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Rotating black hole solution in a generalized topological 3D gravity with torsion

Eckehard W. Mielke* and Alı́ A. Rincón Maggiolo†

Departamento de Fı´sica, Universidad Auto´noma Metropolitana-Iztapalapa, P.O. Box 55-534, 09340 Mexico D.F., Mexico
~Received 9 July 2003; published 25 November 2003!

A first orderversion of topological massive gravity is achieved by liberating itstranslationalgauge degrees
of freedom. In three dimensions, our Lagrangian consists of Chern-Simons~CS! terms for curvature and
torsion inducing an effective cosmological constant dynamically, whereas a ‘‘mixed’’ CS term is substituting
for the topological related Einstein-Cartan action. Anti–de Sitter and rotating black hole configurations are
exact vacuum solutions. They also apply to a large class of Yang-Mills-type generalizations including ‘‘exotic’’
terms exclusively permitted in 3D. The reason for this can be partially traced back to a new strong/weakduality
of the translational and rotational dynamical degrees of freedom.
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I. INTRODUCTION

Since the first three-dimensional model of Staruszkiew
@1#, the 3D topological model of gravity of Deser, Jacki
and Templeton~DJT! @2–5# has aroused quite a lot of theo
retical interest. In order to get a nontrivial vacuum theo
DJT added the Chern-Simons~CS! term for the Riemannian
curvature to the 3D Hilbert-Einstein Lagrangian, regarded
the high-temperature limit~for Euclidean signature! or di-
mensional reduction of the four-dimensional Hilbert-Einste
Lagrangian. The topological term is supposed to come fr
the u vacuum of four-dimensional physics. The nice, intri
sic feature of the DJT model is that the CS term induce
mass for the ‘‘graviton’’ without breaking infinitesimal gaug
invariance or invoking the Higgs mechanism. The discov
of anti–de Sitter~AdS! @6# and black hole solutions@7# has
added further attraction to 3D gravitational models as
‘‘laboratory’’ to study geometric, dynamical, and statistic
properties@8#.

From a gauge theoretical point of view, however, it a
pears much more natural to formulate such a dimension
reduced gravitational theory in a Riemann-Cartan~RC! space
~time! with torsion @9# and thereby to go over to what i
conventionally called afirst order formalism. This has suc-
cessfully been applied to simple supergravity, cf.@10,11#,
where torsion enters as an auxiliary field simplifying the
cal supersymmetric transformations@12#. In order to take
proper care of the translational aspect, we construct a P
carégauge model in 3D, cf. Refs.@13,6,14,9#.

Since the Einstein-Cartan~EC! action is nondynamical in
vacuum, as reiterated in Sec. II, we construct in Sec. I
topological model based on the translational@15#, rotational,
and a new ‘‘mixed’’ Chern-Simons term. It is an intrins
feature of our model that a cosmological term isinduced
dynamically. The vacuum field equations are similar to tho
of Ref. @13# inasmuch as they provide the constrictions
constantaxial torsion and RC curvature. These turn out to
equivalent to a covariant Klein-Gordon equation toget
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with the de Donder condition for the triads. As shown in S
III A, the three propagating vacuum modes are massive
citations with quadratic mass roots, in contradistinction t
the problematic cubic eigenvalue equation of the DJT mo
with explicit mass term@16#. The known anti–de Sitter and
rotating black hole solution of the 3D Einstein equatio
with effective cosmological constant are ‘‘prolongated’’
Sec. IV to our purely topological model simply by deformin
the Riemannian connection to the one with constant a
torsion.

To what extent can these exact solutions ‘‘probe’’ a mo
general dynamics? In Sec. V, an attempt is made to solve
general 3D Poincare´ field equations by aduality rotationof
the three rotational field momenta to those correspondin
the three translations. Although a complete integrability@17#
as in 2D cannot be expected here, in RC space~times! with
constant axial torsion the field momenta exhibit an intrigui
S ~strong/weak! duality with respect to the contortional cou
pling constant. Encouraged by this new finding, spec
Yang-Mills-type extensions of our topological model a
considered in Sec. VI. It is a new and special feature of
that a cubic term in the torsion and a mixed torsion/curvat
term are permitted as ratherexoticthree-forms. Nevertheless
the previous prolongation of the AdS and black hole config
rations to the solutions with constant axial torsion apply a
to the Yang-Mills case, provided the contortional consta
satisfies a quartic algebraic equation. Some generalizat
and problems are briefly discussed in Sec. VII.

Our notation and the ‘‘burden’’ of useful geometric
identities are collected in the first three appendices, whe
in Appendix D the DJT model isrecoveredfrom our first
order topological model by constraining, via a Lagran
multiplier, the torsion to vanish.

II. NONDYNAMICAL EINSTEIN THEORY IN 3D

The celebrated Poincare´ group P(n,R)ªRn+SO(1,n
21) of particle physics inn dimensions is the semidirec
product of thetranslation group Rn and theLorentz group
SO(1,n21). It is particular for 3D, i.e.,n53, that the
Poincare´ group consists of three translation and three ro
tion generators, which invites some dynamical intertwini
of the basic variables, the anholonomic coframeqa, and
©2003 The American Physical Society26-1
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the connection one-formGab, or ‘‘spin’’ connection
Ga

!
ª

1
2 habgGbg, when written in terms of the Lie dual, cf

Appendices A and B for details.
As is well known, in 3D the Einstein-Cartan Lagrangia

three-form

VEC52
1

2,
Rab`hab52

1

,
qa`Ra

!52
~21!s

,
ha`* Ra

! ,

~2.1!

where, denotes a fundamental length andRa
! the Lie dual

~B4! of the Riemann-Cartan curvature, does not provide
with a model with dynamical degrees of freedom. Its var
tion with respect to the coframeqa and the connectionGa

!

yields the field equations

Ra
!5, Sa , Ta5~21!s2,ta

! , ~2.2!

where SaªdLmat/dqa and ta
!
ª

1
2 habg tbg

5((21)s/2)dLmat/dG!a are the matter current two-forms o
energy-momentum and spin, respectively. Thus invacuum,
the RC curvature and the torsionTa

ªDqa are zero and Eq
~2.2! becomes trivial.

III. CHERN-SIMONS GRAVITY IN 3D

In 3D the gravitational Lagrangian has to be a three-fo
Although the translational,~Lorentz-! rotational, and the
mixed CS three-forms of our Appendix C are not all gau
invariant, they are viable candidates. Allowing for arbitra
‘‘vacuum angles’’uT , uL , anduTL , the most general purely
topologicalLagrangian in 3D then takes the form

V`5uTCT1uLCL1uTLCTL . ~3.1!

This topological 3D model partially depends on thetransla-
tional CS termCT , cf. @15#, which is of decisive importance
in order not to fall back to a trivial model. The new mixe
topological termCTL is simulating to some extent Einstein
theory in three dimensions. Following Witten@18#, this can
be traced back to the partially topological nature of the
Lagrangian in 3D:

qa`Ra
!5d~Ga

!`qa!1,CTL ~3.2!

Varying Eq.~3.1! with respect toqa andG!a and employing
the results of Appendix C yield the topological field equ
tions

2uTLRa
!2

uT

,
Ta5,Sa ~3.3!

and

uTLTa2
u

T

2,
ha2uL,Ra

!5,ta
! . ~3.4!

These field equations are of first order, similar to those
Mielke and Baekler@13#. Here, however, we have dismisse
the traditional Einstein-Hilbert or EC Lagrangian, and su
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stituted it by the new mixed Chern-Simons-type termCTL ,
in order to focus first on a completely topological theory.

Let us exclude a singular case and assume thaA
5:2(uTL

2 1uTuL)Þ0. Then, combining the vacuum fiel
equations~3.4! and ~3.3! yields for the torsion and the RC
curvature the constrictions

Ta5
2k

,
ha , Ra

!5
r

,2
ha , ~3.5!

where the contortional constant isk5(uTLuT)/2A and
r52uT

2/A. Sinceha5(1/2)habgqb`qg, both torsion and
curvature carry in 3D onlyoneindependent irreducible com
ponent, i.e., theaxial torsion and thescalar curvature, re-
spectively. Thus, in vacuum, we end up with a space of c
stant RC curvature with a curvature radius of the order of
fundamental length,. Let us remark that the~Lorentz-! ro-
tational CS is of secondary importance here, it is only nee
to reproduce, after imposing the dynamical constraintDqa

50 of vanishing torsion, the Cotton tensor of the D
model, cf. Appendix D or Sec. 8 of Ref.@6#. Crucial, how-
ever, is the translational CS action providing also a nontriv
planar dynamics@19#.

A. Massive gravitons

In order to exhibit the propagating degrees of freedom
our model, we form the gauge-covariant d’Alembertian
the coframeqa. In general, for ap form in n dimensions
@20# this operator is given byhª(21)pn1s@* D* D
1(21)nD* D* #. By employing the relationha5* qa for
the h basis, iteratively the algebraic relations~3.5! for the
torsion and RC curvature, as well as the first Bianchi iden
~C1!, we find for the 3D coframe

@h1~21!sm2#qa>0 ~3.6!

and

D* qa>0 ~3.7!

where m52k/,5uTLuT /A, is the mass of the graviton
which is real for Lorentzian signatures51.

The Klein-Gordon~KG!-type equation~3.6! and the sub-
sidiary condition~3.7! for the coframe are bothexactconse-
quences of our field equations. This is completely analog
to the three-dimensional topological gauge model for
spin-1 ~or covector! field A5Aidxi in which both the mass
shell and the Lorentz conditiond* A50 are not imposed
separately, but rather follow from the underlying gauge fie
equation@21#. The subsidiary condition~3.7! corresponds to
the gauge-covariant Hilbert–de Donder ortransversality
condition for the coframe.

Therefore, in the count of the vacuum degrees of freed
of our topological gauge model with torsion, nowhere a l
earization procedure@22# is needed: In 3D, the coframeqa

ªei
adxi has 33359 components. In view of the transfo

mation formulaq8a 5Lb
a(x)qb, we have to subtract thre

gauge degrees of freedom due to local rotationsLb
a(x) or

SO(s,32s)-gauge transformations. The transversality con
tion ~3.7!, for vacuum, amounts to three further constrain
such that three propagating vacuum modes remain. T
6-2
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ROTATING BLACK HOLE SOLUTION IN A . . . PHYSICAL REVIEW D68, 104026 ~2003!
consist of the two spin-2 degrees of freedom of amassive
~non-ghost! graviton and one massive scalar mode, exac
as in the DJT model@2,3#. For LeffÞ0, however, these
modes ‘‘live,’’ due to Eq.~4.2!, on a background ofconstant
Riemanniancurvature, cf.@23#. Another virtue of our first
order CS formulation is the quadratic mass roots in the
fective KG equation~3.6! for the coframe. This is in contra
distinction to the third order DJT model with explicit Pau
Fierz mass term@16#, where the cubic eigenvalue equatio
for the mass spectrum signals difficulties in the physical
terpretation of complex roots or ghosts.

The Klein-Gordon-type reformulation of our topologic
model will likely facilitate its BRST quantization, cf.@24#,
without encountering a conformal ‘‘anomaly’’ in the reno
malization procedure@25#.

IV. PROLONGATION OF BLACK HOLE
AND ANTI –de SITTER SOLUTIONS

In order to study vacuum solutions, let us consider
decompositionGa

!5Ga
$%!2Ka

! of the connection into Rie-
mannian and contortional pieces. This implies the identit

Ra
![Ra

$%!2DKa
!1 1

2 habgK!b`K!g ~4.1!

for the RC curvature. Then from the relationKa
!52 1

2 * Ta

52(21)s(k/,)qa for the contortion and the definitionTa

ªDqa, it can be inferred that the Riemannian partRa
$%! of

the curvature is also constant:

Ra
$%!52Leffha ,

Leff52$r2@112~21!s#k2%/,2. ~4.2!

In principle, we can have a nonzero effective cosmolo
cal constant even fork50, i.e., in a purely Riemannian
spacetime. Alternatively, forr50, i.e., in the limit of van-
ishing RC curvature, there exists a nontrivial ‘‘parallelizing
torsion, resembling the ‘‘squashed’’ seven-sphere const
tion of Englertet al. @26# in higher dimensions.

From EXCALC/REDUCE calculations@27#, we know that
Leff :5uT

2@(912(21)s)uTL
2 18uTuL#/(2A,)2 is the effec-

tive cosmological constant, which is induced by the topolo
cal terms in our gauge Lagrangian~3.1!. Inasmuch as the
three-dimensional ‘‘image’’ of a cosmological term of eith
sign is alreadyinducedby the Chern-Simons terms in th
Lagrangian, one can disregard a ‘‘bare’’ cosmological te
and still be able to simulate cosmological models in 3D.
our topological model, however, the translational CS te
proportional touT is indispensable for obtaining a nontrivia
result.

In 3D with Lorentzian signatures51, the three-
dimensional Einstein theory~2.1! with vanishing torsion and
effective cosmological termLeff has the AdS metric

ds252~12Leffr
2!dt21~12Leffr

2!21dr21r 2df2

~4.3!

as an exact solution. For the topological gauge model of R
@13#, this was first recognized by Baekleret al. @6#.
10402
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From Eq.~4.3!, by appropriate identifications, the vacuu
solution

ds252N2~r !dt21N22~r !dr21r 2@df1Nf~r !dt#2.
~4.4!

can be obtained@7,28#, where the lapse squared and shift a
given by

N2~r !52M2Leffr
21

J2

4r 2
, Nf~r !52

J

2r 2
, ~4.5!

respectively. Observe that the shift is proportional to the
gular momentumJ of the solution, which allows forJ2

<M2 to interpret this configuration as arotating black hole
with massM, cf. @29#. Obviously, forM521 andJ50 it
reduces to Eq.~4.3!.

We have checked byEXCALC that the rotating black hole
solution~4.4! has constant Riemannian curvature~4.2! and is
therefore nowhere singular. Then the construction of c
figurations with constant axial torsion and RC curvature~3.5!
rest essentially on a prolongationGa

$%!→Ga
!5Ga

$%!2Ka
! of

the Riemannian to a RC connection and an inversion of
~4.1!, cf. @30#. Provided the effective cosmological consta
Leff is related tok and r via ~4.2!, the black hole configu-
ration ~4.4! with ~4.5! is also an exact solution of our topo
logical gauge model~3.1!.

V. S DUALITY IN 3D

The general form of the Poincare´ gauge field equations
~5.8.10! and ~5.8.11! of Ref. @9# follows from Noether’s
theorem. In 3D they can be converted into

DHa2Ea5Sa ~5.1!

and

DHa
!2 1

2 hab`Hb5ta
! , ~5.2!

where the one-forms

Haª2
]V

]Ta
, Ha

!
ª2

~21!s

2

]V

]R!a
~5.3!

are the translational and rotational field momenta, resp
tively, and

Eaª
]V

]qa
5eacV1~eacTb!`Hb12~21!s~eacR!b!`Hb

!

~5.4!

is the canonical energy-momentum two-form of the gravi
tional gauge fields.

In four dimensions, the symmetry of duality rotations h
a long history. Since 1925 it was known to Rainich@31# and
developed further in the contextgeometrodynamicsby Mis-
ner and Wheeler@32#, cf. @20#. More recently, Motonen and
Olive @33,34# noted that then also a duality of thestrong-
weakcoupling regime of gauge fields is generated, the
6-3
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called S duality. @For Chern-Simons~super! gravity, some
aspects have also been discussed in Refs.@35,36#.#

Consequently, let us assume here that the 3D field
menta one-forms are duality rotated to each other via

Ha
!5,Ha1

qa

,
, ~5.5!

as is the case for the special models considered before
Eq. ~12.2! of Ref. @6#. ~For convenience, two possible arb
trary constants are absorbed in the still to be sought-for fi
momenta.! Inserting this ansatz into Eq.~5.2! yields the fol-
lowing condition for the translational field momenta:

Ta

,
1,Ea2

1

2
hab`Hb5ta

!2,Sa . ~5.6!

After multiplying ~5.6! by qa and using the algebraic iden
tity qa`hab522* qb , we get the explicit condition

* Ha5
Ta

,
1,~Ea1Sa!2ta

! . ~5.7!

This converts Eq.~5.1! into a first order field equation for th
translational momenta, but, due to the intertwining ans
~5.5!, coupled to the material spin,

,DHa1
Ta

,
2* Ha5ta

! . ~5.8!

A complete integrability@17#, as in the case of 2D Poin
caré gauge models, is not available here. Nevertheles
vacuum solution of Eq.~5.8! is

Ha5
2k

,2~122k!
qa ⇔ Ta5

2k

,
ha , ~5.9!

provided the RC spaces have constant axial torsion, simil
as in the case of Eq.~3.5! of CS gravity.

Due to Eq.~5.5!, we obtain

Ha
!5

1

,~122k!
qa5

,

2k
Ha , ~5.10!

which can be viewed as a kind ofS ~strong/weak! duality
inverting the coupling constantk→1/k. Here in 3D the
novel feature that this occurs for the intertwining mappi
~5.10! between the translational/rotational pair of field m
menta arises. In particular, in the limitk→0 of weak axial
torsion coupling, the translational field momenta~5.9! will
vanish, whereas the rotational momentaHa

!5qa /, will be-
come unity, similarly as in the EC action.

VI. NEW YANG-MILLS TERMS IN 3D GRAVITY

For a concrete generalization of our topological mo
~3.1!, we consider here possible additional terms which m
enter the 3D gravitational Lagrangian, for instance,
counter terms after renormalization, cf.@37#. They are the EC
Lagrangian, a bare cosmological termLh, as well as the
10402
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following Yang-Mills-type three-forms:

VYM5xVEC2
L

,3
h2

a

2,
Ta`* Ta2

b,

2
R!a`* Ra

!2cTa

`* Ra
!1

LT

3!
habg* Ta`* Tb`* Tg, ~6.1!

or the corresponding decomposition in irreducible piec
The constantx, weighing the EC Lagrangian, as well asa, b,
c, L, and LT are dimensionlesscoupling constants. The
mixed torsion-curvature term as well as the cubic term in
dual torsion~or contortion, see the Appendix! do not arise in
four dimensions, they are pertinent to 3D. However, the
newexotic terms seem to be devoid of any topological int
pretation.

Using * Ta`* Tb`* Tg52(21)sTa`* (* Tb`* Tg) for
the cubic term, they provide the following field momenta:

Ha5
a

,
* Ta1c* Ra

!1~21!s
LT

2
habg* ~* Tb`* Tg!,

~6.2!

Ha
!5

~21!s

2 Fx, qa1c* Ta1b,* Ra
! G , ~6.3!

and

Ea52
x

,
Ra

!2
L

,3
ha . ~6.4!

Let us now demonstrate that the black hole solution~4.4!
with constant axial torsion and RC curvature~3.5! is also a
solution of this Yang-Mills system, albeit new algebraic co
straints on the coupling constants.

Inserting ansatz~3.5! into Eqs.~6.2!, ~6.3!, and~6.4! pro-
vides the simplification

Ha5~21!s
1

,2
@2ak1cr1~21!s4LTk2#qa , ~6.5!

Ha
!5

1

2,
@~21!sx12ck1br#qa , ~6.6!

and

Ea52
1

,3
~xr1L!ha . ~6.7!

EmployingTa5Dqa and again Eq.~3.5!, the general 3D
gauge field equations~5.1! and ~5.2! yield

,3Sa5$~21!s2k@2ak1cr1~21!s4LTk2#1xr1L%ha ,

~6.8!

and
6-4
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,2ta* 5~21!s$k@x1~21!s2ck1~21!sbr#12ak1cr

1~21!s4LTk2%ha . ~6.9!

In vacuum, we obtain a system of algebraic equations, cu
in k and linear inr, which can be solved by standard met
ods. Eliminatingr from Eq. ~6.9! provides us with

r52~21!sk
x12a1~21!s2k~c12LT!

bk1~21!sc
, ~6.10!

unlessk52(21)sc/b, which, in turn, requires (x12a)b
52c(c12LT) as constraint on the coupling constants. Su
stituting Eq.~6.10! into the vacuum equation~6.8! yields the
quartic algebraic equation

@bk1~21!sc#@L1~21!s4ak218LTk3#

5~21!sk@x1~21!s2ck#@x12a1~21!s

32k~c12LT!#. ~6.11!

Let us concentrate again on a model for which the bare c
mological constant is zero, i.e.,L50, and the effective con
stant gets ‘‘induced’’ dynamically. Then the quartic equati
factorizes withk50 as one solution. Since this also implie
r50, we would end up with the trivial case of flat spa
~time!. For bLTÞ0, the cubic equation remains,

k31Bk21Ck1D5S k1
B

3 D 3

1pS k1
B

3 D1q50,

~6.12!

where B5(ab2c2)/2bLT , C5x(c1LT)/2bLT , D5x(x
12a)/8bLT , p5C2B2/35@3x(c1LT)2ab1c2#/6bLT ,
and q5D2BC/312B3/27. The formula of Cardano@38#
provides the real solution

k52
B

3
1S q

2
1Aq2

4
1

p3

27
D 1/3

1S q

2
2Aq2

4
1

p3

27
D 1/3

~6.13!

for the contortional constant, providedq214p3/27>0.

VII. DISCUSSION

As demonstrated explicitly, our purely CS version~3.1! of
3D topological gravity has the same dynamical degrees
freedom as the DJT model and admits rotating black h
and AdS solutions. These exact configurations with axial
sion solve also our Yang-Mills extensions in 3D, albeit so
constraints on the weights or coupling constants of the in
vidual torsion and/or curvature terms in Lagrangian~6.1!.
However, there the Cauchy formulation as well as the nu
ber of no-ghost dynamical degrees of freedom are not kno
and may again depend on the choice of the coupling c
stant.

It would be interesting to implement the generalized
lutions@39–43# of the DJT model in our topological CS wit
torsion, or even with nonmetricity@44,45#. In order to avoid
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factor 2 problems in the definition of the conserved quan
ties M andJ, further insights in their group-theoretical inte
pretation via AdS Casimir operators@46,47# in 3D are desir-
able.
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APPENDIX A: THE DUAL BASIS FOR EXTERIOR FORMS
IN 3D

The symbol̀ denotes the exterior product of forms, th
symbol c the interior product of a vector with a form, and*
the Hodge star~or left dual! operator, which maps ap-form
into a (32p)-form. It has the property that* * F (p)

5(21)p(32p)1sF (p), wherep is the degree of the formF
ands the signature of the metric.

The volume three-form is defined by

hª
1

3!
habgqa`qb`qg, ~A1!

where habgªAudet gmnueabg and eabg is the Levi-Civita
symbol. Together withh, the following forms span adual
basisfor the algebra of arbitraryp forms in 3D:

haªeach5* qa ,

habªebcha5* ~qa`qb!,

habgªegchab . ~A2!

We will call these forms theh basis of the three-dimensiona
space~time!; for more details see the Appendix of Ref.@6#.

APPENDIX B: LIE DUAL IN 3D

It is peculiar for 3D that the Poincare´ group consists of
three translation and three rotation generators. Then the
dual, that is, a duality operation with respect to t
Lie-algebra indices, is mapping a vector into a bivector a
vice versa; in particular for a bivector-valuedp-form
cab52cba, the Lie dual is defined by

ca
!
ª

1
2 habgcbg ⇔ cab5~21!shabgcg

! . ~B1!

In particular, we define

Ga
!
ª

1
2 habgGbg, Ka

!
ª

1
2 habgKbg52 1

2 * Ta , ~B2!

such that Cartan’s structure equations for torsion and cu
ture get converted in

Ta5dqa2~21!shab`Gb
! ~B3!

and
6-5
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Ra
!
ª

1

2
habgRbg5dGa

!1
~21!s

2
habgG!b`G!g . ~B4!

APPENDIX C: CHERN-SIMONS TERMS

Gauging the Poincare´ group, translations, and~Lorentz!
rotations gives rise two types of gauge potentials: the
frameqg and the Lorentz-connectionGa

! where the Lie dual
of the connection has been used for a more condensed
tion. Then the two Bianchi identities of Riemann-Cartan g
ometry can be rewritten as

DTa[~21!shab`Rb
! , ~C1!

DRa
![0. ~C2!

The corresponding Chern-Simons three-forms@48# of gauge
type C5tr$A`F% are the translational Chern-Simons term

CTª
1

2,2 qa`Ta52
~21!s

,2 ha`Ka
! ~C3!

as well as the Lorentz-rotational one involving the curvat

CLª~21!sG!a`Ra
!2

1

3!
habgG!a`G!b`G!g. ~C4!

Via the variational derivatives

dCT

dqa 5
1

,2
Ta and

dCT

dG!a5
~21!s

,2 ha ~C5!

as well as

dCL

dqa50 and
dCL

dG!a5~21!s2Ra
! , ~C6!

these three-forms are uniquely related to the torsionTa , the
curvatureRa

! , and the cosmological termha , respectively,
cf. @49#.

In 3D with torsion, there exists another mixed topologic
term

CTLª
1

, S Ga
!`Ta2

~21!s

2
habgG!a`G!b`qgD .

~C7!
10402
-

ta-
-

e

l

Its variations lead to

dCTL

dqa 5
1

,
Ra

! and
dCTL

dG!a5
1

,
Ta . ~C8!

APPENDIX D: DJT MODEL BY ENFORCING VANISHING
TORSION

In order to extract the Riemannian content of our top
logical model, one cannot simply put torsion to zero, beca
Dqa50 is adynamical constraint. Rather, we follow Refs.
@13,6# and supplement our Lagrangian~3.1! with the con-
straint of vanishing torsion by means of a Lagrange mu
plier

VDJT5V`1la`Ta. ~D1!

By varying it with respect to the independent variablesqa,
Ga

! , the additional termsDla and 2(,/2)habgq [b`lg]

arise, respectively, in the field equations~3.3! and~3.4!. The
variation with respect to the Lagrange multiplier one-for
la provides the constraintTa50 of vanishing torsion.

In order to resolve forla , we employ the algebraic iden
tity ~A.1.26! of Ref. @9#. Then the first field equation reads

2
uTL

,
Ra

$%!22~21!suL* Ca

5Sa12D $%~ebctab2 1
4 qaegcedctgd!. ~D2!

The one-form

Cl
ªel

a* @D $ %~ebcR$ %ab2 1
4 qaegcedcRgd

$ % !#5Ck
ldxk

~D3!

is associated with the symmetric Cotton tensorCkl5Clk.
Therefore, the vacuum field equation~D2! is for uTL521
identical to that of the topological gauge model of grav
considered by Deseret al. @2#. Since the Cotton tensor van
ishes for Eq.~4.4!, the field equations~D2! are trivially sat-
isfied.

Thus the constraint of vanishing torsion transforms
original system~3.3! and~3.4! of first order field equations in
the variables (qa, Ga

!) into a third order one with respect t
the componentsgi j of the metric. The Cotton tensor is me
diating on the gravitational field side of Eq.~D2!, between
the canonical and the Belinfante-Rosenfeld symmetri
energy-momentum current of matter, cf.@50,51#.
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