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Black hole entropy associated with the supersymmetric sigma model
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By means of an identity that equates the elliptic genus patrtition function of a supersymmetric sigma model
on theN-fold symmetric produc8™X of X (S¥X=XN/Sy, whereS, is the symmetric group dfl elementsto
the partition function of a second-quantized string theory, we derive the asymptotic expansion of the partition
function as well as the asymptotic for the degeneracy of spectrum in string theory. The asymptotic expansion
for the state counting reproduces the logarithmic correction to the black hole entropy.
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. INTRODUCTION tion yis = SN1®J-S:2(SN1>QZ}\'1) [19], where each subfac-

. tor Sy andZ, permutes theN, cycles(n) and acts within

In the correspondence between a black hole and a h'ngne C" cle(n) correspondingly. Following the lines of Ref
excited string the black hole horizon is governed by som y P gy i 9 Fr i ’
conformal operator algebra on a two-dimensional surfacilgz| we may decompose each twisted sectol” into a
This provides a string representation of black hole quantunroduct over the subfactofs) of N,-fold symmetric tensor
states. Conversely, it may be possible to give a black hole)roducts,H?:®n>OSNnH(Zr:‘), whereSVH=(®NH) .
interpretation of stringgl]. Obtaining the black hole entropy Let x(;q,y) be the partition function for evergsub Hil-
by counting the number of excited strings statsttistical bert space of a supersymmetric sigma model. It has been
interpretation of the black hole entropyias been subse- shown[20-25 that the partition function coincides with the
quently presented in several papf2s-12. A comparison of  glliptic genus. If X(H(Z;);q,y) admits the extension

the asymptotic state density @wisted p-branes and mass . _ e .
level state density of black holes has also been established { (1:0.) —EszIC(nrr.l,e)q y’, the following result
olds(see Refs[19,26)):

Refs.[2,13—-14. In this work, we calculate the black hole
entropy for a supersymmetric sigma model. In the remainder
of this section, we set the relevant mathematical method used >, pNx(SNH(Zn”) qy)= [ (1—pgmy®—cmo (1)
in this paper. Then, in Secs. Il and Ill, we derive the N*° m=0¢
asymptotic state density and black hole entropy, respectively.
We end up with some concluding remarks in Sec. IV.
_ , W(p;a,y)= > pNx(S'X;q,y)
Mathematical notation N=0
We start by considering a supersymmetric sigma model B
on theN-fold symmetric produc8\X of a Kahler manifold :n>olr_n[>oe (1—phgTy")~cmo, @
X, which is the orbifold spac8'X=X\/S,. HereSy is the T
symmetric group ofN elements. The Hilbert space of an
orbifold field theory can be decomposed into twisted sectorgyhere p=dp], q=¢ 7], y=dz], and &x]=exq2mix].
M, which are labeled by the conjugacy classe$ of the  Here , and r determine the complexified Héer form and
orbifold group Sy [17-19. For a given twisted sector one ¢omplex structure modulos aP, respectively, and param-
can keep the states invariant under the centralizer subgroyyizes theU(1) bundle onT2. The Narain duality group
', related to the element. LetHEV be an invariant sub- S(O(3,27) is isomorphic to the Siegel modular group
space associated with, ; the total orbifold Hilbert space Sp(4,Z) and it is convenient to combine the parameters
takes the forn#(SVX) = @{Y}HI;V. Taking into account the and a Wilson line module into a 2x2 matrix belonging to
group Sy one can compute the conjugacy clas¢e$ by  the Siegel upper half-plane of genus 2,
using a set of partitiongN,} of N: namely, =,nN,=N,
whereN, is the multiplicity of the cyclic permutatiofn) of
n elements in the decomposition qvf{y}zzf‘:l(j)’\'i. For :(p Z)
this conjugacy class the centralizer subgroup of a permuta- z 7’

it
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with Jp>0,37>0, detJE>0. The group Sp(4.Z) triple-product identity. For generalized Kac-Moody algebras
=S0(3,22) acts on the matrisg by fractional linear trans- there is the following denominator formula:
formations: namelyZ — (AZ +B)(CE+D) 1.

Finally we go into some facts related to the orbifoldized ’ v
elliptic genus ofN=2 superconformal field theory. The con- g;w [Sgr(‘f)]f’(e Er: e(re’|=e rl;[O (1—e")muio),
tribution of the untwisted sector to the orbifoldized elliptic (8
genus is the function

where the correction factor on the left hand side involves

x(Xi1,2)=¢(1,2)= OQ(T'Z)’ e(r) which is (—1)" if r is the sum ofn distinct pairwise
orthogonal imaginary roots and zero otherwise.
whereas The logarithm of the partition functiolV(p;q.,y) is the
one-loop free energ#(p;q,y) for a string onT?x X:
artb z rcz?
crvdiorrd) - CHMPE ) F(p;a,y)=logW(p;a.y)
a =— 2 C(nmo)log(1-p"a"y")  (9)
n>0m,¢
q) €SH22), ()
1
r=d/2. The contribution of the twisted sector projected by = > ZC(nme)pkngkmyk
v is [25] n>0m.¢,k>0 K
1
d = N =D C(nm0)gkmyke. (10
JO(7.2)= $(r,z+ pr+ v>e[§wm27+2m> , &0 P2 k & CnmOdTye (10
M
The free energy can be written as a sum of Hecke operators
HveZ. (4) Ty [31] acting on the elliptic genus o [19,29,32:
. — N .
The orbifoldized elliptic genus can be defined by F(P:0.y) = Zn=0P "Tnx(X;0,Y). . .
The goal now is to calculate an asymptotic expansion of
defq h-1 the elliptic genusy(S¥X:q,y). The degeneracies for the

& T,Z)orbZH S (—1)PErre)  [(7.2),  (5) sigma model are given by the Laurent inversion formula
m,v=0 I

_ Ne. 1 W(p.q.,y)
whereP,h are some integers. X(S7Xq.y)=5— de, (11)

1. ASYMPTOTIC DENSITY OF STATES . . .
where the contour integral is taken on a small circle around

If y=ez]=1, then the elliptic genus degenerates to thethe origin. Let the Dirichlet series
Euler number or Witten indek27,28. For the symmetric

product this gives the identity g rmk+z¢k]C(nm,€)

nsks+l

D(s;7,2)= 2 0121 (12

W(p)= 2 pNy(S) =11 1-pH ™. (8
N=0 n=0 converge for BMRs<a. We assume that seri¢$2) can be
analytically continued in the regiofis=—C, (0<Cy<1)
where it is analytic excepting a pole of order 1sat0 and
s=«a, with residue R4<D(0;7,2)] and RegD(«;7,2)], re-
spectively. Besides, leD(s;7,z)=O(]Js|®t) uniformly in
Rs=—C, as|Js|—x», whereC, is a fixed positive real
number. The Mellin-Barnes representation of the function

EW [sgr(o)]e”™ =g HO (1—e")mut), (7)  F(t;7,2) has the form
ge r>

Thus this character is almost a modular form of weight
—x(X)/2. Equation(6) is similar to the denominator for-
mula of a(generalizefl Kac-Moody algebrgd29,30. A de-
nominator formula can be written as follows:

wherev is the Weyl vector, the sum on the left hand side is  Aq[F](t;7,2) = LJ t=SI(s)D(s:7,z)ds. (13
over all elements of the Weyl group/, the product on the 27 Jps=1+a

right side runs over all positive rootene has the usual no-

tation of root spaces, positive roots, simple roots, and WeyThe integrand in Eq(13) has a first-order pole &=« and a
group, associated with Kac-Moody algehrand each termis second-order pole &= 0. Shifting the vertical contour from
weighted by the root multiplicity mult(). For the su(2) Rs=1+ «a to Rs= — C, (this procedure is permissibland
level, for example, an affine Lie algeb{® is just the Jacobi making use of the residues theorem one obtains
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F(t;7,2)=t T (a)Re$D(a;7,2)]+ lim

s—0

ds[sD(s; 7,2)]

—(y+logt)Re$D(0;7,2)]

—S .
o t °I'(s)D(s;7,z)ds,

Rs=—Cq

(14)

wheret=2m(Jp—i%Rp). The absolute value of the integral
in Eq. (14) can be estimated to behave@§27Jp)0). We
are ready now to state the main result.

In the half-planeit>0 there exists an asymptotic expan-
sion for W(t;7,z) uniformly in |Rp| for |Jp|
—0, |arg(2mip)|<ml4, |Rp|<1/2 and given by

1
W(t;T,Z)Z{ﬁ

—Re$D(0;7,z)]logt— yRe$D(0;7,2)]

I

(15

Re$D(a;7,2)[I'(a)t™«

d
+lim —[sD(s;7,2)]+ O(|2737|0)
s—0 ds

The asymptotic expansion Bt— o for the elliptic genus
(see also Refd.7,33] is given by the formula

X( SNX, T,Z)N*,OO:C(CY; T Z)N{Z Res[D(0;7,2)] —2—a}/[2(1+ a)]
« 1+« Re$ Dl a:
g ResD(a;n2)]

X 1‘*(1+ a)}l/(l+a)Na/(1+ a)

X[1+O(N7H], (16)

Cla;7,2)={Re$D(a;1,2)]
X T(1+ a)H1~2 ResP(O:qy)]}H(2+2a)

1/ d _
X ﬁ('lm d—S[SD(O,T,Z)]

s—0

[27(1+a)]¥?

—yRe:{D(O;T,z)]) 17

wherek<a/(1+ «) is a positive constant. In the above for-
mulas the complete form of the prefact@fa; 7,z) appears.
The resultg16), (17) have a universal character for all ellip-
tic genera associated with Calabi-Yau manifolds.

Ill. BLACK HOLE ENTROPY

In the context of string dynamics the asymptotic state>0, w,(a,0)=[Z;a;(nj+g;)
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S(N)=log x(SVX; 7,2) =Sy + A( a)log(S,) + (const,
(18

A(a)=(2a) Y2 Re$D(0;7,2)]-2— al. (19

The leading term in Eq18) is Sy=B(a)N¥*), where

1
B(a)= %{Re$9(a; 7,2) T (1+ a) @,

ola)=

1+a’ (20
while A(«) is the coefficient of the logarithmic correction to
the entropy.

The asymptotic state density at leW{N>1) for funda-
mental p-branes compactified on manifold with topology
TPXRY7P can be calculate within the semiclassical quanti-
zation schemésee for details Ref§2,33]). The coefficient
A(p) in this case takes the form

A(p)=(2p) [Z,(0)—2-p],

where Z(s) is the p-dimensional Epstein zeta function.
Since Z,(s=0)=—1, we haveA(p)=—(d+1)/(2p). In
string theory, in the case of zero modes, the dependence on
embedding spacetime can be elimingté&]. In fact, the co-
efficient logarithmic correctiopd(p) becomes—3/2, which
agrees with the results obtained in the spin network formal-
ism. The coefficient of the logarithmic correction to the su-
persymmetric string entropyd(«), depends on the complex
dimensiond of a Kahler manifoldX.

Using the transformation properti¢4) in Egs.(16), (17)
one can obtain the asymptotic expansion for the orbifoldized
state density. Thus starting with the expansion of the state
density of the untwisted sector we can compute the asymp-
totics of the state density of the twisted sector.

(21)

IV. CONCLUDING REMARKS

Our results can be used in the context of the brane meth-
od’s calculation of the ground-state degeneracy of systems
with quantum numbers of certain Bogomol'nyi-Prasad-
Sommerfield BPS extreme black holeg34-36,4. We note
here the BPS black hole in toroidally compactified € T°
x X®) type Il string theory. One can construct a brane con-
figuration such that the corresponding supergravity solutions
describe five-dimensional black holes. Five-branes and one-
brane are wrapped of® and the system is given by the
Kaluza-Klein momenturN in one of the directions. Thus
black holes in these theories can carry both an electric charge
Qe and an axion charg®,,. The brane picture gives the
entropy in terms of partition functioW(t) for a gas of
QrQn species of massless quant&V(t)=II, ;m;q{l
—exd —twp(a,g) ]}~ @mMM=m=1)  where t=y+2mix, %t
212 and g and a; are some

density gives a precise computation of the free energy anteal numbers. For unitary conformal theories of fixed central
entropy of a black hole. The corresponding black hole enchargec, Eq. (16) represents the degeneracy of the state

tropy S(N) takes the form

x(N) with momentumN and forN—co one haq14]
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Ac+3 from string theory, would therefore be incompatible; in view
log x(N)=2yAZr(2)eN= —,—I0og(N), (220  of the present result, this might be presented as a useful
constraint for the underlying microscopic field theory.

whereA = (dimM —m—1)/4 and{g(s) is the Riemann zeta  Finally, note that for a Calabi-Yau space thggenus 37]

function. The entropy takes the form is a weak Jacobi form of weight O and indeX2 and it
transforms a$(y(Tx)=(—1)"dery—1(TX). This relation
S(N)=log x(N)=8p+ Alog(Sp), (23)  can also be derived from the Serre dualky(X;/\Ty)

=H4I(X;/\""5Ty). Forq=0 the elliptic genus reduces to

a weighted sum over the Hodge numbers: namely,
c+3 x(X;0y)==; (= 1) *Kyl=92nlk(X). For the trivial line
So=2m\JcNI6, A=-———. (24) bundle the symmetric produ@) can be associated with the
2 simple partition function of a second-quantized string theory.

where forA=1 we have

Following Ref.[36], we can putc=3QZ+6, N=Q,, and

get the growth of the elliptic genu®r the degeneracy of
BPS solitong for N=Qy>1. However, this result is incor- A.A.B. and M.E.X.G. would like to thank CAPES for

rect when the black hole becomes massive enough for itpartial financial support in the context of the PROCAD pro-
Schwarzschild radius to exceed any microscopic scale suajram. M.E.X.G. would like to thank FAPESP for partial fi-
as the compactification radi#,35]. Such models, stemming nancial support.
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