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Generating G, cosmologies with a perfect fluid in dilaton gravity
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We present a method for generating exact diagonal cosmological solutions with two spacelike commuting
Killing vectors (G, cosmologiesin dilaton gravity coupled to a radiation perfect fluid and with a cosmological
potential of a special type. The method is based on the symmetry group of the systenfield equations.
Several new classes of explicit exact inhomogeneous perfect fluid scalar-tensor cosmologies are presented.
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[. INTRODUCTION known exact inhomogeneous perfect flg cosmological
solutions. The reason is that the scalar-tensor equations are

The generalized scalar-tensor theories of gravity are conmore complex than the Einstein ones and include arbitrary
sidered as the most natural generalization of general relatiiunctions of the dilaton field. That is why finding exact per-
ity. Their importance for current physics is related to stringfect fluid solutions which hold for all scalar-tensor theories is
theory, which, in its low energy limit, predicts the existenceunrealistic in the general case. However, for some special
of a scalar partner of the tensor graviton. A large amount ofquations of state it is possible to find exact solutions that
research has been devoted to dilaton cosmolag21] (and  hold for all scalar-tensor theories. [82], methods for gen-
references therejn erating scalar-tensor stiff perfect fluid cosmologies were de-

The interest in studying inhomogenedasd anisotropic ~ veloped and some explicit solutions were presentef@a),
cosmological models is motivated by the following causes[33], and[34].

As is well known, the present Universe is not exactly spa- Another equation of state that is realistic and allows us to
tially homogeneous, not even at large scales. Although hgsolve the field equations for all scalar-tensor theofveish a
mogeneous models are good approximations of the presefpecial form of the dilaton potentjas p=3p. It is the pur-
Universe, there is no reason to assume that such a regulg@se of this paper to present a method for generating inho-
expansion is suitable for a description of the early Universemogeneous perfect fluid diagor@}, cosmologies with equa-

A theoretical explanation of the formation of large scaletion of state p=3p in scalar-tensor theories. As an
structures in the Universe also necessitates inhomogeneoiliéistration and important consequence of the method, new
models. Contrary to the general belief, it was shown that thelasses of exact inhomogeneous perfect flaidcosmologi-
existence of large inhomogeneities in the Universe does ndtal solutions are also presented for all scalar-tensor theories.
necessarily lead to an observable effect left over in the spec-

trum of_the cosmic microwave backgro_uf@MB)_[ZZ—za. Il. SOLUTION GENERATING

The existence of homogeneous but highly anisotropic cos-

mological models whose CMB is exactly isotropic was also The general form of the extended gravitational action in
demonstrated26]. In addition, the inhomogeneous cosmo- scalar-tensor theories is

logical solutions allow us to investigate a number of long

standing questions regarding the occurrence of singularities, 1 4 = ~ ~

the behavior of spacetime in the vicinity of a singularity, and ~ S= 167G f d X\/__Q[F(q))R_Z(CD)gW&u‘Dﬁv‘D

the possibility of our universe arising from generic initial *

data. —2U(®)]+ Sy V3,0, ). &)

In light of the above reasons, the study of inhomogeneous
cosmological models is necessary and even imperative. The . o ~
ideal case is to find general classes of inhomogeneous COR; nge,(};* IS thetbare gtrr?vnatlon?ltcot?]stant, aths the i
mological solutions of the field equation without any sym-_ icct scalar CUI‘V? ure with respec _0 € Spacelime metrc
metry. However, this seems to be a hopeless task due to tif:.»- The dynamics of the scalar field depends on the
complexity of the field equations. That is why we are forcedfunctions F(®), Z(®), andU(®). In order for the gravi-
to assume some simplifications in order to solve the fieldons to carry positive energy the functidgh(®) must be
equations. Usually inhomogeneous models with two spacg?0sitive. The non-negativity of the energy of the dilaton field
like commuting Killing vectors(the so calleds, cosmolo-  requires that E(®)Z(®)+3[dF(®)/d®]*=0. The action
gies are considered. Even for these simple cosmologicaPf matter depends on the material fielts, and the space-
models, few exact perfect fluid solutions are known in gentime metricg,,, . It should be noted that the stringy gener-
eral relativity. The first such class of exact solutions wasated scalar-tensor theories, in general, admit a direct interac-
found by Wainwright and Goodg27]. Other classes were tion between the matter fields and the dilaton in the Jordan
later given in[28—31]. All solutions were obtained by as- (string frame[3]. Here we consider the phenomenological
suming the separation of variables of the metric componentsase when the matter action does not involve the dilaton field

With regard to the scalar-tensor theories, there are na order for the weak equivalence principle to be satisfied.
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However, the method we present here holds for the general
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ds2=D(t,x)[ — dt>+dx?]

case since we consider a radiation fluid with a traceless

energy-momentum tensor.

It is much more convenient from a mathematical point of
view to analyze the scalar-tensor theories with respect to th

conformally related Einstein frame given by the metric

9,,=F(®)g,,. (2)

Further, let us introduce the scalar field(the so called
dilaton) via the equation

de\? 3[dIn(F(®))\? Z(P)
(E) "4\ do ) 2F (D) @
and define
Al@)=F (@), 2V(e)=U(P®)F 2(D). (4
In the Einstein frame the actiail) takes the form
5= 16nG. f d*x\=g[R—29""d,0d,0—A4V(¢)]
+Sul Vs A(9)9,00], (5)

where R is the Ricci scalar curvature with respect to the

Einstein metricg,,, .
The Einstein frame field equations are then

R=87G,T,,+2d,¢d,¢

R,uv_ Eg,u,v * | uv
- gyvgaﬁaaq’&ﬂ@_ ZV(QD)g,uva

dV(e)
de '’

ViV, o=—47G, a(@)T+ (6)

V. T =a(¢)Td,e.

Here a(¢)=dIn[A(¢)]/d¢ and the Einstein frame

+B(t,x)[C(t,x)dy?+ C~(t,x)d 7] 9
%nd the fluid velocity is given by
J
-2

u=D"2— (10

In what follows we will consider a scalar potential of the
form V(¢)=A=const[i.e., U(®)=2AF3(d)].

Under all these assumptions we obtain the following sys-
tem of partial differential equations:

2 2 2 &tZB
—dfInD + d5InD + ¢,InD ¢,InB— g5 InB— B +d,InDd,InB

—(&InC)?=87G, (p+3p)D+4(d¢)>—4AD, (11)

2
X

42InD — 92InD + &,InD &InB+ 3,InD d,InB — 42InB—

B
—(,InC)?=87G,, (p—P)D+4(dxp) 2+ 4AD,
(12)
dInBa,InD + 3;InD 9,InB + 9,InB4,InB
9;04B
-2 B —InCa,INnC=40,p4 ¢, (13
"B 5B 87G D+4AD
B B ~87C«(p—p)D+ ,
(14
1 1
1 1
Eﬁt(B&t‘P) - E‘?x(B&xQD) =0. (16)

The above system of partial differential equatidtas)—

energy-momentum tensdr,, is related to the Jordan frame (16 is invariant under the group of symmetries I8). Let
oneT,, via TWZAZ((p)TM. In the case of a perfect fluid us introduce

one has
p=A%e)p,
p=A%e)p, )

UMZ.A*l(go)lNJM.

InC

2
20 eR”.

X= (17

The explicit action of the group is given as follows:
X—MX+¢ (18

whereM e O(2) andée R 2.

In the present paper we consider spacetimes admitting The group of symmetries can be used to generate new
two hypersurfaces and mutually orthogonal Killing vectorssolutions from known ones, especially to generate solutions
K,=dldy andK,=g/9z. We also require the dilaton field to with a nontrivial dilaton field from pure general relativistic

satisfy
Ly, @=L, =0 ®

where Ly is the Lie derivative along the Killing vectdf.

G, cosmologies.

The subgroup of translations corresponds to a constant
shift of the dilaton field ¢— ¢+ const)and to a constant
rescaling of the metric functio®€(C—const< C). That is
why, without loss of generality we shall restrict ourselves to

The metric can be presented in the Einstein-Rosen formthe subgrousO(2) e Iso(R ?) consisting of the matrices
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IIl. EXAMPLES OF EXPLICIT EXACT INHOMOGENEOUS

cog ) sin(6)
= . (19 COSMOLOGICAL SOLUTIONS

| —sin(6) cog6)

o . As an illustration of the solution generating method we
The remaining discretg, subgroup corresponds to the trans- consider some classes of explicit exact inhomogeneous

formationC—C™* or o— —¢. scalar-tensor cosmologies with=0.
Let us consider an arbitrary solution of i@, Einstein

equations with a radiation perfect fluid and a cosmological A. Class 1

term:

Let us consider Senovilla’s solutiq29] (see alsd28]):

— _ A2 2
dse=De(t X[~ dt*+dx’] dsz=T*(t)cosH(3ax)[ —dt®+dx?]
+Bg(t,x)[ T3(t)sinh(3ax)dy?

pe=pe(t,X), (22) +T73(t)sinh™Y(3ax)d ], (32

+Be(t,x)[Ce(t,x)dy?>+ Cc X(t,x)dZ], (20

UE=UE(t,X). (22 87G, pg=15a2T ~4(t)cosh %(3ax), (33

The SQ(2) transformation then generates a new Einstein J
frame scalar-tensor solution as follows: ug=T ?(t)cosh (3ax) i (34)

ds?=Dg(t,x)[ —dt?+dx?]
+Be(t,X)[C(t,x)dy?+C(t,x)dZ?], (23

where

T(t)=\,cosHlat)+\,sinh(at), (35
P=pE, (24)
Be(t,x)=T(t)sinh(3ax)cosh ?¥(3ax), (36)
ut=u#, (25
anda>0, \4, and\, are arbitrary constants.
1 The solution generating method gives the following
¢=—5sin(0)InCe, (26)  scalar-tensor solution:
where ds?=T4(t)cosH(3ax)[ — dt?+dx?]
3cos(p) i 0s(6) 2
INC=cog 6)InCe . 27 +Be(t,x)[T (t)sinHFs¥(3ax)dy
. . +T 739030 (t)sinh*°*0)(3ax)d 2], (37)
The Z, transformations can be used to restritte range
of the paramete® to O<é<m. Let us note that for the 1
particular valuefd= m/2 we obtain plane symmetric solu- <p=—§sin( O)In[ T3(t)sinh(3ax)]. (39
tions.
The Jordan frame solutions are given by
5 ) B. Class 2
FLO(X)]= AT = sin(6)InCe(t, )], @8 Wainwright and Goode’s solutiof27] is given by
ds’=F }(®)ds, (29 ds2=sintf(2qt)cosR(3qx)[ — dt2+dx?]
~ 2 —3
S=F2(d)pe, (30) +Bg(t,x)[tank(qt)dy?+tanh 3(qt)dZ*], (39)
~ _ 2ain 4 _4
Ui =F Y2y 31) 87G, pe=15g-sinh™“(2qgt)cosh *(3qt), (40
In the above considerations the metric of thex) space —sinh 2(2qt i3 ﬂ 41
was taken to be in an isotropic form. It should be ndtaad Ug=sin(2qt)cosh (3qx) at’ (41)
it is easy to seethat the solution generating method is ap-
plicable for an arbitrary form of thet(x)-space metric. where
Be(t,x)=sinh(2qt)cosh #3(3qgx) (42)

When the coordinateg and z have the same topology we can
restrict the range of to 0< #<=/2 since the metric is invariant andqg>0 is an arbitrary constant.
under the simultaneous transformation€(t,x)— C~(t,x) The corresponding scalar-tensor image of that solution is
andy—z. the following:
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ds?=sintf(2qt)cosi(3gx)[ — dt?+ dx?]+ Bg(t,x)
X[ tank 3@ (qt)dy?+ tanh 30 (qt)d 2], (43)

go(t,x)=—gsin(a)ln[tanr(qt)]. (44)

C. Class 3
The solution found by Davidson is the following1]:

dst=— (1+x%)93d 2+ t43( 1+ x2)?*dx?

+Be(t,x)[(tx)dy?+ (tx) " *dZ], (45

12
87G, pe= Et_4/3(1+xz)_12/5' (46)
9
ug=(1+x?) 35—, 47
at
where
Be(t,x)=tY3(1+x?)~?. (48)

Its scalar-tensor image is given by
ds”= — (1+x%)%3dt*+ t¥3( 1+ x2) ?dx*

+Be(t, [ (1x)Ody?+ (tx) ~Od 2], (49
<p(t,x)=—%sin( 0)In(tx). (50

D. Class 4

Here as a seed solution we take Collins’s solution of Bi-

anchi type Vj, [35]:
ds2=—d7r?+ 72dx?+ Be(7,x)[ 732 32q y2

o VB0i2g = 3xi2g 21 (51
31-b?
e’ (53)

whereBg(,X) is given by

PHYSICAL REVIEW D68, 104021 (2003

Be(,x) =722 (54)

and O<b<1.
The corresponding Einstein frame scalar-tensor solution is
the following:

ds?= —dr?+ r2dx?+ Bg(7,x)[ r'30cosO)/2
< ev‘?cos(a)xlzd y2 4 \s‘§bcos(0)lzef \@cos(a)xlzd 22]

(59

cp(r,x)z—\/Tgsin(e)(blnrer). (56)

The Einstein frame metric is homogeneous while the di-
laton field is not constant over the surface of homogeneity.
So we have a “tilted” cosmological solution in the Einstein
frame. The Jordan frame solution, however, is inhomoge-
neous.

We could generate many more examples of exact solu-
tions which are images of the knows, Einstein cosmolo-
gies (see, for example, the solutions given[i80,36, and
[37]). However, the explicit solutions given here are repre-
sentative and qualitatively cover the general case.

It should be noted that the properties of the solutions
found in the physical Jordan frame depend strongly on the
particular scalar-tensor theory and need a separate investiga-
tion.

IV. CONCLUSION

In this paper we have presented a simple and effective
method for generating exa@, cosmologies in scalar-tensor
theories with a constant dilaton potenti¥l,¢)=const, and
coupled to a perfect fluid with an equation of state 3p.
Several classes of explicit exact solutions have been given.
These solutions are the only known explicit perfect fluid
scalar-tensos, cosmologies.

It is worth noting that the solutions can be found by as-
suming separation of variables of the metric components
[38]. However, the way we derived the solutions here is
much more elegant and is applicable to more general cases
when the metric components are not separable.
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