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Post-Newtonian Maclaurin spheroids to arbitrary order

David Petroff*
Theoretisch-Physikalisches Institut, University of Jena, Max-Wien-Platz 1, 07743 Jena, Germany
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In this paper, we develop an iterative scheme to enable the explicit calculation of an arbitrary post-
Newtonian order for a relativistic body that reduces to the Maclaurin spheroid in the appropriate limit. This
scheme allows for an analysis of the structure of the solution in the vicinity of bifurcation points along the
Maclaurin sequence. The post-Newtonian expansion is solved explicitly to the fourth order and its accuracy
and convergence are studied by comparing it to highly accurate numerical results.
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I. INTRODUCTION

Upon the discovery of pulsars in 1968 and their ident
cation as neutron stars, it became apparent that a relativ
description of rapidly rotating, compact stars was need
Early work in this direction dealt with simplified models fo
the matter making up these objects. In particular, Ch
drasekhar@1# looked at stars of constant density and calc
lated the first post-Newtonian correction to the Maclau
spheroids. Bardeen@2# reexamined this work using a mod
fied approach and gained new insight regarding, forem
the points of onset of secular, axisymmetric instability alo
a one parameter Maclaurin curve.

Given the amount of work that has been done since t
to study stars with more realistic equations of state, the
turn to a model of constant density can hardly be motiva
by astrophysical considerations. Many other good argum
however, suggest that precisely this model deserves cl
attention: For one, it allows, as we shall see, for the dev
opment of an iterative scheme to calculate explicitly a
order of the post-Newtonian expansion, limited in pract
only by computer algebra programs and the machines
ning them. Furthermore, by considering an arbitrary ord
one can study properties of the full relativistic solution a
carry out Bardeen’s task of testing conjectures ‘‘by going
higher orders in the relativistic expansion.’’ Finally, becau
of the fortuitous circumstance of being in possession
highly accurate numerical values, one can go even furt
We are in the rare position of being able to examine
behavior of the post-Newtonian expansion itself, providin
by analogy, a testbed for the most widely used analytic
proximation within the field of general relativity.

In Sec. II of this paper, we motivate the method used h
by briefly describing Bardeen’s approach@2# for the first or-
der of the expansion and explaining why modifications
necessary when going to higher orders. Section III pres
the line element and the Einstein equations to be solved
iteratively. An iterative scheme allowing for the explicit ca
culation of an arbitrary order is presented in Sec. IV a
some properties of the solution are discussed in Sec. V. A
providing by way of example the explicit calculation of
few expressions and introducing various physical quantit
the PN approximation up to the fourth order is compa
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with highly accurate numerical results in Sec. VI.

II. PRELIMINARY REMARKS

For a given mass-density,Q, the Maclaurin spheroids an
the relativistic model both depend on two parameters.1 Since
the post-Newtonian approximation describes the relativi
model in terms of Newtonian parameters, some conventio
needed to determine which relativistic parameters are
plied by the specification of the Newtonian ones. Barde
argued that the ‘‘most appropriate choice’’ compares Ne
tonian and relativistic bodies of the same rest massM0 and
angular momentumJ since these quantities~together withQ)
are coordinate independent and ‘‘play the primary role in
Hartle-Sharp@3# variation principle.’’ In this paper we take a
somewhat different approach since our purpose is less
comparison of Newtonian and relativistic configuration
than the development of a method for calculating an arbitr
order of the expansion. Therefore we use the freedom
one has in defining the PN approximation in order to si
plify the mathematical structure of the equations. The
maining freedom regarding the choice of a constant is
unspecified as long as possible. What effect the specifica
of this constant then has, will be studied in Sec. VI C of t
paper.

At this point, a brief description of the method th
Bardeen used in@2# will provide us with the basis for under
standing the motivation for the methods used in this pap2

Up to the first order of the PN approximation, one has
determine two metric functions from Poisson-like equatio
as well as the unknown boundary of the star. To solve for
metric functions, Bardeen used a Poisson-integral in sphe
dal coordinatesj and h, which represents potentials as a
expansion in terms of orthogonal polynomials inh. An it-
erative scheme for the calculation of higher orders is o
feasible if the sum over these polynomials terminates. T

1In the Newtonian case, one of these is a mere scaling param
2The reader who is interested in studying Bardeen’s paper@2# may

benefit from the following list of errata. The coefficient ofP2(h) in

Eq. ~21! should read @1/p2(js)#@
1
2 p2(j)C21@(js

22j2)/js(1
1js)

1/2##. The left-hand side of Eq.~36! should read (1/c2)
3(v2)E(js ,h) and the right-hand side112D2W2(h). The Pl(h) of
Eq. ~43! is to be replaced by (Pl(h)21) and the second term in th
first line of Eq.~55! by 1(Dj/c2)(]U/]j)(js,1).
©2003 The American Physical Society29-1
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conditions for the termination of the sum are that the sou
remain a polynomial inh and that the boundary of the sta
remain a constant inj. Neither of these conditions is me
with in Bardeen’s approach, which is why it is only appr
priate up to the first order. To that order it was possible
determine the metric functions in an elegant way, beca
they can be decomposed into one piece containing the
~post-Newtonian! source within the old boundary and a
other piece containing the old source within the new bou
ary. For higher orders, such a procedure can no longe
used and one has to devise a modified approach.

The approach used in this paper relies on the fact tha
extended version of the Poisson-integral is valid for Poiss
like equations even in modified coordinates. Here coo
nates will be introduced that are tailored to the unkno
boundary of the star and satisfy the condition that the bou
ary be a constant in this coordinate. Furthermore we req
that the unknown boundary of the star when written a
function of the old coordinatej be given as a polynomial in
h, a requirement that can be shown to be compatible w
the condition that the pressure vanish at the surface of
star. This requirement ensures that the sources in
Poisson-like equations remain polynomials inh. Thus we
have to deal only with terminating sums to any order of
PN approximation and the recursive method proposed h
can be applied indefinitely.

III. BASIC EQUATIONS

The line element for an axially symmetric, stationary, a
ymptotically flat space-time describing a perfect fluid w
purely azimuthal motion can be written in Lewis-Papapet
coordinates as

ds25e2m~d%21dz2!1%2e2l~dw2vdt!22c2e2ndt2.

The metric functionsm, l, v andn depend only on% andz
and vanish at spatial infinity. The energy-momentum ten
for the pressureP and the mass densityQ, which is merely
the energy density divided byc2, is then given by

Tab5~Qc21P!uaub1gabP,

whereQ is a constant up to the surface of the star. The ma
of the star rotates uniformly with an angular velocityV. We
introduce the spheroidal coordinates

%25a0
2~11j2!~12h2! and z5a0jh,

hP@21,1#, jP@0,̀ !,

and obtain from various combinations of the Einstein eq
tions the following partial differential equations for the me
ric functions~with G51 for the gravitational constant!:

D2n5
4pe2m

c4 F11 ṽ2

12 ṽ2
~Qc21P!12PG2L~n,n1l!

1
1

2
Ṽ2~11j2!~12h2!e2l22nL~ṽ,ṽ !, ~1a!
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D3~l1n!5
16pe2m

c4
P2L~n1l,n1l!, ~1b!

D4ṽ5
216p~12ṽ !e2m

c4~12 ṽ2!
~Qc21P!2L~ṽ,3l2n!,

~1c!

D1m5
24pe2m

c4
~Qc21P!1L~n,l!

1
1

4
~11j2!~12h2!e2l22nL~ṽ,ṽ !

1
1

a0
2~j21h2!

~jn ,j2hn ,h!. ~1d!

The differential operators in the above equations are defi
by

L~f,x!ª@~11j2!f ,jx ,j1~12h2!f ,hx ,h#/a0
2~j21h2!

and

DmªF ~11j2!
]2

]j2
1~12h2!

]2

]h2
1mj

]

]j

2mh
]

]hG Y a0
2~j21h2!

and the dimensionless function in Eq.~1c! by

ṽª

v

V
.

Note that the operatorD2 is simply the Laplace operator in
flat three-dimensional space. The dimensionless pressuP̃
ªP/Qc2 is related to the metric functions by

A11 ṽ2~11 P̃!en5const512g ~2!

with

ṽª%Ṽ~12ṽ !el2n/a0 and Ṽªa0V/c.

IV. THE ITERATIVE SCHEME

A. The expansion

The system of partial differential equations~1! is simpli-
fied by expanding the relevant quantities in terms of a
mensionless relativistic parameter. Here we choose
square root of the parameter3 used in@2# defined by

3The square root was chosen in order to enable a more conve
indexing of the expansion coefficients.
9-2
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«2
ª

8pQa0
2jsA11js

2

3c2
. ~3!

The three variables entering into this definition complet
specify the Newtonian Maclaurin spheroid.Q is the mass
density,a0 the focus of the ellipse describing the surface
the star in the cross section andjs the value of the surface’s
j coordinate. These are the same quantities which will e
into the PN expansion, but the latter two lose their sim
geometrical meaning. The parameter« remains finite in both
the spherical limit, given byjs→` anda0}1/js and the disk
limit, which is given by js→0 and Q}1/js for non-
vanishing mass.

The expansion of the dimensionless metric functions
the constants reads as follows:

n5 (
n52

`

nn«n l5 (
n52

`

ln«n ṽ5 (
n52

`

ṽn«n

m5 (
n52

`

mn«n g5 (
n52

`

gn«n Ṽ5 (
n51

`

Ṽn«n.

~4!

As was already mentioned,Q is held constant to any order o
the approximation, which is why it does not appear in Eq.~4!

and any other quantities of interest, such asṽ or P̃ can be
expressed in terms of these six quantities.

If these expansions are substituted into Eqs.~1a!–~1d!
then comparing coefficients of« yields differential equations
for the metric functions of the formDmf i5F, where f

5n,l,ṽ,m. Because the right-hand side of Eqs.~1a!–~1c!
depends only onf i 2 j , j .0, one can solve forf i if the
lower order functions are already known. In the case ofm i ,
one can calculate it from Eq.~1d! after having determined
the other three functions to this order, or one can compu
from an integral overh.

Because an analytic solution, the Maclaurin solution,
the first step is known, these equations would provide
iterative process for the determination of the metric functio
to any order if the shape of the star were known. The bou
ary of the star also has to be determined iteratively howe

We represent the surface of the star by the equation,

j5jB~h!5jsS 11(
j 50

k

(
k52

`

SjkCj
1/2~h!«kD

[jsS 11 (
k52

`

Bk~h!«kD , ~5!

where we have already taken into account that the boun
is an ellipsoidj5js in the Newtonian order. We also requir
that the sum over the Legendre polynomialsCj

1/2(h), a spe-
cial case of the Gegenbauer polynomials discussed in
IV B, terminate and show in Sec. IV D that this leads to
consistent solution.
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B. Solving the Poisson-like equations

In the last section an iterative scheme was proposed
the determination of the metric functions in which an equ
tion of the formDmf5F need be solved for a known func
tion F5F(j,h). The regular and asymptotically flat solutio
of this equation is given by

f~j,h!5a0
2(

l 50

`

Kl
mCl

(m21)/2~h!Fhl
m~j!

3E
0

jE
21

1

gl
m~j8!Cl

(m21)/2~h8!

3F~j8,h8!km~j8,h8!dh8dj8

1gl
m~j!E

j

`E
21

1

hl
m~j8!Cl

(m21)/2~h8!

3F~j8,h8!km~j8,h8!dh8dj8G . ~6!

In the above equationCi
j are the Gegenbauer polynomials,gi

j

andhi
j are two linearly independent solutions of the~homo-

geneous! Gegenbauer equation defined by

gl
m~j!ªCl

(m21)/2~ i j!

hl
m~j!ªgl

m~j!E
j

` dj8

~gl
m~j8!!2E~j8!

~ l ,m!Þ~0,1!

~7!

h0
1~j!ªarcsinh~j!

with

E~j!ªexpS E0

j mj8

11j82
dj8D 5~11j2!m/2.

The term

km~j,h!dhdjª@~11j2!~12h2!#m/221~j21h2!dhdj
~8!

is a product of the volume element and the appropri
weight function for the Gegenbauer polynomials and

Kl
m5

l ! S l 1
m

2
2

1

2D FGS m

2
2

1

2D G2

p222mG~m211 l !
for m.1

Kl
15

l 2

2p
for l .0

K0
15

1

p

are normalizing constants.
9-3
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In Eq. ~6! the integrands jump at the surface of the s
because of the jump in the mass density. It is therefore n
essary to split them into integrals over the interior and ex
rior of the star. Clearly if the surface of the star is given,
with the leading order, by a constantj5js, then this divi-
sion is trivial. If the boundary depends onh, then matters are
complicated considerably. As of the second order in the
pansion, theh integrals no longer run over the intervalh
P@21,1# meaning that one can no longer make use of
orthogonality of the Gegenbauer polynomials and one
faced with non-terminating sums. We hence introduce n
coordinates in order to circumvent these difficulties.

C. New coordinates

We introduce the coordinates

c5
jsj

jB~h!
, h5h ~9!

implying thatc5js is the boundary of the star; cf. Eq.~5!.
The new coordinatec is a function of bothh and « and
contains the unknown coefficientsSjk . We rewrite Eqs.
~1a!–~1d! in terms of the new coordinates and manipula
them such that the left-hand side has the same form as
forehand, but withc replacingj. For example, the equatio
for n5n(c,h) now reads

F ~11c2!
]2n

]c2
1~12h2!

]2n

]h2
12c

]n

]c
22h

]n

]hG Ya0
2

3~c21h2!5F̄.

These new field equations are again expanded4 in terms of«
in order to obtain a system of equations forf i as was ex-
plained in Sec. IV A. Sincec5j1O(«2) holds, the new
equations forf i(c,h) also depend only on known function
thereby enabling their recursive determination.

The derivation of Eq.~6! relies on the fact that in the
coordinates (j,h), the line (0,h) is identical to the line (0,
2h) and that at spatial infinity we havej→`. These prop-
erties hold forc as well and an analysis of the derivatio
shows that we are free to use Eq.~6! as it stands, only re-
placingj by c.

In changing coordinates we have mapped the star onto
rectangle@0,js#3@21,1#, which means that the division o
the integrals into inner and outer domains is trivial. The pr
that one pays for the simplicity in the structure of the in
grals is that the sources of the Poisson-like equations bec
quite unwieldy. But the exchange of a conceptual for a m
chanical difficulty can be termed a good deal, and all
more so when its result is the facilitation of the who
scheme.

4Note that the coefficientsf i(c,h) are not mere transformation
of f i(j,h) sincec depends on«. Thus one must substitutec of
Eq. ~9! into S j 52

n f j (c,h) and expand the result in terms of« in
order to expressfk, k<n, in terms ofj.
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D. Determining the shape of the star

Due to the factorc2 in gtt of the line element, it is nec-
essary to determine the functionn i 12 in order to calculate
the i th order of the PN approximation. This is the only metr
function that depends on the unknown coefficientsSji of the
star’s boundary.5 To determine these coefficients, one calc
lates the pressure from Eq.~2! along the boundary of the sta
and sets the coefficients of an expansion in terms ofh equal
to zero. In discussing the boundary, however, it turns ou
be useful to leave a portion of the Poisson integral forn i 12
unevaluated in order to arrive at the integral equation

Ṽ1
2~12h2!js

2Bi~h!

5(
l 50

`

Kl
2Cl

1/2~h!E
21

1

Cl
1/2~ h̃ ! f l~ h̃ !Bi~ h̃ !dh̃1bi~h!.

~10!

The functionBi is defined in Eq.~5! and contains the entire
dependence onSji . The functionbi(h) is short for the re-
maining terms that result from Eq.~2! and is a known poly-
nomial of orderi 12. The functionf l(h̃) is given by

f l~ h̃ !ªgl
2~js!E

js

`

hl
2~c!@2h̃c~ ṅ2

o!82c~12h̃2!~ ṅ2
o!912n̈2

o

2 l ~ l 11!cṅ2
o#dc1hl

2~js!E
0

js
gl

2~c!F2h̃c~ ṅ2
i !8

2c~12h̃2!~ ṅ2
i !912n̈2

i 1
3c2

jsA11js
2

2 l ~ l 11!cṅ2
i Gdc,

where a dot and prime indicate partial derivatives with
spect toc and h̃ respectively and the superscripts ‘‘i’’ an
‘‘o’’ refer to the regions inside and outside the star. Sin
f l(h) is a polynomial of second order, the sum in Eq.~10!
terminates for polynomialBi(h). Indeed, for the form ofBi
chosen in Eq.~5!, one arrives at a system ofi 12 algebraic
equations fori 13 unknowns~there arei 11 Si j to determine
as well asṼ i 11 andg i 12).6 We choose to use this system
determine all these constants but forg i 12. As mentioned in
Sec. II, this last constant can be chosen arbitrarily, wh
amounts to specifying ‘‘which’’ PN approximation on
wishes to have, i.e., which relativistic body is to be asso
ated with a given Maclaurin spheriod. The choice ofg i 12
will be discussed further in Sec. VI C.

We have shown that the form chosen for the surface of
star is consistent with the Einstein equations to any orde

5The other metric functions depend only onSjk , with j , i .
6We shall see in Sec. V A thatSi j 50 for odd i and j.
9-4
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the PN expansion. This is not to say that this choice
unique. One can easily see that the form chosen in@2# is
incompatible with that chosen here, since it is not a poly
mial in h. There the surface was derived having stipula
that the ‘‘generating’’ Maclaurin spheroid should have t
same rest mass and angular momentum as the PN st
condition that cannot be satisfied with the approach cho
here. In lieu of the freedom to choose two constants, we h
chosen a form for the boundary of the star most appropr
to our goal of devising an iterative scheme and can cho
only one further constant.

V. PROPERTIES OF THE SOLUTION

A. Reflectional symmetry

In Newtonian physics, it is known, that stationary, ax
symmetric bodies are necessarily symmetric with respect
reflection through thez50 plane ~see e.g.@4#!. Although
authors~e.g.@5#! have speculated that the same holds in g
eral relativity, it has not yet been proved true. In the ca
considered here, this symmetry arises automatically. A fu
tion f exhibits reflectional symmetry inj-h ~or c-h) coor-
dinates precisely when it is an even function ofh. Because
of the orthogonality of the Gegenbauer polynomials,
terms in the sum of Eq.~6! for odd l are zero ifF is a
polynomial inh2, a condition which turns out to be satisfie
The odd terms, which are provided by the unknown bou
ary coefficientsSli must be zero for the boundary conditio
to be satisfied. Thus we have shown that any axially sy
metric, stationary, relativistic solution that is continuous
connected to the Maclaurin spheroids is symmetric with
spect to reflections through thez50 plane.

B. Powers of the relativistic parameter

Consideration of the field equations together with t
knowledge of the Newtonian behavior of the dimensionl
metric functions, shows that their expansion coefficientsf i
begin with i 52 and are non-zero only for eveni. The same
holds naturally forg i , whereasṼ j begins with j 51 and
appears only with odd powers ofj. Because of the choice t
work with the dimensionless functions introduced here, i
most appropriate to refer to thenth order of the PN approxi-
mation and not the half orders in between. What we mean
the nth order is that the quantitiesl, ṽ, m and jB are ex-
panded up to and including the orderO(«2n), Ṽ up to
O(«2n11) andn andg to O(«2n12).

C. Singularities in parameter space

By comparing the highest coefficient ofh in Eq. ~10! one
can arrive at the equation

Sii 5
t i

js
2Ṽ1

22ai 12

~11!

with
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21

1

Ci 12
1/2 ~ h̄ !bi~ h̄ !dh̄

and

Ci 12
1/2 ~h! f i 12~h!5: (

n50

1

ā2n,i 12h2n, ai 12ªā2,i 12

and wheref i 12 and bi are defined in Eq.~10!. It can be
shown that the denominator of Eq.~11! is proportional to the
expression

gi 12
2 ~js!hi 12

2 ~js!2js„12jsarccot~js!…5:Gi~js!. ~12!

For a given~even! i, this expression vanishes for precise
one value ofjs, let us say forjs5j i 12* . These values, be
ginning with i 52, are the points of onset of axisymmetri
secular instability and the bifurcation points of new axisy
metric solutions, see@2,6,7#, and numerical values for the
first few of them can be found in Table I. Sincet i of Eq. ~11!
is not zero at the pointjs5j i 12* , these bifurcation points are
singularities in the two dimensional parameter space (js,a0)
or (js,«). For values ofjs differing only slightly fromj i 12* ,
the PN configurations have properties similar to those of
Newtonian configurations that branch off from the Maclau
sequence at these points. The Maclaurin configuration it
cannot be reached for bodies with non-zero mass howe
and even neighboring configurations have strict mass lim
tions, since« must be made very small in order that the P
series converge. This mass limitation can be inferred,
example, by referring to the tables in Appendix B. Becau
thenth PN order possesses a pole of order 2n21 at the point
j5j4* , we expect the coefficients for the expansion to gr
large in the vicinity of this point.7 This is indeed the case a
can be seen in these tables by referring to the row withjs
50.17. The series containing these coefficients conve
only for sufficiently small« as indicated above.

VI. EXPLICIT SOLUTION TO THE FOURTH ORDER

A. The metric functions and the constants

Using the iterative scheme described above, the four m
ric functions and the constantṼ were explicitly solved up to

7A lengthier discussion regarding the order of the poles atj2i 12* ,
i .1 can be found in@8#.

TABLE I. Numerical values forj2l* and the corresponding New
tonian eccentricities and ratios of polar to equatorial radii given
e51/A11js

2 and r p /r e5js/A11js
2.

l j2l* e2l* r p /r e

2 0.17383011 0.98522554 0.17126187
3 0.11230482 0.99375285 0.11160323
4 0.08303471 0.99657034 0.08274493
5 0.06588682 0.99783651 0.06574427
9-5
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DAVID PETROFF PHYSICAL REVIEW D68, 104029 ~2003!
the fourth post-Newtonian order. These calculations could
principle be carried outad infinitum, but the lengthiness o
the expressions~the fourth order functions would fill severa
hundred pages! puts a practical limit on the order that can b
determined. Here we will merely carry out, by way of e
ample, the calculation of the first few terms.

The expansion of Eq.~1a! with respect to the relativistic
parameter« yields the Newtonian equations

D2n2
i 5

4p

«2c2
Q5

3

2a0
2jsA11js

2
~13a!

for the interior region (j,js) and

D2n2
o50 ~13b!

for the regionj.js exterior to the body. These equations a
solved using Eq.~6! to obtain

n2
i 52

1

2jsA11js
2
H F js~11js

2!h0
2~js!1

1

2

3~js
22j2!GC0

1/2~h!1F2js~11js
2!g2

2~c!h0
2~js!

1
1

3
~~3js

212!g2
2~c!11!GC2

1/2~h!J ~14a!

and

n2
o5

2A11js
2

2
~h0

2~c!C0
1/2~h!2h2

2~c!C2
1/2~h!!

~14b!

~see Appendix A for a list of the first fewgl
m andhl

m). One
can verify thatn2

i (js,h)5n2
o(js,h) holds. The requiremen

that the pressure vanish to this order of the expansion
fixes the two remaining constants:
10402
in

en

Ṽ152
3

2A11js
2

h2
2~js!, g25

A11js
2

2
~h0

2~js!2h2
2~js!!.

~15!

Expanding Eqs.~1b! and ~1d! shows thatl25m252n2
holds and one need only expand Eq.~1c! to obtain the last of
the functionsf2, wheref5n,l,ṽ,m. This expansion leads
to the equations

D4ṽ2
i 5

26

a0
2jsA11js

2

and

D4ṽ2
o50,

with the solutions

ṽ2
i 5

1

5jsA11js
2
H @6js~11js

2!2h0
4~js!13~js

2

2j2!#C0
3/2~h!1F2js~11js

2!2g2
4~j!h0

4~js!

1
1

15
~~5js

214!g2
4~j!16!GC2

3/2~h!J ~16a!

and

ṽ2
o5

6

5
~11js

2!3/2~h0
4~j!C0

3/2~h!2h2
4~j!C2

3/2~h!!.

~16b!

Using the scheme proposed here, the calculation of
higher orders is much lengthier than the calculations j
shown, but otherwise identical. Forn4 for example, the last
metric function needed in describing the first post-Newton
correction, we find
a0
2D2n4

i 5F3

4

~2129h4163h4c216h2254c2h213c2!A11js
2arccot~js!

h21c2
2

3

4
~63c2js

2h4142h4c226h4

29js
2h4254h2c2js

216h2js
212h2236c2h22js

213c2js
212c2!/~~h21c2!jsA11js

2!GS22

1F2
3

2

~3h221!A11js
2 arccot~js!

h21c2
1

3

2

2h213h2js
212c22js

2

~h21c2!jsA11js
2 GS022

21

4

~11c2!~211h!~h11!Ṽ1
2

jsA11js
2

2
9

2

g2

jsA11js
2
1

45

16

~113c2h22c21h2!arccot~js!

js
2

45

16

2c2js
21h2js

22js
213h2c2js

212c2h2

js
2~11js

2!
~17a!

and
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a0
2D2n4

o5F3

4

~2129h4163h4c216h2254c2h213c2!A11js
2 arccot~c!

h21c2
2

3

4
c~27h4196h4c2163h4c4216h2

278c2h2254h2c412c22313c4!A11js
2/~~h21c2!~11c2!2!GS221F2

3

2

~3h221!A11js
2 arccot~c!

h21c2

1
3

2

c~5h213c2h22c223!A11js
2

~h21c2!~11c2!2 GS02. ~17b!

These source terms are fourth order polynomials inh after having been multiplied with the factor (c21h2) from Eq. ~8!.
Because of the orthogonality of the Gegenbauer polynomials,n4 is thus also a fourth order polynomial inh. This property
propagates itself through the successive post-Newtonian orders such that a termfn is always annth order polynomial inh.
Physically this is because the perturbative-like corrections to the shape of the surface, which are in the form of afinite sum of
Legendre polynomials@see Eq.~5!#, give rise to a finite number of multipole moments.

The source terms in Eqs.~17! contain two of the boundary coefficientsSk2, which have to be determined by solving E
~10!, i.e. requiring that the pressure vanish on the boundary. A term containingS12 could also be included in Eqs.~17!, but is
found to equal zero by applying this boundary condition. Solving Eq.~11! and using the abbreviation

bªarccot~js!

one finds

S225
1

2
~11js

2!(3/2)~288jsb245b21408bjs
3254b2js

411575b2js
82378b2js

211710b2js
623150js

7b22370js
5b2179js

2

11575js
61660js

4!/~3330bjs
421965js

31732bjs
22357js25075js

523675js
713675bjs

816300bjs
6127b!.
t

b
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The denominator of this expression is proportional toG4(js)
of Eq. ~12! and gives rise to the singularity atj4* , which has
already been discussed. We choose to use the remaining
non-trivial equations extracted from Eq.~10! to determine
S02 andṼ3. Equivalently, we could have determinedg4 in-
stead ofṼ3. In either case, the remaining constant can
chosen freely and does not affect the validity of the soluti
but instead specifies the Newtonian spheroid of comparis
Because the constantsS02 and Ṽ3 are determined from a
linear algebraic system of equations involvingS22, they also
contain a first order pole at the pointj4* .

The determination of higher orders proceeds identica
One first obtains the Poisson-like equations by expand
Eqs.~1a!–~1c! and extracting the coefficients of the desir
order in «. Next one solves these using Eq.~6! with c re-
placingj, integrating from 0 tojs for the interior of the star
and fromjs to ` for the exterior. The metric functionm can
then be most easily computed by making use of the inte

m2l5E
1

h

~m2l! ,h8dh8, ~18!

where the end point of integration follows from limh→1(m
2l)50 @see e.g. Eqs.~22! and ~23! in @9##. The integrand
can be determined from the equations

1

%
~m2l! ,z5~n1l! ,z%1n ,%n ,z1l ,%l ,z2m ,z~n1l! ,%

2m ,%~n1l! ,z2
Ṽ2%2e2l22n

2a0
2

ṽ ,zṽ ,% ~19!
10402
wo

e
,
n.

.
g

al

and

1

%
~m2l! ,%5

1

2
@~n1l! ,%%2~n1l! ,zz#1

1

2
~n ,%

2 1l ,%
2 2n ,z

2

1l ,z
2 !2~m ,%~n1l! ,%2m ,z~n1l! ,z!

2
Ṽ2%2e2l22n

4a0
2 ~ṽ%

22ṽz
2! ~20!

together with the transformation equation

f ,h5a0j f ,z2a0
2h~11j2!

f ,%

%
.

Becausem2l is a polynomial inh to any order of the
approximation, integrating Eq.~18! is trivial. Finally one
uses the boundary condition to determine the boundary
efficients andṼ i 11.

We carried out this procedure for the first four orders
the PN approximation. The results are entirely expressibl
terms of elementary functions and in the interior of the s
the metric functions are simply polynomials with respect
c2 andh2. The validity of the results was ensured by co
firming that the disk limit of the expansion reduces to that
@10#, by showing that the expressions for the gravitation
mass and angular momentum found by integrating over
interior of the star are identical to those taken from the
field and by comparing PN values to those returned
highly accurate numerical calculations.
9-7
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TABLE II. Relative errors for various physical quantities according to the 4th PN order for diffe
choices for the Newtonian spheroids of comparison. The header of columns 2–6 show which equa
satisfied by the respective choice for the constantg i , i .2. A blank space indicates that this quantity w
prescribed.

Relative error for different choices of PN expansion (i .0)

Numerical value g i 1250 Mi50 Ṽ i 1150 Ji50 (r p /r e) i50

eV050.95 7.631029 1.431028

V50.874 2.231025

M50.004808 . . . 3.231028 3.631025 8.631027 2.731025

M050.004936 . . . 1.031027 4.031027 2.931024 4.531027 4.131025

Pc50.02151 . . . 1.231026 3.631027 7.731024 1.131027 2.231024

J50.00002272 . . . 1.231026 1.831026 1.431023 3.931024

(r p/r e)50.7659 . . . 4.331027 3.131027 3.031025 1.831027
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B. Representative physical quantites

Physical quantities that are of interest in characterizin
given configuration are its rest mass

M052pQa0
3E

21

1 E
0

js el12m

A12 ṽ2
@~cjB~h!/js!

2

1h2#jB~h!/jsdcdh, ~21!

angular momentum

J52pQa0
4cE

21

1 E
0

jsṼ~12g!~12ṽ !e3l22n12m

~12 ṽ2!3/2

3@11~cjB~h!/js!
2#~12h2!@~cjB~h!/js!

2

1h2#jB~h!/jsdcdh, ~22!

binding energy

Eb5gM0c222Ṽc/a0J24pa0
3E

21

1 E
0

js
Pen1l12m

3@~cjB~h!/js!
21h2#jB~h!/jsdcdh ~23!

and gravitational mass

M5M02Eb /c2. ~24!

The expression@(cjB(h)/js)
21h2#jB(h)/jsdcdh in the

integrals comes from applying the coordinate transforma
in Eq. ~5! to the volume element (j21h2)djdh. As an al-
ternative to Eqs.~22! and ~24!, one can choose to calcula
the angular momentum and gravitational mass from the
fields ofv andn respectively and then use Eq.~24! in order
to find the binding energy. The disadvantage of the far fi
approach is thatṽ i 12 must be known in order to findJi ,
whereasṽ i suffices otherwise.

In addition to using the above quantities, we shall char
terize configurations by the ratio of polar to equatorial rad

r p /r e5jB~h51!/A11„jB~h50!…2,
10402
a

n

r
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the polar red shiftZp and ‘‘surface potential’’V0

Zp5e2n(c5js ,h51)21[e2V0215g/~12g!,

the central pressure

Pc5P~c50,h51!

as well as the angular velocityV.
In Appendix B, tables providing information about th

expansion of these quantities can be found.

C. Convergence and accuracy

As was mentioned in the Introduction, we are lucky
have at our disposal a highly accurate numerical code.
AKM code @11,12# uses a multi-domain spectral method
solve the Einstein equations for perfect fluids in an axia
symmetric, stationary spacetime for some specified equa
of state. The accuracy reached approaches machine acc
and has thus been used as a standard@13# to ascertain the
accuracy of other numerical codes such as Lorene/rot
@14#, the SF codes@15# or that of KEH@16,17# ~see@13# for
further information!. Due to the extremely high accuracy, w
can use the numerically generated configurations as tho
they were analytic solutions, which is what enables us
provide values for the relative errors of physical quantit
for example.

In what follows, we shall use units in whichG5c5Q
51 holds and use the term ‘‘Newtonian limit’’ to refer to th
limit in which the Newtonian and relativistic theories agre
In this limit, a0 goes to zero whilejs remains finite, thus
resulting in the fact thatM→0 andeV0→1. A ‘‘Newtonian’’
or ‘‘Maclaurin’’ configuration on the other hand is the ter
we use to refer to the spheroidal figure that one obtains fr
the Newtonian theory, i.e. fromn2 together withg2 andṼ1.

In Table II a comparison was made of different choic
for the Newtonian spheroid of comparison. This amounts
different choices for the constantsg i , i .2. One can see in
this example of a configuration near the Newtonian lim
that the choice made can lead to differences of a few ord
of magnitude for relative errors. This surprising result can
seen, moreover, to hold over a large range of values for
9-8
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FIG. 1. The relative error ofJ
versus 12eV0 for configurations
with V50.874. On the left the

PN expansion withṼ i50, i .1
was used and on the right with
g i 1150. Here 0PN refers to the
Maclaurin solution, 1PN to the
first order of the PN approxima
tion, etc.
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parametereV0 in Fig. 1. On the left-hand side of this figure
the PN approximation withṼ i50, i .1 is depicted. The
various orders react as they must in the vicinity of the Ne
tonian limit 12eV050: each new order brings about a n
ticeable improvement. As one moves away from this lim
however, the curves cross each other and it turns out
higher orders render a worse approximation than lower o
The right-hand side of the figure tells a very different sto
Here the PN approximation withg i 1150, i .1 is depicted.
Each additional term in the PN approximation brings abou
marked improvement in accuracy and, moreover, the rela
error is more than an order of magnitude lower than on
left-hand side.

Imagine for a moment that one had calculated the
approximation presented here without being in possessio
numerical values. Furthermore, let us imagine that one
decided from the outset to prescribeṼ i50, i .1. Then one
would have been able to produce the plot on the left-h
side of Fig. 2 without the numerical curve. It would ha
been natural to suppose that the PN series converges to
10402
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t
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s.
.

a
e
e

N
of
d

d

ard

the correct solution and that the fourth order of the PN
proximation almost provides the correct value forJ even up
to values forM of 0.12. Had one choseng i 1150 instead,
then one would have produced the right-hand side of Fig
without the numerical curve and come to the same con
sions regarding the convergence of the PN approximation
that case, however, one would have been correct.

Although curves depicting relative errors of other phy
cal quantities may look quite different from those forJ
shown in Fig. 1, they also have many important aspects
common. The choiceg i 1150, i .1, leads to much smalle
relative errors than forṼ i50 and one tends to find improve
ment with increasing order even far away from the Newto
ian limit. These properties hold for a wide range ofV values
and the relative errors tend to decrease with decreasing
gular velocity so long as one does not come too close t
singularity in the parameter space.

One well known technique for improving on the PN a
proximation is the use of the Pade´ approximant, which ap-
proximates a truncated series by a quotient of two polyno
t
, etc.
FIG. 2. A plot ofJ overM for configurations withV50.874. On the left the PN expansion withṼ i50, i .1 was used and on the righ
with g i 1150. Num refers to the numerical solution, 0PN to the Maclaurin solution, 1PN to the first order of the PN approximation
9-9
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TABLE III. Values of various physical quantities according to different orders of the PN approxima
0PN stands for the Maclaurin solution, 1PN for the first PN approximation, etc. The PN approximation
g i50, i .2 was used and the Pade´ approximant was applied to the fourth order solution.

0PN 1PN 2PN 3PN 4PN Pade´ AKM

eV0 0.7 0.7 0.7 0.7 0.7 0.7 0.7
V 0.3 0.3 0.3 0.3 0.3 0.3 0.3
M (31022) 7.94 6.17 6.244 6.2490 6.25013 6.25055 6.25070
M0 (31022) 7.94 7.60 7.589 7.5864 7.58590 7.58554 7.58553
Pc (31021) 1.47 2.14 2.434 2.5627 2.61841 2.66099 2.66064
J(31024) 6.90 6.34 6.141 6.0744 6.05313 6.04321 6.04352

rp /r e ~31021! 9.73 9.79 9.801 9.8041 9.80538 9.80606 9.80628
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als and is discussed with reference to the PN approxima
in @18#. For the disk limit of the solution considered here,
has been shown in@10# that the Pade´ approximant provides a
far better approximation of the analytic solution given
@19,20# than the PN approximation itself. In the case of t
Maclaurin spheroids this turns out to be true as well, es
cially for V,0.8. We see in Table III how well the Pad´
approximant with a polynomial of sixth order in the numer
tor and second order in the denominator converges to
correct solution. Most likely this technique would be ev
more effective when applied to a somewhat higher orde
the approximation. Even up to the fourth order, the PN
proximation turns out to be roughly comparable to older n
merical codes even for highly relativistic configurations. A
impressive illustration of its applicability in such highly rela
tivistic regimes can be found in Fig. 3. In this figure, th

FIG. 3. The meridional cross section of a highly relativis
configuration. For fixed values ofjs and a0, the outermost curve
represents the Maclaurin spheroid, the innermost was calcul
using the first order approximation and the curve between th
using the fourth order approximation. The crosses are nume
values.
10402
n
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-
e

f
-
-

meridional cross section of a configuration with a cent
pressure of 1 and a radius ratio of 0.7 is depicted. One
see that the surface predicted by the fourth order PN appr
mation is almost indistinguishable from the numerical v
ues.

For a more detailed comparison with numerical valu
and a more complete account regarding the derivation of
iterative scheme and the singularities in parameter space
reader is referred to@8#.

VII. CONCLUSION

In this paper, an iterative procedure to enable the exp
calculation of any order of the PN approximation of the M
claurin spheroids was devised. This was made possible
introducing coordinates tailored to the unknown surface
the star, by requiring that this surface’s representation b
terminating sum and by realizing that Eq.~6! can be used in
the new coordinates without alteration. The PN expans
was carried out explicitly to the fourth order and the resu
ing expressions contained only elementary functions.

It was proved that thenth PN approximation has a firs
order pole atj2n12* , the onset of thenth axisymmetric, har-
monic mode of secular instability. The radius of convergen
of the series becomes zero at these points, thereby divi
the js-« parameter space into rectangles with ‘‘imperm
able’’ walls that accumulate about~but not at! the line js
50. Since the PN approximation appears to converge e
in the highly relativistic regime, it seems likely that no qua
stationary, axisymmetric sequence of solutions leads from
extended, three dimensional configuration to the disk limi
all such configurations would have to pass through an infin
number of such impermeable walls.

The convergence of the PN approximation was shown
depend strongly on the choice of the Newtonian configu
tion of comparison. A poor choice can render the approxim
tion useless in the relativistic regime, but a good one w
shown to converge quite well, especially when aided by
Padéapproximant. These results can be taken as a wor
warning, reminding the researcher that the PN approxima
can be very sensitive to alterations that may have no di
physical consequences. On the other hand, they also dem
strate that in the best of circumstances, the PN expansion
yield a very good approximation to highly relativistic con
figurations, well beyond its guaranteed region of validi

ed
se
al
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APPENDIX A: THE FUNCTIONS gl
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APPENDIX B: TABLES OF VARIOUS
PHYSICAL QUANTITIES

This appendix contains Tables IV–IX with the numeric
values for the post-Newtonian coefficients of the quantit
introduced in Sec. VI B for various values ofjs. In all the
tables, we have choseng i50, i .2, whence we find

g5g2«25
3

4
A11js

2~arccot~js!~11js
2!2js!«

2.

Taking into account

a0
25

3c2

8pQjsA11js
2
«2,

we would find, for example, the following values for th
second PN approximation of configuration withjs50.5, «
50.7:

a0'0.32346

eV0512g'0.63681

V5Ṽ/a0'
1

a0
~0.54175«10.26458«320.32261«5!

'1.285

M'~2.618021.3693«211.7071«4!a0
3'0.07976

M0'~2.618020.58922«210.99562«4!a0
3'0.08692

Pc'~0.8765520.29553«220.21693«4!a0
2'0.07111

J'~1.534611.0605«210.24311«4!a0
5'0.007480

r p

r e
'~0.4472120.55974«220.23039«4!'0.2283.
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TABLE IV. Expansion coefficients ofṼ for various values ofjs with g i50, i .2.

Coefficients of« i for the dimensionless angular velocityṼ

js «1 «3 «5 «7 «9

0.00 1.0854019 20.95903173 20.21316642 20.09051296 20.04918981

0.01 1.0716302 20.92995651 20.19734833 20.11039829 20.03104705

0.02 1.0579561 20.90160729 20.18278329 20.12768605 20.01297664

0.03 1.0443818 20.8741343 20.16911244 20.14231975 0.00475476

0.04 1.0309094 20.84772939 20.15613789 20.15411481 0.02219393

0.05 1.0175410 20.82264177 20.14417187 20.16467618 0.01858310

0.06 1.0042785 20.7992021 20.13496336 20.19414756 21.0164212

0.07 0.99112387 20.77786047 20.13435142 20.44265195 24.323369

0.08 0.97807889 20.75924895 20.16091713 25.9366901 413.17220

0.09 0.96514535 20.74428879 20.28117178 12.104546 222.734741

0.10 0.95232494 20.73438506 20.8296993 31.560268 2462.39599

0.11 0.93961928 20.73180435 28.5365954 809.03790 258587.792

0.12 0.92702988 20.74047382 5.2676596 10.231313 2190.3915

0.13 0.91455822 20.76787434 4.9354647 255.887234 1224.6781

0.14 0.90220565 20.83029178 7.3381300 2134.37904 3062.2576

0.15 0.88997346 20.97129085 14.854009 2437.85365 15041.748

0.16 0.87786287 21.3603363 49.619624 23139.3425 234545.37

0.17 0.865875 23.9363526 1171.2187 2606631.48 3.875260903108

0.18 0.85401088 1.9317681 211.780334 2884.4373 2326822.46

0.19 0.84227147 0.57651868 13.454904 127.48863 100.77384

0.20 0.83065764 0.27773007 6.1769373 69.330710 524.99073

0.30 0.72155838 0.09314481 20.2608214 1.6431116 5.7294717

0.40 0.62537562 0.1993343 20.43302451 0.15006752 1.3582894

0.50 0.54174791 0.26458306 20.32260971 20.27140215 0.58262038

0.60 0.46979598 0.28819495 20.17835186 20.34929691 0.09017830

0.70 0.40833633 0.28520112 20.06646413 20.28550798 20.13370899

0.80 0.35606582 0.26835131 0.00483724 20.19391875 20.17918978

0.90 0.3116946 0.24576778 0.04504743 20.11763146 20.15297576

1.00 0.27402709 0.22194776 0.06517545 20.06422083 20.11177801

1.10 0.2420016 0.19912131 0.07339547 20.02967889 20.07575039

1.20 0.21470198 0.17824581 0.07493751 20.00829155 20.04899455

1.30 0.19135249 0.15961339 0.07292802 0.00454162 20.0304128

1.40 0.17130433 0.14319157 0.06916914 0.01198574 20.01789323

1.50 0.15401892 0.1288049 0.06467418 0.01608587 20.00957769

1.60 0.13905099 0.11622792 0.05999884 0.01812893 20.00409702

1.70 0.12603306 0.10523057 0.05543697 0.01891680 20.00050821

1.80 0.11466173 0.09559856 0.05113403 0.01894809 0.0018204

1.90 0.10468625 0.08714120 0.04715237 0.01853317 0.0033081

2.00 0.09589882 0.07969281 0.04350861 0.0178655 0.0042327
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TABLE V. Expansion coefficients ofM /a0
3Q for various values ofjs with g i50, i .2.

Coefficients of« i for the gravitational massM

js «0 «2 «4 «6 «8

0.00 0 0 0 0 0

0.01 0.04189209 0.04246214 0.04840595 0.05310172 0.06138033

0.02 0.08380931 0.08115227 0.09502374 0.09931087 0.1165261

0.03 0.1257768 0.11627705 0.14034491 0.13816091 0.16779538

0.04 0.16781969 0.14806521 0.18487986 0.1690188 0.2181801

0.05 0.20996311 0.17677919 0.22928743 0.19157084 0.27677559

0.06 0.25223219 0.2027326 0.27473656 0.21060612 0.5979699

0.07 0.29465207 0.22631723 0.32398279 0.28537561 26.0060957

0.08 0.33724788 0.24804689 0.38498653 2.0152694 2124.06068

0.09 0.38004475 0.26863219 0.48597184 23.9985889 20.15355203

0.10 0.42306781 0.28911548 0.77113254 211.621492 155.23679

0.11 0.4663422 0.31113215 4.1859186 2339.22981 24417.212

0.12 0.50989305 0.33746264 21.8588230 210.933727 21022.9939

0.13 0.5537455 0.37333934 21.7708758 21.555107 2531.17370

0.14 0.59792467 0.43007081 23.0839441 61.463611 21420.9588

0.15 0.6424557 0.5377904 27.4131614 226.89235 27777.7392

0.16 0.68736372 0.81351169 228.767430 1830.3581 2136275.58

0.17 0.73267386 2.5952925 2770.75767 398608.22 22.544675403108

0.18 0.77841126 21.4529533 11.397074 22110.8820 244860.84

0.19 0.82460105 20.51954369 210.093076 289.164129 226.04238

0.20 0.87126836 20.3180264 24.8968261 257.161748 2380.38457

0.30 1.3697344 20.37666528 0.81904278 22.7961160 29.8763842

0.40 1.9435987 20.82904344 1.5102380 20.6053959 23.4289311

0.50 2.6179939 21.3693167 1.7070560 0.53885692 22.1926160

0.60 3.4180528 21.9472924 1.6481885 1.2005744 20.98288389

0.70 4.3689082 22.5527128 1.4829837 1.4507518 20.00014983

0.80 5.4956927 23.1933102 1.3002647 1.4514458 0.57039853

0.90 6.8235392 23.8834294 1.1398464 1.3414215 0.81909493

1.00 8.3775804 24.6386450 1.0140861 1.1999932 0.88499186

1.10 10.182949 25.4737714 0.92337032 1.0630189 0.86508412

1.20 12.264778 26.4024064 0.86407489 0.94327903 0.81216639

1.30 14.648199 27.4370306 0.83193824 0.84322071 0.75142342

1.40 17.358347 28.5892485 0.82324479 0.76132333 0.69360857

1.50 20.420352 29.8700213 0.83510223 0.69491426 0.64259313

1.60 23.859349 211.289852 0.86539261 0.64129035 0.59918663

1.70 27.700470 212.858921 0.91263339 0.59809715 0.56295176

1.80 31.968847 214.587185 0.97583498 0.56340574 0.53302851

1.90 36.689613 216.484440 1.0543810 0.53567923 0.50848981

2.00 41.887902 218.560374 1.1479349 0.51370787 0.48848149
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TABLE VI. Expansion coefficients ofM0 /a0
3Q for various values ofjs with g i50, i .2.

Coefficients of« i for the rest massM0

js «0 «2 «4 «6 «8

0.00 0 0 0 0 0

0.01 0.04189209 0.05245596 0.06452339 0.07673604 0.09064350

0.02 0.08380931 0.10138291 0.12467777 0.14552079 0.17045889

0.03 0.1257768 0.14697999 0.1810503 0.20649775 0.24117379

0.04 0.16781969 0.18946928 0.23424172 0.25967447 0.30478958

0.05 0.20996311 0.22910739 0.28499562 0.30546133 0.36899426

0.06 0.25223219 0.26620288 0.33455944 0.34955489 0.68695096

0.07 0.29465207 0.30114322 0.38575957 0.4525081 25.9229587

0.08 0.33724788 0.3344386 0.44661698 2.2159335 2123.76573

0.09 0.38004475 0.36679666 0.5454014 23.7541975 20.6779804

0.10 0.42306781 0.39925742 0.82632859 211.306658 154.00435

0.11 0.4663422 0.43345453 4.2348294 2338.55795 24389.392

0.12 0.50989305 0.47216724 21.8183462 210.679058 21027.1961

0.13 0.5537455 0.52062728 21.7412446 21.991097 2535.19617

0.14 0.59792467 0.59014308 23.0682419 62.144578 21430.4764

0.15 0.6424557 0.71084828 27.4164107 228.15983 27811.5324

0.16 0.68736372 0.99975724 228.802435 1834.1087 2136523.76

0.17 0.73267386 2.7949289 2770.92714 398680.63 22.545067403108

0.18 0.77841126 21.2397211 11.483888 22103.2027 244823.57

0.19 0.82460105 20.29250893 210.086248 286.857421 270.08015

0.20 0.87126836 20.07698001 24.9219300 255.908647 2364.07926

0.30 1.3697344 0.01672239 0.56758844 22.1242466 29.5006993

0.40 1.9435987 20.25789658 1.0217665 0.07622924 22.9245661

0.50 2.6179939 20.58921661 0.99559791 1.0782019 21.3199037

0.60 3.4180528 20.92033156 0.74161054 1.5062120 0.04353243

0.70 4.3689082 21.2337985 0.40781773 1.5054690 0.95554101

0.80 5.4956927 21.5299374 0.07578544 1.2771041 1.3384899

0.90 6.8235392 21.8155767 20.22248284 0.97101036 1.3676277

1.00 8.3775804 22.0987311 20.48106395 0.66449818 1.2237982

1.10 10.182949 22.3866409 20.70436865 0.38738975 1.0182639

1.20 12.264778 22.6853269 20.89947761 0.14629252 0.80533928

1.30 14.648199 22.9996963 21.0731453 20.06144076 0.60709587

1.40 17.358347 23.3337847 21.2309272 20.24120271 0.43012826

1.50 20.420352 23.6909893 21.3771251 20.39850746 0.27444199

1.60 23.859349 24.0742533 21.5149872 20.53811594 0.13764981

1.70 27.700470 24.4862014 21.6469456 20.66387001 0.01679751

1.80 31.968847 24.9292361 21.7748240 20.7787784 20.09091482

1.90 36.689613 25.4056047 21.8999983 20.88516836 20.18789822

2.00 41.887902 25.9174456 22.0235176 20.98483424 20.27614163
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TABLE VII. Expansion coefficients ofPc /a0
2Q2 for various values ofjs with g i50, i .2.

Coefficients of« i for the central pressurePc

js «0 «2 «4 «6 «8

0.00 0 0 0 0 0

0.01 0.00061857 20.00172000 0.00162459 20.00077003 0.00044127

0.02 0.00243630 20.00686564 0.00710374 20.00491391 0.00493335

0.03 0.00539833 20.01545281 0.01766303 20.01697127 0.02537089

0.04 0.00945262 20.02755907 0.03514794 20.04585596 0.09808811

0.05 0.01454978 20.04334499 0.06242121 20.11038522 0.34561893

0.06 0.02064301 20.06308734 0.10409423 20.25635755 1.3551282

0.07 0.02768796 20.08723187 0.16798563 20.63884234 4.1589896

0.08 0.03564262 20.11648064 0.26842379 23.0575859 120.34604

0.09 0.04446728 20.15194212 0.43563224 0.41855319 20.090197

0.10 0.05412437 20.19540392 0.75876395 22.5871083 4.3812886

0.11 0.06457839 20.24986232 2.3812791 2100.52138 7005.1522

0.12 0.07579584 20.32064223 0.88116263 229.802523 2234.29858

0.13 0.08774509 20.41805092 2.3107894 234.315938 388.81769

0.14 0.10039634 20.5647382 5.0552036 287.445248 1669.9741

0.15 0.11372151 20.82158864 12.978500 2348.51779 11069.532

0.16 0.12769416 21.4259431 52.306181 23108.6680 224222.47

0.17 0.14228943 25.0951044 1490.6987 2762280.11 4.848057803108

0.18 0.15748397 3.0709510 244.367825 4384.7277 2570869.92

0.19 0.17325585 1.1138325 19.748422 63.519803 23223.0377

0.20 0.18958447 0.63815819 11.158362 84.961966 91.304718

0.30 0.3798125 20.11854446 1.3921945 5.7408680 18.408063

0.40 0.61093217 20.28101446 0.41114756 2.7524237 4.7395486

0.50 0.8765547 20.29553405 20.21692694 1.7597087 3.1658578

0.60 1.1744310 20.19762251 20.64456449 0.84355303 2.7155097

0.70 1.5044260 20.01447731 20.86930239 0.02192268 1.9510756

0.80 1.8673640 0.23179265 20.92120251 20.58277995 1.0264413

0.90 2.2644107 0.52592119 20.84400036 20.95208863 0.2108996

1.00 2.6967662 0.85851446 20.67570587 21.1260297 20.39050992

1.10 3.1655292 1.2242483 20.44338108 21.1551896 20.78090453

1.20 3.6716491 1.6203250 20.16452438 21.0815067 21.0002778

1.30 4.2159215 2.0454170 0.15012064 20.93498189 21.0911717

1.40 4.7990015 2.4990135 0.49416461 20.73571739 21.0879378

1.50 5.4214241 2.9810379 0.86390299 20.49678082 21.0156282

1.60 6.0836241 3.4916304 1.2572490 20.22655363 20.89172864

1.70 6.7859549 4.0310276 1.6730773 0.06961668 20.72822437

1.80 7.5287040 4.5994981 2.1108281 0.38832489 20.53328772

1.90 8.3121058 5.1973091 2.5702700 0.72740591 20.31249925

2.00 9.1363524 5.8247100 3.0513580 1.0854878 20.06968863
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TABLE VIII. Expansion coefficients ofJ/a0
5Q3/2 for various values ofjs with g i50, i .2.

Coefficients of« i for angular momentumJ

js «0 «2 «4 «6 «8

0.00 0 0 0 0 0

0.01 0.00519817 0.01064142 0.01709874 0.02545363 0.03580801

0.02 0.01452484 0.02955774 0.04621122 0.06832484 0.09446591

0.03 0.02637109 0.05341626 0.08104960 0.11945215 0.16152228

0.04 0.04014030 0.08105972 0.11900741 0.17572839 0.23030652

0.05 0.05548233 0.11191984 0.15848091 0.23645053 0.2981537

0.06 0.07216065 0.14575859 0.19860914 0.30636975 0.52287242

0.07 0.09000348 0.18260101 0.23993267 0.43348251 24.1934547

0.08 0.10888064 0.22274743 0.28745884 1.8835269 296.001495

0.09 0.12869081 0.26685311 0.36460134 22.9069282 21.4043833

0.10 0.14935376 0.3161068 0.60538199 29.8156498 137.90767

0.11 0.17080538 0.37259919 3.8855222 2326.89627 23595.306

0.12 0.19299422 0.44011835 22.1803366 29.1109666 21078.5552

0.13 0.21587897 0.52604717 22.3712087 28.000940 2642.86950

0.14 0.23942672 0.64663729 24.3174390 82.390748 21873.3462

0.15 0.26361148 0.84557362 210.556837 317.16019 210852.688

0.16 0.28841317 1.2930930 241.568836 2647.8340 2197589.40

0.17 0.31381674 3.9378673 21128.4291 585246.47 23.739108903108

0.18 0.33981149 21.9051257 7.2345391 22888.5244 340738.03

0.19 0.36639046 20.4890684 217.726915 2178.76932 244.181794

0.20 0.39355005 20.13577661 29.2222335 2105.05367 2807.13712

0.30 0.69802485 0.52311868 20.57132492 24.7290425 221.880756

0.40 1.0714436 0.79662582 0.05656033 21.1626724 25.0786338

0.50 1.5346441 1.0605245 0.24310865 20.220009 21.5315446

0.60 2.1149817 1.3709717 0.30021959 0.05678398 20.10285

0.70 2.8447368 1.7637678 0.33048771 0.03348169 0.45890186

0.80 3.7607272 2.2682180 0.38836636 20.11923423 0.53433897

0.90 4.9043081 2.9119034 0.50500367 20.30541288 0.35919637

1.00 6.3214817 3.7232237 0.70019629 20.47535233 0.07990005

1.10 8.0630209 4.7327036 0.98941174 20.60511924 20.22477905

1.20 10.184575 5.9736140 1.3874168 20.68287074 20.51722445

1.30 12.746756 7.4822472 1.9099198 20.70137912 20.78102489

1.40 15.815199 9.2980323 2.5742218 20.65447365 21.0093842

1.50 19.460609 11.463577 3.3994232 20.53552549 21.1992419

1.60 23.758798 14.024683 4.4064527 20.33688721 21.3485367

1.70 28.790709 17.030343 5.6180320 20.04974338 21.4550308

1.80 34.642430 20.532741 7.0586270 0.33587825 21.5158600

1.90 41.405215 24.587246 8.7544002 0.8310431 21.5274045

2.00 49.175489 29.252409 10.733173 1.4478377 21.4852922
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TABLE IX. Expansion coefficients ofr p /r e for various values ofjs with g i50, i .2.

Coefficients of« i for the radius ratior p /r e

js «0 «2 «4 «6 «8

0.00 0 0 0 0 0

0.01 0.0099995 20.02602989 0.02202631 20.01047418 0.00897031

0.02 0.01999600 20.05311731 0.05132736 20.03924064 0.04708946

0.03 0.02998651 20.08135889 0.08911485 20.09392366 0.14546497

0.04 0.03996804 20.11089284 0.13723154 20.18817272 0.37882528

0.05 0.04993762 20.14191637 0.19853676 20.3488407 0.96345183

0.06 0.05989229 20.17471238 0.27760603 20.63830148 2.8459464

0.07 0.06982913 20.20969134 0.38211536 21.2643965 7.3313198

0.08 0.07974522 20.24746 0.52597493 24.6830624 172.58895

0.09 0.08963770 20.28893904 0.73832306 0.09914477 26.066958

0.10 0.09950372 20.33557622 1.1055791 23.4554085 2.2631308

0.11 0.10934048 20.38975965 2.7622215 2101.28858 6954.7987

0.12 0.11914522 20.45569145 1.2805118 231.530651 2198.73051

0.13 0.12891523 20.54145696 2.6523173 235.509464 406.54300

0.14 0.13864784 20.66476338 5.1130909 283.609450 1581.1100

0.15 0.14834045 20.87312659 11.844410 2307.65212 9693.8945

0.16 0.1579905 21.3516343 43.829227 22561.5455 183953.19

0.17 0.16759549 24.2188500 1173.6956 2598387.12 3.803048403108

0.18 0.177153 2.1418255 241.159648 3581.7333 2454958.98

0.19 0.18666065 0.61071792 12.872215 12.113393 22462.2706

0.20 0.19611614 0.2351988 7.1665406 44.350811 272.324822

0.30 0.28734789 20.37867602 0.98503149 1.8025725 5.8931889

0.40 0.37139068 20.51715828 0.52418984 0.79232382 0.41160951

0.50 0.4472136 20.5597459 0.23038891 0.69014814 0.07257866

0.60 0.51449576 20.55020825 0.02038324 0.53356119 0.27891669

0.70 0.57346234 20.51417099 20.10821692 0.34347031 0.34737635

0.80 0.62469505 20.46755319 20.17463699 0.18619835 0.29128276

0.90 0.66896473 20.41919642 20.20141601 0.07879986 0.20314523

1.00 0.70710678 20.37342997 20.20570353 0.01287290 0.12721316

1.10 0.73994007 20.33202671 20.19838512 20.0247471 0.07303315

1.20 0.76822128 20.29543502 20.18575195 20.04470894 0.03751262

1.30 0.79262399 20.26347544 20.17123161 20.05416609 0.01524089

1.40 0.81373347 20.23570866 20.15659797 20.05756331 0.00167726

1.50 0.83205029 20.21161961 20.14270895 20.05756365 20.00636027

1.60 0.8479983 20.19070359 20.12992949 20.05573405 20.01094845

1.70 0.86193422 20.17250244 20.11836672 20.05298648 20.01340201

1.80 0.87415728 20.15661589 20.10799852 20.04984618 20.01454328

1.90 0.88491822 20.14270141 20.09874277 20.04661101 20.01488493

2.00 0.89442719 20.13046906 20.09049408 20.04344527 20.01474681
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