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In this paper the problem of finding exact solutions of the combined system of the Einstein-Maxwell-Weyl
equations for cylindrical waves is reduced to the solution of two complete singular integral equations in the
complex plane of the auxiliary analytical parameter. In the case of the nonsingular symmetry axis the problem
further simplifies and requires solving the only integral equation, the expressions for the Ernst potentials on the
symmetry axis then defining the group transformations of internal symmetries during the solution generation
process. A large class of exact solutions for neutrino electrovacuum is obtained, and the Cauchy problem
related to some particular initial data is considered.
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[. INTRODUCTION electromagnetic waves. Henned&} studied applications of
the Weyl equations to neutrinos in the cosmological context.

It is well known that the concept of the neutrino as aAn exact solution for cylindrical gravitational waves was ob-
highly penetrating uncharged particle of spin 1/2 was introtained by Piran, Safier, and Kaj9].
duced in order to satisfy the energy conservation laws during In the present paper an effort is made to maximally sim-
the B decay[1,2]. In the experiments performed up to now, plify the mathematlca! investigation of. thg full Einstein-
neutrinos have manifested themselves as the left-hand pold¥axwell-Weyl system in the case of cylindrical waves. We
ized particles and antineutrinos as the right-hand polarize§ucceeded in reducing this problem to a unique linear inte-
particles. One may expect a strong neutrino radiation irffral equation with a single kernel, the solutions of which
some astrophysical situations, for instance, during the nelR€rmit us to calculate the metric (;oeff|C|ent§ and components
tronization of matter inside a supercompressed neutron stff the spinor and electromagnetic fields via quadratures. In
or in young shells of supernovas where the accelerated pr(;he absence of a neutrino flelo_l the equation obtained reduces
tons produce, while colliding, cosmic pion showers, and onlyt© the singular integral equation derived by one of the au-
neutrinos can escape through the dense shell. thors two decades ago.for the case of the electrova([(m}n_

In view of the clear asymmetry of matter and antimatter inWe obtain a large family of exact solutions for the neutrino
the Universe, one can expect that the flows of neutrinos poglectrovacuum using the data on the symmetry axis, and give
sessing a certain helicity may have observational manifest&ome illustrative examples for which the corresponding
tions. When the electromagnetic and gravitational wave&auchy problems are considered. _ _
pass through a region of strong coherent neutrino radiation of It is worth mentioning that a theory of singular equations
a given helicity, they may change their polarization. ThisSimilar to the one considered in the present paper was devel-
effect is described in Ref3]. oped earlier njaynly in appllcat|ons. to aerodynamlcs. and

For the description of the neutrino, Lee, Yang, Landau theory of elasticity[11-13. We mention also the_classmal
and Salam proposed in 1957 to use the Weyl equations of théeldysh-Sedov result for boundary problems with several
two-component massless spinor figld—6]. The energy- Cuts [14], and_that a detailed dl_scussmn of the theory of
momentum tensor of a neutrino field does not have the propsingular equations can be found in the bgak.
erty of energodominance, similar to the case of a classical
_electron describec_i by fche Dirac equations. That is why the Il SIMPLIEICATION OF A CLOSED SYSTEM
interaction of a spinor fleld not sub!ected to th(_e procedure of FOR FREE MASSLESS FIELDS
second qu.anpzauon with the classm.al gravitational and elec- IN THE CASE OF CYLINDRICAL WAVES
tromagnetic fields has several peculiar features. For example,
in the framework of general relativity there does not exist in  Exact solutions of the combined system of Einstein-
such fields the effect of focusing the convergent normal conMaxwell-Weyl equations admitting a group of motions with
gruence of isotropic geodesics. The gravitational fields gentwo commuting Killing vectors are of interest from the point
erated by neutrinos of right-hand and left-hand helicity differof view of applications which include cylindrical and collid-
from each other. ing waves, as well as stationary fields with axial symmetry.

The collisions of neutrino plane waves of some particularOn the other hand, the discovery of the integrability of this
type in general relativity were studied by Griffithig]. In his  system[16,3] provides the possibility of its far-reaching
monograph he gave a thorough review of the most interestmathematical analysis. In the case of the axisymmetric elec-
ing results regarding collisions of plane gravitational andtrovacuum problem, the first fundamental results for the lin-
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ear matrix formulation of the field equations were obtainedthe respective components of the Einstein and Weyl equa-
by Kinnersley[17]. The idea of the equivalence of all inte- tions yields

grable systems to the boundary Riemann—Hilbert problem

[18] was realized, in application to the electrovacuum, in the L $1(u) L $2(v) )
pioneering papers by Hauser and Errif], who were able b - 8mpo’ 44 ~ 8mph’ )

in particular to prove the Geroch conjecture for the electro-

vacuum fields[20]. In contradistinction to the matrix Whereg,(u) and ¢,(v) are arbitrary functions correspond-
Riemann-Hilbert problem, in the bodk0] a single linear ing to the incident and expandirifom the axig cylindrical
integral equation for the electrovacuum was obtained whichheutrino waves.

permitted construction of the solutions of the Ernst equations The electromagnetic field is described by a four-potential
[21] corresponding to given potentials on the symmetry axigvith the nonzero componenss, (6=1,2).

both in the stationary axisymmetric cd2] and in the case Following Kinnersley[17], we shall be raising and low-
of cylindrical waved 10]. This equation also made it possible ering indices by means of the Levi-Civisymbolse”® and

to construct solutions involving analytically extended param-ag: €11=825=0, g15= —€21=1, e"B=(gap) . Let gap

eter sets, e.g., the extended multisoliton solutif@@], or  =fg. Then from the Maxwell equations it follows that
new exact solutions of astrophysical intergst]. A solution 1eC iec
describing the exterior field of a magnetized, rotating, mas- (p *fRACW vt (p "TRAC,) u=0. )

sive deformed sourci25] was used irff26] for the analysis
of the disk accretion onto a neutron star within the frame-
work of general relativity.

A detailed formulation of the Einstein-Maxwell-Weyl sys-
tem can be found in the book8,10]. Here we shall restrict Denote the complex combinatioms:+iBc as ®¢ and
ourselves to giving only the formulas essential for achieving, .. . =
our main goal—the derivation of the new integral equation.deflne the grad_lentsV and V as (9/9u,aldv), (dldu,

In the case of cylindrical waves, the cyclical coordinates dldv), respectively. We obtain from Eg4)

(the ones on the orbits of Killing vectgrare the angle and
coordinatez along the symmetry axis. The line element can
then be written in the form

Hence, there exist potentias, such that

pilngC,u:BA,u1 pilngC,v:_BA,v . (4)

p HSVAL=VB, = pVO,=ifVD,. (5)

Similarly, from Einstein’s equations in projections onto
the orbits of Killing vectors follows the existence of the

ds?=— ¢2dudv + gag(dx*+ ghdu+gido) complex potential$45 :
X (dx®+gfdu+gidu), (1) VHEB=V(fB+WsB)+ dB* Vb,
i ~ ~
where the unknown functions, gag, 95, g~, g2, g° de- +;f§(V(fg+W53)+<1)B*VCDc). (6)

pend only on the coordinatesandv. The indicesA,B take

the values 1,2 and stand for the cyclical coordingigs The  \yherew= [ ¢r(u)du— [ ¢o(v)do.

coordinatesu=t+p andv=t—p have the meaning of the From Eq.(6) we get

advanced and retarded times, respectively. The mébjic

admits a liberty in the choice of the coordinates): u pVH§=if§ng. )
—U(u), v—V(v), and also in the choice of cyclical coor-

dinatesx”—x"+A(u,v). The energy-momentum tensor of  The potentialsH2, ®® in the absence of neutrino fields

spinor fields violates the Frobenius conditions of the exiSyyere introduced by KinnersldyL7], together with the poten-
tence of two-dimensional surfaces orthorgonal to the orbitsjgis | A andK:

of Killing vectors. Therefore, in the presence of massless

spinor fields the metri€l) cannot be reduced to the Papape- VLB=2¢C*VH(B:, VK=20*Vd,. (8)
trou form with only one nondiagonal term. Henceforth the

system of units is used in which the speed of light in vacuum Following Hauser and Erngfl9], let us introduce the 3

and the gravitational constant are used as scale units. X 3 matrix Hg (a,b=1,2,3) via the definitions
It follows from Einstein’s equations thaflgag| as a func-
tion of u,v satisfies the d’Alambert equation. In what fol- HEEHE (a=A,b=B), ng d, (a=A),
lows we shall sety|gag|=p, thus fixing the choice of the
coordinatesu,v.! H3=L® (b=B), H3=K. (9)

The neutrino fields are described by the two-component _ b _ _
spinors , ) and satisfy the Weyl equations. An analysis of ~ The matrixH=(H,) introduced in this way, as follows
from Egs.(5)—(7), satisfies the matrix equation

2
Un the case of colliding plane wave#lgAB| should be set equal 2i(u—v) J°H _ ﬁ ﬁ _ ﬁ ﬁ (10)

to t [7]. dudv  du v dv Ju’
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By construction, the trace df is equal to
trH=H3=2W—i(u+v). (12)

This expression follows from Eq$6),(7) in which one has
to putB=A and take into account théf=f ,ge®4=0.

The derivatives oH with respect to the coordinatesuv,
as can be readily seen from E@5),(7), satisfy the equations

JH oH
(I—Ml)mzo, (I—M2)5=0, (12

the matricesM ; and M, being defined by the formulas

e

The componentsi? andH? of the matrixH are related to
the generalized Ernst potentiafs® as Hi=—¢&, H3=,

if$

2d Cx

0
0

—if$

ZCI)C*

0

M]_: 0

) . (13
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first found by Kinnersley17] and then rewritten in a more
elegant form by Hauser and Errj4t9]:

oF i oH JoF
A 2(s—u) au ' dv

i o"HF
2(s—v) dv

(16)

Here the generating matrix depends on the coordinates
and on the auxiliary analytical parameteiAs follows from
Eq. (12), the derivatives of with respect tas andv satisfy
the conditions

JF JF

In the complex plane of, the matrixF has two branching
points:s=u ands=v. It follows from Eg.(16), taking into
account Egs(11) and(2), that|F|=defF satisfies the system
of equations

and they satisfy the following self-consistent system of two

differential equations first reported [46]:

2

N (5) 19 a(s)
iaVva(g) aVva(é’)
plat at\®] ap ap|®
_a(s)(ag *aq)) a(s)(ag *aq))
“ale/\ a2 ) ol 5 T2 5 )
Vvsf ¢1(u)du+f éo(v)dv. (14)

The two sides of the vector equati¢t¥) should be equated

d i 9 I
" Fl= st 3 MIFl= 35—
(18)
whence
e JEE (e da(ud
- (S_U)(S_U) ug S—u
vo ¢p(v)dv| 1

s—v ):X (19

v

(ug andvg are the integration constapnts
The function|F| is single valued in the plane with two
cuts: one fromu, to u, and the other fromv to vy. When

by components. We mention that in the characteristic c00rs .o F has the asymptoticE~1+ (i/2s)H, | being the
dinates (1,v) which can be more advantageous for use inynit matrix.

some cases this system assumes the form

B — &2 (5) 1 (1 oW 0(5)
(ReE= ™) = ol o) =0\ 27 %0 aul @
1 (1 oW a(s)
u—v 2 "ou )| @
_a(s) 9€ Zq)*a@
Toul®)law s
+a(5> 9E *acb) 15
EA AT au (15

Equationg14) form a closed system for the determination
of the potentials€ and®, but for our purposes the formula-
tion of the problem in terms of the matrix equati¢to) is
more advantageous. This is due to the fact that the matri
formulation (10) can be written in the form of the zero-

The simplest solution of the systeth4) is &=1,0-0,
for which the corresponding components of the mefrig
are g;;=1, 91,=W, g,=p?+W?2. In this case, using the
definition (6) of the potentiaH%, we obtain the expressions

for the nonzero components of the matix
Hi=2w-i 2= —
= (u+v), Hi=-1,
Hi=p2+W2—iW(u+v)

+2i(f ¢1(u)udu—f ¢2(v)vdv). (20

The components of the corresponding generating matrix
E‘l can be found from the overdetermined systd®), the
result being(cf. the analogous expression &L in the

curvature condition for the overdetermined matrix systembook[10])
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i N a(y—ia*a) iaa
"25977 3 0 - R
o i
-1_ =\W— — i =
F _Q+isx 1 0" Q=W 2(u+v)+|s. exgol'(s)] 0 1/a* 0 (24
0 0 1 0 —2a* 1
(21)

Here «*,a* are understood as complex conjugations
(s*))*.(a(s*))*; moreover,y(s)=(y(s*))*.

Let us take the solutio(19)—(21) as the seed one, and the
expression(24) as the shift along the group of internal sym-
metries. Then the conditions of continuity of the matrix

F(s) exq(rl“(s)]l%*l(s) on the cuts, and L, give the follow-
ing equations:

For integrable systems there exist continuous groups o(fa
internal symmetries which transform one solution into an-
other. Along the one-parameter subgrdthe orbiy with pa-
rametero the following equation hold§19,1Q:

dF(/.L,O’)_ 1 F(V,U)F(V)Fil(V,O')dVF

do 2mi Jr ) [ 2 [ 3
(22 S5lFale(s)+[F21=0, - [FiIf(s)+[F]1=0,
(25
Here L is the contour bounding the simply connected region i
D in the plane of the analytical parameter Outside the {)\(Fg—2—F£é(s)—2'f(s)F§”=0, a=1.2,3,
regionD, the functionF(v) is supposed to be analytic. The S
matrices{I'(v)} form an infinite-parameter algebra and de- (26)
pend only on the analytical parameterAll the singularities .
of the matrixI'(v) lie off the regionD. The integration of where we have introduced
Eqg. (22) along the orbit(the operation of exponentiation of e(s)=aa*(1—iy+a*a),
the algebraleads to the equatiofl9,1Q
e(s)=aa*(1+iy+a*a),
F(»)eTME-1(1)d .
L p— =0, pneD. (23 f(s)=aa, f(s)=a*a*. 27

In Egs.(25),(26), [F2] denote the jumps of the functiofs
It follows from Eq. (23) that the function whengtends to the point, on the cut from above and from

F(v)exdoT(]E () is analytic outside the regiop. The ~ PEIOW:
generating matrix-(») corresponds to a new solution into EPT. = lim (F°(antie)— EP(qn—i 2
which the seed solution is transformed by means of a shift [Fali2 elTo( a(dotTe)=Fa(Go~ie)). 28

along the orbit of the group ekpl'(v)]. We mention that the

result (23) can also be obtained with the aid of the “dress- The matrixF as a function of the parametgris analytic

ing” method of Zakharov and Shabft8]. off the cuts£, and £,, hence it can be represented in the
form of the Cauchy integrals

IIl. CANONICAL INTEGRAL EQUATIONS OF NEUTRINO 1 ( [F].ds [Fl.ds
+

ELECTROVACUUM FOR CYLINDRICAL WAVES F(g) =1+ -—
@ 2mi\ Jg, s—q £, S—Qq

). 29

Let us consider now the particular case of E(®) for o ) )
the neutrino electrovacuum where=s. By deforming the Taking into account thak (s)~1+ (i/2s)H for s—oe, it
closed contour to two cuts along the real axis, one fram  follows from Eq.(29) thatH is expressible in terms of the
to v, (unclosed contoutC;), and the other fromu, to u  Jumps[F] as

(unclosed contour £,), we obtain that the matrix

o 1

F(s)exdoT'(s)]FX(s) is continuous on these cuts. H= ;( f [Fl.ds+ f [F]zds>- (30)
From the papers of Kinnerslejl7] and of Hauser and £ £2

Ernst[19] one may draw the conclusion that the elements of

From the expression80) and conditiong25) we obtain
the infinite-parameter algebfd’(s)} can be represented as P lonS0) itions(25) w !

products of an arbitrary Hermitian matrix on the anti- i [Fi}, [Fi,
Hermitian matrix with nonzero componen@,=—,; 5=H11=—(f s e(s)ds+f s e(s)ds),
=1, Q3= —il4s. The exponent of the matrik(s) can be ANt £2
calculated by means of the Lagrange-Sylvester formula, set- ) 1 1
ting the component§}),(3) to zero, and the componef®) to 3 [Fily [Fila
/ ) O=Hjy f(s)ds+ f(s)ds].
1. Then we shall obtain the general form of the matrix m\ Jg, 28 £, 2S
ex ol (9] [10] (3D
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Therefore, we have reduced the problem of finding exact 1 x1(s)K2(s,q)ds x2(8)K,i(s,q)ds
solutions of the nonlinear syste(h4) to determination of the —( L s—q +f£2 s—q )
1

jumps of the functiorFi on the cutsC; and £,. Below we

shall show that these jumps can be found from the conditions —itan 7o(q) 1Ko1(0, Q) x2(q) =8(q), qe Ly
(26) ’ 1 )
Let {F} denote the sum of limits of the functioRi(q) (37

when the poinfg tends to the poingy on a given cut from

above and from below: x1 and y, denoting the jumps of the functiair }/23 on the

cuts £, and L,, respectively.

After finding a solution of the system of linear integral
equationg(37), the corresponding solution for the Ernst po-
tentials can be obtained via quadratures:

{F}= lim (F(go+ie)+F(go—ie)). (32

e—+0

Then from conditiong26) it follows that on each cut the 1
following relation holds: E= ;( f x1(s)es(s)ds+ f Xz(s)ez(s)ds),
Ly Lo

_ _ 2_i_~ 1 o3 3
[NHL}+{ML]=0,  L=sFj- 5e(s)Fi—2sf(s)F}. @:i“ X1(5)¢1(5)d5+f X2(3)¢2(5)d5)-
(33) T\ Jiy £, -

On the cut£q, as follows from representations of the

functionng in terms of the Cauchy integral@9), we have Let us consider now a particular case describing cylindri-

cal waves falling on and reflecting from the symmetry axis.
In this case we can assume without any loss of generality

L __E [F11:K1a(s,q)ds that
{Lh= m\1c;  2s(s—q)
N Up=v0=0, ¢1(S)=¢ho(S)=¢(s),
[Fl.Kia(s,g)ds) -
L osis—q ) SO X1(8) = x2(s)=x(9),
K(s,q)=qe(s)+seq)—2qf(s)f(q). (39)

Kij(s,q)=qe(s)+se(q)—2qf(s)f(q),
(34) The system37) then converts into one elegant equation

qeﬁiy Se EJ!
1 [ux(s)K(s,q)ds B
e E{j %—' tant m¢(q) ]K(q9,q) x(q) =e(q),

. (40)
R T ~ o
[Lli=~3lFilE@re@-2f@fa),  gely. in which s,q belong to the intervalu(,u).

(35 We mention that the nonhomogeneous equati¢d) is
equivalent to the homogeneous equation
The analogous formulas are also readily obtainable for the
cut £,. The expressions for one-half the sum and one-half 1 [[Ux(s)K'(s,q)ds
the difference of the values af on different sides of the cut ;f s—q
£, (or £,) have the form Y

—itan 7¢(q)]K'(q,9)x(q) =0,

[N=N, (@ +exp2mgy), (M=) (1-exp2mdy), CsaZels)relq-2loi@, @Y
(36 with the normalizing condition

where\ . is the limiting value of the function on the upper 1 (u

side of the cut. From Eq33), taking into account Eq$34)— p f x(s)ds=1. (42

(36), we obtain a system of two linear integral equations for v

the determination of jumps of the functnﬁi on the cutst, Equation(40) has the form of a classical complete singular

and£;: equation whose numerous applications are known
[13,15,27. In the absence of neutrino waves this equation
1 f X1(S)K11(S7Q)d3+f x2(s)K1x(s,q)ds simplifies further, and reduces to the equation for cylindrical
m\ ey s—q £, s—q electromagnetic and gravitational waves analogous to the
one obtained for the stationary axisymmetric cgkg.
—itan m¢1(q)1K11(9,9) x1(q)=e1(q), qe Ly, The expressions for the Ernst potentials assume the form
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E\ 1 (u (e(s)) Vk?—1 1 ds 1 xo(o)do
=— S ds. 43 =— i
((D) va X(S)| ¢(s) (43) X(k) ——exg i (1) j,ls—x ﬁl -
(48)
IV. PROOF OF GEROCH CONJECTURE FOR This function, according to Eq47), tends to 1 whenc
INTERACTING MASSLESS CYLINDRICAL WAVES —o, From EQ.(46) it follows that the jump of this function

on the cut (- 1,1) is equal to zero. According to the Liouville

It was conjectured by Gerodl28] that all stationary axi- h iic f ion bounded in th ded reai
symmetric vacuum spacetimes of general relativity can bé eorem, an analytic function bounded in the extended region
is constant; hencg(o)=1 and

obtained from Minkowski space by an appropriate transfor-
mation from the group of internal symmetries of the Einstein

equations. Geroch’s conjecture was proved by Hauser and fl XO(U)dU: S expg —i¢(t) fl ds )
Ernst in the case of electrovacuum fie|[@€)]. In this section -1 O—K V=1 ~1S— k|’
we shall prove it for a more general situation involving neu- (49
trino fields. ) ) ) .
The proof consists in showing that from E40),(43) it Using Sokhotsky's formula in the last equation, we obtain

follows that on the symmetry axis the functions 600
e(t),2(t),f(t) F(t) defined in terms of the functions __ 1 (1o

o : - : Xo(o) (50
a(s),y(s),a(s) determining a shift from an initial solution Ji-o?\1to
to the final solution along the orbit, have the meaning of the
Ernst potentials, & ,d,®* on the symmetry axip=0. From the formulag43) then follows that on the symmetry

Thus, the Ernst functions on the symmetry axis will defineaxis the potential€(t), ®(t) are equal toe(t),f(t). There-
the group transformation of internal symmetries whichfore, the Ernst potentials on the symmetry axis determine the
passes the initial seed solution into another solution witHransformation of the group of internal symmetries for the
prescribed Ernst potentials on the symmetry axis. neutrino electrovacuum.
To accomplish our purpose, let us perform the substitution
V. THE CAUCHY PROBLEM FOR CYLINDRICAL
u+v u—vu u+v uU—vu ELECTROVACUUM WAVES FORMING A CLASS
5t 0 4= k(49 OF EXACT SOLUTIONS

S=

N
N

In this section we shall construct a class of exact solutions
in Eq. (41). Then Eq.(41) takes the form characterized by the rational structure of the Ernst potentials
on the symmetry axis. Let

— —itant 7o (t _ E(s) _ Fn(s)
S NS EIC A WS

where E;,Q(S),F,(s) are polynomials of degreem,n,

_ _ respectively, which have no common factors in the form of

K'(o,k)=e(t+po)+e(t+pr)—2f(t+po)f(t+pk). polynomials ofs.

(45) Then, in the absence of the neutrino field, E4L) for the
unknown function

14}1 x(t+po)K'(o,k)do

™ (51)

+pr) K (K, k) x(t+pK)=0,

Denote lim,_opx(t+po)=xo(o). Whenp—0, the kernel
K'(o,k)—K'(t,1). X(8)=u(s)Qu(s)/P(s) (52
Tendingp to zero in Eq.(45) and canceling the common

factor, we obtain the integral equation fg(o): reduces to the equation

“u(9)P(s,q)ds _

1! xo(o)do . u+v f (53
Yy AT = = P(s)(s—
J_l I tant w0 o(0=0, 1= L PS)(s-0)
(46)  Here
with the normalizing condition P(s,0)=E(s)Qn(a) + Ef () Qm(s) — 2F(s)F7 (q),
1 (1 P(s)=P(s,s). (59
[ xotordo-1. @) |
m™J-1 Let us show that the solution of E¢3) can be searched for
in the form
which follows from Eq.(42).
Consider now the function w(s)=(Ag+As+---+AsS)/\(u—s)(s—v), (55
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where k denotes the maximum degree of the polynomialsit the cut (,u) and all the zeros of the polynomiB(s), we
Ei(8),Qm(S),Fn(s), i.e.,k=max(,m,n). get, after applying the residues theorem,
Indeed, Eq(53) can be rewritten in the form

R(G)= A+ - - +AG
Lpwsds o, (56) J(g—u)(q—v)
ml], S—(Q
% P(&.,9)(Ag+ - +Ak§ik>
where SLP(E) (G V(G- u (&
Qn(a) —Q(s) 1 P(s,q)(Ag+--- +A sk)ds

M(q)="— ( B ———g S Rt . (61

L | g 271 Fe. P ns 0

+Q (s)w To calculate the integral over the contafl;, it is suffi-

" s—q cient to find the coefficient at the powerslih the Lorent

expansion of the integrand in the vicinity of the point at
_oF (S\F;ﬁ(q)— Fr(s)| p(s)ds (57 infinity. After performing this calculation, we obtain
" sqg P(s)

Aot - - +A G
It is easy to see that the expressidi{q) represents a poly-  R(d)= \/?
nomial in g of degreek—1. (@—u)(q—v)

Using the well-known inversion formulas for integrals of N . o k
the type(56) (see, e.g.[27] or [15]), we obtain 2 P(&,Q)(Aot -~ T Ad])
= (f)(& Q)v &i— (fl_v
/.L(S)V(U_S)(S_U) K P(S q)sp
u J(u— _ - E A reﬁ(
2—1! M(Q)%;qv)dwrconst. p=0 " T\ P(s)(s—q)\(s—u)(s—v) o
p _
' (62)
(58)

The insertion of the expression fé&t(q) into the jump
Hence, if M(q) is a polynomial of degre&k—1, then condition(59) gives that the following polynomial of degree

w(s)\(u—s)(s—v) is a polynomial of degrek.? k—1 inqis equal to zero:
Turning back to Eq(53), we observe that it can be rewrit- . N
ten in the form S A 2 P(&,0)(Agt -+ + A&
= =1 P& (&~ V(G u)(&i—v)

upP d
[V@—W(g-o)R@]=0, R(@)=— fw

v P(s)(s—a) S( P(s,q)s” ) )
(59 —-re =
P(s)(s—a)V(s—u)(s—v)/_
Here the analytic functioiR(q) is defined everywhere off 63)

the cut. Taking into account E(q55) this function can be
do this, it is advantageous to rewriRq) in the form of an |eft of Eq. (63) and equating the resulting expressions to
integral over the closed contouf running clockwise(the  zero, we obtain a system &fhomogeneous linear equations

negative directioy) which bounds the cut in the plasdrom  for the coefficientsAy, A, . .., A,. The remaining equa-
viou tion is obtainable from the normalizing condition
1 P(s,q)(Ay+ - - - +A s ds 1 (uQ(s)u(s)ds
R(Q) = =— (5.9)(Ao s )ds (60) - %=1, (64)
2mi J P(s)(s—a)(s—u)(s—v) mJo (s)

Taking now a closed contout.. in the vicinity of =  the result being
which is homotopic to the circumference and contains inside N «
> (Aot A&+ +AE)Qm(E)

2 . _ =1 P'(&)V(&E—uw)(&—v)
M(q) can be expanded in terms of the Chebyshev polynomials
Ug, ..., Uy_4, and then one can get from E&8) the expansion of 3( (Ag+--- +AkSk)Qm(S)

un(s)V(u—=s)(s—v) in terms of the Chebyshev polynomials P(s)\V(5-U)(5-0)

To, Ty, ..., T, [29].

=1. (65
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With the aid of the coefficient®\y,A, thus defined, the
corresponding solution fof and® can be constructed via
the formulas

t

N k
AgtALE+ - +AL
g:.z= 0 lgl k§| )

E (&

& P wE
_re{(Ao‘F""FAkSk)EKS))

P(s)V(s—u)(s—v) |

Ao+A1§i+--~+Ak§FF "
P (&WE—W(E—v) "
(Ag+ - +ASFL(S)

. 66
reﬂ( P(s)V(s—U)(5—0) ) ©9

=2

=1

¢ p

FIG. 1. The discontinuity lines of the electrovacuum wave so-
lution [case(a)].

9E a’—a*?  9d b(a—a*)

The formulas(66) fully solve the problem of reconstruc-
tion of the Ernst potentials from their valu¢51) on the
symmetry axis.

Ttliso 2A§V§ P oot t=0 2Ag\/§ -p .

(69

Let us consider now two particular rational-axis-data so-
lutions from the family obtained: Therefore, in the initial Cauchy dat&9) the discontinuity
of derivatives is present. This discontinuity is represented by

two parts: the one going to infinity, and the other first coming

@ e(s)= - f(s)= = to the symmetry axis, then reflecting from it, and finally
sta sta going away to infinity. In Fig. 1 the lines of discontinuity in
and the plane p,t) as well as the regions of continuity of the
solution are shown.
stia b The case (b).This case corresponds to smooth initial
(b) e(s)= sTip’ f(s)= wyy Cauchy data since fdr=0 the following formulas occur

where a is an arbitrary complex constant, afda,B are
arbitrary real parameters.

The case (a)Using the theory developed above, we ob-
tain

4¢é(a+a*r)
B A

ab¢

A

&

A=2(a+a*)é+(a—a* +2§)V(E—u)(é-v)
—(a—a* =2¢)V({+u)(éto),

a’+a*?
2

+b2.

(67)

It is of interest to see to which Cauchy problem the solu-
tion (67) corresponds. Setting in E¢67) t=0, i.e.,u=—v
=p, we obtain

b
A

a+a*
2

a+a*

(68)

5 ] AO

Whena+a* >0, the initial valueq68) of the Ernst po-
tentials are continuous. Calculatingd&at)|,—o and
(0®1dt)|=o, we have

- ib
& =1—'8 a, (o} =——
t=0 A0 t=0 A0
B—«a 9E i(B%—a?)
AOE_+ P +§ ’ Fn N
2 atl _, AS
b b(a+B)
t=0 0

The solution of the Cauchy problem corresponding to the
initial data(70) is given by the formulas

A=2i&(a—B)+(a+B—28)\(iE—u)(ié—v)
—(a+pr2o)V(iE+u)(ig+v),
¢=\ap—b?. (71)

For B>a>0 andaB> 2, this solution has no discontinui-
ties and is smooth everywhere.

Therefore, if the algebraic equatid?(s)=0 hasp real
positive roots¢y, . ..,&,, then the corresponding Cauchy
problem will involve p initial discontinuities of the first de-
rivatives. Similar to the cas@), each discontinuity decom-

104022-8
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¢ 1] 2coshimg(s)] .{Fud)(T)dT
= expg —i .
A(S)|  J(s—u)(s—v) y TTS
(79
For this purpose, following Carlemasee Ref[29]), we
extract the singular part from the kerrn@B), and denote the
remaining part as1(q):
1r,u(s)ds " M
7] s=q T1enfima@lue=M(@),
uP(s,q)—P(s)
M(q)=— f ——————u(s)ds. 76
S p D=~ ), P #® (79
FIG. 2. The discontinuity lines emerging in the first derivatives The expressioM(q) is a polynomial inq of degreek— 1.
of the Ernst potentials of the clags" solutions. Equation(76) is a singular integral equation of the Carle-

man type whose exact solution is kno\28]. However, for
poses into two parts, the one going to infinity and the otheour analysis it is convenient to use the Carleman-Tricomi
running toward the symmetry axis with a subsequent reflecideas in a slightly different form than exposed in the original
tion. In Fig. 2 the lines of discontinuity for the first deriva- approach.
tives of £,® in the plane p,t), and the regions of continuity Note that Eq(76) can be written down in the form

for solutions of the clas€® are shown.
2IN@ e ]={NaH e(@) ]+ [N @) He(a)}

VI. CYLINDRICAL WAVES IN THE NEUTRINO =M(q)[A(Q)], (77)
ELECTROVACUUM

. . : . where
Consider now a solution of the integral equatidd) de-

scribing cylindrical waves in the neutrino electrovacuum, 1 (uu(s)ds
which corresponds to the rational functiorés),f(s) de- <P(Q)=Ef -
fined by formulag51). According to Sec. lllg(s) andf(s) v 9
determining the transformation of internal symmetry have
the meaning of the Ernst potentials on the symmetry axis.
Equation(41), after introducing the functiop.(s) via the
formula 1 (uM(s)[\(s)]ds C;4
M) e(q)=7— TTs=q + - Ci=const.
_ #(5)Qn(s) 72 (79
P(s)

1 (uu(s)ds
= {<P(C])}:;f - ,

s—q
(78)

whence

X(s)
From Eq.(79) follows that

1( 1 rM(s)[A(s)]dstC

assumes the form
2[qo<q>]=2w(q>=[x

1

1 [uu(s)P(s,q)ds 2mi], s—q
_f P(s)(s—q) —itanf 7é(q)Ju(s)=0, (73
G q 1| M)\ (@)]
+ N (80)
where the polynomial®(s,q),P(s) are defined by the for-
mulas(54). The function\ —q—C, with
Let us show that the functiop(s) to be determined can
be searched for in the form Cy=— uJer i u S(r)dr 81)

1
_ K
u(8)=(Agt - +AS") X}’ (74 is equal to zero at infinity, and can be represented in the form

of the Cauchy type integral

where 1 [\]ds

AN—q-Co=— | ———,
[y g(r)dr T 2m] s
)\(S)E\/(s—u)(s—v)exp(l )

v T—S

(82

whence
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(\}=2q+2C,+ —fum. 83

Taking into account Eq(83), the right-hand side of Eq.

(80) assumes the form

1] 1 uM(s)—M(Q) )
2 ()= [ ot | P P s Y
1 1 1
x {X 1+ + S| eam @+ caman
11/ 1 uM(s)—M
:H<2_ﬂf MEZMD (51105
cl—<q+cz>M<q>). (84

In the above equation we have used the fact that

1
A
From Eq.(84) one finally concludes thai(s) is indeed rep-

resentable in the forni74).
Let us now write down Eq(73) in a form equivalent to

Eq. (77):

[A(@)R(a)]=0,

[N+ % {\}=0. (85

C+AS9 1

)\ds

1 [uP(s,q)(Agt -
R(q)= J' (s,a)(Ag

27 P(s)(s—Qq)

1 [ P(s,q)(Agt--- +ASds
“ 27 3€ P(s)(s—q)\(s)
(86)

In the formula(86), £ is an arbitrary closed contour which
bounds the cutuy,u) and should be passed over clockwise; it

does not contain zeros of the functi@gs).

The functionR(q) can be found in explicit form with the
aid of the residues theorem. Indeed, according to this theo-

rem

(5,9)(Ag+ - - - +As)ds
P(s)(s—a)\(s)

il [0 )

Ao+t -+ A

N k
faaQ)(A0+ +Ak§a)
A(Q) t 2

P'(£a)(éa— AN (&)
87

a=1

PHYSICAL REVIEW D 68, 104022 (2003

1 P(s,q)(Ag+ - - - +AS)ds
Z_WiLx P(s)(s—q)A(s)

X P(s,q)s?
-2 Apreﬁ( P(s)(s—q))\(s))sm

In this formula, res_..f(s) is the coefficient at ¥ of the
Lorent expansion of the functiof{s) in the vicinity of the
point at infinity where it has a pole of finite order.

Substituting Eq(88) into Eq. (87) we obtain the expres-
sion for R(q) which in turn should be substituted into Eq.
(86). Having performed this operation, we get

(88)

% (£a,0)(Agt - - + ALY
a=1 P’ (ga)(ga_q))\(ga)
k P(s,q)sP
-2, AS(w—q)m)‘o 9

The polynomialP(&,,q) is divisible by £,—q. Hence,
the left side of Eq(89) is a polynomial of ordek—1 in g.
Equating to zero each coefficient of this equation, we arrive
at k homogeneous equations for thke+1 quantities
Ag, ..., Ac. The remaining equation we obtain from the
normalizing condition

" % (Ag+ - + A Q(&a)
=) P'(£)N(Ea)

. §<(AO+ o+ AS)Qu(S)
—2ire P(SIN(S)

=1

S=o

(90)

In terms of the known coefficientd,, . . .
potentials can be found via the formulas

Ay the Ernst

N +oo A
—E
22 P Ean(E)
. {AO'F ~-+Aksk )
—2ire —P(s))\(s) Ei(s) s:m,
N At A
Pot o Aka
22, P e
o [Agt A
—2i re{an(S)) (91)

s=o

Therefore, the problem of finding the Ernst potentials from
their data(51) on the symmetry axis for cylindrical waves in
the neutrino electrovacuum is completely solved.

It is worthwhile pointing out that the case of exact solu-
tions possessing the pseudoeuclidean asymptotics at is

where L., is a closed contour in the vicinity of the point at gefined byl = m>n. Thereforek=1, and the system of lin-

infinity.

ear algebraic equation89),(90), as well as its analogue in

The integralf, can also be calculated with the help of the absence of the neutrino figlé3),(65), assumes a simpler

the residues theorem:

form:
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N p At oAk [the analogue of cas@)] and
3 (&0, ) (Ag+ -+ kfa)ZO, @2
a=1  P'(&)(Ea— AN (&) 4iE(B—a) 4b¢
E=1+ ——F—, Oo=——
and A A
& (At +AEQ(E) A=2ig(a—p)+(a+p—28)V(iE—u)(ié—v)
2i > —2iA@,=1,
a=1 P’ (€N (&) F( u ¢(T)d7)
xexpl i — | —(a+B+2¢)
KQu(s) v TTIE
ag= Ilmw, (93 v p(7)d7
S X E+u)(ié+v)exp i eyt (96)
respectively. Formulagl) also simplify: ’
N A ¢=\ap-b?
cd=2i >, 20 A ) oinb,, ’
a=1 P'(éa)N(£a) [the analogue of cas)].

N k
D=2i >, A°+—+Ak§aFn( o) VII. CONCLUSIONS
a=1 P/(ga))\(ga)
Therefore, we have been able to develop a general ap-
SE/(s) proach to the mathematical description of cylindrical waves
bo= lim P(s) - (94 starting from the self-consistent Einstein-Maxwell-Weyl sys-
so tem. We obtained the canonical integral equations, as well as

Let us compare the rational-axis-data solutions for the neu}]hee tgrli r:,efr-ilﬁst'?ﬁeq;:gersrgﬁ :ﬁgﬁg?ﬁ;'notheemptrﬁgeblcheao_f
trino electrovacuum obtained in this section and the electroi- ru f' Iilndri ' Iw 1/ %n th qu :] ral 9 Vr f classi Vl
vacuum solutions from the previous section. It is easy tg°r o ¥ cal waves € general case are of classica

notice that in the case=I|=m=>n the former solu. P& similar to those found in the theory of elasticity and

tions are obtainable from the latter by simply changingaerOdynam'C$29’13’14‘ The method developed allowed us

the square rootsy(&—U)(&—v) to the expressions to construct a wide class of exact solutions defined by the
9 ! iU P rational data for the Ernst potentials on the symmetry axis.

V(&= u) (& —v)exi [, §ndr(r—E)]. Thus, the neutrino \ye 'soived the Cauchy problem for some initial data and
generalizations of two particular electrovacuum solutionssoed in particular that the initial disruption disintegrates
from the previous section have the forms into two discontinuities, one of which propagates toward the

4¢(a+a*) 4bg axis of symmetry with subsequent reflection from it, while

=1 the other goes directly to infinity.

A ' A The nontrivial complementary problem of reconstruction
B . . JE=0E=0) of all the metric coefficients entering E¢L) from the gen-
A=2(a+ta)é+(a—a" +2H)V(E—u)(E—v) eralized Ernst potentials, which represents a by far more dif-
u ficult technical procedure than in the pure electrovacuum
 (up(r)dr . .
Xexp i J —E —(a—a*—2¢ case, will be considered elsewhere.
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