s quired® ;, <0 which guaranteed thabR|#0, i.e., thatR
section we will focus only on the analog of the coefficient is a good coordinate od. This was used in the derivation of
;ﬁ;lé%ngfrg r\ZitI? tlljoenczfrigﬁg]éllj??rl]uggg (\)/f fotation and the (3.23 in Sec. Il A. However, we can weaken the definition
Let us then generalize our vector fielbg{? as follows: and E.ISk only tha® ;) <0. In th_|s case, we can introduce a
use, in place oR, a general functiom(R). Recall first that function x such that the marginally trapped 2-surfaces are
1N P! » 8 g L labeled byx=const andDx|# 0 and repeat the calculations
Nr satisfiesD,R=Ngr, S0 that we haviNgd®V=dRdV.  of Sec, 1 A to obtain the analog of E¢3.23 in whichR is
Therefore, for more general functiong¢R) which are con-  replaced by. We can then note that althoughneed not be
stant on each le&$ of the foliation, we are led to choo$¢: 3 good coordinate oHl, it is nonetheless a smooth function

a a
4G 4G

1 —
— ~agb 43
ZJAHTabT g(r)d V

Aan ~ 2 243
* 320G | Nrlol T 21T dV. (3.3

throughD,r =N, ,. If we use a different radial functior!, of the coordinatex whence, the calculation of this section
then the lapse is rescaled according to the relation can be repeated to obtain the area balaiBc23). Thus, the
) area balance law holds also under the weaker assumption
_dr 0)=<0. If ®;)>0, we can reverse the argument to get an
N, =——N,. (3.29 : ;
dr area decrease law appropriate for white holes.
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IV. ANGULAR MOMENTUM (i) Interpretation of{?. We can use the expression 3
) AR ) -
To obtain the integral version of the first la@.1), we to interpret the vector field® which features in the gravita-

. ' A ' if 3o =
need the notion of angular momentum and angular momentl(zlnal energy fluxZ®=0 onH if and only if JS=0 for every
tum flux. It turns out that the angular momentum analysis i<~ Which is divergence-fregi.e. preserves the volume ele-

rather straightforward and is, in fact, applicable to an arbimeny onsS. , ,
trary space-like hypersurface. Fany vector field ¢ on H (i) Relation to other expressioniset us restrict ourselves

which is tangential to all the cross sectioBsf H. Contract [0 Vector fieldsy® which are divergence-free on each cross
both sides 0f2.5) with ¢?. Integrate the resulting equation S€ctionS. The angular momenturd$ associated with these

the identity £,0.p=2D a¢p) to obtain tion S of H and consider an asymptotically flat, partial

Cauchy surfac® in the space-time\ with inner boundary

S. Denote its Cauchy data byTE(b,Kab). Then, we can ex-
tend¢? to a vector fieldp?® which is an asymptotic rotational

symmetry of M,q,,) and repeat the above calculation by
v (4.1 replacingAH with M. The surface integral at infinity is then
the standard ADM angular momentum associated with
The angular momentum assignedSds
where, as beforep2P:=K3°— K qP. (Note that we could re-
placeT,, with T,, becauseay,,r2¢°=0. Thus the cosmo-
logical constant plays no role in this sectiph.is natural to o L jg K. o1 P2y 4.9
identify the surface integrals with the generalized angular S 8wG Js ab® ' '
momentumJ® associated with cross sectioBsand set

L K ap@?r bo|ZV—L K ape?r Pd?V
87G Js, *° 8nG Js,

:f TanT 2"+ ! Pa°L,q
AH ab 167TG ¢Hab

1

e Kape?r Pd2V, (4.2) wherer? is the unit normal t&Sin M. By expressind,, and
o S I

Kap in terms ofV,€, andVany, it is straightforward to show

where we have chosen the overall sign to ensure compatibif’at J§=J¢. Thus, given a divergence-freg on § the
ity with conventions normally used in the asymptotically flat "tion of angular momentum associated wéits unambigu-

context. The term “generalized” emphasizes the fact that th@Us. Finally, if ¢* is the restriction toS of a space-time
vector field? need not be an axial Killing field even @& Killing vector defined in a neighborhood &f one can define

Jg=—

it only has to be tangential to our cross sections. the angular momentum via Komar integral and it agrees with
The flux of this angular momentum due to matter fields‘]g-___ ) _
and gravitational waves are, respectively, (iii) Dependence o?. In the above calculation we did

not assume thap? is a Killing field on H. However, J¢

A Id represent thphysicalangular momentum at the “in-
¢ o — | Tapr 26PdV, a3 " -
J mater LH an™ ¢ 43 sant' s only if ¢? is a Killing field of at least §,0ay).

Supposep? has this property both 08, andS,, but not on

. ab 3 all of AH. Still, because of the balance law.1), the total

g 160G AHP LoGapd”V, (4.4 flux is well defined and is in fact independent of the way in
which ¢? is extended offS; andS,.

and we get the balance equation (iv) Gauge fie_IdsWe jndicated ip Sec. IIC Fhat there are
subtleties associated with gauge fields. Considerations of an-
ng_ng:jrf]aneﬁ' T grav- (4.5 gular momentum illustrate this point. In the above treatment,

we just interpretedeHTab} 25°d3V as the flux of matter
As expected, ife® is a Killing vector of the three-metric angular momentum acrosgsH. But a priori there is some
Jab, then the gravitational angular momentum flux vanishesfreedom to shuffle terms between the 3-dimensional flux in-
J§=0. For the discussion of the integral version of the firsttegrals and the 2-dimensional “angular momentum charge”
law, it is convenient to introduce trengular momentum cur-  integrals. Our choice ensures that, as at infinity, the 2-sphere
rent angular momentum charge integrdls depend only on geo-
metric fields and not on matter. However, Hamiltonian con-
j€=—Kapedr P (4.6)  siderations often show that, in order for angular momentum
to be the generator of rotations on the phase space, such a
so that the angular momentum formula becomes reshuffling is in fact necessary in the case of gauge fields.
Thus, the angular momentum charge integral can in fact de-
1 ﬁgj(pdzv 4.7 pend on gauge fields as we{ln the case of isolated hori-
87G Js ' ' zons, this is demonstrated in detailifi.) The required shuf-
fling will not affect any of the equations but would change
We conclude with four remarks. interpretations of terms in presence of gauge matter fields.

3g=
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V. INTEGRAL VERSION OF THE FIRST LAW AND THE
HORIZON MASS

This section is divided into three parts. In the first we
obtain an integral generalization of the first laW1). In the

PHYSICAL REVIEW D 68, 104030(2003

Ky

87G

da=dEfm, (5.9

provided we define the effective surface gravT;yof gf‘,) by

second, we restrict ourselves to axisymmetric dynamical ho-

rizons and introduce, for each cross sect®ra canonical
notion of energy(which may be interpreted as the instanta-
neous magsand derive a balance law. In the third, we dis-
cuss the distinction between laws of “black hole mechanics’
and of “black hole thermodynamics.”

A. Generalization of the first law of black hole mechanics

Let us now combine the results of Secs. Ill and IV to
obtain thephysical process versioof the first law onH. As
in Sec. Il B, we will first consider the cask=0 and then

dr—

— dr

Ky where &G)=N (%= ﬁgﬁm. (5.5
Note that this rescaling freedom in surface gravity is com-
pletely analogous to the rescaling freedom which exists for
Killing horizons, or, more generally, isolated horizdi€s7].
There, on the horizo? can be rescaled by a constant and
surface gravity rescales by the same constant. The new fea-
ture in the present case is that we have the freedom to rescale
Nr{? and the surface gravity by fainction of the radius R
rather than just a constant. This is just what one would ex-

comment on the role played by the non-zero cosmologicapect in a dynamical situation sind®plays the role of time

constant.

alongH. Finally, note that the differentials appearing in Eq.

~ To begin with, let us ignore angular momentum and con<5 4) are theactual variationsof physical quantities along
sider the vector field() of Sec. Ill A. For each cross sec- the dynamical horizon due to an infinitesimal change'.in
tion Sof H, there is a well-defined notion of horizon energy This is to be contrasted with derivations of the first law based

E{R(S) (given just by the Hawking massBecause of the
influx of matter and gravitational energig® will change
by an amountAEéR =7 + 7 as we move from a
cross sectiors,; to another cross sectidy. Then, the infini-

tesimal form of Eq(3.25),

dR ;
%:dE R, (5.1

suggests that we defireffective surface gravityg associ-
ated with&(zy as

1

KRzzﬁ (5.2)
so that the infinitesimal expression is recast into the familial
form

wherea is the area of a generic cross sectiphhis conclu-
sion could also have been reached from E331)]. For a
general choice of the radial functionthe infinitesimal ver-
sion of Eq.(3.30 yields a generalized first la&w

KR
G

da=dE{® (5.3

8

lo—rq
2G

_ 7 atby3
—fAHTabT t°d°V + 167G

[, Nellaf+ 2l -
AH

on phase space variation$,7,25, where one compares
quantities defined on distingitsolated or Killing horizons
belonging to distinct space-times. Since quantities defined in
distinct equilibrium configurations are compared, there one
obtains a passive form of the first law. By contrast, Eg4)

is an active or gphysical process versioaf the first law.
Hence Eq.(3.30 is a finite versionof the first law in the
absence of rotation. As in the case of isolated horiZ@is
even in the absence of rotation, there are many permissible
vector fields and each gives rise to a first law.

Next, let us include rotation. As discussed in Sec. Il C,
the general strategy is motivated by the isolated horizon
framework. Pick a vector fielgp? on H such thate? is tan-
gent to the cross sections éf, has closed orbits and has
affine length 27.% (At this point, ¢® need not be a Killing
vector ofq,y,.) The isolated horizons considerations suggest
that it is now appropriate to replatgt?r) by vector fieldst?
which are of the form®?=N,€2—Q ¢? whereN, is a permis-
sible lapse associated with a radial functioand () an ar-
bitrary function ofR. (On an isolated horizon, the analogs of
these two fields are constantSuch vector fields? will be
said to bepermissible.Let us now evaluate the quantity

S anTap7 2t°d®V by taking a linear combination of Egs.
(3.30 and(4.1). We obtain

1 Q;
+— 39 Qjed?v— 39 Qj*"dzv—f dQ 3gj<°d2v
87G S, Sy Qq S

1

167G .6

fAHQPab£¢qabd3V.

SEé( has the dimension of energy onlyrithas the same dimension BsIn the following discussion, we will assume this to be the case.
5More precisely,e® is a globally defined Killing field forsomemetric—not necessarily the physical org,—on each 2-sphere cross

sectionS of H.
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These are our balance equations in the presence of angular ro—ry o o

momentumThere are infinitely many balance equations be- °c %( é QjedV— é Qj?dVv

cause there are infinitely many permissible vector fields. In =2 St

Sec. V B we will show that when the horizon metdg, is Q, _ . .

axisymmetric, one can choose a preferred vector ft@ld —L) dQ fﬁsl ‘szV] =Es—Es . (5.9
1

(which is adapted to the Kerr time-translation Killing field in
a precise sensek-or this vector field, given a cross sectiéin Thus, if a suitable notion of horizon energ can be found,

we will providg an explicit expression of the enelﬁgg such _ the same equatiof5.6) can be used to obtain an energy
that the Iteft Sl?e of Eq(5.6) can be reexpressed as the dif- hajance equatio(6.7) similar to that of Bondi and Sachs, but
ferenceES"2 - ES"l , Whence we are led to a preferred balancenow at the dynamical horizomnd an integral generalization
equation: (5.9 of the active form of the first law of black hole mechan-
ics.

Finally, let us consider the case when the cosmological
constant is non-zero. Then, the integral version_of the first
law is given simply by replacing ., in Eq. (5.6) by T,p. In
the infinitesimal version, we now obtain

- 2 2\H3

- + =dE. .
8776[1 AR7]da+QdJ=dE (5.10

%?Egzhgg&%ww

1
- RJAHQOPab,C‘pqabdgv. (5.7 ) )

Thus, the only effect that a cosmological constant has is to
modify the expression of effective surface gravity. This is
completely analogous to what happens to the standard first
law on Killing or isolated horizons.

We conclude with two remarks.

Let us return to the general case considered in(Ed).
Assuming there is a well-defined notid#l of the horizon
energy at each cross section, with the right side of (B : o , .
its flux, we can now obtain the first law for mechanics for (1) More general permissible vector fieldSince we se-
dynamical horizons. Let us restrict ourselves to infinitesimal€ctéd the vector fields* using intuition derived from iso-

AH. Then, the three terms in the curly brackets combine td2t€d horizons, we were led to ask tdf/Ng and  be
give d(QJ)—JdQ and Eq.(5.6) reduces to functions only ofR. But it is rather easy to allow more gen-

eral N,Q) and thus extend the notion of permissible vector

fields. Sett?=N¢2—Q¢?, whereN is any smooth function
on H, not necessarily tied to a radial function Then, we
obtain an obvious generalization of the balance equation
(5.6). Furthermore, we can set the effective surface gravity to

be
This is just the familiar first law but now in the setting of

dynamical horizons. Since the differentials in this equation — 1 C1m o | —
are variations of physical quantities alohtj this can be Kf(g j; NNg “Rd V) KR (5.1
viewed as ghysical process versiaoof the first law of black

hole mechanics. Note that for each allowed choice of laps
N,, angular velocityQ(r) and vector fieldp? on H, we

obtain a permissible time vector field=N,€%— Q¢ anda S P i
corresponding first lawFor isolated horizongs,7] the situ- sponds to considering rigidly rotaing fieldS (where, how

S o S ever, the angular speed of rotation is allowed to vary as one
ation is similar; there are infinitely many permissible vector

. ; Lo - moves from one cross section to anojh@&ihis restriction is
fields and a first law for each of them. The main difference i )

that we are now in a dynamical situation af&8) tells us
what happens instantaneously on the dynamical hor{abn

dr Qdl= Ky
26 TdI=g5

da+QdJ=dE". (5.8

8nd again obtain the first lab.8) with «, replaced byx.
Our restriction on() being only a function ofR corre-

Snecessary to recover the familiar infinitesimal form of the
first law and also for the definition of the horizon energy in
he “i ; d by th 8N The fi Sec. V B. However, as far as the integral first law is con-
the “instant” represented Dy the cross sect h.. e first cerned, one can easily accommodate differential rotation by
Ia\_/v in [6,7] describes transitions from one equ|l|br|um Situ- allowing Q) to be a function also of angular coordinates.
ation to a qearby one and_ refers to the |sol'ated_ horizon as a (ii) The ® ;=<0 case.lt is easy to verify that the main
whole. Again, the generalization from that time mdependen}esult of this section goes through even if the condition

|S|tL_|tat|tonbconS|sdt§ é)f allo(;/vm? _the Eapse f_i”dl t?ﬁ anfgularfveG)(n)<o is weakened to allowd ,)<0. The reasoning is the
ocity to becom epenadent, 1.e., dynamical. Therelore, 1or o, e a5 that in the remark at the end of Sec. Ill.

vector fieldst? for which there is a satisfactory notion of
horizon energyE" (as fort®=t3 introduced in Sec. V B Eq.
(5.6) yields anintegral, physical process version generaliza-
tion of the familiar, differential first laws of isolated horizon Recall first the situation at null infinity. Given a time
mechanics translationt in the Bondi Metzner Sachs group and a cross

B. Horizon mass
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sectionS of 1", we can define Bondi enerds such that the trivially generalized. We can begin with distorted but non-
difference between the energy associated with any two crog&tating dynamical horizons, i.e., ones on which the angular
sections equals the Bondi flux through the regiodothat momentum current densit§?°K,r¢ vanishes. Again, it is
they bound[10—-12. On dynamical horizons, the right side appropriate to se2=0. Furthermore, from isolated horizon
of Eq. (5.6) provides us with the analog of the Bondi flux. It considerations, we know that the distortion doed affect
is natural to ask if there is alsosatisfactorynotion of en-  surface gravityf6]. Therefore we can again setR. Thus,
ergy E5 associated with each cross sect®rin this section, the discussion is reduced to that in the spherically symmetric
we will address this issue using dual considerations: findingase. Again, the isolated horizon framework supports the in-
preferred fields for which a mathematically viable notion of terpretation of the Hawking mass as the horizon mass in this
E§ existsand admits a satisfactory physical interpretation. case as well. The difference from spherical symmetry is that
We will first restrict ourselves to the case=0 and show now there may be gravitational radiation. Thus, in the dis-
that the both goals can be met for axisymmetric dynamicatorted case, the balance equation derived f(6r6) is more
horizons. general

Given any permissible vector field on H, we can just
solve the ordinary differential equation & Etsz_ Egl:j T,57 2tPd3V
dE' R_ dJ A
ﬁzaKr(R)"'Q_ (5.12 1

dR’
T 167G Jur

Nr(|o|?+2[¢[3)d%V.

derived from Eq.(5.8), and obtain an expressidgk on any
cross sectiors But in general the result will not be express- (5.19
ible in terms of geometric quantities defined locally &nf

it is, we will have a mathematically viable notion Bf. Our
second requirement is that the resultii§ should have a
direct physical interpretation.

The first example is provided by dynamical horizdthen
which the intrinsic metriay,y, of H is spherically symmetric.
Then, it is natural to choos@ =0 andR as the radial coor-
dinate so that the preferred vector field tls=Ng¢? with
effective surface gravitggr=1/2R. In this case, the integra-
tion of the flux yields

(However, because the angular momentum current vanishes,
the expression of? simplifies to:{2=02°Dyln Ng.)

Finally let us incorporate rotation. Physically, the most
interesting case is the one in whigl, is axisymmetric, with
¢? as its axial Killing vector(In what follows, we will work
with this fixed ¢ The dependence op® of various physi-
cal quantities such as the angular momentum will nhow be
dropped). To specify a preferred vector fiekd, we need to
specifyx, and(). The idea is to apply, on each cross section
S of H, the strategy used in the isolated horizon framework

R to select goreferredpermissible vector field :

Eg:%, (5.13 (i) Calculate the angular momentudy defined by the
axial Killing field ¢2. This provides us with a functiod(R)

where the integration constant has been chosen suclEhat On the horizorH.
tends to the isolated horizon mass when the matter flux van- (i) Sét
ishes and the horizon reaches equilibrium. Since we arrived

at this expression by integrating the differential equation o=k (R)= R*—4G2J)? 516
(5.8), and since the right side of this equation does not refer K = Kol ToR3JRA 1 4G22 :

to matter fields at all, the expression®§ is purely geomet-
ric. In fact,_ since _the expansndhm vanishes org, as note_d This is achieved by solving fodr/dRzZR?o(R), which
before,E§ is precisely the Hawking mass 6f In the spheri- determineg andN, ; and
cally symmetric case, this is a physically viable measure of (iii ) choose) such that
energy in the black hole; thus both our goals are met. Fur-

thermore, by restricting the balance I§56) to this case, we

2GJ
conclude 0=0.(R)i=———— (5.17)
R R R a6
t _pto ~ athy3 _
Es,~Es, fAHTabT vdv. 19 Ihis functional dependence &f andQ on R andJ is ex-

actly that of the Kerr family. That is, given a cross sect®n

Thus, Eq.(5.6) has a clearcut interpretation in this case: thewe choose?, which has the same effective surface gravity
flux of gravitational energy vanishes, and the increase irand angular velocity at that cross section as the surface grav-
EY(S) is fully accounted for by the matter fluk Eﬁgue,. Note ity and angular velocity thahetime-translation Killing field
that this was obtained assuming spherical symmely of  has on the horizon of the Kerr solution with the same area
(H,dap)- and angular momentum. Our task now is to integrate Eq.

Beyond spherical symmetry, the gravitational energy flux(5.12). For this, let us first recall the properties of the stan-
would not be zero, whence the balance equation will be nondard Smarr formula for the Kerr family:
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MRz X2 g |- WRFAGHE ) "]
( ’ )'_ 87TG 0 - 2GR . ( . 8) K

The functionM of two variablesR,J has the property that
under arbitrary variations of the two parameters the first law,
oM = (k/87G) sa+ ) 45J, is satisfied. Therefore, it follows
that

0.2

Eto(R):=M (R,J(R)) (5.19

satisfies the differential equatiof®.12. Furthermore, it is
the unique solution which reduces to the expresgioh3 in R
the case of spherical symmefnywhenJ(R)=0 identically].

This notion of horizon energy has some attractive proper-
ties. First, it depends only on geometrical fields on each 02
cross section and the dependence is local. Yet, as noted in
Sec. V A, thanks to the constraint part of Einstein’s equa-
tions, changes irE'e over finite regionsAH of H can be
related to the expected fluxes:

-04

to  =to _ (o) (ty)
ESZ a Esl B fgfav—’_ F matter (5.20

. t) . .
vyhere the_ flux of gravitational energ’;'/;r‘gv'ls local and posi- FIG. 2. A plot of the Kerr surface gravity, [from Eq.(5.16)]
tive definite[see Eq.(5.7)]. (The gravitational angular mo- as a function oR (with JG set equal to 1 for definitenesdhe part
mentum flux which, in general, has indeterminate sign vany <o is theKerr forbiddenside while k,>0 is theKerr allowed
ishes due to axisymmetjyFinally, as mentioned in Sec. lll, regime. SinceR increases monotonically with time, this graph
Booth and Fairhurst have recently shown that this expressioshows that the dynamical horizon always evolves toward the Kerr
of the dynamical horizon energy emerges from a systematiallowed region under time evolution.
Hamiltonian framework on space-timadq with a dynamical

horizonH as inner boundar22]. violated, i.e., 3G>R?. On thisS, we will have k,<0 [see
Note that, as a function of its angular momentum anqu_(5_16)] so that, with our prescription for constructitg,

C s . . t . . —
area, each cross sectifis assigned simply th&g whichit -\ ouid be negativéwhencer would be a decreasing func-
would have in the Kerr family. Physically, this is a simple tjon of R). But the prescription for selectint still goes

and attractive property. Furthermore, because of its close "8hrough and the dynamical horizon mass, given by
lation to the Kerr time translatiort,|s represents that “time

translation for which the horizon is at rest at the inst&rit a 212

VR +4G<J
Therefore, we will refer t&E(%) as themass functioron the M(R)=—>—— (5.22
(axisymmetri¢ dynamical horizonH and setE'e=M(R). 2GRy

(The overall strategy is the same as that used in the isolated, . , . . . . .
horizon framework[7].) Thus, among the infinitely many which is well-defined, positive. Let us first consider the case
first laws (5.8), there is’ a canénical one: whenT,, vanishes on the horizon. Then, because of axisym-
" ' metry, J is constant. On the other hand, the area always in-
— creases. What happens to surface gravity? In the Kerr al-
Ko R " . . .
dM=—=da+Q,dJ. (5.21 lowed region it is positive and in the Kerr forbidden region,
8mG negative. Are we driven toward the Kerr allowed region or

. . . . _ further away from it? A simple calculation yields
We conclude this section with a discussion of the possi-

bility that a dynamical horizon can have an excess of angular Jr\ >0 i R2<R§

momentum and violate the Kerr boutec GM? and the pos- ( 0)

sibility of extracting rotational energy from the black hdle.

In the usual Kerr solution, it is forbidden to violate the in-

equality J<GM?2. However, none of the equations we de- WhereR§~5.08SJG. This is also shown graphically in Fig.

rived rule out the possibility that a dynamical horizon may?2 as a plot of«,(R) versusR for a fixed value of]. There-

be formed with a cross sectidon which the Kerr limit is  fore, on the Kerr-forbidden side, under time evolutigrin-
creases whence the surface gravity also increases, i.e., be-
comes less negative, and we are pushed toward the extremal

"For the discussion that follows, it is convenient to note that in thePoint. When the radius increases so tRat>5.085G, sur-
Kerr family the limiting, extremal Kerr horizon results whei®2 face gravity starts decreasing but this is essentially irrelevant
=R?=2G?M?2. because we are now on the Kerr-allowed side where surface

0R|,<0 if R®>RZ. 5239
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gravity is always positivéand tends to zero as area tends to C. Mechanics versus thermodynamics

infinity, keepingJ fixed). These cpnsiderations sgggest thgt a I stationary space-times—and more generally, in the iso-
black hole may well be formed in the Kerr-forbidden region 5taq horizon framework—the horizon geometry is time in-

and then settle down to a Kerr hole as time evolves. dependent and this in particular implies that the surface grav-

Since we putT,,=0, this process can happen even Inity k is constant on the horizon. In the physical process

vacuum general relativity, e.g., in black hole mergers. At firstversion of the first lawdE=(x/87G)da+ QdJ, one con-
this seems counterintuitive because there are heuristic ar9riars transitions from a time independent stélte to a nearby

ments which suggest that the black hole cannot radiate MOlfime independent state. Conceptually, this is the same setting

angular momentum than energy, whence if it is initially as in laws of equilibrium thermodynamics. As in the case of

. 2 -
formed W'th‘].>GM , It would not be able to settle down to the first law of thermodynamics, the second term represents
a Kerr state in the distant future. However, what can happeﬂwechanical work done on the horizon while the first term

is the following. Initially, one may havd>GM? but there a\?é)es not; it is interpreted as the analog of the tdiSrep-
”}asr’] be etner?ylfrapf)(_aéj btehtwien. the blar(]:.kr?ole ar}dlithe tEe senting the “heat absorbed by the black hole.” The specific
of the potential” outside the horizon, which may fall In tN€ ¢4, of this term shows that, in infinitesimal processes in-
black hole, increasing its mass significantly .bUt keeplng ItS\/olving black holes, the change in surface gravity can be
angular momentum the Same, th_ereby moving its state t%nored just as the change in the temperature is ignored in
ward the Kerr allowed regime. Finally, in the presence of

(to) - -t the transitions envisaged by the first law.
matter, the flux? 2. need not be positive definite because gy contrast, in this paper we considered fully dynamical

if Q+0, the vector field is space-like at the horizon. In  sjtuations in which the horizon geometry can be very far
this case the in-falling matter could pour negative angulafrom being stationary. We obtained two closely related re-
momentum into the black hole, thereby decreasing its massults, the balance equatigf.7) and the integral generaliza-
Thus, it is rather surprising that there is no obvious ob-tion (5.9) of the first law. The first can be directly interpreted
struction for a dynamical horizon to be first formed in the as a statement of conservation of energy, in that it describes
Kerr forbidden region and yet fulfill the physical expectation how the energy of the dynamical horizon changes because of
that the final, equilibrium state should be a Kerr horizon. Wethe influx of matter and gravitational waves. The second is
should emphasize, however, that the issue of whether this in integral version of the first law of black hole mechanics
compatible with solutions to the constraint equations-ois  because it tells us how the changes in the characteristics of
yet to be analyzed. In physically interesting situations, therehe black hole—the area and the angular momentum—are
is a further very non-trivial restriction: one is interested only correlated with changes in its energy.
in those horizons that arise in the dynamical evolution of Let us focus on the second. The angular momentum term
physically appropriate initial data on Cauchy surfaces. Noneean again be interpreted as mechanical work done on the
theless, the fact that there is no obvious obstruction suggesksack hole. What about the term representing the change in
that the issue should be analyzed further. area? Is there again a close analogy with thermodynamics?
We conclude with two remarks. To analyze this issue, we must consider fullyorr
(i) The cosmological constarfbur discussion can be gen- equilibrium thermodynamical processes. Generically, the
eralized to the\ #0 case in a rather straightforward mannersystem does not have time to come to equilibrium in these
by replacing the current, Kerr expressions gf(R) and  processes and there is no canonical notion of its temperature.
Q,(R) by those from Kerr—de Sitter and Kerr—anti-de Sitter Therefore, while one can still interpret the differenEe
space-times. —E;—(work) as the heat absorbed by the system, in general
(ii) Physical relevance ofit In this section we introduced there is no longer a clean split of this term into a temperature
a family of physically motivated vector field§ and showed part and a change in entropy part. If the process is such that
that the corresponding energilts" is determined by fields the system remains close to equilibrium thrpughout the pro-
defined locally onS. However, this is by no means the only CEss, 1.€., can pe thought_qf as making continuous transitions
vector field with this property. To a certain extent, an analogyP€Ween a series of equilibrium states, then the difference
at null infinity is provided by the Bondi-Metzner-Sachs su- " be ex_pressed dsTd_S where the temperaturg varies
pertranslations: There is an infinite dimensional family ofSIOWly during the transition. _ ,
supertranslations, each associated with a local flux, a 'N€ Situation on dynamical horizons is analogBusn
2-sphere supermomentum integral, and a balance[ 1 general dynamical horizons, the time dependence can be
Although the supermomenta and their fluxes do carry physistrong, and physically one does not expect the t‘E@
cal information, it is the 4-momentum and its flux that is —Eg’—(work) to admit a natural split into a temperature

most important phys_lcz_ally and admits a direct f'md transparbart and a change in entropy part. Indeed, if the horizon
ent interpretation. Similarly, on dynamical horizons, of all

issibl tor fields® leading to local geometry is changing very rapidly, it cannot be considered to
p_ermlst5| '€ vector Tie a eading 1o local energy expres- e i, 4 near-equilibrium state whence it would be inappro-
sionsEg, it is likely thattg would be the most relevant one

from physical considerations. In particular, one expects that———

in the asymptotic future the dynamical horizon would tend to s point was emphasized by S. Fairhurst at the Black Hole IV
a Kerr isolated horizofi7,26] andEtS" would tend to the mass  \orkshop, held at Honey Harbor, Canada in May 2003 and at the
of that Kerr space-time. Penn State Decennial conference in June 2003.
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priate to associate an instantaneous physical temperature goiasi-local counting argument along the line§28] can be

it. How does one reconcile this with the fact that in Eg6)  constructed in this case.

the differences expressed aﬁ?rda? The resolution lies in

the fact thatx, is only the effectivesurface gravity. More VI. TRANSITION TO EQUILIBRIUM

precisely, in striking contrast to what happensduilibrium The conventions we used in all the calculations up to this
configurations represented by isolated horizonsgoes not  stage are well suited to the space-like characted.dfvhen
have thegeometricalinterpretation of surface gravity; as H reaches equilibrium, there is no longer a flux of matter or
shown in Sec. VI, it can only be interpreted as the 2-spher@ravitational energy across it whengeith appropriate nor-
average of a geometrical surface gravity associated with cefnalizatior) the shear and the matter flux vanishes. Equation

tain vector fields orH. This is a reflection of the limitation (2.1 now implies that the horizon must become null. Fur-
thermore, since the expansidd, vanishes, it is anon-

expanding horizorin the sense of5,6]. The goal of this

. . : section is to analyze the transition from a dynamical horizon
On_e WOU|d. expect such an mt_erpretatlon_ to be meaningf 0 a non-expanding one. In most physical situations, because

only if the time dependence is weak, i.e., on weakly-ut pack scattering, one can expect the equilibrium to be

dynamical horizons which can be regarded as perturbationgached only asymptotically, i.e., in the infinite fututEor

of isolated horizons. In this case, the geometrical Surfac‘éxceptions, see the examples discussed in Appendix A.

gravity [22] (see Sec. VIwould be approximately constant However, as we will see, the case of asymptotic equilibrium

and thus approximately equal its average, In this situa- is technically simpler but the subtleties involved in the

tion, one can regard the horizon as making continuous trarmatching at a finite time are more instructive.

sitions from one equilibrium state to another and then the

geometrical surface gravity appears to be a good analog of A. The non-expanding horizon

the (glowly varying temperature'. In @hese situations, the dy- et us then consider a 3-manifol, topologically S?

namical first law(5.6) can be S|mpI|_f|ed by keeplng_ term_s X R which is the union of a dynamical horizod and a

only up to second order in pterturlt)atlons away from 'SOlat'Orhon-expanding horizoa (see Fig. 1 Thus,H is space-like

[27]. In this approximationEg —Eg —(work) can be inter-  and foliated by a family of marginally trapped surfacgs

preted as J«xda” where x has a geometrical interpretation while A is null. We denote the past boundary &fby S,

as surface gravity. Hence, the simplified versio®8) can  which will be assumed to be tHaniform) future limit of the

be regarded as the integral version of the first law of blackcross section§ of H. We will assume thati) the space-time

hole thermodynamics metric g,, is C* for somek=2; (i) M is a Ck"* sub-
These considerations have interesting implications for thenanifold; and(iii) the pull-backq,, to M of g,;, admits an

notion of black hole entropy in dynamical situations. Be-axial Killing field ¢2.

cause the horizon area increases in dynamical processes, inLet us first consideA. It has the property that the expan-

view of the second law of thermodynamics it is tempting tosion of any of its null normals vanishes. However, to extract

identify a suitable multiple horizon area with entropy. In time physics, one needs to endow it with an additional structure.

independent situations, this interpretation is confirmed als@jince A is null, it follows that €2V, ¢P= «;¢® for any of its

by the first law(1.1) pecaus_e the term(87G)da is gnalo- null normals¢2. The extra structure consists of an equiva-

gous to the ternTdSin the first law of thermodynamics. The — i

above discussion suggests that the interpretation should col@nce clasg ¢] of null normals whose acceleration, or sur-

tinue to be valid also on weakly dynamical horizons. It isface gravity«¢, is constanton A, where€¢® and (¢')* are

therefore interesting to analyze if the black hole entropy deriequivalent if and only if {')2=c€2 wherec is a constant on

vations based on the counting of micro-states, such as thoge Such a choice caalwaysbe made but it is far from being

of [28], can be extended to this case. For highly dynamicalinique[5]. (The freedom is exhibited in Sec. VI BThe pair

situations, on the other hand, the situation is less clear. In they [€7), where[ €] satisfies this condition, definesnaakly
case of event horizons, for example, one would not expegto|ated horizon '

this formula for entropy to be meaningful because, as men- o, weakly isolated horizons, one can introduce the notion

tioned in Sec. I, an event horizon can be formed and grow iny energy and angular momentum such that the zeroth and

a flat space region in anticipation of a future gravitationalye first jaws of black hole mechanics hold. Not only is the
collapse. It is difficult to imagine how a quasi-local counting angular momentund¢ conserved as one would expect be-
of micro-states can account for this phenomenon. The case QL <o of “isolation “Abut its value turns out to be indepen-

highly dynamical horizons falls in-between. On the one " L . .

hand, the case for identification of entropy with a multiple ofdent of the spec!flc ch0|pe ¢t] made in the t.ransmon from
area is now much weaker than on weakly dynamical hori{"€ non-expanding horizon to the weakly isolated one. To
zons for reasons discussed above. On the other hand, so fine energy, one needs to Imt.ro_duce “lperm|55|ble” vector
what surprisingly, the termrg—r,)/2G of Eq. (5.9 can be ieldst? [6,7] and there_|s an mﬂmtg family of these. How-
expressed as (1485) [ x,da even in the fully dynamical re- €Vel on any weakly isolated horizom [¢]), one can
gime. Furthermore, since the growth of aisaelated to the ~Cchoose a canonical ong= £5— Q% such that the surface
energy flux across the horizon, it may well be possible that gravity of €5 and the angular velocit§), are determined by

that, in highly dynamical situationss, should not have a
direct interpretation of instantaneous, physical temperature
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the areaa, and the angular momentudf exactly as on the fact that V2 is parallel tor?, we haveV3=¢2—h?n? for
Kerr horizon. Again, when this choice is made, the value ofyyme smooth functiotb. SinceVaVa=4b2 and sinceVa

E? is independent of the specific equivalence clecho-  becomes null aS, it follows that b tends to zero as we
sen in the transition from non-expanding to weakly isolatedapproachS, alongH and stays zero oA. It is easy to check
horizons. In this sense, the angular momentum and the magsat the null fieldsf? and n? are related to our origina®
are properties of non-expanding horizons themselves, a!indna through?azb(ia andn@=b-1n2. Since barred fields
though in the intermediate stages in the calculation one ha&re smooth across,, it follows that i)a diverges andn®

o pick a weakly |solated. horizon S”“Ctufe- . tends to zero as we approa8j. SinceR is constant o\,
However, the vector fieldeg do vary with the choice of we also know thatiR and hencéNg andN, all go to zero as

admissible ¢ ]; they all just happen to lead to the same valuéwe approacts, alongH. In Sec. VI C we will show that they

of energy. In our case) is the limit of a dynamical horizon do so at the “same rate” as. Since¢@=b¢2, this will es-

H, whgnce itis ”at“ff"" to pick th,ag on 4 WhiCh arises 85 tablish that the fieldN, ¢2 used in the construction ¢f on H
the limit of the canonical vector fielt] on H (introduced in  44mits a limit t0Sy. [Throughout this discussiol, will be

Sec. V B. This will in turn fix the weakly isolated horizon ¢ |apse featuring in the expression of the canonical vector
structure omMA unlquely. field tg: Nrga_Q(R) (Pa on H]

B. An intermediate construction on the dynamical horizon C. Matching of physical quantities

To carry out the matching, we need to introduce some
additional structure orH. This structure will enable us to
take the limits t0S, and also clarify the meaning of the
“effective surface gravity” introduced in Sec. V A.

Throughout our calculations so far, we used the unit nor
mal 7 to H and the unit normaf? within H to the cross 1 -
sectionsS. In particular the null vectoré?,n?, which played $=-55 3§ Kape®r "d°V. (6.3
a dominant role throughout, are the sum and differences of s
these normals. This structure is well suited to the space—lik% . I . -
character ofH. However, when we consider the transition, ~> "9 the definition oK, and expanding the vectorS and
because is null, these fields either diverge or vanish as wef * in terms of¢® andn® which are well defined on all d¥1,
approacts,. Therefore, to study the limit to equilibrium, we We can rewrite the integrand as
need to rescale these fields suitably. b — & a

With this goal in mind, let us begin by introducing a Kap@r "= wa¢®—¢*Vanb, (6.9
smooth vector fieldv® which can be regarded as a smooth
(space-like extension toH of a suitable¢® on A. As dis-
cussed in Sec. VI A, we would liké? on A such that its

Let us begin by showing that the limit of the angular
momentumJg of cross section$ of H equals the angular
momentumJf defined omA. The angular momentum on any
cross sectiors of H is given by(4.2):

wherew, is the pull-back tovl of —n,V,¢P. Hence, using
the fact thatp? is divergence-free o, we obtain

surface gravityx, equals the Kerr valua,(a, ,Js). Such 1 —
vector fields always exist and the freedom in their choice is JE=— 87G iw# dev. (6.9
given by[5]

{7%(1+Ae"‘o”)?a 6.1) Since the integrand is smooth, the future limitXf as we

approachS, is obtained by just evaluating the right side on
if < +0 and Sy. This is precisely the angular momentulfj associated
© with the non-expanding horizof¥]. Thus, the angular mo-
—— mentum defined ol matches smoothly with that defined on
B2 62 y
Let us consider the energ;?tg on any cross sectioof H

tions A,B on A satisfy: £;A=0, £;B=0 and (1+A) and ELO on A_are fun_ctions of _the angular momentum and
~0,B>0. OnH, it is natural to require tha?® be parallel area and their form is determined by the functional depen-
N ' dence on area and angular momentum of the mass function
to r® and map cross sections bffto themselves. This con- in Kerr metrics. Since the area and angular momentum
dition determinesv? up to a rescaling by a function &  match smoothly, we are immediately led to the conclusion
Given any one of thes¥?, one can use the freedom avail- that Ets° matches smoothly witIE;O as S approaches,.
able in the choice of? on A to pick one that will match Finally, we will show that the vector fielf onH matches
smoothly withVV# on H. smoothly to a “permissible” vector fieldj on A. While
Fix one of these vector fieldg? and define muItipIes_na these fields do not have a direct physical significance as far
and ¢2 of €2 and n® via V@n,=—2 and ¢n,=—2. By @s final results are concerned, since enﬁ@yon H is asso-

construction, the barred fields are smoothMnUsing the  ciated with the vector field] and EX’ is associated with,

k,=0, wherev is the affine parameter @ and the func-
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for conceptual completeness, we need to verify that the two (i) Surface gravity.Following Booth and Fairhurdi27],
vector fields match &,. To explore the relation between the one can define surface gravity ¥fon H

two, the key idea is to use the property

PV 6.9
V 2 b a .

~ 1 ~
£Vfab: - §b2®(663b (66)

3 which matches smoothly with the surface gravity on A.
on H, where ¢, is the intrinsic area 2-form on the cross Furthermore, one can use it to restrict the freedom in the
sectionsS Integrating this equation on any one cross sectionghoice of V2 considerably by requiring that the 2-surface

usinga=4mR?, and the fact thatir/dR=2Rx, , we obtain  average ofcy be the effective surface graviwy, = «,, intro-
_ duced in Sec. VA

Rk,
47R

dr dv

fﬁsbz(a(;)dzv (6.7

fﬁ kyd2V=k,(R,J(R))ag (6.10
S

on H wherev is the affine parameter anr\Ea which takes
constant values on cross sectionsténSinceN,=|dr| and
1/2b=|dv|, it now follows that

whereag is the area of the cross secti@ Then the only
remaining freedom is that of a constant

Rk, Ve

87RK? Js

N
b

(6.1

1 _
b20 (5d2V =0. 6.9 1tcexp—3 f "Od”)va
wherev is the affine parameter alongandc a constant. In
the case when equilibrium is reached only asymptotically, all
these vector fields tend to the same null vector.

(i) Slowly evolving horizonsHeuristically, one expects
that near the transition surfa&g, H would become weakly
dynamical and can be regarded as a perturbed, non-
— expanding horizon. However, strictly, weakly dynamical ho-
smooth extension to a permissible vector fielfi=¢G  rizons can and should be defined in their own right because,
—Qop? onA, wheret§ has Kerr surface gravity, andQ,  as Appendix A shows, a dynamical horizon can have strong
is the Kerr angular velocity. Sinch,¢® has a smooth, no- time dependence arbitrarily close to the transition surface. A
where vanishing limit, one can always use the rescaling freedotion of “slowly evolving horizons” has already been in-

dom in Egs.(6.1) and (6.2 to choose the desireﬁg. The troduced in[27] and our introduction of the vector fieM?
matching of(), is guaranteed simply by setting,=Q,. was motivated by that analysis. However, in the calculation
Thus, there is a smooth vector field bhwhich is a permis- ~ of energy,[27] uses only aspace-likevector field analogous
sible evolution field om\ and agrees with the “canonicat]  to V2 in place of our null vectoN,¢2. Hence that analysis is
on H. Furthermore, this construction provides us with a ca-basedonly on the momentum constrairt2.5); the Hamil-
nonical weakly isolated horizon structuré,] on A. tonian constraini2.4) plays no role. This is probably be-

Thus, the results for transition to equilibrium at a finite causev®= ¢2—b?n? and, in the leading order approximation
time can be summarized as follows. Assuming that studied in[27], then? term can be neglected. However, the
=HUA is C¥**, and the rotational vector field® on M is  detailed relation between our discussion of passage to equi-
C, one finds thati) there is aC* matching of the angular |ibrium and that discussion of slowly evolving horizons is
momentumJg on H with J§ on A; (ii) there is a unique vyet to be understood.

weakly isolated horizon structur[e?o] on H such that the

Now, the second term admits a smooth limitSg whence
the limit of N, /b is also well defined(Furthermore, sincé
is positive andd i,y negative orH, it follows that the limit is
nowhere zerg.This in turn implies thatti=N,¢2—Q,¢?
also admits a well-defined limit t8,.

Our final task is to show that this vector field admits a

canonically chosen vector fiekd on H has aC* matching
with t§ on A; and (iii) the corresponding energie’sg’ and
E}® match in aC* manner.

If the horizon reaches equilibrium only asymptoticaNy,

VII. DISCUSSION

Let us begin with a brief summary. A dynamical horizon
is a space-like 3-manifold, foliated by 2-dimensional closed,
marginally trapped surfaceS (called cross sectiomnson

is space-like everywhere and becomes null only asymptotiwhich the expansion of the inward null normal is negative.
cally. In this case, we can just use the structure we alreadyhile the definition is so simple and conditions in it appear
have onH from Secs. Il to V to describe dynamics. The to be quite weak, dynamical horizons turned out to have

discussion of this section implies that the asymptotic statgemarkable properties. Specifically, we were abléitqro-

should be identified with the weakly isolated horizon
(A,[€]) where the equivalence clagé] is determined by
on H. With this identification, the asymptotic limit is reached
smoothly.

We conclude with two remarks.

pose a definition of the flux of gravitational energy falling
across a portiodH of H bounded by two cross sections and
show that it is local, manifestly positive and gauge invariant
(i.e. does not depend on any structure that is not intrinsic to
the probleny; (ii) provide a detailed area balance law relating
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the change in the area &f to the flux of energy across it; would be different. In particular, since the topological restric-
(iii ) show that the cross sectioB®f H have the topology®  tion made a crucial use of the Gauss-Bonnet theorem, it will
if the cosmological constant is positive and ofs? or T? if not go through; since the black hole uniqueness theorem
it is zero. TheT? case is degenerate in the sense that mattefiails, there will be many distinct preferred vector fielfs

as well as gravitational energy fluxes vanish, the intrinsicand the most convenient choice will be dictated by the iso-
metric on each cross section is flat, the shear of théated horizon to which the dynamical one settles down to;
(expansion-freenull normal¢? vanishes and the derivatives and some of the equations may now acquire Weyl tensor
of the expansion along both null normals vanigh) intro-  terms.

duce the notion of angular momentum associated with each Finally, these results open up new avenues for further re-
cross section and of the flux across portidrid of the ho- ~ search in numerical, mathematical and quantum relativity.
rizon bounded by two cross sectiors) provide an integral We Wwill conclude by pointing out some of these.
generalization of the first law of black hole mechanics to Numerical and mathematical relativityn a gravitational -
fully dynamical situationsivi) for axisymmetric horizons, collapse or a black hole merger, one expects the dynamical
give a prescription to find a vector fiel§ on H and intro- horizon in the distant future to asymptotically approach a

d . f to ¢ h id®such th weakly isolated horizon. Can one establish that this expecta-
uce a notion of energyg for each cross sectidBisuch that i, is correct? |If so, what can one say about the rate of

an easily interpretable balance law holds: if the portidd  approach? While this issue can be studied analytically, nu-
of the horizon is bounded b, and S;, then Et;—EtSO merical simulations provide an ideal setting to analyze it
2 ! because the world tube of apparent horizons arises there
naturally and provides the dynamical horizon. There exists a
simple, local characterization of the Kerr isolated horizon
[26]. Under what conditions is one guaranteed that the
asymptotic isolated horizon is the Kerr horizon? On an iso-
lated horizon one can define multipoles invariaf@g| and

=F2,, whereEg and the fluxF2,, are both local and have
physically attractive properties; aidi) analyze in detail the
passage to equilibrium during which a dynamical horizon
becomes a weakly isolated one.

Let us highlight a few features of the framework and the

resgltg VSiS | . db di | lated the definition can be carried over to each cross section of the
(i) Our analysis isot motivated by nor directly related to 4 o mical horizon. What can one say about the rate of

the issue of f_|nd|ng qua5|—loc_:al mass in general relativity. C?urchange of these multipoles? For example, from the knowl-
results pertain to very special 2-surfaces—the cross sectio

fd cal hori 4 tb lied i '&jge of the horizon quadrupole and its relation to the Kerr
of dynamical horizons—and cannot be applied In Mor€ geng, 441y nole, can one gain insight into the maximum amount

ergl cont_extl.g\llonke:]helless, ther_e IS a geigergl gxp?ctanon th energy that can be emitted in gravitational radiation? Is
a dynamical black hole space-time would admit a large NUMg, o o,a5i-normal ringing of the final black hole coded in the

ber of dynamical horizons and it is somewhat surprising thaf’ate of change of the horizon multipoles, as was suggested by

the)_{ aHV\/klha}l\/e iucfgj r:cl_c.e.prop?rt;ss.d ical hori somewhat heuristic considerations in the early numerical
(i) lle the definition of the dynamical horizons as- simulations[30] of non-rotating black holes?

sumes that the expansid, of the inward pointing null Geometric analysisSinceH is space-like, one can con-

normal should be negative, most of the detailed results gQjqer the standard initial value problem on it. Can one char-

through also 'r:' the case Wh@'(”ﬁﬁ)' Under the stror(;ger acterize the solutions to the constraint equations such that
assumption the area monotonically increases. Under they o' "k ¥ is a dynamical horizonPit is trivial to check

weaker assumption we only know that it cannot decrease, b fiat the data cannot be time symmetiie. K., cannot be
" a

the b_alanc_e laws and the generalization of _black ho'? M&ero onH) but one could consider the constant mean curva-
chamc_s St!” goes t_hrough. B (=0, We are in _the white . ture casd.A full characterization would provide a complete
hole situation in which the results again apply with appropri-, 161 on the geometry of the world tube of apparent hori-
ate sign changes. ) ) zons that will emerge irll possiblenumerical simulations.
('”.) The preferred vector fielt}, has be_en chosenwith the 5 can further ask: Can one isolate the freely specifiable
physical problems of black hole formation and coalescencgjaia in g useful way? Are these naturally related to the freely
in mind. In particular, the energy$ associated with a cross specifiable data on weakly isolated horizof&? In the
sectionSis preciselythe mass of the Kerr space-time which spherically symmetric case, these issues are straightforward
has the same area and angular momentus) ase regard$  to address and an essentially complete solution is known. It
as being “instantaneously Kerr.” The surprising fact is thatwould be very interesting to answer these questions in the
even in the fully dynamical regime, the difference betweenaxisymmetric case.
energies associated with two cross sections is given by a Another potential application is to the proof of Penrose
local, geometrically defined flux. In the non-rotating case,inequalities which say that the totéADM) mass of space-
E'e reduces to the Hawking mass. But in the rotating casetime must be greater than half the radius of the apparent
the Kerr mass seems to be a better measure of the physidabrizon on any Cauchy slice. In the time symmetric case
energy of the horizortassociated with the vector fietd). (i.e., when the extrinsic curvature on the Cauchy slice van-
(iv) What is the situation in higher dimensions? Since ourishes this conjecture was recently proved by Huisken and
results stemmed from the constraint part of Einstein’s equaHimamen, and Bray14]. Our analysis provides two flows
tions in the metric variables, the method is directly appli-which may be potentially useful to extend the analysis be-
cable also in higher dimensions. But the form of resultsyond the time-symmetric case. The first is associated with
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the Hawking mass and was discussed in Sec. lll A: Eq. 1. The Schwarzschild-Vaidya metrics
(3.25 shows that the Hawking mass increases monotonically |n the ingoing  Eddington-Finkelstein  coordinates
along a dynamical horizon. Furthermore, one expects that th@,r, 8, ¢) the 4-metric is given by
dynamical horizon would settle down to a weakly isolated
horizon in the future. For isolated horizons which extend all (1_ ZGM(U))
the way toi *, under certain regularity conditions the horizon
mass is the future limit of the Bondi mag3]. Thus, usiljg +12(V, 0V, 0+ S OV, 6V, ) (A1)
our flow, one should be able to prove a stronger version of
the Penrose inequality where the ADM mass is replaced bwhere M(v) is any smooth non-decreasing function wf
the future limit of the Bondi mass. The second flow is asso-This is a solution of Einstein’s equations with zero cosmo-
ciated with the Kerr mass and was discussed in Sec. V. In thi@gical constant, the stress energy teribgy being given by
non-rotating case, this is the same as the first flow. But in the M

. . . (v)
rotating case, the Kerr mass is greater than the Hawking Tao=
mass whence it would provide a further strengthening of the

Penrose inequality. Note that the Kerr mass increases mono- - - .
tonically only if one begins with a cross secti®@of H on whereM=dM/dv. Clearly, T,, satisfies the dominant en-

which 2GJ<R2. But if we initially violate this condition, €9y condition ifM=0 and vanishes if and only ¥=0.

the flow drives the system towards satisfaction of this in- Let us focus our attention on ;he metric 2-_spheres given
by v=constr =const. The outgoing and ingoing null nor-

Jap= — VaU Vbl) + ZV(aU Vb)r

7 Vav va (AZ)

equality. i -
Quantum relativityAs the vast mathematical literature on mals to these 2-spheres can be taken to be, respectively,

black hole mechanics shows, the infinitesimal verdibri) — |9 a1 2GM\ [ o9\?2 - a\2

of the first law has had a deep conceptual influence. The ¢*=|—-~| *5{1=——]J{5-| and n%=-2|—-

finite version(5.9) may have similar ramifications in non-
equilibrium situations. The Hamiltonian framework of Booth o
and Fairhursf22] could be used as a point of departure for (so that{?n,= — 2 as in the main text The expansion of the
describing quantum black holes beyond equilibrium situaputgoing null normak’@ is given by
tions. Can one, in particular, extend the non-perturbative
guantization of isolated horizons 18,29 to describe quan- ~ r—=2GM(v)
tum, dynamical horizons? To calculate their entropy? To o= 3
naturally incorporate back reaction in the Hawking process?
Thus, the only spherically symmetric marginally trapped sur-
faces are the 2-spheres- const and =2GM(v). The ques-
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and the Albert Einstein Institut. =2GM(v) is a future outer trapping horizo(FOTH) of
Hayward's[15]. - o
The null normalst? andn? are well suited for studying
APPENDIX A: EXAMPLES: THE VAIDYA SOLUTIONS the approach to equilibrium, i.e., the transition from the dy-

namical to the isolated horizon discussed in Sec. VI. The

The Vaidya metrics provide simple, explicit examples ofjnterpolating vector field/2 is now given by
dynamical horizons. Furthermore, when the flux of the null
matter field vanishes, one obtains an isolated horizon. There- — [ 2 WK
fore, the metrics also provide explicit examples of the tran- V= v +2GM ar

, p p p v

sition from the dynamical to isolated horizons discussed in i
Sec. VI. In Appendix A1 we describe the Schwarzschild-so thatb?=GM. The degree of smoothness of the matching
Vaidya dynamical horizon and in Appendix A2, we include between the isolated and the dynamical horizons is dictated
the cosmological constant. by differentiability of M at Sy. Thus, if M is C* on S,

a

=(2—GMn? (AB)
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physical fields will match in £ fashion. Finally, because of time admits other dynamical horizons and, if so, whether the
spherical symmetry the surface gravity of V2 is constant One discussed here is Hayward's trapping bouniBy, dis-
on each cross section and is given byR(); the canonical ~cussed in Sec. Il B. _
vector fieldt=(d/dv)® on A matches smoothly with the Let us then look for a closed 2-surfa& given by r
canonical vector fielt®= (3/3v)? on H; the angular momen- —2GM(v) —h(8,¢) which is marginally trapped. By con-
tum vanishes; and the horizon mass is g|\/erW) struction, it lies on the constamt slices. Let¢?2 and_na be

To study the structure dfl by itself, as in the main body null normals to this 2-surface. One can show th&t n? but
of the paper, a different normalization of null vectors is morega. ¢a |t can also be shown that the ingoing null expansion

convenient. For completeness, we list all the relevant vectoy is stil 0 (7= — 4/r while the outgoing expansion becomes
fields:

h Agh |Dohl?
1 1 - D~ — 0 0
Vr+ VGMV,p Ot 2 T3

(A10)

Ta=———=Var —\VGMVp, r,=

GM 2VGM

rz r r

whereA, and Dy are, respectively, the standard Laplacian

B : 1 and derivative operator on the unit 2-sphere éh¢) coor-
Na=—2VGMVo, (3= = Var dinates. By settin@d® ;=0 we obtain the following partial
VGM : - o o
differential equation foh(6,¢):
R 1 g\2 —[ 9\2 D.hl?2
ré= =| —] +VGM| —]| , th—h=—| ohl (A11)
2\GM ' Y r
1 5\a g\2 As expectedh=0 is clearly a solution; but is it the unique
A= <_) —VG M( _) solution? Integrate both sides of E&11) using the standard
2\/GM | v or unit 2-sphere volume element and obtain the inequality
$<h>0. This tells us that we cannot have solutions to Eq.
g\ 1 g\2 (A11) with h everywhere negative. In other words, we cannot
na=_2 GM(—) , €a__(_> (A7)  have marginally trapped surfaces which lie completely out-
\ /GM dv sider=2GM(v). Of course, the analysis is incomplete be-

cause it does not preclude surfaces which lie only partially
Let us take €, 8, ¢) as coordinates on the dynamical horizon. outsider =2GM nor surfaces which do not lie on the

The radial coordinate is also the area coordinakin this = const slices; these issues are currently under investigation.
case, whencblg and?R of the main text will be denoted just
by N, and«,, respectivelyN, is given simply by 2. Inclusion of the cosmological constant
i The example presented in the preceding section can be
N,=VGM. (A8)  generalized to include a cosmological constAntFor defi-
) niteness, we restrict ourselves the>0 case. The Vaidya
Therefore, the matter flux is metric in the presence of a cosmological constant is
) ;b3 1 1, 2GM(v) Ar?
fmatter: AHNrTabT £Pd°V= % An r—zdrd V Jap= — 1- f_ T Vavav+2V(ava)r
=Ty +r2(V,0V, 0+ sirf 6V, V). (A12)
=G (A9)

As before,M (v) is a non-decreasing function of WhenM

The gravitational flux, of course, vanishes because of spheris a constant, this is just the usual Schwarzschild—de Sitter
cal symmetry. solution. As we shall see below, this solution admits a black

Remark.In the above discussion, we restricted ourselvesiole horizon only if the inequality 8(GM)?<1 is satisfied.
to dynamical horizons whose cross sections are sphericallyy the remainder of this section we shall always assume that
symmetric. It is natural to ask if the space-time admits otherGM never exceeds the value £9 V2. The Einstein tensor
non-spherical dynamical horizons. Surprisingly, this questiorfor the metric given above is
is not easy to analyze because very little is known about
non-spherical marginally trapped surfaces even in the 2GM
Schwarzschild space-time. However, we will show that, Gab=~AGapt —5— Vav Vou. (A13)
within the v = const surfaces, there is no marginally trapped r
2-surface which lies entirely outside the surface2M (v)
considered here. It would be interesting to know if the spaceAs before, the stress energy tendgy, is
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M(v) which tells us that;® ;<0 atr=r, and>0 atr=r.
Tabzﬁvavvbv (Al4)  Thus, if M>0, the surface =r, is space-like and is a dy-
mr namical horizon whiler=r is time-like and is, in fact, a

: ) ) ) . time-like dynamical horizomas discussed in Appendix B.
and M=0 is rgquwed in order to sat|§fy the null energy | the remainder of this section, we focus only on the
condition. In this case there are two horizons: the usual blac|5 -k hole horizon. All the remaining equations in this sec-

hole horizon and also a cosmological horizon which are

. . ; ion are valid only atr =r,. The unit normal to the horizon
given by the solutions of the equation ;

is
. . 2GM(v) Ar2_0 Al 1
(v,r)=l-———=—5-=0. (A5 Ta=———[fVu+f'Vir] and
V]2ff'|
This is a cubic equation inand when B<9A(GM)?<1, it
admits precisely two real and positive solutions given by 1 ( J )a g\a
= frl — +f(——) . (A22)
2 {ﬂ'—a q 2 S(Tr-i-a V|2ff']| dv or
re=——co and r,=——co
Cc \/X 3 b \/X 3

The constant surfaces are the preferred cross sections of the
horizon and the unit space-like norntélto these cross sec-

wherea=cos [\9A (GM)?]. The black hole horizon is lo- tions is
cated atr, and the cosmological horizon af. In general,

(A16)

ry=r. and when % (GM)?=1, the two horizons coincide: P 1 VoV nd
ro="r.=+3/A. When A(GM)?>1, then Eq.(A15) does a /|2i‘f’|[ al ] A

not admit any real positive solutions. Assuming tats an
increasing function ob, it is easy to see that, increases a a
with time andr. decreases with time and both horizons ;a 1 {f,( '9) —i=< a) }

merge in the limitGM2— 1/9A. NS v
The derivatives of (v,r) are |2F 7]

or

(A23)
¢ ;I 2(r32M 3 ZTAV and o %: B 2(i|\'/|<0. The properly rescaled null normals are |
(A17) gazﬂ(i)a and e 2 (i) y
At the horizons, wheri=0, the expression fof’ simplifies Vj2f| 17 VItV
to (A24)
1—Ar2 The lapse function corresponding to the radial coordimate

f,|f=0: r

f

(A18)  which in this case is also the area radius, is given by
The derivativef’ is positive at the black hole horizon and
negative at the cosmological horizon.

1/2 G M
= e (A25)
_ _ |1—Ar?|
As before, let us look for all possible spherically symmet-

ric marginally trapped surfaces. The null normals to the and thus the properly rescaled vector field corresponding to
=const,v = const surfaces can be taken to be the radial coordinate is t2= N, €£2=(/dv)?2.

o RARRI K
) T2\ar

N,=

2f'

a To calculate the flux law, let us first compuifg,72€°:

_ 0\2
and na=—2(—) . (A19)

or . 2M\ || 21" f 1—Ar?
Tapm°=| — . =—=—
The expansions of these null normals are ¢ r? Vi2ff| V)2ff] T rz
(A26)
 f B 4
®(€):F and O @=- e (A20)  Therefore, the matter flux across the dynamical horizon is
Thus we see thad ,y is always negative an® ;y vanishes A 1
> (n) =€ (€) o _ b3\ /— - 2
precisely at the two horizons. Furthermore, J matier™ LHNrTabTag d°v= 87GJan| 2 A |drd?V
L0 3 = al A21 hzn
O@l-0=~7 (A21)  4nd the mass function on the horizon is

104030-23



A. ASHTEKAR AND B. KRISHNAN PHYSICAL REVIEW D 68, 104030(2003

r Ar3 =N£2 where the lapse functioN; is now tied to the choice
Elo(r)=—— —=M(v), (A28) of a time coordinaté on H by the equation
2G 6G
whence, as expected, the infinitesimal form of the first law Dat=Ni7a (BS)

takes the form(5.10). where level surfaces dfare the cross sections bff and we

have the same rescaling freedom in the lapse as before. The

expression for the matter energy flux aloffg is now given

by
In the analysis presented in this paper, the space-like char-

acter of the dynamical horizon played a crucial role. How-

ever, as we saw in Appendix A2, the time-like case can

occur in cosmological contexts. We do not expect the matter

APPENDIX B: TIME-LIKE ANALOGS OF DYNAMICAL
HORIZONS

= ~agb
f%)attel"z fAHTabr af(r)dgv

or the gravitational fluxes to be generally positive definite in 1 ) b
i i i i =—— Ny(—=R+K"=K*¥K,p
this case whence, in particular, the topology of cross sections 167G J an
need not be restricted. However, for simplicity of presenta-
tion, we shall consider only the case of spherical topology; +2}anpab)d3\/, (B6)

the generalization to higher genus cross sections is obvious.

Definition. A smooth, three-dimensional, time-like sub- the only difference from the space-like being the different
manifold H in a space-time is said to betiane-like dynami-  sign of the scalar curvature term.
cal horizon if it is foliated by a family of space-like Using the Gauss-Codacci equation relating the curvatures
2-spheres such that on each leaf, the expangjgrof a null  of H and SCH leads to
normal¢? vanishes while the expansiah, of the other null

normaln? is strictly negative. ~R=2(Rap— Gap) 7°7°= — R+ K?>— K 1pK?+ 2D a'?
The notation will follow the space-like case as much as (B7)
possible. The main difference is thet and 7, now have
. L~ . oo where
different meaningst, is no longer tangential tél, it is in-
stead t_he_ unit _space-like veclm_rmal to H. Similarly, 7, is a'?=7PD, 72— 72D, 7. (BY)
the unit time-like vectotangentialto H and orthogonal to
the cross sections ¢. As before, the null normals are The momentum constraint is unchanged and so the flux be-
a oA A A comes
3=72+r2 and n?=72—r2 (B1)

As one woulq expect, the time-like case invo_Ives many fﬁ?atter:—f No(— R+K2—KaK p+ K2— K pK2P
guantities which are analogues of their space-like counter- 167G J aH

parts, usually withr , and 7, interchanged. These quantities
will be denoted with primes.

What happens to the area increase law now? Looking at A sa. ara A Labt ~a
the expressions for the expansions of the null normals, on@herey’#=a’"+ g'* and '*=K*z,— K7

—2P2D, 7, + 2D,y ¥ d3V, (B9)

can easily check that ~ The decomposition of the extrinsic curvaturkg, and
K.p proceeds exactly as before. However, the analogues of
D, = 000y + O(ny<O. (B2) Egs.(3.17) and(3.16 now have some negative signs:

This clearly shows that the area of the cross sectibas L DN,
creasesalong 72. TDaTh=—

As in the space-like case, the analysis of the flux law will

and ya=abayb= Dy~ W2,
t

be based on the constraint equationstonin the time-like (B10
case, the only difference in the constraint equations is a sigfthe simplified flux equation then becomes
change in the scalar constra[mbmpare with Eqs(2.4) and
(25)] (t) 1 D 2 112yA43
) ) b = ~arb fmatter:RfAHNt(_R_|U| +2|§ | )=V
Hgi=—R+K = K&K ,= 167G Tyyr 2r (B3) (B11)
HY?=Dp(K*P—Kg™) =87 GT*Tc g%, (B4 where¢'? is the analog of™:
where, as in the main texT,y, is related to the matter stress {'2=7207V. 0, . (B12)

energy T,y Via Tap=Tap— (1/87G)Ag.p. Once again, we
focus our attention on the energy flux along the ve@l@r The area balance law now reads
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- . wherer? and {? are space-like. Therefore, even though the
- _ T..r agb dSV . .
L area decreases monotonically, neither the matter term nor the
geometrical terms on the right side have definite signs. This
is yet another illustration of the fact that the form of the area

1
BRI AHNt{|0|2_2|§'|2}d3Vv (B13)  palance law(3.23 for dynamical horizons is very special.
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