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Classical confinement of test particles in higher-dimensional models:
Stability criteria and a new energy condition
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We review the circumstances under which test particles can be localized around a spacetimeXgection
smoothly contained within a codimension-1 embedding spéck such a confinement is possibEy is said
to be totally geodesic. Using three different methods, we derive a stability condition for trapped test particles
in terms of intrinsic geometrical quantities &y andM; namely, confined paths are stable against perturba-
tions if the gravitational stress-energy density Mnis larger than that orX,, as measured by an observed
travelling along the unperturbed trajectory. We confirm our general result explicitly in two different cases: the
warped-product metric ansatz fom< 1)-dimensional Einstein spaces, and a known solution of the
5-dimensional vacuum field equation embedding certain 4-dimensional cosmologies. We conclude by defining
a confinement energy conditidhat can be used to classify geometries incorporating totally geodesic submani-
folds, such as those found in thick braneworld and other 5-dimensional scenarios.
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I. INTRODUCTION defect forces the graviton ground state to be sharply local-
ized on the brane, which allows for the recovery of standard
The past half-decade has seen a notable upswing in inteNewtonian gravitation in the low-energy limit. This kind of
est in noncompact higher-dimensional theories of physicdocalization extends to other types of fields, thus representing
Most of this attention can be attributed to recent advances i@ sort of concretization of the confinement mechanism envi-
string theory, which have postulated that we are living on aSioned in the original string model. In addition, if the matter
(3+1)-dimensional hypersurface embedded within SOméqcahzed on the brane sat!sfles the appropriate energy condi-
higher-dimensional manifold. Such “braneworld” scenarios tions and theZ, symmetry is obeyed, one can show that test
have been extensively analyzed in the literature, and havearticles can be gravitationally confined to a small region
been used to address issues such as the hierarchy problem@jCUt the defect15]. This acts as a classical confinement
particle physics[1-4], as well as the idea that the post- mechanism.

inflationary epoch of our Universe was preceded by the col-. A natura'l generall'zatllon of 'mode_ls involving thin ggomet—
- . . ric defects is scenarios involving thick, smooth domain walls
lision of D3-braneqd5,6]. In all fairness, it should be men-

tioned that the current flurry of interest in braneworld 16,17, There are a couple of reasons to consider such mod-

i0s has b ded b th del Is: First, there is a natural minimum length in string theory
scenarios has been preceded by NUMErous other Models MaGan py the string scale, so the idea of an infinitely thin
ing use of large or infinite extra dimensiofis-12].

X ) eometric feature is somewhat suspect even in a phenomeno-

In some braneworld scenarios, the idea of noncompaghgical model. Second, one would like to see these brane-
extra dimensions is made more palatable by postulating thaforig scenarios resulting from some genuine solutions of
the particles and fields of the standard model are confined 8upergravity, which are priori smooth and differentiable
the brane universe. If we adopt the most conservative poinfanifolds. The question is: what becomes of the confinement
of view, the notion of confinement is a prerequisite for anyparadigm in bulk manifolds devoid of thin domain walls?
reasonable theory with noncompact extra dimensions; withFor test particles in scenarios with one extra dimension, the
out such an assumption, the fact that we so not commonlgnswer is well known: if the brane has vanishing extrinsic
see objects flying off in unseen directions becomes a thorngurvature, geodesics may be naturally hypersurface-confined
issue. In the context of a particular string theory-inspiredwithout the invocation of external nongravitational forces. A
model put forth by Horava and Wittefil3,14], lower-  surface with zero extrinsic curvature is sometimes called to-
dimensional confinement is a natural consequence of the idaally geodesic. But what of the stability of the trajectories
that standard model degrees of freedom are associated wigonfined on these surfaces? That is, if one perturbs a con-
open strings that have endpoints residing on @-dbane. fined trajectory slightly off of a totally geodesic submanifold,
Conversely, since gravitational degrees of freedom are assexill it naturally return or not? In other words, under which
ciated with closed strings, the graviton in such models isconditions is a totally geodesic hypersurface gravitationally
assumed to propagate both in the bulk and on the branedttractive? For obvious reasons, such questions are of direct
Phenomenological 5-dimensional realizations based on thiglevance to any serious attempt to classically describe our
idea model the brane as a 4-dimensional domain wall ouniverse as a smoothly-embedded hypersurface on which we
defect[3,4]. The discontinuity in the 5-geometry about the

1An alternative name for a totally geodesic submanifold is “geo-
*Electronic address: ssseahra@uwaterloo.ca desically complete.”
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are gravitationally trapped. It is possible that this classical Il. GEOMETRIC CONSTRUCTION
stability issue is irrelevant at the quantum level—perhaps

because stable particle confinement can be guaranteed Pé'l
other means—nbut for the purposes of this study we will as

sume th?t the classical formalism is applicable. ) fold.” In our working, we will allow for two possibilities:
In this paper, we propose to address these iSSUgSiher there is one timelike antspacelike directions tangent

n-dimensional totally geodesic submanifolds smoothly ems, M, or there are two timelike andh(- 1) spacelike direc-

bedded in a space of one higher dimension, with either timegy,g tangent toVl. Hence, the signature gf,g is

like or spacelike signature. We will utilize quite general

methods that will ensure our results apply to any geometry sig(gag)=(—+---+eg), 1)

and choice of coordinates in the bulk or on the submanifold.

In Sec. Il, we describe our geometric construction. In Secwheree=*=1. We introduce a scalar function

[ll, we review the covariant splitting of test particle equa-

tions of motion developed ifil5,18,19 and use it to derive €=£(x), @)

the zero-extrinsic curvature condition for totally geodesic

submanifolds. Then, we find the stability condition for the

confined trajectories, which is that the double contraction o . oS L

the particle’s velocity with the Ricci tensor of the bulk is <¢- If there is only one t.'T[?\I'ke direction t_ange”““_" we

greater than the double contraction with the Ricci tensor o ssume that th_e vector _f|e . normal toX is spa<_:el|ke. If

the submanifold. In more physical terms, the stability ofther(fJ are two “m‘?“ke directions, we take _the unit normal to

trapped particles demands that the locally measured gravitﬁ)-fa timelike. In either case, t'he S“bm.a”'f‘?'d tangent to a

tional density of the bulk is bigger than the density of the9IVeN .2‘5 hypergurface contalns one timelike and—1)

effective lower-dimensional matter living on the brénédle spacelike dwecgons; .that 1S, ea&y hypersurface corre-

briefly discuss the nature of the latter, emphasizing that théponds to am-d|mens_|o_nal_Lor_ent2|an spacetime. The nor-

stress-energy content of the submanifold—as perceived bjia! vector to thex slicing is given by

an observer ignorant of an extra dimension—is made up

from contributions from the “real” higher-dimensional mat-

ter as well as the bulk Weyl tensor. For good measure, W&he scalar® which normalizesn® is known as the lapse

derive the stability condition using two additional methOdS:function. We define the projection tensor as

the geodesic deviation equation in Sec. IV A, and the Ray-

chaudhuri equation in Sec. IV B. We confirm the correctness hag=0ag—ENANG . (%)

of our general result for the special case of the warped-

product metric ansatz in Sec. V A, and consider a simplerhis tensor is symmetrichg=hg,) and orthogonal ta, .

5-dimensional model of the solar neighborhood. In Sec. V Bwe p|ace am-dimensional coordinate system on each of the

we show that our stability condition is also correct in thes, hypersurfacey={y“}. Then holonomic basis vectors
Liu-Mashoon-Wesson solutiof20,21] of the 5-dimensional ’

We will be concerned with ann(+ 1)-dimensional mani-
d (M,gag) on which we place a coordinate system
={x"}. Sometimes, we will refer t&/ as the “bulk mani-

which defines our foliation of the higher-dimensional mani-
g)ld with the hypersurfaces given b§=const, denoted by

Na=e®Pdpf, n-n=e. 3

vacuum field equations. Section VI summarizes our work PG
and presents theonfinement energy conditipmvhich en- e§=—a, n-e,=0 (5)
sures that all timelike trajectories on a totally geodesic sub- ay

manifold in a given bulk geometry will be stable. This en- L
ergy condition can be used to classify solutions of the thick™® bY defm:uon_tangent to th&, hypersurfaces and or-
braneworld on other 5-dimensional scenarios. thogonal ton”. It is easy to see thaa'g behaves as a vector
Conventions.Uppercase Latin indices run from 0 tp  under coordinate transformations &h[¢:x—x(x)] and a
while lowercase Greek indices run from Orte-1. Higher-  one-form under coordinate transformations @n [y

dimensional curvature tensors are distinguished from their_J(y)]_ We can use these basis vectors to project higher-
lower-dimensional counterparts by hats. Higher and lowegimensional objects oni®, hypersurfaces. For example, for
dimensional covariant differentiation operators are denotedn arbitrary one-form oVl we have
by V, or V,, respectively. A center dot indicates the scalar
proguct between higher-dimensional vector fields; ey T,=e Ta=e, - T. (6)
=u U -
HereT, is said to be the projection daf, onto,. Clearly
T, behaves as a scalar undgiand a one-form undef. The
Roughly speaking, the gravitational density of a given matter-induced metric on th& , hypersurfaces is given by
energy distribution differs from the ordinary density by terms in-
volving the pressure. For example, according to an observer comov- haB= eﬁeEgAB= eﬁeghAB. (7)
ing with a (h+1)-dimensional perfect fluid, the gravitational
density—as we define it below—ign—2)p+np]/(n—1). Itis  Just likegsg, the induced metric has an inverse:
important because it appears naturally in the Raychaudhuri equa-
tion, as we will see in Sec. IV B. h“h,z=6%. (8)
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The induced metric and its inverse can be used to raise arahother. Using our formulas fatx® and €”, we can write
lower the indices of tensors tangentiq, and change the the higher dimensional line element as

position of the spacetime index of tlaaé basis vectors. This A
implies ds{y) = gapdx*dx

enep=0"%. 9) =h,5(dy*+N“d¢)(dy?+NPde) + e D2d 2.

17
Also note that sincé g is entirely orthogonal tm”, we can
express it as This reduces ttnisf2 )= hade“dyB if d¢=0. Itis also pos-

. p sible to express the extrinsic curvature in term&andN“;
hAB: ha'BeAeB . (10)

At this juncture, it is convenient to introduce our definition Kap=5g (e En)hNag, (18
of the extrinsic curvatur& .,z of the 2, hypersurfaces:
AR L A BA where £ is the Lie derivative in the direction of the shift
Kap=€,€5VaNe= 2 €,€5E1NAB- 1) vector.
o _ In this paper, we will be primarily concerned with the
Note that the extrinsic curvature is symmetri€.(;=Kg.).  Gaussian-normal coordinate gauge that has been termed ca-

It may be thought of as the derivative of the induced metricygnical by some authof@2]. This is defined by the follow-
in the normal direction. This-tensor will appear often in ing choices of foliation parameters:

what follows.
We will also require an expression that relates the higher- d=1, N<=0. (19
dimensional covariant derivative oin¢ 1)-tensors to the
lower-dimensional covariant derivative of the correspondingObviously, this choice will result in significant simplification
n-tensors. We have that thredimensional Christoffel sym- of many of the preceding and following formulas.
bols are given by
N B A Ill. CONFINEMENT OF TEST PARTICLES
g, =eSeaVaes. (12) . : , -
The equations of motion for a test particle traveling
This allows us to deduce that for one-forms, the followingthroughM are taken to be
relation holds:
AV B—JTB _ A_dXA 20
VsTa=efehVa(haCTe), (13 WVA=F5uu=e ui=ge (20

where Vg is the covariant derivative oM defined with re-  wherex=—1,0,+1 to allow for massive, null and tachyonic
spect togag andVj is the covariant derivative ob, defined  particles respectively, is an affine parameter, arflis some
with respect tch, 5. The generalization to tensors of higher nongravitational force per unit mass. One can decompose
rank is obvious. It is not difficult to confirm that this defini- these equations into relations involving the particle’s velocity
tion of V, satisfies all the usual requirements imposed on theéangent to the , foliation u®=e®-u and parallel to the nor-
covariant derivative operator. mal directionu,=n-u. This was first done if18] for a
Finally, we note thaly,¢} defines an alternative coordi- 5-dimensional model with a spacelike extra dimension and
nate system tac on M. The appropriate diffeomorphism is  pure geodesic motion, then generalized to accelerated trajec-
tories and an extra dimension of arbitrary signatur¢lisy,

dx*=eldy"+¢Ade, (149 and further adapted to arbitrary dimension and refined nota-
tion in [19]. Here, we will merely adopt the final results,
where which are
A
€A=(&i> 15 UV, uP = s U, [U,2PIn ® — 2K“Bu,,— D~ 1(9,— £)U¥]

(96 y®=const +fﬁ, (21@
is the vector tangent to lines of constasit We can always )
decompose higher dimensional vectors into the sum of a part Up=KoguUP—upu®d, In @+ 7, (21b

tangent to>, and a part normal t& ,: For ¢ we write
k=hoguuf+eu?, (210
(A=Nei+dnA, (16)

where we have define#*=e“*- F, F,=n-F, and an over-
This is consistent wit*9,€ =1, which is required by the dot indicatesd/d\. We can express both* andu,, in terms
definition of ¢4, and the definition oh®. Then-vectorN®is  of the foliation parameters:
the shift vector, which describes how ti& coordinate sys- o )
tem changes as one moves from a gi2gnhypersurface to u=y*+¢N% u,=edf. (22
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This form of the equations of motion has the virtue of being

written entirely in terms of tensorial quantities &n , which
makes it invariant unden-dimensional coordinate transfor-
mations. Also note that one of the equatid@49—(210 is
redundant; for example, if one contracts EB1a with ug
and makes use of E§21¢), one can recover Eq21b).

Now, if a test particle is confined to a giv&y hypersur-

PHYSICAL REVIEW 68, 104027 (2003

hp="hept+ O(£?), (273

Kap=e("Rop— "Ragehel) €+ O(£?).
(27b

Furthermore, we suppose that thevelocity of our particle
to be approximately tangent to a geodesicon

face, its¢ coordinate must obviously be constant. This im-

pliesu,=0, which by Eq.(21b) yields

0=K,guuf+7,. (23

In other words, if the normal force per unit mass equals
- Kaﬁu“uﬁ, then the particle can be hypersurface-confined

Since this quantity is quadratic in the particleisvelocity,

we can identify it as the generalized centripetal acceleratio

in curved space. Indeed, (18] it was shown that when a
particle is confined to the world tube of a circhkex S em-
bedded in 3-dimensional Minkowski spac&, reduces to the
familiar v?/r from elementary mechanics.

Now, if one memberX, of the X, foliation satisfies

u“=U% su®, UV, UP=0. (29
Here,6u® is considered to be a small quantity; that is, we are
really considering perturbations of the confined trajectory
tangent toU”= U"eﬁ. (We will comment on the validity of
this assumption beloywThen, to lowest order in small quan-
Hties, Eq.(21b reduces to

£=("R,5— "Ragehel) U UL+ - - - (29)

If X, is a stable equilibrium for test particles, we require that
£/€<0. This condition translates into the following condi-

K,z=0, then it is obvious that no external centripetal forcetion for the confinement of test particles &
F~is required to ensure confinement. Indeed, when the ex-

trinsic curvature vanishes one solution of the freely-falling

equations of motion is

yev,yF=0, €=0, (24)

i.e., the geodesics df, are also geodesics &fl. As men-

tioned in Sec. |, surfaces with this property are termed totally

geodesic and they represent equilibrium surfaces for freel
falling test particles. We want to know how to tell if such
surfaces represent stable or unstable equilibria.

To answer this, we can attempt to linearize the equation
of motion about.; that is, we consider the motion of a test
particle very close to the equilibrium hypersurface. To sim-

plify matters, we will adopt the canonical gau@¢t9) dis-
cussed above. Then, it is straightforward to derive expre
sions ford¢h,z andd K,z [19]:
0-'€haﬁ':2KaB1 (25@
afKaB:KaMK,uﬁ_Eaﬁ’ (25b)

whereE ,z=e,e3nn°Racgp. This n-tensor can be related

(°R,5— "Ragehel) U“UP<O. (30)

In order to interpret this result, we define the following
quantities:

Py = "RagelegU U”, (319
Y p{V="OR,,U"U~, (31b
yere,p(g“”) is our definition of the local gravitational den-

sity of higher-dimensional—or real—matter as measured by
an observer freely-falling along.,. It is guaranteed to be
positive if the strong energy condition is satisfied in the bulk,
Kol at least in the vicinity of the totally geodesic surface. Note
that it is possible to define the gravitational density with a
different normalization constant to obtain a “nicer” expres-
sion in the perfect fluid case. That is, for @+1)-
dimensional perfect fluid, an observer comoving with the
fluid will measurep("=3(p+3p) using our definition. One
might be motivated to give a different definition pf" that

does not involve the prefactor, but such a choice would

back to more familiar quantities by suitable manipulation ofynnecessarily complicate the following discussion with spu-

the Gauss-Codazzi relations:
Ragehed=R, s+ e[Enpt K A(Kg,—Khg,)1. (26)

Now, without loss of generality we can suppose thgtcor-
responds t& =0; from this, it follows thaf €| is “small” in
our approximatiori.If we let Ohaﬁ denote the induced metric
on EO,ORaﬁ the Ricci tensor ork, etc.; then we have

3Technically, we require that be small compared to the charac-
teristic size of the components of the curvature tensors pandM
in order to justify dropping thé(£?) terms in Eq(27). In practical

terms, this meané should be much less than the radii of curvature

of both manifolds.

rious dimension-dependant terms.

Now, it is clear thatpg‘) is the lower-dimensional cousin
of p{"""), but the precise interpretation is a little more
subtle. Imagine an observer living &y, that is entirely ig-
norant of the¢ direction. Assuming that this observer can
measure the locah-geometry and believes in the Einstein
field equations, he will interpret the Einstairtensor of2,,
as being proportional to some effective stress-energy tensor.
In other words, he will conclude that his loaalgeometry is
determined by an effective distribution of matter energy.
From this, it follows tha'rp(g”) is the gravitational density of
the effectiven-dimensional matter.

A natural question is: how is the lower-dimensional effec-
tive matter related to the “real” higher-dimensional distribu-
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tion? It is not hard to derive the following expression for thein addition to demanding that is small in order to justify
stress-energy tensor &y from the Gauss-Codazzi relations: Kz~ — OEaBX €, we also need the extra dimensional veloc-
ity to be relatively tiny.

heB To summarize, we have seen that amgurface>, em-

' bedded inM is an equilibrium position for freely-falling test
(32 particles if it has vanishing extrinsic curvature. Every geode-
- sic on3 is automatically a geodesic t, hence the hyper-
where all quantities are understood to be evaluate®gn gyrface is called totally geodesic. Furthermore, if a given
and we have made note &f,;=0. The last two terms on ajectory confined t&, is perturbed off of the equilibrium

the right are explicitly related to the higher-dimensional g face, the acceleration of the test particle is towdrd®
stress-energy tensor, but the first can be rewritten using provided that

Gaﬁz_SEaB+ GABeZe'IB;_ GABhAB_

n—2> R
m TI’(G)

(i) the gravitational density of the higher-dimensional matter
is greater than the gravitational density of the effective
lower-dimensional matter ok ,, as measured by an ob-
server travelling on the unperturbed trajectory; and,

(i) both¢ andd(£?)/d\ are small compared with the char-
acteristic curvature scales bf and3 .

1 &
(n—1)° ek

Eaﬁ: eéegnCnDéACBD‘i‘ n
1 . N
+ E(RABnAtha’B‘FSRABeQeg). (33)

The first term on the right shows hol,; is in part deter- ) ) i
mined by the Weyl (+ 1)-tensorC agcp on M. This curva- l(;lrtl)l';ce that these comments apply to a particular trajectory

ture tensor is related to the geometrical or gravitational de-
grees of freedom of the bulk, which are not directly fixed by
the (n+1)-dimensional field equations. This implies that the IV. TWO ALTERNATIVE DERIVATIONS
Einsteinn-tensorG,; on M is not entirely determined by the OF THE STABILITY CONDITION

distribution of higher-dimensional stress-energy—there is a Tne stability condition for freely-falling test particle tra-
purely geometric contribution from the appropriate projeC-jectories derived above depended on our decomposition of
tion of Cagcp. We call this contribution thénduced[23] or  the higher-dimensional equation of moti¢®l) and the ca-
shadow[24] matter stress-energy tensor because it representsnical gauge for the foliation parametéi$). It is possible
a source of the lower-dimensional Einstein equation that carnto derive the same condition using two different methods that
not be unambiguously attributed to any “real” higher- relax one or both of these assumptions, which is what we do
dimensional fields. It follows that thedimensional effective  in this section.
gravitational density contains contributions from both real
and induced matter. A. From the geodesic deviation equation

The final point we wish to discuss in this section has to do ) i ,
with the validity of our approximations. Recall that above, in ~ Consider a freAer-;alllng test particle dn, that has an
order to derive Eq(29), we assumed thatu® was a small (n+1)-velocityU”=e, ,U“ at a particular instant of time. As
quantity. We now want to describe under which circum-before, we assume thal, is totally geodesic, which means

stances this hypothesis holds by substituting the expansidfat the test particle will remain confined on the submanifold
u*=U%+8u” in Eq. (210 in the canonical gauge wittF  for all future times in the absence of non-gravitational influ-

=0. For this purpose it is useful to assume tHat  €nces. Now, consider an additional test particle that is sepa-
=U“(y(\)), or equivalentlyd,U*=0. Coupled with Eq. rated from the first object by a vectgf=¢n?. Here, ¢ is
(274, this implies thatU®V,U#=0(¢2). Under such cir- the proper distance separating the two particles and is as-

cumstances, we obtain sumed to be small. Then, the equation of geodesic deviation
says that
d d
U= "B (U g dug) €2 =T ouP su” — suPV,U, a’= —R5cpU°EUP, (35

(34 wherea® is the acceleration of*, defined as

wher.e we have made use &faﬁé— OEaﬁx(f. It is clear ah=(U.V)2A, (36)
that in order to haveSu® be consistently “small,” we must

have that the only term on the right inhomogeneouélifi is Now, considern-a. Making use of¢*=¢n”, we find the
negligible. Now, since’E,,;=&(°Ragele— °R,;) we see  following expression for this scalar product:

that its components are of the order of the inverse squares of )

the curvature lengths d¥l and,. Then, for our approxi- n-a=ef —€h"B(UCVen,) (UPVong). (37)
mations to be valid, we need thd{¢?)/d\ be small com-

pared to the characteristic curvatureMfor 3,5, whichever ~Here, we have useglhg=hag+enang, n*UPVgn,=0, and
is smaller. This is a sensible intuitive bound—if either the¢=(U-V)?¢. BecausdJ” is parallel to3,, the second term
higher- or lower-dimensional manifolds are highly curved weon the right reduces t&€KaﬁK“7UBUy=0. Hence, we
expect that true confinement will be difficult to achieve. So,have
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=~ eRapcon®UBNCUPL=—©sE, U UPE.  (39) =V UPVaU,,— 26K ,zUPegnPVeU”
a 2

If we now use Eq(26) to substitute forE,;z, we immedi- F(U%GIn @)

ately recover our previous resif9). Hence, the test particle

located just off2, will be accelerated towardé=0 if the

o " : o (n 1 . . .
stability condition from the previous sectiopf’*V>p{" |, going from the third to fourth line we have made use of

holds. Notice that we did not assume the canonical gauge fahe fact thats  is totally geodesic KK.s=0) and our gauge
this derivation. choice @=1). Putting it all together, we get

=VeUPYU, . (43)

B. From the Raychaudhuri equation f=€[pg”)—pg'+l)]. (44)

To establish the stability condition from the Raychaudhuri
equation, we again consider a freely-falling test particle o
3o with a trajectoryy tangent toUA=e’2U“. Consider some
small (n—1)-dimensional regiorsV,_,C 3 orthogonal to
y at some given tima ;. We extendsV,,_; a small distance
of ¢ on either side o, to define am-dimensional region
8V, . SinceU” is tangent ta& o, our test particle’s trajectory
is also orthogonal téV,. Now consider a geodesic congru-  We have now established the stability conditirp@“)
ence centered aboytand threading every point withidV,. < p{"*1) ysing three different methods in general geometric
At the moment of interest, we can take each member of thgackgrounds. In this section, we give a few examples of
(n+1)-congruence to be parallel ta This means that the specific manifolds containing totally geodesic hypersurfaces.

subset of the total congruence situated & is an  For each case, we explicitly confirm that our stability condi-
n-dimensional geodesic congruence on the submanifold. TRon for confined trajectories is correct.

evolve the orthogonal regions forward in time, we imagine
that each point indV,, is glued to the associated geodesic, so
the small region deforms in the same manner as the congru-

we have that' (\g) =0 sider the so-called warped product metric ansatz:
0)= VY.

Now in the canonical gauge, the volume®{, is related dsf =eq, 4dy?dyP+ ed(? (45)
to the volume oféV,,_, by M) ap '

The geodesics of the congruence will accelerate towards the
nequilibrium hypersurface if the quantity in the square brack-

ets is negative. This yields the same stability condition as

before:p{V<p{" ")

V. EXAMPLES

A. Warped-product spaces

where the warp facto)=Q(¢) is independent of the
n-dimensional y coordinates and the warp metrig,;
) . . 7 0ap(y) is independent of the extra dimensiorfal The
We can define expansion scalars for both the higher an%duced metric oi , hypersurfaces ibaﬁ;:quaﬁ- We will

lower-dimensional congruences: . . . P
9 assume that the bulk is an Einstein space satisfying

vol 6V,=2¢vol 6V,,_;. (39

d 2A
0= dn In(vol 8Vp) =VaU%, (409 Gas=—AUas, ﬁAB:_n_ 1948- (46)
d Then, solutions for the warp factor and warp metric are eas-
On-1= gy In(vol 8Vy—1) = VU™ (400 jly found [19]:

. coswft, A>0,
It is easy to see that at=\, we have eM2=p “ ° (473
coshwt, eA<O0,

O0,=€1€+0,_1, (41 DAA2
. RaB: qaﬁ ' (47b)
where we have made use 6{\y)=0. The Raychaudhuri n
equation applied to each congruence gives 2| A|
_ A w?= : (479
0= — VAUBVUA— "RagUAUE, (429 n(n—1)
) where A is a constant an®,z is the Ricci tensor formed
On—1=—V*UPVU,— °R,zU U~ (42 from either the induced or warp metri@soth n-tensors give
the same resylt Essentially, the above states that the warp
A reasonably quick calculation reveals metric can be taken to beny ndimensional solution of the

Einstein field equations sourced by a cosmological constant
VAUBVRU o= (hAC+&en?n®)(hBP+ enBnP)V-Up VU A,=A2A(n—2)/n.
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Now, for both of the cases shown in E¢4.79), it is clear
that thef =0 hypersurfac&, is totally geodesic. If we con-
sider some timelike geodesic confinedg, the higher- and

PHYSICAL REVIEW B8, 104027 (2003

where dQ% is the metric on the unit 2-sphere. Using Eq.
(47b), we see that\ , is related to the 5-dimensional cosmo-
logical constant by

lower-dimensional gravitational densities measured by an

observer travelling along that geodesic are

2A 2A
P(gnﬂ):—m. Pén):—T. (48)
where we have used
—1=U-U=h,zUUP=A%q,zU U~ (49

So, the condition that trajectories dy, be stable against
perturbations in this case simply reads
A<O, (50

i.e., the bulk must have anti—de Sitter characteristics.

A,=31A%A. (54)
Interestingly,A , has the same sign &s. So in this scenario,
test particle like comets, asteroids and planets will have a
stable equilibrium about=0 if A,<0; that is, the vacuum
energy has negative density. Af, is positive, as suggested
by recent cosmological observations, thg 4-manifold will

be gravitationally repulsive to test particles. Hence, if a par-
ticle at =0 were to acquire a small extra dimensional
velocity—perhaps by emitting gravitational radiation into the
bulk—there would be no guarantee that it would return to
our “native” spacetime.

B. The Liu-Mashhoon-Wesson metric

This scenario is simple enough to verify our conclusion5-geometry were considered:

directly from the equations of motion. The particle Lagrang-

ian can be taken ak=1x-X, which leads directly to the
following equation of motion:

e dQ

,_€dQ o8
¢ > e h,gu®u”. (51

Now, assuming that our particle is very close&e0, we
can expandd(/d¢ to first order in€¢ and approximate
haﬁu“uﬁ~—1. In both of the relevant casesA =0, we
obtain

€+0(€2)=(sgnA) w0+ O(€?). (52

t= n(n—1)

The obvious stability condition from this expression As

In [15], test particle trajectories in the following
dsfy,= —b2(t,0)dt?+a%(t,£)dog+d¢?, (553
a%(t,¢)=(t>+k) €%+ S (55b)
t?+k
b(L.0) [(t2+k)%€%2—K] (550
b = L C
(tP+ k) (124 k) 202+ K]V
2
doi= +r2dQ3. 55
Oy 1_kr2 2 ( d}

Here, K is an integration constant arkd=0,=1. This line
element is a special case of one originally discovered by Liu
and Mashhoorf20] and subsequently rediscovered by Liu

<0, which matches the above result precisely. Perhaps n@"d Wessor{21], and is a solution of the 5-dimensional

surprisingly, the frequency of oscillation abotit=0 is the
same frequency found in the warp factor.

We finish by noting that this metric ansatz easily lendsmological

vacuum field equationR,z=0. It is interesting because the
line element on each of the, hypersurfaces is of the cos-
Robertson-Walker ~ form.  However, this

itself to toy models of spherically-symmetric astrophysical>-geometry has recently been shown to be isometric the
situations. For example, suppose that we believed that thefedimensional topological Schwarzschild solutid®,25.

was a—suitably tiny—cosmological constak} permeating

It is easy to confirm thatt=0 is a totally geodesic

the immediate vicinity of the Sun. We could construct a4-surface in the geometi(p5) with line element:

5-dimensional description by taking,; to be the 4-metric
around aA 4-black hole:

2

dr
Uapdy®dy?P=—f(r)dt*+ — +r2dQ3,

f(r) (533

1

f(r)y=1 M
(N=1-—"-3

Agr?, (53b)

d’ +d
(k2

K

_ 2
dsi »= o , (56)

k

which can be shown to be isometric to a radiation-dominated
cosmology. Note that in order to have a sensible solution, we
need to ensure that

K
>0 (57)

t>+k

“It is a misnomer to call the bulk anti—de Sitter space in this case, o ) o
it merely satisfies the same Einstein equations as anti—de Sittdty judiciously choosind and restricting the range &fNow,

space.

the tangent vector to a comoving geodesic patt®gris
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gravitational densities d¥l andX ; as measured by observers

SANJEEV S. SEAHRA
2 t2+k . . . . h
U%g,=(t+k) e s . travelling on the confined trajectories, respectively. We es-
tablished this result using a covariant decomposition of the

The gravitational densities measured by such an observer af¢gher-dimensional equation of motion in Sec. Ill, the equa-
easily calculated from the basic definitiofgd): tion of geodesic deviation in Sec. IVA, and the Ray-
chaudhuri equation in Sec. IV B. In Sec. V, we gave several

concrete examples of our results involving warped product
and Liu-Mashhoon-Wesson metrics.

We conclude by noting that the stability condition as for-
Since the bulk is devoid of matter in this case, the stability ofmulated above is only applicable to particular geodesic paths
the comoving trajectory o, demandsp(g4)<o, In other onZX,. For some applications, one might want to ensure that
words, the¢ =0 hypersurface will be gravitationally attrac- all the timelike trajectories through some regionXyf are
tive only if the strong energy condition igolated on 2 ; stable against perturbations. It is not difficult to see how to
i.e., if K<0. Notice that in order to have a negative value ofgeneralize our previous results to satisfy this stronger de-

(58)

3(t%+k)?

(5) =
0 K

g

(59

p(4):

P g

the integration constari€, the inequality(57) implies that
k=—1 and we restricte (—1,1).
This conclusion is odd enough to warrant direct verifica-

tion from the higher-dimensional geodesic equation. The

5-dimensional Lagrangian for comoving trajectories is

L= 1[—Db2t,0)t2+¢2]. (60)
We can obtain an equation fér by extremizing the action,
which yields

+2
L,
2 ¢

?

= €+0(£3). (61)

t2+k

bz(t,€)=(

We can use the solution fdd® above to approximaté?
~(t2+k)%/ K and write

. 3(t2+k)?
b= ———t=p{"t. (62
Here, we have omitted the higher-order terms from the equ
tion of motion. This is what is expected from E@9), and
confirms to us that the comoving trajectory with=0 is

stable only ifp{Y<0.

VI. SUMMARY AND DISCUSSION: AN ENERGY
CONDITION FOR HIGHER DIMENSIONS

In this paper, we have shown that confined particle trajec
tories on totally geodesicn-surfaces embedded in
(n+1)-dimensional bulk manifolds are stable against smal
perturbations ifo"* P> p(" . Here,p{"* andp{” are the

mand. Consider the following definition:

The confinement energy conditionLet X, be an
n-dimensional totally geodesic Lorentzian submanifold
smoothly embedded inn(+1)-dimensional bulkM.

Also, let °R, ;5 be the Ricci tensor ol and °Rag be
the Ricci tensor orM, both evaluated at a poirf®
€ 2,CM. The confinement energy condition Rtis

(“Ragelel—"R,p)U*UP>0, (63)

whereU“ is an arbitrary timelike vector tangent 1g,.

If the confinement energy condition holds in some

neighborhood\[P]CX, of P, then any test particle

travelling along a timelike trajectory oR, passing
through P will be stable against small perturbations

while in N[ P].

There are obviously significant similarities between this
and the familiar strong energy condition from 4-dimensional
relativity, and we note that it can be used to place conditions
on the densities and principle pressures associated with the
Einstein tensors df1 and,,. Itis clear that for the examples

%f Sec. V, the confinement energy condition is satisfied in the

warped-product Einstein space situatiom\i&x0, and in the
Liu-Mashhoon-Wesson metric if the 4-dimensional strong
energy condition is false ol ,. We have no doubt that it
would be interesting to apply this condition to other higher-
dimensional situations with totally geodesic submanifolds,
but this is the subject for future work.
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