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Tracking black holes in numerical relativity

Scott A. Caveny, Matthew Anderson, and Richard A. Matzner
Center for Relativity, The University of Texas at Austin, Austin, Texas 78712-1081, USA

~Received 1 April 2003; published 11 November 2003!

This work addresses the problem of generically tracking black hole event horizons in computational simu-
lation of black hole interactions. Solutions of the hyperbolic eikonal equation, solved on a curved spacetime
manifold containing black hole sources, are employed in development of a robust tracking method capable of
continuously monitoring arbitrary changes of topology in the event horizon as well as arbitrary numbers of
gravitational sources. The method makes use of continuous families of level set viscosity solutions of the
eikonal equation with identification of the black hole event horizon obtained by the signature feature of
discontinuity formation in the eikonal’s solution. The method is employed in the analysis of the event horizon
for the asymmetric merger in a binary black hole system. In this first such three dimensional analysis, we
establish both qualitative and quantitative evidence for our method and its application to the asymmetric
problem. We focus attention on~1! the topology of the throat connecting the holes following merger,~2! the
time of merger, and~3! continuing to account for the surface of section areas of the black hole sources.

DOI: 10.1103/PhysRevD.68.104009 PACS number~s!: 04.25.Dm
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I. INTRODUCTION

The idea of a totally collapsed gravitational source, fro
which nothing—not even light—can escape, is an old o
dating back at least to the work of Laplace~and others! in the
eighteenth century@1#. Since those original consideration
research has uncovered a wealth of understanding rega
the physics of black holes. In general, the work has follow
two major routes, with an ever-narrowing gap between
approaches. Along one direction, black holes are studie
mathematical solutions in a given theory of gravity includi
Newtonian theory, post-Newtonian metric theories of grav
Einsteinian gravity, as well as semiclassical and~more re-
cently! various attempts at full quantum theories of gravi
The second direction considers black holes in the astroph
cal and astronomical contexts. Both fields of research h
seen increasing activity over the years and have made
tling discoveries concerning the physics of black holes,
cluding the gravitational collapse theory of Oppenheimer a
Snyder@2#, proofs of uniqueness and stability of black hol
in Einstein’s general relativity@3#, thermodynamic propertie
of black holes including the three laws of black hole m
chanics @4# and mechanisms for black hole radiation a
evaporation@5#, discovery of critical phenomena in blac
hole formation@6#, experimental identification of both astro
physical black hole sources themselves@7# and their event
horizons@8#, experimental signatures for supermassive bla
holes in galactic centers@9#, and experimental bounds on th
distribution and spectrum of black hole sources and co
sions@10#.

Numerical relativity, which addresses the computatio
solution of Einstein’s equation@11#, is an active participan
in both the mathematical and the astrophysical program
research. With the advent of the Laser Interferometric Gra
tational Wave Observatory~LIGO! and other similar efforts,
considerable attention has focused on the generic bin
black hole coalescence~BBHC! problem, expected as th
strongest sources for gravitational waves@12#. As discussed
in @11#, this is a very difficult and interesting problem th
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can only successfully be addressed in the computational
main. Consequently, the binary black hole coalescence p
lem has become an active subject of numerical relativ
One particular problem in the computational domain is
computational definition, detection and tracking of the bla
hole event horizon itself@13–18#.

The present work addresses the problem of numeric
tracking black hole event horizons. We believe that wh
refinements need to be pursued, some of which we de
below, our approach is complete in the sense that a sin
method is presented such that any one implementation o
method can generically detect arbitrary numbers of bla
hole event horizons undergoing arbitrarily strong gravi
tional interactions. For example, using a single compu
tional code of our method we analyze both single black ho
and black holes undergoing merger; and no special mo
cations of our code are required to handle these distinct
namics.

The present article, describing our generic method
tracking black hole event horizons, is divided as follows.
Sec. II the eikonal equation, the foundation of our method
described in sufficient detail to be employed in an ev
horizon tracker. In particular, we focus on the signature
havior of a black hole event horizon in solutions of the
konal equation. As usual in numerical work, there are a
riety of possible implementations of the approach. In S
III, several closely related systems of equations are prese
and one particular system is singled out for considerati
The system chosen makes use of an explicit second o
diffusion, or viscosity, term and we show in Sec. III th
relationship between solutions of the diffusive equations
motion and the continuum eikonal equation of interest. S
tion IV details extraction of the two dimensional sections
the event horizon for each time level of a numerical evo
tion. Such extraction is crucial for carrying out area, ma
and spin calculations. Section IV also shows the accurac
our implementation by considering a parameter space su
of single Kerr black holes. Sections V–X describe in det
the first three dimensional application of our~or any! method
©2003 The American Physical Society09-1
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CAVENY, ANDERSON, AND MATZNER PHYSICAL REVIEW D68, 104009 ~2003!
to the numerical analysis of the asymmetric binary bla
hole coalescence problem. Unfortunately, due to the s
time scale of the source data, we will not argue that a p
ticular outgoing null surface is the true event horizon.
stead, we demonstrate through a series of exercises tha
method can and will detect the numerical approximation
the true event horizon given a sufficient amount of data,
will provide considerable information concerning the phys
of the asymmetric process. Along those lines, we survey
outgoing solutions of the eikonal equation under propaga
into the past and augment our results with qualitative a
quantitative information obtained from our apparent horiz
solvers. Area analysis of the outgoing null surfaces is car
out in conjunction with analysis of the black hole appare
horizons, which reveals both a time of merger much ear
then estimated using apparent horizons and mass energ
timates much larger those found using apparent hori
tracking methods. We also search for evidence of any n
trivial topology of the horizon immediately following
merger. Our conclusions are presented in Sec. XI.

II. THE EIKONAL

To begin, since the LagrangianL5gabẋ
aẋb of null geo-

desic motion has only kinetic terms it is equal to the asso
ated Hamiltonian.1 Legendre transformation

H~t,xa,pb!5
dxc

dt
pc2LS t,xd,

dxe

dt D ~1!

where

pa[
]L

]S dxa

dt D , ~2!

setsL5H. The corresponding Hamiltonian equations are

dxa

dt
5

]H

]pa
52gabpb ~3!

dpb

dt
52]bH52pcpd]bgcd. ~4!

It is generic that the spacetime metric is independen
the affine parametert. There is thus a first integral assoc
ated to geodesic motion. Making use of this property perm
elimination of the affine parameter in favor of coordina
time t. To see this, it is convenient to adopt the ADM va
ables

gtt5
1

a2
, gti5

b i

a2
, gi j 5g i j 2

b ib j

a2
. ~5!

1We use early-latin indices to denote spacetime compon
a,b,c50,1,2,3; mid-latin indices denote spatial componentsi , j ,k
51,2,3.
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Hereg i j is the inverse spatial metric. Substituting the AD
variables directly into the Hamiltonian gives

H5pagabpb52
1

a2
pt

21
2

a2
b i pi1piS g i j 2

1

a2
b ib j D pj .

~6!

Since the Hamiltonian is not explicitlyt dependent there is a
constant of the motion

2
1

a2
pt

21
2

a2
b i pi1piS g i j 2

1

a2
b ib j D pj5v2. ~7!

For v2,0, v250, or v2.0 the motion is said to be time
like, null, or spacelike. Without loss of generality, assumi
null geodesic motion, solution of Eq.~7! by ordinary algebra
yields:

pt5b i pi6aApig
i j pj . ~8!

With this result, the Hamiltonian can be explicitly factored

H5H1H250 ~9!

where

H65pt2b i pi6aApig
i j pj50. ~10!

In the case of either root Hamilton’s canonical equations
come

dt

dt
5H7

]H6

]pt
5H7 ~11!

dxi

dt
5H7

]H6

]pi
5H7S 2b i6a

g i j pj

Apkg
klpl

D ~12!

dpt

dt
52H7

]H6

]t
~13!

dpi

dt
52H7

]H6

]xi
. ~14!

According to Eq.~11!, t can be eliminated in favor oft. The
system of equations becomes simply Eqs.~12! and~14! with
t written in place oft and the factorH7 cancelled every-
where on the right hand side. Explicitly,

dxi

dt
52b i6a

g i j pj

Apkg
klpl

~15!

and

dpi

dt
52] i~2b j pj6aApjg

jkpj !. ~16!

The eikonal, corresponding to the Hamiltonian of Eq.~6!,

]aSgab]bS50 ~17!

ts
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TRACKING BLACK HOLES IN NUMERICAL RELATIVITY PHYSICAL REVIEW D 68, 104009 ~2003!
can be factored similarly. To do so it is a simple matter
making the replacementspt→] tS, pi→] iS in Eq. ~8! to find
the following symmetric hyperbolic partial differential equ
tion

] tS5b i] iS6aA] iSg i j ] jS[H̄. ~18!

Note that a bar is introduced here to distinguish the Ham
tonian used here from the Hamiltonian used in Eq.~6!. This
equation is also used in the method of@13#, although in that
work the equation is further reduced to consider the case
single null surface.

The right hand side of this result is homogeneous of
gree one in] iS. The characteristic curves along which th
level setsG of S are propagated, are then

ẋi52b i6a
] iS

A] iSg i j ] jS
[

]H̄

]~] iS!
~19!

] i Ṡ5] i H̄~ t,xj ,] jS!, ~20!

which are the null geodesics of Eqs.~15! and~16!. Immedi-
ately, the integral curves of the gradients ofSandG are also
the null geodesics:

dxi~l!

dl
5giapa5gia]aS5] iS„l,xj~l!…. ~21!

Hereafter, the bar onH̄ is dropped with the understandin
that the Hamiltonian considered is that of Eq.~18!. This re-
sult establishes that the eikonal is technically a Riemann
variant of the null geodesics, a fact that proves usefu
establishing the signature of a black hole event horizon
solutions of the eikonal equation. More specifically, since
eikonal is the canonical generator of null geodesics, it can
employed in analysis of black hole event horizons, which
by definition generated by null geodesics having no fut
end points. To proceed in this manner Eq.~18! is employed
in an initial value problem and then surveyed for signat
features of black hole event horizons.

A black hole event horizon is generated by a congrue
of outgoing—but future asymptotically nonexpanding—n
geodesics. The scope of the surveys of the eikonal equa
that are required to identify a black hole event horizon
then restricted to the space of all outgoing null surfac
These surveys are greatly reduced by the fact that solut
of the eikonal are categorized by topologically equivale
solutions. To see this, note that

] ic~S!5
]c

]S
] iS5l~S!] iS, ~22!

and

] tc~S!5
]c

]S
] tS5l~S!] tS. ~23!

By homogeneity of the right hand side of Eq.~18!, if S is a
solution thenc(S) is also solution. Thus smoothly relate
10400
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initial dataS0→S085c(S0) have smoothly related solutions
This feature alleviates the need for surveying over smoo
related initial data.

A further reduction of the scope of solution surveys
provided by the equivalence of ingoing and outgoing so
tions under time reversal. Propagation of data forS describ-
ing an ingoing or outgoing null surface is accomplished
specification of~1! a definition of the direction of time,~2! a
choice ofa andb i , and~3! a choice of the root. With these
choices specified, data is then uniquely partitioned into
ingoing type and an outgoing type with the distinction bei
the gradient ofS.

With the dynamics of any outgoing null surface~including
the event horizon! specified by Eq.~18!, and the scope of
solution surveys categorized into topological classes, the
remains of identifying the event horizon within this restrict
space of outgoing null surfaces. To do so, the results
approach of@13# are adopted here and modified to inclu
the eikonal equation as discussed above. The result of
approach is a signature feature of black hole event horiz
in the eikonal equation.

An event horizon of a black hole is by definition a critic
outgoing surface when tracked into the future. LetP be a
point interior to the horizon andQ be a point exterior to the
horizon such thatP andQ lie on characteristic curves of th
eikonalgP andgQ . At arbitrarily early times letgP andgQ
pass arbitrarily closely to a pointH that lies on the horizon
G. SinceS is a Riemann invariant, at arbitrarily early time
the jump of the eikonal atH becomes@@S(H)##[S2(H)
2S1(H)'S(P)2S(Q)Þ0. In the computational domain
where the resolution is finite, this discontinuity will appe
generically in finite time. As such, an approximation of t
event horizon will appear numerically as the formation o
jump discontinuity in the eikonal for outgoing data that
propagated into the past. This is the numerical signature
black hole event horizons in the eikonal’s solutions.

III. NUMERICAL METHODS

Analysis of the continuum properties of the eikonal equ
tion as a Hamilton Jacobi equation identifies three clos
related approaches to tracking black hole event horizons

System I: The null geodesic equations

S~xj ,t !5S0~xk!2E dtH~ t,xi ,pi ! ~24!

where the integral is evaluated along the solutions of

ẋi5b i6a
pi

Apig
i j pj

,

ṗi52] iH. ~25!

System II: The eikonal

] tS52H~ t,xj ,] jS!. ~26!

System III: The flux conservative form
9-3
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CAVENY, ANDERSON, AND MATZNER PHYSICAL REVIEW D68, 104009 ~2003!
S~xi ,t !5 R dxipi~xj ,t ! ~27!

] tpi~xi ,t !1] iH~ t,xj ,pj !50. ~28!

In each of the above three systems of equations
Hamiltonian is given by Eq.~18!.

In each of the above cases, the structure of the dynam
equations provide certain advantages. For example, in e
case the symplectic structure can be employed to iden
numerical loss of accuracy in a similar manner to some m
ern numerical schemes used in Hamiltonian dynamics. F
ther, as a flux conservative system, high resolution meth
from computational fluid dynamics can be applied directly
the third system. In the following sections of this article, t
second system is considered since this system of equa
yields an expedient implementation that is sufficiently ac
rate for our purposes.

Singular behavior on the eikonal is not specific to only t
event horizon and instead, as described in detail by Arn
and Newman@19–21#, the eikonal is known to genericall
break down on caustic and other sets. Special nume
methods are then required to handle the generic singular
havior of the eikonal; we make use of an explicit viscos
term. In the continuum, addition of our form of numeric
viscosity at the level of the finite difference approximati
corresponds to replacing the evolution of

] tS52H~ t,xi ,] jS! ~29!

with evolution of the equation

] tc5e2¹2c2H~ t,xi ,] jc! ~30!

wheree is a small quantity which we call the viscosity an
¹2 denotes any second order, linear derivative opera
There is a well defined sense in which the solutionsS relate
to the solutionsc; it is simply given~when the solutionsS
exist! by the WKB transformation

c~xi ,t !5(
n

an~xi ,t !enexp~S/e![A exp~S/e!. ~31!

To see the explicit relationship between the solutionsc and
the solutionsS note that

] tc5
c

e
~] tS1e] tlogA!, ~32!

] ic5
c

e
~] iS1e] i logA!, ~33!

¹2c5
c

e2
~¹S1e¹ logA!21

c

e
~¹2S1e¹2logA!.

~34!

Assuming that the Hamiltonian is homogeneous of deg
one in momentum, and making use of perturbation theor
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H~xi ,¹jc!5
c

e
„H~xi ,¹jS!1eH1~ t,xi ,] j logA!…. ~35!

Substituting these results into Eq.~30! and cancelling an
overall factor ofc/e gives at lowest, and first order:

] tS52H~ t,xi ,] jS! ~36!

e] tlogA52eH1~ t,xi ,] j logA!1e~¹S1e¹ logA!21•••.
~37!

HereH1 is the first order linear Hamiltonian obtained fro
perturbation theory. At zeroth order,S then satisfies the eiko
nal equation, while the first order correction is the line
result of first order perturbation theory and expresses
evolution ofA. Higher order results can be found similarl
Again, these results hold only where solutions ofSexist; that
is, away from discontinuities or other solution singularities
S and its derivatives.

The above analysis is a slight modification of usual WK
expansion and expresses the solutionsc in terms of the so-
lutions S. Such solutions can be inverted using the conv
tional method of series inversion. To invert the WKB expre
sion, and express the solutions of the eikonal in terms of
solution of the parabolic equation, assume first that the s
tion of the parabolic equation~30! is given asc ~numerically
or otherwise!. Writing

S5 logS c

Ā
D , ~38!

the procedure is then analogous to that of the WKB exp
sion: Ā is constructed as an asymptotic power series w
coefficients depending onc alone. The result of such a
analysis is simply

S~x,t !5 logc~x,t !1 ēE dt8
¹2c~ x̄,t !

c
~39!

where the integral is evaluated along

dx̄i

dt
5

]H~ t,x̄ j ,] x̄klogc!

]pi
~40!

andc is provided independently by~numerical! solution of

] tc5 ē¹2c2H~ t,xi ,] jc!. ~41!

One advantage of an explicit second order viscosity te
is a simple procedure for reducing the error of viscosity
lutions by one order of the viscositye. The limit e→0 cor-
responds to a continuous family of zeroth order solutio
fe ; where

fe5S1he ~42!

andhe5O(e). Note that each solutionfe is obtained from
an analysis similar to that following Eq.~38!, although ob-
tained by neglecting the logarithm.
9-4
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TRACKING BLACK HOLES IN NUMERICAL RELATIVITY PHYSICAL REVIEW D 68, 104009 ~2003!
Given two viscosity solutionsfe andf2e it is then pos-
sible to construct a third improved viscosity solutionf I that
is accurate toO(e2). To see this, consider the combinatio

f I[fe1~fe2f2e!. ~43!

f I is accurate toO(e2) since

fe2f2e5he2h2e'he22he52he . ~44!

To make use of these improved viscosity solutions leh
denote the resolution of the numerical mesh. Any sec
order finite difference approximation will have then

f5f̂1O~h2!, ~45!

wheref is the continuum solution andf̂ denotes its finite
difference approximation.~We will use a hat throughout th
paper to denote the discrete approximation to a continu
object.! Similarly,

S5Ŝ1O~h2!. ~46!

Using

S5f1O~e!5f I1O~e2! ~47!

gives

Ŝ5f̂1O~h2!1O~e!5f̂ I1O~h2!1O~e2!. ~48!

IV. LEVEL SET EXTRACTION

Of crucial interest in the binary black hole coalescen
problem are the areas of sections of the black hole ev
horizon. To find these sections, at any given time level any
the level sets, sayS50, can be extracted to obtain the su
faceG, a two dimensional section of the corresponding n
surface. This problem of extraction is an inverse proble
since it requires that points (x,y,z) are found such tha
S(x,y,z)50. To accomplish this inversion, we find that a
ordinary bisection method is sufficient for use with an or
nary second order interpolation scheme. In this method
assumed that the surfaceG can be expressed in spheric
coordinates„u,f,u(u,f)…, wherer 5u(u,f) is the surface
function for a given centerci contained within the surfaceG.
Given a choice for the center, the radial function forS(G)
5So50 can then be approximated via the interpolation a
bisection.

To establish the accuracy of our implementation, inclu
ing the routines that accomplish extraction of the level s
and the accuracy of the viscosity term, we consider stat
ary, spinning black holes. This case is completely descri
by the Kerr-Newmann family of axisymmetric solutions
Einstein’s equation. It is convenient to make use of the Ke
Schild form for the metric@25# since this form is used in ou
binary black hole evolution code as well as in our solution
the initial value problem for setting initial data for the ev
lution. Specifically, the metric in the Kerr-Schild form is

gab5hab22Hl al b. ~49!
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Here hab5diag(21,1,1,1) is Minkowski’s metric,H is a
space time scalar, andl a is an ingoing null vector with re-
spect to both the Minkowski and full metric. The Kerr sol
tion is the two parameter family of solutions such that

H5
Mr 3

r 21a2z2
~50!

and

l t521, ~51!

l x5
rx1ay

r 21a2
, ~52!

l y5
ry2ax

r 21a2
, ~53!

l z5
z

r
, ~54!

r 25
1

2
~r22a2!1A1

4
~r22a2!1a2z2 ~55!

where

r25x21y21z2. ~56!

Finally, the event horizon for the Kerr black hole is locat
on the ellipsoidr 5r 15r (x,y,z) where

r 15M1AM2a. ~57!

In Figs. 1–4 we show the evolution backward in time
the eikonal equation~followed by extraction of theS50
surface!. Errors can arise both in the evolution and in t
extraction of the surface. Figure 1 shows the percent error
the extracted areas for a nonspinning black holes with m
M52, a50 in a survey over the viscosity parameter. Figu
2 shows a similar study but for the L2 norm of the truncati
error in the functionr 1 . Note that the functionr 1 is defined
for every point of the horizon in the continuumr 1

5r 1(x,y,z). In the computational domainr 1 then takes a
discrete formr̂ 15 r̂ 1( i , j ,k), where the integersi , j ,k span
the numerical mesh. The truncation errorer 1

is then

er 1
~ i , j ,k!5r 1~x,y,z!2 r̂ 1~ i , j ,k! ~58!

where is it understood that bothr 1 and r̂ 1 are evaluated a
the same point. Both Figs. 1 and 2 show that viscosity
rameterh2/8 adequately captures the horizon location. Wh
not perfect, it will suffice for the short term horizon trackin
reported here.

However, these results also suggest that in vanishing
cosity the percentage error in the calculated area is redu
toward a bias. This bias is partly associated to the fin
resolution of the computational mesh and partly to accur
of the extraction routine. These figures were generated u
9-5
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CAVENY, ANDERSON, AND MATZNER PHYSICAL REVIEW D68, 104009 ~2003!
a three dimensional computational domain ofN3 points with
N5121. The outer boundaries are located at@215M ,
115M # in the x,y,z directions. The resolution of the finit
difference mesh for these results is thenh5M /4. Also, a
Courant-Friedrichs-Lewy factor ofl51/4 with an iterated
Crank Nicholson scheme@22# was used as the finite differ
ence approximation of the evolution of the eikonal equat
~18!. Neumann boundary conditions] iS50 on the outer

FIG. 1. Percent error in area ofM52, a50 event horizons in
survey over viscosity parameter:e5h2, h2/2, h2/4, h2/8. Here in-
creasingt corresponds to propagation into the past.

FIG. 2. L2 norm in truncation error ofr 1 for M52, a50 event
horizons in survey over viscosity parameter:e5 h2, h2/2, h2/4,
h2/8. Here increasingt corresponds to propagation into the past
10400
n

boundary are found to be generically sufficient conditions
stability of the method. The philosophy here is that the p
mary interest is deep within the bulk of the computation
domain where the event horizon of the black hole is locat
The outer boundary is then treated only to the degree tha
evolution of the interior region remains stable. Further,
interior of the black hole is excised from the computation
domain in a sphere of radiusr 5r 012dx, wherer 0 denotes
the radius of the Kerr-Newman ring curvature singulari

FIG. 3. Percent error in area for three dimensional level
solutionsa/M50, 1/4, 1/2, 3/4. Here increasingt corresponds to
propagation into the past.

FIG. 4. L2 norm of truncation error inr 1 for three dimensional
level set solutionsa/M50, 1/4, 1/2, 3/4. Here increasingt corre-
sponds to propagation into the past.
9-6
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TRACKING BLACK HOLES IN NUMERICAL RELATIVITY PHYSICAL REVIEW D 68, 104009 ~2003!
Finally, the discrete surfaceĜ was constructed usingm2

points with m5100. At such a resolution of the extracte
surface any errors in the area must be attributed to all of
viscosity parameter, the extraction routine, and the resolu
of the underlying three dimensional grid.

Figures 3 and 4 show the percent errors in the extrac
areas as well as the L2 norm of the truncation error in
function r 1 in a survey over the angular momentum para
etera. Here the viscosity ise5h2. These figures both show
the evolution from a single null sphere that is complet
exterior to the horizon and propagated into the past. Si
the event horizon of a spinning black hole is elliptical in
geometry, the spherical data we have chosen fort↓50 cor-
responds to a percent error in the area andr 1 that varies with
the spin parametera/M at t↓50, explaining why the curves
do not intersect att↓50. ~Where appropriate we append a↓
to t, thus: t↓ , indicating evolution into the past; we als
sometimes uset↑ to emphasize that we mean the forwa
evolving, usual, timet. Thus t↓50 corresponds to the lat
time at which we begin to integrate into the past.!

However, the errors should converge to a constant, wh
is evident in each of the curves witha,0.75 in Figs. 3 and 4.
For a50.75 the curve does not converge, and we expect
different choice of initial datawill exhibit convergence. Ac-
cording to these results, the viscosity level set method d
indeed accurately and robustly detect the distorted outerm
event horizons of spinning black holes at least whena
,0.75. Note that we study both the accuracy ofr 1 and the
accuracy of the calculated areas since the calculations s
rately and together establish the accuracy of our area ca
lation and of our detection of the event horizon.

V. ASYMMETRIC BINARY BLACK HOLE COALESCENCE

Analysis of the event horizon for the binary black ho
coalescence problem in the case of head on~symmetric! col-
lision has been considered in detail in@16#. The problem of
the event horizon for asymmetric, off axis, collision has on
been considered analytically@23#; prior to this work no re-
sults for numerically generated sources have been analy
Numerical evolution and analysis of an asymmetric bin
black hole system was studied in@24#, but at that time the
question of the event horizon was not considered.

In this section the results of the previous sections are
plied to a preliminary numerical analysis of the source d
for the case of the asymmetric problem.

To begin, consider two black holes of massM51 with
aligned spins in the positivez direction of a/M51/2. The
computational domain is a grid ofN3 points with N5121.
The outer boundary is located at615M and the holes are
initially positioned at (x,y,z)5(16,12,0)M , and (x,y,z)
5(26,22,0)M . This computational domain is identical t
the mesh used in the previous section to analyze the per
error in area calculations of surfaces extracted from the le
set method. The percent error in the calculation of the are
sections of any null surfaces should have a magnitude
about 4–5 %. Further, as an order of magnitude estimate
a flat spatial geometry; e.g., in a Newtonian spacetime,
initial separations of the black hole centers would bes
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5A122142M'12.64M . This would seem to be an ampl
initial separation to guarantee that the initial data cor
sponds to two distinct black holes. However, in the case
the holes are nonspinning, each will have a spherical ev
horizon of radiusr 52M . Assuming only marginal distortion
of the nonspinning event horizons due to spin effects, wh
is an approximation that is justified by the properties of s
a/M51/2 black holes, the nearest separation between
two sections of the black hole event horizon is then appro
mately smin512.64M24M'8.64M . Again, this approxi-
mation assumes a flat underlying geometry; and so can
considered only as an order of magnitude estimate. This
tial data then corresponds to a separation of approxima
two nonspinning black hole diameters between the surfa
of section of the black holes.

The holes are boosted along thex direction with speeds of
6c/2. This boost lengthens the nearest separationsmin of the
holes due to Lorentz contraction of the horizons.~In this
coordinate system the horizons undergo contraction in
direction of motion. For a single hole, the area of the horiz
does not change under this boost.! The nearest coordinat
separationsmin between the holes is then expected to lie
the range 8.64M,smin,12.64M .

The numerical evolution of this collision process was c
ried out for approximately 10M of run time with a Courant
factor of l5dt/dx51/4. The code is the Texas black ho
evolution code, a derivative of the Agave code@24#. Appar-
ent horizon finders@25# locate two distinct apparent horizon
of areaA'50M2 for the initial data and continue to do s
until t58M , when only a single apparent horizon of ar
A'200M2 can be located. This single apparent horizon p
sists until approximately 10M , beyond which instability ef-
fects, stemming from the outer boundary and the excis
boundary, swamp the solution.

VI. SURVEY OVER THE EIKONAL SOLUTIONS

A serious difficulty associated to this data set is its sh
length in terms of the relaxation time,t'4M , required for
outgoing data to converge onto the event horizon. Assum
that the collision time is~as suggested by the apparent ho
zon solvers! neart58M , perturbation theory shows that th
resulting horizon will undergo quasi normal ringing for a
other t'20M . That is, at the time levelt510M , where our
event horizon tracker is to begin tracking into the past,
event horizon remains far from its stationary limit. For e
ample, in the numerical analysis of the event horizon of he
on collision, researchers used approximately 100M of data
@16#; and assumed that the final state att5100M was a
stationary or quasi stationary black hole~thus spherically
symmetric att5100M ). The presence of such a stationa
region in the source data is highly convenient becaus
permits a relatively unambiguous identification of null ge
desics that can and cannot escape to asymptotic null infin
By contrast, for the case of a short data set~say having run
time of order 20M ) no stationary region is available to cla
sify the geodesics. In that case, other properties of the e
horizon~its definition of as a null surface, its relation to an
apparent horizons, etc.! must be employed to obtain any ex
9-7
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plicit evidence of an event horizon in the data. In short, d
to the absence of a stationary region in a data set of this s
length we cannot conclude definitively that a particular n
surface is indeed the event horizon. Curiously, since appa
horizons are identified in this data set we do know that th
is indeed an event horizon. The problem is to find the criti
outgoing null surface among the infinite number of such s
faces. As described below, in the absence of a station
region that problem proves to be very difficult.

In light of the above difficulty, we survey the solutions
the eikonal equation solved on the source of the collis
data and make use of information from the apparent horiz
to obtain evidence that our method will find the event ho
zon for the asymmetric collision problem having sufficie
data ~in the form of a stationary region!. In particular, we
argue that given sufficient data our method can and will p
vide a variety of quantitative physics concerning the mer
time, the black hole areas, and the topology of the thr
following merger. As a byproduct of this study we also o
tain considerably suggestive information concerning th
features of the source data; in fact more then we origin
expected from such a sparse data set.

As a point of departure for the survey, we construct d
for the eikonal at the time level 10M by treating that region
as if it were stationary. We then survey about this event
rizon tracker initialization and enhance our results with
formation from both our apparent horizon solvers and fr
analysis of the areas of surfaces of section.

To proceed, note that if the event horizon becomes
tionary it will coincide with the apparent horizon. The appa
ent horizon could then be used~in fact it typically is! as
initial data for an event horizon solver. This step is usua
accomplished by using a separate apparent horizon solv
separate solver is not necessary, however, since coincid
of the apparent and event horizons in the stationary li
implies that an event horizon tracker can be used as an
parent horizon solver in that limit. To convert an event ho
zon solver to an apparent horizon solver typically amount
the minor modification of iterating for severale-foldings
over any one time slice of the data from the stationary
gion.

In more detail, within a stationary region, beginning wi
spherically symmetric initial data that is well exterior to th
horizon Ĝ1

e(t↓50M ) we update this data using the eikon
equation, then pull the resulting data back to the origi
time level and reset the data according toĜ2

e(t↓)5Ĝ1
e(t↓

1dt↓). The stepĜn11
e (t↓)5Ĝn

e(t↓1dt↓) is then repeated fo
several hundred iterations; corresponding toO(10) e folding
times. By property of an apparent horizon being the ou
most trapped surfaceĜ data will typically converge to the
apparent horizon.

To initialize our survey of the asymmetric collision da
we apply this method to the time level 10M . Note carefully
that we apply a method that is valid for stationary data t
nonstationary data source but do so only as a point of de
ture for a survey over the solutions of the eikonal equati
We then augment this survey with analysis of both the ar
of null surface sections and with information obtained fro
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our apparent horizon finders. Finally, we will perturb abo
this initialization and repeat the survey and analysis in or
to gain global evidence concerning the event horizon.

We show in Fig. 5 the result of applying'200 iterations
of the method described above to the time slicet510M .
Figures 5 through 11 show the eikonal function in thez50
plane. The location of the determined guess for the surfacG
~which we will take to begin our evolution of an outgoin
null surface into the past! is encoded into the eikonal by th
color map. With thisG, data for the eikonal can be written i
the form

S~0,xi !511tanhS r c2r

c D . ~59!

In Eq. ~59! the first argument of the eikonal ist↓50; t↓ will
increase into the past. Also,r c denotes the dataG and c
controls its steepness. Typically we take a transition widtc
on the order of a computational zone. Note that this surf
is not considered to be a true section of the event horiz
but instead is an initial guess or candidate section, wh
after a fewe-foldings will evolve into better approximation
of a true section of the event horizon. By way of comparis
Fig. 5 also shows att510M the final apparent horizon as
white wire mesh. Note that both the apparent horizon and
data for the eikonal are highly distorted from the stationa
case. Figure 6 shows the resulting eikonal functionS(x,y,z)
after 2M of evolution into the past. Note that the surfaceG is
not qualitatively changed during the evolution.

VII. SURFACE EXTRACTION AND APPARENT HORIZONS

Figure 7 shows several frames of the evolution of t
eikonal using a viscosity solution ofe5h2 ~not of the im-

FIG. 5. Tanh data@see Eq.~59!# for the eikonal in asymmetric
binary black hole coalescence. The wire mesh is the apparent
zon, while the black contour denotes initial data for our survey o
the solutions of the eikonal equation. These data are set at the
of the computational evolution (t510M ), and will be evolved into
the past.
9-8
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proved viscosity form!. These figures display the value of th
eikonal function on thez50 plane. Figure 7 shows the sam
data as an elevation map and again uses the color map o
5. Note in those figures that particular families of outgoi
null surfaces undergo a change in topology and this topol
cal transition is continuously monitored by the viscosity s
lutions of the eikonal. In these figurest50.562M is shown
in the upper left-hand corner,t51.5M is shown in the upper
right-hand corner,t52.5M is shown in the lower left-hand
corner andt55.0M appears in the lower right-hand corne

Figures 8–11 show, for several values oft↑ , the value of
the eikonal in thez50 plane; the location of the appare
horizon in the 3 dimensions~the white wire frame!; and in
the black wire frame, locations of sections of an outgo
null surfaceĜc(t↓) that is generated by evolution of the e
konal equation from data constructed using the method

FIG. 6. Data of Fig. 5~asymmetric binary black hole coales
cence! evolved backward fromt510M to t58M .

FIG. 7. Change of topology in eikonal for asymmetric bina
black hole coalescence, shown as an elevation map.
10400
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scribed in the previous section. In this context, the surfa
Ĝc(t↓) are extracted from the eikonal data using the te
nique described in Sec. IV. Note thatĜc completely contains
the apparent horizons throughout their evolution. This i
fundamental condition that any numerically construct
black hole event horizon must satisfy. To determine h
these results depend on the initial dataĜc(t↓50), choosing
initial data Ĝd(t↓50) of the form

ud~u,f!5uc~u,f!2d, ~60!

permits survey about the datauc(u,f), whereuc(u,f) cor-
responds to the dataĜc(t↓50). Studies with d
5M /2,M ,2M establish that the level setsĜd penetrate both
apparent horizons for anyd>M /2. These results suggest th
the true event horizon is contained in a domain parametri
by 0,d,M /2.

Figures 12 and 13 show two views of the extracted le
setS50. Note that this surface is highly distorted and sho

FIG. 9. Asymmetric binary black hole coalescence:t↑55M .
Note that while the apparent horizons~the white wire-frame
‘‘spheres’’! are still well separated att55M , the black wire frame
‘‘peanut’’ already has one component only.

FIG. 8. Asymmetric binary black hole coalescence:t↑58M .
This is the same as Fig. 6 but the black wire mesh shows
location of a characteristic outgoing null surface.
9-9
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the sections of two outgoing null surfaces near merger. A
shown in these figures are the apparent horizons for the
black holes. These figures are taken 2M into the forward
evolution. In these figures each color of the color map
notes a level setĜ of the eikonal. As such, each color repr
sents a null surface. From these figures it is apparent th
this time there appears one innermost null surface that c
pletely contains both apparent horizons. Further, there d
not appear to be any pairs of null surfaces that each env
an apparent horizon and are disjoint. That is, the result
the viscosity solutions suggest a merger time much close
2M then the 8M found with the apparent horizon tracker
@Note that in Figs. 12 and 13 the outgoing null surface
shown as a white wire mesh, while the apparent horizons
shown as black wire meshes. This is opposite to the c
scheme used in Figs. 5, 6, 8–11, which was an indepen
study of the evolution as opposed to the study of the thr
geometry considered here.#

VIII. CHANGE OF TOPOLOGY

As shown in Fig. 7 the viscosity solutions of the eikon
equation do continuously monitor a change in topology.
the case of asymmetric binary black hole coalescence
conjectured that the critical level setG corresponding to a
section of the event horizon must take a higher genus to

FIG. 11. Asymmetric binary black hole coalescence:t↑51M .
Careful inspection of the black wire frame suggests two separ
components.

FIG. 10. Asymmetric binary black hole coalescenc
t↑53M .
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ogy at merger. To investigate this possibility, Fig. 14 show
level set of the eikonal viewed along the axis joining t
centers of the apparent horizons. In that figure it is appa
that the throat function of the topological transition is elli
tical in geometry. Our studies indicate that this elliptic
throat function persists for all null surfaces undergoing
topological transition. Further, for all of our computed tra
sitions of the null surfaces, no higher genus topology is
hibited; instead, the elliptical geometry of the throat persi
to the transition. These results suggest that if there is a n
trivial topology in the sections of the event horizon as
consequence of the asymmetry of the merger, then tha
pology change is bounded to occur when the minor axis
the ellipse is within one of our computational zones, orh
5M /4.

IX. BLACK HOLE AREA ANALYSIS

Figure 15 shows an area versus time plot for this asy
metric collision. The curve with the lowest area is the res
of a viscosity solution withe52h2. The curve with the sec-
ond lowest area is the result of a viscosity solution w

ed

FIG. 12. Level set extraction for asymmetric binary black ho
coalescence: I.

FIG. 13. Level set extraction for asymmetric binary black ho
coalescence: II.

:

9-10



-
os
ly
o

th
a
-

ity

-

g

-

and
cal-

itial

f
r

true

ce
cale
lax-
the
he
hich

zon

e
f
for

at

m
t
ch
w

re
a

a

le

ole

TRACKING BLACK HOLES IN NUMERICAL RELATIVITY PHYSICAL REVIEW D 68, 104009 ~2003!
e5h2, while the curve with the third lowest area is an im
proved viscosity solution composed of the two higher visc
ity solutions. According to these results it is immediate
apparent that the viscosity solutions of higher viscosity sh
a merger time that is later int↑ ~and therefore prior int↓)
than the merger time found with solutions constructed in
limit of vanishing viscosity. These results then indicate th
the error~or bias! in the merger time of the viscosity solu
tions is directly related to the magnitude of the viscos
More precisely, for the continuum merger time oft↑* and an
approximate merger time oft↑* e , constructed using a viscos
ity solution of viscosity parametere, the function f (e)
5t↑* e2t↑* is increasing ine. Further, the area found usin
the improved viscosity solution finds an area ofA
5247.47M at that time. Note that this error is partially de

FIG. 14. Throat function for asymmetric binary black hole co
lescence:t↑51.562M .

FIG. 15. Area versus time for asymmetric binary black ho
coalescence. The horizontal scale ist↓ , i.e. time measured into the
past. The curves are~bottom to top! for e52h2, e5h2, and the
improved viscosity solution.
10400
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pendent on errors introduced by the extraction routines
the resolution of the surface. Here all surface areas are
culated withm2 points wherem5100.

Figure 16 shows several area versus time curves for in
data of the form

ud~u,f!5uc~u,f!2d ~61!

where the datauc(u,f) is that obtained using the method o
Sec. VII. From top to bottom, the curves show areas fod
50,M /4,M /2 and with a viscosity parameter ofe5h2. Re-
call that studies of the apparent horizons found that the
event horizon is contained in the domain 0,d,M /2. This
survey overd is conducted in search for the convergen
signature associated to event horizons. Due to the time s
of this data, the time scale of the dynamics, and the re
ation time scale of the event horizon tracking method,
signature is not clearly identified. However, this study of t
area curves does show some convergence of the areas, w
is expected for null data approaching the true event hori
under propagation into the past. The curve withd5M /2
shows the closest behavior to an event horizon since thd
ÞM /2 curves all approachd5M /2. Note that the sections o
this data completely contain the correct apparent horizons
all t↓,9M . Further, this data shows a bifurcation time
t↓'8.3M , which corresponds to a merger time of aboutt↑
'1.7M . This bifurcation time is detected by an algorith
that searches for any pointsu,f of the surface such tha
u(u,f),h. In the circumstance that a point is found su
thatu(u,f),h, the bifurcation is expected to occur in a fe
more dt5M /16 in the t↓ direction. A few time levels after
~in t↑! this bifurcation time the area of the level set isA
5148.9611.9M . At merger the areas of each black hole a
thenA574.566.0M . These individual areas correspond to
Schwarzschild mass of aboutM51.4860.12. This result is

-

0 2 4 6 8 10
100

200

300

400

t

FIG. 16. Areas versus time for asymmetric binary black h
coalescence. The horizontal scale ist↓ .
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substantially larger of a mass for each hole then determ
by the apparent horizon finders at the time levelt↑50. In-
terestingly, studies have found that apparent horizons s
rated by about 10M have approximately 20% variation i
their mass due to the effects of binding energy. Individ
masses of aboutM'1.36 are then only a slight departu
from studies that account for the binding energy of the ho
Further, at the time of merger the holes have underg
1.7M of evolution, during which the holes could accrete a
surrounding gravitational radiation present in the initial da
The presence of such radiation would lead to larger ma
than those found using apparent horizon finders att↑50.
However, it is important to note that due to the viscosity
the solution the resultM'1.36 can only properly be consid
ered as a lower bound on the calculated masses. The
significant contribution to any error in this result must ste
from the relatively small time scale of this asymmetric c
lision data and coupling of that time scale to thee-folding
time scale of this event horizon detection method.

X. CONCLUSIONS

In this work we have demonstrated a relatively simple
robust and~most importantly! generic solution to the prob
lem of numerically tracking black hole event horizons. A
implementation of our method made use of an explicit s
ond order diffusion term to regulate the solution singularit
associated with discontinuity formations characteristic of
eikonal equation. As demonstrated by analysis of anal
f
d

th
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,

m
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sources, this term does introduce numerical error altho
we demonstrate our control over these effects and the re
ing accuracy. But, the use of a second order diffusion term
not required by our method per se; and a variety of ot
approaches can be employed. Examples of other method
controlling breakdown of the numerical solution includ
those classes of high resolution shock capturing numer
schemes that are used extensively in computational fluid
namics for hyperbolic problems similar to the eikonal equ
tion.

The application of our new method for the event horiz
tracking method considered the asymmetric binary bla
hole coalescence problem, including a detailed analysis
areas of the surfaces of sections, the collision time, ass
ated apparent horizons, and the topology of the outgoing
surfaces generated by the eikonal equation. Due to the r
tively short time scale of the collision data, our method w
unable to demonstrate the signature of the black hole e
horizon. We believe that this problem is due to the data its
and not due to our method. We anticipate much more ac
rate and convincing results as more accurate computati
simulations of black hole interactions become available.
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