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The model of cylindrical gravitational waves is employed to work out and check a recent proposal of how
a diffeomorphism-invariant Hamiltonian dynamics is to be constructed. The starting point is the action by
Ashtekar and Pierri because it contains the boundary term that makes it differentiable for nontrivial variations
at infinity. With the help of parametrization at infinity, the notion of gauge transformation is clearly separated
from that of asymptotic symmetry. The symplectic geometry of asymptotic symmetries and asymptotic time is
described and the role of the asymptotic structures in defining a zero-motion frame for the Hamiltonian
dynamics of Dirac observables is explained. Complete sets of Dirac observables associated with the asymptotic
fields are found and the action of the asymptotic symmetries on them is calculated. The construction of the
corresponding quantum theory is sketched: the Fock space, operators of asymptotic fields, the Hamiltonian and
the scattering matrix are determined.
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[. INTRODUCTION are even complete sets of natural constants of motion,
namely the in- and out-fields. These quantities have been

A deep problem in quantum gravity is the dependence oflescribed by DeWitf13] within his covariant perturbation
the constructed quantum theory on the choice of coordinatesheory and by Ashtekdrl4] in general.

A famous example of a quantization method based on such a Finally, the nonlocality of the kind found need not always
choice of gauge is the Arnowitt-Deser-Misner reducti@h  lead to a real problem. For example, in any nontrivial quan-
There have been ideas of how this problem could be avoidedum field theory in Minkowski spacetime, the expressions for
such as Dirac’'s operator constraint equatid2$, Berg- the in- and out-fields in terms of the local fields at a finite
mann’s work on Dirac observabld§], the Becchi-Rouet- time are also badly nonlocal. However, such expressions are
Stora-Tyutin(BRST) method[4], Euclidean quantum gravity not needed. What is needed are the expressions of the in- and
[5] etc. None of these methods has as yet been really suout-fields in the in- and out-regions, respectively, which are
cessful because new problems always emerged. local.

In this paper, we focus on the method based on the Dirac In the present paper, we are going to strengthen the point
observables. In a sense, this is the most straightforward onenade in favor of the Hamiltonian frame based on asymptotic
all variables that are used have to be gauge invariant. Honsymmetries. We study a field model, extending thus the cases
ever, changes of coordinates include changes of time so that which the idea works to infinite-dimensional systefsse
the gauge invariance entails time independence: Dirac olalso[15]). The simplified model that we investigate consists
servables must be integrals of motion. Two problems that aref cylindrical gravitational waves, also called sometimes
related to this have been noticed already by Bergni&in  Einstein-Rosen wavegsee, e.g.[16] and[17]). It seems that
“frozen dynamicsand scarcity the dynamics of Dirac ob- this model can be used as an example of almost everything.
servables is trivial—they just stay constant, and it is difficult Thus, Kuchahas studied the embedding variables in canoni-
to find any such quantity in general relativity. More recently, cal theory employing the wavd48]. Torre has expressed a
the nonlocality of such variables has been provigl: the  complete set of Dirac observables in terms of local fields
expression for any Dirac observable in terms of local fieldd19]. Ashtekar and Pierri have found a considerable simpli-
must contain derivatives of all orders. fication of Hamiltonian dynamics of the waves using a suit-

As for the “frozen dynamics,” Rovelli’'s idea of “evolv- able gaugg20].
ing constants of motionf7] has shown one way out of the Most important, in[20] an asymptotic boundary term
problem. Another, but not completely unrelated way, is base@nalogous to the ADM energy has been added to the action
on the observation that any Hamiltonian formulation of dy-for the first time. This is an achievement because the cylin-
namics needs a frani@]. A possible frame for a nontrivial drical wave spacetimes are not asymptotically flat due to the
Hamiltonian dynamics of Dirac observables has been speceylindrical symmetry so that the well-known results in gen-
fied in [9] and [10] under the assumption that there is aeral relativity cannot be used. The model can, nevertheless,
symmetry. In[11], it is shown that even an asymptotic sym- be reduced from four to three dimensions by removing the
metry suffices, at least for a simple finite-dimensional modeldirection of the translational part of the cylindrical symme-

Concerning the scarcity, there have been different propogry. The resulting system has the form of gravity coupled to a
als of how Dirac observables could be constructedy., scalar field and the geometry of the three-dimensional space-
[12]). Also, in the case of asymptotically flat models, theretime is asymptotically flat in certain sengecally asymp-
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totically flat). This has been shown i21] and[22], where  has been developed for general finite-dimensional systems in

the boundary term has been found. Our analysis is, therefor®efs.[23,9,23 and[10].

based on the results of Ashtekar and Pierri. Consider a free Newtonian particle of unit mass in one-
In Sec. Il, the model of free Newtonian particle moving in dimensional space evolving in the Newtonian tifheLet its

one-dimensional space is used to explain how a symmetrgosition be denoted b®. The system is described by the

provides a frame for a nontrivial Hamiltonian dynamics of action

integrals of motion. The relevant notions and relations are

introduced. The method of reduction by a choice of gauge is 1(T )

also described within this framework. SQl= 2 JT dT(Q 7)™ 2.9)
Section Ill summarizes the well-known results on the cy- !

lindrical waves that we shall need, focusing on theThis action is invariant under the translation

asymptotic properties. Section IV reviews and modifies the

results of Ashtekar and Pierri so that they become compatible T—-T+7 (2.2

with the theory of Sec. Il. The meaning akymptotic sym-

metryandasymptotic timere explained and their relation to for any time T and any real parameter. This is a one-

“ordinary” symmetry and time is clarified. The way in which dimensional group of symmetry that will play a crucial role

the asymptotic symmetry and time determine a frame of an what follows. The symmetry implies via Noether theorem

Hamiltonian dynamics of Dirac observables for the cylindri- the conservation of energy

cal waves is described. An important new point made in Sec.

IV is a clean separation between gauge transformations and E= EQZ

symmetries. In[20,23 and [11], the group of diffeomor- T

phisms has been divided into gauges and symmetries accord-

ing to the action of its elements at infinity. However, it has The corresponding Hamiltonian action is

never been completely clear where the boundary is to be

drawn. When we tried to apply this idea to the cylindrical _ [T

waves, some stran SLQ.Pol= J dr

, ge paradoxes have appeared. It has turned T

out that the action must be parametrized at infinity similarly

as in the case of geometrodynamics of Schwarzschild blackhe one-form® =P,dQ contained in the action is called the

holes[24]: privileged spacetime coordinates at infinity must Liouville form. The space with the coordinat€andPg is

be added to the set of canonical coordinates of the phagbe physical phase spack,; it carries the symplectic two-

space. Then, all gauge transformations including reparanform ;=d®=dPy/\dQ.

etrizations at infinity are generated by constraints, while all The equations of motion implied by actid8.3) are

asymptotic symmetries are generated by expressions in the

1
PoQ 11— Epg). 2.3

momenta conjugate to the privileged coordinates at infinity. Qr=Pq, (2.4
The Poisson algebra of the asymptotic Dirac observables
listed in Sec. Il is calculated in Sec. V. The physical phase Pqr=0. (2.9

space is defined by a complete set of Dirac observables and . o
their Poisson brackets. In Sec. VI, the action of theTheir general solution is
asymptotic symmetries on the physical phase space is found T—a+pT
and the canonical generator of the continuous group of Q(M=q+pT,
asymptotic time translations is written down. The corre-

. Po(T)=p. (2.7

sponding Hamiltonian dynamics in the physical phase space
Shere @.p) e R? are constant for a particular solution. We

is described. It may seem paradoxical that all these gaug
B e oo s el gan, ihereor, defe space of sluont' a ¢ il
them) can be and, indeed, have been calculated from thcoordlnate:q andp. An important observation is that, also

. . oM & arries a symplectic structure. Indeed, Es6) and (2.
gauge-dependent action obtained by Ashtekar and Pierri aft%%m be congidgred asTadependent canoniccfl tzansfo(rm;)tion
a choice of gaugécf. also[15]). The justification thereof is

given in Sec. IV. because they imply

Finally, Sec. VII gives a brief sketch of how the results of (Q—q)?
Secs. V and VI can be employed for one of possible con- PodQ=pdg+ dT’
structions of quantum theory. The Fock space and the basic

operators on it are specified. The Hamiltonian operator am\:/‘vhere, of course, the action of the differentiathits” only
the scattering matrix are determined.

the variablesQ andq, not T; (Q—q)?/2T is the generating
II. DYNAMICS OF DIRAC OBSERVABLES function. The resylting symplect'ic'forrmz_of rz is dp
IN A ONE-DIMENSIONAL MODEL /\dq. Th(_a dyn_amlcal changéy within the time increment
6T in T, is trivial:
A finite-dimensional example can illustrate the main as-
pects of our method. The underlying geometric framework 64p=0, 649=0. (2.8

(2.6
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We can also consider the solutio(&6) and (2.7) as de-
fining two scalar fields on the one-dimensional time mani- C=Pr+ Epé (2.19
fold R with coordinateT, the so-calledackground manifold
The push forward by the symmetry transformat{@®) acts

: being the constraint function. The surfacén P defined by
on these fields as follows

the constraint is called theonstraint surfaceSince equation
C=0 can be solved foP;, we can choose the functions

QM—>Q(T—1), (2.9 Q, Po andT as coordinates od.
The transformations that are canonically generated
Po(T)—=>Po(T—1). (2.10 by the function H(N)=NC can be considered as

i i reparametrizations—general changes of the time parameter.
This symmetry action preserves, of course, the property ofney are, therefore, analogousgauge transformationd he

being a solution of the equations of motion;c,jfand P de-  corresponding gauge group acts along the constraint surface
scribe the untransformed solution aqd andp’ the trans- ¢ At the same time, it®rbits in C coincide with the solu-

formed one, then Eq¢2.6) and(2.7) yield tions (2.6) and(2.7). The physical phase spate of gauge-
equivalent solutions can, therefore, be identified with the

q'=4-p7, P'=p. (211 quotient of the constraint surface by the gauge orbits:
This action of the symmetry transformation on the spBge c
is canonical and is generated by the functiep?/2 (as the Fzzﬁ. (2.19

Poisson brackets show

57 In coordinates §,p) onI', and @Q,Pq,T) onC, the projec-
50=—pdr= ( q,— ?pZ], (2.1  tion Proje _, r,) derived from Eq.(2.16) is
Sp=0=1p,— = p?, 2.1 _ ,
sP [p 2 P ] 213 The symplectic form{), onT', can be obtained frorf), as

follows. First, Q) is pulled back fronP to C. This yields a
where d is the change caused by the symmetry transformatwo-form (). degenerated along the gauge orbitLinThe
tion. o _ projection Prqj. . 1) in Eq.(2.17) determines the symplec-
" Tthe ke;;wobser\_/atlondls gowtth?hfollgwmg._lféve ?é)rg)g)are tic form Q, as the unique solution of the equatidd,

e time change im andp due to the dynamickEq. (2. — Dra * ) ;
with that due to the symmetfEgs.(2.12 and(2.13], we Proje . 1) (¥, where* denotes the pull-back mapping.
We shall also need the concept whnsversal surface

find that the relative time changegq— 6,9 and 5yp— 55p S ; i X
are formally identical to the original dynamics generated by/CC- This is a sectionr(r, . ¢):I';—~C in the sense that

the HamiltonianP%/2 in 'y, .

The description of the dynamics of our model can be Projc_r,°o(r,~o=1dr, (2.18
made generally covariant bparametrization (see, e.g.,
[26]). An arbitrary timet=t(T) is introduced and the action with respect to the projectio2.17). WheneverC admits
(2.1) is brought into theconstraint-Hamiltonian formi.e.,  such a section, the surfa@e o, _. ¢(I') is a copy of the
the Hamiltonian is a linear combination of constraint physical phase spad®,. A bijection between any surfacg
functions—a typical property of generally covariant systemsand the physical phase spdcgcan be defined by restricting
see[4]): the projection Prgj . r to each particulaZ: The symplec-

SQ.Po . T,Pr:N] tic form Q, induces through each such bijection a unique
QT symplectic form Q. In this way each7 also becomes a
phase space with a symplectic structure that is isomorphic to
)) that of I',. Transversal surfacg is calledregular if if it is
not tangential to gauge orbits at any of its pointsZlis
(2.149 defined by the equatioR(Q,Pq,T)=0, then the regularity
condition is a non-vanishing Poisson bracket

1 2

t
_ f Zdt(PQQ’t+ PrT,—N
ty

Let the spaceP consist of all initial dateQ, Po, T and P+

for the field equations implied by actiq®.14). The spacé? {F,H(N)}|,#0 VN. (2.19

equipped with the symplectic forr6l, derived from the

Liouville form of action(2.14), The meaning of the regularity of transversal surfaces simply
is that the gauge condition breaks the gauge completely. Sys-

Qp=dPo/\NdQ+dP/\dT, tems that are not pathological possess many transversal sur-

faces.

is called theextended phase spaa# the system.N is a One way to quantize a generally covariant system is to

Lagrange multiplier an€C=0 is a constraint with reduce it to an unconstrained system of the kigd). We
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shall now show two methods of reduction: by a gauge con{Q,T,Py) on C such a function has the form
dition and via Dirac observables and symmetry.
f(Q—PqT,Pg). (2.22
A. Reduction by a choice of gauge
The next step is to extend this function frafrto P. Let us
denote such an extension by P—R. The only condition is
that o be a smooth function of® the values of which coin-
cide with f(Q—PqT,Pg) at C. In this way, the original
(2.20 functionf on I, defines an equivalence clags of functions
' oonP. One can show that any two elemeantsando, of {o}
satisfy 0,=0,;+NC, whereN is a smooth function orP
(see, e.g.[4]). It also follows immediately from the con-
struction thato is constant along orbits so that it is a Dirac
between the original variable€)(Po,T,Py) and some ca- observable. Thus, a whole class of Dirac observables corre-
} . -~ ~ sponds to one function ohi, (one often speaks about Dirac
nonical coclrdlnatesq,p,T,P) that have been chosen so as jpservables meaning these clagses
to containT. Then, using the regularity condition of the  On the other hand, each Dirac observabtiefines via the
gauge, one can show that the constralt 0 is solvable restriction toC a function onC that is constant along orbits.
with respect toP and so can equivalently be written as Such a function determines, in turn, a unique functian
r,.
P+H(T,q,p)=0, The Poisson brackets between Dirac observables can be
_ calculated using the symplectic structure of the extended
where’H is some smooth function. The canonical transfor-phase spac®. It is easy to shov9] that the Poisson bracket

A gauge conditionis a choice of a particular family of
regular transversal surfaces that foligteLet the family be
given by the set of equations

F(Q,Po,T)=T.

For each fixed real, one surfac&= of the family is defined.
The reduction using the conditid2.20 can proceed as fol-
lows. Suppose that a canonical transformatiofPiis known

mation brings actior§2.3) to the form {07,0,} of two Dirac observables is again a Dirac observable
t and that the Poisson brackefs,,0,} and {o;+N;C,0,
~~~~~ P B R BT +N,C} lie in the same class. Thus, the Poisson brackets
S(@.p.T.P.N) ftl dtlpqc+ PT = N(P+7H)], between the equivalence clasgesare well defined. More-
over, if the class with the representativecorresponds to the
whereN is a new Lagrange multiplier defined by functionf;, i=1,2, onI',, and the class with the represen-
tative {0,,0,} corresponds td, then
NC=N(P+H).
- {f1.falr, =1,
Next, T is chosen as the integration variallend the action
is restricted to the constraint surface. The result is as is shown in Refl9]. It follows from this that acomplete
_ set of Dirac observablesogether with their Poisson algebra,
=y [T gL determine the structure of the physical phase sgaceA
S(a.p) f?l dT(paz—7). .29 complete set of Dirac observables separates gauge orbits, and

in simple cases can be used as a coordinate system on the

By this, the reduction is finished. quotient spac€/Orb=T",. For our model, a complete set is

A problem with this kind of reduction is that the new formed by the function®y=Q—PoT+N,C and 0;=Pg
variablesq, p as well as the new tim& are not the same as +N;C, whereN, and N; are smooth functions ofP. A
the original variable®, P, andT. Classically, the two ac- simple calculation gives that the only nontrivial bracket is
tions(2.21) and(2.3) are equivalent, because they are related
by an extended gauge transformation. The two quantum me- {00,01}=1+NC,
chanics, however, that are obtained by the standard quanti-
zation method from themgannot be unitarily equivalent WhereN={Ng,0:}+{00,N4}; the Dirac observables, and
[27]: the transformatiori2.20) between the respective times 01 correspond to the functiorsandp onI',.
involves operators, while each of the times must be a param- The symmetry groud2.2) acts on the extended phase
eter in the respective quantum mechanics. space as follows

B. Reduction using Dirac observables and symmetry (Q,Pq,T,P1)—(Q,Pq, T+ 7,Pq), (2.23

A Dirac observable ¢P) is a functiono:P—R whose and is, therefore, generated by the momen®yrconjugate
Poisson bracket with the constraift vanishes when re- to T. Observe thaP; itself is a Dirac observable; one can
stricted toC. Dirac observables are gauge invariant. prove[9] that any continuous symmetry group is generated

The correspondence between Dirac observableB and by a Dirac observable. NowP; has a nontrivial action on
functions onI’, is the following: Each functiorf: I'y—R Dirac observables. For example,
determines a functiofie Proj. _, r, on the constraint sur-

face via the projection mappind2.17). In the chart {00,P1}=—0;+N,C,

104013-4



GAUGE-INVARIANT HAMILTONIAN DYNAMICS O F. .. PHYSICAL REVIEW D 68, 104013 (2003

{01,PT}:N1C. spacelike Killing vectorsi/d¢ and d/dz; the Killing field
dl de is rotational and it keeps a timelike axis fixetlpz is
whereN, andN; are suitable functions oR. The change of translational; coordinateg andz are invariantly defined up
Dirac observableseferred tothe symmetry as “zero mo- (0 @ translationz—z+a. The metric can be written in the
tion” is, therefore, nontrivial. It is easy to see that this form
change is generated by the functierPy. The value ofPt

at C is. however ds?=e? ¥(—dT?+dR?) +e’dZ?+ R% Yd?, (3.1
1, whereT andR are invariantly definedT up to a translation
_PT|C:§PQ! T—T+a. In the above equationg=(T,R) and y

=vy(T,R). [To obtain Eq.(3.1) one uses a consequence of

and it lies in the clas®?/2+NC. The corresponding func- Vvacuum field equations—see, e.[d.8,30 ] _
tion onT', is, thereforeH = p%/2, and it plays the role of the Itis well known that because of the translational symme-
Hamiltonian of the constructed dynamics. In this way, welly /92, the four-dimensional Einstein equations are equiva-
have recovered the dynamics and the phase spacd the lent to the three-dimensional Einstein equations with certain
original system so that the reduction is accomplished. ~ Mmatter sourcessee, e.g.[22,20] and [17]). In our case of

Mathematically, any symmetry @ that is not pure gauge CcYlindrical symmetry ¢/d¢ is a further Killing field the
transformation can generate a nontrivial evolution of Diracfour-dimensional Einstein vacuum equations the solutions of
observables off', because it defines a nontrivial mapping Which give Einstein—Rosen waves are equivalent to Einstein
between gauge orbits & By projection tol', a symmetry is gquatlons in three dlmensmns with a zero-rest-mass scalar
obtained which can be interpreted as the generator of a dyi€!d ¢ as a source. Itis, however, more advantageous for the
namical evolution o', Physically, it must be additionally canonical formulation to work with the physical Klein-
required that the symmetry be privileged by the situation a3ordon field ¢=y/\8G, G being the Newton constant.
hand. Only then its role as a true HamiltonianBncan be ~ Hence, we formulate everything with the help of the figld
justified. Here, the constant translatié®23 is physically In three dimensions, the metric is given bof. [22] and
privileged by the arguments leading from E¢g1) to (2.14  [17))
and in particular by the fact that it yields through Noether’s aib 5 .
theorem the energy of the Newtonian particle in the privi- ds’=gapdx?dx’=e?(—dT?+dR?) + R?*d¢? (3.2
leged reference systei The transformation(2.23 is in- _ o )
deed a symmetry o because the Poisson bracket of its@nd the Einstein field equations become
generator~ Py, with the constraint functio2.15 vanishes

oncC. Py Py 1 WY _gsl?® 2 23
The following observation is very important. F; gener- JRZ T2 TRIR G T 33

ates a symmetry that leads to the Hamiltonk&im T"5, then

so doesP++ N’C for any smoothN’: the dynamics of Dirac 5 9 2

observables is uniquely determined by the whole class of _ ‘9_7+ QJF 1(9_7: (@) (3.4)

symmetry generators. Why is this important: In our simple aR?  gT? RR IR}’ '

model, we have a unique symmetry and it is generated by

P;. The reason is that our model is a so-called “already 19y p I

parametrized system” with a privileged tine Indeed, there RIT 86@ a1 (3.9

also is a privileged choice of gauge due to this fact:

F(Q,Po,T)=T, which leads to the “right” action2.3) by : ;

the red%ction procedure of Sec. Il A. However, many modeIsThe field equation foeb,

of real interest, such as general relativity, are not already 2 9

parametrized systemig8]. For such models, there is no _ﬂ+ M+£%:0 (3.6)

privileged time and no symmetry in genetef. [29]). But in aT?  9R? RIR 7 '

asymptotically flat cases, there is a privileged asymptotic

time and an asymptotic symmetry. As it is shown[B8], is the wave equations for the nonflat met{&?2) as well as

such symmetries do not determine their generators in théor the flat(Minkowski) metric obtained by putting/=0 in
extended phase spageuniquely but only up to addition of a Eq. (3.2). This crucial simplification implies that the scalar
linear combination of constraints. Despite that, they still defield ¢ is decoupled from the equations satisfied by the met-

fine a unique dynamics of Dirac observables. ric. Equations(3.3)—(3.5) reduce to two simple equations
Ill. POLARIZED CYLINDRICAL WAVES: SOLUTIONS (97_ d¢ 2 2 2
AND ASYMPTOTIC BEHAVIOR IR 4GR oT * IR I 3.7
A vacuum spacetime describing cylindrical gravitational
waves with a fixed state of polarizatidgone degree of free- Iv_ 8GR ﬁ % 3.9
dom per point has two commuting, hypersurface-orthogonal aT JdT JR’ '
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the wave equatiori3.6) is their integrability condition. We % ap\? [ad\?
can thus solve the axisymmetric—in three dimensions Y= ¥(00)=4G J dR'{(a—T) +(ﬁ) }
“spherically” symmetric—wave equation (3.6) on 0 (3.13
Minkowski space and then solve Ed8.6) and(3.8) for the ’

metric functiony(T,R) by quadratures. These well-known  The value ofy.. represents the total energy of the scalar

facts are of key importance in the canonical and quantunfield ¢ computed by using the Minkowski metric. For any
theory since all physical degrees of freedom are contained ifgntrivial data,y.. is positive. Hence, the metric at spatial

the scalar field. _ infinity, given by
We shall now briefly review some of the results on the
asymptotics obtained if22] and[31]. We shall extend the ds’=e”=(—dT?+dR?) + R?d¢?, (3.149

discussion by including both future and past null infinities,
and later also by employing a Fourier-type decomposition. has a conical singularity because the distance of the circles
The Cauchy data for the scalar fieltl, given on the with radiiRandR+dRis different by a factoe”- from the
Cauchy surface topologica”ﬁZ’ suffice to determine the difference of their circumferences divided byr2 1t can be
whole spacetime metric. For data which fall off appropri- shown[22] that as one approach&s” (R—o, U=const),
ately, the three-dimensional Lorentzian geometry is asympene finds[cf. Eq. (3.12]
totically flat both at spatia[21] and null infinity [22] al- y 412
though in fou_r dimensions the Elnstem—Rpseq spac_etlmes are Y(U,0)= ..~ 8G J du(—) ’ (3.15
not asymptotically fla{see[31] for a detailed investigation —w d
of cylindrical waves at null infinity in four dimensiops
By employing the “method of descent” from the Kirch- andy to vanish at the timelike infinity *. Hence,
hoff formula in four dimensions one can find the representa-
tion of the solutioné(T,R) of the wave equatiori3.6) in v.=8G J"” du
three dimensions in terms of Cauchy datg= ¢(0,R) and * —w
¢1=¢ 1(0,R). This has been used if22] to find the
asymptotic behavior of the field and the whole metri¢3.2) ~ The conical singularity, present at spacelike infinity, is thus
at the future null infinity for the data of compact supp@ee  “radiated out,” and the future timelike infinity * becomes
Sec. Il in[22]). By applying the same procedure one cansmooth. Equatior(3.15 plays the role of the well-known
analyze the solutions at the past null infinity. IntroducingBondi mass-loss formula, the functiatf/dU being analo-

df)2
qul - (3.1

retarded and advanced time coordinates gous to the Bondi news functidsee alsd32], Eq.(3.6), for
an analysis in four dimensioh<Clearly, analogous formulas
U=T-R, V=T+R (3.9 to EQgs.(3.195 and(3.16 are valid for incoming waves, with

df/dU replaced bydg/dV:
[notice that these are null coordinates for both flat
Minkowski metric and the curved metri@.2)], one obtains v g\?
expansions in the powers & %2 along null hypersurfaces v(V,*)=8G f_w d”(@)
U =const andv=const of the form

and
1 = Gk(V)
S(V.R) = —=g(V)+ >, =, (3.10 » [dg)?
JR 1R %C:sef av 5y - (3.17
1 . (V) Here we assume smooth past timelike infinityand incom-
$(U,R)=—=f(U)+ > P y

JR =1 Rk ing waves from the past null infinitZ = with a null data
(3.1) g(V) bring in mass-energy which reveals itself as a conical
singularity characterized byy(V,«). At spatial infinity
The coefficients in the expansions are determined by the, (V=, R=x) this becomes just the constapt given in
Cauchy data. By rewriting the Einstein field equatiéBs)  Eq.(3.13. The fluxes of radiation, the analogues of the news
and (3.8) in terms ofU and R (respectivelyV andR), we  function, as well as conical singularities are observable quan-
obtain the asymptotic behavior of the metric functiprat tities at the past and future null infinities. Both are given by
7" in the form the asymptotic null datg(V) andf(U). The asymptotic null
data will be important in the following.
Starting from the representation of the solutions of the
three-dimensional wave equatiof8.6) in terms of the
(3.12 Kirchhoff-type formula obtained by the “method of descent”
from four dimensions one can, for the Cauchy data of com-
and similarly atZ ~. Here the constang.,, which will play a  pact support, obtain not only expansiof810 and (3.11),
key role in the following, is determined uniquely by the but also the explicit expression for the null ddigJ) [re-
Cauchy data fokp [cf. Eq. (3.7)] spectivelyg(V)] as the integral over the Cauchy datg and

u df )2
dU(d— +0O(R™?),

V(U,R)=7m—80f

104013-6
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¢,. However, these integrals become simple only for re-A*(w) being given by complex conjugation. Alternatively,

tarded timedJ so large that the support of the data is com-we can write

pletely in the interior of the past corieimilarly for the ad-

vanced times af ~); see[22]. Here we need the null data \F i [ v

forall UsatZ' andV's atZ . Alw)=\/ € f_w dvgv)e®t.  (3.29
To achieve this, we start from a Fourier-type decomposi-

tion. This, in three dimensions, means to write the solutionsimilarly, from Eq.(3.20 we get

in terms of the Bessel functions of zero order provided that

we require the solutions to be regular everywhere, in particu- CIN (U CioU
lar atR=0 (see, e.qg.[33]). Alw)=1/ € o duff(u)e=+f(-U)e '],
Thus, we start from the solutions of the form
(3.26
1 £ ) or
gb(T,R):Ef dw[A(w)Jy(wR)e “T+c.c].
0 o0
(3.18 A(w)= \/%e‘”"‘f duf(u)eev.  (3.27

As usual, we write just “c.c.” instead of the second term,
meaning the complex conjugate of the first one. Using th
asymptotic expansion of the Bessel functionRatoc (see,
e.g.,[33]), we obtain

Since according to E(q3.18 the functionsA(w) determine

Ghe solutions¢(T,R) everywhere, Eq.3.24—(3.27) imply

that either the null datg(V) atZ ~ or f(U) atZ " determine

¢(T,R) uniquely in the spacetime.

. d The amplitudesA(w) can be expressed also in terms of

S(T.R)= 1 J _w{[A(w)e—i(TrM)fin_'_C_C_] the Cauchy dataq?oz ¢(OR) and ¢,;=¢ +(0,R) directly
2JR7Jo Jw from Eq.(3.18. Using the Hankel transforitsee, e.g.,33]):

i i for two functionsX(x) andY(y),
+[A(w)e ™1V c e} +O(R3P), (x) )

(3.19 X(x) = f: dy Y(y)vVxy Jo(xy) (3.28

whereU andV are retarded and advanced time coordinates )

given by Eq.(3.9). Hence, the null data at the future and pastiS equivalent to

null infinities read as follows: .

Y(y)= fo dXX(X) Xy Jo(xy). (3.29

do

f(U)= ﬁ[A(w)e-iw‘*)-in+c.c.],

1 JW
2w Jo 320 Expressingeg; from Eq. (3.18 we obtain
3.2

1 ©
A(w)=—f dR(w¢pg—ip1)RI(wR). (3.30
1 o d ) ) 0 1 0
g(V):_Z\/;fo \/S[A(w)e'(”/A)_"“V+c.c.]. \/E 0
(3.21 Hence, as expected, we need bgth and ¢, to determine
the solution of the wave equatio(8.6) everywhere. For

It is easy to invert the last equations by writing, for example time-symmetric initial datag, =0, the amplitude#\(w) be-
come real.

2 [x 5 Although for the Cauchy data of compact support and
gV)+g(—V)= \ﬁf do[A(w)+A* (w)]coswV, even for more general data falling off sufficiently rapidly at
mJo spatial infinity we geté~1/R at null infinities as in Egs.
(322 (310 and(3.11) (see[22)), at spatial infinity, i.e. in the limit
R—oo, T fixed, the solutions fall off more rapidly:

2 (= ~ ~
g(V)_g(_V):_l \/;fo dw[A(w)—A*(w)]SlnwV, ¢~O(1/R), ¢‘R~O(1/R2) (331)
(3.23

This will be needed in the canonical theory. To demonstrate

~ ) the fall-off I in th totic f R) at
whereA(w) = (2w) ~Y2A(w)e'™*. Using Fourier cosine and Rio? ir?éq?r(g?l(g again the asymptotic form 4f(«R) a

sine (inverse transforms to expres&=A*, we find
const (*dw

o _ _ b=—F=| &

A(w)= \/ge'”"‘f dV[g(V)e“V+g(—V)e oV, VR Jo Jo
0

(3249  and putwR=w' in the integral. Then we get

cos( wR— g) [A(w)e “T+c.c],
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o' _ With this explicit solution one can verify directly relations
A(—)e"‘"T’RJrc.c., (3.19—(3.17 for the conicity as it is radiated “in” and

const ([ do’ ( 'n')
R “out,” similarly to the Bondi mass in four dimensions.

———=cCOoS| w' — —
4

Rl Re

which at largeR and fixedT leads to¢~ 1/R.

Finally, let us illustrate previous results by a simple ex-
ample. The Weber-Wheeler-Bonnor pul[$#,35 represents Let us essentially repeat the canonical treatment of Ash-
an exact, time-symmetric vacuum solution of the Einsteintekar and Pierri given ifi20] but with a slight modification
equations with cylindrical symmetry which satisfies all regu-in order to establish the analogy with the model of Sec. II.
larity conditions required above. The pulse comes in from_et us start by considering the volume part of the canonical
the past null infinity, concentrates around the axis of symmeaction derived from the Einstein-Hilbert action by assuming
try (in three dimensions around the cen®+0) at T=0, cylindrical symmetry in20]:
and then reexpands to future null infinity. The real amplitude

1 ©
A(w)=Ce 2, (3.32 S=£f dtfo dr(p,y+tPrR1+ Py —NC—N'C)),
(4.2)

IV. HAMILTONIAN FORMULATION

whereC and a are constants, implies, by using E§.18),
solution where
o| (@2 RP=T7)21 42272 @24 RO T2 He
(a®+R?-T?)?+4a%T?

C=e "%2R; —y,R,—p,prt+ R 1pi/2+RyA4/2)

(333) and

regular everywherdDue to the factor 12 in Eq.(3.18 ¢ Cr=e (=2 Py Y+ PrR T Pyib)
here must be multiplied by/2 to get Eq.(3.15 in [31].] At

spatial infinity, R—cc, T fixed, we see that are the constraint functions, R, andy are defined by Eq.

(3., p,, pr and p, are the conjugate momenta, whie

1 and N" are Lagrange multipliers—the so-called lapse and

¢,:c\/§ —+0(1/R?), (3.34 shift functions. One should add to this action the boundary
R energy term

in accordance with Eq(3.31. At the past null infinity R 1
—o, V=T+R fixed), we find - Ef dt(1—e 7-?), (4.2
1/2
d):CE V+(V2+a?)? i+0(1/R3’2) and specify the fall-off ofN according to lim ..N=1 so
2 V2+ 32 JR ' that the action be differentiabl0]. However, this term is

(3.35  nhot invariant under reparametrizations of the label tinae
there is no temporal density present in the integrand in Eq.
(At future null infinity, R—, U=T—R fixed, the same ex- (4.2). Addition of the bare term4.2) to the action(4.1)
pression, withV replaced byU follows.) A simple calcula- would imply a privileged choice of asymptotic time. The
tion, starting from the formulé3.21) for the profileg(V) and  total action would then not be in the constraint-Hamiltonian
usingA(w) from Eq.(3.32, yields exactly the factor at R~ form but rather in an already reduced form at spatial infinity.
in Eq. (3.35 [for integrals fﬁjdxe‘ax(ll\&) cosbx and In order to recover the full constraint-Hamiltonian frame-
% dxe @(1/\x) sinbx needed in the calculation, see e_g_,work of our model in Sec. Il, we need to justify the inclusion
[36], formulas 3.944, 13 and 14 _of a temporal density in Eq4.2). Thls can be done follow-
With ¢ given by Eq.(3.35 one can find the explicit ex- N9 the general approach by Beig and O" Murchadal.
pression for functiony by solving Egs.(3.7) and (3.9). It First, one considers fall-off conditions for t_h_e configuration
reads[34,31] as follows: space data at—c. These have been specified[20]. The
configuration space fields approach infinity according to
2 2 2 2\2 212
y—agcy L ZRUEHRT) -4 T] Y1) = 7.() +O(1),
a? [(a’+R?-T?)?+4a°T?)?

R(t,r)—r(1+0(1/)), 4.3
1 R gt 72 s (t,r) =1 (1+0(1h)) 4.3
a? [(a?+R?—T?)2+4a%T2)"? " ' P(t,r)—O(1fr),
The conicity at spatial infinity is thus given by where rO(1/r), r2 O(1/r?), etc. admit limits atr—oe.
(These limits generally depend on the timeOne then re-
¥.=8G(Cla)?. (3.37 quires that the action of the Liouville form
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” 1
_ — Vool 2
JO dr(p, dy+prdR+p,dy) 4GJ dt(N.e "2,

on vector fields of the form whose variation with respect tg(t,r) cancels the boundary
term in Eq.(4.7). The differentiable action is therefore

e Jd
f dr (57—+5R +5(// 1
0 Iy S5 dtf dr(p, .+ PrR+pyth—NC—N'C,)

should be finite. The resulting integral

- —%f dtN,.(1—e ™ 7=/2). (4.9
Jo dr(p,dy+proR+p,o4)
The boundary term in Eq4.8) has now been modified by
is finite if the momenta satisfy the following fall-off condi- the addition of a constant in order that it coincides with the
tions atr —oe: asymptotic energy derived from first principles 20]. There
is no boundary term involving the shift in spite of the fact
py(t,r)—>0(1/r2), that its asymptotic value may be nonzero. The corresponding
constraint functional generates an “even supertranslation”
pr(t,r)—0O(1/r?), (4.4 (in the language of23]) and is differentiable without any
correction, similarly to the case of four-dimensional general
p,(t,r)—O(1/r). relativity, cf. [23].
When varying the actiori4.8) with respect to the lapse
Next, concerning the behavior of the lapse and shift, therey(t,r), it is important to keep the ends of its variation fixed.
are several aspects that ought to be kept in mind. First, it isndeed, ifN..(t) is varied in Eq.(4.8) then one gets an un-
the finiteness and differentiability of the Hamiltonian part  wanted field equation |mp|y|ng that the asymptotic energy
vanishes. It follows that the actio@.8) is not yet in true
Hi[N,N = fxdr(NCJrNrCr) (4.5) constraint-HamiItonian form. Follqwing Kugﬁ§{r24], this
0 can be improved by the “parametrization at infinityikt,,(t)
should be replaced by a differentiated asymptotic time
of action(4.1) (cf. [23]). Second ;[ N,N'] has to generate dT, /dt=T.. (t). The asymptotic time is determined by the
a transformation within the phase space defined by th@symptotic metric: it must holt,.=1 if the parametet is
boundary condition4.3) and (4.4) [23]. Finally, if we are  chosen to b ... The timeT..(t) can be varied in the ensu-
going to have a full analogy to actia2.14) of Sec. Il, we  ing action. Its variation leads to a redundant equation
have to parametrize the model also at infinity, as it is done iramounting to the conservation of the asymptotic energy. One
[24] for a spherically symmetric model. should next introduce the momentufy, and add the asso-
The constraints functional4.5) remains finite even if cjated constraintwhich is linear inP.,) to the action by a
N(r) and N'(r) approach arbitrary temporal densitiesrat pew Lagrange multiplieN..(t).

—o; namely, In this way the action is brought into the true constraint-

Hamiltonian form
N(t,r)—N.,(t)+O(1/r),
1 1 ®
N'(t,r)—NZ(t) +O(1/r), (4.6 S=£f dt(Pme,tH%f dtfO dr(p,7.+PrRy

whereN,.(t) has to be non-negative. The condition that the
lapse and shift should approach temporal densities-ab is TPy — f dtN.| P
the minimum requirement that is compatible with the invari-
ance of the actiorf4.1) under reparametrizations af

Conditions (4.3—(4.6) now imply that the action is not TS dtf dr(NC+N'C,). (4.9
differentiable. The problem comes from the variation of
y(t,r) leading to the boundary term

1
(11— Y2
+4G (1—e ))

The multipliersN and N" obey the asymptotic condition
1 " (4.6). The action(4.9) is the analogue of the actid@.14) for
5S— — dtf dr(Ne "2 R,8y), the Newtonian particle. One can verify that the field equa-
8G ' ' tions derived from the variations of E(4.9) coincide with
those of Sec. lll, preserve the fall-off conditiot¥3)—(4.6)
_ and imply the conservation of the asymptotic energy.
- _Gf dt(N..e”725y..) (4.7 Action (4.9 is our starting point for the canonical theory.
Although it corresponds to actiof®2.14 of Sec. Il, observe
at spatial infinity. In order to have a consistent canonicakhat there is no a priori analogue of acti@h3) of Sec. Il.
theory, one needs to add to the action the boundary term We have to begin with the extended phase spBcwith
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coordinates  y(r), p,(r), R(r), pr(r), ¥(r), py(r), T,
P.. and the symplectic fornf»,

1 1 (=
QP:% de/\dTer%fo dr[dp,(r)/\dy(r)

+dpr(r)/AdR(r)+dp,(r)Ady(r)].

The constraint surfacé€ is defined byH[N,N']=0 for all
N(r) andN'(r) satisfying the fall-off conditions, where

H[N,N"T=N.,

P e (1—e 72
* 4G

"8G

xfwdr(NCJrNrC,). (4.10
0

The orbits are defined by the canonical action of the con-
straint functional#[N,N"]. The canonical transformations
generated by Eq4.10 are considered as a gauge transfor-
mation. Within the gauge group, there is no distinction be
tween the “symmetry” and the “proper gauge” as, e.g., in
[20,23 and[11]. The functional(4.10 generates only rep-
arametrizations both “inside” the spacetinaad at infinity.
Symmetries are now generated by different functions. In-
deed, the functiona{4.10 has vanishing Poisson brackets
with P, for any N(r) and N'(r) satisfying the conditions
(4.6) because the variable, is asymptotic value of the ca-
nonical coordinatey so that{P..,y.}=0. Hence, it is the
functionP,, that generates the symmetry. In general, we con-
jecture that one can introduce privileged coordinates at infin-

inte
gau
‘dim

=0

PHYSICAL REVIEW D 68, 104013 (2003

T = constant

/g

FIG. 1. Important surfaces in the constraint maniféld The

rsection ofT .= const with any orbit is infinite-dimensional. The
ge condition surfacgj intersects each orbit in done-
ensional dynamical trajectory of the reduced theory. The points

common tog and each surfacg,, = const is ainfinite-dimensional
transversal surfacé; .

Following Ashtekar and Pierri, one may fix the part of the
gauge associated with the constrai@ér)=0 and C,(r)

by imposing the gauge-fixing conditions

R(r)=r, p,(r)=0. (4.11

ity and that asymptotic symmetries are generated by theif "€Se are the defining equations fgr Viewed as con-
conjugate momenta or suitable combinations of the momentstraints, these conditions form together with the constraints

and the coordinatedike, e.g., boosts )
The variableT., to which P., is conjugate is a kind of a 'NY
“privileged time” but the surfaceT..=const is neither a OF
transversal surface in the phase space, nor a Cauchy surface
in each solution spacetime. Indeed, the functibp—c,
wherec is a constant, has vanishing Poisson brackets with

C(r)=0 andC,(r)=0 a second-class system. The remain-

constraintP,,+ (1/4G)(1—e~ *~"?) =0 can be taken care
by the gauge-fixing condition

T..=const.

(4.12

H[N,N"] for all N(r) andN'(r) whose asymptotic values The surfaceZr_in C defined by Eqgs(4.11), (4.12 selects an

vanish; hence, the duly generalized regularity conditionjpit

(2.19 is not satisfied. It follows that an infinite-dimensional -qndition surfac

submanifold of each orbit lies in the surfate= const(Fig.

1). This is connected to the fact that the conditidn
=const defines only a particular section of infinity in each
cylindrical wave spacetime but not a Cauchy surface of th
whole spacetime; there is a relation between Cauchy an
transversal surfaces, ¢28].

The reduction by gauge condition, analogous to that de- s
scribed in Sec. Il A, starts by a choice of a one-dimensional
family of transversal surfaces. Let us denote the manifold
formed by all chosen transversal surface€iny G. In Sec.

I, a privileged choice of gauge has been possiglbas been

the family of surface§ =t, te R, whereT is the privileged
time. The nearest to this we can come is to choose the trans-
versal surfaces irg to be the intersections of and T,
=const(Fig. 1). There are, of course, many choices®f
One example of such a choice is carried ouf2d]. Let us
describe an analogous choice for our actidr®).

mu

104013-10

al datum from each gauge orbit id. The gauge-
& is swept by all7y .
n order to confirm that this reduction is admissible, let us

add Egs.(4.11) and (4.12 to the action(4.9) by Lagrange

ltipliersM, M", and find out if the ensuing action deter-

Ffa]ines unique values fdd, N'. One obtains the action

1 1 %
:£f dt(P.,, Tx't)+%J' dtJO dr(p,7,:tPrR;

1
P+

A Yl2
TR

+py ) — J dth(
1 ©
— f dth(Tx—t)—%j dtjo dr(NC+N'C,)

- f dtf:dr(M(R—r)+Mrpy), (4.13
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where the set of condition&4.12) is implemented by the The action(4.16) is precisely the reduced action of Ashtekar

expressionf dtM,, (T.—t). Indeed, it is not difficult to
check that all redundant variables in E¢.13 can be ex-
pressed uniquely in terms of the canonical pali,) by

and Pierri. In particular, the Ashtekar-Pierri tirnim Eq. (19)
of [20] corresponds to the tim€&,, here.
Geometricallyy(r), p,(r) andT., are coordinates on the

solving the set of equations derived from the variation ofgauge-condition surfacg. The surfaces defined i@ by the
these variables in Eq4.13. This confirms that the gauge- equationT..= constant are transversal surfaces inphase
fixing conditions(4.11) are regular. In particular, the unique spaceP. However, they also determine a family of Cauchy

reduced expressions for the multiplie¥s N" andN., are

ol [T 102 2
N(T. ,R)= exp 4JR dr(r p‘,,(Tx,r)Jrrzp’r(Tm,r)) ,

N'(T..,R)=0, (4.19

those for the canonical pairgy(p,), (R,pg) and (T..,pr-)
read

1 R 142
Y(Tm'R):Ejo dr(r (TOC|r)+r¢ (Too’ ))1

P,(T,R)=0,

R(T..,r)=r,

Pr(T=,R)=—py(T,R) ¢ r(T,R),
T.(t)=t,

Po(Te)=— 16[1 exp( 1 ”

where

1 ©
Vo= fo dR(R™*p7(T..,R)+RyR(T...R),
(4.15

surfaces of constant Ashtekar—Pierri time in each solution
spacetime(cf. [20]). In this sense, the pai4.11) of the
gauge condition determines a particular extension of the
points at infinity defined byl .= const to whole Cauchy sur-
faces in the spacetimes. However, different choices lefad
to different Cauchy surface extensions of these points at in-
finity. Hence, two different choices @f entail two different
choices of time so that the transformation between the times
has again the character of Eg.20 even if the part4.12) of
gauge conditions remains always the same—only the
asymptotic values of these times have then to coincide. As
noted at the end of Sec. (R), it is the transformatiort2.20
between respective times which causes difficulties in con-
structing a unique plausible quantum theory.

Considering the privileged symmetry generated by,
we can see that it remains a symmetry of the reduced theory.
It acts inG as follows:

((r),py(r), T )= ((r),py(r), T+ 7), (417

while the original action oP,, in P is

(v(r),p,(r),R(r),pr(r), (r),py(r),T.)
= (y(r),p,(r),R(r), pr(r), ¥ (r),p,(r), T+ 7).
(4.18

The map(4.18) is tangentialto G and the mag4.17) is just

and unlque expressions also follow for the multipliersthe restriction of Eq(4.18 to G. This follows from the fact

M, M,

. The uniqueness of these expressions partiallthat the constraints as well as relatiods1l) that defineG

relies on the conditions imposed on the canonical fields aire independent df..

r=0 (see, e.g.[20]) which force y(T.,,0) to vanish for all
Te.

The dynamics defmed by actida.16) determines a folia-
tion of G by one-dimensional dynamical trajectories repre-

The reduced action for the I’emalnlng canonical pa|rsented by two functions of two Var|ab|e$(R Tw) and
((T=,R),py(T,R)) on GCC, parametrized by the values p (R T.). These are identical with the intersections Gf

of the asymptotic time, is therefore

1
S= 8G dT. f dR (py(T-., R ¥ 1 (T-.,R))

dT.(1—e 7=(T=)2) (4.19

4G

wherey..(T.) is expressed as a functional #{T..,R) and
p(T=,R) in Eg. (4.15. The action(4.16 is analogous to
the reduced actiof?.3). The phase spadg, is described by
coordinates/(R) andp,(R), while the symplectic form is

Q.= J?dep,,(R)/\d«/z(R).

W|th the orbits. In this way, we obtain a bijection between
integrals of motion of the reduced theory and Dirac observ-
ables. On one hand, any Dirac observable is constant along
each orbit. Hence, it must also be constant along each dy-
namical trajectory of actiori4.16. On the other, any func-
tion on G that is constant along each dynamical trajectory
defines a unique extension ¢bthat is constant along each
orbit.

This relation between the Dirac observables of the ex-
tended system and the integrals of motion of the reduced
theory, together with the compatibility of the symmetry
groups generated bl., in the extended and reduced theo-
ries, justify the approach of Secs. V and VI, where we shall
construct the gauge-invariant dynamics starting from the
gauge-dependent actigA.16).
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V. PHYSICAL PHASE SPACE T,

_ 1 ” —ioT(t

In this section, we choose a complete set of Dirac observ- ~ ¢(LR)I= V2 fo dolA()Jo(wR)e "0+ c.cl,
ables, find their Poisson algebra and calculate their Poisson (5.9
brackets with the symmetry generat®y, . This task is sim-
plified if we start from Ashtekar—Pierri reduced acti@nl6
instead of the original parametrized actigh9). According
to what has been shown in the previous sections, the result is
independent of the gauge chosen to reduce the a@iénh

The reduced actio4.16) can be rewritten in terms of the
rescaled fieldp= ¢//8G introduced in Sec. Il as follows:

and Eq.(5.9) yields

R (= .
%(t,R):EJO do[ —iwA(w)Jdy(wR)e “TO+c.c].
(5.9

S= f dtdR(m4p—H),

where

Equationg5.8) and(5.9) describe the general solution to the
canonical equationg5.4) and (5.5 in terms of the set of
constantsA(w). Hence, the parameteS(w) can serve as
coordinates on the physical phase spEge

The physical phase space is a symplectic manifold. Its full
structure can be obtained if we find a transversal surface. As

_ * 1, 2 has been explained in Sec. Il, any transversal surface, to-
¥-=4G Jo dR(ﬁTr‘ﬁRd’ ) G- gether with the symplectic form that results from pulling
back the symplectic form from the extended phase space to
enters the Hamiltonian the transversal surface, form the structure that is isomorphic
to the physical phase space. In our case, the initial gdgta
1 —w2) and w4, of the canonical coordinateg and 7, at the
H=7g (- 7). (5.2 cauchy surfacé=0 determine a unique solutios.8) and

For simplicity, the notation for our tim&., has been changed
to the Ashtekar-Pierri notation The Hamiltonian depends
ont only throughm, and ¢ so thatH and y., are constants

of motion,

¥.=0.

The canonical equations that follow from the action are

(5.3

(5.9 so that they can also be considered as coordinates on
the physical phase spadg. Moreover, the surfac€, de-
fined by the Ashtekar and Pierri gau¢e1l) together with

the conditionT.,=0 is a transversal surface. Hence, the sym-
plectic form () on the physical phase space with respect to
the coordinatesp, and 7, is

Q,= f:de%o(R)/\dqso(R) (5.10

because this is the pull back 8f; to 7, by the injection map

o a(112)ys Y
my=€ (RPN, (54 of 75 into P; the manifold7, with this symplectic form is
isomorphic to the physical phase spdce
('b:e,(l,g)ywiw (5.5 The relations between the parameta(g) and ¢q, 740
R"¢ ' can be obtained from Eq$5.8) and(5.9):
Equations(5.5 and(5.3) imply 1 (=
PR~ = | dody(@RAW) A% ()], (612
1 V2 Jo
b= W2
R"¢ and
so that iR (=
T R=——f dowdy(wR)[A(w)—A* (w)],
oy #0(R) 2o o(@R)[A(w) (@)]
Yeo of —_¢+_ﬁ (5.6) (5.12
&= T RIR '

If we use the relation between the Einstein-Rosen flnaad

the Ashtekar-Pierri timé (see[20]),

T(t)=e (W27,

then Eq.(5.6) becomes the wave equati@®.6). The general
solution to Eq.(3.6) is given by Eq.(3.18, which can be

written in terms of timet as

(5.7

while the inverse transformation is analogous to £430:

1 )
Alw)= 2 jo dR}(@R)[wRPo(R) —im40(R)].
(5.13

A further set of parameters to determine points of the
physical phase space are the null datag(V) or Z* null
dataf(U). The transformations betweeé(w) andg(V) is
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given by Egs.(3.21) and (3.29, those betwee\(w) and % )
f(V) by Egs.(3.20 and(3.27. 0,= f_m dvdg (V)Adg(V). (5.17)
The quantityy., is a function on the physical phase space

giVen, in terms of the four different coordinate SyStemS, byBy analogous Ca'cu'ation, Eq@l@ and (327) y|e|d
Egs.(5.1), (3.16 and(3.17). Equation(5.1), into which Egs.

(5.17) and (5.12 are substituted, yields after some simple [~ A
transformations the expression fgy, in terms of A(w): Qp= . dudf’(U)Adf(U). (5.18
v, =8G fw dwwA* (0)A(w). (5.14 Finally, let us calculate the transformation betwd¢b)
0 andg(V) if f(U) is defined by the solution determined by

_ ) g(V). Such a transformation is, therefore, entailed by Egs.
We can also express the symplectic foffn10 in terms (320 and(3.25:

of A(w). If Egs. (5.11) and (5.12 are substituted into Eq.

5.10, we obtain 1 fo ) | |
o f(U)=§f dVg(V)f dofieieU— —jg-ioU-V)],
o 0

i o0 oo oo
92:__f dwf do’ f dRw'RJy(wR)Jg(w'R) o ) )
2J)o 0 0 The distributionD (U — V) defined by the integral oves can

be approximated by a convergent series of distributions
X[~ dA(0)AdA(0’)+ dA(w) AdA* (o) De(Up—pV) (see[37]),y g

—dA* () \dA(w')+dA* (0)\NdA* (0')]. imD(U—V)=D(U—V),

The formulas(3.28 and(3.29 imply, however, that 0
. 1 wheree>0 and
f dRR}(wR)Jp(0'R)=———=d(w—-w’'). (5.19
0

Joo"

De(U_V): fo dw[ieiw(U7V)7WE_ie*iw(U*V)fwf]

Hence, using the antisymmetry of the wedge product, we
obtain finally U—v
© = _ 2 2"
0,=i f dwdA* (o)A dA(w). (5.16 (U=V)te
° However,
Let us also express the symplectic form of the physical
phase space in terms of the asymptotic null dgte) and lim °° av | -2 u-v V)
f(U). Equations(5.16 and(3.25 give c0d o (U=V)2+ €2 9
i jmdwdA*(w)/\dA(w)= - i—Jm v fw dVdg(V) _op [ gy IV
0 T)o ) I R VR VA
Adg(V) Jm dowe @V, whereP denotes the principal value. Hence,
0
- = g(V)
Since the wedge product is antisymmetricMrandV’, only f(U)=— ;P . dv u-v- (5.19

the antisymmetric part of the integral over contributes to

the result. However,
VI. REPRESENTATION OF SYMMETRIES IN THE

i * ) = ) = PHYSICAL PHASE SPACE
dww[elw(V—V) _ e—lw(V—V)]

2m Jo There are two interesting symmetries to be represented in
1 (e B the physical phase space. The first is the infinitesimal time
= Z_J doiwel V=V translation, and the second is the map
1T — oo
oL =T,
1 d © ) _
= dwelw(v_v) . _ . . +
27 dV ) _.. defined byU=V in terms of coordinatet) atZ™ andV at
7~ (an analogous symmetry transformation has been studied
— in [25]).
:d_\/5(V_V)- The push-forward action of the infinitesimal translation
t—1t+ ot on the solution fieldg(t,R) and 7 ,4(t,R) is given
Hence, by
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d(t,R)—¢(t—t,R), (6.2

Tyt R)>my(t— 8t R). 6.2

Substitutingt — 6t for t into Egs.(5.8) and(5.9) and compar-
ing the results with these equations leadsAfaw)—A(w)
+ 6A(w), where

SA(w)=iwe” M27=A(w) ét. (6.3

The same result can be obtained, if we pgy(R)
+ 8¢o(R) and 7 4o(R) + 67 40(R) into Eq.(5.13 and calcu-
late the correspondingA(w). We must utilize the fact that

Spo(R)=—o(R)St, 87 40(R)=—m4o(R) &Y,

PHYSICAL REVIEW D 68, 104013 (2003

{A(w),A(0")}=0, {A*(w),A*(0')}=0, (6.8

and

{A(w),A*(0")}=—i18(w—w"). (6.9

As has been explained in Sec.(Hee alsd 11]), the dy-
namics of the Dirac observables is defined by the comparison
of the equations of motion with the action of symmetry.
Since the equations of motion for the Dirac observables are
trivial (the observables remain constarthe symmetry ac-
tion alone gives the total dynamical change.

The second symmetry: Z +—Z " is a purely asymptotic
one, similarly toT.—T,+ 7. Its action on solutions can be
found in an analogous way via the Cauchy data for solutions
at 7’'s. We consider Cauchy null datugy(V) atZ ™~ as de-

express the time derivatives with the help of the equations ofining solution ¢4(t,R). Then we push forward the field

motion (5.4) and(5.5), transfer the-derivatives fromeq(R)

g.(V) atZ~ to I by o, , which results in Cauchy datum

to Jo(wR), and use the Bessel equation that is satisfied by,(u) at7*. The Cauchy datunfi,(U) determines another

Jo(a)R),
1
- ﬁ(Fng,(wR))' =w?Jo(wR).

It follows that the action of the infinitesimal time transla-
tion is canonically generated by the functierH defined by
Eq. (5.2), with y.. given by Eq.(5.1), where¢ and 7, are
replaced by¢, and 7 4. (Indeed, the momentum conjugate
totis P,=—H.) We thus have

d¢o(R)={¢o(R),—H},
o 4o(R)={m40(R),—H},

SA(w)={A(w),—H},

and obtain analogously
sf(U)={f(U),—H}, (6.4
69(V)={g(V),—H}. (6.5

Let us expressf(U) and ég(V) explicitly from the ac-

tion of translations. Since the whole solution is shifted along

the background manifold defined by the coordindataad R
by t—t+ 6t, R—R, we have, regarding Ed5.7),

U=T—R—e M7=(t+5t)—R=U+e MI=4t,
and similarly forV:
VisV+e (1274t
Hence,

Sf(U)=—f'(U)e” M2r=pt, (6.6)

(6.7

The same relations result from the Poisson braciée# and
(6.5), if Egs. (3.20), (3.21), (5.2), (5.14) and(5.16) are used;
notice that Eq(5.16 implies

8g(V)=—g'(V)e W25t

solution ¢»(t,R), and we define it as the image &# (t,R)
by o. The corresponding map i, can be calculated by
using coordinate$(U) in I',. Solution ¢,(t,R) has coordi-
nate f,(U); let ¢,(t,R) have coordinatdé,;(U). Then the
point f,(U) in I';, is the image of the point;(U) of I', by
map o. The dynamics defined by is the inverse map be-
cause it compares the evolution by the wave equdtidrich
is trivial because Dirac observables remain constaith the
map by (cf. [25]).

The push forward map-, of fields atZ ~ to those afZ *
acts as follows:

o, 9(V)=f(U),

wheref(U)=g(U). It follows immediately that the dynami-
cal evolution defined by the “zero motiony is represented
by transformation5.19.

We can also introduce Fourier amplitudsgy) andb(w)
of the asymptotic data by

a(w)=A(w)e'™, b(w)=A(w)e '™
so that Egs(3.20 and(3.21) become

f(U):LJwﬁ[b(me-‘w%c c]
AN cl,

W=~ [ Hawe v+l
g N )

The push forward of the amplitudes is clearly given by
oy a(w)=b(w),

whereb(w)=a(w). Canonical representation ofis, there-
fore:
b(w)=a(w)e ™= —ia(w).

(6.10

This map[or Eq. (5.19] becomes thé&smatrix of the one-
particle sector in the quantum theory of the model.
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VIl. QUANTUM THEORY A A AA
© (A/0),A}]0)=(0lA,Al|0)
It is easy to construct the Hilbert space, the operators o
representing the Dirac observables, the Hamiltonian, and to =<O|A;An+ Snml0) = Spm-

define the scattering matrix in the standard way of quantiza- . . o )
tion of linear field theoriegsee, e.g.[38] or [39]). A sketch ~ The Hilbert space defined in this way is often calledfoek
thereof will be described in this section. spaceand we denote it byF.

Let us start from the Poisson bracké¢gs8) and (6.9) for Those Dirac observables defined in Sec. V that are linear
the observable#\(). Roughly, in the canonical quantiza- in the variablesA(w) and A’(w) can be associated with
tion, Poisson brackets are replaced by commutators multoperators onf that are linear combinations of the operators
plied byi (the units are chosen so that the Planck constant if\(w) andA'(w) with the same coefficients. This definition
1). Then, we have preserves the relation between Poisson brackets and commu-

~ R R . tators. For example, we define
[A(0) A(0)]=0, [A(o")Al(w)]=d0'-w).
(7.1 dw
w

F: 1 - A —i(ml4)—iwU
fU)=—F+=| ——=[Alw)e (™7
These are commutators of tla@nihilation and creation op- 2\mJo Vo
eratorsof a quantum field theory for a continuous spectrum. - ) :
. R +AT(w)e|(7r/4)+|wU]
They form our starting point. '
For many constructions it is favorable to use a smeared

version of the operators. We choose any complete orthonor."€ Matrix elements of(U) with respect to the Fock basis
mal basis of(compley functions X, (), wherew e (0°). are easily calculated by using the decompositi@®). In

This means that any complex functiéran be decomposed, Such @ way, we have a Hilbert space and the operators that
correspond to the basic quantities.

In order to construct the Hamiltonian, we start from Egs.
f(w)= ; fnXn(@), (5.2) and(5.14). We define the quadratic operatgy, by the
normal factor ordering:
wheref, are complex coefficients, and that

A’yoc=8Gf dwwAT(w)A(w)=z wp AaAm,
0

f doX} () Xm(®)= Snm- (7.2 nm
0
where
Defining
R w R wam=8G f dooX} () Xn(w).
An= J doX} (0)A(w), (7.3 0
0
) Then S/x|0>=0. The operatoly., is self-adjoint onF: it has
we obtain a continuous spectrum. ltgeneralizegeigenvectors form a
o-normalized basis ofF, elements of which are obtained
Alw)= E Xn(@)A,, (7.4 from the vacuum by application of any number of the cre-
n ation operatorsA’(w) (and a normalization factprFor ex-
and ample,
A A A A ¥(AT(©)]0)) =8Gw(AT(w)|0)).
[A,,A,]=0, [An:ArTn]:5nm- (7.5 Yool (w)l >) o (w)| >)

Then, any function ofy.. can be defined by the spectral

Then we can define the vacuum stf@¢ by / i X
theorem(see, e.g[40]): it has the same eigenvectors, and its

An|0):O vn, (0]0y=1, (7.6 eigenvalues are the values that the function has on the cor-
responding eigenvalues dfw. In this way, the Hamilton
which also implies that operator
A(w)|0)=0 V. (7.7) 1 1.

H:E 1- exp(—zym)
The elements of a complete basis in the Hilbert space are :
obtained by application of any number of creation operatorss well-defined. For example,

Al to |0); if the total number of the creation operators\is

B . . 1 1]
the_n the state is aN-graviton state. The scalar produpt is A0)=—=|1— exp| — =x0| |=0,
defined by scalar products of the basis elements, which, in 4G 2 |
turn, are determined by the commutation rul@é$) and the .

conditions(7.6). For example, becausey., has the eigenvalue zero ).
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Finally, we can define the scattering mat8x In order to

PHYSICAL REVIEW D 68, 104013 (2003

Another interesting question is what is the relation be-

do that, we have to determine what are the in- and out-stateveen the HamiltoniarH and the scattering operat&?
It seems natural to take the states that result from applyinghere are methods of calculatif®from H: one has to take

any number of the operatofﬁ(w) to |0) corresponding to
the observablea(w) of Sec. VI as the in-states. Similarly,
the out-states can be defined bfw). From Eq.(6.10, we

have a simple Bogolyubov transformation betwe¢w) and
b(w):

a(w)=ib(w).

some limits within the Euclidean regim@ee, e.g.[13)).
However, an application, or even an applicability, of these
methods to our case also lies outside the scope of this work.
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