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Recently an alternative description of 2D supergravities in terms of graded Poisson-sigma (G648
has been given. As pointed out previously by the present authors a certain subset of GPSMs can be interpreted
as “genuine” supergravity, satisfying the well-known limits of supergravity, albeit deformed by the dilaton
field. In our present paper we show that precisely that class of GPSMs corresponds one-to-one to the known
dilaton supergravity superfield theories presented a long time ago by Park and Strominger. Therefore, the
unique advantages of the GPSM approach can be exploited for the latter: We are able to provide the first
complete classical solution for any such theory. On the other hand, the straightforward superfield formulation
of the point particle in a supergravity background can be translated back into the GPSM frame, where “su-
pergeodesics” can be discussed in terms of a minimal set of supergravity field degrees of freedom. Further
possible applications such as tt@mos} trivial quantization are mentioned.
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[. INTRODUCTION GPSMs allowed by that algebra correspond tmajueclass
of (dilaton deformefiN=(1,1) supergravity theoriggalled
Theories of gravity in +1 dimensions naturally emerge “minimal field supergravity” (MFSY) in the following] in
from the generalization ofe.g. sphericallyreduced Einstein which—somewhat miraculously—even all singularities and
gravity in arbitrary dimensions. Decisive progress in theobstructions in the generic fermionic extensions disappear.
treatment of their classical and quantum properties were th&he bosonic part of physically interesting theorispheri-
consequence of the discovery in the early 1990s that a Cart&i@lly reduced gravity{15-18, string inspired black hole
formulation in a specific lightlike gaudd], which is equiva-  [19], simplified model§20—24, bosonic potential of super-
lent to an Eddington-Finkelstein gauge for the metric, notdravity from superspaces)) are special cases thereof. This
only simplifies enormously the evaluation of the classicallS &/S0 @ nontrivial result, because the “potential” of those

theory, but even allowed an exativial) nonperturbative bosonic the.ories must be deriva}ble from a prepotential. .
guantization[2-5]. After the application to a particular Already in the purely bosonic case, where the PSM is

model with curvature and torsid®] it was realized that not equ_lva_lem[26,2ﬂ toa generaI_ZD dl_laton theofsDT) with .
only all 2D gravity models but an even larger class of theo_vanlshlng torsion but dy_nam|cal d|Iat_0n, th_e corres_pondlng
SM works with nonvanishing bosonic torsion. If this PSM

ries may be covered by the concept of P0|sson-s'|gma mode ction shall be extended directly to its supersymmetrized ver-
.(I.DSMQ. [7-11). There a set of target_spape coo_rc_;lme(ms(- sion using the superspace formalism, the generalization of
lliary fields on the 2D worldshepexists in addition to the he isyal conventional constraints, valid solely for vanishing
gauge degrees of freedom. In this framework the simplicity,ssonic torsion, is an imperative step. In consequence, a new
of 2D classical and quantum gravity becomes manifest. PSMy|ytion of Bianchi identities, etc., has to be considered,
models generalized naturally to the graded c&S®SM  \yhich turned out to be a highly nontrivial tagR8]. Within
when they are supplemented by anticommuting fieldgshe GPSM approach this problem is avoided altogether and it
[12,13. The resulting models exhibit the typical gauge trans-suffices to solve a graded Jacobi-type identianishing
formation of supergravity theories. However, the fermionicNijenhuis tensor[13].
extensions are highly ambiguous. In addition they may intro- Therefore the question arises whether, and in what sense,
duce new singularities and/or obstructions as compared the equivalence of the bosonic PSM and GDT theories can
the bosonic theory for which they have been derived. Thige extended to supergravity. To this end it must be investi-
result was obtained for thé&l=(1,1) superextension, but gated whether a GPSM based MFS has any relation to a
should hold also for higheN. genuine dilaton superfield theory, expressed in terms of su-
Recently the present authors realiZéd] that a subset of perspace coordinates fordgnamicalsuper-dilaton field. An
those GPSMs can be identified, which satisfies a constraingdication that this may work comes from the known result
algebra whose structure is very close to the algebra 9f13,28-3] that a GPSM model witlvanishingbosonic tor-
“genuine” supergravity. In this algebra the modifications by sijon [31] is—up to elimination of auxiliary fields—
the presence of the dilaton fiel@nd its single fermionic
partner forN=(1,1)] are, in a sense, minimal. The only
IAIready at this point the authors apologize for the introduction of
quite a number of special acronyms. It seems that only in terms of
*Electronic address: bergamin@tph.tuwien.ac.at those a reasonably compact formulation of the strategy is possible
TElectronic address: wkummer@tph.tuwien.ac.at (cf. also Fig. 1 below
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equivalent to a dilaton superfield theof$2] with nondy- The two left hand columns of the figure cover the purely
namicaldilaton. By further elimination of an auxiliary spinor bosonic theories, the ones on the right-hand siths) in-
(“dilatino” ) this simpler model can be related quite gener-clude their fermionic extensions. The two columns in the
ally to the supergravity model of How@5] as well. middle contain theories with dynamical dilaton, while the
One of the main motivations to establish such a relation inwo columns at the borders are reserved for the restricted
the general case is the fact that in {@PSM approach the  ¢lass of models with nondynamical dilaton, respectively.
complete exact classicql solution can be four_1d fpr all such  Ag indicated by arrows at the top of the figure, different
models. Also, for bosonic PSMs the quantizatioridnost  theories displayed in a row are related to each other by

trivial [1_4]2_ as long as no matter interactions are included o ans of supersymmetric extension or by restriction to non-
But even with matter a meaningful quantum perturbatlondynamica| dilaton

theory can _be develope[(34—36,_leading t(.) an improved Two fermionic extension§MFDS and SFD$correspond

understanding of phenomena like the virtual black hole e
. to GDT, which is indicated by the large bracket.

[37,38. Most of these results should extend straightfor- Relations between different models are described by ar-

wardly to the GPSM[39], which would allow substantial y

progress in the understanding of generalized supergravity WS- Dpuple—headed arrows are used if the corresponding
two dimensions. relation indicates complete equivalence, or, at least, holds for

In our present paper we are able to report that, indeed, the most i'mportant class of the connectgd theories. Simple
detailed equivalence exists between the class of GPSMRITOWS point from the more general theories towards the re-
supergravities of Ref[14] (MFS model3 and the well- Stricted ones. _ o _
known dilaton superfield supergravities, proposed sometime Labels with a tlld_e indicate that this rel_atlon is a straight-
ago by Park and StromingE82] [dubbed “superfield dilaton forward generalization of~the corresponding relation among
supergravities”(SFDS]. The equivalence proceeds through bosonic theoriege.g. A—A). Relations among different ar-
different steps which should be transparent in the schemati®ws within the same part of the figutbosonic part or su-
representation of Fig. 1, an explanation thereof is given firstpersymmetric part, respectivelgre indicated by prime®.g.

A—A").
The equivalencé between PSM and GDTrespectively
2For a comprehensive review we suggiaa]. A’ for nondynamical dilatonin the bosonic case is well-
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known [26,27,33 so thatA amounts to a trivial generaliza- With vanishing bosonic torsion. The important role of
tion of A, when anticommuting fields are includéi3]. It (su_per)conformal transformations is gxplalned in Sec. IV
connects MFS to minimal field dilaton supergravigFDS), which prepares the ground for the equivalence proof of mini-
the fermionic extension of GDTthe same is true foA’) mal field supergravity, as deduced from GPSMs, with dilaton

The proof of the quite nontrivial equivalen provides superfield supergravity. The proof is presented in Sec. V. All

. ; S exact classical solutions of 2D superfield supergra
the basis of our present paper. We first establish it betwee P pergrals)

_ X Are obtained in Sec.VI. Another applicati®®ec. VI)) is the
the NDMFS and the SFNDS theory, batfithoutdynamical o -mylation of a supergeodesic, defined as the motion of a

dilaton, following the pathD’ in Fig. 1. In a second step iegt particle in the background of minimal field supergravity.
SFNDS and SFDS are found to be connected by a4ere only some very simple special cases are discussed, as
(superjconformal transformationg” backwards which in  e.g. the null-directions and the consequences for the super-
the GPSM frame possesses a counterpart in a special targgiavity background generating the Schwarzschild solution.

space diffeomorphisntpath B backwards between MF§ 1N the Appendixes we collect details of our notation and

and MFS. That latter transformation turns out to be a genersome lengthy formulas.

alization of the conformal transformation linking GDT and

NDDT in the pure bosonic casgath B). We have found Il. GRADED POISSON-SIGMA MODEL AND MINIMAL

that in this way the more complicated direct relation of the FIELD SUPERGRAVITY

general modelgpath D) is sufficiently transparent. This

strategy is especially important also for keeping track of the

proper way the symmetry transformations are mapped upon A general GPSM consists of scalar field$(x), which

each other following those successive steps. are themselves coordinates of a graded Poisson manifold
Another equivalence is established between theories withith Poisson tensoP'’(X)=(—1)"**P7'(X). The indexI,

nondynamical dilaton (MFSand SFNDS, respectivelyand  in the generic case, includes commuting as well as anticom-

the model of Howe25]. For the restricted class of actions muting fields? In addition one introduces the gauge potential

with invertible (prejpotential this may be obtained by the A=dX'A;=dX'An(x)dx™, a one form with respect to the

elimination of a superfieldpathC) or, alternatively, by the ~Poisson structure as well as with respect to the 2D world-

pathD’ —E. This last equivalence also allows one to relateSheet coordinates. The GPSM action réads

MFS, directly (i.e. without usingd’, but insteadA’ —E) to 1
Howe's supergravity25]. SGPSsz dX'N\A, + EP”AJ/\AI

On the basis of those relations the technical advantages of M
GPSM supergravity can be exploited in full detail for the
SFDS theories of Ref32]: Proceeding “top down” from the = f e(doX Ay — 91 X' Ag + PYAG AL X, (1)
box MFS in Fig. 1 A—D) and using the known general
solution for the MF§[13] together with(the inverted arrov The Poisson tensd®'”? must have a vanishing Nijenhuis ten-
B, we are able to give the complete analytic solution for thesor (obey a Jacobi-type identity with respect to the Schouten
general superfield dilaton supergravity of RES2], includ-  bracket related agx',X’}=P" to the Poisson tenspr
ing all fermionic contributions. L oK

Another example where the opposite way, the “bottom P™a P "+ g-perm1JK) =0, )

up” sequence D —A) is to be chosen, is important for the b e the sum runs over the graded permutations. Due to Eq.
determination of the supergravity generalization of the geo-(z) the action(1) is invariant under the symmetry transfor-
desic within the GPSM formulation because the supersym: ations

metric line element or the super-point particle can be define
straightforwardly in the superfield formulation only. SX'=PYe;,  6A=—de;— (9P K)ekA;, (3)
The paper is organized as follows: In Sec. Il at fiiSéec.
Il A) the basic features of GPSMs are reviewed shortly. Theqvhere the term ¢ in the second of these equations provides
(Sec. 11 B the subset MFS of “genuine” supergravities is the justification for callingd, “gauge fields.”
described as determined in Rgt4] and the corresponding  For a generi¢G)PSM the commutator of two transforma-
MFDS (Sec. Il Q which is obtained after elimination of cer- tions (3) is a symmetry modulo the equations of motion
tain auxiliary’ fields. They include the part of the spin- (e.o.m.$. Only for P"? linear inX' a closed(and lineay Lie
connection which, at the PSM level, depends on the bosonigigebra is obtained, and E@) reduces to the Jacobi identity
torsion and the target-space coordinates except the dilatgar the structure constants of a Lie group. If the Poisson
and the dilatino.
Section 1l is devoted to the superfield approach of 2D
supergravity, where it suffices to consider the standard case‘The usage of different indices as well as other features of our
notation are explained in Appendix A. For further details one should
consult Refs[13,28|.
3These “auxiliary” fields in the(G)PSM approach should not be  5If the multiplication of forms is evident in what follows, the
confused with auxiliary fields in a superfield formulation. wedge symbol will be omitted.

A. Graded Poisson-sigma model
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tensor is singular—the actual situation in any application to ¢
2D (supengravity due to the odd dimension of the bosonic C=eAY+W(¢), Q(¢)=J de Z(¢),
part of the tensor—there exigbne or morg Casimir func- gl
tions C(X) obeying &
W( )= J deeV(p), (11
aC %0
{x',cr=pPY—=0, (4
ax? where e.g., in spherically reduced gravityon-shell is pro-

. _ . . ' portional to the ADM-mass in the Schwarzschild solution.
which, when determined by the field equations of motion, are - The auxiliary variable&® and the torsion-dependent part
constants of motion. The variation & andX' in Eq. (1)  of the spin connectiono can be eliminated byalgebraic

yields the GPSM field equations equations of motior{path A in Fig. 1). Then the action re-
| . duces to the familiar generalized dilaton theory in terms of
dX'+P~A;=0, (5)  the dilaton field¢ and the metric:
1 IK 5 1 1
dA, + E(a,P )JAKA;=0. (6) Sepr= | dxe ERQZS— Ezam¢am¢+V( ). (12

In the application to two dimensionalN=(1,1) Both formulations are equivalent at the classi@8,27 as
supergravity, the gauge potentials comprise the spin connecwell as at the quantum levgB4-34.

tion w,,=we,p,, the zweibein and the gravitino: For theories with nondynamical dilatofz=0 in Eq.
(10)] a further elimination of¢ is possible if the potential
A=Ay ALA)=(0,64,1,), V(¢) is invertible. In this way one arrives at a theory solely

formulated in terms of the zweibeif, (pathC in Fig. 1).
X'= (X2, X3 XY = (, X%, x*). (7)
B. Minimal field supergravity
The fermionic componentg, (“gravitino”) and x* (“di-
latino™) are Majorana spinors. Local Lorentz invariance de-
termines thep-components of the Poisson tensor

For N=(1,1) supergravityfcf. Eq. (7)] a generic fermi-
onic extension of the actio(®) is obtained by making gen-
eral Lorentz invarianAnsazefor P3¢, P¢# together with the

1 fermionic extension ofP3°= 2°(v + x%v,) of the bosonic
pad=xPe 2, P“¢=—§Xﬁy3ﬁ“, (8) case {°=x%x.). Then the Jacobi identity2) is solved.
Here Eq.(8) and the bosonic potential are a given input.

L This leads to an algebraic, albeit highly ambiguous solution
and the supersymmetry transformation is encode@# In with several arbitrary functiongl3]. In addition, the fermi-

a purely bosonic theory, the only arbitrary component of the . : : o )
. oAb ab . onic extensions generically exhibit new singular terms. Also
Poisson tensor i®2°=v€®°, where the locally Lorentz in-

variant “potential” v=uv(4.Y) describes different models not all bosonic models permit such an extension for the
(Y=XX./2). Evaluating Eq.(1) with that P2 and Pa¢ whole range of their bosonic fields, sometimes even no ex-

. . tension is allowed.
_ 1 _ab
from Eq.(8) thebactlon €=7€"e,/\e, is the volume form, As shown by the present authdi4], it is, nevertheless,
De,=de,+ we, ey)

possible to select “genuine” supergravity from this huge set
of theories. This is possible by a generalization of the stan-
SPSsz (pdw+X2De,+€v) (99  dard requirements for a “true” supergravif1-43 to the
M situation, where deformations from the dilaton fieldare
present. To this end the nonlinear symme{8y, which is
is obtained. The physically most interesting models are declosed on-shell only, is—in a first step—related to a more

scribed by potentials quadratic X convenient(off-shell closed algebra of Hamiltonian con-
straints G'=9,X'+ PY(X)A;,. The Hamiltonian obtained
v=YZ(p)+V(¢). (100 from Eq. (1) in terms of these constraints takes the form
[2,14746

They include spherically reduced Einstein graiiyp—18,

the string inspired black holg 9], the simplified model with _ 1

Z=0 and lineaV(¢) [20—24, the bosonic part of the Howe H_J dx" G Ao - (13

model[25], etc.

Potentials of typé10) allow the integration of thésingle In a second step a certain linear combination of@esug-

Casimir functionC in Eq. (4) gested by the ADM parametrizatigh4,47,48, maps theG'
algebra upon a deformed version of the superconformal al-
gebra(deformed Neuveu-Schwarz, respectively, Ramond al-

5More complicated identifications of the 2D Cartan variables withgebra. This algebra is appropriate to impose restrictions,
A, are conceivabl¢40]. which represent a natural generalization of the requirements
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from supergravity to theories deformed by the dilaton field. It
turned out that the subset of models allowed by these restric- (19
tions uniquely leads to the GPS8dipergravityclass of theo-

ries [called “minimal field supergravity” (MFS) in our | terms of Eq.(8) and Egs.(14)—(16) the supersymmetry

Surs,( X% X% 0,€a,14) = Surs z=0; fields - eids-

present papgmwith the Poisson tensbr transformations of the MFS model, according to E8),
read:
b 1 ,[vz+Vv' 2vE| |
pPaP=| V+YZ— EX 5 +—3 €?°, (14) 1

oo 86="5(x7%), (20

Pab: Exa()(’)’ ,yb,y3)a+ il()(’)’b)a (15) Z iV

a H

4 u oX2= = 2 X°(x 1wy y’e) = - (xv%), (21)

Paf=—2iXCysP+

Z
u+ §X2> y3h, (16)

Z
Sx“=2iX(eyo) | u+ gxz)(SVS)“, (22
where the three functiong, Z and the “prepotential’u de-
pend on the dilaton fieldb only. Besides the fixed compo- Sw
nents of P according to Eq(8) supergravity requires the
existence of supersymmetry transformations, which are gen-
erated by the first term in E@L6). It has been a central result +
of Ref. [14] that P*? must be of the form(16), i.e. the
generator of supersymmetry transformations is not allowed
to receive any deformations with respect to its form from Zz b 3 .
rigid supersymmetry. Furthermore in order to satisfy the con- €= Z(Xyay v'e)ep—2i(eva),
dition (2) V, Z andu must be related byu’ =du/d¢)

!

= 7 X0y e )e i

!

(xy%e)e,

u

!

u’+%x2)(sys¢), (23

(29)

! Siha=—(De) + Xy e e +iX(ybs) e
V(¢)=—§((u2)’+u22(¢))_ 17) @ at 7 a &t «Eb

< 3
Thus, starting from a certain bosonic model with potential + 7 XaleYY). (25)

(10) in Eqg. (14), the only restriction remains that it must be

expressible in terms of a prepotentialby Eq. (17). This  We list neither here nor below transformations with the three

happens to be the case for most physically interesting thedsosonic parameters . The symmetry transformation gener-

ries[15—25. Inserting the Poisson tens@), (14)—(16) into  ated by Eq(8) corresponds to the local Lorentz transforma-

Eqg. (1) the ensuing action becomgke covariant derivatives tions, the other two, by the field-dependent choice of the

are defined in Eq(A7)] symmetry parametee,=&"A,,, describe 2D diffeomor-
phisms£&™ [49]. Clearly, the invariance with respect to the

. latter three transformations is also evident from the explicit
Smrs= f/w ¢ do+X’De;+ x“Di, form of the action(18).
1 ,[vzZ+ VRV C. Minimal field dilaton supergravity
e\ Viyze 2X 2u * F The PSM form of the actiofil8) represents a theory with

nonvanishing bosonic torsion. This can be seen easily from
Z . b 3. Vo a the e.o.m. obtained by variation . Nevertheless, it is
+ XX vay ey )+ - (x v ea) +iXH(dyay) (locally and globally equivalent to a theory with dynamical
dilaton field and vanishing bosonic torsion. We recall the

basic steps of this relatiofpath A in Fig. 1) as applied al-
ready to the GPSM inl13]. For this purpose the actioii8)
is most conveniently abbreviated as

3 . (19

1 Z )
utgx (Pys9h)

For later reference we also define the simpler model &ith 1
=0 (MFS,), where the fields are denoted by,X?, y%) and Lyrs= fM( ¢ do+X?De,+ x Dy, + EPABeBeA :

(0,€4,40) (26)
where nowA=(a,«) only includes the zweibeir, and the
"The constantl, in Ref.[14] has been fixed as,= — 2. Thisisin  gravitinoe,= ¢, componentscf. Appendix A. Varying Eq.
agreement with standard supersymmetry conventions. (26) with respect taX? leads to the torsion equation
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mn,
€ " €egnam]| -

2 @
(36)

1 AB 2 1 - 1AAB
Dea+ —(ﬁap )eBeAZO, (27) SMFDS:f d°x € ER¢+(XO')_ EP

which can be used to substitute the independent spin connec-
tion » by the dependefisupersymmetry covariant connec- Here X2 indicates that this field should be replaced by Eq.

tion » and by the torsionr: (35).
o Because in the MFS the Poisson tenB8P depends qua-
W= €N Wm= Wa— Ta, (28)  dratically onX? [cf. Eq. (14)], according to Eq(35) the
usual quadratic dynamical term for the dilaton fieldis
©,= €™ 8ma—1 €™ (WnYalim), (299  produced. Thus, reinserting the Poisson ten&igh—(16)
with Eq. (35) into Eqg. (36) yields the minimal fielddilaton
~ 1 . supergravity(MFDS):
Ta=™ — E(‘?aPAB) €""egream (30
1. ~
= 2 —_
IE)AB: PAB+ 2i 5252)((:’)/?[3 ) (31) SMFDS J' d°x el 2 R¢+ (XU)
By partially integrating the torsion dependent part of Eq. 5 , V2
(26) some derivatives are moved onto the dilaton fi¢ldnd V=X Vet +4?

the action readsgup to total derivatives

1 1
1. ~ 1. — =Z| I"pimd+ =(x v Y™
SMFS:J’ d?x e(§R¢+(XU)_EPABemneBneAm 2 ( $Im 2()(7 W) Imep

1 mn v mn,
+§E Ind(X¥m) _UG (X Ynt¥m)

1 ~
+1 X2+e5,e™ () + Ee;em“()(y:"wn)) Ta) :

u
(32 + 5™y y3wm>> . (37
The curvature scalar

~ ~ M.~ This action describes dilaton supergravity theories with mini-
R=2*dw=2€e"dhon (33 malfield content and vanishing bosonic torsion: The bosonic

through Eq(29) depends on the torsion free spin connectionvan‘r’lbleem appears expl{cltly, but 't_ also is contained fn the
® which, in turn, may be expressed as well by the metric?heepg.rl‘:t%rr]]t ftc'g:;] iﬁgﬁgﬁgggﬁg%ﬂggg ?rgr?w(az'g)é Eé:?jadr?
Jmn=E€5€na- In addition, the fermionic partner of the curva- ! leldg fonic diiatinoy ns: y

ture scalar has been introduced, which is defined as fqr ZIO_ (NDMFS n Eg._])ihe dynamical terms for the
dilaton field disappedrV=\V(¢), etcl:

~ ~ 1.
o,=*(D¢),= Emn( Inmat Ewn('y3l/fm)a) . (34 _ IV
V'+4

2 ler — = 1 —
Snpmrs= | d°x el §R¢+(XU)+V_ 4—7\( =
Varying again with respect t¥2 finally allows one to elimi-
nate this field as well:

v mn . u mn; . 3
_Te (X7n¢m)+§6 (0¥ ¢m) | - (39

1
Xa:_eamfmn((ﬁn¢)+ E(X'yg')[fn)>- (39
While a further elimination of the dilatino is possible for

Inspecting the original actiof26) one realizes that this is the duite general NDMFS modelgliscussed in Sec. V)Aone
e.o.m. of the independent spin connectionlt is important ~ Can get rid of¢ in certain very specialsimple cases of Eq.
to notice that the structure of E85) does not depend on the (38 only, namely for invertible potential termg, respec-

details of the Poisson tensor, but is determined solely by thtvely, u [cf. Eq.(17)]. ,
condition of local Lorentz invariance. Equatio®8) and The supersymmetry transformations of the MFDS model

(35) are algebraic and even linear in the variables to bd0llow by eliminatingX* andw in Egs.(20), (22), (24) and

eliminated. Therefore, they may be reinserted into the actiof?>- Except for Eq.(25) the new transformation rules are
(32): immediate by substituting?® by Eq.(35). In Eq.(25) we use

the explicit formula of the covariant torsigef. Eq. (30)
with Egs.(14)—(16)]

8Here and also in the superfield approach below supersymmetry 1
covariant quantities acquire a tilde when they dendépendent T ——7lx.+= b n
variables. Ta at g (XYaY ¥n)€y |- (39
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After some algebra the result exceptel,. {, and\ are the components of the Lorentz
1 covariant decomposition of the graviting = e[y, accord-
Sp= E(XY%), (40)  ing to Eq.(B7). The dependent variables, R and'o are

defined by the Eqg29), (33) and(34), when substituting all
1 variables therein by underlined ones.
Sve=—2ie™ g+ =(v+3 ) @ The independent variables in the Howe-actid4) are the
X € ( n¢ 2(X7 ¥n) |(&7Ym) components of the zweibeigf', of its fermionic partner®
2 and an auxiliary field\. Inserting the decompositiai7) of
U+ — XZ) (e, 41y ¥ and int_egrating out superspace B;“qd._f) rc_educes tgcf. Eq.
8 (B1), derivatives with respect t4 are indicated by a dgt

z .
Sem= Z(X737b738)emb_2|(8 Ym), (42 Showe= f dx e( %j:’E_é(éjr_j:)+2j:E2

n PN T )R 3 1 27 M
"G Ym¥ne)a —2AF( Y yay o) — SATF Y Ym)

~ iV Z
5wma: _(Ds)a+ F(Yms)a_l— Z

1 1 .. .
+ E(wm'ynX)('Yn'y38)a (43 + EAZ}-— (é}-_f)) emn(ﬂn'ygﬂm))- (47)
is obtained. o _ Here F(A) is F(S)| 4o, the body of the functioH(S) in
The action(37) with its symmetry transformation$0)-  £q. (44) The action(47) remains invariant under the super-

(43) is most convenient for a comparison with a superfieldgyayity transformatiorfyas in the notation for the fields, is

formulation of 2D supergravity, because in E@7) the a4 to distinguish that transformation parameter feoin
bosonic torsion vanishes and it is precisely this case fogqs (40)-(43)]:

which the standard supergravity has been developed.

5ema: _2i(87a'/’m)v 5ema:2i(87m(//a)v (48)
Ill. SUPERFIELD DILATON SUPERGRAVITY - - =

Any formulation of dilaton supergravity in superspace is o ~ ] N
embedded in the background of pure 2D super-geometry. Sthm :_((%) + A Ym) ) (49)
The simplest nontrivial superfield extension of the topologi-
cal bosonic 2D actiorf d®x eRis obtained by promoting the i
determinane= \/— g to the superdeterminaft and the cur- SA= —2( (ev%0)— =A™ (& v )
vatureR to a component of a real superfigddwhich appears N - = 2= T
in a function 7/(S). At the same time the integration is ex- , ,
tended to an integral oveN=(1,1) superspace z" As it stand;, Eq(47) cannot be equivalent to a more general
=(x™, 0")]: supergravity likeSyrps in EQ. _(37). iny for Eq. (1_9), th_e
special case of a nondynamical dilaton, a relation will be
worked out in Sec. V A, but Eq47) is clearly insufficient to
Showe™ f X POEF(S). (44)  represent the general theory with dynamical dilaton field.
In order to describe the superfield generalization of all
In the following Eq.(44) will be referred to as the “Howe- bosonic GDT withdynamicaldilaton[as exemplified by Eq.
action” because the analysis of 2D supergravity in terms of12)], ¢ is promoted to a superfield as well and one arrives at
superfields goes back to the seminal pd@ét of this author.  the general superfield dilaton supergraviti&DS, cf. Fig.
In the notation and conventions of the Appendixek also 1) of Park and Stromingei32]
Ref.[13] and the superspace convention$28]) the respec-
tive #-expansions read

. (50

SSF%:f dPPx POEQ(P)S+K(D)D*PD D+ L(D)).

1
E=e 1—2i(9§)+592<5+2£2+y> , (45) (52)
The general dilaton supergravity model of this type is de-
— _ 1, - scribed by three functiond(®), K(®) and L(P) of the
S=A+2(0y°0) +21A(60) + 5 0°(e™ Ipwm dilaton superfield
—AA+20%4+ 72 —4i({y%0)). (46)

°In agreement with our systematic notation e.g. the covariant de-
For reasons that will become clear in Sec. V B superfieldivative Q refers to the dependent spin connecti@®) for the
components are consistently expressed by underlined lettergaderlined components of the superfield.
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Oxa=2L(7%e) o 1 (¥*Y°2) (¥ V3x) = 21 (YY) 4Omep-
(60)

In Eq. (52) a scalar dilaton fieldp appears as the lowest We shall need below alsp the special cse0 of the action
component. From superspace geometry the standard transféR6), called SFNDS in Fig. 1:

mation ruleg 25,28

1
06== 587X, (63
SxXa=—2(7e) F+1(¥*¥"e) (¥ 7%x)
=2i(¥*Y"¢) u0mo, (54)
SF=—2i(e F— %(gvmys@mx))
+(e A" (Ym¥?x) —20me) (55)

T—_ — . .
SSFNDS:f dZXE(EBQ+()_(Z)_LL/H—'Emn(ﬂn?’gﬂm)

. (61

T AT,
+iL'(gy K)+§L X

It is written in terms of barred variables, x, €5, and ¢ in
analogy to the notation of NDMFS, E¢38).

The basic taskpathD in Fig. 1) of Sec. V is to show the
equivalence ofSyeps in EQ. (37) with Sgrps in EQ. (56),
togetherwith a correct translation of the transformation laws
(40)—(43) into Eqgs.(57)—(60). In view of the quite different

are an immediate consequence. Integrating out superspaguctures this clearly has no obvious answer, although the

and elimination of the auxiliary fields and A by their (al-

gebraig e.0.m.s is straightforward but leads to rather lengthys

number of fields and their typge, ¢, ,x) for MFDS, re-
pectively €,,#,x) for SFDY coincide. Therefore, first

expressions. We, therefore, relegate some relevant formuldge transformations connecting theories “horizontally” in
to Appendix B. Furthermore, we assume in the following thatFig- 1 must be discussed.

the reparametrizatiod(®)— ® is possible, so that onliK

and L remain as two free functions. This agrees with the

appearance of onl¢ andV and with the simple facto# in

front of R in the bosonic part 08yeps in Eq. (37).1°
Then Eq.(51) becomeg L (¢) andK(¢) are the body of
L(®) andK(P), derivatives thereof are taken with respect

to ¢]

[
I Gdmd = ZX V" ImX

S
Ssros= | d*xe{ SR+ (x o) +2K
—(ﬂny’“y”vax)amg)+2KL2—L|_'

1L” K'L
2

. 1
+L6mn(£n73£m)+|Ll(£’ysl)+ 4

(56)

xz),

with the corresponding symmetry transformations

+ K(fn'ymynﬂm)

a__
ey,

(57)

—2i(eY?Ym), €M =2i(ey"Y,),

Spm=— (D e)*~ %(4KL— L'— ZK’f) (gYm)®
(58)

1

0b== 587X, (59)

10 or models of the forn51) that do not allow a global reparam-

etrization of this type, the equivalence to a GPSM discussed below

holds patch-wise, only.

IV. TARGET SPACE DIFFEOMORPHISMS
AND CONFORMAL TRANSFORMATIONS

Transformations of fields in a certain action generically
lead to new theories when those transformations contain sin-
gularities. A famous case is the string inspired black hole
model [19] which, even in interaction with minimally
coupled matter, by a dilaton field dependésingula) con-
formal transformation can be brought to flat space. In fact,
this is the basic reason for being able to find the classical
solution in that model. The black hole singularity disappears
in flat space, and thus the global geometric properties of the
theory experience a profound change. Nevertheless, as long
as such a transformation is performed only locally in func-
tion space and if, at the end of the day, for the physical
interpretation one returns to the variables of the original
theory, this detour can be a very valuable mathematical tool.

A. Target space diffeomorphism in GPSMs

Different GPSMs can be mapped upon each other by the
target space diffeomorphism

X'=X'=X(X). (62)

It is straightforward to check that the actidf) is form-

invariant under this diffeomorphism when the gauge poten-
tials and the Poisson tensor are transformed according to

A &XJA (63)
Y
PV =(X"9, )Pk (9, X7). (64)
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Here d, [cf. Eq. (A10)] is the usual derivative acting to the (f= 0) or, equivalently, the MFDS model87) to related

right and5| acts as models without dynamical dilatotiNDMFS, pathB’ in Fig.
) R 1). The MFS action(19) is mapped upon Eq18) of MFS

fo,=(—1)'0+ g 1. (65 by [cf. Ref.[13], Egs.(5.42), (5.48]
We emphasize again at this point that E8p) need not hold b=¢, Xi=e Q22 e QN4 (70

globally and thus physics may be different in two models
connected by such a transformation, when, e.g. in the case of _

1 _
gravity theories, the, are identified with the Cartan vari- o=t 5 XPep+ EXB%‘)’ e,=e%'%,,
ables associated to the new gauge field coordinates.
The two models fronP"” and PV clearly obey twodif- W, =eQDy (71)
ferentsets of symmetry transformations, cf. E§). The re- ¢ “
lation among them can be written as with Q defined in Eq(11). After the fieldsX® and the part of
L o dependent on bosonic torsion have been eliminated the
oX'=6xX'(X), (66)  ensuing NDMFS actio{38) is connected with the general
MFDS action(37) by the same transformation rules fer,
5_A| = 5K|(A,X)+e.o.m.s, (67) X, €4, andy as given in Eqs(70) and(71). The prepotential
u transforms according to
J
azisJ. (69) u=e A2y (72)
X!

which leads to a canonical transformation ¥(¢)=
—2uu’ into Eq. (17), such that the combinatioaV=eV
remains invariant.

The symmetry transformations of the MFS modg6)—

The necessity for the appearance of the e.o.m.s if@&)is
easily seen when inserting the transformedh the charac-
teristic derivative term of Eq(3):

- axd [ axK_ (25) Wit_h respect to f[he variables with _and Withou_t a bar,
SA (A X)=— :ud( — ek |t respectively, are equivalent up to equations of motiorwof
axX" | 9X (or just as wellw). In contrast, applying Eq$70),(71) to the
N ax3 | ax<\_ symmetry transformations of the MFDS modélgs. (40)—
=—ds|—(—l)K:|d —5]ext . (69 (43)] with Z=0 reproduces the ones fa+0 without re-
X\ X course to the e.o.m.s af. Indeed, the latter have been used

_ explicitly therein to eliminate the independent part of the
Obviously this produces terms of the fornXdwhich are  spin connection.
absent in the rest of the transformation. This indicates that |n the NDMFS action(38) also the dilatino no longer

each &' has to be removed by the e.o.rEs to arrive at the represents a dynamical field. Variation with respectyto

transformation law as given in E¢3) for £(s,X). Finally  leads to
we note that the e.o.m(§) transform into the same ones for

v - . . o 8 u -
X andA, while the e.o.m.$6)_transf2rm into e.o.m.s of both = — =+ 2i— e (Y. (73)
types(5) and(6) in terms ofX andA. u” u”

It is worth mentioning a specialty of the GPSM structure
at this point. In Tm a(;:tion_ based on IineI?r s%mrnetéybtransforand (providedu”#0) the dilatino may be eliminated alto-
mations new related actions are usually obtained by a rear- . o =
rangement of invariant functions—e.g. the rearrangement (ﬂether. The resulting action in terms @f, ¢ and¢ [R arE
superfields to obtain the general Park-Strominger modet are dependent variables as in E¢33),(34), but with Z
from the special case witk=0 as discussed below. On the =0]
other hand, the GPSM action is not constructed by the com-
position of invariant functions and supergravity invariant de- 2) _f P
rivatives, but the invariant is always the whole action. Thus, NDMFS™ X
modifying a GPSM actiomecessarilyimplies the modifica-
tion of the symmetry transformatiorsf. Eq. (68)].

!

!

1E_ 4, 1, 2_u
5 o) W’G 8(u) IU’

2 4

X el(Ymy?*yo)+

1 (U’)Z>

B. Conformal transformation for MFS and MFDS

. . . T2
In GPSM-theories conformal transformations are a special '

mn o 3 Tm o

type of target space diffeomorphisms. They, in particular, XM Py ) + 4 (¥ wm)) (74)
may be used to conne@athB in Fig. 1) the MFS models

(18) to MFS, models (19) with vanishing bosonic torsion is invariant under the symmetry transformations
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6= —2i(& ¥ Y), (75 — - = — _u(¢)
m m 22 . X=X éz(lg’ |_(¢))=T (82
5E§1=—(Ss)“+ T(sym)“, (76) It can be checked straightforwardly that the equivalence

holds as well at the level of the symmetry transformations
whene ande are identified[cf. Egs.(40)—(43) with Z=0
4 ~ iu'— — and Eqs(57)—(60) with K=0]. Indeed, this relation of the
- _ 3 o am 3 y
op=—=(0ve)~ =€ (Ymy*7v’s). (77 Park-Strominger model witl =0 to a GPSM(interpreted
as a model with nonlinear super-Poincaitgebra had been
observed already befof80,50. In the GPSM-based formal-

C. Conformal transformation in superspace ism the identification corresponds to the sequence of paths
A similar conformal transformation connecting the gen-A’—D’ in Fig. 1[13,31.
eral dilaton superfield action SFD&1) to a model with For a nondynamical dilatorp we observe yet another

nondynamical dilaton fielfNDMFS, K=0 in Eq.(51)] is identification betweerSypues Of Eq. (38) and Syowe Of EQ.

also known in superspa¢8?2] (pathB” in Fig. 1).* It must ~ (47), when the dilatino in the former case has been elimi-
contain a multiplication of the superzweibdif}, with a fac- ~ nated as in Eq(74). Indeed Eqs(74) and(47), as well as the
tor A (@) depending on the full superspace multiplet The ~ corresponding  symmetry - transformatiortg5)—(77) and
resulting action is again an integral over superspace. Ongt8—(50), are identical for
consequence thereof is the fact that a kinetic term gor —
necessarily implies a kinetic term fgr. It is known that a (!’:E A= — u
super-Weyl transformation preserving the constraints on the R 2’
supertorsion(with vanishing bosonic torsigrhas the form
[25] 1 _
- - FA)= 5 (U((A) = S(AU'(S(A))). (83
Em 2=AEy?, Ew “=AEy“+iEy*vsPDsAY2 (78)

_ . In Eq. (73) we had to assume that #+0 and thus the invert-
In our case we are interested in the consequence of thgjlity of the first equation of Eq(83) is guaranteed.
transformation on the actiof61) of SFNDS. Choosing in The equivalencé83) corresponds to the steﬁs’—>E in

Eq.(78) Fig. 1. Alternatively the pattE establishes a relatioD’
—E between two superspace actions, namely superfield di-
laton supergravity with nondynamical dilat§8FNDS, Eq.

in the action(61) produces the general SFDS acti(bt). .(61)].and the mod~el of Howé47). D'—E andC gre not
The different components are related by identical: RelationC can entirely be formulated in super-

space and holdgas its bosonic counterpa@, cf. comment
below Eqg.(12)] in very special cases onlynvertible poten-

A=exgo(®)], o' =-2K, (79

— —a—0l2 a_ noqa
$=¢, x=€x, en=e’en, (80) tials or prepotentials, respectivélyOn the other hand, the
i pathD’—E does not correspond to the elimination of a su-
_ I — S . . . .
Yo= eo’/2£% + EK 71263 ( X7a ¥3)e, 81) pgrflleéld. Insteid thg two s_uperflegs in _tkE version of (Bd)
with*> K=0, E?=(e?,4? A) and®=(¢,x,F), are related

to the superfield in the model of HovEE*= (€2, 4/2,A) by the
where for o, respectivelyK the bodyo(¢), respectively, steps

K(¢), is understood.

(ga Ea K) elimination of A and F (ga,Ea)
V. EQUIVALENCE OF GPSM AND SUPERFIELD SFNDS (E__E_) — NDMFS (5_;) ,
DILATON SUPERGRAVITY X D’ Ryl
i i i — — elimination ofz
A. Equivalence for nondynamical dilaton (€2, 47 eimerpretaton A

Inspection of the SFNDS superfield acti¢dil) without NDMFS(E,_;) _ Howe e?, 42, A).
dynamical dilaton and of the actioSypurs in EqQ. (38), - E

which originated from the GPSM formulation of supergrav-

ity, shows that in this special case the two theories are th@Pviously this equivalence combines components of differ-
same, identifying ent superfields in Eq51) into the components of the super-

field S of Eq. (44). Whenever the last equation in E®J)
can be solved explicitly fo, D’ —E is equivalent toC.

\we reemphasize that at the level of dilaton theories with vanish-
ing bosonic torsion all known resulf25,32 from 2D supergravity
can be taken over. 12This action corresponds to the sum of E(38) and (B10).
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However, C is meaningful if and only if such a solution Now all terms on the left-hand side of E(5) refer to

exists, while Eq.(74—the result ofD’ —E—does not de- Superfield supergravity, whereas on the rhs we find quantities
pend on the latter. defined in the GPSM-based MFDS approach. This is not

surprising, as the transformation rul@9) together with Eq.

(84) of SFDS by taking into accountK=-—3Z are

equivalent® to the transformations ap, e, ¥ and ¢ in Egs.
One may think that by means &upericonformal trans-  (70) and(71).

formations, proceeding along the patBsrespectively,B”, So far we followed the path®’—B’ in Fig. 1. In order

also in the general case the identificatiggath D can be to establish the relatiod between SFDS and MFDS, the

established in a straightforward manner. However, with a@nain goal of this section, thansatz

dynamical dilaton the problem remains how to relate the i

ﬁglds_ (¥, x), resp_ectively {.x), because no obvious iden- Y=yt gz(sﬁ)eﬁqfab(xvfb)“ (86)

tification thereof is apparent. Also the relation between the

symmetry transformations is far from trivial. Indeed, com-oqether with Eq(85) suggests itself by comparison of Eq.

parison of Eq.(37) and Egs.(40—(43) with Eq. (56) and  (g4) with Eq. (81). It follows when the conformal factors in

Egs.(57)-(60) immediately leads to two important observa- the two terms on the rhs of E¢81) are absorbed first in a

tions. _ _ . redefinition of ¢; then the conformal transformatior{g0)
While the SFDS gctlor(E?G) mcludgs standard klnet!c and(71) for x% e, and , are taken into account. Not sur-

terms for both the dilaton field) and its supersymmetric pyisingly, all contributions to Eq(37) linear in Z are repro-

partnery, in the MFDS formulation for¢) such a term is  gyced. But also terms proportional Z3 are found to cancel.

generated too, but not for the dilatino. There seems to remain a difference in the symmetry trans-

The transformations of the zweibeine, E&7) in the  formations. Assuming e=¢ one obtains 4= Syrps
SFDS action and Eq42) in the MFDS action, are different. — 5¢pd -

But in any comparison of the two models we had to assume

B. Dynamical dilaton

that the zweibeine should be the same. Thus the gravitini Ap=0, Ay zzxz(ygs)
and i appearing on the rhs of these transformations must be ’ “ 8 «’
different. 7

In contrast to the super-Weyl transformation in superspace Aed =—eyseny,

(path B” in Fig. 1), the conformal transformation leading

from MFS, (19) with Z=0 to the MFS(37) (Z+#0, pathE
in Fig. 1) depends on the dilaton field alone[cf. Egs.(70)
and(71)]. One could, of course, try to introduce more com-
plicated transformations including also a dependence on th

dilatino y. It turns out that this is neither necessary nor poston [cf. Ea. (A7)] with field dependent parameter,

sible: as pointed out above, the relati®9), leading to the  _Z, . An analogous transformation emerges as well in the
kinetic term for ¢, does not depend on the details of the 2

Poisson tensor and hence not on a peculiarity of some speci@iPSM based formalism: the application of E68) leads to
class of models. In facny GPSM with local Lorentz invari- (¢ denotes the symmetry parameter of the ME®del with
ance after elimination 0kK? and w exhibits at best a kinetic z=0)

term in ¢, but never iny. A similar conclusion holds for the

z
Ahma= = 7 X&Y' V) (87)

Iéowever, this is nothing else but a local Lorentz transforma-

symmetry transformationgcf. the comment at the end of - £ 1 —
Sec. IV A « 8¢:8¢+§(Xb8b+ EXBS")’ ea=e s,
On the other hand, the missing kinetic term feprin o
MFDS could be generated by an appropriate mixings@nd £,=eMg (88)

X in . It is not difficult to find the correct relation. When
the SFNDS mode(61) is transformed according to E¢B0)
one could try to replace E@81) by the simpler rule

The superspace parametersobey a similar relation, but
with the opposite sign in front oZ/2 in the first equation.

Thus, a supersymmetry transformatiop=e ., in MFS,, re-
Y= e2y, (84) spectively SFNDS, under the conformal transformations
- (70), (71), and(80) becomeg e = (& 4,84,€,) ]

This implies a new definition of the graviting. On the other 7

hand, in this way a connection with the MFDS acti@7), ==(0.08 . )— :(_ 0 ) 89

the one following from the GPSM approach, can be estab- #=(002,)—s gXET el 89
lished. Namely, identifying the graviting in Eq. (84) with .

the gravitino of that action produces all terms there, provided E_: (0,0;)—ns‘ _ ( _ ZXEvOEa) _ (90)

N| ©

1
P=¢, x=x, K(¢):_ZZ(¢), L(g)= S
(85) BNotice the similarity between Eqé&ll) and(79).
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Adding the two contributions te , ande,, respectively, (51) can be used to combine the advantages of both ap-
yields the result found in Eq87): £ 4=Z/2 ye. This termi-  proaches. We first use the fact that in MFS, as a GPSM, it is
nates the proof that the minimal field supergravity in themanifestly simpler to arrive at the completelassical and
sense of Refl14] is—up to elimination of auxiliary fields— quantum solution of a 2D gravity system. Using the list of
equivalent to SFDS, the superfield dilaton gravity of Parkformulas described in the last paragraph of the preceding
and Strominger. The symmetry transformations are mappeskection it can be mapped directly into the complete exact
correctly upon each other, modulo a local field-dependensolution of the Park-Strominger supergravisi), where we
Lorentz transformation. assume that a redefinition @b by the replacemend(d)

It may be useful to conclude this section with a compila-— & is possible everywhere.
tion of the relevant formulas which, in agreement with the  As supergravity in two dimensions without matter has no
corresponding sequence of steps in Fig. 1, relate minimgbropagating degrees of freedom the physical content of the
field supergravity with the superfield dilaton theory of Ref. system is encoded in the Casimir functiqds Every GPSM

[32]. gravity possesses at least one Casimir function, as the
Actions: Seven different actions that describe in some sensbosonic part of the tensor has odd dimendich Eqg. (11)].
2D supergravity have been presented. These are For the MFG model[Eq. (18) with Z=0] this function can

(1) the GPSM based MFS of E@18) and the special ver- be chosen af13]

sion MFS, thereof with vanishing bosonic torsid@9), 1 1
(2) general dilaton supergravity MFDS in E(7) with its C=Y- -u’+ —x°u’. (91
: . . . / 8 16
special version with nondynamical dilaton(38)
(NDMFS), Because the on-shell Casimir function is a constant it must

(3) SFDS of Eq.(56) and SFNDS of Eq(61), which both e conformally invariant. Thus a simple change of variables
originate from the general dilaton superfield theory byaccording to Eqs(70) and(71) leads to
Park and Strominge(51),

(4) the model of Howe in Eqs44) and (47) which, when 1 1

—aQl v 24— 2
derived from NDMFS(38) by elimination of the di- C=er| Y 8u + 16X Cy/: (92
latino, takes the fornt74).
Transformations: The dilaton field¢ and the zweibeine3, C,=u'+ EuZ. (93)

coincide for all models. 2

path A: The MFS fields ¢,X2,x%) and (,e,,1,) are
reduced to the setd,x*,e.,¢,) of MFDS by Eqgs.(28)—
(30) and (33)—(35).

paths B,B’,B": At each leveMFS, MFDS and SFDSa
special target space transformation connects the models with 1 1 1
nondynamical dilaton(barred variables: MRS MFNDS, CMFDS:eQ<_§ﬂn¢I9n¢_§U2_Ean¢(X73¢n)
SFNDS to the general ones. For MFS this relation turns out

Eliminating the auxiliary fieldX? by Eg. (35), the Casimir
function of the MFDS model of Eq.37) becomegthe spe-
cial case of NDMFS38) is found by settingQ=2Z=0]

to be the conformal transformation of Eq¥.0) and (71) of 1 N

which, when restricted to the fieldsp(x?,e,,#,), also FIg |\ U Ul ). (94)
holds for MFDS vs NDMFS. For SFDS the super-Weyl

transformationg78) and(80),(81) are applied. For explicit calculations the expressions are written more

path D: After elimination of the auxiliary fields in SFDS conveniently in terms of light-cone coordinates. Appen-
[Egs.(B11) and (B12)], this theory is equivalent to MFDS: dix A). AssumingX**#0 one can introduce the Lorentz-
the identification of the remaining fields apre-)potentials  scalars
is contained in Eqs85) and (86), the supersymmetry trans-

formations are equivalent up to a local Lorentz transforma- +

; =X O = Xy

tion (87). A - X" X (95)
path E: The NDMFS action allows the elimination of the | |

dilatino [Eqg. (73)], leading to a theory that may be identified . .
. . . The solution of the MFgmodel (19) has been derived al-
with the model of Howe[Eq. (83)]. Only in certain cases ready in Ref.[13] Sec. 8, the conformal transformation

pathE is equivalent to the suBerfieId relati@ Therefore, a (70),(71) of which yields the general solution of MFG8).
combination of the pathE— C cannot be used as an alter- The strategy to obtain in a straightforward way the general
native toD'. solution for a(G)PSM model consists in following the steps
set out in Ref[51] (cf. [33]). The final result is best param-
etrized in terms of(almostyCasimir-Darboux coordinates,
which can be identified posteriori Indeed, introducing new
gauge-potentialsd,; = (Ac ,A, Ay 1 A4y, A(-)) that corre-
The close relation between the general GPSM describingpond to the target  space  variables X'
MFS supergravity and the general superfield supergravity= (C,¢,X*,p(™), p(7) [cf. Egs.(62) and(63)], all A, can

VI. SOLUTION OF THE GENERAL DILATON
SUPERGRAVITY MODEL
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be expressed in terms of th&' by the solution of their
e.0.m.s, except foAc. The e.o.m. ofA: simply reads

dcC

=0 (96)

and therefore we introduce a new integration funcffon

97)

Thus the solution is parametrized in terms of the targe
space variablest' and the free functiorF. Denoting byV
the component 0P’ =Ve?® [cf. Eq. (14)]

2V?

u3

VZ+V'
2u

1

V=V+YZ-3 X° (99

the general analytic solution on a patch wiii *+#0 and
C=constt0 can be written as

++ eQ
0= —eQVAY—%CXp“)dY
Z [uz 1
_ 20 Z£ (1) () Zc o))
4e scP P d¢+4CXp p'dF
7 ()dY) 99
V2C '
u
X++e++=—d¢—eQX++X__AY—eQﬁp(_)p(”dqﬁ
o [e® ou
+—| = p+ ——=p") | dY
a2\ C\? T2’
—p“)dp(”) , (100
e-- Q
oA (101)
Q
e
\/|X++|¢’+:§CXP(7)AY
+ -2 [ gp—e T dY+EZYd¢)
22 P 2\2¢C 2 ’
(102
/3 e o Z
———==——=C pPAy+e? dY+ =Y d¢|.
/|X++| 8 xP Y 2\/§C 2 ¢

(103

Beside the abbreviatio@, in Eq.(93) a new variable and its
gauge potential, namely{=signX™ ")

10400
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o

4.2¢?

Y

2\/§p 1

Ay=dF+e®

Y dY,
(104

have been introduced. It should be noticed that in Et32)
and (103 half of the terms produced by in Ay vanish due
to the Grassmann propertp{(/))2=(p(7))?=0.

In Egs.(99-(103) X~ andY are dependent variables
according to Eq(92) with Y=X**X"~ atC=const: 0 and
Eq. (105). Further arbitrary functions aré,dF and the fer-
mionic p{™), p(7).

It is straightforward to check that the spinordefined as
(o=signX**)

Y=p

ct=e2y

(105

commuted* with everything but itself. From the Schouten
bracket

{c.cl=—2\20e°C (106

it follows that for C=0 an additional fermionic Casimir
functionc arises. On a patch witk* *=0, butX~~#0, we
can define an analogous quantityvith p(~) andp*) inter-
changedc=const relatep™) and p(~) [cf. Eq. (109)]. Its

associated gauge potential isf. Eq. (97)] A= —df. The
general solution reads

++

dx

X++

g
_aQ Q2_" _~ (+)
e*VdF+e C df
22 P

Z 1
——aQ2| (=) Ql2_ (=) 5(+)
2e (p df +e 8CXp p dF),

(107
X e, . = —dd—eOX X~ dF — =]~ p(Hgp*)
+ + 2 2\/5
u
+e92| 514 ;—ﬁpw)df), (108
@
oo e d, (109
Q
VX ~¢ ) dF+ —2—(dp(*) + %2y df)
l//‘F 8 Xp 2\/5 p ’
(110
U/ e?
=——C p") dF —eY2df. (112)
VX 8 X

Al commutators refer to the definition below E(}).
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Beside the anticommuting constamtthe free functions of
this solution are B, df, ¢, X** andp(*). X~ ~ andp(")
are dependent variables according to 8§) with C=0 and
Eq. (105 with c=const.

For certain potentials(10) also solutions withX*™*

PHYSICAL REVIEW D 68, 104005 (2003

The action(114) is a condensed expression which includes

both the massless and the massive case. The im0 of

Eqg. (114) leads to the standard action of the massless point
particle, while the formula for the massive particle to be

found in most of the literature is recovered by rescaiing

=X~~=0 may appear, which can describe a “supersymmet=—mg and k= —m«™*.

ric ground-state32]. Theny=0 and the discussion reduces

to the pure bosonic casef. e.g. Ref.[52] for a situation
where such a solution appears

VIl. COUPLING OF SUPERSYMMETRIC TEST-PARTICLE
IN MINIMAL FIELD SUPERGRAVITY

To find the proper invariant coupling of a test-particle to
supergravity seems to be a hopeless task when one sta

In contrast to bosonic gravity the actigfil4) does not
contain the full super-line element

(ds)?=dM@dx"NGyy=2d"E,, " "®dz"E\ "~
+2dME,, T ®@dNE . (116

The standard super-partic{fé14) with m=0 only considers
first part of Eq.(116), including bosonic anholonomic

within the GPSM related MFS model. On the other hand, infndices to be summed ovg¢63-53, which by itself is in-
order to study global properties for any of the solutions op-variant under supergravity transformations. We do not pro-

tained above a “super-geodesic

this type, where simple access to an invariant expression

"is needed. For a problem ofide a detailed comparison of the consequences of the two

Rpproache$114) and(116) within this work. But it is impor-

needed, the superfield approach is the method of choice. THaNt to notice that even the case=0 in Eq. (114 leads to

path of a super-particle is described by the mapz"(7)
with coordinate®

M= (x™, o"). (112

different equations of motion in the supersymmetry sector
than the ones following from Eq116).1°

In the standard gaugéB3)—(B6) the connectiorl™ re-
duces to the result in flat superspace with the only nonvan-
ishing components

Holonomic indices are transformed into anholonomic ones

according to

a,,m

xA=epx™,  0%=35, 0" (113

Due to the second equatidiil3 no separate notatiofcf.
Eqg. (A8)] for the components of9* is needed andd*
=(6%,0).

The action of a super-particle with masgsmoving along
the curvez™(7) may be written a§53—57]

Spp= f dT(Ql(.ZMEM++.ZNEN)
m? .
+7g—szEMAFA). (114

It exhibits the well-known additional fermionie symmetry
[55]:

5,.2E\2=0,
K .
5KZMEM+=—<mK++\/§EZMEM++),
K+.
5KZMEM:—<mK+\/§EZMEM),

(115

8.9=—42"(Ey "k +Ey k).

15m=xM(7) and #*= ¢*(7) are taken in this section without ex-

plicitly indicating the difference to the free variablesind 4 in the
preceding sections.

r.=6-, I_=6". (117

To explore the global structure of two-dimensional super-
gravity with this super-particle the solutio89)—(103) and
(107)—(111) must be inserted in Eq114). To this end the
#-expansion of Eq(114) must be calculated explicitly. After
some super-algebra the first term of Efj14) (relevant for
the massless super-partickakes the form

g M (ZMEy T TNENT ) =07 (X Mey T+ V267 0F
+242XMy 07 + 67 0T AXTe ™)
X(X"e, " ++207 6~
+ 22Xy, 67+ 67 0T AXe, ),
(118
while the Wess-Zumino contribution becomes
MEVATA= 010"+ 67 07+ X"yt 07 + X"y 0"
+ X", 67 (119

When inserting the classical solution fér[Eq. (B12)] and
the explicit expression for the dependent spin-conne@on

®what is meant by “global” properties of a solution is well-
known to depend on the “device” by whictsuperjgeodesics are
defined. Already in the purely bosonic case with nonvanishing tor-
sion the use of “geodesics{depending on Christoffel symbols
only) or “autoparallels” (depending also on the contorsjomay
lead to different global properties.
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[cf. Eq. (29)] in Egs. (118 and (119, the action of the su-

persymmetric test-particl€l14) is parametrized in terms of

the zweibeine,, the gravitinoy,,, the dilaton field¢ and
the dilatinoy. By means of the identificatio(85) and (86)
the action(114) turns into a function ok, ¥, ¢ andy:

m2
SPPZJ dr[g1A++A+ 7g—m(B*+B+)],
(120

++_ymat+
AT T=x"e,

1 1Z . 1 5 1 2 1 , 1 212
+§ X 0 —50 EU +§U'—ié X
+267 07 +2\2xMy 0", (121

. 1 .. - . Z .
B+*=9+6*+Zazxmwm+xm1p;0*+—xme:ﬁ)(a’.

4.2
(122

Here A~ and B~ * are defined through Eq€121) and
(122 by the interchange of akxplicit anholonomic indices
+—-—, ——+.

A. Gauge choice

PHYSICAL REVIEW B8, 104005 (2003

Concerning the question whether the ZF gauge is allowed,
one should consult the situation in the purely bosonic case.
There the line element, after elimination 6= X" * X"~ by
means of the Casimir constant, is determined by two arbi-
trary functionsF and¢. The “gauge” d==0 is forbidden by
the requirement of nonsingular gravity, namely that the de-
terminant of the metric should be different from zero. It
would be natural, although not strictly necessary, to transfer
these arguments directly to supergravity, i.e. demanding a
nonsingular super-determinant. However, as can be seen
from Eq.(45), the vanishing of that determinant is controlled
by its bosonic contributions. Thus within this line of argu-
ments the ZF gauge is allowed.

Typically the accessibility of a gauge is more difficult to
answer than the question whether it is allowed. Beside the
mere mathematical challenge to describe finite gauge trans-
formations, accessibility involves subtle physical questions
as well. For MFS the mathematical aspect found a definite
answer[12]: By means of a finite GPSM gauge transforma-
tion any solution can be brought to ZF gaude.

The physical aspect is more involved. Indeed, under a
finite transformation not only the specific solution of the field
equations itself, but also the “device” defining the
(superigeodesicge.g., the super-point particle actiomust
be transformed. This last step can be omitted if and only if
the new solution together with theld device turns out to
have the same physics as thew solution with some “in-
variant” device®® This does not necessarily imply that the
solution does not transform at all, but solely that the two

When the supersymmetric test-particle moves on the susystems are physicallyalbeit not mathematicallyequiva-
pergravity background, the zweibein and the gravitino in Eqlent. This is often the case for brokdmmsonicsymmetries,

(120 are replaced by their classical solutiqi®0—(103) or

where statesgfield configurationsexhibit such a degeneracy.

(108—(111) respectively. In principle, “super-geodesics” On the other hand, some well-known symmetries do not al-

could then be obtained from variation of E§14) or (120,

low the simplification of using the old device: The conformal

respectively. This task simplifies considerably when an aptransformation discussed in Sec. IV is a bosonic example for

propriate gauge-fixing is used:

(1) The solutions from MFS depend, among others, on th

variable X,

this dependence by dinite) local Lorentz transforma-
tion. Thus on any patch wittK* *#0 we can fix its

value toX™"=1 or X**=—1, depending on the sign

of the original configuration. FOX™"=0 we have to
parametrize the solution analogously in termsXof ™
(cf. Sec. V).

which is not present in superspace. The
supersymmetric test-particle being manifestly invariant
under local Lorentz transformations, we can eliminate

that. In the present context it is important thabkensuper-

%ymmetry does not allow the above shortcut as well. Indeed,

reaking of supersymmetry never leads to an equivalent
class of states with the same physical propeffleBut, as
may be checked easily by inserting any of the solutions of
Sec. VI, including the one considered in REE2], into the
supersymmetry transformatio(22) and(25), many of them
break at least half of the supersymmetries Ref.[32] and

The explicit proof had been performed in REf2] for MFS,
only, but it generalizes straightforwardly to MFS by the use of the

(2) k-symmetry can be used to gauge one of the fermioniGonformal transformation&70) and (71).

variables to a constaf$8]. It turns out tha®?~ =0 is the
preferable choice foX* " #0.

18 simple example is a wave packet solution in classical field
theory. Clearly the solution breakgloba) rotation symmetry as the

(3) It has been argued in RdfL2] that the classical solution wave packet moves in a certain direction. In an “invariant” system

(99)—(103) is equivalent to the corresponding solution of
the purely bosonic model up to local supersymmetry

of detectors, the latter ar@r can b¢ arranged in a rotationally
symmetric way. Then physiceneasurement of the wave packet
remains the same.

transformations. Thus locally all fermionic target-space 19n contrast to the example in footnote 18 broken supersymmetry

degrees of freedom could be gauged away:)=0,
p{7)=0 and consequentlyy.=0. One might ask

acting on a bosonic wave packet produces fermions. Then it is
obviously relevant whether the detector has been transformed too. If

whether this zero fermiofZF) gauge is accessible and this is the case it would still register “bosons” although it would

allowed.

receive fermionic contributions as well.
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the systematic study of supersymmetric solutions in RefThe dependence on the dilatgnoccurs in the coefficient of
[59)). Therefore, with respect to the transformation proposedosonic torsiorZ and in two functionsé(¢) and u(¢) de-
in Ref.[12] the device must be transformed as well. Thus wefined as
expect that in the generic case the global properties of the
solutions of Sec. VI do depend on fermionic background 1
fields, if these fields cannot be transformed away by means é(¢p)=C+ geQUZ, u(¢)=—-u-Z=u'. (128
of unbrokensupersymmetries.

Despite the problems of physical accessibility of the ZF
gauge we will, for simplicity, restrict our analysis below to B. Orbits of the massless point particle
th_is specific class_ of solutions. _This _choice als_o correlates To explore the global structure of a certain gravitational
with the obse_rvatlon that _cla_ssmal f|_eld eguations us_ual%ackground the equations of motion from E(E25—(127)
POSSESS solutions W|th_van|sh|ng_ fermion f|e48m§ert|ng 't have to be derived. To this end the variation with respect to
into the super-determinar®5) yields a nontrivial result, . super-coordinatdg} ={F, ¢, 6"} has to be calculated.

namely It is convenient to reparametrize the curz’®(7) in such a

1 way thatg=0. Then the variations can be written as
E=e 1—50’0+(uz+u’) ) (123

J . . .

_ . g- OeSpp=—{— €A+ 26F)(1+ 6767 u)+267 6" ¢
For nonsingular gauges—in the usual sense—the superde- aT
terminant is nonvanishing and doest reduce to the purely

—pnt !

bosonic result, although the dilatino and the gravitino of the TmgeT o7 (ZE+ £} (129
background have been gauged away, because the fermionic o
partnerd* (7) of the bosonic geodesi™(7) survives. 0- 84Spp=€AL+ 00" ) (&' +ZEF?—F)

Besides the drastic simplification of the pointparticle ac- ) i )
tion, this gauge is very convenient also from the technical +e20” 6" ' EFP—eQ0” 0" uF
point of view, as it permits an easy application for both so- . ,: .
lutions (99)—(103) and (107)—(111) derived in the previous - ‘/§9+ 0" ¢'F+ \/§0+ 0

section. It should be kept in mind, though, that the ZF gauge B _ i, e et
is problematic. Nevertheless, for a first cursory exploration mo(6" 6" F(Z e+ 28" +¢") =0 67 2)

of super-geodesics derived from Eq420—(122) it cer- (130
tainly is a convenient starting point.

(4) In the bosonic sector an Eddington-Finkelstein like gaugey. 5., 5. = — Qg™ uE( b+ £F )+ V207 (b+ &' SE + EE
is the most convenient orf@3]. To this end the world- 9- % pp uF(9+¢F) V2 (f+& @F+LF)

sheet coordinates™ are chosen such that the remaining +2\20" (p+ EF)+mgo~ (F(ZE+E) + ¢Z).
target space variabldg(x) and ¢(x) describe the trivial
embedding (13D

FxX)=x%(1)=F(7), ¢xX)=xXr)=¢(7). (129 Equation(129) is a total derivative as/JF is a Killing field.
The expression in the curly brackets corresponds to the re-
These will be our bosonic coordinates in the following. |ated constant of motion. To solve Eq430 and(131) with
The pointparticle action(120) with the solution(99)—  the constant of motioi129) in full generality is a daunting
(103 in the gauge choice as proposed(in—(4) above, to-  task which we do not attempt in the present work. For illus-

gether with Eq(124) simplifies to trative purposes we find it sufficient to consider special cases
5 with some physical relevance. The massless partiate (
Spp=f dr(8'3,°,§°“i°+ S?,L;SY+ ﬂg , (125 =0) together with its supersymmetric orbit" (7) already
2 allows the discussion of different physically interesting ana-
_ o ] lytic solutions. In the cases to be treated below further re-
SRS g~ 1eQF (h+ £( p)F), (126)  strictions will be made:
SEPSY=g7 0 0" u(p)-eCF(Pp+ £(P)F) (1) “Minkowski ground state models”: Within bosonic
_ o theories of gravity a special subset is determined by the con-
—\20"7 0" (p+EF)] dition that atC=0 in Eq. (11) the metric of these theories

) _ ) reduces to the one of Minkowski spa@6,33. This implies
—mlo~ 0"+ 6 0T [F(Z-&(p)+E (h)+Z-¢]1. a relation between the functio#$ ¢) andV(¢) in Eq. (10),
(127) which for supergravity becomes just the conditjpr O, i.e.

the relation

2%There are, of course, counterexamples, e.g., the sol(tionH— U_: _z (132
(112) for ¢#0 in Eq.(105). u
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between the prepotential and the function which determinewhich are the relations from the purely bosonic model. The
nonvanishing bosonic torsion. Spherically reduced gravitymotion of 8" is determined up to the initial value according
from d=4 belongs to this class witH (s an arbitrary con- to Eq.(134), i.e. up to the numerical value afin Eq. (135).
stani Due to the absence of th#s in Egs.(137) and (138), the
evolution of ¢ andF will not depend on the fermionic vari-
Zspe=—(2¢) "L, Ugre=—19, (133 ables. But as all bosonic quantities must be regarded as
. ) (commuting superfunctions, respectively, supernumbers, a
but also more general models which are asymptotically flatgoy| can still be introduced in them by an appropriate choice

if u(ee)—ce. S boson of the initial values for these fields. An example of this type
(2) The (bosonig light-like directionsSRF°"<=0 corre- s evaluated below.

spond to especially simple solutions. They are characterized

by 2. Light-like solution (2a) with p#0
(29 ',::01 The vanishing of Eq(13)) relates the motion in the di-
(2b) ¢+ EF=0. rection 6" to ¢ and ¢:
1. Minkowski ground-state models :
. . . . Nt — 1 ¢ +
The solution of the purely bosonic model wifh=0 is 0 ==3 59 : (139

regarded as a given input in this section. Actually, the inter-
esting cases will be covered by solutions of the t{2® and
(2b) above.

For =0 andm=0 the variation(131) vanishes if

Again the evolution 08" (7) does not depend ofi” and the
general solution

. . . .. + (12
9 b+ EF) 0 +2(p+EF) 07 =0 (134 67 (D=(8)"x (140
with an arbitrary constant spinor is an immediate conse-
quence. The space of anticommuting coordinates is again
(A) ¢+§,'::0_ This is the special case=0 of (2b) two-dimensional and may be parametrized W()\).

above and will be discussed together with the generic As a consequence of EGL40) the termo< 6™ 6" in the

holds. The solutions can be classified as follows:

solutions of this type below. action (127) vanishes. Thus the complete acti¢t25 is
) ) ) identically zero forF=0 and these orbits are not only null
(B) 6" =30, log(¢p+EF)6". directions of the bosonic part of the action, but of the whole
. . super-particle actio125).
The general solution afB) is In terms of the solutior{140) Eq. (130) vanishes identi-
1 cally, whereas the constant of moti¢h?9 can be brought
g+ = N (135 into the form

Vlg+ &F|

where\ is an arbitrary constant spinor. The space of anti-H Ki ber. Aft iah
commuting variables of this class of solutions can be paramt€T€K IS Some constant super-number. After some straight-

etrized by the two constant spinaksand 6~ . In a bosonic forward super-algebra the derivative of Eq.(141) is found
superfunctionA with body Ag and soulAg therefore the de- as
composition

eR1+6 6" u)p=k. (142

. . 1
= — H2 —_ppt —n+ 7
A(7)=Rg() +Ag(1)=Ag() +67Aa(7) (139 A E L S

can be introduced. Heré\g(7) and a(r) are ordinary The body of this equation is seen to yield the correct light-

bosonic functions. like geodesicé=—Z¢?. Inserting this relation into Eq.
As Eq. (139 does not depend o~ any r-derivative of (139 [the termsx u in Eq. (142 vanish due to §7)?=0]

#* is again proportional t@* (or zerg, which especially |eads to

means that™ () has no simple zeros. The singularity in Eq.

(135 corresponds to a light-like directigi\) of the bosonic

line element. o 252‘9+ o. (143
Evaluating the variation§129 and (130 with the solu-
tion (139 they simplify to As Z=dQ/d¢ [cf. Eq. (11)] Eqg. (143 can be transformed
o . into a total derivative and the general solution #®f [Eq.
d(e~(p+2&F))=0, (137) (140] can be expressed alternatively as
(&' +Z&F*—F=0, (139 6" (7)=e. (144
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The constant spinax appearing in this solution is the same j e., a combination of2a with x=0 and Eq.(133. As ¢

as the one in Eq(140).
To solve Eq.(141) a decomposition according to Eq.
(136) is necessary. Using the relations

k=kg+ks, dkg=dks=0, (145
e =e%)[1+Z(¢g) ¢s], (146

the body and soul of Eq141) become
e?8) po=kg, (147

eQ?%e) po+ kgZ(pg) pst kg 07 u(pg)=ks, (149

where in Eq.(148 ¢ has been eliminated by means of Eq.

+ ¢F#0 here, the situation is given Hf) above. Inserting
Eqg. (133 into Egs.(147) and(144) and after integration of
the former relation, one finds after a simple redefinition of
(1/2)(kgT+cg)— T

A
$o=77 07 (1)="—. (154)
The determination of the soul @ simplifies in this special
case, asu(¢)=0. The integrating factor of the differential
equation(149) is given by

(147). The latter equation is equivalent to the one of the

bosonic model, but the value of the completér) receives
contributions from ¢g as well. With the souls ¢g

=6 No(7) andks= 6Nk for ¢ andk in Eq. (148 become

eQ%8) o+ kpZ( bg) @+ kgeQ B2y (pg) =k. (149

For a complete set of initial values for super-coordinate

ZM(7=0) and for the constant of motidg Eqgs.(144), (147

and (149 uniquely determine the evolution of the two dy-

namical variablesp and8*. Certainly, Eqs(147) and(149

cannot be solved in general. In certain cases, however,

simple solution can be obtained:

1
p(1)=5-, (155)
which yields the last dynamical quantity as
~ 27'_ CB
¢ps=0 A7| Ccstk K . (156)
B

Obviously the value ofpg(7) does not depend on the evo-

dution of 6" (7) in Eq. (154). This is a consequence @f

=0 and, as already discussed above, holds in any
Minkowski ground-state theory. Therefore, with the special
choice cs=k=0 the soul of¢ vanishes for allr, but of
gpurse, one is not forced to choose the integration constants
like that. Nevertheless, a nontrivial coupling of the bosonic

Due to Eq(143) the pure|y bosonic solution Corresponds Variab|e¢ to the @ variables is somehow atrtificial. On the

to a special choice of initial values, namely =0. Indeed,
if =0 for any 7= 7y, all 7-derivatives ond™ (7,) vanish

other hand,#*(7) does depend on the behavior ¢f and
thus even in this simple example the bosonic and the fermi-

as well and consequentty’ is zero everywhere. In this case ©Ohic part of the pointparticle do not decouple from each

the constant of motion has a vanishing soul as well.
Models with vanishing bosonic torsioiZ €0) possess a

other. The evolution of* () shows a singularity at=0, a
point where with our choice ofr the singularity of the

simple solution with a nontrivial fermionic sector. As both Schwarzschild black hole at=0 is encountered.

6" and 6~ are constant in this case E(L41) becomes a
total derivative[cf. Eq. (128)]:

Jd
—-(¢=0 0"u)=k=¢—0 9"u—c=kr. (150

Both k andc are supernumbers, wheeés determined by the
initial value of ¢ as

c=co— 00" U(eby). (151

The explicit solution is
#s=kpT+ o, (152
bs=0" 07 (U( ) — (o)) +Ksr, (153

where it has been assumed that the initial valuegofs

3. Light-like Solution (2b) with p£0

Equation(131) vanishes trivially in this case, while Egs.
(129 and (130 (except foré=0) are related by

Eq. (129=¢-Eq. (130. (157)
The remaining only differential equation reads
eR1+ 070" w)p+\2£07 67 =k. (158

If we had still "<, Eq. (158 does reduce to Eq141),
which, of course, is expected to hold for the body of the two
equations. Thus the solutidi39) is one of the solutions for
Eq. (158, with the sameg(7) as derived in the previous
section(notice, however, the different behavior Bj.

Nevertheless, Eq158 allows solutions with9* not pro-

bosonic:ge= ¢go. This class of solutions is especially inter- Portional tog™. This does not lead to a nonvanishing action
esting as it determines the null-directions of a massless supét25), as the latter is proportional 9+ £F. Again one ob-
point particle on a background described by the model okerves that any bosonic null-direction is a null-direction of

Howe [25].

As an example with nonvanishing bosonic torsion we

the whole super-particle.
To discuss the general solution the split into soul and

consider spherically reduced gravity from four dimensionsbody is made again:
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eQ%8) b = kg, (159  gquantum problems have found a complete soluf@si, but
the graded extension of Poisson-sigma models also opens the
door towards a similar treatment of supergravity-like theories

Q(¢B) -9t
e dstkeZ(dp) s tked 07 plde) [13]. A subset of those graded Poisson-sigma motdiES

+\2&(bg) 07 6" =ks. (160 ?n Fig. 1), alrea_d_y identified b_y the present auth_ors as “genu-

ine” supergravities from their algebra of Hamiltonian con-

By introducing the general decomposition féf straints[14], is equivalent to a second order superdilaton
theory (MFDS). The latter, in a more roundabout wgyath
0" (r)=f(re¥\+g(r)6~, f(0)=1, g(0)=0, B'—D’'—B" in Fig. 1) is shown here to bientical to the

(161)  superfield dilaton theory of Reff32] (SFDS in Fig. 1, when
different auxiliary fields in the latter are eliminated, when
certain conformal transformations are made and when the
gravitino field is redefined appropriately. We also were able
to prove that during these procedures the corresponding su-
. ) persymmetric transformations are mapped exactly upon each
+\/§§(¢B)(eQ(¢B)/2[g(7)f(7)—f(T)g(T)] other—with a local Lorentz transformation mixed in only.
The chain of formulas which provides the identification of
1 - superfield dilaton supergravity82] with the corresponding
—eQ(¢B)/2§kBZf(T)9(T)> =k. (162 class of supergravity theories derived from the graded
Poisson-sigma approach is compiled at the end of Sec. V.

Obviously the system is underdetermined, because three frdd1ese formulas should be consulted together with a flow
functions ¢, f, andg obey one single first order differential diagram of Fig. 1 and the corresponding list of actions.

and using agaimbg(7) =6~ N¢(7), Eq. (160 becomes

e o+ kaZ(p) ¢ + ke 2u( pp) (1)

equation. The special situation pf=0 follows straightfor- Of course, once this identification is established, the gen-
wardly by setting this function to zero in all equations of this €ral solution of MFS, obtained after a conformal transforma-
section. tion (target space diffeomorphism in GPSM parlanflem

the solution published already in RdfL3], represents the
general solution of superfield supergravity of Red2] (cf.
Sec. V). Our only technical restriction has been that a fur-
The formulation of supergravity as a superfigttlaton)  ther arbitrary function of the dilaton superfiedl [J(P) in
theory is well-known since the seminal works of Hojias]  the action of Ref[32], respectively our Eq(51)] has been
and Park and Stroming€82]. This approach uses the second assumed to be invertible so that the replaceriédt) — ® is
order formalism with vanishing bosonic torsion. Unless thepossible. This restriction is not serious as on the one hand all
dilaton superfield is nondynamical, this field appears in gohysically interesting theoriespherically reduced gravity,
second order action, which applies to most models with atc) are of this form anyhow. On the other hand, this inver-
bosonic potential of direct physical relevance like Einsteinsion is permitted locally in function space, so that the only
gravity, spherically reduced from D dimensions. Also thefurther complication can be that the general solution is valid
string inspired CGHS moddtL9] (the formal limit D—)  only in a certain patch in this case.
belongs to this class. This general solution of superfield supergravigfter a
The complicated structure of the equations of motion in asuitable choice of gauge-fixings among the bosonic symme-
second order formalism, together with the large number ofries) depends on a bosonic constant Casimir func@oand
(auxiliary) field variables in superfield supergravity, probably on two bosonic functions Fl and ¢, which may be inter-
has been the main reason why to this day no full solution ofreted as the coordinates of the world sheet. E&0 the
generic 2D supergravity with dynamical dilatd82] has anticommuting space is parametrized by two free fermionic
been published! functions, atC=0 one of them is replaced by an anticom-
Our present work closes this lacuna. Also for the firstmuting constant Casimir function and an anticommutifig d
time—we believe—a manageable treatment is provided for As argued in Ref[12] the two fermionic gauge-degrees
“supergeodesics,” the motion of a super-point particle in aof freedom ofN=(1,1) supergravity could be used locally to
very general supergravity background solution which, noneput those functions to zefaero fermion gaugéZF gauge]
theless, is described by a minimal set of fields. so that the bosonic solution survives after all as the only
In order to achieve these results—which by far do not‘nontrivial” one, as long as no interactions with matter are
exhaust the list of further applications—one relies heavilyconsidered. Indeed, by only demanding a nonsingular deter-
upon the knowledge gained in first order 2D bosonic gravityminant of the supermetric—generalizing the nonsingularity
[1,2] and the more general concept of Poisson-sigma model®striction of bosonic gravity—this ZF gauge would be per-
[7,8]. mitted, and, in this philosophy, pure supergravity would be-
Within this approach not only in bosonic gravity many come “trivial,” because the gravitino can be “gauged away.”
(without interaction with matter: essentially afllassical and However, whether such a gauge is “physically” accessible
depends on the way a “measuring devicéd.g. super-
geodesit is transformed in this process. Only for a very
21cf. the comment below Eq50) in [32]. restricted class of solutions an “invariant” device can be

VIIl. CONCLUSION AND OUTLOOK
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constructed, namely when such a solution does not break 1,JK, ... include both commuting and anticommuting
supersymmetry. In the generic case our solution, as well agbjects. Generalized commutation relations are written in the
the bosonic one of Ref32], show explicit supersymmetry standard way
breaking. The general solution provided in the present work

covers all cases, but in the applications presented in our

present paper—for simplicity—backgrounds in the ZF gauge

are considered, only.

_ The formulation of the massive super-point particle, mov-yhere the indices in the exponent take valugsdmmuting
ing along a “super-geodesic” is straightforward in the super-gpjecy or 1 (anticommuting objegt

field formalism, but so far—for lack of a general solution of i k' aregeneric commuting indices.

the supergravity background—has been very difficult to

work with in practice. Mapping the action of that particle

into the GPSM_based forma“sm by means of the identifica_To Iabel h0|0n0miCC00rdinateS, |etterS from the m|dd|e Of
tion found in our present work, leads to a system of superihe alphabet are used:

v'w= (=1 w!, (A1)

geodesic equation$ec. VI)) which describes the motion in ~ M.N.L, ... can be both commuting and anticommuting.
a background solution. Interestingly enough, even in the ZF m.nl, ... are commuting.
gauge (with gravitino set to zero identicallythe bosonic M, v, p, ... are anticommuting.

geodesicgthe “body”) are accompanied by an orbit in the

superpartnef“soul” ) of the bosonic coordinates. This 0pens anholonomiccoordinates are labeled by letters from the be-
an interesting field of detailed investigations of such system@inmng of the alphabet:

where body and soul may mutually influence each other in AB.C, ... can be both commuting and anticommuting.
the quest for a globally complete solutiddescribed by a a,bc, ... are commuting.

“super—Penrosg diagran).”V\(e on!y present some simple ex- a,B,y, ... are anticommuting.

a.mples here with massleﬂ&ght—llke) movement anq espe- The index¢ is used to indicate the dilaton component of
cially concentrate also on theories with Minkowski groundthe GPSM fields:

state models in their bosonic sector. Such backgrounds be-

come flat forC=0. They include e.g. the Schwarzschild

solution, but also other models which are not asymptotically X¢= ¢, A,=w. (A2)
flat.

Clearly the range of further studies, made possible by our . .
present work, is very broad because B3PSM technology ~_ Theé summation convention is alwayéW—SE, espe-

is extremely powerful, not only at the classical, but in par-cially for a fermiony: X?=X“Xa- Our conventions are ar-
ticular also at the quantum levél—4,33—36,60 On the ranged in such a way that almost every bosonic expression is
other hand, superspace techniques allow one to couple mattégnsformed trivially to the graded case when using this sum-
ﬁe|ds in a Straightforward Way to MDFS and NDMRsf mation convention and replaCIng Commutlng IndICES by gen'
Fig. 1). Therefore a path integral quantization of MFS eral ones. This is possible together with exterior derivatives
questions like the one concerning a fermionic counterpart ofiven by
the (bosonig virtual Black Hole[37,38 can be expected to
find an answer—as well as a plethora of further research _ B
e . : S : AB)=AdB+(—1)°(dA)B. A3
directions, e.g., the inclusion of Yang-Mills fields, just to d(AB) (=1)%(dA) (A3)
name one of therh51,52,61.
In terms of anholonomic indices the metric and the sym-
ACKNOWLEDGMENTS plectic 2xX 2 tensor are defined as
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(A4)

APPENDIX A: NOTATIONS AND CONVENTIONS

These conventions are identical [ib3,28, where addi- The metric in terms of holonomic indices is obtained by
tional explanations can be found. Omn= eﬁeﬁmab and for the determinant the standard expres-
sione=dete5 =\ —detgm, is used. The volume form reads
Genericindices(used in the context of GPSM'sre chosen e=3e?%,/\e,.
from the middle of the alphabet: The vy matrices are used in a chiral representation:
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0 1 0 1 1
0 B— 1A= —| d6? e°=1. B1
Ve (1 0" Ve Tl-1 o)’ ZJ (B1)
3 B 1,0\ B 10 Our covariant derivative with respect to anholonomic indices
Y =V Y= 0 -1/ (A5) - p

The matrices §?)*#=€*°y2# and (y*)*# are symmetric in
{a,B}. The most important relations among tlgematrices D,=d,+i(¥%0),0,. (B2
are

YRyP= 7301+ €898 43y 8=1Pe 2. (A6)  With these conventions and the particular choice of gauge

used in this work the componeftsof the super-zweibein
Covariant derivatives of anholonomic indices with respectread[13]
to the geometric variables,=dx™e,, and ,=dx™ ¢ ,m
include the two-dimensional spin-connection one faniP 1
=_weab. When gctlng on lower indices the explicit expres- Ep= e+ 2i (072 ¢m) + Eleéema, (B3)
sions read {2 is the generator of Lorentz transformations
in spinor spacke

|
1 @ __ a_ —7 3a a
(De)a: dea+ weabeb, (Dlr/f)a: dd,a_ waye'aﬁdjﬁ' Em _gm ng(a'y ) + Zé(eym)
(A7) 1,3 o~
. . — 2| AU (@ my)) ALy
Finally light-cone components are introduced. As we
work with spinors in a chiral representation we can use (B4)
o N E, =1(0%%),, (B5)
X=(X"X) Xa= (A8)
X-
1
For Majorana spinors upper and lower chiral components are E, “=4,“ 1— 2 025) , (B6)

related byy " =x_, x = —x+, X*=X“Xa=2x-X+ . VeC-
tors in light-cone coordinates are given by
_ _ wherew and ¢ are defined as in Eq$29) and (34), respec-
I I . ] - - - .
o (%90, » T =—=(%—pY). (A9 tively, howeyer, expressed in terms of underlined fields. In
V2 superspace it is often useful to introduce the Lorentz covari-
ant decomposition of the gravitino field
Derivatives with respect to these components are written
compactly as

v

1
¢aa:(£ya)a+£aa1 £a:§(£a)’a)av

J Ld
aK:W:(a(b!&ﬁ—ﬁ—l&——laﬁ—’a—)' (A].O)
1
The additional factor in Eq. (A9) permits a direct identifi- )\aazz(d/byayb)a. (B7)
cation of the light-cone components with the components of o o
the spin-tensor v*?=iv°y??/\J2. This implies that
N++|--=1lande__j,,=—€,,__=1. Theymatricesin  Finally we provide the relevant superspace integrations in
light-cone coordinates become the general dilaton model of RéB2]. According to Eq(51)
the following integrations have to be performed:
| D PR W SN [
« 0 0/ @ 1 0/ 1 1
(A12) ROEID)S=e| ZRI+ I (x )+ I’ F A+ =J"A 2|,
2— AT DT g =4
APPENDIX B: SUPERSPACE INTEGRATION (B8)

As for fermionic fields the square of the superspace vari=————
ables is abbreviated b§?= 6“6, . Superspace is integrated 2%Field components in a superfield are denoted by underlined
out by symbols throughout.
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5 Evaluating Eq.(51) with Egs.(B8)—(B10), the variation of
f d°¢0 EK(®)D*®D P the action with respect to the auxiliary fielésandF yields

) the elimination conditions for those fields:
[
= E(2K< I"pIme = ZX ¥V Imx T E* = (4 "Y" ¥ X) ﬁm<_b>

1 1 __ = E ", 2
+ZKK2(£n,ym,yn£m)+ZKrle), (Bg) E— 7 L+ 8J X ), (Bll)
J'dZGEL(CD)
el (A+22+N\Y)L+L' (F+i(¢y? ))+1|_"( )) A=4 KLU + K" 1K) (B12)
= Y+ gL (x x) |- = - a1 X
- 2 — EALAAN 8 [ASAS — (J/)Z J’ Z(J/)Z 4J/ X

(B10)
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