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Post-Newtonian Maclaurin spheroids to arbitrary order
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In this paper, we develop an iterative scheme to enable the explicit calculation of an arbitrary post-
Newtonian order for a relativistic body that reduces to the Maclaurin spheroid in the appropriate limit. This
scheme allows for an analysis of the structure of the solution in the vicinity of bifurcation points along the
Maclaurin sequence. The post-Newtonian expansion is solved explicitly to the fourth order and its accuracy
and convergence are studied by comparing it to highly accurate numerical results.
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I. INTRODUCTION with highly accurate numerical results in Sec. VI.

Upon the discovery of pulsars in 1968 and their identifi-
cation as neutron stars, it became apparent that a relativistic
description of rapidly rotating, compact stars was needed. For a given mass-densit§), the Maclaurin spheroids and
Early work in this direction dealt with simplified models for the relativistic model both depend on two parametedmce
the matter making up these objects. In particular, Chanthe post-Newtonian approximation describes the relativistic
drasekhaf1] looked at stars of constant density and calcu-model in terms of Newtonian parameters, some convention is
lated the first post-Newtonian correction to the Maclaurinneeded to determine which relativistic parameters are im-
spheroids. Bardeel2] reexamined this work using a modi- plied by the specification of the Newtonian ones. Bardeen
fied approach and gained new insight regarding, foremosfrgued that the “most appropriate choice” compares New-
the points of onset of secular, axisymmetric instability alongtonian and relativistic bodies of the same rest mdgsand
a one parameter Maclaurin curve. angular momentund since these quantitigtogether withQ)

Given the amount of work that has been done since theare coordinate independent and “play the primary role in the
to study stars with more realistic equations of state, the reHartle-Sharg 3] variation principle.” In this paper we take a
turn to a model of constant density can hardly be motivatedomewhat different approach since our purpose is less the
by astrophysical considerations. Many other good argumentsomparison of Newtonian and relativistic configurations,
however, suggest that precisely this model deserves clos#inan the development of a method for calculating an arbitrary
attention: For one, it allows, as we shall see, for the develorder of the expansion. Therefore we use the freedom that
opment of an iterative scheme to calculate explicitly anyone has in defining the PN approximation in order to sim-
order of the post-Newtonian expansion, limited in practiceplify the mathematical structure of the equations. The re-
only by computer algebra programs and the machines rurmaining freedom regarding the choice of a constant is left
ning them. Furthermore, by considering an arbitrary orderunspecified as long as possible. What effect the specification
one can study properties of the full relativistic solution andof this constant then has, will be studied in Sec. VI C of the
carry out Bardeen'’s task of testing conjectures “by going topaper.
higher orders in the relativistic expansion.” Finally, because At this point, a brief description of the method that
of the fortuitous circumstance of being in possession oBardeen used ifi2] will provide us with the basis for under-
highly accurate numerical values, one can go even furthestanding the motivation for the methods used in this paper.
We are in the rare position of being able to examine thdJp to the first order of the PN approximation, one has to
behavior of the post-Newtonian expansion itself, providing,determine two metric functions from Poisson-like equations
by analogy, a testbed for the most widely used analytic apas well as the unknown boundary of the star. To solve for the
proximation within the field of general relativity. metric functions, Bardeen used a Poisson-integral in spheroi-

In Sec. Il of this paper, we motivate the method used herelal coordinates and », which represents potentials as an
by briefly describing Bardeen’s approa@ for the first or-  expansion in terms of orthogonal polynomialssn An it-
der of the expansion and explaining why modifications areesrative scheme for the calculation of higher orders is only
necessary when going to higher orders. Section Ill presentgasible if the sum over these polynomials terminates. The
the line element and the Einstein equations to be solved for
iteratively. An iterative scheme allowing for the explicit cal-
culation of an arbitrary order is presented in Sec. IV and in the Newtonian case, one of these is a mere scaling parameter.
some properties of the solution are discussed in Sec. V. After?The reader who is interested in studying Bardeen’s pglenay
providing by way of example the explicit calculation of a benefit from the following list of errata. The coefficient®§( 7) in
few expression_s an_d introducing various physiqal quantitiesgg, (21) should read [1/p,(£) [ 2p(£)Cot[(£2—£2)1£4(1
the PN approximation up to the fourth order is compared+ ¢)¥2]]. The left-hand side of Eq(36) should read (L?)

X(v?)e(&s,7) and the right-hand sidégDZWZ(n). TheP,(7) of
Eq. (43) is to be replaced byR,(#) — 1) and the second term in the
*Electronic address: D.Petroff@tpi.uni-jena.de first line of Eq.(55) by + (A&/c?)(aU/3€)(és,1).

Il. PRELIMINARY REMARKS
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conditions for the termination of the sum are that the source 1672k
remain a polynomial inp and that the boundary of the star Ag(A+v)=
remain a constant ig. Neither of these conditions is met

with in Bardeen’s approach, which is why it is only appro-

priate up to the first order. To that order it was possible to ~  —16m(1—w)e®* 5 ~
determine the metric functions in an elegant way, because Ajo= W(Qc +P)—L(w,3\—v),
they can be decomposed into one piece containing the new ¢’(1-v%) (10
(post-Newtoniah source within the old boundary and an-

other piece containing the old source within the new bound- o2

ary. For higher orders, such a procedure can no longer be __ 2

used and one has to devise a modified approach. Awu ct Qe+ P)+L(v M)

The approach used in this paper relies on the fact that an
extended version of the Poisson-integral is valid for Poisson-
like equations even in modified coordinates. Here coordi-
nates will be introduced that are tailored to the unknown
boundary of the star and satisfy the condition that the bound- 1
ary be a constant in this coordinate. Furthermore we require + a2(2+ 7?) (Eve=mv,y). (1d)
that the unknown boundary of the star when written as a 0
function of the old coordinatg be given as a polynomial in 1 gitferential operators in the above equations are defined
7, a requirement that can be shown to be compatible with,
the condition that the pressure vanish at the surface of the
star. This requirement ensures that the sources in the s(y \).o[(1+£2)¢ .y .+ (1— 7)), x 11ad(&+ 7?)
Poisson-like equations remain polynomials sn Thus we e e
have to deal only with terminating sums to any order of thegg
PN approximation and the recursive method proposed here

2 P—L(v+\,v+N), (1b)
C

+%(1+§2)(1—772)82“_2”5(5,5)

can be applied indefinitely. 52 pr: P
Ai=| (L+ &)+ (1= 7)) +mé —
lIl. BASIC EQUATIONS ¢ a1 %
The line element for an axially symmetric, stationary, as- 2 0 2
i i ibi id wi —mn——| | aj(&+ %)
ymptotically flat space-time describing a perfect fluid with an 0
purely azimuthal motion can be written in Lewis-Papapetrou
coordinates as and the dimensionless function in Ed.c) by
ds?=e?*(dp?+d?) + p%e®M(deo— wdt)?—c2e? dt?. ©
The metric functionge, N\, @ andv depend only orp and{ “Ta

and vanish at spatial infinity. The energy-momentum tensor o .
for the pressurd® and the mass densi®, which is merely ~ Note that the operatak; is simply the Laplace operator in a
the energy density divided by?, is then given by flat three-dimensional space. The dimensionless presdure

5 :=P/Qc? is related to the metric functions by

~2 s v__ _
whereQ is a constant up to the surface of the star. The matter NV1+v%(1+P)e"=const=1—vy @
of the star rotates uniformly with an angular velocity We

introduce the spheroidal coordinates with
0?=a3(1+ &) (1—7?) and {=ayy, v:=00(1-w)e* "/a, and QO:=ayQ/c.
nel[—11, £e[0), IV. THE ITERATIVE SCHEME
and obtain from various combinations of the Einstein equa- A. The expansion

tions the following partial differential equations for the met-

. - . L The system of partial differential equatiofi is simpli-
ric functions(with G=1 for the gravitational constant Y P g & b

fied by expanding the relevant quantities in terms of a di-
mensionless relativistic parameter. Here we choose the

2 2
Ayv= 4me™ 1+v (QC2+P)+2P | L(v,v+)\) square root of the parametarsed in[2] defined by
4 ~2 ’
C 1-v
1. — 3 . .
+ Z02(1+ &2 L 2\@2N—2v The square root was chosen in order to enable a more convenient
ZQ (1+&9(1=ne Ho,0), (13 indexing of the expansion coefficients.
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B. Solving the Poisson-like equations
, 8mQagEN1+Ed 9 a
&€= 3c2 . ) In the last section an iterative scheme was proposed for
the determination of the metric functions in which an equa-

. _ . o tion of the formA ,¢»=F need be solved for a known func-
The three variables entering into this definition completely;,, F=F(&, 7). The regular and asymptotically flat solution
specify the Newtonian Maclaurin spheroi@. is the mass of this equation is given by

density,a, the focus of the ellipse describing the surface of
the star in the cross section agigdthe value of the surface’s *
& coordinate. These are the same quantities which will enter d(& m)=a2y, KM V7 77)[ h"(£)
into the PN expansion, but the latter two lose their simple 1=0

geometrical meaning. The parameteremains finite in both

&1
the spherical limit, given by anday= 1/ and the disk X f f g"(&Hcm V(")
limit, which is given by ¢&—0 and Q«c1/¢és for non- 0/t
vanishing mass. XF(&', 7" k(€7 )dn' dE’

The expansion of the dimensionless metric functions and
the constants reads as follows:

o (1
vance || arcenci i)

n=2 n=2 n=2 ><F(f’.n’)km@’,n’)dn’dﬁ’}- (6)
- - -~ In the above equatio@! are the Gegenbauer polynomiais$,

— n — n — n . 1
'U“_nz::z Mn&o YE 2‘2 Yn® Q—gl Qe andh! are two linearly independent solutions of tffmo-

(4) geneous Gegenbauer equation defined by

ione@i (&) =C{" Vg
As was already mentione@ is held constant to any order of 9 it
the approximation, which is why it does not appear in @&J.

. . ~ ~ o dé’
22d any ot_her guantities of interest, syphvaer P can be h™(&) ’:g{n(é:)f _ §2 — (Im)#(0,1)
pressed in terms of these six quantities. ¢ (g"(€))°E(E)
If these expansions are substituted into Eds—(1d) (7
then comparing coefficients efyields differential equations
for the metric functions of the form\,¢;=F, where ¢ hé(g) :=arcsinti &)

=v,\,w,u. Because the right-hand side of Eq&a—(1c) )
depends only onp;_j, j>0, one can solve fog if the with
lower order functions are already known. In the case.of )
one can calculate it from Ed1d) after having determined n ¢ mé b 2\ m/2
: . . E(¢):=ex dé¢’ | =(1+ &)™
the other three functions to this order, or one can compute it 0 142
from an integral oven. +¢
Because an analytic solution, the Maclaurin solution, for.l.h
i . . . e term
the first step is known, these equations would provide an
iterative process for the determination of the metric functions k(& m)dndé=[(1+&2)(1— 72) ™2 L(£2+ 2)d pdé
to any order if the shape of the star were known. The bound-
ary of the star also has to be determined iteratively however.
We represent the surface of the star by the equation, is a product of the volume element and the appropriate
weight function for the Gegenbauer polynomials and

k 0
E=ép(n)=& 1+ 2 > S CHAn)e" m 1\[ [m 1|]?
j=0 k=2 Mi+—=—-5|I'5—-5
2 2 2 2
o K"= 2T (11 ) for m>1
mT2° m—1+
=& 1+ 2, Bkw)sk), (5)
2
, Ki==— for >0
where we have already taken into account that the boundary 2w
is an ellipsoidé= & in the Newtonian order. We also require
that the sum over the Legendre polynomi@l#z( 7), a spe- Kl i
cial case of the Gegenbauer polynomials discussed in Sec. 0
IV B, terminate and show in Sec. IV D that this leads to a
consistent solution. are normalizing constants.
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In Eq. (6) the integrands jump at the surface of the star D. Determining the shape of the star
because of the jump in the mass density. It is therefore nec- Due to the factoc?

lit them into i | he interi q in g of the line element, it is nec-
essary to split them into integrals over the interior an exte-essary to determine the function. , in order to calculate

riqr of the sta_r. Clearly if the surface of the star iS_ g“’_ef" AStheit order of the PN approximation. This is the only metric
with the leading order, by a constadit- s, then this divi- — g,ction that depends on the unknown coefficiejisof the
sion is trivial. If the boundary depends an then matters are  gya 1 noundary. To determine these coefficients, one calcu-
complicated co_nsiderably. As of the second ordgr in the €X[ates the pressure from E) along the boundary,of the star
pansion, they integrals no longer run over the intervagl 5y sets the coefficients of an expansion in terms efual
e[—1,1] meaning that one can no longer make use of thg, ;616 |n discussing the boundary, however, it turns out to

orthogonality of the Gegenbauer polynomials and one igye ysefyl to leave a portion of the Poisson integralifar,
faced.W|th non-terminating sums. We henpg mtroduce N€Winevaluated in order to arrive at the integral equation
coordinates in order to circumvent these difficulties.

01— ) E2Bi(n)
C. New coordinates

We introduce the coordinates zi KZCH ﬂ)fl CHA ) f(m)Bi(m)dn+bi(7).
=0 -1
3
Ve T 9) (10

The functionB; is defined in Eq(5) and contains the entire
dependence of;;. The functionb;(») is short for the re-
maining terms that result from E¢R) and is a known poly-

nomial of orderi +2. The functionf,(?;) is given by

implying that = & is the boundary of the star; cf. E¢p).
The new coordinate) is a function of bothn and e and
contains the unknown coefficientS;,. We rewrite EQs.
(1a—(1d) in terms of the new coordinates and manipulate
them such that the left-hand side has the same form as be-

oo, o i 1 ehiacingt. For example. e eQUaoN 5, g e [ “ni(n (27 ~v1-T7)(15)" 23

v v dv av 5 5 9 & ~ i,
(1+ lﬁz)a—l//zﬂl— 772)&—772+2¢w—277% /ao —1(I+ 1) gvaldgthi (€9 fo 9i ()| 2n¢(vy)
X (P +n)=F. _— 3y
— (1= (vp)"+ 205+ ———
These new field equations are again expahiteterms ofe EN1+ES
in order to obtain a system of equations iy as was ex-
plained in Sec. IV A. Sincey= ¢+ O(e?) holds, the new 1+ 1) | dy
equations forp; (¢, ) also depend only on known functions, 2 '

thereby enabling their recursive determination.
The derivation of Eq.(6) relies on the fact that in the . - . o .
) . L . . where a dot and prime indicate partial derivatives with re-
coordinates £, ), the line (Og) is identical to the line (O, ~ . e
— ) and that at spatial infinity we have—. These prop- spect toy and 5 respectively and the superscripts “i” and

erties hold fory as well and an analysis of the derivation O reéfer to the regions inside and outside the star. Since
shows that we are free to use H6) as it stands, only re- [1() is a polynomial of second order, the sum in E40)
placing & by . termmatgs for polynomlaqai(n). Indeed, for_ the form oB!

In changing coordinates we have mapped the star onto tHe"osen in Eq(5), one arrives at a system of-2 algebraic
rectangle[ 0,&] X[ — 1,1], which means that the division of equatlonsj0|+3 unknowngthere aré + 1 S;; to determine
the integrals into inner and outer domains is trivial. The priceas well as); . ; andy; . ). We choose to use this system to
that one pays for the simplicity in the structure of the inte-determine all these constants but fgr, ,. As mentioned in
grals is that the sources of the Poisson-like equations beconfgec. Il, this last constant can be chosen arbitrarily, which
quite unwieldy. But the exchange of a conceptual for a meamounts to specifying “which” PN approximation one
chanical difficulty can be termed a good deal, and all thewishes to have, i.e., which relativistic body is to be associ-
more so when its result is the facilitation of the whole ated with a given Maclaurin spheriod. The choiceof ,
scheme. will be discussed further in Sec. VI C.

We have shown that the form chosen for the surface of the
star is consistent with the Einstein equations to any order of
“Note that the coefficients; (1, %) are not mere transformations
of ¢;(&,7) sincey depends ore. Thus one must substitutg of
Eq. (9) into E?:zqﬁj(w, n) and expand the result in terms ofin The other metric functions depend only B, with j<i.
order to expresg,, k<n, in terms ofé& %We shall see in Sec. VA th&; =0 for oddi andj.
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the PN expansion. This is not to say that this choice is TABLE I. Numerical values fo&; and the corresponding New-
unique. One can easily see that the form chosef2jnis tonian eccentricities and ratios of polar to equatorial radii given by
incompatible with that chosen here, since it is not a polynoe=1\1+&7 andr,/r = &/\1+EZ.

mial in %. There the surface was derived having stipulated

that the “generating” Maclaurin spheroid should have the ! &) &3 rp/re
Samdet‘t.resihmt""ss a”? t?ngultiarf.mdom%r:t?hm as the ';N hStar' a 0.17383011 0.98522554 0.17126187
here. In lieu of the freedom to choose two constants, we have 011230482 099375285 0.11160323
chosén a form for the boundary of the star most a| , ropriate 0.08303471 0.99657034 0.08274493
y pprop 0.06588682 0.99783651 0.06574427

to our goal of devising an iterative scheme and can choose
only one further constant.

1 _ -
ti“f Cl2,(mbi(mdy
V. PROPERTIES OF THE SOLUTION -1

A. Reflectional symmetry and

In Newtonian physics, it is known, that stationary, axi- 1
symmetric bodies are necessarily symmetric with respecttoa 172 f =- A N g i—a,
reflection through the/=0 plane (see e.g[4]). Although o(mtivalm) nZO 2ni+2® s Eir2=02i+2
authors(e.g.[5]) have speculated that the same holds in gen- ] )
eral relativity, it has not yet been proved true. In the casédnd wheref;,, andb; are defined in Eq(10). It can be
considered here, this symmetry arises automatically. A funcshown that the denominator of E@.1) is proportional to the
tion f exhibits reflectional symmetry ig-» (or -5) coor-  EXPression
dinates precisely when it is an even function,pf Because 2 2 .
of the orthogonality of the Gegenbauer polynomials, the gi+2(£N7 2(&5) — €1 - daarccol€y)=Gi(&y). (12)

terlmr? Ir?wi trien ng of n%?t(|6)n fv(\)”r]iog? Imare ztetrob|fF It? f‘? d For a given(even i, this expression vanishes for precisely
polynomialinz-, a co N Ich turns outto be salished. o\ a1y ofés, let us say foré=&F,,. These values, be-

The odd terms, which are provided by the unknown bound; inning withi =2, are the points of onset of axisymmetric
ary coefficientsS; must be zero for the boundary condition 9 9 ’ P y ’

to be satisfied. Thus we have shown that any axially Syr,n_secular instability and the bifurcation points of new axisym-

; . s . . . metric solutions, se¢2,6,7, and numerical values for the
metric, stationary, relativistic solution that is continuously

connected to the Maclaurin spheroids is symmetric with re-_fIrSt few of them can be found in Table I. Sinteof Eq. (11)

spect to reflections through thie=0 plane. IS not zero at_ the poir§5=_ £a ,_these bifurcation points are
singularities in the two dimensional parameter spagea()
or (&,¢e). For values of differing only slightly from&f, ,,
the PN configurations have properties similar to those of the
Consideration of the field equations together with theNewtonian configurations that branch off from the Maclaurin
knowledge of the Newtonian behavior of the dimensionlessequence at these points. The Maclaurin configuration itself
metric functions, shows that their expansion coefficigfits cannot be reached for bodies with non-zero mass however,
begin withi=2 and are non-zero only for evénThe same and even neighboring configurations have strict mass limita-
holds naturally fory;, whereasﬁj begins withj=1 and tions, sinces must be made very small in order that the PN
appears only with odd powers pfBecause of the choice to series converge. This mass limitation can be inferred, for
work with the dimensionless functions introduced here, it isexample, by referring to the tables in Appendix B. Because
most appropriate to refer to thd" order of the PN approxi- the n'" PN order possesses a pole of ordar2l at the point
mation and not the half orders in between. What we mean by= &, , we expect the coefficients for the expansion to grow
the nth order is that the quantitiesl Z), m and gB are ex- Iarge in the V|C|n|ty of this pOInfThIS iS. indeed the Case- as
panded up to and including the ordél(s2"), © up to can be seen in t.hese tablgs by referring to' the row \§jth
O(s2"*Y) and v and y to O(s2"+2). =0.17. The_ series containing t_hese coefficients converge
only for sufficiently smalle as indicated above.

B. Powers of the relativistic parameter

C. Singularities in parameter space
VI. EXPLICIT SOLUTION TO THE FOURTH ORDER

By comparing the highest coefficient gfin Eq. (10) one ) _
can arrive at the equation A. The metric functions and the constants

Using the iterative scheme described above, the four met-
i (11) ric functions and the constaft were explicitly solved up to

= 202
gs Q1_ai+2

Si

A lengthier discussion regarding the order of the pole&at. ,
with i>1 can be found in8].
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the fourth post-Newtonian order. These calculations could in 3 1+¢£2
principle be carried ouad infinitum but the lengthiness of ¢, = — —h2(§s), y =—(h2(§ )—hz(gg).
the expression&he fourth order functions would fill several ! 2V1+¢2 2 2 2 0158 2

hundred page9uts a practical limit on the order that can be (15

determined. Here we will merely carry out, by way of ex- )
ample, the calculation of the first few terms. Expanding Egs.(1b) and (1d) shows thath,=u,=—»,

The expansion of Eq1a) with respect to the relativistic h0lds and one need only expand Etr) to obtain the last of

parametek yields the Newtonian equations the functionsg,, where¢= v,)\,zb,,u. This expansion leads
to the equations

4 0= 3 (133 5
202 2314 & I
apgésV1+ &

i
A2V2—

for the interior region £<¢&) and

and
szgzo (13b) -
A4(x)g=0,
for the regioné> &, exterior to the body. These equations are )
solved using Eq(6) to obtain with the solutions
NN | P B | [661+ 620 £)+3(82
TR | R SEaVI+ES
x<§£—§2>}cé’2<n>+ - £ EDGE (£ ~EICT |~ OG( 8
1 1 /.
+5(BE2+2)g3 (1 +1) | C% 77)] (143 + (565 +4)62(6)+6) |C3Y ’7>} (163
and

and

~, 6
w5=5 (1+ &7 ¥ ho(£)C3Hm) —h3(£)C3()).
(16b)

Using the scheme proposed here, the calculation of the
(see Appendix A for a list of the first few]" andh["). One  higher orders is much lengthier than the calculations just
can verify thatv,(&s, 7) = v5(&s, ) holds. The requirement shown, but otherwise identical. Fey, for example, the last
that the pressure vanish to this order of the expansion themetric function needed in describing the first post-Newtonian
fixes the two remaining constants: correction, we find

vg=———(h3()C3 ()~ h3(4)C3 ()
(14b)

3 (—1-97*+637* Y2+ 6725442 n?+3yA) 1+ £larccoté) 3
2 g : 7(6307&2 "+ 42n*y? 67

2 i
a0A2V4—

- 95527]4_ 54n2w2§s2+ 6772§sz+ 2772_ 36¢2ﬂ2— §SZ+ 3¢2§sz+ 2¢2)/(( 7]2+ lﬂz)fsv 1+ gsz) Sy

3@ -DItElarccotsy | 3277430207 7| 2L (LA (-1 (DD
2 7+ ¢ 2 (PP el |7 EV1+ES
9y AB(LH3yP gt pllarccotés) 45 —yPEl+ el €+ 30 YPel+ 2yP w7a
2¢1+e2 16 2 16 £X(1+¢2)

and
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o |3 (—1-97*+637*Y?+ 6 79°— 54y p°+ 3¢°) 1+ £ arccot i) 3

a(2)A2V4: 4 7]2+¢2 4‘/’(27774+96774¢2+63774l//4—16772
3 (37°—1)V1+¢&2
— 782 72— 542 + 24P — 3+ 3y 1+ € (92 + ¥ (1 + ¥P)?) | Syt _E( U ) ziizal’cco(zp)
7
3 W52+ 32 n%— u?—3)VJ1 2
+_1/f( n 3Py -t -3) VIt S, -

2 (?+42)(1+y?)?

These source terms are fourth order polynomialsyiafter having been multiplied with the factogt+ »?) from Eq. (8).
Because of the orthogonality of the Gegenbauer polynomialss thus also a fourth order polynomial . This property
propagates itself through the successive post-Newtonian orders such that &, tesralways am™ order polynomial in.
Physically this is because the perturbative-like corrections to the shape of the surface, which are in the flinrteafuan of
Legendre polynomialksee Eq(5)], give rise to a finite number of multipole moments.

The source terms in Eq§l7) contain two of the boundary coefficien®,, which have to be determined by solving Eq.
(10), i.e. requiring that the pressure vanish on the boundary. A term contaprmpuld also be included in Eq6l7), but is
found to equal zero by applying this boundary condition. Solving (E#). and using the abbreviation

B:=arccoté,)

one finds

Soomy (L £2)92( 288,56 - 456 + A08BES S4B+ 15268 37822+ LT1GE2ES - 3150L f— 23T SF— 1796

+ 15758+ 660¢.Y)/ (33308 — 1965 3+ 732842 — 357¢— 5075 > — 3675+ 3675B£S5+ 6300B£ 5+ 278).

The denominator of this expression is proportionaGid &) and

of Eg. (12) and gives rise to the singularity & , which has 1 1

already been discussed. We choose to use the remaining two (,,—\) ,==[(v+\) ,p—(V+\) ;] + _(,,2 +A2 -2
N . . @ 2 00 res 2 1Y .0 £

non-trivial equations extracted from E¢L0) to determine €

So2 andQs. Equiyalently, we could hayg determined in- +)\,2g)—(,u,g(v+ N).o— (VN

stead of()3. In either case, the remaining constant can be ~

chosen freely and does not affect the validity of the solution, O%p%e® 72 _ .

but instead specifies the Newtonian spheroid of comparison. - 4—a2(wg_ wg) (20
0

Because the constan®,, and (5 are determined from a
linear algebraic system of equations involviBg, they also
contain a first order pole at the poigf .

The determination of higher orders proceeds identically.
One first obtains the Poisson-like equations by expanding
Egs. (1la—(1c) and extracting the coefficients of the desired
order ine. Next one solves these using E) with ¢ re-  Becauseu—\ is a polynomial in# to any order of the
placing¢, integrating from O tcé for the interior of the star  approximation, integrating Eq18) is trivial. Finally one
and from¢ to o for the exterior. The metric functiop can  uses the boundary condition to determine the boundary co-
then be most easily computed by making use of the integral¢icients and?, . ;.

R I / We carried out this procedure for the first four orders of
s Jl (=) dor’s a8 the PN approximation. The results are entirely expressible in
) ) ) ) terms of elementary functions and in the interior of the star
where the end point of integration follows from limi(x+  the metric functions are simply polynomials with respect to
—\)=0 [see e.g. Eqs22) and(23) in [9]]. The integrand 2 and 2. The validity of the results was ensured by con-

together with the transformation equation

i
fynzaogfyg—agn(1+g2)?‘-’.

can be determined from the equations firming that the disk limit of the expansion reduces to that of
[10], by showing that the expressions for the gravitational
E(M_M,zz(”ﬂ‘),éﬁr Vol PN o T (v EN) o mass and angular momentum found by integrating over the
0202227 _ interior of the star are identical to those taken from the far
—Mo(v+N) — —w ., (19 field and by comparing PN values to those returned by

2a highly accurate numerical calculations.
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TABLE Il. Relative errors for various physical quantities according to the 4th PN order for different
choices for the Newtonian spheroids of comparison. The header of columns 2—6 show which equation is
satisfied by the respective choice for the constgnti>2. A blank space indicates that this quantity was

prescribed.
Relative error for different choices of PN expansion-Q)
Numerical value Yi+2=0 M;=0 Q,,,=0 J;=0 (rp/rei=0
e¥0=0.95 7.6<107° 1.4x10°8
0=0.874 2.2x10°°
M=0.0048@ . . . 3.2<10°8 3.6x107° 8.6x10°7 2.7x107°
M=0.0049% . . . 1.0<10°7 4.0x10°7 2.9x10°* 4.5x10°7 4.1x10°°
P.=0.0218 ... 1.2<10°6 3.6x10°7 7.7x10°4 1.1x10°7 2.2x10°*
J=0.0000222. .. 1.2<10°6 1.8x10°° 1.4x10°3 3.9x10*
(rfrg=0.76® . .. 431077 3.1x10°7 3.0x10°° 1.8x10°7
B. Representative physical quantites the polar red shifZ, and “surface potential’V,

Physical quantities that are of interest in characterizing a

—o V¥=és.171) _1=p"Vo—1= _
given configuration are its rest mass Zp=e ° 1=e 1=v/(1=),

the central pressure

1 £ e}\+2,u,
_ 3 2
Mo 277anf_lf0 \/1_—52[(1%3( 7)1 &s) P.=P(4=0,7=1)
2 as well as the angular velocity.
+ 7 les(m)/édydn, (21) In Appendix B, tables providing information about the
angular momentum expansion of these quantities can be found.
1 gsﬁ(l_ y)(l—z))e3"‘2” 2p C. Convergence and accuracy
J=2mwQajc f f — . . .
—1Jo (1-203)%2 As was mentioned in the Introduction, we are lucky to
) ) ) have at our disposal a highly accurate numerical code. The

X[1+(p&a(n)/ €))L= n)[(p&a(n)/ &) AKM code [11,17 uses a multi-domain spectral method to

solve the Einstein equations for perfect fluids in an axially
symmetric, stationary spacetime for some specified equation
of state. The accuracy reached approaches machine accuracy
and has thus been used as a standla8j to ascertain the

+ 77 ]€s( ) Edyd (22)

binding energy

_ 1 (& accuracy of other numerical codes such as Lorene/rotstar
Ep=yMoc?—20c/ag—4may f f Pertitan [14], the SF code§15] or that of KEH[16,17 (see[13] for
-7 further information. Due to the extremely high accuracy, we
X [(péa( )l €)%+ n?]éa( ) Edyd (23)  can use the numerically generated configurations as though
they were analytic solutions, which is what enables us to
and gravitational mass provide values for the relative errors of physical quantities
for example.
M=Mq—E,/c?. (29 In what follows, we shall use units in whicB=c=Q

=1 holds and use the term “Newtonian limit” to refer to the
The expressior (¥ég(7)/ £+ n°1€s(n)/ édydn in the  |imit in which the Newtonian and relativistic theories agree.
integrals comes from applying the coordinate transformationn this limit, a, goes to zero whilet remains finite, thus
in Eq. (5) to the volume elementéf+ 7%)dédn. As an al-  resulting in the fact thabl —0 ande¥o—1. A “Newtonian”
ternative to Eqgs(22) and(24), one can choose to calculate or “Maclaurin” configuration on the other hand is the term
the angular momentum and gravitational mass from the faje use to refer to the spheroidal figure that one obtains from
fields of w and» respectively and then use E@4) in order. Jhe Newtonian theory, i.e. from, together withy, andQ},.
to find the blndlrlg energy. The disadvantage of the far fiel In Table Il a comparison was made of different choices
approach is thatv;, must be known in order to find;,  for the Newtonian spheroid of comparison. This amounts to
whereasw; suffices otherwise. different choices for the constanjg, i>2. One can see in
In addition to using the above quantities, we shall characthis example of a configuration near the Newtonian limit,
terize configurations by the ratio of polar to equatorial radiughat the choice made can lead to differences of a few orders
of magnitude for relative errors. This surprising result can be
rplre=ég(n= 1)/V1+ (ég(5=0)), seen, moreover, to hold over a large range of values for the
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AJ AJ
|J| 0.3 |J| 0.03

0PN 1PN

0.025F |

FIG. 1. The relative error of
versus €Yo for configurations
with 1=0.874. On the left the
PN expansion with(};=0, i>1
was used and on the right with
vi+1=0. Here OPN refers to the
Maclaurin solution, 1PN to the
first order of the PN approxima-
tion, etc.

ozt 0.02f !

0.015 !
1PN i

0.1

0.05 [ 0.005

L ) o e
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parametee"o in Fig. 1. On the left-hand side of this figure, the correct solution and that the fourth order of the PN ap-

the PN approximation Witrﬁizo, i>1 is depicted. The Proximation almost provides the correct value Joeven up
various orders react as they must in the vicinity of the New+o values forM of 0.12. Had one chosef;, ;=0 instead,
tonian limit 1—eVo=0: each new order brings about a no- then one would have produced the right-hand side of Fig. 2
ticeable improvement. As one moves away from this limitwithout the numerical curve and come to the same conclu-
however, the curves cross each other and it turns out thaions regarding the convergence of the PN approximation. In
higher orders render a worse approximation than lower oneshat case, however, one would have been correct.

The right-hand side of the figure tells a very different story.  Although curves depicting relative errors of other physi-
Here the PN approximation with;, ;=0, i>1 is depicted. cal quantities may look quite different from those fdr
Each additional term in the PN approximation brings about ashown in Fig. 1, they also have many important aspects in
marked improvement in accuracy and, moreover, the relativeommon. The choice,;, =0, i>1, leads to much smaller

error is more than an order of magnitude lower than on thgg|ative errors than foﬁizo and one tends to find improve-
left-hand side. ment with increasing order even far away from the Newton-
Imagine for a moment that one had calculated the PNan |imit. These properties hold for a wide range(dvalues
approximation presented here without being in possession @fnd the relative errors tend to decrease with decreasing an-
numerical values. Furthermore, Ie’t~ us imagine that one ha@ular velocity so long as one does not come too close to a
decided from the outset to prescribe=0, i>1. Then one singularity in the parameter space.
would have been able to produce the plot on the left-hand One well known technique for improving on the PN ap-
side of Fig. 2 without the numerical curve. It would have proximation is the use of the Padg@proximant, which ap-
been natural to suppose that the PN series converges towagodoximates a truncated series by a quotient of two polynomi-

J  oo1p 0PN J oo1r LOPN

/ 1PN
0.008 | 0.008 | / /2PN

/ X
0.006 - /o F IPN 0.006

0.004 | 0.004 |

0.002 0.002 |

1 ! ! ! ! ! ! i ! ! ! ! ! !
0.02 0.04 0.06 0.08 0.1 0.12  0.14 0.02 0.04 0.06 0.08 0.1 0.12  0.14

M M

FIG. 2. A plot of J overM for configurations with) =0.874. On the left the PN expansion with=0, i>1 was used and on the right
with y,,.,=0. Num refers to the numerical solution, OPN to the Maclaurin solution, 1PN to the first order of the PN approximation, etc.
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TABLE lIl. Values of various physical quantities according to different orders of the PN approximation.
OPN stands for the Maclaurin solution, 1PN for the first PN approximation, etc. The PN approximation with
v,=0, i>2 was used and the Padpproximant was applied to the fourth order solution.

OPN 1PN 2PN 3PN 4PN Pade AKM
eVo 0.7 0.7 0.7 0.7 0.7 0.7 0.7
Q 0.3 0.3 0.3 0.3 0.3 0.3 0.3
M (X 10°3) 7.94 6.17 6.244 6.2490 6.25013 6.25055 6.25070
Mg (X1072) 7.94 7.60 7.589 7.5864 7.58590 7.58554 7.58553
P, (X107Y) 1.47 2.14 2.434 2.5627 2.61841 2.66099 2.66064
J(X107%) 6.90 6.34 6.141 6.0744 6.05313 6.04321 6.04352
rolfe (X10°Y) 9.73 9.79 9.801 9.8041 9.80538 9.80606 9.80628

als and is discussed with reference to the PN approximatiomeridional cross section of a configuration with a central
in [18]. For the disk limit of the solution considered here, it pressure of 1 and a radius ratio of 0.7 is depicted. One can
has been shown if10] that the Padapproximant provides a see that the surface predicted by the fourth order PN approxi-
far better approximation of the analytic solution given in mation is almost indistinguishable from the numerical val-
[19,2Q than the PN approximation itself. In the case of theues.

Maclaurin spheroids this turns out to be true as well, espe- For a more detailed comparison with numerical values
cially for 1<0.8. We see in Table Il how well the Pade and a more complete account regarding the derivation of the
approximant with a polynomial of sixth order in the numera-iterative scheme and the singularities in parameter space, the
tor and second order in the denominator converges to theeader is referred tf8].

correct solution. Most likely this technique would be even

more effective when applied to a somewhat higher order of VII. CONCLUSION

the approximation. Even up to the fourth order, the PN ap-

proximation turns out to be roughly comparable to older nu- N this paper, an iterative procedure to enable the explicit
merical codes even for highly relativistic configurations. An c@lculation of any order of the PN approximation of the Ma-

impressive illustration of its applicability in such highly rela- ¢laurin spheroids was devised. This was made possible by
tivistic regimes can be found in Fig. 3. In this figure, the introducing coordinates tailored to the unknown surface of

the star, by requiring that this surface’s representation be a
¢Jre terminating sum and by realizing that E&) can be used in
the new coordinates without alteration. The PN expansion

i was carried out explicitly to the fourth order and the result-

ing expressions contained only elementary functions.

It was proved that the™ PN approximation has a first
order pole a3, ,, the onset of the" axisymmetric, har-

05 - monic mode of secular instability. The radius of convergence
of the series becomes zero at these points, thereby dividing
the é+e parameter space into rectangles with “imperme-
able” walls that accumulate aboubut not aj the line &

e/re =0. Since the PN approximation appears to converge even

os in the highly relativistic regime, it seems likely that no quasi-

stationary, axisymmetric sequence of solutions leads from an
extended, three dimensional configuration to the disk limit—

all such configurations would have to pass through an infinite
number of such impermeable walls.

The convergence of the PN approximation was shown to
depend strongly on the choice of the Newtonian configura-
tion of comparison. A poor choice can render the approxima-
tion useless in the relativistic regime, but a good one was
shown to converge quite well, especially when aided by the
Padeapproximant. These results can be taken as a word of

FIG. 3. The meridional cross section of a highly relativistic warning, reminding the researcher that the PN approximation
configuration. For fixed values af; and a,, the outermost curve Can be very sensitive to alterations that may have no direct
represents the Maclaurin spheroid, the innermost was calculatdahysical consequences. On the other hand, they also demon-
using the first order approximation and the curve between thesstrate that in the best of circumstances, the PN expansion can
using the fourth order approximation. The crosses are numericafield a very good approximation to highly relativistic con-
values. figurations, well beyond its guaranteed region of validity.
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APPENDIX B: TABLES OF VARIOUS
PHYSICAL QUANTITIES

This appendix contains Tables IV-IX with the numerical
values for the post-Newtonian coefficients of the quantities
introduced in Sec. VI B for various values ¢f. In all the
tables, we have chosep=0, i>2, whence we find

3
y=ree’=gV1+ EZ(arccot &) (1+E2) — £)e?.

Taking into account

2 302 2
aO:—S y
87QEN1+E2

we would find, for example, the following values for the
second PN approximation of configuration wifg=0.5, ¢
=0.7:

a,~0.32346

eVo=1-—y~0.63681

~ 1
Q=0/ag~ a—(0.54175+0.2645&3—0.3226]e5)
0

~1.285
M~ (2.6180-1.3693:2+1.707k*)a3~0.07976
Mo~ (2.6180-0.589222+0.99562*)a3~0.08692
P.~(0.87655-0.295532—0.21693%)a5~0.07111

J~(1.5346+1.060%2+0.2431%*)a3~0.007480

r
r—p~ (0.44721 0.559742—0.2303%%)~0.2283.
e
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TABLE IV. Expansion coefficients of) for various values of, with y,=0, i>2.

Coefficients ofs' for the dimensionless angular velociy

&s gl g3 g° g’ g®
0.00 1.0854019 —0.95903173 —0.21316642 —0.09051296 —0.04918981
0.01 1.0716302 —0.92995651 —0.19734833 —0.11039829 —0.03104705
0.02 1.0579561 —0.90160729 —0.18278329 —0.12768605 —0.01297664
0.03 1.0443818 —0.8741343 —0.16911244 —0.14231975 0.00475476
0.04 1.0309094 —0.84772939 —0.15613789 —0.15411481 0.02219393
0.05 1.0175410 —0.82264177 —0.14417187 —0.16467618 0.01858310
0.06 1.0042785 —0.7992021 —0.13496336 —0.19414756 —1.0164212
0.07 0.99112387 —0.77786047 —0.13435142 —0.44265195 24.323369
0.08 0.97807889 —0.75924895 —0.16091713 —5.9366901 413.17220
0.09 0.96514535 —0.74428879 —0.28117178 12.104546 —22.734741
0.10 0.95232494 —0.73438506 —0.8296993 31.560268 —462.39599
0.11 0.93961928 —0.73180435 —8.5365954 809.03790 —58587.792
0.12 0.92702988 —0.74047382 5.2676596 10.231313 2190.3915
0.13 0.91455822 —0.76787434 4.9354647 —55.887234 1224.6781
0.14 0.90220565 —0.83029178 7.3381300 —134.37904 3062.2576
0.15 0.88997346 —0.97129085 14.854009 —437.85365 15041.748
0.16 0.87786287 —1.3603363 49.619624 —3139.3425 234545.37
0.17 0.865875 —3.9363526 1171.2187 —606631.48 3.8752609010°
0.18 0.85401088 1.9317681 —11.780334 2884.4373 —326822.46
0.19 0.84227147 0.57651868 13.454904 127.48863 100.77384
0.20 0.83065764 0.27773007 6.1769373 69.330710 524.99073
0.30 0.72155838 0.09314481 —0.2608214 1.6431116 5.7294717
0.40 0.62537562 0.1993343 —0.43302451 0.15006752 1.3582894
0.50 0.54174791 0.26458306 —0.32260971 —0.27140215 0.58262038
0.60 0.46979598 0.28819495 —0.17835186 —0.34929691 0.09017830
0.70 0.40833633 0.28520112 —0.06646413 —0.28550798 —0.13370899
0.80 0.35606582 0.26835131 0.00483724 —0.19391875 —0.17918978
0.90 0.3116946 0.24576778 0.04504743 —0.11763146 —0.15297576
1.00 0.27402709 0.22194776 0.06517545 —0.06422083 —0.11177801
1.10 0.2420016 0.19912131 0.07339547 —0.02967889 —0.07575039
1.20 0.21470198 0.17824581 0.07493751 —0.00829155 —0.04899455
1.30 0.19135249 0.15961339 0.07292802 0.00454162 —0.0304128
1.40 0.17130433 0.14319157 0.06916914 0.01198574 —0.01789323
1.50 0.15401892 0.1288049 0.06467418 0.01608587 —0.00957769
1.60 0.13905099 0.11622792 0.05999884 0.01812893 —0.00409702
1.70 0.12603306 0.10523057 0.05543697 0.01891680 —0.00050821
1.80 0.11466173 0.09559856 0.05113403 0.01894809 0.00182048
1.90 0.10468625 0.08714120 0.04715237 0.01853317 0.00330817
2.00 0.09589882 0.07969281 0.04350861 0.0178655 0.00423273
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TABLE V. Expansion coefficients of1/a3Q for various values ot with ,=0, i>2.

Coefficients ofs' for the gravitational mas

& &0 &2 &4 &6 &8
0.00 0 0 0 0 0
0.01 0.04189209 0.04246214 0.04840595 0.05310172 0.06138033
0.02 0.08380931 0.08115227 0.09502374 0.09931087 0.1165261
0.03 0.1257768 0.11627705 0.14034491 0.13816091 0.16779538
0.04 0.16781969 0.14806521 0.18487986 0.1690188 0.2181801
0.05 0.20996311 0.17677919 0.22928743 0.19157084 0.27677559
0.06 0.25223219 0.2027326 0.27473656 0.21060612 0.5979699
0.07 0.29465207 0.22631723 0.32398279 0.28537561 —6.0060957
0.08 0.33724788 0.24804689 0.38498653 2.0152694 —124.06068
0.09 0.38004475 0.26863219 0.48597184 —3.9985889 —0.15355203
0.10 0.42306781 0.28911548 0.77113254 —11.621492 155.23679
0.11 0.4663422 0.31113215 4.1859186 —339.22981 24417.212
0.12 0.50989305 0.33746264 —1.8588230 —10.933727 —1022.9939
0.13 0.5537455 0.37333934 —1.7708758 21.555107 —531.17370
0.14 0.59792467 0.43007081 —3.0839441 61.463611 —1420.9588
0.15 0.6424557 0.5377904 —7.4131614 226.89235 —7777.7392
0.16 0.68736372 0.81351169 —28.767430 1830.3581 —136275.58
0.17 0.73267386 2.5952925 —770.75767 398608.22 —2.5446754x 10°
0.18 0.77841126 —1.4529533 11.397074 —2110.8820 244860.84
0.19 0.82460105 —0.51954369 —10.093076 —89.164129 226.04238
0.20 0.87126836 —0.3180264 —4.8968261 —57.161748 —380.38457
0.30 1.3697344 —0.37666528 0.81904278 —2.7961160 —9.8763842
0.40 1.9435987 —0.82904344 1.5102380 —0.6053959 —3.4289311
0.50 2.6179939 —1.3693167 1.7070560 0.53885692 —2.1926160
0.60 3.4180528 —1.9472924 1.6481885 1.2005744 —0.98288389
0.70 4.3689082 —2.5527128 1.4829837 1.4507518 —0.00014983
0.80 5.4956927 —3.1933102 1.3002647 1.4514458 0.57039853
0.90 6.8235392 —3.8834294 1.1398464 1.3414215 0.81909493
1.00 8.3775804 —4.6386450 1.0140861 1.1999932 0.88499186
1.10 10.182949 —5.4737714 0.92337032 1.0630189 0.86508412
1.20 12.264778 —6.4024064 0.86407489 0.94327903 0.81216639
1.30 14.648199 —7.4370306 0.83193824 0.84322071 0.75142342
1.40 17.358347 —8.5892485 0.82324479 0.76132333 0.69360857
1.50 20.420352 —9.8700213 0.83510223 0.69491426 0.64259313
1.60 23.859349 —11.289852 0.86539261 0.64129035 0.59918663
1.70 27.700470 —12.858921 0.91263339 0.59809715 0.56295176
1.80 31.968847 —14.587185 0.97583498 0.56340574 0.53302851
1.90 36.689613 —16.484440 1.0543810 0.53567923 0.50848981
2.00 41.887902 —18.560374 1.1479349 0.51370787 0.48848149
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TABLE VI. Expansion coefficients oM, /a3Q for various values ot with y,=0, i>2.

Coefficients ofs' for the rest mas#,

&s g g2 gt 8 g8
0.00 0 0 0 0 0
0.01 0.04189209 0.05245596 0.06452339 0.07673604 0.09064350
0.02 0.08380931 0.10138291 0.12467777 0.14552079 0.17045889
0.03 0.1257768 0.14697999 0.1810503 0.20649775 0.24117379
0.04 0.16781969 0.18946928 0.23424172 0.25967447 0.30478958
0.05 0.20996311 0.22910739 0.28499562 0.30546133 0.36899426
0.06 0.25223219 0.26620288 0.33455944 0.34955489 0.68695096
0.07 0.29465207 0.30114322 0.38575957 0.4525081 —5.9229587
0.08 0.33724788 0.3344386 0.44661698 2.2159335 —123.76573
0.09 0.38004475 0.36679666 0.5454014 —3.7541975 —0.6779804
0.10 0.42306781 0.39925742 0.82632859 —11.306658 154.00435
0.11 0.4663422 0.43345453 4.2348294 —338.55795 24389.392
0.12 0.50989305 0.47216724 —1.8183462 —10.679058 —1027.1961
0.13 0.5537455 0.52062728 —1.7412446 21.991097 —535.19617
0.14 0.59792467 0.59014308 —3.0682419 62.144578 —1430.4764
0.15 0.6424557 0.71084828 —7.4164107 228.15983 —7811.5324
0.16 0.68736372 0.99975724 —28.802435 1834.1087 —136523.76
0.17 0.73267386 2.7949289 —770.92714 398680.63 —2.5450674X 10°
0.18 0.77841126 —1.2397211 11.483888 —2103.2027 244823.57
0.19 0.82460105 —0.29250893 —10.086248 —86.857421 270.08015
0.20 0.87126836 —0.07698001 —4.9219300 —55.908647 —364.07926
0.30 1.3697344 0.01672239 0.56758844 —2.1242466 —9.5006993
0.40 1.9435987 —0.25789658 1.0217665 0.07622924 —2.9245661
0.50 2.6179939 —0.58921661 0.99559791 1.0782019 —1.3199037
0.60 3.4180528 —0.92033156 0.74161054 1.5062120 0.04353243
0.70 4.3689082 —1.2337985 0.40781773 1.5054690 0.95554101
0.80 5.4956927 —1.5299374 0.07578544 1.2771041 1.3384899
0.90 6.8235392 —1.8155767 —0.22248284 0.97101036 1.3676277
1.00 8.3775804 —2.0987311 —0.48106395 0.66449818 1.2237982
1.10 10.182949 —2.3866409 —0.70436865 0.38738975 1.0182639
1.20 12.264778 —2.6853269 —0.89947761 0.14629252 0.80533928
1.30 14.648199 —2.9996963 —1.0731453 —0.06144076 0.60709587
1.40 17.358347 —3.3337847 —1.2309272 —0.24120271 0.43012826
1.50 20.420352 —3.6909893 —1.3771251 —0.39850746 0.27444199
1.60 23.859349 —4.0742533 —1.5149872 —0.53811594 0.13764981
1.70 27.700470 —4.4862014 —1.6469456 —0.66387001 0.01679751
1.80 31.968847 —4.9292361 —1.7748240 —0.7787784 —0.09091482
1.90 36.689613 —5.4056047 —1.8999983 —0.88516836 —0.18789822
2.00 41.887902 —5.9174456 —2.0235176 —0.98483424 —0.27614163
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TABLE VII. Expansion coefficients oP./a3Q? for various values of with y;=0, i>2.

Coefficients ofs' for the central pressure,

& &0 &2 &4 &6 &8

0.00 0 0 0 0 0

0.01 0.00061857 —0.00172000 0.00162459 —0.00077003 0.00044127
0.02 0.00243630 —0.00686564 0.00710374 —0.00491391 0.00493335
0.03 0.00539833 —0.01545281 0.01766303 —0.01697127 0.02537089
0.04 0.00945262 —0.02755907 0.03514794 —0.04585596 0.09808811
0.05 0.01454978 —0.04334499 0.06242121 —0.11038522 0.34561893
0.06 0.02064301 —0.06308734 0.10409423 —0.25635755 1.3551282
0.07 0.02768796 —0.08723187 0.16798563 —0.63884234 4.1589896
0.08 0.03564262 —0.11648064 0.26842379 —3.0575859 120.34604
0.09 0.04446728 —0.15194212 0.43563224 0.41855319 20.090197
0.10 0.05412437 —0.19540392 0.75876395 —2.5871083 4.3812886
0.11 0.06457839 —0.24986232 2.3812791 —100.52138 7005.1522
0.12 0.07579584 —0.32064223 0.88116263 —29.802523 —234.29858
0.13 0.08774509 —0.41805092 2.3107894 —34.315938 388.81769
0.14 0.10039634 —0.5647382 5.0552036 —87.445248 1669.9741
0.15 0.11372151 —0.82158864 12.978500 —348.51779 11069.532
0.16 0.12769416 —1.4259431 52.306181 —3108.6680 224222.47
0.17 0.14228943 —5.0951044 1490.6987 —762280.11 4.848057801C°
0.18 0.15748397 3.0709510 —44.367825 4384.7277 —570869.92
0.19 0.17325585 1.1138325 19.748422 63.519803 —3223.0377
0.20 0.18958447 0.63815819 11.158362 84.961966 91.304718
0.30 0.3798125 —0.11854446 1.3921945 5.7408680 18.408063
0.40 0.61093217 —0.28101446 0.41114756 2.7524237 4.7395486
0.50 0.8765547 —0.29553405 —0.21692694 1.7597087 3.1658578
0.60 1.1744310 —0.19762251 —0.64456449 0.84355303 2.7155097
0.70 1.5044260 —0.01447731 —0.86930239 0.02192268 1.9510756
0.80 1.8673640 0.23179265 —0.92120251 —0.58277995 1.0264413
0.90 2.2644107 0.52592119 —0.84400036 —0.95208863 0.2108996
1.00 2.6967662 0.85851446 —0.67570587 —1.1260297 —0.39050992
1.10 3.1655292 1.2242483 —0.44338108 —1.1551896 —0.78090453
1.20 3.6716491 1.6203250 —0.16452438 —1.0815067 —1.0002778
1.30 4.2159215 2.0454170 0.15012064 —0.93498189 —1.0911717
1.40 4.7990015 2.4990135 0.49416461 —0.73571739 —1.0879378
1.50 5.4214241 2.9810379 0.86390299 —0.49678082 —1.0156282
1.60 6.0836241 3.4916304 1.2572490 —0.22655363 —0.89172864
1.70 6.7859549 4.0310276 1.6730773 0.06961668 —0.72822437
1.80 7.5287040 4.5994981 2.1108281 0.38832489 —0.53328772
1.90 8.3121058 5.1973091 2.5702700 0.72740591 —0.31249925
2.00 9.1363524 5.8247100 3.0513580 1.0854878 —0.06968863
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TABLE VIII. Expansion coefficients 0f/ajQ®? for various values o with y;=0, i >2.

Coefficients ofs' for angular momenturd

& &0 &2 &4 &6 &8
0.00 0 0 0 0 0
0.01 0.00519817 0.01064142 0.01709874 0.02545363 0.03580801
0.02 0.01452484 0.02955774 0.04621122 0.06832484 0.09446591
0.03 0.02637109 0.05341626 0.08104960 0.11945215 0.16152228
0.04 0.04014030 0.08105972 0.11900741 0.17572839 0.23030652
0.05 0.05548233 0.11191984 0.15848091 0.23645053 0.2981537
0.06 0.07216065 0.14575859 0.19860914 0.30636975 0.52287242
0.07 0.09000348 0.18260101 0.23993267 0.43348251 —4.1934547
0.08 0.10888064 0.22274743 0.28745884 1.8835269 —96.001495
0.09 0.12869081 0.26685311 0.36460134 —2.9069282 —1.4043833
0.10 0.14935376 0.3161068 0.60538199 —9.8156498 137.90767
0.11 0.17080538 0.37259919 3.8855222 —326.89627 23595.306
0.12 0.19299422 0.44011835 —2.1803366 —9.1109666 —1078.5552
0.13 0.21587897 0.52604717 —2.3712087 28.000940 —642.86950
0.14 0.23942672 0.64663729 —4.3174390 82.390748 —1873.3462
0.15 0.26361148 0.84557362 —10.556837 317.16019 —10852.688
0.16 0.28841317 1.2930930 —41.568836 2647.8340 —197589.40
0.17 0.31381674 3.9378673 —1128.4291 585246.47 —3.7391089x 10°
0.18 0.33981149 —1.9051257 7.2345391 —2888.5244 340738.03
0.19 0.36639046 —0.4890684 —17.726915 —178.76932 —44.181794
0.20 0.39355005 —0.13577661 —9.2222335 —105.05367 —807.13712
0.30 0.69802485 0.52311868 —0.57132492 —4.7290425 —21.880756
0.40 1.0714436 0.79662582 0.05656033 —1.1626724 —5.0786338
0.50 1.5346441 1.0605245 0.24310865 —0.220009 —1.5315446
0.60 2.1149817 1.3709717 0.30021959 0.05678398 —0.10285
0.70 2.8447368 1.7637678 0.33048771 0.03348169 0.45890186
0.80 3.7607272 2.2682180 0.38836636 —0.11923423 0.53433897
0.90 4.9043081 2.9119034 0.50500367 —0.30541288 0.35919637
1.00 6.3214817 3.7232237 0.70019629 —0.47535233 0.07990005
1.10 8.0630209 4.7327036 0.98941174 —0.60511924 —0.22477905
1.20 10.184575 5.9736140 1.3874168 —0.68287074 —0.51722445
1.30 12.746756 7.4822472 1.9099198 —0.70137912 —0.78102489
1.40 15.815199 9.2980323 2.5742218 —0.65447365 —1.0093842
1.50 19.460609 11.463577 3.3994232 —0.53552549 —1.1992419
1.60 23.758798 14.024683 4.4064527 —0.33688721 —1.3485367
1.70 28.790709 17.030343 5.6180320 —0.04974338 —1.4550308
1.80 34.642430 20.532741 7.0586270 0.33587825 —1.5158600
1.90 41.405215 24.587246 8.7544002 0.8310431 —1.5274045
2.00 49.175489 29.252409 10.733173 1.4478377 —1.4852922
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TABLE IX. Expansion coefficients of,/r for various values o€ with y;=0, i>2.

PHYSICAL REVIEW B8, 104029 (2003

Coefficients ofs' for the radius ratia,/re

2

4

6

8

&s g? € g € €
0.00 0 0 0 0 0
0.01 0.0099995 —0.02602989 0.02202631 —0.01047418 0.00897031
0.02 0.01999600 —0.05311731 0.05132736 —0.03924064 0.04708946
0.03 0.02998651 —0.08135889 0.08911485 —0.09392366 0.14546497
0.04 0.03996804 —0.11089284 0.13723154 —0.18817272 0.37882528
0.05 0.04993762 —0.14191637 0.19853676 —0.3488407 0.96345183
0.06 0.05989229 —0.17471238 0.27760603 —0.63830148 2.8459464
0.07 0.06982913 —0.20969134 0.38211536 —1.2643965 7.3313198
0.08 0.07974522 —0.24746 0.52597493 —4.6830624 172.58895
0.09 0.08963770 —0.28893904 0.73832306 0.09914477 26.066958
0.10 0.09950372 —0.33557622 1.1055791 —3.4554085 2.2631308
0.11 0.10934048 —0.38975965 2.7622215 —101.28858 6954.7987
0.12 0.11914522 —0.45569145 1.2805118 —31.530651 —198.73051
0.13 0.12891523 —0.54145696 2.6523173 —35.509464 406.54300
0.14 0.13864784 —0.66476338 5.1130909 —83.609450 1581.1100
0.15 0.14834045 —0.87312659 11.844410 —307.65212 9693.8945
0.16 0.1579905 —1.3516343 43.829227 —2561.5455 183953.19
0.17 0.16759549 —4.2188500 1173.6956 —598387.12 3.803048401C°
0.18 0.177153 2.1418255 —41.159648 3581.7333 —454958.98
0.19 0.18666065 0.61071792 12.872215 12.113393 —2462.2706
0.20 0.19611614 0.2351988 7.1665406 44.350811 —72.324822
0.30 0.28734789 —0.37867602 0.98503149 1.8025725 5.8931889
0.40 0.37139068 —0.51715828 0.52418984 0.79232382 0.41160951
0.50 0.4472136 —0.5597459 0.23038891 0.69014814 0.07257866
0.60 0.51449576 —0.55020825 0.02038324 0.53356119 0.27891669
0.70 0.57346234 —0.51417099 —0.10821692 0.34347031 0.34737635
0.80 0.62469505 —0.46755319 —0.17463699 0.18619835 0.29128276
0.90 0.66896473 —0.41919642 —0.20141601 0.07879986 0.20314523
1.00 0.70710678 —0.37342997 —0.20570353 0.01287290 0.12721316
1.10 0.73994007 —0.33202671 —0.19838512 —0.0247471 0.07303315
1.20 0.76822128 —0.29543502 —0.18575195 —0.04470894 0.03751262
1.30 0.79262399 —0.26347544 —0.17123161 —0.05416609 0.01524089
1.40 0.81373347 —0.23570866 —0.15659797 —0.05756331 0.00167726
1.50 0.83205029 —0.21161961 —0.14270895 —0.05756365 —0.00636027
1.60 0.8479983 —0.19070359 —0.12992949 —0.05573405 —0.01094845
1.70 0.86193422 —0.17250244 —0.11836672 —0.05298648 —0.01340201
1.80 0.87415728 —0.15661589 —0.10799852 —0.04984618 —0.01454328
1.90 0.88491822 —0.14270141 —0.09874277 —0.04661101 —0.01488493
2.00 0.89442719 —0.13046906 —0.09049408 —0.04344527 —0.01474681

104029-17



DAVID PETROFF

[1] S. Chandrasekhar, Astrophys.137, 334 (1967).

[2] J. Bardeen, Astrophys. 167, 425(1971.

[3] J. Hartle and D. Sharp, Astrophys.117, 317 (1967).

[4] L. Lichtenstein, Gleichgewichtsfiguren Rotierender "Blu
sigkeiten(Springer, Berlin, 1938

[5] L. Lindblom, Philos. Trans. R. Soc. Lond@®840, 353(1992.

[6] I. Hachisu and Y. Eriguchi, Publ. Astron. Soc. Ji86, 497
(1984).

[71 M. Ansorg, A. Kleinwahter, and R. Meinel, Mon. Not. R.
Astron. Soc.339, 515(2003.

[8] D. Petroff, Ph.D. thesis, Friedrich-Schiller-Universjtdena,
2003.

[9] R. Meinel, Ann. Phys(Leipzig) 11, 509 (2002.

[10] D. Petroff and R. Meinel, Phys. Rev. €8, 064012(2001).

[11] M. Ansorg, A. Kleinwahter, and R. Meinel, Astron. Astro-
phys.381, L49 (2002.

[12] M. Ansorg, A. Kleinwahter, and R. Meinel, Astron. Astro-

PHYSICAL REVIEW D68, 104029 (2003

phys.405, 711 (2003.

[13] N. Stergioulas, “Rotating stars in relativity, living rev. relativ-
ity,” 2003, online publication: referenced on June 21,. 2003,
http://www.livingreviews.org/Irr-2003-3.

[14] S. Bonazzola, E. Gourgoulhon, and J. Marck, Phys. Res8D
104020(1998.

[15] N. Stergioulas and J. Friedman, Astrophys444, 306(1995.

[16] H. Komatsu, Y. Eriguchi, and I. Hachisu, Mon. Not. R. Astron.
Soc.237, 355(1989.

[17] H. Komatsu, Y. Eriguchi, and I. Hachisu, Mon. Not. R. Astron.
Soc.239 153(1989.

[18] T. Damour, B. lyer, and B. Sathyaprakash, Phys. Re67D
885(1998.

[19] G. Neugebauer and R. Meinel, Phys. Rev. Lét, 3046
(1995.

[20] G. Neugebauer and R. Meinel, J. Math. Phi#4.3407(2003.

104029-18



