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Tracking black holes in numerical relativity
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This work addresses the problem of generically tracking black hole event horizons in computational simu-
lation of black hole interactions. Solutions of the hyperbolic eikonal equation, solved on a curved spacetime
manifold containing black hole sources, are employed in development of a robust tracking method capable of
continuously monitoring arbitrary changes of topology in the event horizon as well as arbitrary numbers of
gravitational sources. The method makes use of continuous families of level set viscosity solutions of the
eikonal equation with identification of the black hole event horizon obtained by the signature feature of
discontinuity formation in the eikonal’s solution. The method is employed in the analysis of the event horizon
for the asymmetric merger in a binary black hole system. In this first such three dimensional analysis, we
establish both qualitative and quantitative evidence for our method and its application to the asymmetric
problem. We focus attention dii) the topology of the throat connecting the holes following mer®rthe
time of merger, and3) continuing to account for the surface of section areas of the black hole sources.
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[. INTRODUCTION can only successfully be addressed in the computational do-
main. Consequently, the binary black hole coalescence prob-
The idea of a totally collapsed gravitational source, fromlem has become an active subject of numerical relativity.
which nothing—not even light—can escape, is an old oneQDne particular problem in the computational domain is the
dating back at least to the work of Lapla@nd othersin the ~ computational definition, detection and tracking of the black
eighteenth centuryl]. Since those original considerations, hole event horizon itseff13-18.
research has uncovered a wealth of understanding regarding The present work addresses the problem of numerically
the physics of black holes. In general, the work has followedracking black hole event horizons. We believe that while
two major routes, with an ever-narrowing gap between theefinements need to be pursued, some of which we detail
approaches. Along one direction, black holes are studied dselow, our approach is complete in the sense that a single
mathematical solutions in a given theory of gravity including method is presented such that any one implementation of the
Newtonian theory, post-Newtonian metric theories of gravitymethod can generically detect arbitrary numbers of black
Einsteinian gravity, as well as semiclassical gntbre re- hole event horizons undergoing arbitrarily strong gravita-
cently) various attempts at full quantum theories of gravity.tional interactions. For example, using a single computa-
The second direction considers black holes in the astrophystional code of our method we analyze both single black holes
cal and astronomical contexts. Both fields of research havand black holes undergoing merger; and no special modifi-
seen increasing activity over the years and have made stazations of our code are required to handle these distinct dy-
tling discoveries concerning the physics of black holes, in-namics.
cluding the gravitational collapse theory of Oppenheimer and The present article, describing our generic method for
Snyder|2], proofs of uniqueness and stability of black holestracking black hole event horizons, is divided as follows. In
in Einstein’s general relativit}3], thermodynamic properties Sec. Il the eikonal equation, the foundation of our method, is
of black holes including the three laws of black hole me-described in sufficient detail to be employed in an event
chanics[4] and mechanisms for black hole radiation andhorizon tracker. In particular, we focus on the signature be-
evaporation[5], discovery of critical phenomena in black havior of a black hole event horizon in solutions of the ei-
hole formation[6], experimental identification of both astro- konal equation. As usual in numerical work, there are a va-
physical black hole sources themself@$ and their event riety of possible implementations of the approach. In Sec.
horizons[ 8], experimental signatures for supermassive blacKlIl, several closely related systems of equations are presented
holes in galactic centef9], and experimental bounds on the and one particular system is singled out for consideration.
distribution and spectrum of black hole sources and colli-The system chosen makes use of an explicit second order
sions[10]. diffusion, or viscosity, term and we show in Sec. Ill the
Numerical relativity, which addresses the computationakelationship between solutions of the diffusive equations of
solution of Einstein’s equatiofill], is an active participant motion and the continuum eikonal equation of interest. Sec-
in both the mathematical and the astrophysical program dfion IV details extraction of the two dimensional sections of
research. With the advent of the Laser Interferometric Gravithe event horizon for each time level of a numerical evolu-
tational Wave Observatorf.IGO) and other similar efforts, tion. Such extraction is crucial for carrying out area, mass,
considerable attention has focused on the generic binargnd spin calculations. Section IV also shows the accuracy of
black hole coalescencéBBHC) problem, expected as the our implementation by considering a parameter space survey
strongest sources for gravitational wayég]. As discussed of single Kerr black holes. Sections V-X describe in detall
in [11], this is a very difficult and interesting problem that the first three dimensional application of dor any method
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to the numerical analysis of the asymmetric binary blackHere y is the inverse spatial metric. Substituting the ADM
hole coalescence problem. Unfortunately, due to the showariables directly into the Hamiltonian gives

time scale of the source data, we will not argue that a par-
ticular outgoing null surface is the true event horizon. In- ab 1, 2 i 1 j

stead, we demonstrate through a series of exercises that ouf! =Pad” Po=~ ;pt + ?B Pitpi| ¥~ ?B B pj.
method can and will detect the numerical approximation of 6)
the true event horizon given a sufficient amount of data, and

will provide considerable information concerning the physicsSince the Hamiltonian is not explicitly dependent there is a
of the asymmetric process. Along those lines, we survey theonstant of the motion
outgoing solutions of the eikonal equation under propagation

into the past and augment our results with qualitative and 1, 2 .
guantitative information obtained from our apparent horizon — —PiT B Pitp
solvers. Area analysis of the outgoing null surfaces is carried « «

out in conjunction with analysis of the black hole apparentgqr ,2<0, w2=0, or w?>0 the motion is said to be time-

horizons, which reveals both a time of merger much earliefixe nyll, or spacelike. Without loss of generality, assuming

then estimated using apparent horizons and mass energy &gyl geodesic motion, solution of E¢7) by ordinary algebra
timates much larger those found using apparent horizogje|qs:

tracking methods. We also search for evidence of any non-
trivial topology of the horizon immediately following pt:Bipiia‘/pi'yllpj- )
merger. Our conclusions are presented in Sec. XI.

- iBiB-) pi=0® (7
a2 J J

With this result, the Hamiltonian can be explicitly factored:

II. THE EIKONAL H=H.H =0 9)
=H,H_=
To begin, since the Lagrangidn=g,,x2x° of null geo- here
desic motion has only kinetic terms it is equal to the associ-
ated Hamiltoniart. Legendre transformation H.=p,— B'pi=ap;y’ p;=0. (10)
dx°® dx® In the case of either root Hamilton’s canonical equations be-
M X% Po) = g P L( T’Xd'a) @ come !
where dt  ~dH.
E__HI ap; =Hz (11
o dL
Pa= a( dx2\ ’ (2) dXi ’ JH . ’ ﬁi . ,ylj pJ (12)
- o~ M= =Mz = — T
dr dr (9pi ‘/pk)’R o]
setsL=H. The corresponding Hamiltonian equations are dp, 9H.
3. = H=—r (13)
dx® oH ogeb . dr ot
T T 5o 49 Py
dr  dp, dp, oH.
—=—-H;—. (14
dpy o dr X!
a7~ 9H=~PcPadg™ 4

According to Eq.(11), 7 can be eliminated in favor df The
It is generic that the spacetime metric is independent ot?yst%m OT eq?atlon? beccén:ﬁs ?lmthLE(q_Q) anc:l(lél) with
the affine parameter. There is thus a first integral associ- Written in placeé of7 an € Tactori cancelled every-

ated to geodesic motion. Making use of this property permité’vhere on the right hand side. Explicitly,
elimination of the affine parameter in favor of coordinate

d iip.
time t. To see this, it is convenient to adopt the ADM vari- dx =—B*a Y Pj (15)
ables dt Vi 'y
1 B . pp and
tt_ _— ti 7 j— i
g'=" 9=5 g=ri-— (5) dp |
H:_ai(_ﬁjpjia\/pj'yj p;). (16)

We use early-latin indices to denote spacetime component¥he eikonal, corresponding to the Hamiltonian of Egj,
a,b,c=0,1,2,3; mid-latin indices denote spatial componenjsk
=1,2,3. 3,S¢P9,S=0 (17)
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can be factored similarly. To do so it is a simple matter ofinitial dataSy— S;= ¥(Sy) have smoothly related solutions.
making the replacemenfg— ¢,S, pj—d;Sin Eq.(8) to find  This feature alleviates the need for surveying over smoothly
the following symmetric hyperbolic partial differential equa- related initial data.

tion A further reduction of the scope of solution surveys is
. _ provided by the equivalence of ingoing and outgoing solu-
9S=p'9,S* a9 Sy 9;S=H. (18)  tions under time reversal. Propagation of dataSatescrib-

o o _ing an ingoing or outgoing null surface is accomplished by

Note that a bar is introduced here to distinguish the Hamilspecification of(1) a definition of the direction of time2) a
tonian used here from the Hamiltonian used in 8. This  choice ofa and8', and(3) a choice of the root. With these
equation is also used in the method[®8], although in that  cpoices specified, data is then uniquely partitioned into an
work the equation is further reduced to consider the case of fhgoing type and an outgoing type with the distinction being
Single null surface. the gradient oS

The right hand side of this result is homogeneous of de- \wjith the dynamics of any outgoing null surfagecluding
gree one ing;S. The characteristic curves along which the the event horizonspecified by Eq(18), and the scope of

level setsl" of Sare propagated, are then solution surveys categorized into topological classes, the task
: — remains of identifying the event horizon within this restricted
3= —B*a J'S oH (19) space of outgoing null surfaces. To do so, the results and

approach of{13] are adopted here and modified to include
the eikonal equation as discussed above. The result of this

\/ﬁiS’y” 19182 (9((9,8)

4,5= aiﬁ(t,xj,aj S), (20) _approac_h is a signaf[ure feature of black hole event horizons
in the eikonal equation.

which are the null geodesics of Eq45) and(16). Immedi- An event horizon of a black hole is by definition a critical
ately, the integral curves of the gradientsSdndI" are also  outgoing surface when tracked into the future. [2be a
the null geodesics: point interior to the horizon an@ be a point exterior to the

, horizon such thaP and @ lie on characteristic curves of the

dx'(n) , , . eikonal y» and y, . At arbitrarily early times lety, and
( =0'%pa=0'29,S=3'S(\,x'(\)). (21 rr Yo Y y bp 7o

pass arbitrarily closely to a poirit that lies on the horizon
I'. SinceSis a Riemann invariant, at arbitrarily early times
Hereafter, the bar oRl is dropped with the understanding the jump of the eikonal at{ becomes[S(H)]]=S_(H)
that the Hamiltonian considered is that of Efj8). This re- —S;(H)~S(P)—S(Q)#0. In the computational domain,
sult establishes that the eikonal is technically a Riemann inwhere the resolution is finite, this discontinuity will appear
variant of the null geodesics, a fact that proves useful irgenerically in finite time. As such, an approximation of the
establishing the signature of a black hole event horizon irgvent horizon will appear numerically as the formation of a
solutions of the eikonal equation. More specifically, since thdump discontinuity in the eikonal for outgoing data that is
eikonal is the canonical generator of null geodesics, it can beropagated into the past. This is the numerical signature of
employed in analysis of black hole event horizons, which arélack hole event horizons in the eikonal’s solutions.
by definition generated by null geodesics having no future

dn

end points. To proceed in this manner E48) is employed IIl. NUMERICAL METHODS
in an initial value problem and then surveyed for signature . , , i
features of black hole event horizons. Analysis of the continuum properties of the eikonal equa-

A black hole event horizon is generated by a Congruencgon as a Hamilton Jacobi gquation identifies three' closely
of outgoing—but future asymptotically nonexpanding—null related approaches to trackln_g black _hole event horizons:
geodesics. The scope of the surveys of the eikonal equation SYStem I: The null geodesic equations
that are required to identify a black hole event horizon is
then restricted to the space of all outgoing null surfaces. S(xj,t)=SO(xk)—J dtH(t,x',p;) (24)
These surveys are greatly reduced by the fact that solutions

of the eikonal are categorized by topologically equivalent . . .
solutions. To see this, note that where the integral is evaluated along the solutions of

s(s= 2 s5-\(S)as 22) K=pira—0
i(S)= -5 diS=A(S)d;S, Vo Tp;
and bi = - 0')|H . (25)
Y _ .
Gab(S)= gﬁtsz?\(s)&ts- (23) System II: The eikonal
9S=—H(t,x,9,). (26)

By homogeneity of the right hand side of E38), if Sis a
solution theny(S) is also solution. Thus smoothly related  System lll: The flux conservative form
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S(x',t)= Fﬁdx‘pi(xi,t) (27 H(Xi,Vj¢)=%(H(Xi,VjS)—I-eHl(t,Xi,ajlogA)). (35

api(x',t) + gH(t,x),p;) =0. (28)  Substituting these results into E¢30) and cancelling an
overall factor ofi/ e gives at lowest, and first order:

In each of the above three systems of equations the _
Hamiltonian is given by Eq(18). 9S=—H(t,x',;S) (36)

In each of the above cases, the structure of the dynamical )
equations provide certain advantages. For example, in eacl§dl0gA=—eHy(t,x',5;logA)+ e(VS+ €V logA)*+ - - -.
case the symplectic structure can be employed to identify (37
numerical loss of accuracy in a similar manner to some mod:

. . I . HereH, is the first order linear Hamiltonian obtained from
ern numerical schemes used in Hamiltonian dynamics. Fur-

ther, as a flux conservative system, high resolution method@erturbatlon theory. At zeroth ordeSthen satisfies the eiko-

from computational fluid dynamics can be applied directly to?:sluiqg?tf'ﬁgt’ gvrr&"; th;t::rrggt?orget%gg:rec;trll%n e|>s< trgisgge?r:e
the third system. In the following sections of this article, the P y b

. : - ! . —eyolution of A. Higher order results can be found similarly.
second system is considered since this system of equatiors

. . . . . . gain, these results hold only where solutionsSaxist; that
yields an expedient implementation that is sufficiently accu- . - . . L
is, away from discontinuities or other solution singularities in
rate for our purposes. Sand its derivatives
Singular behavior on the eikonal is not specific to only the '

event horizon and instead, as described in detail by Arnol% XT:r?S%bnO\;i;gilyrs;zs'se: tﬂfzgmggfg Etg?:]goﬁﬁ:lsvg_KB
and Newmar{19-21], the eikonal is known to generically b P

break down on caustic and other sets. Special numericiﬁlt'onss Such solutions can be inverted using the conven-

methods are then required to handle the generic singular b lonal method of series inversion. To invert the WKB expres-

havior of the eikonal, we make use of an explicit viscosityz'(;)lziisrr:%ft);]pereszjggiliscogjtf;ﬂsoﬁf :‘;S:ﬁgr}ﬁ;ﬂﬂ:gﬁﬁeosf;ﬁ
term. In the continuum, addition of our form of numerical tion of the araFt))oIic o uati?)(ISO) is' iven asy (numericall
viscosity at the level of the finite difference approximation P q 9 a4 y

corresponds to replacing the evolution of or otherwisg. Writing

atS=—H(t,xi,(9jS) (29 S= Iog( i) 38)
A
with evolution of the equation
e i the p@cedure is then analogous to that of the WKB expan-
dip=€VoP—H(L,X,d;4) (30 sion: A is constructed as an asymptotic power series with

h . I . hich Il the vi . q coefficients depending ogy alone. The result of such an
wheree is a small quantity which we call the viscosity an analysis is simply

V2 denotes any second order, linear derivative operator.
There is a well defined sense in which the soluti@relate o sz//(ft)

to the solutionsy; it is simply given(when the solution$§ S(x,t)=log y(x,t)+ ef dt ———— - (39)
exist by the WKB transformation ¥

_ _ where the integral is evaluated along
(X, 1)=2, a,(x,t)e"expSle)=Aexp Se). (31) _ .
n dx'  gH(t,x),glog )

dt Ip;

(40)
To see the explicit relationship between the solutignand

the solutionsS note that and ¢ is provided independently b§numerical solution of

o= " (3,5+ ealogh), 32 Gr= V2= H (X ,0). 41)

One advantage of an explicit second order viscosity term
is a simple procedure for reducing the error of viscosity so-
lutions by one order of the viscosity The limit e—0 cor-
responds to a continuous family of zeroth order solutions
¢.; Where

ail,//:%(aiS‘F E&ilogA), (33)

V2¢: i(VS%— eV |ogA)2+ f(VZS+ evzlogA).
62 € ¢5:S+ Ne (42)

(34)
and .= O(¢€). Note that each solutiog, is obtained from
Assuming that the Hamiltonian is homogeneous of degrean analysis similar to that following E@38), although ob-
one in momentum, and making use of perturbation theory: tained by neglecting the logarithm.
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Given two viscosity solutiongb, and ¢, it is then pos- Here 5,,=diag(—1,1,1,1) is Minkowski's metricH is a
sible to construct a third improved viscosity solutignthat  space time scalar, arl@ is an ingoing null vector with re-
is accurate ta@)(e?). To see this, consider the combination spect to both the Minkowski and full metric. The Kerr solu-

tion is the two parameter family of solutions such that
¢|E¢E+(¢€_ ¢25)' (43)

. o Mr3
¢, is accurate tad(e“) since

B r2+a?z? 0

¢e_ ¢Zs: Ne™ N2e™~ Ne™ 27]62 T Ne- (44)
and
To make use of these improved viscosity solutionshlet .
denote the resolution of the numerical mesh. Any second I'=-1, (51

order finite difference approximation will have then

rx+ay (52
— 2 =
$=¢+0(h9), (45) 124 32
where ¢ is the continuum solution an& denotes its finite
difference approximationWe will use a hat throughout the py_y—ax (53
paper to denote the discrete approximation to a continuum r2+a?’
object) Similarly,
z
S=5+0(h?). (46) 7=, (54)
Using 1 1
r’=—(p?—a®+ \/— 2—a%)+a’z? 55
S=¢+0(e)= ¢ +0O(e?) 47 p(prma)t Nz (p"ma) 59
gives where
- ~ ~ 2_\2 2 2
8=+ 0(h2)+0(e)=d+O(hD)+O(?).  (48) pr=xTHy Az (56)
Finally, the event horizon for the Kerr black hole is located
IV. LEVEL SET EXTRACTION on the e|||pso|d =r,= r(X,y,Z) where
Of crucial interest in the binary black hole coalescence r.=M+M—a. (57)

problem are the areas of sections of the black hole event

horizon. To find these sections, at any given time level any of | Figs. 1—4 we show the evolution backward in time of
the level sets, sa$=0, can be extracted to obtain the sur- the eikonal equatior(followed by extraction of theS=0
facel’, a two dimensional section of the corresponding nullsyrface. Errors can arise both in the evolution and in the
surface. This problem of extraction is an inverse problemextraction of the surface. Figure 1 shows the percent errors in
since it requires that pointsx(y,z) are found such that the extracted areas for a nonspinning black holes with mass
S(x,y,z)=0. To accomplish this inversion, we find that an M =2, a=0 in a survey over the viscosity parameter. Figure
ordinary bisection method is sufficient for use with an ordi-2 shows a similar study but for the L2 norm of the truncation
nary second order interpolation scheme. In this method it igrror in the functiorr , . Note that the function , is defined
assumed that the surfadé can be expressed in spherical for every point of the horizon in the continuum,

coordinates(#), ,u(0, ¢)), wherer=u(6,$) is the surface  —r_(x,y,2). In the computational domain, then takes a

fu_nctlon for agiven center' contained W_lthln the_surfadé. discrete formr , =7, (i,j k), where the integers,j,k span

Given a choice for the center, the rqd|al fgncUon 8(.[) dIhe numerical mesh. The truncation ergpr is then

=S,=0 can then be approximated via the interpolation an +

bisection. . A

To establish the accuracy of our implementation, includ- &, (LK =1 (xy,2) =1 (i.].k)

ing the routines that accomplish extraction of the level sets .

and the accuracy of the viscosity term, we consider stationwhere is it understood that both. andr , are evaluated at

ary, spinning black holes. This case is completely describethe same point. Both Figs. 1 and 2 show that viscosity pa-

by the Kerr-Newmann family of axisymmetric solutions of rameterth?/8 adequately captures the horizon location. While

Einstein’s equation. It is convenient to make use of the KerrNnot perfect, it will suffice for the short term horizon tracking

Schild form for the metri¢25] since this form is used in our reported here.

binary black hole evolution code as well as in our solution of However, these results also suggest that in vanishing vis-

the initial value problem for setting initial data for the evo- cosity the percentage error in the calculated area is reduced

lution. Specifically, the metric in the Kerr-Schild form is ~ toward a bias. This bias is partly associated to the finite

resolution of the computational mesh and partly to accuracy

g2P= 72— 2H13". (49 of the extraction routine. These figures were generated using

(58)
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FIG. 1. Percent error in area =2, a=0 event horizons in FIG. 3. Percent error in area for three dimensional level set
survey over viscosity parametar=h?, h?2, h?/4, h%8. Here in-  solutionsa/M =0, 1/4, 1/2, 3/4. Here increasirtgcorresponds to
creasingt corresponds to propagation into the past. propagation into the past.

a three dimensional computational domair\tfpoints with  boundary are found to be generically sufficient conditions for
N=121. The outer boundaries are located [at15M), stability of the method. The philosophy here is that the pri-
+15M] in the x,y,z directions. The resolution of the finite mary interest is deep within the bulk of the computational
difference mesh for these results is thesM/4. Also, a domain where the event horizon of the black hole is located.
Courant-Friedrichs-Lewy factor of =1/4 with an iterated The outer boundary is then treated only to the degree that the
Crank Nicholson schem22] was used as the finite differ- evolution of the interior region remains stable. Further, the
ence approximation of the evolution of the eikonal equatiorinterior of the black hole is excised from the computational
(18). Neumann boundary condition§S=0 on the outer domain in a sphere of radius=r,+2dx, wherer, denotes

the radius of the Kerr-Newman ring curvature singularity.

i1 T T T
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5 3
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FIG. 2. L2 norm in truncation error af, for M=2, a=0 event FIG. 4. L2 norm of truncation error in, for three dimensional

horizons in survey over viscosity parameter: h2, h?/2, h?/4, level set solutiona/M =0, 1/4, 1/2, 3/4. Here increasingcorre-

h?/8. Here increasing corresponds to propagation into the past. sponds to propagation into the past.
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Finally, the discrete surfacE was constructed usingi?  =y12+4?M~12.64\. This would seem to be an ample
points with m=100. At such a resolution of the extracted initial separation to guarantee that the initial data corre-
surface any errors in the area must be attributed to all of thgponds to two distinct black holes. However, in the case that
viscosity parameter, the extraction routine, and the resolutiothe holes are nonspinning, each will have a spherical event
of the underlying three dimensional grid. horizon of radiug =2M. Assuming only marginal distortion
Figures 3 and 4 show the percent errors in the extractedf the nonspinning event horizons due to spin effects, which
areas as well as the L2 norm of the truncation error in thds an approximation that is justified by the properties of spin
functionr . in a survey over the angular momentum param-a/M =1/2 black holes, the nearest separation between the
etera. Here the viscosity ig=h?. These figures both show two sections of the black hole event horizon is then approxi-
the evolution from a single null sphere that is completelymately sp,j,=12.6M —4M~8.64Ml. Again, this approxi-
exterior to the horizon and propagated into the past. Sincenation assumes a flat underlying geometry; and so can be
the event horizon of a spinning black hole is elliptical in its considered only as an order of magnitude estimate. This ini-
geometry, the spherical data we have chosert fer0 cor- tial data then corresponds to a separation of approximately
responds to a percent error in the area apdhat varies with  two nonspinning black hole diameters between the surfaces
the spin parametea/M att,; =0, explaining why the curves of section of the black holes.
do not intersect at; =0. (Where appropriate we append a The holes are boosted along thdirection with speeds of
to t, thus:t,, indicating evolution into the past; we also *¢/2. This boost lengthens the nearest separatjpnof the
sometimes usé; to emphasize that we mean the forward holes due to Lorentz contraction of the horizofis this
evolving, usual, timet. Thust,=0 corresponds to the late coordinate system the horizons undergo contraction in the
time at which we begin to integrate into the past. direction of motion. For a single hole, the area of the horizon
However, the errors should converge to a constant, whicloes not change under this bopsthe nearest coordinate
is evident in each of the curves with<0.75 in Figs. 3 and 4.  separationsy,;, between the holes is then expected to lie in
Fora=0.75 the curve does not converge, and we expect thdhe range 8.6M1 <s,;,<12.64M.
different choice of initial datavill exhibit convergence. Ac-  The numerical evolution of this collision process was car-
cording to these results, the viscosity level set method doeded out for approximately 1@ of run time with a Courant
indeed accurately and robustly detect the distorted outermo#actor of A\ =dt/dx=1/4. The code is the Texas black hole
event horizons of spinning black holes at least when evolution code, a derivative of the Agave cd@]. Appar-
<0.75. Note that we study both the accuracyr ofand the  ent horizon finder$25] locate two distinct apparent horizons
accuracy of the calculated areas since the calculations sepef areaA~50M? for the initial data and continue to do so
rately and together establish the accuracy of our area calcwntil t=8M, when only a single apparent horizon of area

lation and of our detection of the event horizon. A~200M? can be located. This single apparent horizon per-
sists until approximately 1@, beyond which instability ef-
V. ASYMMETRIC BINARY BLACK HOLE COALESCENCE fects, stemming from the outer boundary and the excision

boundary, swamp the solution.

Analysis of the event horizon for the binary black hole
coalescence problem in the case of headsymmetrig col-
lision has been considered in detail[it]. The problem of
the event horizon for asymmetric, off axis, collision has only A serious difficulty associated to this data set is its short
been considered analyticall23]; prior to this work no re- length in terms of the relaxation timés=4M, required for
sults for numerically generated sources have been analyzedutgoing data to converge onto the event horizon. Assuming
Numerical evolution and analysis of an asymmetric binarythat the collision time igas suggested by the apparent hori-
black hole system was studied [i24], but at that time the zon solvers neart=8M, perturbation theory shows that the
guestion of the event horizon was not considered. resulting horizon will undergo quasi normal ringing for an-

In this section the results of the previous sections are apethert~20M. That is, at the time level=10M, where our
plied to a preliminary numerical analysis of the source datavent horizon tracker is to begin tracking into the past, the
for the case of the asymmetric problem. event horizon remains far from its stationary limit. For ex-

To begin, consider two black holes of mdgls=1 with  ample, in the numerical analysis of the event horizon of head
aligned spins in the positive direction ofa/M=1/2. The on collision, researchers used approximately MO06f data
computational domain is a grid & points withN=121.  [16]; and assumed that the final statetatl00M was a
The outer boundary is located at15M and the holes are stationary or quasi stationary black haolus spherically
initially positioned at &,y,z)=(+6,+2,00M, and ,y,z) symmetric att=100M). The presence of such a stationary
=(—6,—2,0)M. This computational domain is identical to region in the source data is highly convenient because it
the mesh used in the previous section to analyze the percepermits a relatively unambiguous identification of null geo-
error in area calculations of surfaces extracted from the levalesics that can and cannot escape to asymptotic null infinity.
set method. The percent error in the calculation of the area dy contrast, for the case of a short data @ty having run
sections of any null surfaces should have a magnitude aime of order 201) no stationary region is available to clas-
about 4-5%. Further, as an order of magnitude estimate, igify the geodesics. In that case, other properties of the event
a flat spatial geometry; e.g., in a Newtonian spacetime, th&orizon (its definition of as a null surface, its relation to any
initial separations of the black hole centers would b& apparent horizons, ejanust be employed to obtain any ex-

VI. SURVEY OVER THE EIKONAL SOLUTIONS
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plicit evidence of an event horizon in the data. In short, due
to the absence of a stationary region in a data set of this short
length we cannot conclude definitively that a particular null
surface is indeed the event horizon. Curiously, since apparent
horizons are identified in this data set we do know that there
is indeed an event horizon. The problem is to find the critical
outgoing null surface among the infinite number of such sur-
faces. As described below, in the absence of a stationary
region that problem proves to be very difficult.

In light of the above difficulty, we survey the solutions of
the eikonal equation solved on the source of the collision
data and make use of information from the apparent horizons
to obtain evidence that our method will find the event hori-
zon for the asymmetric collision problem having sufficient
data(in the form of a stationary regionin particular, we
argue that given sufficient data our method can and will pro-
vide a variety of quantitative physics concerning the merger
time, the black hole areas, and the topology of the throat
following merger. As a byproduct of this study we also ob-
tain considerably suggestive information concerning thes
features of the source data; in fact more then we originally;
expected from such a sparse data set. of the computational evolutiort € 10M), and will be evolved into

As a point of departure for the survey, we construct datgye past.
for the eikonal at the time level M by treating that region
as if it were stationary. We then survey about this event hogr apparent horizon finders. Finally, we will perturb about
rizon tracker initialization and enhance our results with in-pis injtialization and repeat the survey and analysis in order
formatl_on from both our apparent horlzo_n solvers and from, gain global evidence concerning the event horizon.
analysis of the areas of surfaces of section. We show in Fig. 5 the result of applyirg 200 iterations

To proceed, note that if the event horizon becomes stgss the method described above to the time slicelOM .
tionary it will coincide with the apparent horizon. The appar-rigures 5 through 11 show the eikonal function in the0

ent horizon could then be usdih fact it typically i 8 jane The location of the determined guess for the suiface
initial data for an event horizon solver. This step is usually(Wmch we will take to begin our evolution of an outgoing

accomplished bY using a separate apparent r_lorizon .SOI.Ver'rﬁJII surface into the pasts encoded into the eikonal by the
separate solver is not necessary, however, since coincidengg- man with this", data for the eikonal can be written in
of the apparent and event horizons in the stationary I'm”the form

implies that an event horizon tracker can be used as an ap-

parent horizon solver in that limit. To convert an event hori- _ ro—r

zon solver to an apparent horizon solver typically amounts to S(0x") = 1+tanl'( < ) . (59
the minor modification of iterating for severafoldings ¢

over any one time slice of the data from the stationary re- . . .
gion. y y In Eq. (59) the first argument of the eikonal is=0; t will

In more detail, within a stationary region, beginning with Increase into the past. AIS_“’C denotes the data_“-andp
spherically symmetric initial data that is well exterior to the CONIroIS its steepness. Typically we take a transition wadth
horizon I°8(t. = OM q his d ina the eikonal ©" the order of a computational zone. Note that this surface
orizonI'j(t;=0M) we update this data using the eikonal . . . .

s not considered to be a true section of the event horizon,

equation, then pull the resulting data back to the origina ut instead is an initial guess or candidate section, which

time level and reset the data according It§(t)=I'{(t;  after a fewe-foldings will evolve into better approximation
+dt)). The sted', (t))=T7(t, +dt)) is then repeated for of a true section of the event horizon. By way of comparison
several hundred iterations; correspondingXd0) e folding  Fig. 5 also shows at=10M the final apparent horizon as a
times. By property of an apparent horizon being the outerwhite wire mesh. Note that both the apparent horizon and the
most trapped surfacE data will typically converge to the data for the eikonal are highly distorted from the stationary
apparent horizon. case. Figure 6 shows the resulting eikonal functgn,y,z)

To initialize our survey of the asymmetric collision data after 2M of evolution into the past. Note that the surfdtés
we apply this method to the time level 0 Note carefully  not qualitatively changed during the evolution.
that we apply a method that is valid for stationary data to a
nonstationary data source but d_o so only as a point of de_pav”. SURFACE EXTRACTION AND APPARENT HORIZONS
ture for a survey over the solutions of the eikonal equation.
We then augment this survey with analysis of both the areas Figure 7 shows several frames of the evolution of the
of null surface sections and with information obtained fromeikonal using a viscosity solution af=h? (not of the im-

FIG. 5. Tanh datdsee Eq.59)] for the eikonal in asymmetric
binary black hole coalescence. The wire mesh is the apparent hori-
on, while the black contour denotes initial data for our survey over
he solutions of the eikonal equation. These data are set at the end
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FIG. 8. Asymmetric binary black hole coalescentg=8M.
This is the same as Fig. 6 but the black wire mesh shows the

FIG. 6. Data of Fig. 5(asymmetric binary black hole coales- location of a characteristic outgoing null surface.

cence evolved backward fromi=10M to t=8M.

proved viscosity form These figures display the value of the scribed in the previous section. In this context, the surfaces

eikonal function on the=0 plane. Figure 7 shows the same ! c(t;) aré extracted from the eikonal data using the tech-

data as an elevation map and again uses the color map of Figique described in Sec. IV. Note thif completely contains

5. Note in those figures that particular families of outgoingthe apparent horizons throughout their evolution. This is a

null surfaces undergo a change in topology and this topologifundamental condition that any numerically constructed

cal transition is continuously monitored by the viscosity so-black hole event horizon must satisfy. To determine how

lutions of the eikonal. In these figurés-0.562V is shown these results depend on the initial datgt, =0), choosing

in the upper left-hand corner=1.5M is shown in the upper initial datal” 5(t; =0) of the form

right-hand cornert=2.5M is shown in the lower left-hand

corner and=5.0M appears in the lower right-hand corner. Us(6,0)=uy(6,¢)— 6, (60)
Figures 8—11 show, for several valuestof the value of

the.eiko.nal in thez_=0 p_Iane; the Ipcatipn of the appqrent permits survey about the datr(6,¢), whereu(8,¢) cor-

horizon in the 3 dimensionghe white wire framg and in  regponds to  the datal',(t;=0). Studies with &

the black wire frame, locations of sections of an OUthing=M/2,M,ZM establish that the level sef%,; penetrate both
null surfacel’c(t,) that is generated by evolution of the ei- gpnarent horizons for ang=M/2. These resuilts suggest that
konal equation from data constructed using the method depe trye event horizon is contained in a domain parametrized
Asymmetric BBH Collision: by 0.< o<M/2. .
S = aseak eite oF @iteral Figures 12 and 13 show two views of the extracted level
setS=0. Note that this surface is highly distorted and shows

FIG. 9. Asymmetric binary black hole coalescentg=5M.
Note that while the apparent horizorighe white wire-frame

FIG. 7. Change of topology in eikonal for asymmetric binary “spheres”) are still well separated at=5M, the black wire frame
black hole coalescence, shown as an elevation map. “peanut” already has one component only.
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FIG. 10. Asymmetric binary black hole coalescence:
t,=3M.
1

the sections of two outgoing null surfaces near merger. Alsoo;ﬁ(‘: elnz(_:el_‘?vel set extraction for asymmetric binary black hole

shown in these figures are the apparent horizons for the two
black holes. These figures are takell 2nto the forward
evolution. In these figures each color of the color map de

notes a level sdf of the eikonal. As such, each color repre-

ogy at merger. To investigate this possibility, Fig. 14 shows a
level set of the eikonal viewed along the axis joining the

pletely contains both apparent horizons. Further, there do
not appear to be any pairs of null surfaces that each envel

an apparent horizon and are disjoint. That is, the results o itions of the null surfaces, no higher genus topology is ex-

tzhl\j V|hsc05|rt]y sEMOqutlonséjsugﬁeit a merger tlrr1ne_much clﬁser tﬂibited; instead, the elliptical geometry of the throat persists
then the ound with the apparent horizon trac €IS {0 the transition. These results suggest that if there is a non-

[Note that in F_igs. .12 and 13 the outgoing null su_rface Strivial topology in the sections of the event horizon as a
shown as a white wire mesh, while the apparent horizons ar onsequence of the asymmetry of the merger, then that to-
shown as black wire meshes. This is opposite to the colo&‘

SRroat function persists for all null surfaces undergoing the
pological transition. Further, for all of our computed tran-

i ; ; ology change is bounded to occur when the minor axis of
scheme used in Figs. 5, 6, 8-11, which was an independe e ellipse is within one of our computational zones,hor
study of the evolution as opposed to the study of the throat. M/4

geometry considered hete.

VIIl. CHANGE OF TOPOLOGY IX. BLACK HOLE AREA ANALYSIS

As shown in Fig. 7 the viscosity solutions of the eikonal Figure 15 shows an area versus time plot for this asym-

. : X . metric collision. The curve with the lowest area is the result
equation do contlnuou_sly monitor a change in topology._ Ir?of a viscosity solution withe=2h2. The curve with the sec-
the case of asymmetric binary black hole coalescence it 'Bnd lowest area is the result of a viscosity solution with

conjectured that the critical level s&t corresponding to a
section of the event horizon must take a higher genus topol-

FIG. 11. Asymmetric binary black hole coalescente: 1M.
Careful inspection of the black wire frame suggests two separated FIG. 13. Level set extraction for asymmetric binary black hole
components. coalescence: II.
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400

Area

FIG. 14. Throat function for asymmetric binary black hole coa-
lescencet;=1.562M.

e=h?, while the curve with the third lowest area is an im- o 2 & e 8
proved viscosity solution composed of the two higher viscos- t
ity solutions. According to these results it is immediately . -
apparent that the viscosity solutions of higher viscosity show & 18- Areas versus time for asymmetric binary black hole
. . . T coalescence. The horizontal scald jis
a merger time that is later i (and therefore prior irt))
than the merger time found with solutions constructed in th
limit of vanishing viscosity. These results then indicate thaf{)
the error(or biag in the merger time of the viscosity solu-
tions is directly related to the magnitude of the viscosity.
More precisely, for the continuum merger timetéfand an
approximate merger time d)ff, constructed using a viscos-
ity solution of viscosity parametee, the function f(e) us(6,)=uq(8,¢)— o (61)
=t7.—t] is increasing ine. Further, the area found using
the improved viscosity solution finds an area &  where the datai (6, ) is that obtained using the method of
=247.4M at that time. Note that this error is partially de- Sec. VII. From top to bottom, the curves show areasfor
=0,M/4M/2 and with a viscosity parameter ef=h?. Re-
Q011+ call that studies of the apparent horizons found that the true

event horizon is contained in the domairc@<<M/2. This
survey overd is conducted in search for the convergence
signature associated to event horizons. Due to the time scale
of this data, the time scale of the dynamics, and the relax-
ation time scale of the event horizon tracking method, the
y signature is not clearly identified. However, this study of the
area curves does show some convergence of the areas, which
is expected for null data approaching the true event horizon
under propagation into the past. The curve w&hk M/2
shows the closest behavior to an event horizon sincesthe
#M/2 curves all approach=M/2. Note that the sections of
this data completely contain the correct apparent horizons for
all t;<9M. Further, this data shows a bifurcation time at
t;~8.3M, which corresponds to a merger time of about
~1.7. This bifurcation time is detected by an algorithm
| that searches for any poin# ¢ of the surface such that
ool U u(6,¢)<h. In the circumstance that a point is found such

0 2 4 ) 8 10 thatu( 6, ¢)<h, the bifurcation is expected to occur in a few
more dt=M/16 in thet direction. A few time levels after

FIG. 15. Area versus time for asymmetric binary black hole (in t;) this bifurcation time the area of the level setAs
coalescence. The horizontal scalis i.e. time measured into the =148.9-11.9M. At merger the areas of each black hole are
past. The curves arébottom to top for e=2h?, e=h? and the thenA=74.5-6.0M. These individual areas correspond to a
improved viscosity solution. Schwarzschild mass of aboit=1.48+0.12. This result is

endent on errors introduced by the extraction routines and
he resolution of the surface. Here all surface areas are cal-
culated withm? points wherem=100.

Figure 16 shows several area versus time curves for initial
data of the form

300

Area

200
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substantially larger of a mass for each hole then determinesources, this term does introduce numerical error although
by the apparent horizon finders at the time leet0. In-  we demonstrate our control over these effects and the result-
terestingly, studies have found that apparent horizons sepaig accuracy. But, the use of a second order diffusion term is
rated by about 10 have approximately 20% variation in not required by our method per se; and a variety of other
their mass due to the effects of binding energy. Individualapproaches can be employed. Examples of other methods for
masses of aboul~1.36 are then only a slight departure controlling breakdown of the numerical solution include
from studies that account for the binding energy of the holesthose classes of high resolution shock capturing numerical
Further, at the time of merger the holes have undergonechemes that are used extensively in computational fluid dy-
1.7M of evolution, during which the holes could accrete anynamics for hyperbolic problems similar to the eikonal equa-
surrounding gravitational radiation present in the initial datation.

The presence of such radiation would lead to larger masses The application of our new method for the event horizon
than those found using apparent horizon finders;at0.  tracking method considered the asymmetric binary black
However, it is important to note that due to the viscosity inhole coalescence problem, including a detailed analysis of
the solution the resulvl~1.36 can only properly be consid- areas of the surfaces of sections, the collision time, associ-
ered as a lower bound on the calculated masses. The maated apparent horizons, and the topology of the outgoing null
significant contribution to any error in this result must stemsurfaces generated by the eikonal equation. Due to the rela-
from the relatively small time scale of this asymmetric col- tively short time scale of the collision data, our method was
lision data and coupling of that time scale to #olding  unable to demonstrate the signature of the black hole event

time scale of this event horizon detection method. horizon. We believe that this problem is due to the data itself
and not due to our method. We anticipate much more accu-
X. CONCLUSIONS rate and convincing results as more accurate computational

. . _ simulations of black hole interactions become available.
In this work we have demonstrated a relatively simple yet

robust and(most importantly generic solution to the prob-
lem of numerically tracking black hole event horizons. An
implementation of our method made use of an explicit sec-
ond order diffusion term to regulate the solution singularities  This work was supported by NSF grant PHY 0102204 and
associated with discontinuity formations characteristic of thehrough computer access time from the Texas Advanced
eikonal equation. As demonstrated by analysis of analyticComputing Center.
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