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Chern-Simons modification of general relativity
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General relativity is extended by promoting the three-dimensional gravitational Chern-Simons term to four
dimensions. This entails choosing an embedding coordinatevm—an external quantity, which we fix to be a
nonvanishing constant in its time component. The theory is identical to one in which the embedding coordinate
is itself a dynamical variable, rather than a fixed, external quantity. Consequently diffeomorphism symmetry
breaking is hidden in the modified theory: the Schwarzschild metric is a solution; gravitational waves possess
two polarizations, each traveling at the velocity of light; a conserved energy-momentum~pseudo!tensor can be
constructed. The modification is visible in the intensity of gravitational radiation: the two polarizations of a
gravity wave carry intensities that are suppressed or enhanced by the extension.
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I. INTRODUCTION

Although the Chern-Simons term was first introduced
three-dimensional gauge field and gravitational models@1#, it
can also deform physical theories in four-dimensional spa
time, where it modifies conventional kinematics and dyna
ics in a Lorentz andCTP violating fashion. This possibility
has been investigated for Maxwell electrodynamics@2#. In
the present paper we study a similar deformation of E
stein’s general relativistic gravity theory.

To set the stage for our analysis, we review the elec
magnetic example. In Chern-Simons modified Maxw
theory, the homogeneous Maxwell equation for the dual e
tromagnetic field

* Fmn[
1

2
«mnabFab ~1.1!

is retained~‘‘Bianchi identity’’ !,

]m* Fmn50, ~1.2!

so that we still have the possibility of introducing potentia
Am :

Fmn5]mAn2]nAm . ~1.3!

But the inhomogeneous equation,]mFmn5Jn, is extended to

]mFmn1vm * Fmn5Jn. ~1.4!

While gauge invariance holds, Lorentz invariance is lost o
ing to the presence of an external, fixed four-vectorvm ,
called the ‘‘embedding coordinate.’’ Takingvm to be time-
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like, and in its rest frame:vm5(m,0), preserves rotationa
symmetry but not Lorentz boost invariance. Only Ampe`re’s
law is modified.

2
]

]t
E1¹3B5J1mB

Ei[Fi0, Bi[2
1

2
« i jkF jk . ~1.5!

Note that current conservation is still the only consisten
requirement on the extended equation~1.4!, since the left
side remains divergence-free by virtue of Eq.~1.2!.

The kinetic portion@left side of Eq.~1.4!# is obtained by
varying Am in a Chern-Simons modified Maxwell action,

I 5E d4xS 2
1

4
FmnFmn1

1

2
vm * FmnAnD ~1.6a!

I 5E d4xS 2
1

4
FmnFmn1

m

2
A•BD . ~1.6b!

In the second formula we have used the special, time
form for vm , and the modification of the action involves th
~Abelian! Chern-Simons expressionA•B @1#, while in Eq.
~1.6a! there appears the~Abelian! Chern-Simons curren
* FmnAn , whose divergence gives the topological Pontrya
density,

]m~ * FmnAn!5
1

2
* FmnFmn[

1

2
* FF. ~1.7!

Note that the extended Lagrange densities in Eq.~1.6! are
not gauge invariant, even though the equations of mot
possess this property. Correspondingly, Eq.~1.7! shows that
an equivalent but gauge invariant Lagrange density can
obtained by adjusting Eq.~1.6a! by a total derivative,
©2003 The American Physical Society12-1
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I 52
1

4E d4x~FmnFmn1u * FF !. ~1.8!

Now the external, fixed quantity isu, which is set equal to
vmxm or mt, so that Eq.~1.6a! or Eq. ~1.6b! is reproduced.

The physical consequences of the modified theory are
following. Owing to gauge invariance, the photon reta
only two polarizations, but in vacuum they travel with v
locities that differ from c~Lorentz boost invariance is lost!
and from each other~parity invariance is lost!. For example,
with plane monochromatic waves, which continue to so
the modified equations, the dispersion law between
quency v and wave numberuku is changed tov5uku
6m/2, for small m. ~For arbitrarym, the exact dispersion
law shows an instability for smalluku: v5Auku26muku.)
This birefringence of the vacuum produces a Faraday-
rotation on polarized light. Actual measurements of lig
from distant galaxies have shown that no such extensio
electromagnetism exists in Nature@2,3#.

Carrying out similar constructions for gravity theory r
quires first deciding how to embed the three-dimensio
gravitational Chern-Simons term into four-dimensional ge
eral relativity. We choose to begin with the gravity analog
Eq. ~1.8!. As we shall demonstrate, this leads to a the
where symmetry breaking effects are hardly visible; they
suppressed by dynamics. The Schwarzschild solution
holds. Gravity waves still possess two polarizations, wh
propagate with velocity c. But parity violation manifests
self in that the two polarizations carry different intensities
symmetric, divergenceless, second rank~pseudo!tensor sur-
vives in the extended theory; it can serve as the gravitatio
energy-momentum~pseudo!tensor.

Our paper is organized as follows. In the next section
present the modified gravity theory and discuss a novel c
sistency condition on the modified equations of motion.
Sec. III, a stationary ansatz is made and the Schwarzsc
solution is regained in the spherically symmetric case. S
tion IV is devoted to the linear approximation, wherein o
exhibits propagating physical degrees of freedom, fin
gravitational waves and identifies a conserved, symme
gravitational energy-momentum~pseudo!tensor. A conclud-
ing statement comprises the last Sec. V. Details of techn
computations are relegated to Appendices.

II. CHERN-SIMONS MODIFIED GRAVITY

The gravitational Chern-Simons term CS(G) is the three-
dimensional quantity@1#

CS~G!5
1

4p2E d3x« i jk S 1

2
3G iq

p ] j
3Gkp

q

1
1

3
3G iq

p 3G j r
q 3Gkp

r D . ~2.1!

@Definitions of geometrical quantities follow Weinberg@4#,
except our metric tensor is of opposite sign: (1,21, . . . ).
Latin letters range over three values, indexing coordinate
a three manifold; Greek letters denote analogous quant
10401
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in four dimensions; the superscript ‘‘3’’ denotes thre
dimensional objects.# The three-dimensional Christoffel con
nection is constructed in the usual way from the metric t
sor, which is taken to be the fundamental dynamical varia
The variation of Eq.~2.1! produces the Cotton tensor3Cmn,

dCS~G!5
1

4p 2E d3x« i jm 3Di
3Rj

ndgmn

[2
1

4p 2E d3xAg 3Cmndgmn . ~2.2!

Here 3Rn
m is the three-dimensional Ricci tensor;3Di effects

three-dimensional, covariant differentiation;g is the metric
determinant, context fixes whether it is the three- or fo
dimensional quantity. Equation~2.2! implies

3Cmn52
1

2Ag
~«mi j 3Di

3Rj
n1«ni j 3Di

3Rj
m!. ~2.3!

3Cmn is symmetric, traceless and covariantly conserved~in
the three-dimensional sense!.

A related four-dimensional quantity is the Chern-Simo
topological current

Km52«mabgF1

2
Gat

s ]bGgs
t 1

1

3
Gat

s Gbh
t Ggs

h G , ~2.4!

which satisfies

]mKm5
1

2
* R t

s mnRt
smn[

1

2
* RR, ~2.5!

whereR smn
t is the four-dimensional Riemann tensor

R smn
t 5]nGms

t 2]mGns
t 1Gnh

t Gms
h 2Gmh

t Gns
h , ~2.6!

and * R s
t mn is its dual

* R s
t mn5

1

2
«mnabR sab

t . ~2.7!

Evidently the divergence of the topological current is t
gravitational Pontryagin density in analogy with the elect
magnetic case@see Eq.~1.7!#. Note however thatK0 is not
related to the Chern-Simons term~2.1!: the former involves
four-dimensional Christoffel connections~even though the
indicesa,b,g, are spatial atm50), while in the latter only
three-dimensional Christoffel connections are present.
cause of this difference, there are different possibilities
extending the Einstein theory by a Chern-Simons term.

We choose, again by analogy to electromagnetism@see
Eq. ~1.8!#, the following expression as the extension of t
Hilbert-Einstein action,

I 5
1

16pGE d4xSA2gR1
1

4
u * RRD

5
1

16pGE d4 xSA2gR2
1

2
vmKmD ~2.8!
2-2
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whereu is a prescribed external quantity, andvm[]mu is the
embedding coordinate. The second equality follows with
help of formula~2.5!. The variation of the first term in the
integrand with respect togmn produces the usual Einstei
tensor Gmn[Rmn2 1

2 gmnR (Rmn[R mtn
t , R[Rm

m). The
variation of the second, topological term gives a tracel
symmetric, second-rank tensor, which we name the fo
dimensional Cotton tensorCmn.

dI CS5d
1

4E d4xu * RR[E d4xA2gCmndgmn

[2E d4xA2gCmndgmn ~2.9!

Cmn52
1

2A2g
@vs~«smabDaRb

n 1«snabDaRb
m!

1vst~ * Rtmsn1 * Rtnsm!#. ~2.10!

Formula ~2.10! is derived in Appendix A. Herevst is the
covariant derivative of the embedding coordinate,vst
[Dsvt5DsDt u. When u is taken to be linear inx, u
5xsvs , vs is constant andvst52Gst

a va . More specifi-
cally for vs5(1/m,0) the first contribution toCmn is similar
to the three-dimensional Cotton tensor~2.3!, except that
four-dimensional geometric entities are now present. Mo
over, evaluated on a stationary metric tensorA2gCmn coin-
cides withAg 3Cmn ~see the next section!. @To achieve this
coincidence the factor14 is introduced inI CS.] Even the
second term in Eq.~2.10! can be understood as a fou
dimensional generalization: the~dual of the! Riemann tensor,
which occurs in Eq.~2.10!, can be written in terms of the
Weyl conformal tensor, the Ricci tensor and scalar; the R
quantities fail to contribute, so that the second term in
~2.10! involves just the~dual! Weyl tensor. However, in three
dimensions the Weyl tensor vanishes, and that is why it d
not appear in the three-dimensional Cotton tensor~2.3!.

„Actually, Cotton defined his tensor purely geometrica
for arbitrary dimensions~d! as DaR̃b

m2DbR̃a
m, R̃a

m[Ra
m

2$1/@2(d21)#%da
mR @5#. For d53, this is equivalent to our

Eq. ~2.3!, and so can also be given a variational definition,
in Eqs.~2.2! and~2.3!. In other dimensions, Cotton’s formul
does not appear to possess a variational formulation, whe
our formula~2.9! and~2.10! does—at the expense of havin
introduced the nongeometric, external entitiesu, vm.…

The proposed deformation of Einstein’s general relativ
equation reads

Gmn1Cmn528pGTmn. ~2.11!

It is necessary to consider the consistency condition that
lows upon taking the covariant divergence of Eq.~2.11!. The
Bianchi identity enforcesDmGmn50, while diffeomorphism
invariant dynamics for the matter degrees of freedom imp
that the energy-momentum tensorTmn similarly satisfies
DmTmn50. However, the covariant divergence of the fou
dimensional Cotton tensor is nonzero, in contrast to the s
10401
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ation in three dimensions. The divergence of Eq.~2.10!,
evaluated in Appendix B, is found to be

DmCmn5
1

8A2g
vn * RR. ~2.12!

Thus the equations of the extended theory~2.11! possess
solutions that are necessarily confined to spaces with van
ing * RR52]mKm.

One may also understand this condition by studying
response ofI CS5 1

4 *d4xu * RR to an arbitrary, infinitesimal
coordinate transformation

dxm52 f m~x!. ~2.13!

Because* RR is a coordinate density, it responds to E
~2.13! as d( * RR)5]m( f m * RR), andu, being an external
parameter, does not transform.

dI CS5
1

4E d4xu]m~ f m * RR!

52
1

4E d4xvm f m * RR. ~2.14!

Alternatively, we can evaluatedI CS by explicitly varying
gmn according to

dgmn5Dm f n1Dn f m , ~2.15!

and from Eq.~2.9! we have

dI CS52E d4xA2gCmnDm f n

522E d4xA2g~DmCmn! f n . ~2.16!

Comparison with Eq.~2.14! regains Eq.~2.12!, since f m is
arbitrary.

Thus the Cotton tensor’s nonvanishing divergence, p
portional to * RR, is a measure of the failure of diffeomo
phism invariance whenvm is nonvanishing. But consistenc
of dynamics forces* RR to vanish, so in a sense diffeomo
phism symmetry breaking is suppressed dynamically.

For another perspective on this, consider an exten
theory, whereu is taken to be a local dynamical variabl
acting as a Lagrange multiplier for* RR. The Chern-Simons
term is now invariant, becauseu, being dynamical, now
transforms under Eq.~2.13! as a scalar: du5 f m]mu
5 f mvm . Consequently Eq.~2.14! acquires an additional con
tribution 1

4 *d4xdu * RR5 1
4 *d4x fmvm* RR, which cancels

the nonvanishing result in Eq.~2.14! and shows thatI CS is
invariant. However, the equation of motion arising fromgmn

variation remains as Eq.~2.11!, while variation of the dy-
namical u forces * RR to vanish—a requirement which i
already enforced by Eq.~2.11!. So the manifestly invarian
theory, with dynamicalu, possesses the same equations
motion as the theory with externalu. In other words, in the
fully dynamical and coordinate invariant theory,u as well as
2-3
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the embedding coordinatevs[]su, take values that are ar
bitrary, as long as the modified gravity equation~2.11! pos-
sesses nontrivial solutions. On the other hand, in our
tended, noninvariant gravity theory, the embedd
coordinate takes a fixed value@e.g., vs5(1/m)ds0], which
still supports nontrivial solutions to Eq.~2.11!.

„Note that this mechanism for dynamical suppression
diffeomorphism symmetry violation is not confined to th
Chern-Simons modification considered above. Indeed
contribution to the gravity action of the formI X5*d4xuX,
where X is a coordinate scalar density, anddI X

5*d4xA2gXmndgmn , will lead to the addition ofXmn in the
Einstein equation. Consistency of the modified equation
mands thatDmXmn50. Moreover, an argument as in Eq
~2.13!–~2.16! shows thatDmXmn51/(2A2g)vnX. Thus the
consistency condition becomesX50 and it is equivalently
enforced by varyingI X with respect tou. This feature is
absent in nongravitational theories: for example, varyingu in
Chern-Simons extended Maxwell theory produces* FF50
@see Eq.~1.8!#—a condition that does not follow from th
equation of motion~1.4!.…

Equation~2.14! also shows that withvm5(1/m,0), coor-
dinate transformations in which time is transformed only
shifting its origin, i.e.,f 05const, f i arbitrary, leaveI CS in-
variant. Space-time dependent reparametrization of the
tial variables and time translation remain conventional sy
metries for the action of the extended theory. Henceforth,vm
will be always taken at that time-like value.

III. PERSISTENCE OF SCHWARZSCHILD SOLUTION

We show that the modified equation~2.11!, whereCmn is
given by Eq.~2.10!, with vs5(1/m)ds0 , vst52(1/m)Gst

0

and vanishingTmn, continues to support the Scharwzsch
solution. Geometric quantities are evaluated first for a me
tensor in stationary form

gmn5S N 0

0 gi j
D ~3.1!

with time-independent entries, and thengi j is taken to be
spherically symmetric.

Stationary space-time

With Eq. ~3.1! the only nonvanishing Christoffel connec
tion components are

G0i
0 5G i0

0 5] i,nAN,

G00
i 52

1

2
gi j ] jN, G i j

m5 3G i j
m . ~3.2!

The nonvanishing components of the~dual! Riemann tensor
are
10401
x-

f

y

e-

a-
-

ic

* R0imn5«mn jNj
i ~3.3a!

* Ri j 0k5
1

2
«kmn 3R mn

i j 52« i j , 3G,
k ~3.3b!

~and partners with exchanged indices!. In Eq. ~3.3a! we have
defined

Nj
i 5

1

AN
3Di 3D jAN, ~3.4!

and in the second equality of Eq.~3.3b!, the three-
dimensional Riemann tensor is expressed in terms of R
tensor and scalar, leading in the end to the Einstein tens

3Ri j
mn5dm

i 3Gn
j 2dn

i 3Gm
j 1dn

j 3Rm
i 2dm

j 3Rn
i . ~3.5!

Finally the nonzero Ricci tensor components read

R0
05Ni

i ~3.6a!

Rj
i 5Nj

i 1 3Rj
i . ~3.6b!

According to Eqs.~2.10! and ~3.2!, the stationary Cotton
tensor becomes

Cmn52
1

2mA2g
@«0mabDaRb

n 1«0nabDaRb
m

2G0i
0 ~ * Rim0n1 * Rin0m1 * R0m in1 * Ron im!#.

~3.7!

We see from Eqs.~3.3! and ~3.7! that C00 and C0n5Cn0

vanish. There remains the space-space component,

Cmn52
1

2mA2g
~«mi jDiRj

n1«ni jDiRj
m

2] i,nAN@ * Rim0n1 * Rin0m1 * R0min1 * R0nim# !

52
1

2mA2g
~«mi j 3Di

3Rj
n1«ni j 3Di

3Rj
m!

2
1

2mA2g
~«mi j@ 3DiNj

n1] i,nAN~Nj
n2 3GJ

n!#

1«ni j@ 3DiNj
m1] i,n~Nj

m2 3GJ
m!# !. ~3.8!

We show in Appendix C that the bracketed expressions in
second equality vanish, leaving the first term as the sole c
tribution to the stationary, four-dimensional Cotton tens
Note that it coincides with the three-dimensional Cotton te
sor in Eq.~2.3! apart from normalization.

Spherically symmetric space

We evaluate the stationary@three-dimensional: (r ,u,w)]
Cotton tensor~2.3! on a spherically symmetric space-tim
with nonvanishing metric tensor components
2-4
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grr 51/grr 52A~r !

guu51/guu52r 2

gww51/gww52r 2sin2u. ~3.9!

~The calculation is completely three-dimensional, and the
perscript ‘‘3’’ is omitted.! The expressions for the Christoffe
connection and the Ricci tensor are familiar@4#. The nonva-
nishing components of the former are

G rr
r 5A8/2A, Gww

r 5sin2uGuu
r 52r sin2u/A

Gur
u 5G ru

u 5Gwr
w 5G rw

w 51/r ,

Gww
u 52sin2uGwu

w 52sin2uGuw
w 52sinu cosu.

~3.10!

The latter possess only diagonal components

Rr
r5A8/rA2

Ru
u5Rw

w5
1

r 2
~121/A!1A8/2rA2. ~3.11!

~Differentiation with respect tor is denoted by the dash.!
Evaluation ofemi jDiRj

n5emi j(] iRj
n1G ik

n Rj
k) shows thatCmn

vanishes in all components.
Consequently the Schwarzschild solution holds in the

tended theory, which therefore passes the three classic
of general relativity.

Evidently the Schwarzchild metric leads to vanishi
* RR, since the modified gravity equations~2.11! are satis-
fied. Correspondingly the Kerr metric, for which* RRÞ0,
cannot be a solution. It is an outstanding open ques
which deformation of the Kerr solution solves the deform
gravity equations.

IV. LINEAR THEORY

We now analyze the extended equations by linearizing
metric gmn around a Minkowski background metrichmn .

The left side of Eq.~2.11! in linear approximationgmn

5hmn1hmn is denoted byGmn
l inear1Cmn

l inear , where

Gmn
l inear5

1

2
~hhmn1]m]nh2]m]ahn

a2]n]ahm
a

2hmn@hh2]a]bhab#!,

Cmn
l inear52

1

4m
~«0mab]a@hhn

b2]n]ghgb#

1«0nab]a@hhm
b2]m]ghgb#!. ~4.1!

Here h5hm
m and indices are moved byhmn. SinceDmGmn

50, the linear portion reads]mGmn
l inear50. The covariant

divergence ofCmn is not zero, but it is quadratic inhmn ,
hence the linear part ofCmn also satisfies]mCmn

l inear50. Both
10401
u-

-
sts

n

e

statements can be checked explicitly from Eq.~4.1!. One
verifies that bothGmn

l inear andCmn
l inear are invariant against the

‘‘gauge transformation’’

hmn→hmn1]mln1]nlm . ~4.2!

The linear equation of motion follows from the quadra
portion of the action~2.8!, which reads

I quadratic52
1

2E d4xhmn~Gmn
l inear1Cmn

l inear!. ~4.3!

Degrees of freedom

The quadratic action allows determining the propagat
degrees of freedom. To this end, we decomposehmn as fol-
lows:

h005n, h0i5nT
i 1] inL ,

hi j 5S d i j 2
] i] j

¹2 D w1
] i] j

¹2
x1~] ijT

j 1] jjT
i !1hTT

i j .

~4.4!

The subscriptT denotes spatial transversality;TT addition-
ally indicates spatial tracelessness. In three spatial dim
sions the symmetrichTT

i j possesses two components. Obse
that the gauge transformation~4.2! does not affectw nor
hTT

i j . While the remaining components undergo a nontriv
response, the following combinations are gauge invarian

L5¹2~n12ṅL!1ẍ1hw

sT5nT1 j̇T . ~4.5!

~The over dot denotes differentiation with respect to tim!
With Eqs.~4.4! and~4.5!, the quadratic action~4.3! becomes

I quadratic5E d4xF2
1

4
hTT

i j hhTT
i j 2

1

2
whw

1
1

2
~] isT

j !21wLG1
1

4mE d4x« i jk

3@hTT
i , ]khhTT

, j 1sT
i ]k¹

2sT
j #. ~4.6!

In the absence of the 0(1/m) Chern-Simons extension, th
first Einstein-Hilbert term shows thathTT

i j is the only propa-
gating component,w vanishes by virtue of the Lagrang
multiplier L, while sT does not propagate since only spat
derivatives act on it. This is not changed when the extens
is included. So in empty space the propagation of the gra
tational field is still governed by the d’Alembertian acting o
hTT

i j , i.e., there are two linearly independent polarizatio
propagating as waves with velocity c, just as in the abse
of the extension. For example, for monochromatic pla
waves with

hTT
mn5«TT

mnei (vt2k•r ), hhTT
mn50, ~4.7!
2-5
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we havev5uku. Moreover, one also verifies that for the
solutions the symmetry breaking quantity* RR vanishes in
quadratic order~see Appendix D!.

Wave motion

When the linearized equation of motion

Gmn
l inear1Cmn

l inear528pGTmn ~4.8!

is decomposed according to Eqs.~4.4! and ~4.5!, one finds
that C00

l inear vanishes, and

G00
l inear1C00

l inear52¹2w528pGT00. ~4.9!

The time-space components give

G0i
l inear1C0i

l inear5
1

2
¹2sT

i 2] i ẇ1
1

4m
« imn]m¹2sT

n

528pGT0i ~4.10a!

or

1

2
¹2sT

i 1
1

4m
« imn]m¹2sT

n58pGTT
0i , ~4.10b!

where

TT
0i[S d i j 2

] i] j

¹2 D T0i .

In passing from Eq.~4.10a! to Eq.~4.10b!, we used Eq.~4.9!
and conservation ofTmn:]mTmn50 ~consistent with the lin-
ear approximation the ordinary, not covariant, divergenc
involved!. For the space-space components we have

Gi j
linear1Ci j

linear

52
1

2 S d i j 2
] i] j

¹2 D L1
1

2
] i ṡT

j 1
1

2
] j ṡT

i 1
1

2
hhTT

i j

2
] i] j

¹2
ẅ1

« imn

4m
]m~] j ṡT

n1hhTT
jn !

1
« jmn

4m
]m~] i ṡT

n1hhTT
in !528pGTi j , ~4.11a!

or

L58pGS d i j 2
] i] j

¹2 DTi j ~4.11b!

1

2
hhTT

i j 1
1

4m
« imn]mhhTT

jn 1
1

4m
« imn]mhhTT

jn

528pGTTT
i j , ~4.11c!

with
10401
is

TTT
i j [Ti j 2

1

2 S d i j 2
] i] j

¹2 D Tmm

1
1

2 S d i j 1
] i] j

¹2 D ]m]n

¹2
Tmn2

] i]m

¹2
Tm j2

] j]m

¹2
Tmi.

Again, the previous equations~4.9! and ~4.10!, were used
together with conservation ofTmn to pass from Eq.~4.11a! to
Eq. ~4.11b!.

We see from Eqs.~4.9!, ~4.10b! and~4.11b! that the entire
effect of the extension is to act on the left side of the Einst
equation—the field side—by spatial derivative operat
which carry the extension. These operators can be inve
and cast onto the right side—the source side. So the en
effect of the extension is to modify the source in its spa
dependence. In terms of the modified source, the equat
regain their Einstein form, and the extension is invisib
From Eqs.~4.9!, ~4.10b! and ~4.11b! we have

1

2
¹2sT

i 58pGT̃T
0i , ~4.12!

1

2
hhTT

i j 528pGT̃TT
i j .

while the equations forw and L, Eqs. ~4.9! and ~4.11b!,
remain unchanged. The modified sources are given by

T̃T
0i5

1

11
¹2

4m2

S d im2
1

2m
« inm]nDTT

om ,

T̃TT
i j 5

1

11
¹2

m2

S d imd jn2
1

2m
« ikmd jn]k

2
1

2m
« jkmd in]kDTTT

mn . ~4.13!

Again we see that the extended theory supports gravitatio
waves with two polarizations (hTT

i j ) traveling with velocity
of light.

The effect of the extension is felt when we examine t
intensity of radiation. In Einstein’s theory, a monochroma
source whose energy momentum tensor possesses a de
frequency

Tmn~ t,r !5e2 ivtTmn~v,r !1c.c., ~4.14!

radiates power per unit angle in directionk̂ @4#,

dP

dV
5

Gv2

p
TTT* i j ~v,k!TTT

i j ~v,k!, ~4.15!
2-6
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where

Tmn~v,k!5E d3re2 ik•rTmn~v,r !. ~4.16!

Let the direction of propagation be the third axis. ThenTTT
i j

takes the form

TTT
i j ~v,k!5S T S 0

S 2T 0

0 0 0
D , ~4.17!

and definite polarizations correspond toT6 iS. Thus Eq.
~4.15! becomes

dP

dV
5

2Gv2

p
~ uTu21uSu2!. ~4.18!

Each of the single polarizations (T56 iS) contributes the
same amount,

dP6

dV
5

4Gv2

p
uTu2. ~4.19!

For a similar computation in the extended theory, we ne
merely to replaceTTT

i j with T̃TT
i j , which according to Eq.

~4.12! takes the form

T̃TT
i j ~v,k!5

1

12
k2

m2

S T2
ik

m
S S1

ik

m
T

S1
ik

m
T 2T1

ik

m
S
D .

~4.20!

Definite polarizations now correspond to

S T2
ikS

m D6 i S S1
ikT

m D5S 17
k

m D ~T6 iS!,

so that a single polarization still requiresT56 iS. The radi-
ated power now reads

dP

dV
5

2Gv2

pS 12
k2

m2D 2 F S 11
k2

m2D ~ uTu21uSu2!

1
2ik

m
~TS* 2ST* !G . ~4.21!

For a single polarization (T56 iS) we find

dP6

dV
5

4Gv2

p
uTu2

1

S 16
k

m D 2 . ~4.22!

Thus although each polarization travels with the velocity
light, they carry different intensities. The correction to t
10401
d

f

Einstein value grows with energy~owing to the triple deriva-
tives in the extension!, and for largem ~negligible extension!
it gives simply the suppression/enhancement factor@1
72(k/m)#. Thus the extension manifestly violates spat
reflection symmetry.

Note that there is no sign of the instability seen at smak
in Chern-Simons extended electromagnetism. Here howe
we encounter a singularity atk5m, which reflects the fact
that the spatial derivative operator acting onhhTT

i j in Eq.
~4.11b!, possesses zero modes, i.e. solutions to the hom
enous equations exist. This allows for an arbitrary ‘‘bac
ground’’ gravitational field to be present. We see no furth
information about this in the linear theory; perhaps nonlin
effects can clarify the situation.

Gravitational energy-momentum „pseudo…tensor

One way of identifying the energy-momentu
~pseudo!tensor of the gravitational field is to separate fro
the field tensor~‘‘left’’ side ! in the equation of motion its
linear part and transfer the nonlinear part to the source
~‘‘right’’ side !, combining it with the matter energy
momentum tensor. Since the linear terms of the field ten
~on the left side! are conventionally conserved, so must
the entire right side. Also the expression is manifestly sy
metric in its space-time indices. In this way one constructs
ordinarily conserved, second rank symmetric~pseudo!tensor,
which is then identified with the total~matter1gravity!
energy-momentum~pseudo!tensor.

The above scheme can be carried out for the exten
theory. We write Eq. ~2.11! as Gmn

l inear1Cmn
l inear5

28pGTmn2D(Gmn1Cmn) where D(Gmn1Cmn)[Gmn

1Cmn2Gmn
l inear2Cmn

l inear . Evidently if we definetmn5Tmn

1(1/8pG)D(Gmn1Cmn) we have intmn a conserved, sym-
metric energy-momentum~pseudo! tensor. This, togethe
with the velocity of light propagation of gravitational wave
and the persistence of the Schwarzschild solution, shows
symmetry violation is effectively hidden in our extende
gravity theory.

@In Ref. @6# there is a survey of alternative definitions fo
the energy-momentum~pseudo! tensor of Einstein’s gravity.
Included is a construction based on Noether’s theorem
translation invariance, together with a Belinfante improv
ment. This yields a symmetric, conserved~pseudo! tensor,
which differs from the above by a superpotential. It would
interesting to find also for the deformed theory the improv
symmetric Noether~pseudo! tensor.#

V. CONCLUSION

Measuring the intensity of polarized gravity waves is no
not yet feasible. So the modification of Einstein’s theory th
we have explored does not have an immediately appreh
sible physical consequence. But the structure is interestin
that diffeomorphism symmetry is broken in the action, y
the equations of motion coincide with those of a modifie
but symmetric theory. Specifically we find only two gravi
wave helicities, both propagating with the velocity of ligh
This is usually seen as a consequence of diffeomorph
2-7
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invariance, but it persists in our deformed theory.
The Stuckelberg mechanism for massive Abelian ga

fields provides an analogy to the situation with diffeomo
phism symmetry encountered in our deformed grav
model. The action for a massiveU(1) gauge field is not
gauge invariant:

I m5E d4 xS 2
1

4
FmnFmn1

1

2
m2AmAmD , ~5.1!

dgaugeAm5]ml

dgaugeI m5E d4xm2Am]ml52E d4xm2]mAml .

~5.2!

Gauge symmetry is broken by]mAm. But the equation of
motion

]mFmn1m2An5Jn ~5.3!

enforces~for a conserved source currentJn! the vanishing of
the gauge field divergence,

m2]nAn50, ~5.4!

so Eq.~5.3! may also be presented in a gauge invariant fo

]mFmn1m2S gmn2
]m]n

h
DAm5Jn . ~5.5!

But an important difference remains: If the mass term in
gauge field example is promoted to a dynamical ‘‘field’’ va
ablem2→m2(x), then varyingm2(x) @in analogy to varying
u(x) in our extended gravity theory# obtains

dI m

dm2~x!
5

1

2
Am~x!Am~x! . ~5.6!

But unlike in extended gravity, the resulting equation

AmAm50 ~5.7!

does not follow from the equation of motoin~5.3!, obtained
by varyingAm. Moreover, Eq.~5.7! is an unacceptable equa
tion since it eliminates the possibility of finding nontrivia
solutions to Eq.~5.3!. @One recognizes that the Higgs mech
nism in unitary gauge provides kinetic and potential ter
for the Higgs field ‘‘m2(x), ’’ and leads to an acceptabl
equation for that quantity.#

Note added. S. Carroll, whom we thank, has informed u
that cosmological consequences of the modified gra
theory~2.8! taken in a sourceless, linear approximation, ha
been previously examined by Lueet al. @7#. The only topic
common to both investigations is a study of gravity wav
The analysis in@7# differs from ours in that theiru carries
arbitrary time dependence, while we allow only linear dep
dence. Nevertheless, physical conclusions are similar: po
ized waves are suppressed or enhanced in the exte
theory. Also we thank D. Grumiller for remarks about t
Kerr metric.
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APPENDIX A

We derive Eq.~2.10! from Eq.~2.9!. With Eq.~2.5!, I CS is
given by

I CS52
1

2E d4xvmKm, ~A1!

whereKm is defined~2.4!. Varying the connection and recal
ing the definition of the Riemann tensor~2.6! shows that

dI CS52
1

2E d4xvm«mabgR sgb
t dGat

s . ~A2!

But the variation of the connection arises by varying t
metric tensor,

dGat
s 5

gsn

2
~Dadgnt1Dtdgna2Dngat!. ~A3!

Continuing Eqs.~A2! and ~A3! results in

dI CS52
1

4E d4xvm«mabgR gb
tn

3~Dadgnt1Dtdgna2Dndgat!. ~A4!

BecauseR gb
tn is antisymmetric in@t,n#, the first term in

parentheses does not contribute and the remaining two c
bine. After a partial integration, we are left with

dI CS5
1

2E d4x~vm«mabgDt R gb
tn

1vmt«
mabgR gb

tn !dgna . ~A5!

In the first intergrand we use the Bianchi identity to repla
DtR gb

tn by DgRb
n 2DbRg

n , while the second integral is re
written in terms of the dual Riemann tensor~2.7!,

dI CS5E d4x~vm«mabgDgRb
n 2vmt* Rtnma!dgna .

~A6!

Comparison of Eq.~A6! with Eq. ~2.9! establishes Eq.
~2.10!.

APPENDIX B

We derive Eq.~2.12! by computing explicitly the covari-
ant divergence of the Cotton tensor, whose formula we t
from Eqs.~2.7!, ~2.9!, and~A5!,
2-8
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Cmn52Dt

vs

2A2g
~ * Rtmsn1 * Rtnsm!. ~B1!

Using the antisymmetry of* Rtmsn in @t,m#, we can presen
DmCmn as

DmCmn52DtDm

vs

2A2g
* Rtnsm

1@Dt ,Dm#
vs

2A2g
S * Rtnsm1

1

2
* RtmsnD .

~B2!
its
th

o

10401
The first contribution toDmCmn vanishes. This is establishe
by noting that there occurs

Dm

vs

2A2g
* Rtnsm

5
vms

2A2g
* Rtnsm1

vs

2A2g
«smabDmR ab

tn .

Since * Rtnsm is antisymmetric in@s,m# and vms is sym-
metric, the first term on the right is zero, and so is the sec
owing to the Bianchi identity satisfied by the Riemann te
sor. The remainder of Eq.~B2! involves the commutator o
covariant derivatives, and leads to
DmCmn5
vs

2A2g
F S * Rlnsm1

1

2
* RlmsnDR lmt

t 1 * RtlsmR lmt
n 1

1

2
* RtlsnR lmt

m 1 * RtnslR lmt
m 1

1

2
* RtmslR lmt

n G
5

vs

2A2g
F2S * Rlnsm1

1

2
* RlmsnDRlm1S * Rtnsl1

1

2
* RtlsnDRlt1S * Rtlsm1

1

2
* RtmslDR lmt

n G .
~B3a!
the
n

on

lt.
The quantities involving the Ricci tensor vanish owing to
symmetry. The last term in brackets is expanded by using
antisymmetry of* Rtlsm in @t,l#. Thus we are left with

DmCmn5
vs

4A2g
@ * Rtlsm~R lmt

n 2Rtml
n !1 * RtmslR lmt

n #

5
vs

4A2g
@ * RtlsmR mlt

n 1 * RtmslR lmt
n #

5
vs

2A2g
* RtlsmRlt

n
m . ~B3b!

Cyclic properties of the Riemann tensor allow passage fr
one expression to the next in Eq.~B3b!. Finally we use the
identity

* R l
t smR tnm

l 5
1

4
dn

s * RR, ~B4!

to conclude that

DmCmn5
vn

8A2g
* RR, ~B5!

in agreement with Eq.~2.12!.
e

m

APPENDIX C

We establish the vanishing of the last term in Eq.~3.8!.
~The calculation is entirely three dimensional, so we omit
superscript ‘‘3.’’! Note first that according to the definitio
~3.4!

«mi jDiNj
n5«mi jS ] i

1

AN
D ~D jD

nAN!1«mi j
1

AN
DiD jD

nAN

5«mi jS 2
] iAN

AN
Nj

n1
1

2AN
@Di ,D j #D

nAND .

~C1!

The action of the commutator of covariant derivatives
DnAN produces

2
1

2
«mi j

1

AN
R i j

nk ]kAN5«nk,G,
m]kAN

AN
,

where we have used Eq.~3.3b!. Thus Eq.~C1! becomes

«mi jDiNj
n52] i,nAN~«mi jNj

n2«ni jGj
m!. ~C2!

Using this equality in Eq.~3.8! establishes the desired resu
2-9
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APPENDIX D

We calculate* RR—a measure of symmetry breaking
our Chern-Simons extended gravity theory—to quadratic
der in hmn. The Riemann tensor in linear order is

Rstab
l inear5

1

2
~]b]thsa2]a]thsb1]a]shtb2]b]shta!.

~D1!

The dual reads

* Rst
mn l inear5

1

2
«mnab]a~]shtb2]thsb!. ~D2!
10401
r-

Therefore we have

* RRquadratic5«mnab]a~]shtb2]thsb!]n]shm
t .

~D3!

For plane monochromatic waves,]a]shtb52kskahtb ,
(kgkg50), and the above becomes

* RRquadratic5«mnabkakn~kgkghm
t htb2kshsbkthtm!.

~D4!

This vanishes for a variety of reasons.
,
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