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Gauge-invariant Hamiltonian dynamics of cylindrical gravitational waves
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The model of cylindrical gravitational waves is employed to work out and check a recent proposal of how
a diffeomorphism-invariant Hamiltonian dynamics is to be constructed. The starting point is the action by
Ashtekar and Pierri because it contains the boundary term that makes it differentiable for nontrivial variations
at infinity. With the help of parametrization at infinity, the notion of gauge transformation is clearly separated
from that of asymptotic symmetry. The symplectic geometry of asymptotic symmetries and asymptotic time is
described and the role of the asymptotic structures in defining a zero-motion frame for the Hamiltonian
dynamics of Dirac observables is explained. Complete sets of Dirac observables associated with the asymptotic
fields are found and the action of the asymptotic symmetries on them is calculated. The construction of the
corresponding quantum theory is sketched: the Fock space, operators of asymptotic fields, the Hamiltonian and
the scattering matrix are determined.
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I. INTRODUCTION

A deep problem in quantum gravity is the dependence
the constructed quantum theory on the choice of coordina
A famous example of a quantization method based on su
choice of gauge is the Arnowitt-Deser-Misner reduction@1#.
There have been ideas of how this problem could be avoid
such as Dirac’s operator constraint equations@2#, Berg-
mann’s work on Dirac observables@3#, the Becchi-Rouet-
Stora-Tyutin~BRST! method@4#, Euclidean quantum gravity
@5# etc. None of these methods has as yet been really
cessful because new problems always emerged.

In this paper, we focus on the method based on the D
observables. In a sense, this is the most straightforward
all variables that are used have to be gauge invariant. H
ever, changes of coordinates include changes of time so
the gauge invariance entails time independence: Dirac
servables must be integrals of motion. Two problems that
related to this have been noticed already by Bergmann@3#:
‘‘ frozen dynamics’’ and scarcity: the dynamics of Dirac ob-
servables is trivial—they just stay constant, and it is diffic
to find anysuch quantity in general relativity. More recentl
the nonlocality of such variables has been proved@6#: the
expression for any Dirac observable in terms of local fie
must contain derivatives of all orders.

As for the ‘‘frozen dynamics,’’ Rovelli’s idea of ‘‘evolv-
ing constants of motion’’@7# has shown one way out of th
problem. Another, but not completely unrelated way, is ba
on the observation that any Hamiltonian formulation of d
namics needs a frame@8#. A possible frame for a nontrivia
Hamiltonian dynamics of Dirac observables has been sp
fied in @9# and @10# under the assumption that there is
symmetry. In@11#, it is shown that even an asymptotic sym
metry suffices, at least for a simple finite-dimensional mod

Concerning the scarcity, there have been different prop
als of how Dirac observables could be constructed~e.g.,
@12#!. Also, in the case of asymptotically flat models, the
0556-2821/2003/68~10!/104013~16!/$20.00 68 1040
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are even complete sets of natural constants of mot
namely the in- and out-fields. These quantities have b
described by DeWitt@13# within his covariant perturbation
theory and by Ashtekar@14# in general.

Finally, the nonlocality of the kind found need not alwa
lead to a real problem. For example, in any nontrivial qua
tum field theory in Minkowski spacetime, the expressions
the in- and out-fields in terms of the local fields at a fin
time are also badly nonlocal. However, such expressions
not needed. What is needed are the expressions of the in
out-fields in the in- and out-regions, respectively, which a
local.

In the present paper, we are going to strengthen the p
made in favor of the Hamiltonian frame based on asympto
symmetries. We study a field model, extending thus the ca
in which the idea works to infinite-dimensional systems~see
also@15#!. The simplified model that we investigate consis
of cylindrical gravitational waves, also called sometim
Einstein-Rosen waves~see, e.g.,@16# and@17#!. It seems that
this model can be used as an example of almost everyth
Thus, Kucharˇ has studied the embedding variables in cano
cal theory employing the waves@18#. Torre has expressed
complete set of Dirac observables in terms of local fie
@19#. Ashtekar and Pierri have found a considerable sim
fication of Hamiltonian dynamics of the waves using a su
able gauge@20#.

Most important, in @20# an asymptotic boundary term
analogous to the ADM energy has been added to the ac
for the first time. This is an achievement because the cy
drical wave spacetimes are not asymptotically flat due to
cylindrical symmetry so that the well-known results in ge
eral relativity cannot be used. The model can, neverthel
be reduced from four to three dimensions by removing
direction of the translational part of the cylindrical symm
try. The resulting system has the form of gravity coupled t
scalar field and the geometry of the three-dimensional sp
time is asymptotically flat in certain sense~locally asymp-
©2003 The American Physical Society13-1
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totically flat!. This has been shown in@21# and @22#, where
the boundary term has been found. Our analysis is, there
based on the results of Ashtekar and Pierri.

In Sec. II, the model of free Newtonian particle moving
one-dimensional space is used to explain how a symm
provides a frame for a nontrivial Hamiltonian dynamics
integrals of motion. The relevant notions and relations
introduced. The method of reduction by a choice of gaug
also described within this framework.

Section III summarizes the well-known results on the c
lindrical waves that we shall need, focusing on t
asymptotic properties. Section IV reviews and modifies
results of Ashtekar and Pierri so that they become compa
with the theory of Sec. II. The meaning ofasymptotic sym-
metryandasymptotic timeare explained and their relation t
‘‘ordinary’’ symmetry and time is clarified. The way in whic
the asymptotic symmetry and time determine a frame o
Hamiltonian dynamics of Dirac observables for the cylind
cal waves is described. An important new point made in S
IV is a clean separation between gauge transformations
symmetries. In@20,23# and @11#, the group of diffeomor-
phisms has been divided into gauges and symmetries acc
ing to the action of its elements at infinity. However, it h
never been completely clear where the boundary is to
drawn. When we tried to apply this idea to the cylindric
waves, some strange paradoxes have appeared. It has t
out that the action must be parametrized at infinity simila
as in the case of geometrodynamics of Schwarzschild b
holes@24#: privileged spacetime coordinates at infinity mu
be added to the set of canonical coordinates of the ph
space. Then, all gauge transformations including repar
etrizations at infinity are generated by constraints, while
asymptotic symmetries are generated by expressions in
momenta conjugate to the privileged coordinates at infin

The Poisson algebra of the asymptotic Dirac observa
listed in Sec. III is calculated in Sec. V. The physical pha
space is defined by a complete set of Dirac observables
their Poisson brackets. In Sec. VI, the action of t
asymptotic symmetries on the physical phase space is fo
and the canonical generator of the continuous group
asymptotic time translations is written down. The cor
sponding Hamiltonian dynamics in the physical phase sp
is described. It may seem paradoxical that all these gau
invariant structures~complete set of Dirac observables, the
Poisson brackets and the action of asymptotic symmetry
them! can be and, indeed, have been calculated from
gauge-dependent action obtained by Ashtekar and Pierri
a choice of gauge~cf. also@15#!. The justification thereof is
given in Sec. IV.

Finally, Sec. VII gives a brief sketch of how the results
Secs. V and VI can be employed for one of possible c
structions of quantum theory. The Fock space and the b
operators on it are specified. The Hamiltonian operator
the scattering matrix are determined.

II. DYNAMICS OF DIRAC OBSERVABLES
IN A ONE-DIMENSIONAL MODEL

A finite-dimensional example can illustrate the main a
pects of our method. The underlying geometric framew
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has been developed for general finite-dimensional system
Refs.@23,9,25# and @10#.

Consider a free Newtonian particle of unit mass in on
dimensional space evolving in the Newtonian timeT. Let its
position be denoted byQ. The system is described by th
action

S@Q#5
1

2 ET1

T2
dT~Q,T!2. ~2.1!

This action is invariant under the translation

T→T1t ~2.2!

for any time T and any real parametert. This is a one-
dimensional group of symmetry that will play a crucial ro
in what follows. The symmetry implies via Noether theore
the conservation of energy

E5
1

2
Q,T

2 .

The corresponding Hamiltonian action is

S@Q,PQ#5 E
T1

T2
dTS PQQ,T2

1

2
PQ

2 D . ~2.3!

The one-formQ5PQdQ contained in the action is called th
Liouville form. The space with the coordinatesQ andPQ is
the physical phase spaceG1; it carries the symplectic two-
form V15dQ5dPQ`dQ.

The equations of motion implied by action~2.3! are

Q,T5PQ , ~2.4!

PQ,T50. ~2.5!

Their general solution is

Q~T!5q1pT, ~2.6!

PQ~T!5p, ~2.7!

where (q,p) P R2 are constant for a particular solution. W
can, therefore, define thespace of solutionsG2 as R2 with
coordinatesq andp. An important observation is thatG2 also
carries a symplectic structure. Indeed, Eqs.~2.6! and ~2.7!
can be considered as aT-dependent canonical transformatio
because they imply

PQdQ5pdq1d
~Q2q!2

2T
,

where, of course, the action of the differentiald ‘‘hits’’ only
the variablesQ andq, not T; (Q2q)2/2T is the generating
function. The resulting symplectic formV2 of G2 is dp
`dq. The dynamical changedd within the time increment
dT in G2 is trivial:

ddp50, ddq50. ~2.8!
3-2
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We can also consider the solutions~2.6! and ~2.7! as de-
fining two scalar fields on the one-dimensional time ma
fold R with coordinateT, the so-calledbackground manifold.
The push forward by the symmetry transformation~2.2! acts
on these fields as follows

Q~T!°Q~T2t!, ~2.9!

PQ~T!°PQ~T2t!. ~2.10!

This symmetry action preserves, of course, the property
being a solution of the equations of motion; ifq and p de-
scribe the untransformed solution andq8 and p8 the trans-
formed one, then Eqs.~2.6! and ~2.7! yield

q85q2pt, p85p. ~2.11!

This action of the symmetry transformation on the spaceG2
is canonical and is generated by the function2p2/2 ~as the
Poisson brackets show!:

dsq52pdt5H q,2
dt

2
p2J , ~2.12!

dsp505H p,2
dt

2
p2J , ~2.13!

whereds is the change caused by the symmetry transform
tion.

The key observation is now the following. If we compa
the time change inq andp due to the dynamics@Eq. ~2.8!#
with that due to the symmetry@~Eqs.~2.12! and ~2.13!#, we
find that the relative time changesddq2dsq andddp2dsp
are formally identical to the original dynamics generated
the HamiltonianPQ

2 /2 in G1.
The description of the dynamics of our model can

made generally covariant byparametrization ~see, e.g.,
@26#!. An arbitrary timet5t(T) is introduced and the actio
~2.1! is brought into theconstraint-Hamiltonian form~i.e.,
the Hamiltonian is a linear combination of constra
functions—a typical property of generally covariant system
see@4#!:

S@Q,PQ ,T,PT ;N#

5 E
t1

t2
dtXPQQ,t1PTT,t2NS PT1

1

2
PQ

2 D C.
~2.14!

Let the spaceP consist of all initial dataQ, PQ , T and PT
for the field equations implied by action~2.14!. The spaceP
equipped with the symplectic formVP derived from the
Liouville form of action ~2.14!,

VP5dPQ`dQ1dPT`dT,

is called theextended phase spaceof the system.N is a
Lagrange multiplier andC50 is a constraint with
10401
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C5PT1
1

2
PQ

2 ~2.15!

being the constraint function. The surfaceC in P defined by
the constraint is called theconstraint surface. Since equation
C50 can be solved forPT , we can choose the function
Q, PQ andT as coordinates onC.

The transformations that are canonically genera
by the function H(N)5NC can be considered a
reparametrizations—general changes of the time param
They are, therefore, analogous togauge transformations. The
corresponding gauge group acts along the constraint sur
C. At the same time, itsorbits in C coincide with the solu-
tions ~2.6! and~2.7!. The physical phase spaceG2 of gauge-
equivalent solutions can, therefore, be identified with
quotient of the constraint surface by the gauge orbits:

G25
C

Orb
. ~2.16!

In coordinates (q,p) on G2 and (Q,PQ ,T) on C, the projec-
tion Proj(C → G2) derived from Eq.~2.16! is

~Q,PQ ,T!PC°~q,p!5~Q2PQT,PQ! P G2 . ~2.17!

The symplectic formV2 on G2 can be obtained fromVP as
follows. First,VP is pulled back fromP to C. This yields a
two-form VC degenerated along the gauge orbits inC. The
projection Proj(C → G2) in Eq. ~2.17! determines the symplec

tic form V2 as the unique solution of the equationVC
5Proj(C → G2)* V2 where * denotes the pull-back mapping.

We shall also need the concept oftransversal surface
T,C. This is a sections (G2 → C) :G2°C in the sense that

Proj(C→G2)+s (G2→C)5IdG2
~2.18!

with respect to the projection~2.17!. WheneverC admits
such a section, the surfaceT5s (G2 → C)(G2) is a copy of the

physical phase spaceG2. A bijection between any surfaceT
and the physical phase spaceG2 can be defined by restricting
the projection Proj(C → G2) to each particularT. The symplec-

tic form V2 induces through each such bijection a uniq
symplectic formVT . In this way eachT also becomes a
phase space with a symplectic structure that is isomorphi
that of G2. Transversal surfaceT is calledregular if if it is
not tangential to gauge orbits at any of its points. IfT is
defined by the equationF(Q,PQ ,T)50, then the regularity
condition is a non-vanishing Poisson bracket

$F,H~N!%uCÞ0 ;N. ~2.19!

The meaning of the regularity of transversal surfaces sim
is that the gauge condition breaks the gauge completely. S
tems that are not pathological possess many transversal
faces.

One way to quantize a generally covariant system is
reduce it to an unconstrained system of the kind~2.3!. We
3-3
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shall now show two methods of reduction: by a gauge c
dition and via Dirac observables and symmetry.

A. Reduction by a choice of gauge

A gauge conditionis a choice of a particular family o
regular transversal surfaces that foliateC. Let the family be
given by the set of equations

F̃~Q,PQ ,T!5T̃. ~2.20!

For each fixed realT̃, one surfaceTT̃ of the family is defined.
The reduction using the condition~2.20! can proceed as fol
lows. Suppose that a canonical transformation inP is known
between the original variables (Q,PQ ,T,PT) and some ca-
nonical coordinates (q̃,p̃,T̃,P̃) that have been chosen so
to contain T̃. Then, using the regularity condition of th
gauge, one can show that the constraintC50 is solvable
with respect toP̃ and so can equivalently be written as

P̃1H̃~ T̃,q̃,p̃!50,

whereH̃ is some smooth function. The canonical transf
mation brings action~2.3! to the form

S~ q̃,p̃,T̃,P̃,Ñ!5 E
t1

t2
dt@ p̃q̃,t1 P̃T̃,t2Ñ~ P̃1H̃!#,

whereÑ is a new Lagrange multiplier defined by

NC5Ñ~ P̃1H̃!.

Next, T̃ is chosen as the integration variablet and the action
is restricted to the constraint surface. The result is

S̃~ q̃,p̃!5 E
T̃1

T̃2
dT̃~ p̃q̃,T̃2H̃!. ~2.21!

By this, the reduction is finished.
A problem with this kind of reduction is that the ne

variablesq̃, p̃ as well as the new timeT̃ are not the same a
the original variablesQ, PQ andT. Classically, the two ac-
tions ~2.21! and~2.3! are equivalent, because they are rela
by an extended gauge transformation. The two quantum
chanics, however, that are obtained by the standard qu
zation method from them,cannot be unitarily equivalent
@27#: the transformation~2.20! between the respective time
involves operators, while each of the times must be a par
eter in the respective quantum mechanics.

B. Reduction using Dirac observables and symmetry

A Dirac observable o(P) is a functiono:P°R whose
Poisson bracket with the constraintC vanishes when re
stricted toC. Dirac observables are gauge invariant.

The correspondence between Dirac observables onP and
functions onG2 is the following: Each functionf : G2°R
determines a functionf + Proj(C → G2) on the constraint sur
face via the projection mapping~2.17!. In the chart
10401
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(Q,T,PQ) on C such a function has the form

f ~Q2PQT,PQ!. ~2.22!

The next step is to extend this function fromC to P. Let us
denote such an extension byo: P°R. The only condition is
that o be a smooth function onP the values of which coin-
cide with f (Q2PQT,PQ) at C. In this way, the original
function f on G2 defines an equivalence class$o% of functions
o onP. One can show that any two elementso1 ando2 of $o%
satisfy o25o11NC, where N is a smooth function onP
~see, e.g.,@4#!. It also follows immediately from the con
struction thato is constant along orbits so that it is a Dira
observable. Thus, a whole class of Dirac observables co
sponds to one function onG2 ~one often speaks about Dira
observables meaning these classes!.

On the other hand, each Dirac observableo defines via the
restriction toC a function onC that is constant along orbits
Such a function determines, in turn, a unique functionf on
G2.

The Poisson brackets between Dirac observables ca
calculated using the symplectic structure of the exten
phase spaceP. It is easy to show@9# that the Poisson bracke
$o1 ,o2% of two Dirac observables is again a Dirac observa
and that the Poisson brackets$o1 ,o2% and $o11N1C,o2
1N2C% lie in the same class. Thus, the Poisson brack
between the equivalence classes$o% are well defined. More-
over, if the class with the representativeoi corresponds to the
function f i , i 51,2, onG2, and the class with the represe
tative $o1 ,o2% corresponds tof, then

$ f 1 , f 2%G2
5 f ,

as is shown in Ref.@9#. It follows from this that acomplete
set of Dirac observables, together with their Poisson algebr
determine the structure of the physical phase spaceG2. A
complete set of Dirac observables separates gauge orbits
in simple cases can be used as a coordinate system o
quotient spaceC/Orb5G2. For our model, a complete set
formed by the functionso05Q2PQT1N0C and o15PQ
1N1C, where N0 and N1 are smooth functions onP. A
simple calculation gives that the only nontrivial bracket is

$o0 ,o1%511NC,

whereN5$N0 ,o1%1$o0 ,N1%; the Dirac observableso0 and
o1 correspond to the functionsq andp on G2.

The symmetry group~2.2! acts on the extended phas
space as follows

~Q,PQ ,T,PT!°~Q,PQ ,T1t,PT!, ~2.23!

and is, therefore, generated by the momentumPT conjugate
to T. Observe thatPT itself is a Dirac observable; one ca
prove @9# that any continuous symmetry group is genera
by a Dirac observable. Now,PT has a nontrivial action on
Dirac observables. For example,

$o0 ,PT%52o11N̄0C,
3-4
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$o1 ,PT%5N̄1C,

whereN̄0 andN̄1 are suitable functions onP. The change of
Dirac observablesreferred to the symmetry as ‘‘zero mo
tion’’ is, therefore, nontrivial. It is easy to see that th
change is generated by the function2PT . The value ofPT
at C is, however,

2PTuC5
1

2
PQ

2 ,

and it lies in the classo1
2/21NC. The corresponding func

tion onG2 is, therefore,H5p2/2, and it plays the role of the
Hamiltonian of the constructed dynamics. In this way,
have recovered the dynamics and the phase spaceG1 of the
original system so that the reduction is accomplished.

Mathematically, any symmetry ofP that is not pure gauge
transformation can generate a nontrivial evolution of Dir
observables onG2 because it defines a nontrivial mappin
between gauge orbits inC. By projection toG2 a symmetry is
obtained which can be interpreted as the generator of a
namical evolution onG2. Physically, it must be additionally
required that the symmetry be privileged by the situation
hand. Only then its role as a true Hamiltonian onG2 can be
justified. Here, the constant translation~2.23! is physically
privileged by the arguments leading from Eqs.~2.1! to ~2.14!
and in particular by the fact that it yields through Noethe
theorem the energy of the Newtonian particle in the pri
leged reference systemT. The transformation~2.23! is in-
deed a symmetry ofP because the Poisson bracket of
generator,2PT , with the constraint function~2.15! vanishes
on C.

The following observation is very important. IfPT gener-
ates a symmetry that leads to the HamiltonianH in G2, then
so doesPT1N8C for any smoothN8: the dynamics of Dirac
observables is uniquely determined by the whole class
symmetry generators. Why is this important: In our simp
model, we have a unique symmetry and it is generated
PT . The reason is that our model is a so-called ‘‘alrea
parametrized system’’ with a privileged timeT. Indeed, there
also is a privileged choice of gauge due to this fa
F(Q,PQ ,T)[T, which leads to the ‘‘right’’ action~2.3! by
the reduction procedure of Sec. II A. However, many mod
of real interest, such as general relativity, are not alre
parametrized systems@28#. For such models, there is n
privileged time and no symmetry in general~cf. @29#!. But in
asymptotically flat cases, there is a privileged asympto
time and an asymptotic symmetry. As it is shown in@23#,
such symmetries do not determine their generators in
extended phase spaceP uniquely but only up to addition of a
linear combination of constraints. Despite that, they still d
fine a unique dynamics of Dirac observables.

III. POLARIZED CYLINDRICAL WAVES: SOLUTIONS
AND ASYMPTOTIC BEHAVIOR

A vacuum spacetime describing cylindrical gravitation
waves with a fixed state of polarization~one degree of free
dom per point! has two commuting, hypersurface-orthogon
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spacelike Killing vectors]/]w and ]/]z; the Killing field
]/]w is rotational and it keeps a timelike axis fixed;]/]z is
translational; coordinatesw andz are invariantly defined up
to a translationz°z1a. The metric can be written in the
form

ds25eg2c~2dT21dR2!1ecdz21R2e2cdw2, ~3.1!

whereT andR are invariantly defined,T up to a translation
T°T1a. In the above equation,c5c(T,R) and g
5g(T,R). @To obtain Eq.~3.1! one uses a consequence
vacuum field equations—see, e.g.,@18,30#.#

It is well known that because of the translational symm
try ]/]z, the four-dimensional Einstein equations are equi
lent to the three-dimensional Einstein equations with cert
matter sources~see, e.g.,@22,20# and @17#!. In our case of
cylindrical symmetry (]/]w is a further Killing field! the
four-dimensional Einstein vacuum equations the solutions
which give Einstein–Rosen waves are equivalent to Eins
equations in three dimensions with a zero-rest-mass sc
field c as a source. It is, however, more advantageous for
canonical formulation to work with the physical Klein
Gordon field f5c/A8G, G being the Newton constant
Hence, we formulate everything with the help of the fieldf.

In three dimensions, the metric is given by~cf. @22# and
@17#!

ds25gabdxadxb5eg~2dT21dR2!1R2dw2, ~3.2!

and the Einstein field equations become

]2g

]R2
2

]2g

]T2
1

1

R

]g

]R
58GS ]f

]T D 2

, ~3.3!

2
]2g

]R2
1

]2g

]T2
1

1

R

]g

]R
58GS ]f

]RD 2

, ~3.4!

1

R

]g

]T
58G

]f

]R

]f

]T
. ~3.5!

The field equation forf,

2
]2f

]T2
1

]2f

]R2
1

1

R

]f

]R
50, ~3.6!

is the wave equations for the nonflat metric~3.2! as well as
for the flat ~Minkowski! metric obtained by puttingg50 in
Eq. ~3.2!. This crucial simplification implies that the scala
field f is decoupled from the equations satisfied by the m
ric. Equations~3.3!–~3.5! reduce to two simple equations

]g

]R
54GRF S ]f

]T D 2

1S ]f

]RD 2G , ~3.7!

]g

]T
58GR

]f

]T

]f

]R
, ~3.8!
3-5
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the wave equation~3.6! is their integrability condition. We
can thus solve the axisymmetric—in three dimensio
‘‘spherically’’ symmetric—wave equation ~3.6! on
Minkowski space and then solve Eqs.~3.6! and~3.8! for the
metric functiong(T,R) by quadratures. These well-know
facts are of key importance in the canonical and quan
theory since all physical degrees of freedom are containe
the scalar field.

We shall now briefly review some of the results on t
asymptotics obtained in@22# and @31#. We shall extend the
discussion by including both future and past null infinitie
and later also by employing a Fourier-type decompositio

The Cauchy data for the scalar fieldf, given on the
Cauchy surface topologicallyR2, suffice to determine the
whole spacetime metric. For data which fall off approp
ately, the three-dimensional Lorentzian geometry is asym
totically flat both at spatial@21# and null infinity @22# al-
though in four dimensions the Einstein-Rosen spacetimes
not asymptotically flat~see@31# for a detailed investigation
of cylindrical waves at null infinity in four dimensions!.

By employing the ‘‘method of descent’’ from the Kirch
hoff formula in four dimensions one can find the represen
tion of the solutionf(T,R) of the wave equation~3.6! in
three dimensions in terms of Cauchy dataf05f(0,R) and
f15f ,T(0,R). This has been used in@22# to find the
asymptotic behavior of the fieldf and the whole metric~3.2!
at the future null infinity for the data of compact support~see
Sec. II in @22#!. By applying the same procedure one c
analyze the solutions at the past null infinity. Introduci
retarded and advanced time coordinates

U5T2R, V5T1R ~3.9!

@notice that these are null coordinates for both fl
Minkowski metric and the curved metric~3.2!#, one obtains
expansions in the powers ofR21/2 along null hypersurfaces
U5const andV5const of the form

f~V,R!5
1

AR
g~V!1 (

k51

`
gk~V!

Rk11/2
, ~3.10!

f~U,R!5
1

AR
f ~U !1 (

k51

`
f k~U !

Rk11/2
.

~3.11!

The coefficients in the expansions are determined by
Cauchy data. By rewriting the Einstein field equations~3.7!
and ~3.8! in terms ofU and R ~respectivelyV and R), we
obtain the asymptotic behavior of the metric functiong at
I 1 in the form

g~U,R!5g`28G E
2`

U

dUS d f

dUD 2

1O~R22!,

~3.12!

and similarly atI 2. Here the constantg` , which will play a
key role in the following, is determined uniquely by th
Cauchy data forf @cf. Eq. ~3.7!#
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g`5g~0,̀ !54G E
0

`

dRRF S ]f

]T D 2

1S ]f

]RD 2G .
~3.13!

The value ofg` represents the total energy of the sca
field f computed by using the Minkowski metric. For an
nontrivial data,g` is positive. Hence, the metric at spati
infinity, given by

ds25eg`~2dT21dR2!1R2dw2, ~3.14!

has a conical singularity because the distance of the cir
with radii R andR1dR is different by a factoreg` from the
difference of their circumferences divided by 2p. It can be
shown@22# that as one approachesI 1 (R→`, U5const),
one finds@cf. Eq. ~3.12!#

g~U,`!5g`28G E
2`

U

duS d f

duD 2

, ~3.15!

andg to vanish at the timelike infinityi 1. Hence,

g`58G E
2`

`

dUS d f

dUD 2

. ~3.16!

The conical singularity, present at spacelike infinity, is th
‘‘radiated out,’’ and the future timelike infinityi 1 becomes
smooth. Equation~3.15! plays the role of the well-known
Bondi mass-loss formula, the functiond f /dU being analo-
gous to the Bondi news function@see also@32#, Eq. ~3.6!, for
an analysis in four dimensions#. Clearly, analogous formula
to Eqs.~3.15! and~3.16! are valid for incoming waves, with
d f /dU replaced bydg/dV:

g~V,`!58G E
2`

V

dvS dg

dv D 2

and

g`58G E
2`

`

dVS dg

dVD 2

. ~3.17!

Here we assume smooth past timelike infinityi 2 and incom-
ing waves from the past null infinityI 2 with a null data
g(V) bring in mass-energy which reveals itself as a coni
singularity characterized byg(V,`). At spatial infinity
i 0 (V5`, R5`) this becomes just the constantg` given in
Eq. ~3.13!. The fluxes of radiation, the analogues of the ne
function, as well as conical singularities are observable qu
tities at the past and future null infinities. Both are given
the asymptotic null datag(V) and f (U). The asymptotic null
data will be important in the following.

Starting from the representation of the solutions of t
three-dimensional wave equation~3.6! in terms of the
Kirchhoff-type formula obtained by the ‘‘method of descen
from four dimensions one can, for the Cauchy data of co
pact support, obtain not only expansions~3.10! and ~3.11!,
but also the explicit expression for the null dataf (U) @re-
spectivelyg(V)] as the integral over the Cauchy dataf0 and
3-6
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f1. However, these integrals become simple only for
tarded timesU so large that the support of the data is co
pletely in the interior of the past cone~similarly for the ad-
vanced times atI 2); see@22#. Here we need the null dat
for all U ’s at I 1 andV’s at I 2.

To achieve this, we start from a Fourier-type decompo
tion. This, in three dimensions, means to write the solutio
in terms of the Bessel functions of zero order provided t
we require the solutions to be regular everywhere, in part
lar at R50 ~see, e.g.,@33#!.

Thus, we start from the solutions of the form

f~T,R!5
1

A2
E

0

`

dv@A~v!J0~vR!e2 ivT1c.c.#.

~3.18!

As usual, we write just ‘‘c.c.’’ instead of the second term
meaning the complex conjugate of the first one. Using
asymptotic expansion of the Bessel function atR→` ~see,
e.g.,@33#!, we obtain

f~T,R!5
1

2ARp
E

0

` dv

Av
$@A~v!e2 i (p/4)2 ivU1c.c.#

1@A~v!ei (p/4)2 ivV1c.c.#%1O~R23/2!,

~3.19!

whereU and V are retarded and advanced time coordina
given by Eq.~3.9!. Hence, the null data at the future and pa
null infinities read as follows:

f ~U !5
1

2Ap
E

0

` dv

Av
@A~v!e2 i (p/4)2 ivU1c.c.#,

~3.20!

g~V!5
1

2Ap
E

0

` dv

Av
@A~v!ei (p/4)2 ivV1c.c.#.

~3.21!

It is easy to invert the last equations by writing, for examp

g~V!1g~2V!5A2

p E
0

`

dv@Ã~v!1Ã* ~v!#cosvV,

~3.22!

g~V!2g~2V!52 iA2

p E
0

`

dv@Ã~v!2Ã* ~v!#sinvV,

~3.23!

whereÃ(v)5(2v)21/2A(v)eip/4. Using Fourier cosine and
sine ~inverse! transforms to expressÃ6Ã* , we find

A~v!5Av

p
e2 ip/4 E

0

`

dV@g~V!eivV1g~2V!e2 ivV#,

~3.24!
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A* (v) being given by complex conjugation. Alternativel
we can write

A~v!5Av

p
e2 ip/4 E

2`

`

dVg~V!eivV. ~3.25!

Similarly, from Eq.~3.20! we get

A~v!5Av

p
eip/4 E

0

`

dU@ f ~U !eivU1 f ~2U !e2 ivU#,

~3.26!

or

A~v!5Av

p
eip/4 E

2`

`

dU f~U !eivU. ~3.27!

Since according to Eq.~3.18! the functionsA(v) determine
the solutionsf(T,R) everywhere, Eqs.~3.24!–~3.27! imply
that either the null datag(V) at I 2 or f (U) at I 1 determine
f(T,R) uniquely in the spacetime.

The amplitudesA(v) can be expressed also in terms
the Cauchy dataf05f(0,R) and f15f ,T(0,R) directly
from Eq.~3.18!. Using the Hankel transform~see, e.g.,@33#!:
for two functionsX(x) andY(y),

X~x!5 E
0

`

dyY~y!AxyJ0~xy! ~3.28!

is equivalent to

Y~y!5 E
0

`

dxX~x!AxyJ0~xy!. ~3.29!

Expressingf1 from Eq. ~3.18! we obtain

A~v!5
1

A2
E

0

`

dR~vf02 if1!RJ0~vR!. ~3.30!

Hence, as expected, we need bothf0 and f1 to determine
the solution of the wave equation~3.6! everywhere. For
time-symmetric initial data,f150, the amplitudesA(v) be-
come real.

Although for the Cauchy data of compact support a
even for more general data falling off sufficiently rapidly
spatial infinity we getf;1/AR at null infinities as in Eqs.
~3.10! and~3.11! ~see@22#!, at spatial infinity, i.e. in the limit
R→`, T fixed, the solutions fall off more rapidly:

f;O~1/R!, f ,R;O~1/R2!. ~3.31!

This will be needed in the canonical theory. To demonstr
the fall-off, employ again the asymptotic form ofJ0(vR) at
R→` in Eq. ~3.18!,

f5
const

AR
E

0

` dv

Av
cosS vR2

p

4 D @A~v!e2 ivT1c.c.#,

and putvR5v8 in the integral. Then we get
3-7
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f5
const

AR
E

0

` dv8

ARv8
cosS v82

p

4 D FAS v8

R De2 iv8T/R1c.c.G ,
which at largeR and fixedT leads tof;1/R.

Finally, let us illustrate previous results by a simple e
ample. The Weber-Wheeler-Bonnor pulse@34,35# represents
an exact, time-symmetric vacuum solution of the Einst
equations with cylindrical symmetry which satisfies all reg
larity conditions required above. The pulse comes in fr
the past null infinity, concentrates around the axis of symm
try ~in three dimensions around the centerR50) at T50,
and then reexpands to future null infinity. The real amplitu

A~v!5Ce2av, ~3.32!

whereC and a are constants, implies, by using Eq.~3.18!,
solution

f5CH @~a21R22T2!214a2T2#1/21a21R22T2

~a21R22T2!214a2T2 J 1/2

,

~3.33!

regular everywhere.@Due to the factor 1/A2 in Eq. ~3.18! f
here must be multiplied byA2 to get Eq.~3.15! in @31#.# At
spatial infinity,R→`, T fixed, we see that

f5CA2
1

R
1O~1/R2!, ~3.34!

in accordance with Eq.~3.31!. At the past null infinity (R
→`, V5T1R fixed!, we find

f5C
A2

2 FV1~V21a2!1/2

V21a2 G 1/2
1

AR
1O~1/R3/2!.

~3.35!

~At future null infinity, R→`, U5T2R fixed, the same ex-
pression, withV replaced byU follows.! A simple calcula-
tion, starting from the formula~3.21! for the profileg(V) and
usingA(v) from Eq.~3.32!, yields exactly the factor at 1/AR
in Eq. ~3.35! @for integrals *0

` dxe2ax(1/Ax) cosbx and
*0

` dxe2ax(1/Ax) sinbx needed in the calculation, see e.
@36#, formulas 3.944, 13 and 14#.

With f given by Eq.~3.35! one can find the explicit ex
pression for functiong by solving Eqs.~3.7! and ~3.8!. It
reads@34,31# as follows:

g54GC2H 1

a2
2

2R2@~a21R22T2!224a2T2#

@~a21R22T2!214a2T2#2

1
1

a2

R22a22T2

@~a21R22T2!214a2T2#1/2J . ~3.36!

The conicity at spatial infinity is thus given by

g`58G~C/a!2. ~3.37!
10401
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With this explicit solution one can verify directly relation
~3.15!–~3.17! for the conicity as it is radiated ‘‘in’’ and
‘‘out,’’ similarly to the Bondi mass in four dimensions.

IV. HAMILTONIAN FORMULATION

Let us essentially repeat the canonical treatment of A
tekar and Pierri given in@20# but with a slight modification
in order to establish the analogy with the model of Sec.
Let us start by considering the volume part of the canon
action derived from the Einstein-Hilbert action by assumi
cylindrical symmetry in@20#:

S5
1

8G E dt E
0

`

dr~pgg ,t1pRR,t1pcc ,t2NC2NrCr !,

~4.1!

where

C5e2g/2~2R,rr 2g ,rR,r2pgpR1R21pc
2/21Rc ,r

2 /2!

and

Cr5e2g~22pg,r1pgg ,r1pRR,r1pcc ,r !

are the constraint functions,g, R, andc are defined by Eq.
~3.1!, pg , pR and pc are the conjugate momenta, whileN
and Nr are Lagrange multipliers—the so-called lapse a
shift functions. One should add to this action the bound
energy term

2
1

4G E dt~12e2g`/2!, ~4.2!

and specify the fall-off ofN according to limr→`N51 so
that the action be differentiable@20#. However, this term is
not invariant under reparametrizations of the label timet as
there is no temporal density present in the integrand in
~4.2!. Addition of the bare term~4.2! to the action~4.1!
would imply a privileged choice of asymptotic time. Th
total action would then not be in the constraint-Hamiltoni
form but rather in an already reduced form at spatial infin

In order to recover the full constraint-Hamiltonian fram
work of our model in Sec. II, we need to justify the inclusio
of a temporal density in Eq.~4.2!. This can be done follow-
ing the general approach by Beig and O’ Murchadha@23#.
First, one considers fall-off conditions for the configuratio
space data atr→`. These have been specified in@20#. The
configuration space fields approach infinity according to

g~ t,r !→g`~ t !1O~1/r !,

R~ t,r !→r „11O~1/r !…, ~4.3!

c~ t,r !→O~1/r !,

where rO(1/r ), r 2 O(1/r 2), etc. admit limits at r→`.
~These limits generally depend on the timet.! One then re-
quires that the action of the Liouville form
3-8
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E
0

`

dr~pg dg1pRdR1pcdc!

on vector fields of the form

E
0

`

dr S dg
]

]g
1dR

]

]R
1dc

]

]c D
should be finite. The resulting integral

E
0

`

dr~pgdg1pRdR1pcdc!

is finite if the momenta satisfy the following fall-off cond
tions atr→`:

pg~ t,r !→O~1/r 2!,

pR~ t,r !→O~1/r 2!, ~4.4!

pc~ t,r !→O~1/r !.

Next, concerning the behavior of the lapse and shift, th
are several aspects that ought to be kept in mind. First,
the finiteness and differentiability of the Hamiltonian part

H1@N,Nr #5 E
0

`

dr~NC1NrCr ! ~4.5!

of action~4.1! ~cf. @23#!. Second,H1@N,Nr # has to generate
a transformation within the phase space defined by
boundary conditions~4.3! and ~4.4! @23#. Finally, if we are
going to have a full analogy to action~2.14! of Sec. II, we
have to parametrize the model also at infinity, as it is done
@24# for a spherically symmetric model.

The constraints functional~4.5! remains finite even if
N(r ) and Nr(r ) approach arbitrary temporal densities atr
→`; namely,

N~ t,r !→N`~ t !1O~1/r !,

Nr~ t,r !→N`
r ~ t !1O~1/r !, ~4.6!

whereN`(t) has to be non-negative. The condition that t
lapse and shift should approach temporal densities atr→` is
the minimum requirement that is compatible with the inva
ance of the action~4.1! under reparametrizations oft.

Conditions~4.3!–~4.6! now imply that the action is no
differentiable. The problem comes from the variation
g(t,r ) leading to the boundary term

dS→ 1

8G E dt E
0

`

dr~Ne2g/2 R,rdg! ,r

5
1

8G E dt~N`e2g`/2dg`! ~4.7!

at spatial infinity. In order to have a consistent canoni
theory, one needs to add to the action the boundary term
10401
e
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1

4G E dt~N`e2g`/2!,

whose variation with respect tog(t,r ) cancels the boundary
term in Eq.~4.7!. The differentiable action is therefore

S5
1

8G E dt E
0

`

dr~pgg ,t1pRR,t1pcc ,t2NC2NrCr !

2
1

4G E dtN`~12e2g`/2!. ~4.8!

The boundary term in Eq.~4.8! has now been modified by
the addition of a constant in order that it coincides with t
asymptotic energy derived from first principles in@20#. There
is no boundary term involving the shift in spite of the fa
that its asymptotic value may be nonzero. The correspond
constraint functional generates an ‘‘even supertranslati
~in the language of@23#! and is differentiable without any
correction, similarly to the case of four-dimensional gene
relativity, cf. @23#.

When varying the action~4.8! with respect to the lapse
N(t,r ), it is important to keep the ends of its variation fixe
Indeed, ifN`(t) is varied in Eq.~4.8! then one gets an un
wanted field equation implying that the asymptotic ener
vanishes. It follows that the action~4.8! is not yet in true
constraint-Hamiltonian form. Following Kucharˇ @24#, this
can be improved by the ‘‘parametrization at infinity’’:N`(t)
should be replaced by a differentiated asymptotic ti
dT` /dt5T`,t(t). The asymptotic time is determined by th
asymptotic metric: it must holdN`51 if the parametert is
chosen to beT` . The timeT`(t) can be varied in the ensu
ing action. Its variation leads to a redundant equat
amounting to the conservation of the asymptotic energy. O
should next introduce the momentumP` and add the asso
ciated constraint~which is linear inP`) to the action by a
new Lagrange multiplierN`(t).

In this way the action is brought into the true constrai
Hamiltonian form

S5
1

8G E dt~P`T`,t!1
1

8G E dt E
0

`

dr~pgg ,t1pRR,t

1pcc ,t!2 E dtN`S P`1
1

4G
~12e2g`/2! D

2
1

8G E dt E
0

`

dr~NC1NrCr !. ~4.9!

The multipliers N and Nr obey the asymptotic condition
~4.6!. The action~4.9! is the analogue of the action~2.14! for
the Newtonian particle. One can verify that the field equ
tions derived from the variations of Eq.~4.9! coincide with
those of Sec. III, preserve the fall-off conditions~4.3!–~4.6!
and imply the conservation of the asymptotic energy.

Action ~4.9! is our starting point for the canonical theor
Although it corresponds to action~2.14! of Sec. II, observe
that there is no a priori analogue of action~2.3! of Sec. II.
We have to begin with the extended phase spaceP with
3-9
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coordinates g(r ), pg(r ), R(r ), pR(r ), c(r ), pc(r ), T`,
P` and the symplectic formVP ,

VP5
1

8G
dP``dT`1

1

8G E
0

`

dr@dpg~r !`dg~r !

1dpR~r !`dR~r !1dpc~r !`dc~r !#.

The constraint surfaceC is defined byH@N,Nr #50 for all
N(r ) andNr(r ) satisfying the fall-off conditions, where

H@N,Nr #5N`S P`1
1

4G
~12e2g`/2! D1

1

8G

3E
0

`

dr~NC1NrCr !. ~4.10!

The orbits are defined by the canonical action of the c
straint functionalH@N,Nr #. The canonical transformation
generated by Eq.~4.10! are considered as a gauge transf
mation. Within the gauge group, there is no distinction b
tween the ‘‘symmetry’’ and the ‘‘proper gauge’’ as, e.g.,
@20,23# and @11#. The functional~4.10! generates only rep
arametrizations both ‘‘inside’’ the spacetimeand at infinity.
Symmetries are now generated by different functions.
deed, the functional~4.10! has vanishing Poisson bracke
with P` for any N(r ) and Nr(r ) satisfying the conditions
~4.6! because the variableg` is asymptotic value of the ca
nonical coordinateg so that$P` ,g`%50. Hence, it is the
functionP` that generates the symmetry. In general, we c
jecture that one can introduce privileged coordinates at in
ity and that asymptotic symmetries are generated by t
conjugate momenta or suitable combinations of the mome
and the coordinates~like, e.g., boosts!.

The variableT` to which P` is conjugate is a kind of a
‘‘privileged time’’ but the surfaceT`5const is neither a
transversal surface in the phase space, nor a Cauchy su
in each solution spacetime. Indeed, the functionT`2c,
wherec is a constant, has vanishing Poisson brackets w
H@N,Nr # for all N(r ) and Nr(r ) whose asymptotic value
vanish; hence, the duly generalized regularity condit
~2.19! is not satisfied. It follows that an infinite-dimension
submanifold of each orbit lies in the surfaceT`5const~Fig.
1!. This is connected to the fact that the conditionT`

5const defines only a particular section of infinity in ea
cylindrical wave spacetime but not a Cauchy surface of
whole spacetime; there is a relation between Cauchy
transversal surfaces, cf.@28#.

The reduction by gauge condition, analogous to that
scribed in Sec. II A, starts by a choice of a one-dimensio
family of transversal surfaces. Let us denote the manif
formed by all chosen transversal surfaces inC by G. In Sec.
II, a privileged choice of gauge has been possible:G has been
the family of surfacesT5t, tPR, whereT is the privileged
time. The nearest to this we can come is to choose the tr
versal surfaces inG to be the intersections ofG and T`

5const ~Fig. 1!. There are, of course, many choices ofG.
One example of such a choice is carried out in@20#. Let us
describe an analogous choice for our action~4.9!.
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Following Ashtekar and Pierri, one may fix the part of th
gauge associated with the constraintsC(r )50 and Cr(r )
50 by imposing the gauge-fixing conditions

R~r !5r , pg~r !50. ~4.11!

These are the defining equations forG. Viewed as con-
straints, these conditions form together with the constra
C(r )50 andCr(r )50 a second-class system. The rema
ing constraintP`1(1/4G)(12e2g`/2)50 can be taken care
for by the gauge-fixing condition

T`5const. ~4.12!

The surfaceTT`
in C defined by Eqs.~4.11!, ~4.12! selects an

initial datum from each gauge orbit inC. The gauge-
condition surfaceG is swept by allTT`

.
In order to confirm that this reduction is admissible, let

add Eqs.~4.11! and ~4.12! to the action~4.9! by Lagrange
multipliers M , Mr , and find out if the ensuing action dete
mines unique values forN, Nr . One obtains the action

S5
1

8G E dt~P` T`,t!1
1

8G E dt E
0

`

dr~pgg ,t1pRR,t

1pc c ,t!2 E dtN`S P`1
1

4G
~12e2g`/2! D

2 E dtM`~T`2t !2
1

8G E dt E
0

`

dr~NC1NrCr !

2 E dt E
0

`

dr„M ~R2r !1Mrpg…, ~4.13!

FIG. 1. Important surfaces in the constraint manifoldC. The
intersection ofT`5const with any orbit is infinite-dimensional. Th
gauge condition surfaceG intersects each orbit in a~one-
dimensional! dynamical trajectory of the reduced theory. The poin
common toG and each surfaceT`5const is a~infinite-dimensional!
transversal surfaceTT`

.

3-10
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where the set of conditions~4.12! is implemented by the
expression* dtM` (T`2t). Indeed, it is not difficult to
check that all redundant variables in Eq.~4.13! can be ex-
pressed uniquely in terms of the canonical pair (c,pc) by
solving the set of equations derived from the variation
these variables in Eq.~4.13!. This confirms that the gauge
fixing conditions~4.11! are regular. In particular, the uniqu
reduced expressions for the multipliersN, Nr andN` are

N~T` ,R!5 expF2
1

4 ER

`

dr„r 21pc
2~T` ,r !1rc ,r

2 ~T` ,r !…G ,
Nr~T` ,R!50, ~4.14!

those for the canonical pairs (g,pg), (R,pR) and (T` ,pT`)
read

g~T` ,R!5
1

2 E0

R

dr„r 21pc
2~T` ,r !1rc ,r

2 ~T` ,r !…,

pg~T` ,R!50,

R~T` ,r !5r ,

pR~T` ,R!52pc~T` ,R!c ,R~T` ,R!,

T`~ t !5t,

P`~T`!52
1

4G F12 expS 2
1

2
g`D G ,

where

g`5
1

2 E0

`

dR„R21pc
2~T` ,R!1Rc ,R

2 ~T` ,R!…,

~4.15!

and unique expressions also follow for the multiplie
M , Mr , M` . The uniqueness of these expressions parti
relies on the conditions imposed on the canonical fields
r 50 ~see, e.g.,@20#! which forceg(T`,0) to vanish for all
T` .

The reduced action for the remaining canonical p
„c(T` ,R),pc(T` ,R)… on G,C, parametrized by the value
of the asymptotic time, is therefore

S5
1

8G E dT` E
0

`

dR „pc~T` ,R!c ,T`
~T` ,R!…

2
1

4G E dT`~12e2g`(T`)/2!, ~4.16!

whereg`(T`) is expressed as a functional ofc(T` ,R) and
pc(T` ,R) in Eq. ~4.15!. The action~4.16! is analogous to
the reduced action~2.3!. The phase spaceG1 is described by
coordinatesc(R) andpc(R), while the symplectic form is

V15 E
0

`

dRdpc~R!`dc~R!.
10401
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The action~4.16! is precisely the reduced action of Ashtek
and Pierri. In particular, the Ashtekar-Pierri timet in Eq. ~19!
of @20# corresponds to the timeT` here.

Geometrically,c(r ), pc(r ) andT` are coordinates on the
gauge-condition surfaceG. The surfaces defined inG by the
equationT`5 constant are transversal surfaces in thephase
spaceP. However, they also determine a family of Cauc
surfaces of constant Ashtekar–Pierri time in each solut
spacetime~cf. @20#!. In this sense, the part~4.11! of the
gauge condition determines a particular extension of
points at infinity defined byT`5const to whole Cauchy sur
faces in the spacetimes. However, different choices ofG lead
to different Cauchy surface extensions of these points at
finity. Hence, two different choices ofG entail two different
choices of time so that the transformation between the tim
has again the character of Eq.~2.20! even if the part~4.12! of
gauge conditions remains always the same—only
asymptotic values of these times have then to coincide.
noted at the end of Sec. II~A!, it is the transformation~2.20!
between respective times which causes difficulties in c
structing a unique plausible quantum theory.

Considering the privileged symmetry generated byP` ,
we can see that it remains a symmetry of the reduced the
It acts inG as follows:

„c~r !,pc~r !,T`…°„c~r !,pc~r !,T`1t…, ~4.17!

while the original action ofP` in P is

„g~r !,pg~r !,R~r !,pR~r !,c~r !,pc~r !,T`…

°„g~r !,pg~r !,R~r !,pR~r !,c~r !,pc~r !,T`1t….

~4.18!

The map~4.18! is tangentialto G and the map~4.17! is just
the restriction of Eq.~4.18! to G. This follows from the fact
that the constraints as well as relations~4.11! that defineG
are independent ofT` .

The dynamics defined by action~4.16! determines a folia-
tion of G by one-dimensional dynamical trajectories rep
sented by two functions of two variablesc(R,T`) and
pc(R,T`). These are identical with the intersections ofG
with the orbits. In this way, we obtain a bijection betwe
integrals of motion of the reduced theory and Dirac obse
ables. On one hand, any Dirac observable is constant a
each orbit. Hence, it must also be constant along each
namical trajectory of action~4.16!. On the other, any func-
tion on G that is constant along each dynamical trajecto
defines a unique extension toC that is constant along eac
orbit.

This relation between the Dirac observables of the
tended system and the integrals of motion of the redu
theory, together with the compatibility of the symmet
groups generated byP` in the extended and reduced the
ries, justify the approach of Secs. V and VI, where we sh
construct the gauge-invariant dynamics starting from
gauge-dependent action~4.16!.
3-11



r
s

lt

e

d
s

e

e

full
. As

to-
g
e to
hic

s on

m-
to

he
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V. PHYSICAL PHASE SPACE G2

In this section, we choose a complete set of Dirac obse
ables, find their Poisson algebra and calculate their Pois
brackets with the symmetry generatorP` . This task is sim-
plified if we start from Ashtekar–Pierri reduced action~4.16!
instead of the original parametrized action~4.9!. According
to what has been shown in the previous sections, the resu
independent of the gauge chosen to reduce the action~4.9!.

The reduced action~4.16! can be rewritten in terms of th
rescaled fieldf5c/A8G introduced in Sec. III as follows:

S5 E dtdR~pfḟ2H !,

where

g`54G E
0

`

dRS 1

R
pf

2 1Rf82D ~5.1!

enters the Hamiltonian

H5
1

4G
~12e2(1/2)g`!. ~5.2!

For simplicity, the notation for our timeT` has been change
to the Ashtekar-Pierri notationt. The Hamiltonian depend
on t only throughpf andf so thatH andg` are constants
of motion,

ġ`50. ~5.3!

The canonical equations that follow from the action ar

ṗf5e2(1/2)g`~Rf8!8, ~5.4!

ḟ5e2(1/2)g`
1

R
pf . ~5.5!

Equations~5.5! and ~5.3! imply

f̈5e2(1/2)g`
1

R
ṗf

so that

eg`f̈5
]2f

]R2
1

1

R

]f

]R
. ~5.6!

If we use the relation between the Einstein-Rosen timeT and
the Ashtekar-Pierri timet ~see@20#!,

T~ t !5e2(1/2)g`t, ~5.7!

then Eq.~5.6! becomes the wave equation~3.6!. The general
solution to Eq.~3.6! is given by Eq.~3.18!, which can be
written in terms of timet as
10401
v-
on

is

f~ t,R!5
1

A2
E

0

`

dv@A~v!J0~vR!e2 ivT(t)1c.c.#,

~5.8!

and Eq.~5.5! yields

pf~ t,R!5
R

A2
E

0

`

dv@2 ivA~v!J0~vR!e2 ivT(t)1c.c.#.

~5.9!

Equations~5.8! and~5.9! describe the general solution to th
canonical equations~5.4! and ~5.5! in terms of the set of
constantsA(v). Hence, the parametersA(v) can serve as
coordinates on the physical phase spaceG2.

The physical phase space is a symplectic manifold. Its
structure can be obtained if we find a transversal surface
has been explained in Sec. II, any transversal surface,
gether with the symplectic form that results from pullin
back the symplectic form from the extended phase spac
the transversal surface, form the structure that is isomorp
to the physical phase space. In our case, the initial dataf0
and pf0 of the canonical coordinatesf and pf at the
Cauchy surfacet50 determine a unique solution~5.8! and
~5.9! so that they can also be considered as coordinate
the physical phase spaceG1. Moreover, the surfaceT0 de-
fined by the Ashtekar and Pierri gauge~4.11! together with
the conditionT`50 is a transversal surface. Hence, the sy
plectic form V on the physical phase space with respect
the coordinatesf0 andpf0 is

V25 E
0

`

dRdpf0~R!`df0~R! ~5.10!

because this is the pull back ofVP to T0 by the injection map
of T0 into P; the manifoldT0 with this symplectic form is
isomorphic to the physical phase spaceG2.

The relations between the parametersA(v) andf0 , pf0
can be obtained from Eqs.~5.8! and ~5.9!:

f0~R!5
1

A2
E

0

`

dvJ0~vR!@A~v!1A* ~v!#, ~5.11!

and

pf0~R!52
iR

A2
E

0

`

dvvJ0~vR!@A~v!2A* ~v!#,

~5.12!

while the inverse transformation is analogous to Eq.~3.30!:

A~v!5
1

A2
E

0

`

dRJ0~vR!@vRf0~R!2 ipf0~R!#.

~5.13!

A further set of parameters to determine points of t
physical phase space are theI 2 null datag(V) or I 1 null
data f (U). The transformations betweenA(v) andg(V) is
3-12
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given by Eqs.~3.21! and ~3.25!, those betweenA(v) and
f (V) by Eqs.~3.20! and ~3.27!.

The quantityg` is a function on the physical phase spa
given, in terms of the four different coordinate systems,
Eqs.~5.1!, ~3.16! and~3.17!. Equation~5.1!, into which Eqs.
~5.11! and ~5.12! are substituted, yields after some simp
transformations the expression forg` in terms ofA(v):

g`58G E
0

`

dvvA* ~v!A~v!. ~5.14!

We can also express the symplectic form~5.10! in terms
of A(v). If Eqs. ~5.11! and ~5.12! are substituted into Eq
~5.10!, we obtain

V252
i

2 E0

`

dv E
0

`

dv8 E
0

`

dRv8RJ0~vR!J0~v8R!

3@2dA~v!`dA~v8!1dA~v!`dA* ~v8!

2dA* ~v!`dA~v8!1dA* ~v!`dA* ~v8!#.

The formulas~3.28! and ~3.29! imply, however, that

E
0

`

dRRJ0~vR!J0~v8R!5
1

Avv8
d~v2v8!. ~5.15!

Hence, using the antisymmetry of the wedge product,
obtain finally

V25 i E
0

`

dvdA* ~v!`dA~v!. ~5.16!

Let us also express the symplectic form of the physi
phase space in terms of the asymptotic null datag(V) and
f (U). Equations.~5.16! and ~3.25! give

i E
0

`

dvdA* ~v!`dA~v!52
i

p E
2`

`

dV E
2`

`

dV̄dg~V!

`dg~V̄! E
0

`

dvveiv(V2V̄).

Since the wedge product is antisymmetric inV andV8, only
the antisymmetric part of the integral overv contributes to
the result. However,

i

2p E
0

`

dvv@eiv(V2V̄)2e2 iv(V2V̄)#

5
1

2p E
2`

`

dv iveiv(V2V̄)

5
1

2p

d

dV E
2`

`

dveiv(V2V̄)

5
d

dV
d~V2V̄!.

Hence,
10401
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V25 E
2`

`

dVdg8~V!`dg~V!. ~5.17!

By analogous calculation, Eqs.~5.16! and ~3.27! yield

V25 E
2`

`

dUd f8~U !`d f~U !. ~5.18!

Finally, let us calculate the transformation betweenf (U)
and g(V) if f (U) is defined by the solution determined b
g(V). Such a transformation is, therefore, entailed by E
~3.20! and ~3.25!:

f ~U !5
1

2p E
2`

`

dVg~V! E
0

`

dv@ ieiv(U2V)2 ie2 iv(U2V)#.

The distributionD(U2V) defined by the integral overv can
be approximated by a convergent series of distributio
De(U2V) ~see@37#!,

lim
e→0

De~U2V!5D~U2V!,

wheree.0 and

De~U2V!5 E
0

`

dv@ ieiv(U2V)2ve2 ie2 iv(U2V)2ve#

522
U2V

~U2V!21e2
.

However,

lim
e→0

E
2`

`

dV F22
U2V

~U2V!21e2Gg~V!

522P E
2`

`

dV
g~V!

U2V
,

whereP denotes the principal value. Hence,

f ~U !52
1

p
P E

2`

`

dV
g~V!

U2V
. ~5.19!

VI. REPRESENTATION OF SYMMETRIES IN THE
PHYSICAL PHASE SPACE

There are two interesting symmetries to be represente
the physical phase space. The first is the infinitesimal ti
translation, and the second is the map

s:I 2°I 1,

defined byU5V in terms of coordinatesU at I 1 andV at
I 2 ~an analogous symmetry transformation has been stu
in @25#!.

The push-forward action of the infinitesimal translatio
t°t1dt on the solution fieldsf(t,R) andpf(t,R) is given
by
3-13
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f~ t,R!°f~ t2dt,R!, ~6.1!

pf~ t,R!°pf~ t2dt,R!. ~6.2!

Substitutingt2dt for t into Eqs.~5.8! and~5.9! and compar-
ing the results with these equations leads toA(v)°A(v)
1dA(v), where

dA~v!5 ive2(1/2)g`A~v!dt. ~6.3!

The same result can be obtained, if we putf0(R)
1df0(R) andpf0(R)1dpf0(R) into Eq.~5.13! and calcu-
late the correspondingdA(v). We must utilize the fact tha

df0~R!52ḟ0~R!dt, dpf0~R!52ṗf0~R!dt,

express the time derivatives with the help of the equation
motion ~5.4! and~5.5!, transfer ther-derivatives fromf0(R)
to J0(vR), and use the Bessel equation that is satisfied
J0(vR),

2
1

R
„RJ08~vR!…85v2J0~vR!.

It follows that the action of the infinitesimal time transl
tion is canonically generated by the function2H defined by
Eq. ~5.2!, with g` given by Eq.~5.1!, wheref andpf are
replaced byf0 andpf0. ~Indeed, the momentum conjuga
to t is P`52H.! We thus have

df0~R!5$f0~R!,2H%,

dpf0~R!5$pf0~R!,2H%,

dA~v!5$A~v!,2H%,

and obtain analogously

d f ~U !5$ f ~U !,2H%, ~6.4!

dg~V!5$g~V!,2H%. ~6.5!

Let us expressd f (U) anddg(V) explicitly from the ac-
tion of translations. Since the whole solution is shifted alo
the background manifold defined by the coordinatest andR
by t°t1dt, R°R, we have, regarding Eq.~5.7!,

U5T2R°e2(1/2)g`~ t1dt !2R5U1e2(1/2)g`dt,

and similarly forV:

V°V1e2(1/2)g`dt.

Hence,

d f ~U !52 f 8~U !e2(1/2)g`dt, ~6.6!

dg~V!52g8~V!e2(1/2)g`dt. ~6.7!

The same relations result from the Poisson brackets~6.4! and
~6.5!, if Eqs. ~3.20!, ~3.21!, ~5.2!, ~5.14! and~5.16! are used;
notice that Eq.~5.16! implies
10401
of

y

g

$A~v!,A~v8!%50, $A* ~v!,A* ~v8!%50, ~6.8!

and

$A~v!,A* ~v8!%52 id~v2v8!. ~6.9!

As has been explained in Sec. II~see also@11#!, the dy-
namics of the Dirac observables is defined by the compar
of the equations of motion with the action of symmetr
Since the equations of motion for the Dirac observables
trivial ~the observables remain constant!, the symmetry ac-
tion alone gives the total dynamical change.

The second symmetrys: I 2°I 1 is a purely asymptotic
one, similarly toT`°T`1t. Its action on solutions can b
found in an analogous way via the Cauchy data for soluti
at I’s. We consider Cauchy null datumg1(V) at I 2 as de-
fining solution f1(t,R). Then we push forward the field
g1(V) at I 2 to I 1 by s* , which results in Cauchy datum
f 2(U) at I 1. The Cauchy datumf 2(U) determines anothe
solutionf2(t,R), and we define it as the image off1(t,R)
by s. The corresponding map inG2 can be calculated by
using coordinatesf (U) in G2. Solutionf2(t,R) has coordi-
nate f 2(U); let f1(t,R) have coordinatef 1(U). Then the
point f 2(U) in G2 is the image of the pointf 1(U) of G2 by
map s. The dynamics defined bys is the inverse map be
cause it compares the evolution by the wave equation~which
is trivial because Dirac observables remain constant! with the
map bys ~cf. @25#!.

The push forward maps* of fields atI 2 to those atI 1

acts as follows:

s* g~V!5 f ~U !,

wheref (U)5g(U). It follows immediately that the dynami
cal evolution defined by the ‘‘zero motion’’s is represented
by transformation~5.19!.

We can also introduce Fourier amplitudesa(v) andb(v)
of the asymptotic data by

a~v!5A~v!eip/4, b~v!5A~v!e2 ip/4,

so that Eqs.~3.20! and ~3.21! become

f ~U !5
1

2Ap
E

0

` dv

Av
@b~v!e2 ivU1c.c.#,

g~V!5
1

2Ap
E

0

` dv

Av
@a~v!e2 ivV1c.c.#.

The push forward of the amplitudes is clearly given by

s* a~v!5b~v!,

whereb(v)5a(v). Canonical representation ofs is, there-
fore:

b~v!5a~v!e2 ip/252 ia~v!. ~6.10!

This map@or Eq. ~5.19!# becomes theS-matrix of the one-
particle sector in the quantum theory of the model.
3-14
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VII. QUANTUM THEORY

It is easy to construct the Hilbert space, the operat
representing the Dirac observables, the Hamiltonian, an
define the scattering matrix in the standard way of quant
tion of linear field theories~see, e.g.,@38# or @39#!. A sketch
thereof will be described in this section.

Let us start from the Poisson brackets~6.8! and ~6.9! for
the observablesA(v). Roughly, in the canonical quantiza
tion, Poisson brackets are replaced by commutators m
plied by i ~the units are chosen so that the Planck constan
1!. Then, we have

@Â~v8!,Â~v!#50, @Â~v8!,Â†~v!#5d~v82v!.
~7.1!

These are commutators of theannihilation andcreation op-
eratorsof a quantum field theory for a continuous spectru
They form our starting point.

For many constructions it is favorable to use a smea
version of the operators. We choose any complete ortho
mal basis of~complex! functionsXn(v), wherevP(0,̀ ).
This means that any complex functionf can be decomposed

f ~v!5 (
n

f nXn~v!,

where f n are complex coefficients, and that

E
0

`

dvXn* ~v!Xm~v!5dnm . ~7.2!

Defining

Ân5 E
0

`

dvXn* ~v!Â~v!, ~7.3!

we obtain

Â~v!5 (
n

Xn~v!Ân , ~7.4!

and

@Ân ,Âm#50, @Ân ,Âm
† #5dnm . ~7.5!

Then we can define the vacuum stateu0& by

Ânu0&50 ;n, ^0u0&51, ~7.6!

which also implies that

Â~v!u0&50 ;v. ~7.7!

The elements of a complete basis in the Hilbert space
obtained by application of any number of creation operat
Âm

† to u0&; if the total number of the creation operators isN,
then the state is anN-graviton state. The scalar product
defined by scalar products of the basis elements, which
turn, are determined by the commutation rules~7.5! and the
conditions~7.6!. For example,
10401
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~Âm
† u0&,Ân

†u0&)5^0uÂmÂn
†u0&

5^0uÂm
† Ân1dnmu0&5dnm .

The Hilbert space defined in this way is often called theFock
spaceand we denote it byF.

Those Dirac observables defined in Sec. V that are lin
in the variablesA(v) and A†(v) can be associated with
operators onF that are linear combinations of the operato
Â(v) and Â†(v) with the same coefficients. This definitio
preserves the relation between Poisson brackets and com
tators. For example, we define

f̂ ~U !5
1

2Ap
E

0

` dv

Av
@Â~v!e2 i (p/4)2 ivU

1Â†~v!ei (p/4)1 ivU#.

The matrix elements off̂ (U) with respect to the Fock basi
are easily calculated by using the decomposition~7.4!. In
such a way, we have a Hilbert space and the operators
correspond to the basic quantities.

In order to construct the Hamiltonian, we start from Eq
~5.2! and~5.14!. We define the quadratic operatorĝ` by the
normal factor ordering:

ĝ`58G E
0

`

dvvÂ†~v!Â~v!5 (
nm

vnmÂn
†Âm ,

where

vnm58G E
0

`

dvvXn* ~v!Xm~v!.

Thenĝ`u0&50. The operatorĝ` is self-adjoint onF; it has
a continuous spectrum. Its~generalized! eigenvectors form a
d-normalized basis ofF, elements of which are obtaine
from the vacuum by application of any number of the c
ation operatorsÂ†(v) ~and a normalization factor!. For ex-
ample,

ĝ`~Â†~v!u0&)58Gv~Â†~v!u0&).

Then, any function ofĝ` can be defined by the spectr
theorem~see, e.g.,@40#!: it has the same eigenvectors, and
eigenvalues are the values that the function has on the
responding eigenvalues ofĝ` . In this way, the Hamilton
operator

Ĥ5
1

4G F12 expS 2
1

2
ĝ`D G

is well-defined. For example,

Ĥu0&5
1

4G F12 expS 2
1

2
30D G50,

becauseĝ` has the eigenvalue zero onu0&.
3-15



te
in

,

s

h

e-

se
ork.

e-
ort
c.
nce
nk
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Finally, we can define the scattering matrixŜ. In order to
do that, we have to determine what are the in- and out-sta
It seems natural to take the states that result from apply
any number of the operatorsâ†(v) to u0& corresponding to
the observablesa(v) of Sec. VI as the in-states. Similarly
the out-states can be defined byb(v). From Eq.~6.10!, we
have a simple Bogolyubov transformation betweenâ(v) and
b̂(v):

â~v!5 i b̂~v!.

The construction of the scattering matrix that implement
given Bogolyubov transformation is described in@39# or
@38#. We shall skip it because it lies outside the scope of t
paper.
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Another interesting question is what is the relation b
tween the HamiltonianĤ and the scattering operatorŜ?
There are methods of calculatingŜ from Ĥ: one has to take
some limits within the Euclidean regime~see, e.g.,@13#!.
However, an application, or even an applicability, of the
methods to our case also lies outside the scope of this w
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