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Generating G2 cosmologies with a perfect fluid in dilaton gravity
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We present a method for generating exact diagonal cosmological solutions with two spacelike commuting
Killing vectors (G2 cosmologies! in dilaton gravity coupled to a radiation perfect fluid and with a cosmological
potential of a special type. The method is based on the symmetry group of the system ofG2 field equations.
Several new classes of explicit exact inhomogeneous perfect fluid scalar-tensor cosmologies are presented.
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I. INTRODUCTION

The generalized scalar-tensor theories of gravity are c
sidered as the most natural generalization of general rela
ity. Their importance for current physics is related to stri
theory, which, in its low energy limit, predicts the existen
of a scalar partner of the tensor graviton. A large amoun
research has been devoted to dilaton cosmology@1–21# ~and
references therein!.

The interest in studying inhomogeneous~and anisotropic!
cosmological models is motivated by the following caus
As is well known, the present Universe is not exactly sp
tially homogeneous, not even at large scales. Although
mogeneous models are good approximations of the pre
Universe, there is no reason to assume that such a reg
expansion is suitable for a description of the early Univer
A theoretical explanation of the formation of large sca
structures in the Universe also necessitates inhomogen
models. Contrary to the general belief, it was shown that
existence of large inhomogeneities in the Universe does
necessarily lead to an observable effect left over in the sp
trum of the cosmic microwave background~CMB! @22–25#.
The existence of homogeneous but highly anisotropic c
mological models whose CMB is exactly isotropic was a
demonstrated@26#. In addition, the inhomogeneous cosm
logical solutions allow us to investigate a number of lo
standing questions regarding the occurrence of singulari
the behavior of spacetime in the vicinity of a singularity, a
the possibility of our universe arising from generic initi
data.

In light of the above reasons, the study of inhomogene
cosmological models is necessary and even imperative.
ideal case is to find general classes of inhomogeneous
mological solutions of the field equation without any sym
metry. However, this seems to be a hopeless task due to
complexity of the field equations. That is why we are forc
to assume some simplifications in order to solve the fi
equations. Usually inhomogeneous models with two spa
like commuting Killing vectors~the so calledG2 cosmolo-
gies! are considered. Even for these simple cosmolog
models, few exact perfect fluid solutions are known in ge
eral relativity. The first such class of exact solutions w
found by Wainwright and Goode@27#. Other classes were
later given in@28–31#. All solutions were obtained by as
suming the separation of variables of the metric compone

With regard to the scalar-tensor theories, there are
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known exact inhomogeneous perfect fluidG2 cosmological
solutions. The reason is that the scalar-tensor equations
more complex than the Einstein ones and include arbitr
functions of the dilaton field. That is why finding exact pe
fect fluid solutions which hold for all scalar-tensor theories
unrealistic in the general case. However, for some spe
equations of state it is possible to find exact solutions t
hold for all scalar-tensor theories. In@32#, methods for gen-
erating scalar-tensor stiff perfect fluid cosmologies were
veloped and some explicit solutions were presented in@32#,
@33#, and@34#.

Another equation of state that is realistic and allows us
solve the field equations for all scalar-tensor theories~with a
special form of the dilaton potential! is r53p. It is the pur-
pose of this paper to present a method for generating in
mogeneous perfect fluid diagonalG2 cosmologies with equa
tion of state r53p in scalar-tensor theories. As a
illustration and important consequence of the method, n
classes of exact inhomogeneous perfect fluidG2 cosmologi-
cal solutions are also presented for all scalar-tensor theo

II. SOLUTION GENERATING

The general form of the extended gravitational action
scalar-tensor theories is

S5
1

16pG*
E d4xA2g̃@F~F!R̃2Z~F!g̃mn]mF]nF

22U~F!#1Sm@Cm ;g̃mn#. ~1!

Here,G* is the bare gravitational constant, andR̃ is the
Ricci scalar curvature with respect to the spacetime me
g̃mn . The dynamics of the scalar fieldF depends on the
functionsF(F), Z(F), and U(F). In order for the gravi-
tons to carry positive energy the functionF(F) must be
positive. The non-negativity of the energy of the dilaton fie
requires that 2F(F)Z(F)13@dF(F)/dF#2>0. The action
of matter depends on the material fieldsCm and the space-
time metric g̃mn . It should be noted that the stringy gene
ated scalar-tensor theories, in general, admit a direct inte
tion between the matter fields and the dilaton in the Jor
~string! frame @3#. Here we consider the phenomenologic
case when the matter action does not involve the dilaton fi
in order for the weak equivalence principle to be satisfi
©2003 The American Physical Society21-1
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However, the method we present here holds for the gen
case since we consider a radiation fluid with a tracel
energy-momentum tensor.

It is much more convenient from a mathematical point
view to analyze the scalar-tensor theories with respect to
conformally related Einstein frame given by the metric

gmn5F~F!g̃mn . ~2!

Further, let us introduce the scalar fieldw ~the so called
dilaton! via the equation

S dw

dF D 2

5
3

4 S dln~F~F!!

dF D 2

1
Z~F!

2F~F!
~3!

and define

A~w!5F21/2~F!, 2V~w!5U~F!F22~F!. ~4!

In the Einstein frame the action~1! takes the form

S5
1

16pG*
E d4xA2g@R22gmn]mw]nw24V~w!#

1Sm@Cm ;A 2~w!gmn#, ~5!

where R is the Ricci scalar curvature with respect to t
Einstein metricgmn .

The Einstein frame field equations are then

Rmn2
1

2
gmnR58pG* Tmn12]mw]nw

2gmngab]aw]bw22V~w!gmn ,

¹m¹mw524pG* a~w!T1
dV~w!

dw
, ~6!

¹mTn
m5a~w!T]nw.

Here a(w)5dln@A(w)#/dw and the Einstein frame
energy-momentum tensorTmn is related to the Jordan fram
one T̃mn via Tmn5A 2(w)T̃mn . In the case of a perfect fluid
one has

r5A 4~w!r̃,

p5A 4~w! p̃, ~7!

um5A 21~w!ũm .

In the present paper we consider spacetimes admit
two hypersurfaces and mutually orthogonal Killing vecto
K15]/]y andK25]/]z. We also require the dilaton field t
satisfy

LK1
w5LK2

w50 ~8!

whereLK is the Lie derivative along the Killing vectorK.
The metric can be presented in the Einstein-Rosen fo
10402
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ds25D~ t,x!@2dt21dx2#

1B~ t,x!@C~ t,x!dy21C21~ t,x!dz2# ~9!

and the fluid velocity is given by

u5D21/2
]

]t
. ~10!

In what follows we will consider a scalar potential of th
form V(w)5L5const@i.e., U(F)52LF2(F)].

Under all these assumptions we obtain the following s
tem of partial differential equations:

2] t
2lnD1]x

2lnD1] tlnD] tlnB2] t
2lnB2

] t
2B

B
1]xlnD]xlnB

2~] tlnC!258pG* ~r13p!D14~] tw!224LD, ~11!

] t
2lnD2]x

2lnD1] tlnD] tlnB1]xlnD]xlnB2]x
2lnB2

]x
2B

B

2~]xlnC!258pG* ~r2p!D14~]xw!214LD,
~12!

] tlnB]xlnD1] tlnD]xlnB1] tlnB]xlnB

22
] t]xB

B
2] tlnC]xlnC54] tw]xw, ~13!

] t
2B

B
2

]x
2B

B
58pG* ~r2p!D14LD,

~14!

1

B
] t~B] tlnC!2

1

B
]x~B]xlnC!50, ~15!

1

B
] t~B] tw!2

1

B
]x~B]xw!50. ~16!

The above system of partial differential equations~11!–
~16! is invariant under the group of symmetries Iso(R 2). Let
us introduce

X5S lnC

2w
D PR 2. ~17!

The explicit action of the group is given as follows:

X→MX1j ~18!

whereMPO(2) andjPR 2.
The group of symmetries can be used to generate

solutions from known ones, especially to generate soluti
with a nontrivial dilaton field from pure general relativist
G2 cosmologies.

The subgroup of translations corresponds to a cons
shift of the dilaton field (w→w1const)and to a constan
rescaling of the metric functionC(C→const3C). That is
why, without loss of generality we shall restrict ourselves
the subgroupSO(2)PIso(R 2) consisting of the matrices
1-2
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M5S cos~u! sin~u!

2sin~u! cos~u!
D . ~19!

The remaining discreteZ2 subgroup corresponds to the tran
formationC→C21 or w→2w.

Let us consider an arbitrary solution of theG2 Einstein
equations with a radiation perfect fluid and a cosmologi
term:

dsE
25DE~ t,x!@2dt21dx2#

1BE~ t,x!@CE~ t,x!dy21CE
21~ t,x!dz2#, ~20!

rE5rE~ t,x!, ~21!

uE
m5uE

m~ t,x!. ~22!

The SO(2) transformation then generates a new Einst
frame scalar-tensor solution as follows:

ds25DE~ t,x!@2dt21dx2#

1BE~ t,x!@C~ t,x!dy21C21~ t,x!dz2#, ~23!

r5rE , ~24!

um5uE
m , ~25!

w52
1

2
sin~u!lnCE , ~26!

where

lnC5cos~u!lnCE . ~27!

The Z2 transformations can be used to restrict1 the range
of the parameteru to 0<u<p. Let us note that for the
particular valueu5p/2 we obtain plane symmetric solu
tions.

The Jordan frame solutions are given by

F@F~ t,x!#5A 2@2sin~u!lnCE~ t,x!#, ~28!

ds̃25F21~F!ds2, ~29!

r̃5F2~F!rE , ~30!

ũm5F21/2~F!uE
m . ~31!

In the above considerations the metric of the (t,x) space
was taken to be in an isotropic form. It should be noted~and
it is easy to see! that the solution generating method is a
plicable for an arbitrary form of the (t,x)-space metric.

1When the coordinatesy and z have the same topology we ca
restrict the range ofu to 0<u<p/2 since the metric is invarian
under the simultaneous transformationsC(t,x)→C21(t,x)
andy→z.
10402
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III. EXAMPLES OF EXPLICIT EXACT INHOMOGENEOUS
COSMOLOGICAL SOLUTIONS

As an illustration of the solution generating method w
consider some classes of explicit exact inhomogene
scalar-tensor cosmologies withL50.

A. Class 1

Let us consider Senovilla’s solution@29# ~see also@28#!:

dsE
25T4~ t !cosh2~3ax!@2dt21dx2#

1BE~ t,x!@T3~ t !sinh~3ax!dy2

1T23~ t !sinh21~3ax!dz2#, ~32!

8pG* rE515a2T24~ t !cosh24~3ax!, ~33!

uE5T22~ t !cosh21~3ax!
]

]t
, ~34!

where

T~ t !5l1cosh~at!1l2sinh~at!, ~35!

BE~ t,x!5T~ t !sinh~3ax!cosh22/3~3ax!, ~36!

anda.0, l1, andl2 are arbitrary constants.
The solution generating method gives the followin

scalar-tensor solution:

ds25T4~ t !cosh2~3ax!@2dt21dx2#

1BE~ t,x!@T3cos(u)~ t !sinhcos(u)~3ax!dy2

1T23cos(u)~ t !sinh2cos(u)~3ax!dz2#, ~37!

w52
1

2
sin~u!ln@T3~ t !sinh~3ax!#. ~38!

B. Class 2

Wainwright and Goode’s solution@27# is given by

dsE
25sinh4~2qt!cosh2~3qx!@2dt21dx2#

1BE~ t,x!@ tanh3~qt!dy21tanh23~qt!dz2#, ~39!

8pG* rE515q2sinh24~2qt!cosh24~3qt!, ~40!

uE5sinh22~2qt!cosh21~3qx!
]

]t
, ~41!

where

BE~ t,x!5sinh~2qt!cosh22/3~3qx! ~42!

andq.0 is an arbitrary constant.
The corresponding scalar-tensor image of that solutio

the following:
1-3
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ds25sinh4~2qt!cosh2~3qx!@2dt21dx2#1BE~ t,x!

3@ tanh3cos(u)~qt!dy21tanh23cos(u)~qt!dz2#, ~43!

w~ t,x!52
3

2
sin~u!ln@ tanh~qt!#. ~44!

C. Class 3

The solution found by Davidson is the following@31#:

dsE
252~11x2!6/5dt21t4/3~11x2!2/5dx2

1BE~ t,x!@~ tx!dy21~ tx!21dz2#, ~45!

8pG* rE5
12

5
t24/3~11x2!212/5, ~46!

uE5~11x2!23/5
]

]t
, ~47!

where

BE~ t,x!5t1/3~11x2!22/5x. ~48!

Its scalar-tensor image is given by

ds252~11x2!6/5dt21t4/3~11x2!2/5dx2

1BE~ t,x!@~ tx!cos(u)dy21~ tx!2cos(u)dz2#, ~49!

w~ t,x!52
1

2
sin~u!ln~ tx!. ~50!

D. Class 4

Here as a seed solution we take Collins’s solution of
anchi type VIh @35#:

dsE
252dt21t2dx21BE~t,x!@tA3b/2eA3x/2dy2

1t2A3b/2e2A3x/2dz2#, ~51!

8pG* rE5
3

8

12b2

t2 , ~52!

uE5
]

]t
~53!

whereBE(t,x) is given by
ta

10402
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BE~t,x!5t1/2ebx/2 ~54!

and 0,b,1.
The corresponding Einstein frame scalar-tensor solutio

the following:

ds252dt21t2dx21BE~t,x!@tA3bcos(u)/2

3eA3cos(u)x/2dy21t2A3bcos(u)/2e2A3cos(u)x/2dz2#,

~55!

w~t,x!52
A3

4
sin~u!~blnt1x!. ~56!

The Einstein frame metric is homogeneous while the
laton field is not constant over the surface of homogene
So we have a ‘‘tilted’’ cosmological solution in the Einste
frame. The Jordan frame solution, however, is inhomo
neous.

We could generate many more examples of exact s
tions which are images of the knownG2 Einstein cosmolo-
gies ~see, for example, the solutions given in@30,36#, and
@37#!. However, the explicit solutions given here are rep
sentative and qualitatively cover the general case.

It should be noted that the properties of the solutio
found in the physical Jordan frame depend strongly on
particular scalar-tensor theory and need a separate inves
tion.

IV. CONCLUSION

In this paper we have presented a simple and effec
method for generating exactG2 cosmologies in scalar-tenso
theories with a constant dilaton potential,V(w)5const, and
coupled to a perfect fluid with an equation of stater53p.
Several classes of explicit exact solutions have been giv
These solutions are the only known explicit perfect flu
scalar-tensorG2 cosmologies.

It is worth noting that the solutions can be found by a
suming separation of variables of the metric compone
@38#. However, the way we derived the solutions here
much more elegant and is applicable to more general c
when the metric components are not separable.
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