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Chern-Simons modification of general relativity
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General relativity is extended by promoting the three-dimensional gravitational Chern-Simons term to four
dimensions. This entails choosing an embedding coordimgtean external quantity, which we fix to be a
nonvanishing constant in its time component. The theory is identical to one in which the embedding coordinate
is itself a dynamical variable, rather than a fixed, external quantity. Consequently diffeomorphism symmetry
breaking is hidden in the modified theory: the Schwarzschild metric is a solution; gravitational waves possess
two polarizations, each traveling at the velocity of light; a conserved energy-momépsenndgtensor can be
constructed. The modification is visible in the intensity of gravitational radiation: the two polarizations of a
gravity wave carry intensities that are suppressed or enhanced by the extension.
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l. INTRODUCTION like, and in its rest framev ,=(u,0), preserves rotational
symmetry but not Lorentz boost invariance. Only Argie
Although the Chern-Simons term was first introduced injaw is modified.
three-dimensional gauge field and gravitational mofig|sit
can also deform physical theories in four-dimensional space- 9
time, where it modifies conventional kinematics and dynam- —fETVXB=J+uB
ics in a Lorentz ancCTP violating fashion. This possibility
has been investigated for Maxwell electrodynanig§ In 1
the present paper we study a similar deformation of Ein- Ei=F°, Bi=—_glkf, . (1.5
stein’s general relativistic gravity theory. 2 )
To set the stage for our analysis, we review the electro-
magnetic example. In Chern-Simons modified MaxwellNote that current conservation is still the only consistency
theory, the homogeneous Maxwell equation for the dual eleccequirement on the extended equatidnd), since the left
tromagnetic field side remains divergence-free by virtue of Ef}.2).
The kinetic portionleft side of Eq.(1.4)] is obtained by
1 varyingA,, in a Chern-Simons modified Maxwell action,
FRAr=S et PE (1.1

1 1
, _ _ S |:f d4x< ——FMF,,+ 50, *F’”A,,) (1.69
is retained(“Bianchi identity”), 4 2

4, Fr’=0, (1.2 _ 4 1_ . M

|—J’d X( ZFM FMV-FEA'B). (16b)

so that we still have the possibility of introducing potentials

AL In the second formula we have used the special, timelike
form for v, , and the modification of the action involves the

1.3 (Abelian) Chern-Simons expressiof-B [1], while in Eq.
(1.6 there appears théAbelian) Chern-Simons current

But the inhomogeneous equatiai,F**=J?, is extended to ;F‘”_Ay, whose divergence gives the topological Pontryagin

ensity,

Fu=0,A,—d,A,.

9 FP+v, *FAr=J", (1.4
*FF. (1.7

Il
N| -

1
* MY — kxpuv
While gauge invariance holds, Lorentz invariance is lost ow- Iu("FEA,) 2 FoF

ing to the presence of an external, fixed four-veatqr,
called the “embedding coordinate.” Taking, to be time-  Note that the extended Lagrange densities in @cp) are
not gauge invariant, even though the equations of motion
possess this property. Correspondingly, Eq7) shows that
*Email address: jackiw@Ins.mit.edu an equivalent but gauge invariant Lagrange density can be
"Email address: soyoung@buphy.bu.edu obtained by adjusting Eq1.69 by a total derivative,
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1 in four dimensions; the superscript “3” denotes three-

= ZJ d*x(F*'F ,,+ 60*FF). (1.8)  dimensional object}The three-dimensional Christoffel con-
nection is constructed in the usual way from the metric ten-
Now the external, fixed quantity i§, which is set equal to SO, which is taken to be the fundamental dynamical variable.
v, X* or ut, so that Eq(1.63 or Eq.(1.6b is reproduced. The variation of Eq(2.1) produces the Cotton tensé€™",
The physical consequences of the modified theory are the 1

following. Owing to gauge invariance, the photon retains _ 3y.0jm 3[. 3pn

only two polarizations, but in vacuum they travel with ve- SCSI)= 4 Zj d*xe"™ *Di R} 9Gmn

locities that differ from c(Lorentz boost invariance is lgst

and from each othegjparity invariance is lo3t For example, 1

with plane monochromatic waves, which continue to solve = Ao 2

the modified equations, the dispersion law between fre- &

quency  and wave numbedk| is changed tow=|k|  Here 3RM is the three-dimensional Ricci tensaiD; effects
+pl2, for small . (For arbitrary u, the exact dispersion  hree-dimensional, covariant differentiatiog;is the metric

law shows an instability for smallk|: w=\[k|"*xulk].)  determinant, context fixes whether it is the three- or four-
This birefringence of the vacuum produces a Faraday-likgjimensional quantity. Equatiof2.2) implies

rotation on polarized light. Actual measurements of light

from distant galaxies have shown that no such extension of 1 - -

electromagnetism exists in Natu2,3]. 3C¢M'=— ——=(&M °D; *R+&" °D; °R). (2.3
Carrying out similar constructions for gravity theory re- 2\/5

quires first deciding how to embed the three-dimensionabzmn ;g symmetric, traceless and covariantly conser(iad
gravitational Chern-Simons term into four-dimensional gen,qo three-dimensio'nal sense

eral relativity. We choose to begin with the gravity analog to A rejated four-dimensional quantity is the Chern-Simons
Eqg. (1.8). As we shall demonstrate, this leads to a theorytopological current
where symmetry breaking effects are hardly visible; they are
suppressed by dynamics. The Schwarzschild solution still 1 1
holds. Gravity waves still possess two polarizations, which K#=2grab ST adpl ot Tl g,y (2.4
propagate with velocity c. But parity violation manifests it-
self in that the two polarizations carry different intensities. Awhich satisfies
symmetric, divergenceless, second rdpkeudgtensor sur-
vives in the extended theory; it can serve as the gravitational J K“=E* R” WRT = }* RR 2.5
energy-momentunpseudgtensor. ® 2 T TrY- 2 '

Our paper is organized as follows. In the next section we
present the modified gravity theory and discuss a novel convhereR’;,, is the four-dimensional Riemann tensor
sistency condition on the modified equations of motion. In , - , ; ,
Sec. Ill, a stationary ansatz is made and the Schwarzschild R uv =0l g = 0ot Ul o= 10,0, (26
solution is regained in the spherically symmetric case. Secénd *R" 4 is its dual
tion IV is devoted to the linear approximation, wherein one 7
exhibits propagating physical degrees of freedom, finds
gravitational waves and identifies a conserved, symmetric RS V=§8’”“B R ap- 2.7
gravitational energy-momenturipseuddgtensor. A conclud-
ing statement comprises the last Sec. V. Details of technicatvidently the divergence of the topological current is the

fd3x\/§3cmnagmn. (2.2

computations are relegated to Appendices. gravitational Pontryagin density in analogy with the electro-
magnetic cas¢see Eq.(1.7)]. Note however thaK® is not
Il. CHERN-SIMONS MODIFIED GRAVITY related to the Chern-Simons ter2.1): the former involves

four-dimensional Christoffel connectiorigven though the

indicesa, B, 7y, are spatial ap=0), while in the latter only

three-dimensional Christoffel connections are present. Be-

cause of this difference, there are different possibilities for

EBFp 9314 extending the Einstein theory by a Chern-Simons term.

2 "t Tke We choose, again by analogy to electromagnetisee
Eq. (1.8)], the following expression as the extension of the

The gravitational Chern-Simons term Q3(is the three-
dimensional quantity1]

1 N
CST =—f d3xelik
S 42

Hilbert-Einstein action,
+ §3Fi%| 31“}1 3l"rkp> . (2.9
1

- 4 _ _
[Definitions of geometrical quantities follow Weinbekd], I= 1677GJ d X( V-gR+ 70 *RR>
except our metric tensor is of opposite sign: <1, ...). . .
Latin letters range over three values, indexing coordinates on -~ 4 bt wn
a three manifold; Greek letters denote analogous quantities 167G dx gR-5v,K 28
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whered is a prescribed external quantity, amg=J, 0 isthe  ation in three dimensions. The divergence of E2.10),
embedding coordinate. The second equality follows with theevaluated in Appendix B, is found to be
help of formula(2.5). The variation of the first term in the
integrand with respect tg,, produces the usual Einstein v
tensor GH'=R*’—3gM'R (Ru,y=R%,,, R=R}). The D,CH=
variation of the second, topological term gives a traceless
symmetric, second-rank tensor, which we name the fourThus the equations of the extended the¢2yll) possess
dimensional Cotton tensdc*”. solutions that are necessarily confined to spaces with vanish-
ing *RR=24,K*.

One may also understand this condition by studying the
response of cg= 7 /d*x6# *RR to an arbitrary, infinitesimal
coordinate transformation

_ f d*xy—gC,,50"" 2.9 Sxb= — F4(x). (213

v’ *RR (2.12
8V—g

1
6ICS:52J d4xa*Rstd4x\/—gCW5gM

1 Because*RR is a coordinate density, it responds to Eq.
CHY= — [v,(£7*BD RY+ 7D RE) (2.13 as6(*RR)=4,(f* *RR), and ¢, being an external
2J-g 7 «p «p parameter, does not transform.

o FROAT - FRTH . (210

+v 1

5|CS=ZJ d*x04,(f**RR)

Formula (2.10 is derived in Appendix A. Here,, is the

covariant derivative of the embedding coordinate,, 1( . .

=D,v,=D,D,60. When @ is taken to be linear irx, :_Zf d*v, f**RR (2.14
=x%v,, v, is constant and,,.=—1I"; v,. More specifi-

cally for v ,=(1/u,0) the first contribution taC#” is similar  Alternatively, we can evaluatél -5 by explicitly varying
to the three-dimensional Cotton tens(®.3), except that g,, according to

four-dimensional geometric entities are now present. More-

over, evaluated on a stationary metric tengergC™" coin- 09,,=D,f,+D,f,, (219
cides with \/g3C™" (see the next sectipn[To achieve this
coincidence the factog is introduced inlcg.] Even the
second term in Eq(2.10 can be understood as a four-
dimensional generalization: tiidual of the Riemann tensor, 5|CS=2J d*x—gC*'D,f,

which occurs in Eq(2.10, can be written in terms of the

Weyl conformal tensor, the Ricci tensor and scalar; the Ricci

quantities fail to contribute, so that the second term in Eq. = —ZJ d*xv—g(D,C*f, . (2.16
(2.10 involves just thedual) Weyl tensor. However, in three

dimensions the Weyl tensor vanishes, and that is why it doegomparison with Eq(2.14) regains Eq(2.12), sincef* is

not appear in the three-dimensional Cotton ter(2a). arbitrary.

(Actually, Cotton defined his tensor purely geometrically  Thus the Cotton tensor’s nonvanishing divergence, pro-
for arbitrary dimensions(d) as D,R;—DgR,, RL=R{  portional to*RR, is a measure of the failure of diffeomor-
—{1/[2(d—1)]}64,R [5]. Ford=3, this is equivalent to our phism invariance when , is nonvanishing. But consistency
Eg.(2.3), and so can also be given a variational definition, aof dynamics forces* RR to vanish, so in a sense diffeomor-
in Egs.(2.2) and(2.3). In other dimensions, Cotton’s formula phism symmetry breaking is suppressed dynamically.
does not appear to possess a variational formulation, whereas For another perspective on this, consider an extended
our formula(2.9) and(2.10 does—at the expense of having theory, whered is taken to be a local dynamical variable,

and from Eq.(2.9 we have

introduced the nongeometric, external entitiesy ,,.) acting as a Lagrange multiplier f6fRR. The Chern-Simons
The proposed deformation of Einstein’s general relativityterm is now invariant, because, being dynamical, now
equation reads transforms under EQ.2.13 as a scalar:66=1*d,0
=f#v, . Consequently Eq2.14) acquires an additional con-
GH'+ CH'=—87rGTH". (2.1)  tribution 3/d*x86 *RR=Z[d*xf*v ,*RR, which cancels

the nonvanishing result in Eq2.14) and shows thalcg is
It is necessary to consider the consistency condition that folinvariant. However, the equation of motion arising frgn,
lows upon taking the covariant divergence of E311). The  variation remains as Ed2.11), while variation of the dy-
Bianchi identity enforce® ,G*"=0, while diffeomorphism namical § forces *RR to vanish—a requirement which is
invariant dynamics for the matter degrees of freedom implieglready enforced by Eq2.11). So the manifestly invariant
that the energy-momentum tensdt” similarly satisfies theory, with dynamicald, possesses the same equations of
D,T#"=0. However, the covariant divergence of the four- motion as the theory with external In other words, in the
dimensional Cotton tensor is nonzero, in contrast to the situfully dynamical and coordinate invariant theotyas well as
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the embedding coordinate,=d,0, take values that are ar- *ROimnzsanN} (3.33
bitrary, as long as the modified gravity equati@l1l) pos-

sesses nontrivial solutions. On the other hand, in our ex- o L s 0k

tended, noninvariant gravity theory, the embedding PRIV = e MR = — e UGy (3.3b
coordinate takes a fixed valde.g.,v ,=(1/u) 8,0], which

still supports nontrivial solutions to E¢2.11). (and partners with exchanged indites Eq.(3.33 we have

(Note that this mechanism for dynamical suppression ofefined
diffeomorphism symmetry violation is not confined to the
Chern-Simons modification considered above. Indeed any 1 )
contribution to the gravity action of the forty = fd*x6X, Ni=—= °D' DN, (3.4
where X is a coordinate scalar density, andly ‘/ﬁ
= [d*x\—gX""8g,,, , will lead to the addition oK*”inthe ;4 in the second equality of Eq3.3b, the three-
Einstein equation. Consistency of the modified equation degjmensional Riemann tensor is expressed in terms of Ricci

mands thaD ,X*"=0. Moreover, an argument as in EGS. tgngor and scalar, leading in the end to the Einstein tensor,
(2.13—(2.16 shows thaD , X*"=1/(2y/—g)v"X. Thus the

consistency condition becomeés=0 and it is equivalently R =6 3G -8 3GL+ 6, 3R — 8. °Rl. (3.5
enforced by varying x with respect tod. This feature is

absent in nongravitational theories: for example, varying  Finally the nonzero Ricci tensor components read
Chern-Simons extended Maxwell theory produ¢dsF=0

[see Eq.(1.8]—a condition that does not follow from the RO=N; (3.6a
equation of motiorn(1.4).) i e
Equation(2.14 also shows that withy , = (1/u,0), coor- Rj=N;+°R;. (3.6b

dinate transformations in which time is transformed only by

shifting its origin, i.e.,f°=const, f ' arbitrary, leave g in-

variant. Space-time dependent reparametrization of the sp

tial variables and time translation remain conventional sym- 1

metries for the action of the extended theory. Hencefarth, CHV=— [£04aBD RY+ gOvefD RA
. . i — o B Yo% ﬁ

will be always taken at that time-like value. 2u~N—d

According to Egs(2.10 and(3.2), the stationary Cotton
tensor becomes

_1"8( * RiMOV+ * RiV0M+ * RO;LiV_l_ * ROVi,u)]
i .
Ill. PERSISTENCE OF SCHWARZSCHILD SOLUTION 3.7)

We show that the modified equati¢p.11), whereC*” is 00 on_ ~no
given by Eq.(2.10, with v, = (1/x) 8,0, v,r= — (1p)T? We see from Egs(3.3 and (3.7) that C® and C°"=C

oT i i -
and vanishingT#”, continues to support the Scharwzschild vanish. There remains the space-space component,

solution. Geometric quantities are evaluated first for a metric

. . 1 . ,
tensor in stationary form CMn= — Y (e™DiR+&"D;R"
N 0 —ai{’n\/ﬁ[*RimO”—F * Rin0m+ * ROmin+ *ROnim])
QWZ( ) (3.1
0 g

1 . -
— ZM _g(smlj 3Di 3RJ['I+8FII] 3Di 3R;T1)

with time-independent entries, and thgp is taken to be

spherically symmetric. 1 miiF 3p A1 N(ND— 3G
- (e DN+ g,nyN(N"—3G")
2,u\/—_g [ (R [ j J ]
Stationary space-time .
. Y spacen . + &M 3D;NM+ 9,6n(N"— 3GT)]). 3.8
With Eq. (3.1) the only nonvanishing Christoffel connec-
tion components are We show in Appendix C that the bracketed expressions in the
0 0 second equality vanish, leaving the first term as the sole con-
Ig=Tf{H=a€n\N, tribution to the stationary, four-dimensional Cotton tensor.

Note that it coincides with the three-dimensional Cotton ten-

1 sor in Eq.(2.3) apart from normalization.
iooz—igiiajm, ri=3ry. (3.2 _ _
Spherically symmetric space

We evaluate the stationafyhree-dimensional:r(,6,¢)]
The nonvanishing components of tfdual) Riemann tensor Cotton tensor2.3) on a spherically symmetric space-time,
are with nonvanishing metric tensor components
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g, =1/g" = —A(r) statements can be checked explicitly from E4.1). One
verifies that bottG);,**" andCl}/,**" are invariant against the

9go=1/g%"=—1r2 “gauge transformation”

g¢¢:1/g¢¢:_r23in20. (39) h,uv_>h,ugv+ﬁ,u)\v+&v)\,u' (42)

(The calculation is completely three-dimensional, and the suThe linear equation of motion follows from the quadratic
perscript “3” is omitted) The expressions for the Christoffel Portion of the action(2.8), which reads

connection and the Ricci tensor are familidf. The nonva- 1

nishing components of the former are | quadratic="— 5] d4xhﬂv(Gllir:}ear+CLLr:}ear). 4.3

I[,=A'I2A, T, =sirfol'},= —r sinf6/A

P P Degrees of freedom

D=0 =08=If, =1, . . - .
The guadratic action allows determining the propagating

FZ(P_ —sinzel“ig— sinzﬁl“‘gq)— _ siné cosé. degrees of freedom. To this end, we decompuo$éas fol-

- T - (3.10 lows:

00_ 0i — i
The latter possess only diagonal components h™=n, h¥=ny+dn.,

RI=A'[rA? 3;0;
VZ

8,0

ot o7 XH(GE+oEn)

(4.4

hij:<5ij_

1
R=RE¢=—(1-1A)+A'[2rA, (3.19)
' The subscripfT denotes spatial transversality;T addition-
ally indicates spatial tracelessness. In three spatial dimen-
Evaluation ofe™iD;R= e™i(5,R"+ T R'-‘) shows thacm™n  sions the symmetrib}l; possesses two components. Observe
vanishes in all conlwp]onents. Pk that the gauge transformatio@.2) does not affecty nor

Consequently the Schwarzschild solution holds in the exD7r- While the remaining components undergo a nontrivial
tended theory, which therefore passes the three classic te@SPonse, the following combinations are gauge invariant:
of general relativity.

(Differentiation with respect ta is denoted by the dash.

Evidently the Schwarzchild metric leads to vanishing A=V2(n+2n)+x+0e
*RR, since the modified gravity equatio®.11) are satis- )
fied. Correspondingly the Kerr metric, for whichRR#0, or=nr+é&r. (4.5

cannot be a solution. It is an outstanding open question _ o _
which deformation of the Kerr solution solves the deformed(The over dot denotes differentiation with respect to time.
gravity equations. With Egs.(4.4) and(4.5), the quadratic actiofd.3) becomes

1
IV. LINEAR THEORY Iquadratic:f d*x| = ZhiOhl - Se0e

We now analyze the extended equations by linearizing the

metricg,,, around a Minkowski background metrig,, . 1 50 R
The left side of Eq.(2.1]) in linear approximatiorg,,, * 2(‘9'0T) oAt 4u dxe
=75,,+h,, is denoted byG!neary clinear \yhere : . o .
pr Ry m prot X [hi5o,0hi+ oh o, V20 (4.6
. 1
GLL“far: E(Dh,”ﬁ- 3,9,h=30,0,h;—=3a,d,h; In the absence of the 0(4) Chern-Simons extension, the
first Einstein-Hilbert term shows that/; is the only propa-
—nﬂv[Dh—&a&Bhaﬁ]), gating componentyp vanishes by virtue of the Lagrange

multiplier A, while o/ does not propagate since only spatial

linear 1 . s » derivatives act on it. This is not changed when the extension

Cuv =— m(soﬂasﬂ [Ohy=4a,d,h""] is included. So in empty space the propagation of the gravi-
tational field is still governed by the d’Alembertian acting on

+SOMB&“[|:|hﬁ—&M(97hyﬁ]). (41  hi;, ie., there are two linearly independent polarizations,

propagating as waves with velocity c, just as in the absence
Hereh=h/, and indices are moved by“”. SinceD*G,,  of the extension. For example, for monochromatic plane
=0, the linear portion reads*G'"®3'=0. The covariant waves with

nv
divergence ofC,,, is not zero, but it is quadratic ih,,,, ot k)
hence the linear part &, also satisfies*C!,’°*'=0. Both hi7=efre't ™", Oh{=0, 4.7
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we havew=|k|. Moreover, one also verifies that for these

solutions the symmetry breaking quantityR R vanishes in
quadratic ordefsee Appendix

Wave motion
When the linearized equation of motion
Gl +Cl = ~87GT,, (4.8

is decomposed according to Edd.4) and (4.5), one finds
that Cj5°?" vanishes, and
Goo™ +Cp°'=~V2e=—87GTo. (4.9

The time-space components give

. . 1 . . 1
Gor '+ Cg **'=5 V2o —die+ ms'm”amvzﬂ

=—87GTy; (4.10a
or
I _
EVZO"T-Fms'm”&mVZO'?:&TGTg', (4.10p
where
Y= 5‘1—% To

In passing from Eq(4.10a to Eq.(4.10b, we used Eq(4.9)
and conservation of#”:4,T#"=0 (consistent with the lin-

ear approximation the ordinary, not covariant, divergence is

involved). For the space-space components we have

li li
Gi}near_l_ Ci}near
I VP O ST DT S
__E ) —? A+§aiUT+§aj0—T+§DhTT
ai&j-- 8imn ) )
_?¢+—4M Im(djor+OhYy
Sjmn ) )
+H(9m((7i0'[|1—+|:|hl‘|pT):_87TGTij, (4lla
or
)
A=87G| & —7|T; (4.11b
L O+ gm0, Ol g™, (I
2 TT 4/"/ m TT 4/-’“ m TT
=—-87GTi,, (4.110
with

PHYSICAL REVIEW D68, 104012 (2003

ij —Tij 1 9;9; mm
Ti:=T 3 5”—? T
} mn__ (9i(7me]._ &jﬁmei
2 V2 V2 vz

—+

V2

Again, the previous equationg.9 and (4.10, were used
together with conservation @*" to pass from Eq(4.113 to
Eq. (4.11h.

We see from Eqg94.9), (4.10D0 and(4.11b that the entire
effect of the extension is to act on the left side of the Einstein
equation—the field side—by spatial derivative operators
which carry the extension. These operators can be inverted
and cast onto the right side—the source side. So the entire
effect of the extension is to modify the source in its spatial
dependence. In terms of the modified source, the equations
regain their Einstein form, and the extension is invisible.
From Egs.(4.9), (4.10h and(4.11H we have

1 2 i T0i
EV or=87wGT{, (4.12

1 -
50hi=-8nGTY;.

while the equations fok and A, Egs. (4.9 and (4.11b,
remain unchanged. The modified sources are given by

~ 1 ! 1
Tglz_ Vz (5Im_ﬂ8|nman)-|—_?_m'
14+ —

J’_
4u?

ij _ 1 im qjn 1 ikm ojn
1+ —

PE:

1
- ﬂslkmﬁnak)ﬂ"p. (4.13

Again we see that the extended theory supports gravitational
waves with two polarizationshl;) traveling with velocity
of light.

The effect of the extension is felt when we examine the
intensity of radiation. In Einstein’s theory, a monochromatic
source whose energy momentum tensor possesses a definite
frequency

TH(t,r)=e "' T#(w,r)+c.C., (4.14
radiates power per unit angle in directi&r{4],

dP Go? i i

dga - - T (@k)Tiw k), (4.15
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where
T(w,k)= f dre I TEY (w,r). (4.1

Let the direction of propagation be the third axis. THek
takes the form

T S 0O
Ti{w k=S -T 0], (4.17)
0 0 0

and definite polarizations correspond TatiS. Thus Eg.
(4.15 becomes

dP_ZGwZ
dQ =

(TI>+1s?. (4.18

Each of the single polarizationsl € £iS) contributes the
same amount,

dP. 4Gw?
dQ =

(4.19

7|2

For a similar computation in the extended theory, we neecﬁ

merely to replaceTll; with T1;, which according to Eq.
(4.12 takes the form

ik ik
L[ TS sgT
ij _
e s ™ 1
1_E p 2

(4.20

Definite polarizations now correspond to

ikS) ) ikT)
T——|=i| S+ —
5 M

( _k) !
= 17— |(T=i9),
M

so that a single polarization still requirés= =iS. The radi-
ated power now reads

dp 2Gw® K\
-7 ezttt (ITI*+[s)
T 1——2 H
o
2ik
+7(TS*—STk) . (4.22
For a single polarizationT= *iS) we find
dP. 4Ge® . 1
1]
o

PHYSICAL REVIEW D68, 104012 (2003

Einstein value grows with energgwing to the triple deriva-
tives in the extensionand for largeu (negligible extension
it gives simply the suppression/enhancement fadtbr
F*2(k/un)]. Thus the extension manifestly violates spatial
reflection symmetry.

Note that there is no sign of the instability seen at srkall
in Chern-Simons extended electromagnetism. Here however
we encounter a singularity &= w, which reflects the fact
that the spatial derivative operator acting @', in Eq.
(4.11b, possesses zero modes, i.e. solutions to the homog-
enous equations exist. This allows for an arbitrary “back-
ground” gravitational field to be present. We see no further
information about this in the linear theory; perhaps nonlinear
effects can clarify the situation.

Gravitational energy-momentum (pseudgtensor

One way of identifying the energy-momentum
(pseudgtensor of the gravitational field is to separate from
the field tensor(“left” side) in the equation of motion its
linear part and transfer the nonlinear part to the source side
(“right” side), combining it with the matter energy-
momentum tensor. Since the linear terms of the field tensor
on the left sidg¢ are conventionally conserved, so must be
he entire right side. Also the expression is manifestly sym-
metric in its space-time indices. In this way one constructs an
ordinarily conserved, second rank symmetpseudgtensor,
which is then identified with the tota{matter+gravity)
energy-momentunipseudgtensor.

The above scheme can be carried out for the extended
theory. We write Eq. (2.1) as G,)**+C))*%=
-8wGT,,—A(G,,+C,,) where A(G,,+C,,)=G,,
+C,,—GI*¥—Cl"®®". Evidently if we definer,,=T,,
+(1/87G)A(G,,+C,,) we have in7,, a conserved, sym-
metric energy-momentunipseud® tensor. This, together
with the velocity of light propagation of gravitational waves
and the persistence of the Schwarzschild solution, shows that
symmetry violation is effectively hidden in our extended
gravity theory.

[In Ref.[6] there is a survey of alternative definitions for
the energy-momenturfpseud® tensor of Einstein’s gravity.
Included is a construction based on Noether’s theorem for
translation invariance, together with a Belinfante improve-
ment. This yields a symmetric, conservquseudo tensor,
which differs from the above by a superpotential. It would be
interesting to find also for the deformed theory the improved,
symmetric Noethefpseudg tensor]

V. CONCLUSION

Measuring the intensity of polarized gravity waves is now
not yet feasible. So the modification of Einstein’s theory that
we have explored does not have an immediately apprehen-
sible physical consequence. But the structure is interesting in
that diffeomorphism symmetry is broken in the action, yet
the equations of motion coincide with those of a modified,
but symmetric theory. Specifically we find only two gravity

Thus although each polarization travels with the velocity ofwave helicities, both propagating with the velocity of light.
light, they carry different intensities. The correction to the This is usually seen as a consequence of diffeomorphism
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invariance, but it persists in our deformed theory. ACKNOWLEDGMENTS
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1 1 APPENDIX A
'm:f d*x PRl m?A“A, |, (5.0
We derive Eq(2.10 from Eq.(2.9). With Eq.(2.5), I cgis
. given by
593U99AM_(9M)‘
=-—_ 4 Iz
Sgauge m= f dxm?A*g, \ = — f d*xm?g,, A*\ . les=~ 3 f dxv, K A

5.2 . . . .
52 whereK* is defined(2.4). Varying the connection and recall-
Gauge symmetry is broken hy,A*. But the equation of ing the definition of the Riemann tens(.6) shows that
motion
9, FP+m2AY=]" 5.3 1 By .
w (53 Slcs=— Ef d*xv e *PIR", 46T (A2)
enforceqfor a conserved source curreht) the vanishing of

the gauge field divergence, But the variation of the connection arises by varying the
metric tensor,

m29,A"=0, (5.4)
so Eq.(5.3 may also be presented in a gauge invariant form oT7 = 92 (D,89,,+D.89,,—D,9.,)- (A3)
v 2 v " v P .
I FHme gt = - A, =" (5.5  Continuing Eqs(A2) and (A3) results in
But an important difference remains: If the mass term in the Sl e — Ef d*p  ereBYRTY
gauge field example is promoted to a dynamical “field” vari- ST 4 ~ VB

ablem?—m?(x), then varyingm?(x) [in analogy to varying

6(x) in our extended gravity theotybtains X(D489,,+D;89,,~D,89,,).  (Ad)

Sy 1 BecauseR"); is antisymmetric in[7,v], the first term in
WZEAM(X)AM(X) : (5.6)  parentheses does not contribute and the remaining two com-
bine. After a partial integration, we are left with
But unlike in extended gravity, the resulting equation 1
_ 4 @ TV
A*A,=0 (5.7) 5'cs—§J d*x(v,&"*#7D R,
does not follow from the equation of motoif.3), obtained +vMs““BVRT;’B) 00, - (A5)

by varyingA,,. Moreover, Eq(5.7) is an unacceptable equa-
tion since it eliminates the possibility of finding nontrivial In the first intergrand we use the Bianchi identity to replace
solutions to Eq(5.3). [One recognizes that the Higgs mecha—DTRTyVB by D,Rj;—D4R”, while the second integral is re-
nism in unitary gauge provides kinetic and potential termsyritten in terms of the dual Riemann teng@r?),
for the Higgs field ‘m?(x),” and leads to an acceptable
equation for that quantity.

Note addedS. Carroll, whom we thank, has informed us 5|cs=f d*x(v,&**#7D R0 ,.* R™**)59,,.
that cosmological consequences of the modified gravity (AB)
theory(2.8) taken in a sourceless, linear approximation, have
been previously examined by Lt al.[7]. The only topic  Comparison of Eq.(A6) with Eq. (2.9) establishes Eq.
common to both investigations is a study of gravity waves(2.10).
The analysis if 7] differs from ours in that theig carries
arbitrary time dependence, while we allow only linear depen- APPENDIX B
dence. Nevertheless, physical conclusions are similar: polar-
ized waves are suppressed or enhanced in the extendedWe derive Eq(2.12 by computing explicitly the covari-
theory. Also we thank D. Grumiller for remarks about the ant divergence of the Cotton tensor, whose formula we take
Kerr metric. from Egs.(2.7), (2.9, and(A5),
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The first contribution td ,C*” vanishes. This is established

1%
CH'=—D,———( ¥RV 4 * RV (B1) by noting that there occurs
2\N—g
UU’
D * RTVOH
Using the antisymmetry of R"*“”in [ 7, ], we can present *2J-g
D,CH" as
_ Mo *RTVO’/,L_'_ L a',u,aﬂD RTZﬁ
D,CH'=—D,D, — L *Rms 2 2V-g
M T
2V-g

Since *R™“* is antisymmetric ino,u] andv ,, is sym-
- metric, the first term on the right is zero, and so is the second
+[D71Du]2\/_—< TR S RTWV)- owing to the Bianchi identity satisfied by the Riemann ten-
9 sor. The remainder of EdB2) involves the commutator of
(B2) covariant derivatives, and leads to

D CH'= Vo * R)\VO’,U,_;’_ 1* R)\/J.U'V R” 4o* RT)\O’,U,RV + E* RT)\(TVR/-L + * RTV(T}\R,M }* RT,uo’)\RV
o - 2\/__g 2 NuT AT 2 )\,U,T 2 AuT
— Vo | * R)\VO'M_l_ l* R)\;LO'V R, +| * RTVO')\+ E* RT)\O'V R, +|* RT)xo',u_l_ E* RT;LU)\ RY
2\/__9 2 AN 2 AT 2 ApT|*
(B3a)
[
The quantities involving the Ricci tensor vanish owing to its APPENDIX C

symmetry. The last term in brackets is expanded by using the

antisymmetry of* R in [7,A]. Thus we are left with We establish the vanishing of the last term in E8.8).

(The calculation is entirely three dimensional, so we omit the
superscript “3.” Note first that according to the definition

v Vo TNO, v TLON RV (3.9
D,C* :4J—_[ RATH(RY, —RY,\)+ *RH“ARY, ]
1

— Vo * DTACURV * DTULONRV m'JD Nn—gmll( (D D"V/N +8mIJ—D D D"V/N
4\/__9[ R R ,u,)\7'+ R R )\,U,T] \/— \/N

__Y% spne v

=T _*RMORR (B3b) em'l<——' ——[D;,D,;JD"VN
2\—g a f SN

(CY
Cyclic properties of the Riemann tensor allow passage from
one expression to the next in E@3b). Finally we use the The action of the commutator of covariant derivatives on

identity D"JN produces
1
RORY,, =70 RR (B4) 1 /N
v 4 v ——Sm”_Rnkak\/—_ nka
2° N N

to conclude that
where we have used E(.3b. Thus Eq.(C1) becomes

v
D =g =g R (B5) e™ID,NI= — 3.0nN(e™INT - e"IGI). (€2

in agreement with Eq(2.12. Using this equality in Eq(3.8) establishes the desired result.
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APPENDIX D Therefore we have
We calculate* RR—a measure of symmetry breaking in _
our _Chern-Simong extended gra\_/ity_ theory—to _quadratic or- * RRq”ad’a“C=s“”“ﬁaa(aghfﬁ— ﬁfhgﬁ)aya”h;.
der inh#”. The Riemann tensor in linear order is (D3)
, 1 For plane monochromatic waves),,d,h,z=—K,K.h,z,
R[}';Z%r:E(aﬁaThm—aaaTh(,BJr 90N 5= 505N10). (k"k,=0), and the above becomes
(DY)
* uadratic_ juvap b% T _ Lo 7|
The dual reads RK € KoK, (K'kyhih s—=k7h,gk™h.,).
(D4)
*R AV Iinearzls;wa[o’ﬁ (0—, h. .—d.h ) (DZ)
o 2 arfotirp Orlopl: This vanishes for a variety of reasons.
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