PHYSICAL REVIEW D 68, 104026 (2003

Rotating black hole solution in a generalized topological 3D gravity with torsion
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A first orderversion of topological massive gravity is achieved by liberatingréaslationalgauge degrees
of freedom. In three dimensions, our Lagrangian consists of Chern-Si@®sterms for curvature and
torsion inducing an effective cosmological constant dynamically, whereas a “mixed” CS term is substituting
for the topological related Einstein-Cartan action. Anti—de Sitter and rotating black hole configurations are
exact vacuum solutions. They also apply to a large class of Yang-Mills-type generalizations including “exotic”
terms exclusively permitted in 3D. The reason for this can be partially traced back to a new strordyfaiégk
of the translational and rotational dynamical degrees of freedom.
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[. INTRODUCTION with the de Donder condition for the triads. As shown in Sec.
IIIA, the three propagating vacuum modes are massive ex-
Since the first three-dimensional model of Staruszkiewiczxitations with quadratic mass roots, in contradistinction to
[1], the 3D topological model of gravity of Deser, Jackiw, the problematic cubic eigenvalue equation of the DJT model
and Templeto{DJT) [2—5] has aroused quite a lot of theo- with explicit mass ternj16]. The known anti—de Sitter and
retical interest. In order to get a nontrivial vacuum theory,rotating black hole solution of the 3D Einstein equations
DJT added the Chern-Simo€S) term for the Riemannian With effective cosmological constant are “prolongated” in
curvature to the 3D Hilbert-Einstein Lagrangian, regarded a$ec. IV to our purely topological model simply by deforming
the high-temperature limiffor Euclidean signatujeor di-  the Riemannian connection to the one with constant axial
mensional reduction of the four-dimensional Hilbert-Einsteintorsion.
Lagrangian. The topological term is supposed to come from To what extent can these exact solutions “probe” a more
the # vacuum of four-dimensional physics. The nice, intrin- general dynamics? In Sec. V, an attempt is made to solve the
sic feature of the DJT model is that the CS term induces general 3D Poincargéeld equations by auality rotation of
mass for the “graviton” without breaking infinitesimal gauge the three rotational field momenta to those corresponding to
invariance or invoking the Higgs mechanism. The discovenjthe three translations. Although a complete integrabjlity]
of anti—de Sitte(AdS) [6] and black hole solutionf7] has ~ as in 2D cannot be expected here, in RC spidicees with
added further attraction to 3D gravitational models as aonstant axial torsion the field momenta exhibit an intriguing
“laboratory” to study geometric, dynamical, and statistical S (strong/weak duality with respect to the contortional cou-
propertieq 8]. pling constant. Encouraged by this new finding, specific
From a gauge theoretical point of view, however, it ap-Yang-Mills-type extensions of our topological model are
pears much more natural to formulate such a dimensionallgonsidered in Sec. VI. It is a new and special feature of 3D
reduced gravitational theory in a Riemann-Caifd) space that a cubic term in the torsion and a mixed torsion/curvature
(time) with torsion [9] and thereby to go over to what is term are permitted as rathexoticthree-forms. Nevertheless,
conventionally called dirst order formalism This has suc- the previous prolongation of the AdS and black hole configu-
cessfully been applied to simple supergravity, [df0,11], rations to the solutions with constant axial torsion apply also
where torsion enters as an auxiliary field simplifying the lo-to the Yang-Mills case, provided the contortional constant
cal supersymmetric transformatiofi$2]. In order to take satisfies a quartic algebraic equation. Some generalizations
proper care of the translational aspect, we construct a Poirand problems are briefly discussed in Sec. VII.
caregauge model in 3D, cf. Ref$13,6,14,9. Our notation and the “burden” of useful geometrical
Since the Einstein-CartaiEC) action is nondynamical in identities are collected in the first three appendices, whereas
vacuum, as reiterated in Sec. I, we construct in Sec. lll dn Appendix D the DJT model isecoveredfrom our first
topological model based on the translatioft8], rotational, —order topological model by constraining, via a Lagrange
and a new “mixed” Chern-Simons term. It is an intrinsic multiplier, the torsion to vanish.
feature of our model that a cosmological terminsluced
dynamically The vacuum field equations are similar to those
of Ref. [13] inasmuch as they provide the constrictions of
constantaxial torsion and RC curvature. These turn outto be The celebrated Poincargroup P(n,R):=R"&SO(1n
equivalent to a covariant Klein-Gordon equation together—1) of particle physics im dimensions is the semidirect
product of thetranslation group R" and theLorentz group
SO(1n—1). It is particular for 3D, i.e.,n=3, that the

1. NONDYNAMICAL EINSTEIN THEORY IN 3D

*Email address: ekke@xanum.uam.mx Poincaregroup consists of three translation and three rota-
"Permanent address: Departamento dsick) Facultad de Cien- tion generators, which invites some dynamical intertwining
cias, Universidad del Zulia, Venezuela. of the basic variables, the anholonomic cofram&, and
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the connection one-formI'“?, or *“spin” connection  stituted it by the new mixed Chern-Simons-type te@¥ ,
F;::%naﬁyﬂ”, when written in terms of the Lie dual, cf. in order to focus first on a completely topological theory.

Appendices A and B for details. Let us exclude a singular case and assume that
As is well known, in 3D the Einstein-Cartan Lagrangian =:2(0$L+ 6+6,)#0. Then, combining the vacuum field
three-form equations(3.4) and (3.3 yields for the torsion and the RC
curvature the constrictions

1 1 . (F1)® .
Vee= = 5 R\ nug=— 7 09/ \Ry= =~ n"/\*R, 2k

20 ¢V “ To= e, R=2, (35

(2'1) (23 € a (o4 €2 a

where ¢ denotes a fundamental length aR{] the Lie dual where the contortional constant is= (67 67)/2A and
(B4) of the Riemann-Cartan curvature, does not provide up= — 0$/A. Sincena=(1/2)77aﬂyﬂﬁ/\t}7, both torsion and
with a model with dynamical degrees of freedom. Its varia-curvature carry in 3D onlpneindependent irreducible com-
tion with respect to the cofram@“ and the connectiofi’, ~ ponent, i.e., theaxial torsion and thescalar curvature, re-

yields the field equations spectively. Thus, in vacuum, we end up with a space of con-
stant RC curvature with a curvature radius of the order of the

Ri=¢3,, T.=(—1)%2¢7%, (2.2 fundamental lengtlf. Let us remark that th@.orentz) ro-
tational CS is of secondary importance here, it is only needed

where S = OL matd 69 and TZ==%77aﬁy Py to reproduce, after imposing the dynamical constr&irit®

=((—1)%2) 8L o/ ST* are the matter current two-forms of =0 of vanishing torsion, the Cotton tensor of the DJT
energy-momentum and spin, respectively. Thusaguump ~ Model, cf. Appendix D or Sec. 8 of Reff6]. Crucial, how-
the RC curvature and the torsidit:=D9¢ are zero and Eq. €Vel IS the tra_nslatlonal CS action providing also a nontrivial
(2.2) becomes trivial. planar dynamic$19].

A. Massive gravitons
IIl. CHERN-SIMONS GRAVITY IN 3D . .
In order to exhibit the propagating degrees of freedom of

In 3D the gravitational Lagrangian has to be a three-formour model, we form the gauge-covariant d’Alembertian of
Although the translational(Lorentzy rotational, and the the coframed“. In general, for a form in n dimensions
mixed CS three-forms of our Appendix C are not all gaugel20] this operator is given by[J:=(—1)P""[*D*D
invariant, they are viable candidates. Allowing for arbitrary +(—1)"D*D*]. By employing the relatiory,=* 9, for
“vacuum angles”dr, 6, , andéy_, the most general purely the 7 basis, iteratively the algebraic relatiof3.5) for the
topological Lagrangian in 3D then takes the form torsion and RC curvature, as well as the first Bianchi identity

(C1), we find for the 3D coframe
Voc: 0TCT+ HLCL-F GTLCTL . (31)
[O+(—1)Sm?]9%=0 (3.6
This topological 3D model partially depends on thansla-
tional CS termCy, cf. [15], which is of decisive importance
in order not to fall back to a trivial model. The new mixed D* 99=0 (3.7)
topological termC+_ is simulating to some extent Einstein’s
theory in three dimensions. Following Witt¢h8], this can ~ where m=2«/{= 61 61/A( is the mass of the graviton,
be traced back to the partially topological nature of the EQwhich isreal for Lorentzian signature=1.

and

Lagrangian in 3D: The Klein-Gordon(KG)-type equation(3.6) and the sub-
sidiary condition(3.7) for the coframe are botbxactconse-
F*NARL=d(I'2/N\I*) +€Cq (3.2 quences of our field equations. This is completely analogous

_ _ _ to the three-dimensional topological gauge model for the
Varying Eq.(3.1) with respect tog“ andI"™*“ and employing  spin-1 (or covectoy field A=A;dx' in which both the mass
the results of Appendix C yield the topological field equa-shell and the Lorentz conditiod* A=0 are not imposed

tions separately, but rather follow from the underlying gauge field
) equation[21]. The subsidiary conditiol3.7) corresponds to
_ w_ T the gauge-covariant Hilbert—de Donder tmnsversality
IR~ Ta a 33 conditionfor the coframe.

Therefore, in the count of the vacuum degrees of freedom
and of our topological gauge model with torsion, nowhere a lin-
earization procedurf22] is needed: In 3D, the cofram@&®
0 . R :=e*dx has 3x3=9 components. In view of the transfor-
OnTa=5pMa= OLER=ET,. (34 mation formulad’ = A g%(x)9#, we have to subtract three
gauge degrees of freedom due to local rotatians(x) or
These field equations are of first order, similar to those ofSO(s,3— s)-gauge transformations. The transversality condi-
Mielke and Baeklef13]. Here, however, we have dismissed tion (3.7), for vacuum, amounts to three further constraints
the traditional Einstein-Hilbert or EC Lagrangian, and sub-such that three propagating vacuum modes remain. They
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consist of the two spin-2 degrees of freedom ofmassive From Eq.(4.3), by appropriate identifications, the vacuum
(non-ghost graviton and one massive scalar mode, exactlysolution
as in the DJT mode[2,3]. For A.#0, however, these

modes “live,” due to Eq.(4.2), on a background ofonstant ds’=—N*(r)dt*+N"2(r)dr?+r’[d$+N?(r)dt]>.
Riemanniancurvature, cf.[23]. Another virtue of our first 4.4
order CS formulation is the quadratic mass roots in the ef- ; :
fective KG equation(3.6) for the coframe. This is in contra- ci/r;r?ebobtame@l?,za, where the lapse squared and shift are
distinction to the third order DJT model with explicit Pauli- g y

Fierz mass ternj16], where the cubic eigenvalue equation 72 J

for the mass spectrum signals difficulties in the physical in- NAr)=—M—Agr®+—, N%r)=——, (4.5
terpretation of complex roots or ghosts. 4r? 2r?

The Klein-Gordon-type reformulation of our topological ) o )
model will likely facilitate its BRST quantization, cf24], respectively. Observe that the shift is proportional to the an-

: . _ : : 5
without encountering a conformal “anomaly” in the renor- gulag momentumJ of the solution, which allows for]
malization proceduré25). <M~ to interpret this configuration asratating black hole

with massM, cf. [29]. Obviously, forM=—1 andJ=0 it
reduces to Eq4.3).
We have checked bgxcaLc that the rotating black hole
solution(4.4) has constant Riemannian curvat(e?) and is
In order to study vacuum solutions, let us consider thetherefore nowhere singular. Then the construction of con-
decompositionl“;zrg*— K* of the connection into Rie- figurations with constant axial torsion and RC curvat(#:&)
mannian and contortional pieces. This implies the identity rest essentially on a prolongatidh}* —T%=TU*—K* of
the Riemannian to a RC connection and an inversion of Eq.
RL=RU* = DK+ 5 7,5, K*F/\K*? (4.1)  (4.2), cf. [30]. Provided the effective cosmological constant
Aei is related tox and p via (4.2), the black hole configu-
for the RC curvature. Then from the relatiéti,= —3*T,  ration (4.4) with (4.5) is also an exact solution of our topo-
=—(—1)%«/€) 9, for the contortion and the definitioR® logical gauge mode(3.1).
=D 9*, it can be inferred that the Riemannian pRf}* of

IV. PROLONGATION OF BLACK HOLE
AND ANTI —de SITTER SOLUTIONS

the curvature is also constant: V. SDUALITY IN 3D
RU*= — A4, The generalform of the Poincareyauge field equations
(5.8.10 and (5.8.1) of Ref. [9] follows from Noether’s
A= —{p—[1+2(—1)5]x%}/ €2 4.2) theorem. In 3D they can be converted into

In principle, we can have a nonzero effective cosmologi- DH,-E,=%, (5.9
cal constant even fok=0, i.e., in a purely Riemannian d
spacetime. Alternatively, fop=0, i.e., in the limit of van- an
|sh|r_19 RC curvature, thef‘e exists a pontrlwal parallelizing DH*—1 naﬁ/\H'B: ™, (5.2
torsion, resembling the “squashed” seven-sphere construc-
tion of Englertet al. [26] in higher dimensions. where the one-forms

From EXCALC/REDUCE calculations[27], we know that
A= 03[(9+2(—1)%) 03, + 8616, 1/(2AL)? is the effec- IV (—1)% oV
tive cosmological constant, which is induced by the topologi- Hyi=— ﬁ’ W= 2 Jpa (5.9

cal terms in our gauge Lagrangid8.1). Inasmuch as the
three.-dlmensm.nal image” of a cosmolpg|cal term of.e|ther are the translational and rotational field momenta, respec-
sign is alreadyinducedby the Chern-Simons terms in the tively, and
Lagrangian, one can disregard a “bare” cosmological term '
and still be able to simulate cosmological models in 3D. In
our topological model, however, the translational CS term g_.=
proportional tofy is indispensable for obtaining a nontrivial Ao
result. (5.9
In 3D with Lorentzian signatures=1, the three-
dimensional Einstein theor§2.1) with vanishing torsion and
effective cosmological termh . has the AdS metric

= e, V+(e,JTH)/\H g+ 2(— 1)%(e,JR*P)/\H},

is the canonical energy-momentum two-form of the gravita-
tional gauge fields.

In four dimensions, the symmetry of duality rotations has

ds2= — (1= Aoyt 2)dt2+ (1— A ggr2) " Ldr2+r2d p? a long history. Since 1925 it was known to Rain[@i] and

(4.3 developed further in the contegeometrodynamicby Mis-

ner and Wheelef32], cf. [20]. More recently, Motonen and

as an exact solution. For the topological gauge model of RefOlive [33,34] noted that then also a duality of therong-

[13], this was first recognized by Baeklet al. [6]. weak coupling regime of gauge fields is generated, the so-
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called S duality [For Chern-Simongsupej gravity, some following Yang-Mills-type three-forms:
aspects have also been discussed in R8f536].]

Consequently, let us assume here that the 3D field mo- A a N N
menta one-forms are duality rotated to each other via Vym=xVec— EKa ﬂTa/\ To—5R “A\*R,—CT®
* __ ﬂa A
Ho=CHat 7, 6.9 MR+ 31 Dy TAFTIATY, 6.1

as is the case for the special models considered before, cf. . e . .
Eq. (12.2 of Ref. [6]. (For convenience, two possible arbi- or the corresponding decomposition in irreducible pieces.

trary constants are absorbed in the still to be sought-for fieIJhe constang, weighing the EC Lagrangian, as well as,

momenta). Inserting this ansatz into E¢5.2) yields the fol- C'_A' and_AT are dimensionlesscoupling constants. The
lowing condition for the translational field momenta: mixed torsion-curvature term as well as the cubic term in the

dual torsion(or contortion, see the Appendigo not arise in

N 1 . four dimensions, they are pertinent to 3D. However, these
7 TtEa 35 Nap/\HP=1,—€3,. (5.6 newexaotic terms seem to be devoid of any topological inter-
pretation.
After multiplying (5.6) by 9 and using the algebraic iden-  Using * TEA* TAA*T7=— (= 1)°T*/\* (* TE/\*T?) for
tity 9°/\7,5=—2* 34, we get the explicit condition the cubic term, they provide the following field momenta:
" a . At
"Ho=7 HUEAZ) 7. (5.7 Ho= 7 Tat C R (= 1)° 5 70, (CTPA*TY),
(6.2
This converts Eq(5.1) into a first order field equation for the
translational momenta, but, due to the intertwining ansatz . (—D[x .
(5.5), coupled to the material spin, Ho=— | g Pat C" Tat bR, (6.3
Ta
(DH,+ 7 —*H,=1,. (5.8 and
A complete integrability17], as in the case of 2D Poin- _ XA
g ) ; E. R, Na (6.9
care gauge models, is not available here. Nevertheless, a 4 ¢3

vacuum solution of Eq(5.8) is
Let us now demonstrate that the black hole solutibd)
2K 2k with constant axial torsion and RC curvatu@5) is also a
Ha:mﬂa < TaZT Nas (59 solution of this Yang-Mills system, albeit new algebraic con-
straints on the coupling constants.

provided the RC spaces have constant axial torsion, similarly Inserting ansat¢3.5) into Egs.(6.2), (6.3), and(6.4) pro-

as in the case of Eq3.5) of CS gravity. vides the simplification
Due to Eq.(5.5), we obtain
1
1 ¢ Haz(—l)sﬁ[Zafﬁ— cp+(—1)%4Ak*]d,, (6.5
Ha:mﬁa:ﬂHa’ (5.1@
yvhich. can be viewgd as a kind S(strong/weak duality H;Zi[(—l)s)(-i—ZCK-f—bp]ﬁa, (6.6)
inverting the coupling constank— 1/x. Here in 3D the 2¢

novel feature that this occurs for the intertwining mapping
(5.10 between the translational/rotational pair of field mo- and
menta arises. In particular, in the limit—0 of weak axial
torsion coupling, the translational field momeriga9 will

vanish, whereas the rotational momehtg= 9,/¢ will be-

come unity, similarly as in the EC action.

1
Ea:_ﬁ(xp-"_A)ﬂa' (67)

EmployingT,=D, and again Eq(3.5), the general 3D
VI. NEW YANG-MILLS TERMS IN 3D GRAVITY gauge field equation&.1) and(5.2) yield

For a concrete generalization of our topological modelgaz —{(—1)%2k[2aK+Cp+(—1)%4A k2] + xp+ Al 7
(3.1), we consider here possible additional terms which may ~— * “
enter the 3D gravitational Lagrangian, for instance, as (6.8
counter terms after renormalization, [37]. They are the EC
Lagrangian, a bare cosmological tethy, as well as the and
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0275 =(—1){ k[ x+(—1)%2ck+(—1)%bp]+2ak+cp factor 2 problems in the definition of the conserved quanti-
tiesM andJ, further insights in their group-theoretical inter-
+(—1)°4A 162} 7, . (6.9  pretation via AdS Casimir operatof46,47 in 3D are desir-

able.
In vacuum, we obtain a system of algebraic equations, cubic

in an_d I_inea_lr inp, which can be sol_ved by stqndard meth- ACKNOWLEDGMENTS
ods. Eliminatingp from Eq. (6.9) provides us with
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unlessk=—(—1)%/b, which, in turn, requires ¥+ 2a)b University .of the Zulia, Venezuela, for a grant to carry out
these studies.

=2c(c+2A5) as constraint on the coupling constants. Sub-
stituting Eq.(6.10 into the vacuum equatiof®.8) yields the
quartic algebraic equation

APPENDIX A: THE DUAL BASIS FOR EXTERIOR FORMS
IN 3D

_ S _ S 2 3
[brt(=1)%Cl[A+(=1)4ar"+8Arx] The symbol/\ denotes the exterior product of forms, the

=(—1)Sk[x+(—1)2ck][x+2a+(—1)° symbol | the interior product of a vector with a form, arfd
the Hodge stafor left dua) operator, which maps p-form
X2k(c+2A7)]. (6.1)  into a (3-p)-form. It has the property that** @

: . =(—1)PC=P)*sp(P) wherep is the degree of the forrd
Let us concentrate again on a model for which the bare COS5nd's the signature of the metric.

mological constant is zero, i.e\,=0, and the effective con- The volume three-form is defined by

stant gets “induced” dynamically. Then the quartic equation

factorizes withk=0 as one solution. Since this also implies 1

p=0, we would end up with the trivial case of flat space 7=37 Napy 3 NIPNG, (A1)
(time). ForbA+# 0, the cubic equation remains,

where 7,4,:=|detg,,|€,z, and €.z, is the Levi-Civita

B\3 f ‘
3 2 _ - - _ symbol. Together withy, the following forms span aual
(B CrtA=| ot 3 P K+3 +a=0, basisfor the algebra of arbitrarp forms in 3D:
(6.12
Nai=€a) =" V4,
where B=(ab—c?)/2bAt, C=x(c+A7)/2bAt, A=x(x
+2a)/8bAt, p=C—B?3=[3y(c+At)—ab+c?]/6bAT, Nap=€plM.=" (9, \Vp),
and gq=A—BC/3+2B%?27. The formula of Cardan$38]
provides the real solution Napy =€yl Map - (A2)
B (q 92 p3> s (q 92 ps) 13 We will call these forms they basis of the three-dimensional
Kk=——+|— ~ 4 Y T spacétime); for more details see the Appendix of RES).
3 2 4 27 2 4 27
(6.13 APPENDIX B: LIE DUAL IN 3D
for the contortional constant, provided+ 4p%/27=0. It is peculiar for 3D that the Poincargroup consists of
three translation and three rotation generators. Then the Lie
VII. DISCUSSION dual, that is, a duality operation with respect to the

Lie-algebra indices, is mapping a vector into a bivector and

As demonstrated explicitly, our purely CS versi@yl) of  yjce versa; in particular for a bivector-valuep-form
3D topological gravity has the same dynamical degrees ofy2f— _ 82 the Lie dual is defined by

freedom as the DJT model and admits rotating black hole
and AdS solutions. These exact configurations with axial tor- Poi=5ap, P & PP=(— 1)57;"57¢;. (B1)
sion solve also our Yang-Mills extensions in 3D, albeit some
constraints on the weights or coupling constants of the indiln particular, we define
vidual torsion and/or curvature terms in Lagrangi@nl). . N
However, there the Cauchy formulation as well as the num- To=3 ap NP, KGi=5 1,0, KPY=—5*T,, (B2)
ber of no-ghost dynamical degrees of freedom are not know
and may again depend on the choice of the coupling co
stant.

It would be interesting to implement the generalized so- Te=d 99— (—1)5p*P AT} (B3)
lutions[39-43 of the DJT model in our topological CS with
torsion, or even with nonmetricity44,45. In order to avoid and

guch that Cartan’s structure equations for torsion and curva-
Nure get converted in
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L1 s L (=1)® B A s Its variations lead to
Ra==§7la3yR 7=d1“a+T77aﬁy1“ AI'*7. (B4) son 1 -
L * ez
50&—2& and Sr+a €Ta. (CY

APPENDIX C: CHERN-SIMONS TERMS
Gauging the Poincargroup, translations, anfLorent2 APPENDIX D: DJT MODEL BY ENFORCING VANISHING

rotations gives rise two types of gauge potentials: the co- TORSION
frame &7 and the Lorentz-connectid, where the Lie dual In order to extract the Riemannian content of our topo-

of the connection has been used for a more condensed notggical model, one cannot simply put torsion to zero, because
tion. Then the two Bianchi identities of Riemann-Cartan ge-p 9«=0 is adynamical constraintRather, we follow Refs.

ometry can be rewritten as [13,6] and supplement our LagrangidB.1) with the con-
N straint of vanishing torsion by means of a Lagrange multi-
DT*=(~1)7"fAR}, €D iier g Y grang
DR;EO (CZ) VDJTZVOO'F)\Q,/\TQ. (Dl)

The corresponding Chern-Simons three-fof#8] of gauge By varying it with respect to the independent variabt¥s
type C=tr{A/\F} are the translational Chern-Simons term T}, the additional termDX, and —(€/2)7,z, 9P AN
< arise, respectively, in the field equatiof®3) and(3.4). The
CT'——lzﬁa/\Ta_ (-1 anK* (C3) variatior_1 with respect to the Lagrang_e r_nuItipIie_r one-form
N\, provides the constraint“=0 of vanishing torsion.

21 T T
i _ . In order to resolve foi ,, we employ the algebraic iden-
as well as the Lorentz-rotational one involving the curvaturetity (A.1.26) of Ref.[9]. Then the first field equation reads

1
CLi=(= )T AR} =51 7, T ATEAT . (CA) _ %R{a}*_ 2(—1)%0rC,
Via the variational derivatives =3 ,+2DV(eP|7,5— 1 0,7[€%T,0). (D2)
5Cr 1 5Cr (—1)8 The one-form
59° gzle A Gre= gz 7. (€Y lee *ID{ (e, [RUA_ L siRU gk
¢ Cl=e'5[Dli(eg]R!*F— 2 9e7|e’|R}5)]=C\/dX
(D3)
as well as
is associated with the symmetric Cotton ten&f=C'k.
6C, oCL I Therefore, the vacuum field equati¢b2) is for 6 =—1
5,3a:0 and W:(_l) 2R, (C6) identical to that of the topological gauge model of gravity

considered by Deseat al. [2]. Since the Cotton tensor van-
these three-forms are uniquely related to the tor3ignthe  ishes for Eq(4.4), the field equationgD2) are trivially sat-

curvatureR’,, and the cosmological term,,, respectively, isfied.
cf. [49]. Thus the constraint of vanishing torsion transforms the
In 3D with torsion, there exists another mixed topologicaloriginal system(3.3) and(3.4) of first order field equations in
term the variables ¢, T'}) into a third order one with respect to
1 (— 1) the components;; of the metric. The Cotton tensor is me-
- *ANTa_ N @ A ok diating on the gravitational field side of E¢D2), between
Cr=g FaAT 5 Mgyl AL*PAD7 ). the canonical and the Belinfante-Rosenfeld symmetrized
(C7) energy-momentum current of matter, £50,51].
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