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General relativistic interaction of massless fields in cylindrical waves
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In this paper the problem of finding exact solutions of the combined system of the Einstein-Maxwell-Weyl
equations for cylindrical waves is reduced to the solution of two complete singular integral equations in the
complex plane of the auxiliary analytical parameter. In the case of the nonsingular symmetry axis the problem
further simplifies and requires solving the only integral equation, the expressions for the Ernst potentials on the
symmetry axis then defining the group transformations of internal symmetries during the solution generation
process. A large class of exact solutions for neutrino electrovacuum is obtained, and the Cauchy problem
related to some particular initial data is considered.
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I. INTRODUCTION

It is well known that the concept of the neutrino as
highly penetrating uncharged particle of spin 1/2 was int
duced in order to satisfy the energy conservation laws du
the b decay@1,2#. In the experiments performed up to no
neutrinos have manifested themselves as the left-hand p
ized particles and antineutrinos as the right-hand polari
particles. One may expect a strong neutrino radiation
some astrophysical situations, for instance, during the n
tronization of matter inside a supercompressed neutron
or in young shells of supernovas where the accelerated
tons produce, while colliding, cosmic pion showers, and o
neutrinos can escape through the dense shell.

In view of the clear asymmetry of matter and antimatter
the Universe, one can expect that the flows of neutrinos p
sessing a certain helicity may have observational manife
tions. When the electromagnetic and gravitational wa
pass through a region of strong coherent neutrino radiatio
a given helicity, they may change their polarization. Th
effect is described in Ref.@3#.

For the description of the neutrino, Lee, Yang, Land
and Salam proposed in 1957 to use the Weyl equations o
two-component massless spinor field@4–6#. The energy-
momentum tensor of a neutrino field does not have the p
erty of energodominance, similar to the case of a class
electron described by the Dirac equations. That is why
interaction of a spinor field not subjected to the procedure
second quantization with the classical gravitational and e
tromagnetic fields has several peculiar features. For exam
in the framework of general relativity there does not exist
such fields the effect of focusing the convergent normal c
gruence of isotropic geodesics. The gravitational fields g
erated by neutrinos of right-hand and left-hand helicity dif
from each other.

The collisions of neutrino plane waves of some particu
type in general relativity were studied by Griffiths@7#. In his
monograph he gave a thorough review of the most inter
ing results regarding collisions of plane gravitational a
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electromagnetic waves. Henneaux@8# studied applications of
the Weyl equations to neutrinos in the cosmological conte
An exact solution for cylindrical gravitational waves was o
tained by Piran, Safier, and Katz@9#.

In the present paper an effort is made to maximally si
plify the mathematical investigation of the full Einstein
Maxwell-Weyl system in the case of cylindrical waves. W
succeeded in reducing this problem to a unique linear in
gral equation with a single kernel, the solutions of whi
permit us to calculate the metric coefficients and compone
of the spinor and electromagnetic fields via quadratures
the absence of a neutrino field the equation obtained red
to the singular integral equation derived by one of the
thors two decades ago for the case of the electrovacuum@10#.
We obtain a large family of exact solutions for the neutri
electrovacuum using the data on the symmetry axis, and
some illustrative examples for which the correspond
Cauchy problems are considered.

It is worth mentioning that a theory of singular equatio
similar to the one considered in the present paper was de
oped earlier mainly in applications to aerodynamics a
theory of elasticity@11–13#. We mention also the classica
Keldysh-Sedov result for boundary problems with seve
cuts @14#, and that a detailed discussion of the theory
singular equations can be found in the book@15#.

II. SIMPLIFICATION OF A CLOSED SYSTEM
FOR FREE MASSLESS FIELDS

IN THE CASE OF CYLINDRICAL WAVES

Exact solutions of the combined system of Einste
Maxwell-Weyl equations admitting a group of motions wi
two commuting Killing vectors are of interest from the poi
of view of applications which include cylindrical and collid
ing waves, as well as stationary fields with axial symme
On the other hand, the discovery of the integrability of th
system @16,3# provides the possibility of its far-reachin
mathematical analysis. In the case of the axisymmetric e
trovacuum problem, the first fundamental results for the l
©2003 The American Physical Society22-1
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ear matrix formulation of the field equations were obtain
by Kinnersley@17#. The idea of the equivalence of all inte
grable systems to the boundary Riemann–Hilbert prob
@18# was realized, in application to the electrovacuum, in
pioneering papers by Hauser and Ernst@19#, who were able
in particular to prove the Geroch conjecture for the elect
vacuum fields @20#. In contradistinction to the matrix
Riemann-Hilbert problem, in the book@10# a single linear
integral equation for the electrovacuum was obtained wh
permitted construction of the solutions of the Ernst equati
@21# corresponding to given potentials on the symmetry a
both in the stationary axisymmetric case@22# and in the case
of cylindrical waves@10#. This equation also made it possib
to construct solutions involving analytically extended para
eter sets, e.g., the extended multisoliton solutions@23#, or
new exact solutions of astrophysical interest@24#. A solution
describing the exterior field of a magnetized, rotating, m
sive deformed source@25# was used in@26# for the analysis
of the disk accretion onto a neutron star within the fram
work of general relativity.

A detailed formulation of the Einstein-Maxwell-Weyl sys
tem can be found in the books@3,10#. Here we shall restrict
ourselves to giving only the formulas essential for achiev
our main goal—the derivation of the new integral equatio

In the case of cylindrical waves, the cyclical coordina
~the ones on the orbits of Killing vectors! are the anglew and
coordinatez along the symmetry axis. The line element c
then be written in the form

ds252u2dudv1gAB~dxA1gu
Adu1gv

Adv !

3~dxB1gu
Bdu1gv

Bdv !, ~1!

where the unknown functionsu, gAB , gu
A , gv

A , gu
B , gv

B de-
pend only on the coordinatesu andv. The indicesA,B take
the values 1,2 and stand for the cyclical coordinatesw,z. The
coordinatesu5t1r and v5t2r have the meaning of the
advanced and retarded times, respectively. The metric~1!
admits a liberty in the choice of the coordinatesu,v: u
→U(u), v→V(v), and also in the choice of cyclical coo
dinatesxA→xA1 f A(u,v). The energy-momentum tensor o
spinor fields violates the Frobenius conditions of the ex
tence of two-dimensional surfaces orthorgonal to the or
of Killing vectors. Therefore, in the presence of massl
spinor fields the metric~1! cannot be reduced to the Papap
trou form with only one nondiagonal term. Henceforth t
system of units is used in which the speed of light in vacu
and the gravitational constant are used as scale units.

It follows from Einstein’s equations thatAugABu as a func-
tion of u,v satisfies the d’Alambert equation. In what fo
lows we shall setAugABu5r, thus fixing the choice of the
coordinatesu,v.1

The neutrino fields are described by the two-compon
spinors (f,c) and satisfy the Weyl equations. An analysis

1In the case of colliding plane waves,AugABu should be set equa
to t @7#.
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the respective components of the Einstein and Weyl eq
tions yields

ff* 5
f1~u!

8pru
, cc* 5

f2~v !

8pru
, ~2!

wheref1(u) andf2(v) are arbitrary functions correspond
ing to the incident and expanding~from the axis! cylindrical
neutrino waves.

The electromagnetic field is described by a four-poten
with the nonzero componentsAu (u51,2).

Following Kinnersley@17#, we shall be raising and low
ering indices by means of the Levi-Civita` symbols«AB and
«AB : «115«2250, «1252«2151, «AB5(«AB)21. Let gAB
[ f AB . Then from the Maxwell equations it follows that

~r21f A
CAC,u! ,v1~r21f A

CAC,v! ,u50. ~3!

Hence, there exist potentialsBA such that

r21f A
CAC,u5BA,u , r21f A

CAC,v52BA,v . ~4!

Denote the complex combinationsAC1 iBC as FC and
define the gradients¹ and ¹̃ as (]/]u,]/]v), (]/]u,
2]/]v), respectively. We obtain from Eq.~4!

r21f A
C¹AC5¹̃BA ⇒ r¹FA5 i f A

C¹̃FC . ~5!

Similarly, from Einstein’s equations in projections on
the orbits of Killing vectors follows the existence of th
complex potentialsHA

B :

¹HA
B5¹~ f A

B1WdA
B!1FB* ¹FA

1
i

r
f A

C
„¹̃~ f C

B1WdC
B!1FB* ¹̃FC…, ~6!

whereW[ * f1(u)du2 * f2(v)dv.
From Eq.~6! we get

r¹HA
B5 i f A

C¹̃HC
B . ~7!

The potentialsHA
B , FB in the absence of neutrino field

were introduced by Kinnersley@17#, together with the poten-
tials LA andK:

¹LB52FC* ¹HC
B , ¹K52FC* ¹FC . ~8!

Following Hauser and Ernst@19#, let us introduce the 3
33 matrix Ha

b (a,b51,2,3) via the definitions

Ha
b[HA

B ~a5A,b5B!, Ha
35FA ~a5A!,

H3
b5LB ~b5B!, H3

35K. ~9!

The matrixH5(Ha
b) introduced in this way, as follows

from Eqs.~5!–~7!, satisfies the matrix equation

2i ~u2v !
]2H

]u]v
5

]H

]u

]H

]v
2

]H

]v
]H

]u
. ~10!
2-2
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By construction, the trace ofH is equal to

trH[Ha
a52W2 i ~u1v !. ~11!

This expression follows from Eqs.~6!,~7! in which one has
to put B5A and take into account thatf A

A5 f AB«BA50.
The derivatives ofH with respect to the coordinatesu,v,

as can be readily seen from Eqs.~5!,~7!, satisfy the equations

~ I 2M1!
]H

]u
50, ~ I 2M2!

]H

]v
50, ~12!

the matricesM1 andM2 being defined by the formulas

M15S i f A
C 0

2FC* 0D , M25S 2 i f A
C 0

2FC* 0D . ~13!

The componentsH1
2 andH1

3 of the matrixH are related to
the generalized Ernst potentialsE,F as H1

252E, H1
35F,

and they satisfy the following self-consistent system of t
differential equations first reported in@16#:

~ReE2FF* !H ]2

]t2 S E
F D2

1

r

]

]r Fr ]

]r
S E
F D G

1
i

r
F ]W̃

]t

]

]t S E
F D2

]W̃

]r

]

]r
S E
F D G J

5
]

]t S E
F D S ]E

]t
22F*

]F

]t D2
]

]r
S E
F D S ]E

]r
22F*

]F

]r D ,

W̃[ E f1~u!du1 E f2~v !dv. ~14!

The two sides of the vector equation~14! should be equated
by components. We mention that in the characteristic co
dinates (u,v) which can be more advantageous for use
some cases this system assumes the form

2~ReE2FF* !F ]2

]u]v S E
F D2

1

u2v S 1

2
2 i

]W̃

]v D ]

]u S E
F D

1
1

u2v S 1

2
1 i

]W̃

]u
D ]

]v S E
F D G

5
]

]u S E
F D S ]E

]v
22F*

]F

]v D
1

]

]v S E
F D S ]E

]u
22F*

]F

]u D . ~15!

Equations~14! form a closed system for the determinatio
of the potentialsE andF, but for our purposes the formula
tion of the problem in terms of the matrix equation~10! is
more advantageous. This is due to the fact that the ma
formulation ~10! can be written in the form of the zero
curvature condition for the overdetermined matrix syst
10402
r-

ix

first found by Kinnersley@17# and then rewritten in a more
elegant form by Hauser and Ernst@19#:

]F

]u
5

i

2~s2u!

]H

]u
F,

]F

]v
5

i

2~s2v !

]H

]v
F. ~16!

Here the generating matrixF depends on the coordinatesu,v
and on the auxiliary analytical parameters. As follows from
Eq. ~12!, the derivatives ofF with respect tou andv satisfy
the conditions

~ I 2M1!
]F

]u
50, ~ I 2M2!

]F

]v
50. ~17!

In the complex plane ofs, the matrixF has two branching
points:s5u ands5v. It follows from Eq. ~16!, taking into
account Eqs.~11! and~2!, thatuFu[detF satisfies the system
of equations

]

]u
ln uFu5

i

2~s2u!

]

]u
trH,

]

]v
ln uFu5

i

2~s2v !

]

]v
trH,

~18!

whence

uFu5A~s2u0!~s2v0!

~s2u!~s2v !
expS i E

u0

u f1~u!du

s2u

1 i E
v

v0 f2~v !dv
s2v D[

1

l
~19!

(u0 andv0 are the integration constants!.
The functionuFu is single valued in the plane with two

cuts: one fromu0 to u, and the other fromv to v0. When
s→`, F has the asymptoticsF'I 1( i /2s)H, I being the
unit matrix.

The simplest solution of the system~14! is E751, F° 50,
for which the corresponding components of the metricgAB
are g1151, g125W, g225r21W2. In this case, using the
definition ~6! of the potentialHB

A , we obtain the expression

for the nonzero components of the matrixH° :

H° 1
152W2 i ~u1v !, H° 1

2521,

H° 2
15r21W22 iW~u1v !

12i S E f1~u!udu2 E f2~v !vdv D . ~20!

The components of the corresponding generating ma

F° 21 can be found from the overdetermined system~16!, the

result being~cf. the analogous expression forF° 21 in the
book @10#!
2-3
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F° 215S 2
i

2s
Q1

l

2

i

2s
0

2Q1 isl 1 0

0 0 1

D , Q[W2
i

2
~u1v !1 is.

~21!

For integrable systems there exist continuous groups
internal symmetries which transform one solution into a
other. Along the one-parameter subgroup~the orbit! with pa-
rameters the following equation holds@19,10#:

dF~m,s!

ds
5

1

2p i EL

F~n,s!G~n!F21~n,s!dn

n2m
F~m!.

~22!

HereL is the contour bounding the simply connected reg
D in the plane of the analytical parametern. Outside the
regionD, the functionF(n) is supposed to be analytic. Th
matrices$G(n)% form an infinite-parameter algebra and d
pend only on the analytical parametern. All the singularities
of the matrixG(n) lie off the regionD. The integration of
Eq. ~22! along the orbit~the operation of exponentiation o
the algebra! leads to the equation@19,10#

E
L

F~n!esG(n)F° 21~n!dn

n2m
50, mPD. ~23!

It follows from Eq. ~23! that the function

F(n)exp@sG(n)#F°21(n) is analytic outside the regionD. The
generating matrixF(n) corresponds to a new solution int
which the seed solution is transformed by means of a s
along the orbit of the group exp@sG(n)#. We mention that the
result ~23! can also be obtained with the aid of the ‘‘dres
ing’’ method of Zakharov and Shabat@18#.

III. CANONICAL INTEGRAL EQUATIONS OF NEUTRINO
ELECTROVACUUM FOR CYLINDRICAL WAVES

Let us consider now the particular case of Eqs.~16! for
the neutrino electrovacuum wheren[s. By deforming the
closed contourL to two cuts along the real axis, one fromv
to v0 ~unclosed contourL1), and the other fromu0 to u
~unclosed contour L2), we obtain that the matrix

F(s)exp@sG(s)#F°21(s) is continuous on these cuts.
From the papers of Kinnersley@17# and of Hauser and

Ernst@19# one may draw the conclusion that the elements
the infinite-parameter algebra$G(s)% can be represented a
products of an arbitrary Hermitian matrix on the an
Hermitian matrix with nonzero componentsV1252V21
51, V3352 i /4s. The exponent of the matrixG(s) can be
calculated by means of the Lagrange-Sylvester formula,
ting the components~1

2!,~
1
3! to zero, and the component~3

3! to
1. Then we shall obtain the general form of the mat
exp@sG(s)# @10#
10402
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exp@sG~s!#5S a
a~g2 ia* a!

2s

iaa

2s

0 1/a* 0

0 22a* 1

D . ~24!

Here a* ,a* are understood as complex conjugatio
„a(s* )…* ,„a(s* )…* ; moreover,g(s)5„g(s* )…* .

Let us take the solution~19!–~21! as the seed one, and th
expression~24! as the shift along the group of internal sym
metries. Then the conditions of continuity of the matr

F(s)exp@sG(s)#F°21(s) on the cutsL1 andL2 give the follow-
ing equations:

i

2s
@Fa

1#e~s!1@Fa
2#50,

i

2s
@Fa

1# f ~s!1@Fa
3#50,

~25!

FlS Fa
22

i

2s
Fa

1ẽ~s!22 f̃ ~s!Fa
3D G50, a51,2,3,

~26!

where we have introduced

e~s![aa* ~12 ig1a* a!,

ẽ~s![aa* ~11 ig1a* a!,

f ~s![aa, f̃ ~s![a* a* . ~27!

In Eqs.~25!,~26!, @Fa
b# denote the jumps of the functionsFa

b

whenq tends to the pointq0 on the cut from above and from
below:

@Fa
b#1,25 lim

e→10
„Fa

b~q01 i e!2Fa
b~q02 i e!…. ~28!

The matrixF as a function of the parameterq is analytic
off the cutsL1 and L2, hence it can be represented in th
form of the Cauchy integrals

F~q!5I 1
1

2p i S EL1

@F#1ds

s2q
1 E

L2

@F#2ds

s2q D . ~29!

Taking into account thatF(s)'I 1( i /2s)H for s→`, it
follows from Eq. ~29! that H is expressible in terms of the
jumps @F# as

H5
1

p S EL1

@F#1ds1 E
L2

@F#2dsD . ~30!

From the expressions~30! and conditions~25! we obtain

E5H115
i

p S EL1

@F1
1#1

2s
e~s!ds1 E

L2

@F1
1#2

2s
e~s!dsD ,

F5H1
35

i

p S EL1

@F1
1#1

2s
f ~s!ds1 E

L2

@F1
1#2

2s
f ~s!dsD .

~31!
2-4
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Therefore, we have reduced the problem of finding ex
solutions of the nonlinear system~14! to determination of the
jumps of the functionF1

1 on the cutsL1 andL2. Below we
shall show that these jumps can be found from the conditi
~26!.

Let $F% denote the sum of limits of the functionF(q)
when the pointq tends to the pointq0 on a given cut from
above and from below:

$F%5 lim
e→10

„F~q01 i e!1F~q02 i e!…. ~32!

Then from conditions~26! it follows that on each cut the
following relation holds:

@l#$L%1$l%@L#50, L[sF1
22

i

2
ẽ~s!F1

122s f̃~s!F1
3 .

~33!

On the cutL1, as follows from representations of th
functionsFa

b in terms of the Cauchy integrals~29!, we have

$L%152
1

p S «L1

@F1
1#1K11~s,q!ds

2s~s2q!

1 E
L2

@F1
1#2K12~s,q!ds

2s~s2q! D 2ẽ~q!i ,

Ki j ~s,q![qe~s!1sẽ~q!22q f~s! f̃ ~q!,

qPLi , sPLj , ~34!

and

@L#152
i

2
@F1

1#1„e~q!1ẽ~q!22 f ~q! f̃ ~q!…, qPL1 .

~35!

The analogous formulas are also readily obtainable for
cut L2. The expressions for one-half the sum and one-h
the difference of the values ofl on different sides of the cu
L1 ~or L2) have the form

@l#5l1„11exp~2pf1!…, $l%5l1„12exp~2pf1!…,
~36!

wherel1 is the limiting value of the functionl on the upper
side of the cut. From Eq.~33!, taking into account Eqs.~34!–
~36!, we obtain a system of two linear integral equations
the determination of jumps of the functionF1

1 on the cutsL1

andL2:

1

p S «L1

x1~s!K11~s,q!ds

s2q
1 E

L2

x2~s!K12~s,q!ds

s2q D
2 i tanh@pf1~q!#K11~q,q!x1~q!5ẽ1~q!, qPL1 ,
10402
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1

p S EL1

x1~s!K21~s,q!ds

s2q
1«L2

x2~s!K22~s,q!ds

s2q D
2 i tanh@pf2~q!#K21~q,q!x2~q!5ẽ2~q!, qPL2 ,

~37!

x1 andx2 denoting the jumps of the functioniF 1
1/2s on the

cutsL1 andL2, respectively.
After finding a solution of the system of linear integr

equations~37!, the corresponding solution for the Ernst p
tentials can be obtained via quadratures:

E5
1

p S EL1

x1~s!e1~s!ds1 E
L2

x2~s!e2~s!dsD ,

F5
1

p S EL1

x1~s!f1~s!ds1 E
L2

x2~s!f2~s!dsD .

~38!

Let us consider now a particular case describing cylind
cal waves falling on and reflecting from the symmetry ax
In this case we can assume without any loss of genera
that

u05v050, f1~s!5f2~s!5f~s!,

x1~s!5x2~s!5x~s!,

K~s,q!5qe~s!1sẽ~q!22q f~s! f̃ ~q!. ~39!

The system~37! then converts into one elegant equation

1

p «v

ux~s!K~s,q!ds

s2q
2 i tanh@pf~q!#K~q,q!x~q!5ẽ~q!,

~40!

in which s,q belong to the interval (v,u).
We mention that the nonhomogeneous equation~40! is

equivalent to the homogeneous equation

1

p «v

ux~s!K8~s,q!ds

s2q
2 i tanh@pf~q!#K8~q,q!x~q!50,

K8~s,q![e~s!1ẽ~q!22 f ~s! f̃ ~q!, ~41!

with the normalizing condition

1

p E
v

u

x~s!ds51. ~42!

Equation~40! has the form of a classical complete singu
equation whose numerous applications are kno
@13,15,27#. In the absence of neutrino waves this equat
simplifies further, and reduces to the equation for cylindri
electromagnetic and gravitational waves analogous to
one obtained for the stationary axisymmetric case@10#.

The expressions for the Ernst potentials assume the f
2-5
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S E
F D5

1

p E
v

u

x~s!S e~s!

f ~s! Dds. ~43!

IV. PROOF OF GEROCH CONJECTURE FOR
INTERACTING MASSLESS CYLINDRICAL WAVES

It was conjectured by Geroch@28# that all stationary axi-
symmetric vacuum spacetimes of general relativity can
obtained from Minkowski space by an appropriate transf
mation from the group of internal symmetries of the Einst
equations. Geroch’s conjecture was proved by Hauser
Ernst in the case of electrovacuum fields@20#. In this section
we shall prove it for a more general situation involving ne
trino fields.

The proof consists in showing that from Eqs.~40!,~43! it
follows that on the symmetry axis the function
e(t),ẽ(t), f (t), f̃ (t) defined in terms of the function
a(s),g(s),a(s) determining a shift from an initial solution
to the final solution along the orbit, have the meaning of
Ernst potentialsE,E* ,F,F* on the symmetry axisr50.
Thus, the Ernst functions on the symmetry axis will defi
the group transformation of internal symmetries whi
passes the initial seed solution into another solution w
prescribed Ernst potentials on the symmetry axis.

To accomplish our purpose, let us perform the substitut

s5
u1v

2
1

u2v
2

s, q5
u1v

2
1

u2v
2

k ~44!

in Eq. ~41!. Then Eq.~41! takes the form

1

p «21

1 x~ t1rs!K8~s,k!ds

s2k
2 i tanh@pf~ t

1rk!#K8~k,k!x~ t1rk!50,

K8~s,k![e~ t1rs!1ẽ~ t1rk!22 f ~ t1rs! f̃ ~ t1rk!.
~45!

Denote limr→0rx(t1rs)5x0(s). Whenr→0, the kernel
K8(s,k)→K8(t,t).

Tendingr to zero in Eq.~45! and canceling the commo
factor, we obtain the integral equation forx0(s):

1

p «21

1 x0~s!ds

s2k
2 i tanh@pf~ t !#x0~k!50, t5

u1v
2

~46!

with the normalizing condition

1

p E
21

1

x0~s!ds51, ~47!

which follows from Eq.~42!.
Consider now the function
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X~k!52
Ak221

p
expS if~ t ! E

21

1 ds

s2k D E
21

1 x0~s!ds

s2k
.

~48!

This function, according to Eq.~47!, tends to 1 whenk
→`. From Eq.~46! it follows that the jump of this function
on the cut (21,1) is equal to zero. According to the Liouvill
theorem, an analytic function bounded in the extended reg
is constant; hencex(s)[1 and

E
21

1 x0~s!ds

s2k
52

p

Ak221
expS 2 if~ t ! E

21

1 ds

s2k D .

~49!

Using Sokhotsky’s formula in the last equation, we obta

x0~s!5
1

A12s2 S 12s

11s D if(t)

. ~50!

From the formulas~43! then follows that on the symmetr
axis the potentialsE(t),F(t) are equal toe(t), f (t). There-
fore, the Ernst potentials on the symmetry axis determine
transformation of the group of internal symmetries for t
neutrino electrovacuum.

V. THE CAUCHY PROBLEM FOR CYLINDRICAL
ELECTROVACUUM WAVES FORMING A CLASS

OF EXACT SOLUTIONS

In this section we shall construct a class of exact soluti
characterized by the rational structure of the Ernst potent
on the symmetry axis. Let

e~s!5
El~s!

Qm~s!
, f ~s!5

Fn~s!

Qm~s!
, ~51!

where El ,Qm(s),Fn(s) are polynomials of degreel ,m,n,
respectively, which have no common factors in the form
polynomials ofs.

Then, in the absence of the neutrino field, Eq.~41! for the
unknown function

x~s![m~s!Qm~s!/P~s! ~52!

reduces to the equation

«
v

um~s!P~s,q!ds

P~s!~s2q!
50. ~53!

Here

P~s,q![El~s!Qm* ~q!1El* ~q!Qm~s!22Fn~s!Fn* ~q!,

P~s![P~s,s!. ~54!

Let us show that the solution of Eq.~53! can be searched fo
in the form

m~s!5~A01A1s1•••1Aks
k!/A~u2s!~s2v !, ~55!
2-6
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where k denotes the maximum degree of the polynomi
El(s),Qm(s),Fn(s), i.e., k5max(l ,m,n).

Indeed, Eq.~53! can be rewritten in the form

1

p «v

um~s!ds

s2q
5M ~q!, ~56!

where

M ~q!52 E
v

u S El~s!
Qm* ~q!2Qm* ~s!

s2q

1Qm~s!
El* ~q!2El* ~s!

s2q

22Fn~s!
Fn* ~q!2Fn* ~s!

s2q D m~s!ds

P~s!
. ~57!

It is easy to see that the expressionM (q) represents a poly
nomial in q of degreek21.

Using the well-known inversion formulas for integrals
the type~56! ~see, e.g.,@27# or @15#!, we obtain

m~s!A~u2s!~s2v !

52
1

p «v

u

M ~q!
A~u2q!~q2v !

s2q
dq1const.

~58!

Hence, if M (q) is a polynomial of degreek21, then
m(s)A(u2s)(s2v) is a polynomial of degreek.2

Turning back to Eq.~53!, we observe that it can be rewri
ten in the form

@A~q2u!~q2v !R~q!#50, R~q![
1

p E
v

u P~s,q!m~s!ds

P~s!~s2q!
.

~59!

Here the analytic functionR(q) is defined everywhere of
the cut. Taking into account Eq.~55!, this function can be
calculated explicitly with the aid of the residues theorem.
do this, it is advantageous to rewriteR(q) in the form of an
integral over the closed contourL running clockwise~the
negative direction!, which bounds the cut in the planes from
v to u:

R~q!5
1

2p i RL

P~s,q!~A01•••1Aks
k!ds

P~s!~s2q!A~s2u!~s2v !
. ~60!

Taking now a closed contourL` in the vicinity of `
which is homotopic to the circumference and contains ins

2M (q) can be expanded in terms of the Chebyshev polynom
U0 , . . . ,Uk21, and then one can get from Eq.~58! the expansion of
m(s)A(u2s)(s2v) in terms of the Chebyshev polynomia
T0 ,T1 , . . . ,Tk @29#.
10402
s
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it the cut (v,u) and all the zeros of the polynomialP(s), we
get, after applying the residues theorem,

R~q!5
A01•••1Akq

k

A~q2u!~q2v !

1 (
i 51

N P~j i ,q!~A01•••1Akj i
k!

P8~j i !~j i2q!A~j i2u!~j i2v !

2
1

2p i RL`

P~s,q!~A01•••1Aks
k!ds

P~s!~s2q!A~s2u!~s2v !
. ~61!

To calculate the integral over the contourL` , it is suffi-
cient to find the coefficient at the power 1/s in the Lorent
expansion of the integrand in the vicinity of the point
infinity. After performing this calculation, we obtain

R~q!5
A01•••1Akq

k

A~q2u!~q2v !

1 (
i 51

N P~j i ,q!~A01•••1Akj i
k!

P8~j i !~j i2q!A~j i2u!~j i2v !

2 (
p50

k

ApresS P~s,q!sp

P~s!~s2q!A~s2u!~s2v !
D

s5`

.

~62!

The insertion of the expression forR(q) into the jump
condition~59! gives that the following polynomial of degre
k21 in q is equal to zero:

(
p50

k

ApS (
i 51

N P~j i ,q!~A01•••1Akj i
k!

P8~j i !~j i2q!A~j i2u!~j i2v !

2resS P~s,q!sp

P~s!~s2q!A~s2u!~s2v !
D

s5`

D 50.

~63!

Collecting the coefficients of the same powers ofq on the
left of Eq. ~63! and equating the resulting expressions
zero, we obtain a system ofk homogeneous linear equation
for the coefficientsA0 , A1 , . . . , Ak . The remaining equa-
tion is obtainable from the normalizing condition

1

p E
v

u Qm~s!m~s!ds

P~s!
51, ~64!

the result being

(
i 51

N
~A01A1j i1•••1Akj i

k!Qm~j i !

P8~j i !A~j i2u!~j i2v !

2resS ~A01•••1Aks
k!Qm~s!

P~s!A~s2u!~s2v !
D

s5`

51. ~65!

ls
2-7
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With the aid of the coefficientsA0 ,Ak thus defined, the
corresponding solution forE and F can be constructed via
the formulas

E5(
i 51

N A01A1j i1•••1Akj i
k

P8~j i !A~j i2u!~j i2v !
El~j i !

2resS ~A01•••1Aks
k!El~s!

P~s!A~s2u!~s2v !
D

s5`

,

F5 (
i 51

N A01A1j i1•••1Akj i
k

P8~j i !A~j i2u!~j i2v !
Fn~j i !

2resS ~A01•••1Aks
k!Fn~s!

P~s!A~s2u!~s2v !
D

s5`

. ~66!

The formulas~66! fully solve the problem of reconstruc
tion of the Ernst potentials from their values~51! on the
symmetry axis.

Let us consider now two particular rational-axis-data
lutions from the family obtained:

~a! e~s!5
s2a

s1a*
, f ~s!5

b

s1a*
,

and

~b! e~s!5
s1 ia

s1 ib
, f ~s!5

b

s1 ib
,

where a is an arbitrary complex constant, andb,a,b are
arbitrary real parameters.

The case (a).Using the theory developed above, we o
tain

E512
4j~a1a* !

D
, F5

4bj

D
,

D[2~a1a* !j1~a2a* 12j!A~j2u!~j2v !

2~a2a* 22j!A~j1u!~j1v !,

j[Aa21a* 2

2
1b2. ~67!

It is of interest to see to which Cauchy problem the so
tion ~67! corresponds. Setting in Eq.~67! t50, i.e.,u52v
5r, we obtain

E U
t50

512
a1a*

D0
, FU

t50

5
b

D0
, D0[

a1a*

2
1Aj22r2.

~68!

Whena1a* .0, the initial values~68! of the Ernst po-
tentials are continuous. Calculating (]E/]t)u t50 and
(]F/]t)u t50, we have
10402
-

-

-

]E
]t U

t50

52
a22a* 2

2D0
2Aj22r2

,
]F

]t U
t50

5
b~a2a* !

2D0
2Aj22r2

.

~69!

Therefore, in the initial Cauchy data~69! the discontinuity
of derivatives is present. This discontinuity is represented
two parts: the one going to infinity, and the other first comi
to the symmetry axis, then reflecting from it, and fina
going away to infinity. In Fig. 1 the lines of discontinuity i
the plane (r,t) as well as the regions of continuity of th
solution are shown.

The case (b).This case corresponds to smooth initi
Cauchy data since fort50 the following formulas occur

EU
t50

512
b2a

D0
, FU

t50
52

ib

D0
,

D0[
b2a

2
1Ar21j2,

]E
]t U

t50

52
i ~b22a2!

D0
2

,

]F

]t U
t50

52
b~a1b!

D0
2

. ~70!

The solution of the Cauchy problem corresponding to
initial data ~70! is given by the formulas

E511
4i j~b2a!

D
, F52

4bj

D
,

D[2i j~a2b!1~a1b22j!A~ i j2u!~ i j2v !

2~a1b12j!A~ i j1u!~ i j1v !,

j[Aab2b2. ~71!

For b.a.0 andab.b2, this solution has no discontinui
ties and is smooth everywhere.

Therefore, if the algebraic equationP(s)50 hasp real
positive rootsj1 , . . . ,jp , then the corresponding Cauch
problem will involvep initial discontinuities of the first de-
rivatives. Similar to the case~a!, each discontinuity decom

FIG. 1. The discontinuity lines of the electrovacuum wave s
lution @case~a!#.
2-8
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poses into two parts, the one going to infinity and the ot
running toward the symmetry axis with a subsequent refl
tion. In Fig. 2 the lines of discontinuity for the first deriva
tives ofE,F in the plane (r,t), and the regions of continuity
for solutions of the classC1 are shown.

VI. CYLINDRICAL WAVES IN THE NEUTRINO
ELECTROVACUUM

Consider now a solution of the integral equation~41! de-
scribing cylindrical waves in the neutrino electrovacuu
which corresponds to the rational functionse(s), f (s) de-
fined by formulas~51!. According to Sec. III,e(s) and f (s)
determining the transformation of internal symmetry ha
the meaning of the Ernst potentials on the symmetry axi

Equation~41!, after introducing the functionm(s) via the
formula

x~s!5
m~s!Qm~s!

P~s!
, ~72!

assumes the form

1

p «v

um~s!P~s,q!ds

P~s!~s2q!
2 i tanh@pf~q!#m~s!50, ~73!

where the polynomialsP(s,q),P(s) are defined by the for-
mulas~54!.

Let us show that the functionm(s) to be determined can
be searched for in the form

m~s!5~A01•••1Aks
k!F1

lG , ~74!

where

l~s![A~s2u!~s2v !expS i E
v

u f~t!dt

t2s D ,

FIG. 2. The discontinuity lines emerging in the first derivativ
of the Ernst potentials of the classC1 solutions.
10402
r
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,

e

F 1

l~s!G5
2 cosh@pf~s!#

A~s2u!~s2v !
expS 2 i«

v

uf~t!dt

t2s D .

~75!

For this purpose, following Carleman~see Ref.@29#!, we
extract the singular part from the kernel~73!, and denote the
remaining part asM (q):

1

p «v

um~s!ds

s2q
2 i tanh@pf~q!#m~s!5M ~q!,

M ~q!52 E
v

u P~s,q!2P~s!

P~s!~s2q!
m~s!ds. ~76!

The expressionM (q) is a polynomial inq of degreek21.
Equation~76! is a singular integral equation of the Carl

man type whose exact solution is known@29#. However, for
our analysis it is convenient to use the Carleman-Trico
ideas in a slightly different form than exposed in the origin
approach.

Note that Eq.~76! can be written down in the form

2@l~q!w~q!#5$l~q!%@w~q!#1@l~q!#$w~q!%

5M ~q!@l~q!#, ~77!

where

w~q!5
1

2p E
v

u m~s!ds

s2q
⇒ $w~q!%5

1

p «v

um~s!ds

s2q
,

~78!

whence

l~q!w~q!5
1

4p i Ev

u M ~s!@l~s!#ds

s2q
1

C1

2
, C15const.

~79!

From Eq.~79! follows that

2@w~q!#52im~q!5F1

lG S 1

2p i «v

uM ~s!@l~s!#ds

s2q
1C1D

1H 1

lJ M ~q!@l~q!#

2
. ~80!

The functionl2q2C2 with

C2[2
u1v

2
1 i E

v

u

f~t!dt ~81!

is equal to zero at infinity, and can be represented in the fo
of the Cauchy type integral

l2q2C25
1

2p i E @l#ds

s2q
, ~82!

whence
2-9
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$l%52q12C21
1

p i Ev

u@l~s!#ds

s2q
. ~83!

Taking into account Eq.~83!, the right-hand side of Eq
~80! assumes the form

2im~q!5F1

lG 1

2p i Ev

u M ~s!2M ~q!

s2q
@l~s!#ds1

M ~q!

2

3S H 1

lJ @l#1F1

lG$l% D1F1

lG„C12~q1C2!M ~q!…

5F1

lG S 1

2p i Ev

u M ~s!2M ~q!

s2q
@l~s!#ds

1C12~q1C2!M ~q! D . ~84!

In the above equation we have used the fact that

H 1

lJ @l#1F1

lG$l%50. ~85!

From Eq.~84! one finally concludes thatm(s) is indeed rep-
resentable in the form~74!.

Let us now write down Eq.~73! in a form equivalent to
Eq. ~77!:

@l~q!R~q!#50,

R~q![
1

2p i Ev

u P~s,q!~A01•••1Aks
k!

P~s!~s2q! F1

lGds

5
1

2p i RL

P~s,q!~A01•••1Aks
k!ds

P~s!~s2q!l~s!
.

~86!

In the formula~86!, L is an arbitrary closed contour whic
bounds the cut (v,u) and should be passed over clockwise
does not contain zeros of the functionP(s).

The functionR(q) can be found in explicit form with the
aid of the residues theorem. Indeed, according to this th
rem

1

2p i S EL`

1 E
L D P~s,q!~A01•••1Aks

k!ds

P~s!~s2q!l~s!

5
A01•••1Akq

k

l~q!
1 (

a51

N P~ja ,q!~A01•••1Akja
k!

P8~ja!~ja2q!l~ja!
,

~87!

whereL` is a closed contour in the vicinity of the point a
infinity.

The integral*L`
can also be calculated with the help

the residues theorem:
10402
t

o-

1

2p i EL`

P~s,q!~A01•••1Aks
k!ds

P~s!~s2q!l~s!

5 (
p50

k

ApresS P~s,q!sp

P~s!~s2q!l~s! D
s5`

. ~88!

In this formula, ress5` f (s) is the coefficient at 1/s of the
Lorent expansion of the functionf (s) in the vicinity of the
point at infinity where it has a pole of finite order.

Substituting Eq.~88! into Eq. ~87! we obtain the expres
sion for R(q) which in turn should be substituted into Eq
~86!. Having performed this operation, we get

(
a51

N P~ja ,q!~A01•••1Akja
k!

P8~ja!~ja2q!l~ja!

2 (
p50

k

ApresS P~s,q!sp

P~s!~s2q!l~s! D
s5`

50. ~89!

The polynomialP(ja ,q) is divisible by ja2q. Hence,
the left side of Eq.~89! is a polynomial of orderk21 in q.
Equating to zero each coefficient of this equation, we arr
at k homogeneous equations for thek11 quantities
A0 , . . . ,Ak . The remaining equation we obtain from th
normalizing condition

2i (
a51

N
~A01•••1Akja

k!Qm~ja!

P8~ja!l~ja!

22i resS ~A01•••1Aks
k!Qm~s!

P~s!l~s! D
s5`

51. ~90!

In terms of the known coefficientsA0 , . . . ,Ak the Ernst
potentials can be found via the formulas

E52i (
a51

N A01•••1Akja
k

P8~ja!l~ja!
El~ja!

22i resS A01•••1Aks
k

P~s!l~s!
El~s! D

s5`

,

F52i (
a51

N A01•••1Akja
k

P8~ja!l~ja!
Fn~ja!

22i resS A01•••1Aks
k

P~s!l~s!
Fn~s! D

s5`

. ~91!

Therefore, the problem of finding the Ernst potentials fro
their data~51! on the symmetry axis for cylindrical waves i
the neutrino electrovacuum is completely solved.

It is worthwhile pointing out that the case of exact sol
tions possessing the pseudoeuclidean asymptotics att→` is
defined byl 5m.n. Therefore,k5 l , and the system of lin-
ear algebraic equations~89!,~90!, as well as its analogue in
the absence of the neutrino field~63!,~65!, assumes a simple
form:
2-10
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(
a51

N P~ja ,q!~A01•••1Akja
k!

P8~ja!~ja2q!l~ja!
50, ~92!

and

2i (
a51

N
~A01•••1Akja

k!Qm~ja!

P8~ja!l~ja!
22iAka051,

a0[ lim
s→`

skQm~s!

P~s!
, ~93!

respectively. Formulas~91! also simplify:

Ed52i (
a51

N A01•••1Akja
k

P8~ja!l~ja!
El~ja!22iAkb0 ,

F52i (
a51

N A01•••1Akja
k

P8~ja!l~ja!
Fn~ja!,

b0[ lim
s→`

skEl~s!

P~s!
. ~94!

Let us compare the rational-axis-data solutions for the n
trino electrovacuum obtained in this section and the elec
vacuum solutions from the previous section. It is easy
notice that in the casek5 l 5m.n the former solu-
tions are obtainable from the latter by simply changi
the square rootsA(j i2u)(j i2v) to the expressions
A(j i2u)(j i2v)exp@i *v

u f(t)dt/(t2ji)#. Thus, the neutrino
generalizations of two particular electrovacuum solutio
from the previous section have the forms

E512
4j~a1a* !

D
, F5

4bj

D
,

D[2~a1a* !j1~a2a* 12j!A~j2u!~j2v !

3expS i E
v

u f~t!dt

t2j D 2~a2a* 22j!

3A~j1u!~j1v !expS i E
v

u f~t!dt

t1j D ,

j[Aa21a* 2

2
1b2 ~95!
les

d

10402
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@the analogue of case~a!# and

E511
4i j~b2a!

D
, F52

4bj

D
,

D[2i j~a2b!1~a1b22j!A~ i j2u!~ i j2v !

3expS i E
v

u f~t!dt

t2 i j D 2~a1b12j!

3A~ i j1u!~ i j1v !expS i E
v

u f~t!dt

t1 i j D , ~96!

j[Aab2b2

@the analogue of case~b!#.

VII. CONCLUSIONS

Therefore, we have been able to develop a general
proach to the mathematical description of cylindrical wav
starting from the self-consistent Einstein-Maxwell-Weyl sy
tem. We obtained the canonical integral equations, as we
the generalization of the Ernst equations in the presenc
neutrino fields. The integral equations that govern the beh
ior of cylindrical waves in the general case are of classi
type, similar to those found in the theory of elasticity a
aerodynamics@29,13,14#. The method developed allowed u
to construct a wide class of exact solutions defined by
rational data for the Ernst potentials on the symmetry a
We solved the Cauchy problem for some initial data a
showed in particular that the initial disruption disintegrat
into two discontinuities, one of which propagates toward
axis of symmetry with subsequent reflection from it, wh
the other goes directly to infinity.

The nontrivial complementary problem of reconstructi
of all the metric coefficients entering Eq.~1! from the gen-
eralized Ernst potentials, which represents a by far more
ficult technical procedure than in the pure electrovacu
case, will be considered elsewhere.
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