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Classical confinement of test particles in higher-dimensional models:
Stability criteria and a new energy condition

Sanjeev S. Seahra*
Department of Physics, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1

~Received 1 August 2003; published 25 November 2003!

We review the circumstances under which test particles can be localized around a spacetime sectionS0

smoothly contained within a codimension-1 embedding spaceM. If such a confinement is possible,S0 is said
to be totally geodesic. Using three different methods, we derive a stability condition for trapped test particles
in terms of intrinsic geometrical quantities onS0 andM; namely, confined paths are stable against perturba-
tions if the gravitational stress-energy density onM is larger than that onS0, as measured by an observed
travelling along the unperturbed trajectory. We confirm our general result explicitly in two different cases: the
warped-product metric ansatz for (n11)-dimensional Einstein spaces, and a known solution of the
5-dimensional vacuum field equation embedding certain 4-dimensional cosmologies. We conclude by defining
a confinement energy conditionthat can be used to classify geometries incorporating totally geodesic submani-
folds, such as those found in thick braneworld and other 5-dimensional scenarios.

DOI: 10.1103/PhysRevD.68.104027 PACS number~s!: 04.20.Jb, 11.10.Kk
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I. INTRODUCTION

The past half-decade has seen a notable upswing in in
est in noncompact higher-dimensional theories of phys
Most of this attention can be attributed to recent advance
string theory, which have postulated that we are living o
~311!-dimensional hypersurface embedded within so
higher-dimensional manifold. Such ‘‘braneworld’’ scenari
have been extensively analyzed in the literature, and h
been used to address issues such as the hierarchy probl
particle physics@1–4#, as well as the idea that the pos
inflationary epoch of our Universe was preceded by the c
lision of D3-branes@5,6#. In all fairness, it should be men
tioned that the current flurry of interest in branewor
scenarios has been preceded by numerous other models
ing use of large or infinite extra dimensions@7–12#.

In some braneworld scenarios, the idea of noncomp
extra dimensions is made more palatable by postulating
the particles and fields of the standard model are confine
the brane universe. If we adopt the most conservative p
of view, the notion of confinement is a prerequisite for a
reasonable theory with noncompact extra dimensions; w
out such an assumption, the fact that we so not commo
see objects flying off in unseen directions becomes a tho
issue. In the context of a particular string theory-inspir
model put forth by Horava and Witten@13,14#, lower-
dimensional confinement is a natural consequence of the
that standard model degrees of freedom are associated
open strings that have endpoints residing on a Dp-brane.
Conversely, since gravitational degrees of freedom are a
ciated with closed strings, the graviton in such models
assumed to propagate both in the bulk and on the br
Phenomenological 5-dimensional realizations based on
idea model the brane as a 4-dimensional domain wal
defect @3,4#. The discontinuity in the 5-geometry about th
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defect forces the graviton ground state to be sharply lo
ized on the brane, which allows for the recovery of stand
Newtonian gravitation in the low-energy limit. This kind o
localization extends to other types of fields, thus represen
a sort of concretization of the confinement mechanism en
sioned in the original string model. In addition, if the matt
localized on the brane satisfies the appropriate energy co
tions and theZ2 symmetry is obeyed, one can show that te
particles can be gravitationally confined to a small reg
about the defect@15#. This acts as a classical confineme
mechanism.

A natural generalization of models involving thin geome
ric defects is scenarios involving thick, smooth domain wa
@16,17#. There are a couple of reasons to consider such m
els: First, there is a natural minimum length in string theo
given by the string scale, so the idea of an infinitely th
geometric feature is somewhat suspect even in a phenom
logical model. Second, one would like to see these bra
world scenarios resulting from some genuine solutions
supergravity, which area priori smooth and differentiable
manifolds. The question is: what becomes of the confinem
paradigm in bulk manifolds devoid of thin domain walls
For test particles in scenarios with one extra dimension,
answer is well known: if the brane has vanishing extrin
curvature, geodesics may be naturally hypersurface-confi
without the invocation of external nongravitational forces.
surface with zero extrinsic curvature is sometimes called
tally geodesic.1 But what of the stability of the trajectorie
confined on these surfaces? That is, if one perturbs a c
fined trajectory slightly off of a totally geodesic submanifol
will it naturally return or not? In other words, under whic
conditions is a totally geodesic hypersurface gravitationa
attractive? For obvious reasons, such questions are of d
relevance to any serious attempt to classically describe
universe as a smoothly-embedded hypersurface on which

1An alternative name for a totally geodesic submanifold is ‘‘ge
desically complete.’’
©2003 The American Physical Society27-1
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are gravitationally trapped. It is possible that this classi
stability issue is irrelevant at the quantum level—perha
because stable particle confinement can be guarantee
other means—but for the purposes of this study we will
sume that the classical formalism is applicable.

In this paper, we propose to address these iss
n-dimensional totally geodesic submanifolds smoothly e
bedded in a space of one higher dimension, with either tim
like or spacelike signature. We will utilize quite gener
methods that will ensure our results apply to any geome
and choice of coordinates in the bulk or on the submanifo
In Sec. II, we describe our geometric construction. In S
III, we review the covariant splitting of test particle equ
tions of motion developed in@15,18,19# and use it to derive
the zero-extrinsic curvature condition for totally geode
submanifolds. Then, we find the stability condition for t
confined trajectories, which is that the double contraction
the particle’s velocity with the Ricci tensor of the bulk
greater than the double contraction with the Ricci tensor
the submanifold. In more physical terms, the stability
trapped particles demands that the locally measured gra
tional density of the bulk is bigger than the density of t
effective lower-dimensional matter living on the brane.2 We
briefly discuss the nature of the latter, emphasizing that
stress-energy content of the submanifold—as perceived
an observer ignorant of an extra dimension—is made
from contributions from the ‘‘real’’ higher-dimensional ma
ter as well as the bulk Weyl tensor. For good measure,
derive the stability condition using two additional method
the geodesic deviation equation in Sec. IV A, and the R
chaudhuri equation in Sec. IV B. We confirm the correctn
of our general result for the special case of the warp
product metric ansatz in Sec. V A, and consider a sim
5-dimensional model of the solar neighborhood. In Sec. V
we show that our stability condition is also correct in t
Liu-Mashoon-Wesson solution@20,21# of the 5-dimensional
vacuum field equations. Section VI summarizes our w
and presents theconfinement energy condition, which en-
sures that all timelike trajectories on a totally geodesic s
manifold in a given bulk geometry will be stable. This e
ergy condition can be used to classify solutions of the th
braneworld on other 5-dimensional scenarios.

Conventions.Uppercase Latin indices run from 0 ton,
while lowercase Greek indices run from 0 ton21. Higher-
dimensional curvature tensors are distinguished from t
lower-dimensional counterparts by hats. Higher and low
dimensional covariant differentiation operators are deno
by ¹A or ¹a , respectively. A center dot indicates the sca
product between higher-dimensional vector fields; i.e.,u•v
[uAvA .

2Roughly speaking, the gravitational density of a given mat
energy distribution differs from the ordinary density by terms
volving the pressure. For example, according to an observer com
ing with a (n11)-dimensional perfect fluid, the gravitationa
density—as we define it below—is@(n22)r1np#/(n21). It is
important because it appears naturally in the Raychaudhuri e
tion, as we will see in Sec. IV B.
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II. GEOMETRIC CONSTRUCTION

We will be concerned with an (n11)-dimensional mani-
fold (M ,gAB) on which we place a coordinate systemx
[$xA%. Sometimes, we will refer toM as the ‘‘bulk mani-
fold.’’ In our working, we will allow for two possibilities:
either there is one timelike andn spacelike directions tangen
to M, or there are two timelike and (n21) spacelike direc-
tions tangent toM. Hence, the signature ofgAB is

sig~gAB!5~21•••1«!, ~1!

where«561. We introduce a scalar function

,5,~x!, ~2!

which defines our foliation of the higher-dimensional ma
fold with the hypersurfaces given by,5const, denoted by
S, . If there is only one timelike direction tangent toM, we
assume that the vector fieldnA normal toS, is spacelike. If
there are two timelike directions, we take the unit normal
be timelike. In either case, the submanifold tangent to
given S, hypersurface contains one timelike and (n21)
spacelike directions; that is, eachS, hypersurface corre-
sponds to ann-dimensional Lorentzian spacetime. The no
mal vector to theS, slicing is given by

nA5«F]A,, n•n5«. ~3!

The scalarF which normalizesnA is known as the lapse
function. We define the projection tensor as

hAB5gAB2«nAnB . ~4!

This tensor is symmetric (hAB5hBA) and orthogonal tonA .
We place ann-dimensional coordinate system on each of t
S, hypersurfacesy[$ya%. Then holonomic basis vectors

ea
A5

]xA

]ya
, n•ea50 ~5!

are by definition tangent to theS, hypersurfaces and or
thogonal tonA. It is easy to see thatea

A behaves as a vecto

under coordinate transformations onM @f:x→ x̄(x)# and a
one-form under coordinate transformations onS, @c:y
→ ȳ(y)#. We can use these basis vectors to project high
dimensional objects ontoS, hypersurfaces. For example, fo
an arbitrary one-form onM we have

Ta5ea
ATA5ea•T. ~6!

HereTa is said to be the projection ofTA onto S, . Clearly
Ta behaves as a scalar underf and a one-form underc. The
induced metric on theS, hypersurfaces is given by

hab5ea
Aeb

BgAB5ea
Aeb

BhAB . ~7!

Just likegAB , the induced metric has an inverse:

haghgb5da
b . ~8!

-

v-

a-
7-2
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CLASSICAL CONFINEMENT OF TEST PARTICLES IN . . . PHYSICAL REVIEW D68, 104027 ~2003!
The induced metric and its inverse can be used to raise
lower the indices of tensors tangent toS, , and change the
position of the spacetime index of theea

A basis vectors. This
implies

eA
aeb

A5da
b . ~9!

Also note that sincehAB is entirely orthogonal tonA, we can
express it as

hAB5habeA
aeB

b . ~10!

At this juncture, it is convenient to introduce our definitio
of the extrinsic curvatureKab of the S, hypersurfaces:

Kab5ea
Aeb

B¹AnB5 1
2 ea

Aeb
B£̂nhAB . ~11!

Note that the extrinsic curvature is symmetric (Kab5Kba).
It may be thought of as the derivative of the induced me
in the normal direction. Thisn-tensor will appear often in
what follows.

We will also require an expression that relates the high
dimensional covariant derivative of (n11)-tensors to the
lower-dimensional covariant derivative of the correspond
n-tensors. We have that then-dimensional Christoffel sym-
bols are given by

Gbg
a 5eg

BeA
a¹Beb

A . ~12!

This allows us to deduce that for one-forms, the followi
relation holds:

¹bTa5eb
Bea

A¹B~hA
CTC!, ~13!

where¹B is the covariant derivative onM defined with re-
spect togAB and¹b is the covariant derivative onS, defined
with respect tohab . The generalization to tensors of high
rank is obvious. It is not difficult to confirm that this defin
tion of ¹a satisfies all the usual requirements imposed on
covariant derivative operator.

Finally, we note that$y,,% defines an alternative coord
nate system tox on M. The appropriate diffeomorphism is

dxA5ea
Adya1,Ad,, ~14!

where

,A5S ]xA

], D
ya5const

~15!

is the vector tangent to lines of constantya. We can always
decompose higher dimensional vectors into the sum of a
tangent toS, and a part normal toS, : For ,A we write

,A5Naea
A1FnA. ~16!

This is consistent with,A]A,51, which is required by the
definition of,A, and the definition ofnA. Then-vectorNa is
the shift vector, which describes how theya coordinate sys-
tem changes as one moves from a givenS, hypersurface to
10402
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another. Using our formulas fordxA and ,A, we can write
the higher dimensional line element as

ds(M )
2 5gABdxAdxB

5hab~dya1Nad, !~dyb1Nbd, !1«F2d,2.
~17!

This reduces tods(S ,)
2 5habdyadyb if d,50. It is also pos-

sible to express the extrinsic curvature in terms ofF andNa:

Kab5
1

2F
~],2£N!hab , ~18!

where £N is the Lie derivative in the direction of the shi
vector.

In this paper, we will be primarily concerned with th
Gaussian-normal coordinate gauge that has been terme
nonical by some authors@22#. This is defined by the follow-
ing choices of foliation parameters:

F51, Na50. ~19!

Obviously, this choice will result in significant simplificatio
of many of the preceding and following formulas.

III. CONFINEMENT OF TEST PARTICLES

The equations of motion for a test particle travelin
throughM are taken to be

uA¹AuB5F B, u•u5k, uA5
dxA

dl
, ~20!

wherek521,0,11 to allow for massive, null and tachyoni
particles respectively,l is an affine parameter, andF is some
nongravitational force per unit mass. One can decomp
these equations into relations involving the particle’s veloc
tangent to theS, foliation ua5ea

•u and parallel to the nor-
mal direction un5n•u. This was first done in@18# for a
5-dimensional model with a spacelike extra dimension a
pure geodesic motion, then generalized to accelerated tra
tories and an extra dimension of arbitrary signature in@15#,
and further adapted to arbitrary dimension and refined n
tion in @19#. Here, we will merely adopt the final results
which are

ua¹aub5«un@un]bln F22Kabua2F21~],2£N!ub#

1F b, ~21a!

u̇n5Kabuaub2unua]aln F1Fn , ~21b!

k5habuaub1«un
2 , ~21c!

where we have definedF a[ea
•F, Fn[n•F, and an over-

dot indicatesd/dl. We can express bothua andun in terms
of the foliation parameters:

ua5 ẏa1 ,̇Na, un5«F ,̇. ~22!
7-3
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This form of the equations of motion has the virtue of bei
written entirely in terms of tensorial quantities onS, , which
makes it invariant undern-dimensional coordinate transfo
mations. Also note that one of the equations~21a!–~21c! is
redundant; for example, if one contracts Eq.~21a! with ub
and makes use of Eq.~21c!, one can recover Eq.~21b!.

Now, if a test particle is confined to a givenS, hypersur-
face, its, coordinate must obviously be constant. This im
plies un[0, which by Eq.~21b! yields

05Kabuaub1Fn . ~23!

In other words, if the normal force per unit mass equa
2Kabuaub, then the particle can be hypersurface-confin
Since this quantity is quadratic in the particle’sn-velocity,
we can identify it as the generalized centripetal accelera
in curved space. Indeed, in@18# it was shown that when a
particle is confined to the world tube of a circleR3S em-
bedded in 3-dimensional Minkowski space,Fn reduces to the
familiar v2/r from elementary mechanics.

Now, if one memberS0 of the S, foliation satisfies
Kab50, then it is obvious that no external centripetal for
F A is required to ensure confinement. Indeed, when the
trinsic curvature vanishes one solution of the freely-falli
equations of motion is

ẏa¹aẏb50, ,̇50, ~24!

i.e., the geodesics ofS0 are also geodesics ofM. As men-
tioned in Sec. I, surfaces with this property are termed tot
geodesic and they represent equilibrium surfaces for fre
falling test particles. We want to know how to tell if suc
surfaces represent stable or unstable equilibria.

To answer this, we can attempt to linearize the equati
of motion aboutS0; that is, we consider the motion of a te
particle very close to the equilibrium hypersurface. To si
plify matters, we will adopt the canonical gauge~19! dis-
cussed above. Then, it is straightforward to derive exp
sions for],hab and],Kab @19#:

],hab52Kab , ~25a!

],Kab5Ka
mKmb2Eab , ~25b!

whereEab[ea
Aeb

BnCnDR̂ACBD . This n-tensor can be relate
back to more familiar quantities by suitable manipulation
the Gauss-Codazzi relations:

R̂ABea
Aeb

B5Rab1«@Eab1Ka
m~Kbm2Khbm!#. ~26!

Now, without loss of generality we can suppose thatS0 cor-
responds to,50; from this, it follows thatu,u is ‘‘small’’ in
our approximation.3 If we let 0hab denote the induced metri
on S0 ,0

Rab the Ricci tensor onS0, etc.; then we have

3Technically, we require that, be small compared to the chara
teristic size of the components of the curvature tensors onS0 andM
in order to justify dropping theO(,2) terms in Eq.~27!. In practical
terms, this means, should be much less than the radii of curvatu
of both manifolds.
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hab5 0hab1O~,2!, ~27a!

Kab5«~ 0Rab2 0R̂ABea
Aeb

B!,1O~,2!.
~27b!

Furthermore, we suppose that then-velocity of our particle
to be approximately tangent to a geodesic onS0:

ua5Ua1dua, Ua¹aUb50. ~28!

Here,dua is considered to be a small quantity; that is, we a
really considering perturbations of the confined trajecto
tangent toUA5Uaea

A . ~We will comment on the validity of
this assumption below.! Then, to lowest order in small quan
tities, Eq.~21b! reduces to

,̈5~ 0Rab2 0R̂ABea
Aeb

B!UaUb,1•••. ~29!

If S0 is a stable equilibrium for test particles, we require th
,̈/,,0. This condition translates into the following cond
tion for the confinement of test particles onS0:

~ 0Rab2 0R̂ABea
Aeb

B!UaUb,0. ~30!

In order to interpret this result, we define the followin
quantities:

rg
(n11)[ 0R̂ABea

Aeb
BUaUb, ~31a!

rg
(n)[ 0RabUaUb. ~31b!

Here,rg
(n11) is our definition of the local gravitational den

sity of higher-dimensional—or real—matter as measured
an observer freely-falling alongS0. It is guaranteed to be
positive if the strong energy condition is satisfied in the bu
or at least in the vicinity of the totally geodesic surface. No
that it is possible to define the gravitational density with
different normalization constant to obtain a ‘‘nicer’’ expre
sion in the perfect fluid case. That is, for a~311!-
dimensional perfect fluid, an observer comoving with t
fluid will measurerg

(4)5 1
2 (r13p) using our definition. One

might be motivated to give a different definition ofrg
(4) that

does not involve the1
2 prefactor, but such a choice woul

unnecessarily complicate the following discussion with sp
rious dimension-dependant terms.

Now, it is clear thatrg
(n) is the lower-dimensional cousin

of rg
(n11) , but the precise interpretation is a little mo

subtle. Imagine an observer living onS0 that is entirely ig-
norant of the, direction. Assuming that this observer ca
measure the localn-geometry and believes in the Einste
field equations, he will interpret the Einsteinn-tensor ofS0
as being proportional to some effective stress-energy ten
In other words, he will conclude that his localn-geometry is
determined by an effective distribution of matter energ
From this, it follows thatrg

(n) is the gravitational density o
the effectiven-dimensional matter.

A natural question is: how is the lower-dimensional effe
tive matter related to the ‘‘real’’ higher-dimensional distrib
7-4
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tion? It is not hard to derive the following expression for t
stress-energy tensor onS0 from the Gauss-Codazzi relation

Gab52«Eab1ĜABeA
aeB

b2F ĜABhAB2S n22

n21DTr~Ĝ!Ghab,

~32!

where all quantities are understood to be evaluated onS0
and we have made note ofKab50. The last two terms on
the right are explicitly related to the higher-dimension
stress-energy tensor, but the first can be rewritten using

Eab5ea
Aeb

BnCnDĈACBD1
1

n~n21!
«R̂hab

1
1

n21
~R̂ABnAnBhab1«R̂ABea

Aeb
B!. ~33!

The first term on the right shows howEab is in part deter-
mined by the Weyl (n11)-tensorĈABCD on M. This curva-
ture tensor is related to the geometrical or gravitational
grees of freedom of the bulk, which are not directly fixed
the (n11)-dimensional field equations. This implies that t
Einsteinn-tensorGab on M is not entirely determined by th
distribution of higher-dimensional stress-energy—there i
purely geometric contribution from the appropriate proje
tion of ĈABCD . We call this contribution theinduced@23# or
shadow@24# matter stress-energy tensor because it repres
a source of the lower-dimensional Einstein equation that c
not be unambiguously attributed to any ‘‘real’’ highe
dimensional fields. It follows that then-dimensional effective
gravitational density contains contributions from both re
and induced matter.

The final point we wish to discuss in this section has to
with the validity of our approximations. Recall that above,
order to derive Eq.~29!, we assumed thatdua was a small
quantity. We now want to describe under which circu
stances this hypothesis holds by substituting the expan
ua5Ua1dua in Eq. ~21b! in the canonical gauge withF
50. For this purpose it is useful to assume thatUa

5Ua
„y(l)…, or equivalently],Ua50. Coupled with Eq.

~27a!, this implies thatUa¹aUb5O(,2). Under such cir-
cumstances, we obtain

d

dl
dua5 0Eab~Ub2dub!

d

dl
,22Gbg

a dubdug2dub¹bUa,

~34!

where we have made use ofKab'2 0Eab3,. It is clear
that in order to havedua be consistently ‘‘small,’’ we must
have that the only term on the right inhomogeneous indua is
negligible. Now, since0Eab5«( 0R̂ABea

Aeb
B2 0Rab) we see

that its components are of the order of the inverse square
the curvature lengths ofM and S0. Then, for our approxi-
mations to be valid, we need thatd(,2)/dl be small com-
pared to the characteristic curvature ofM or S0, whichever
is smaller. This is a sensible intuitive bound—if either t
higher- or lower-dimensional manifolds are highly curved
expect that true confinement will be difficult to achieve. S
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in addition to demanding that, is small in order to justify
Kab'2 0Eab3,, we also need the extra dimensional velo
ity to be relatively tiny.

To summarize, we have seen that anyn-surfaceS0 em-
bedded inM is an equilibrium position for freely-falling tes
particles if it has vanishing extrinsic curvature. Every geod
sic onS0 is automatically a geodesic ofM, hence the hyper-
surface is called totally geodesic. Furthermore, if a giv
trajectory confined toS0 is perturbed off of the equilibrium
surface, the acceleration of the test particle is towards,50
provided that

~i! the gravitational density of the higher-dimensional mat
is greater than the gravitational density of the effect
lower-dimensional matter onS0, as measured by an ob
server travelling on the unperturbed trajectory; and,

~ii ! both , andd(,2)/dl are small compared with the cha
acteristic curvature scales ofM andS0.

Notice that these comments apply to a particular traject
only.

IV. TWO ALTERNATIVE DERIVATIONS
OF THE STABILITY CONDITION

The stability condition for freely-falling test particle tra
jectories derived above depended on our decomposition
the higher-dimensional equation of motion~21! and the ca-
nonical gauge for the foliation parameters~19!. It is possible
to derive the same condition using two different methods t
relax one or both of these assumptions, which is what we
in this section.

A. From the geodesic deviation equation

Consider a freely-falling test particle onS0 that has an
(n11)-velocityUA5ea

AUa at a particular instant of time. As
before, we assume thatS0 is totally geodesic, which mean
that the test particle will remain confined on the submanif
for all future times in the absence of non-gravitational infl
ences. Now, consider an additional test particle that is se
rated from the first object by a vectorjA5,nA. Here,, is
the proper distance separating the two particles and is
sumed to be small. Then, the equation of geodesic devia
says that

aA52RA
BCDUBjCUD, ~35!

whereaA is the acceleration ofjA, defined as

aA5~U•¹!2jA. ~36!

Now, considern•a. Making use ofjA5,nA, we find the
following expression for this scalar product:

n•a5« ,̈2,hAB~UC¹CnA!~UD¹DnB!. ~37!

Here, we have usedgAB5hAB1«nAnB , nAUB¹BnA50, and
,̈5(U•¹)2,. BecauseUA is parallel toS0, the second term
on the right reduces to2,KabKagUbUg50. Hence, we
have
7-5
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,̈52«RABCDnAUBnCUD,52«EabUaUb,. ~38!

If we now use Eq.~26! to substitute forEab , we immedi-
ately recover our previous result~29!. Hence, the test particle
located just offS0 will be accelerated towards,50 if the
stability condition from the previous sectionrg

(n11).rg
(n)

holds. Notice that we did not assume the canonical gauge
this derivation.

B. From the Raychaudhuri equation

To establish the stability condition from the Raychaudh
equation, we again consider a freely-falling test particle
S0 with a trajectoryg tangent toUA5ea

AUa. Consider some
small (n21)-dimensional regiondVn21,S0 orthogonal to
g at some given timel0. We extenddVn21 a small distance
of , on either side ofS0 to define ann-dimensional region
dVn . SinceUA is tangent toS0, our test particle’s trajectory
is also orthogonal todVn . Now consider a geodesic congru
ence centered aboutg and threading every point withindVn .
At the moment of interest, we can take each member of
(n11)-congruence to be parallel tog. This means that the
subset of the total congruence situated onS0 is an
n-dimensional geodesic congruence on the submanifold
evolve the orthogonal regions forward in time, we imagi
that each point indVn is glued to the associated geodesic,
the small region deforms in the same manner as the con
ence. Since the congruence is instantaneously parallel al0,
we have that,̇(l0)50.

Now in the canonical gauge, the volume ofdVn is related
to the volume ofdVn21 by

vol dVn52,vol dVn21 . ~39!

We can define expansion scalars for both the higher-
lower-dimensional congruences:

un5
d

dl
ln~vol dVn!5¹AUA, ~40a!

un215
d

dl
ln~vol dVn21!5¹aUa. ~40b!

It is easy to see that atl5l0 we have

u̇n5 ,̈/,1 u̇n21 , ~41!

where we have made use of,̇(l0)50. The Raychaudhur
equation applied to each congruence gives

u̇n52¹AUB¹BUA2 0R̂ABUAUB, ~42a!

u̇n2152¹aUb¹bUa2 0RabUaUb. ~42b!

A reasonably quick calculation reveals

¹AUB¹BUA5~hAC1«nAnC!~hBD1«nBnD!¹CUD¹BUA
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5¹aUb¹bUa22«KabUbeA
anB¹BUA

1~Ua]aln F!2

5¹aUb¹bUa . ~43!

In going from the third to fourth line we have made use
the fact thatS0 is totally geodesic (Kab50) and our gauge
choice (F51). Putting it all together, we get

,̈5,@rg
(n)2rg

(n11)#. ~44!

The geodesics of the congruence will accelerate towards
equilibrium hypersurface if the quantity in the square bra
ets is negative. This yields the same stability condition
before:rg

(n),rg
(n11) .

V. EXAMPLES

We have now established the stability conditionrg
(n)

,rg
(n11) using three different methods in general geome

backgrounds. In this section, we give a few examples
specific manifolds containing totally geodesic hypersurfac
For each case, we explicitly confirm that our stability con
tion for confined trajectories is correct.

A. Warped-product spaces

For our first example of test particle confinement, we co
sider the so-called warped product metric ansatz:

ds(M )
2 5eVqabdyadyb1«d,2, ~45!

where the warp factorV5V(,) is independent of the
n-dimensional y coordinates and the warp metricqab
5qab(y) is independent of the extra dimensional,. The
induced metric onS, hypersurfaces ishab5eVqab . We will
assume that the bulk is an Einstein space satisfying

ĜAB52LgAB , R̂AB5
2L

n21
gAB . ~46!

Then, solutions for the warp factor and warp metric are e
ily found @19#:

eV/25AH cosv,, «L.0,

coshv,, «L,0,
~47a!

Rab5
2LA2

n
qab , ~47b!

v2[
2uLu

n~n21!
, ~47c!

where A is a constant andRab is the Ricci tensor formed
from either the induced or warp metrics~bothn-tensors give
the same result!. Essentially, the above states that the wa
metric can be taken to beany n-dimensional solution of the
Einstein field equations sourced by a cosmological cons
Ln5A2L(n22)/n.
7-6
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Now, for both of the cases shown in Eq.~47a!, it is clear
that the,50 hypersurfaceS0 is totally geodesic. If we con-
sider some timelike geodesic confined toS0, the higher- and
lower-dimensional gravitational densities measured by
observer travelling along that geodesic are

rg
(n11)52

2L

n21
, rg

(n)52
2L

n
, ~48!

where we have used

215U•U5habUaUb5A2qabUaUb. ~49!

So, the condition that trajectories onS0 be stable agains
perturbations in this case simply reads

L,0, ~50!

i.e., the bulk must have anti–de Sitter characteristics.4

This scenario is simple enough to verify our conclusi
directly from the equations of motion. The particle Lagran
ian can be taken asL5 1

2 ẋ• ẋ, which leads directly to the
following equation of motion:

,̈5
«

2

dV

d,
habuaub. ~51!

Now, assuming that our particle is very close to,50, we
can expanddV/d, to first order in , and approximate
habuaub;21. In both of the relevant cases«L"0, we
obtain

,̈5
2L

n~n21!
,1O~,2!5~sgnL!v2,1O~,2!. ~52!

The obvious stability condition from this expression isL
,0, which matches the above result precisely. Perhaps
surprisingly, the frequency of oscillation about,50 is the
same frequency found in the warp factor.

We finish by noting that this metric ansatz easily len
itself to toy models of spherically-symmetric astrophysic
situations. For example, suppose that we believed that t
was a—suitably tiny—cosmological constantL4 permeating
the immediate vicinity of the Sun. We could construct
5-dimensional description by takingqab to be the 4-metric
around aL4-black hole:

qabdyadyb52 f ~r !dt21
dr2

f ~r !
1r 2dV2

2 , ~53a!

f ~r !512
2M

r
2

1

3
L4r 2, ~53b!

4It is a misnomer to call the bulk anti–de Sitter space in this ca
it merely satisfies the same Einstein equations as anti–de S
space.
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where dV2
2 is the metric on the unit 2-sphere. Using E

~47b!, we see thatL4 is related to the 5-dimensional cosm
logical constant by

L45 1
3 A2L. ~54!

Interestingly,L4 has the same sign asL. So in this scenario,
test particle like comets, asteroids and planets will hav
stable equilibrium about,50 if L4,0; that is, the vacuum
energy has negative density. IfL4 is positive, as suggeste
by recent cosmological observations, theS0 4-manifold will
be gravitationally repulsive to test particles. Hence, if a p
ticle at ,50 were to acquire a small extra dimension
velocity—perhaps by emitting gravitational radiation into t
bulk—there would be no guarantee that it would return
our ‘‘native’’ spacetime.

B. The Liu-Mashhoon-Wesson metric

In @15#, test particle trajectories in the following
5-geometry were considered:

ds(M )
2 52b2~ t,, !dt21a2~ t,, !dsk

21d,2, ~55a!

a2~ t,, ![~ t21k!,21
K

t21k
, ~55b!

b~ t,, ![
@~ t21k!2,22K#

~ t21k!3/2@~ t21k!2,21K#1/2
, ~55c!

dsk
2[

dr2

12kr2
1r 2dV2

2 . ~55d!

Here, K is an integration constant andk50,61. This line
element is a special case of one originally discovered by
and Mashhoon@20# and subsequently rediscovered by L
and Wesson@21#, and is a solution of the 5-dimensiona
vacuum field equationsR̂AB50. It is interesting because th
line element on each of theS, hypersurfaces is of the cos
mological Robertson-Walker form. However, th
5-geometry has recently been shown to be isometric
5-dimensional topological Schwarzschild solution@19,25#.

It is easy to confirm that,50 is a totally geodesic
4-surface in the geometry~55! with line element:

ds(S 0)
2 5

K
t21k

F2
dt2

~ t21k!2
1dsk

2G , ~56!

which can be shown to be isometric to a radiation-domina
cosmology. Note that in order to have a sensible solution,
need to ensure that

K
t21k

.0 ~57!

by judiciously choosingk and restricting the range oft. Now,
the tangent vector to a comoving geodesic path onS0 is

e,
ter
7-7
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Ua]a5~ t21k!At21k

K ] t . ~58!

The gravitational densities measured by such an observe
easily calculated from the basic definitions~31!:

rg
(5)50, rg

(4)5
3~ t21k!2

K . ~59!

Since the bulk is devoid of matter in this case, the stability
the comoving trajectory onS0 demandsrg

(4),0. In other
words, the,50 hypersurface will be gravitationally attrac
tive only if the strong energy condition isviolated on S0;
i.e., if K,0. Notice that in order to have a negative value
the integration constantK, the inequality~57! implies that
k521 and we restricttP(21,1).

This conclusion is odd enough to warrant direct verific
tion from the higher-dimensional geodesic equation. T
5-dimensional Lagrangian for comoving trajectories is

L5 1
2 @2b2~ t,, ! ṫ21 ,̇2#. ~60!

We can obtain an equation for,̈ by extremizing the action
which yields

,̈52
1

2
ṫ2

]

],
b2~ t,, !5S 3 ṫ2

t21k
D ,1O~,3!. ~61!

We can use the solution forUa above to approximateṫ2

'(t21k)3/K and write

,̈5
3~ t21k!2

K ,5rg
(4),. ~62!

Here, we have omitted the higher-order terms from the eq
tion of motion. This is what is expected from Eq.~29!, and
confirms to us that the comoving trajectory with,50 is
stable only ifrg

(4),0.

VI. SUMMARY AND DISCUSSION: AN ENERGY
CONDITION FOR HIGHER DIMENSIONS

In this paper, we have shown that confined particle traj
tories on totally geodesic n-surfaces embedded i
(n11)-dimensional bulk manifolds are stable against sm
perturbations ifrg

(n11).rg
(n) . Here,rg

(n11) andrg
(n) are the
tt

ev

ys
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gravitational densities ofM andS0 as measured by observe
travelling on the confined trajectories, respectively. We
tablished this result using a covariant decomposition of
higher-dimensional equation of motion in Sec. III, the equ
tion of geodesic deviation in Sec. IV A, and the Ra
chaudhuri equation in Sec. IV B. In Sec. V, we gave seve
concrete examples of our results involving warped prod
and Liu-Mashhoon-Wesson metrics.

We conclude by noting that the stability condition as fo
mulated above is only applicable to particular geodesic pa
on S0. For some applications, one might want to ensure t
all the timelike trajectories through some region ofS0 are
stable against perturbations. It is not difficult to see how
generalize our previous results to satisfy this stronger
mand. Consider the following definition:

The confinement energy condition.Let S0 be an
n-dimensional totally geodesic Lorentzian submanifold
smoothly embedded in (n11)-dimensional bulkM.
Also, let 0Rab be the Ricci tensor onS0 and 0R̂AB be
the Ricci tensor onM, both evaluated at a pointP
PS0,M . The confinement energy condition atP is

~0R̂ABea
Aeb

B20Rab!UaUb.0, ~63!

whereUa is an arbitrary timelike vector tangent toS0.
If the confinement energy condition holds in some
neighborhoodN@P#,S0 of P, then any test particle
travelling along a timelike trajectory onS0 passing
through P will be stable against small perturbations
while in N@P#.
There are obviously significant similarities between th

and the familiar strong energy condition from 4-dimension
relativity, and we note that it can be used to place conditio
on the densities and principle pressures associated with
Einstein tensors ofM andS0. It is clear that for the example
of Sec. V, the confinement energy condition is satisfied in
warped-product Einstein space situation ifL,0, and in the
Liu-Mashhoon-Wesson metric if the 4-dimensional stro
energy condition is false onS0. We have no doubt that i
would be interesting to apply this condition to other highe
dimensional situations with totally geodesic submanifol
but this is the subject for future work.
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