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Complete solution of 2D superfield supergravity from graded Poisson-sigma models,
and the super point particle

L. Bergamin* and W. Kummer†

Institute for Theoretical Physics, Vienna University of Technology, Wiedner Hauptstrasse 8-10, A-1040 Vienna, Austria
~Received 7 July 2003; published 7 November 2003!

Recently an alternative description of 2D supergravities in terms of graded Poisson-sigma models~GPSM!
has been given. As pointed out previously by the present authors a certain subset of GPSMs can be interpreted
as ‘‘genuine’’ supergravity, satisfying the well-known limits of supergravity, albeit deformed by the dilaton
field. In our present paper we show that precisely that class of GPSMs corresponds one-to-one to the known
dilaton supergravity superfield theories presented a long time ago by Park and Strominger. Therefore, the
unique advantages of the GPSM approach can be exploited for the latter: We are able to provide the first
complete classical solution for any such theory. On the other hand, the straightforward superfield formulation
of the point particle in a supergravity background can be translated back into the GPSM frame, where ‘‘su-
pergeodesics’’ can be discussed in terms of a minimal set of supergravity field degrees of freedom. Further
possible applications such as the~almost! trivial quantization are mentioned.
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I. INTRODUCTION

Theories of gravity in 111 dimensions naturally emerg
from the generalization of~e.g. spherically! reduced Einstein
gravity in arbitrary dimensions. Decisive progress in t
treatment of their classical and quantum properties were
consequence of the discovery in the early 1990s that a Ca
formulation in a specific lightlike gauge@1#, which is equiva-
lent to an Eddington-Finkelstein gauge for the metric, n
only simplifies enormously the evaluation of the classi
theory, but even allowed an exact~trivial! nonperturbative
quantization @2–5#. After the application to a particula
model with curvature and torsion@6# it was realized that no
only all 2D gravity models but an even larger class of the
ries may be covered by the concept of Poisson-sigma mo
~PSMs! @7–11#. There a set of target space coordinates~aux-
iliary fields on the 2D worldsheet! exists in addition to the
gauge degrees of freedom. In this framework the simplic
of 2D classical and quantum gravity becomes manifest. P
models generalized naturally to the graded case~GPSM!
when they are supplemented by anticommuting fie
@12,13#. The resulting models exhibit the typical gauge tran
formation of supergravity theories. However, the fermion
extensions are highly ambiguous. In addition they may int
duce new singularities and/or obstructions as compare
the bosonic theory for which they have been derived. T
result was obtained for theN5(1,1) superextension, bu
should hold also for higherN.

Recently the present authors realized@14# that a subset of
those GPSMs can be identified, which satisfies a constr
algebra whose structure is very close to the algebra
‘‘genuine’’ supergravity. In this algebra the modifications b
the presence of the dilaton field@and its single fermionic
partner for N5(1,1)] are, in a sense, minimal. The on
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GPSMs allowed by that algebra correspond to auniqueclass
of ~dilaton deformed! N5(1,1) supergravity theories@called
‘‘minimal field supergravity’’ ~MFS1! in the following# in
which—somewhat miraculously—even all singularities a
obstructions in the generic fermionic extensions disapp
The bosonic part of physically interesting theories~spheri-
cally reduced gravity@15–18#, string inspired black hole
@19#, simplified models@20–24#, bosonic potential of super
gravity from superspace@25#! are special cases thereof. Th
is also a nontrivial result, because the ‘‘potential’’ of tho
bosonic theories must be derivable from a prepotential.

Already in the purely bosonic case, where the PSM
equivalent@26,27# to a general 2D dilaton theory~GDT! with
vanishing torsion but dynamical dilaton, the correspond
PSM works with nonvanishing bosonic torsion. If this PS
action shall be extended directly to its supersymmetrized v
sion using the superspace formalism, the generalization
the usual conventional constraints, valid solely for vanish
bosonic torsion, is an imperative step. In consequence, a
solution of Bianchi identities, etc., has to be consider
which turned out to be a highly nontrivial task@28#. Within
the GPSM approach this problem is avoided altogether an
suffices to solve a graded Jacobi-type identity~vanishing
Nijenhuis tensor! @13#.

Therefore the question arises whether, and in what se
the equivalence of the bosonic PSM and GDT theories
be extended to supergravity. To this end it must be inve
gated whether a GPSM based MFS has any relation t
genuine dilaton superfield theory, expressed in terms of
perspace coordinates for adynamicalsuper-dilaton field. An
indication that this may work comes from the known res
@13,28–31# that a GPSM model withvanishingbosonic tor-
sion @31# is—up to elimination of auxiliary fields—

1Already at this point the authors apologize for the introduction
quite a number of special acronyms. It seems that only in term
those a reasonably compact formulation of the strategy is poss
~cf. also Fig. 1 below!.
©2003 The American Physical Society05-1
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FIG. 1. Relation between different formula
tions of 2D gravity and 2D supergravity. Expla
nations are given in the text.
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equivalent to a dilaton superfield theory@32# with nondy-
namicaldilaton. By further elimination of an auxiliary spino
~‘‘dilatino’’ ! this simpler model can be related quite gen
ally to the supergravity model of Howe@25# as well.

One of the main motivations to establish such a relation
the general case is the fact that in the~G!PSM approach the
complete exact classical solution can be found for all s
models. Also, for bosonic PSMs the quantization is~almost!
trivial @1–4#2 as long as no matter interactions are includ
But even with matter a meaningful quantum perturbat
theory can be developed@34–36#, leading to an improved
understanding of phenomena like the virtual black h
@37,38#. Most of these results should extend straightf
wardly to the GPSM@39#, which would allow substantia
progress in the understanding of generalized supergravit
two dimensions.

In our present paper we are able to report that, indee
detailed equivalence exists between the class of GP
supergravities of Ref.@14# ~MFS models! and the well-
known dilaton superfield supergravities, proposed somet
ago by Park and Strominger@32# @dubbed ‘‘superfield dilaton
supergravities’’~SFDS!#. The equivalence proceeds throug
different steps which should be transparent in the schem
representation of Fig. 1, an explanation thereof is given fi

2For a comprehensive review we suggest@33#.
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The two left hand columns of the figure cover the pure
bosonic theories, the ones on the right-hand side~rhs! in-
clude their fermionic extensions. The two columns in t
middle contain theories with dynamical dilaton, while th
two columns at the borders are reserved for the restric
class of models with nondynamical dilaton, respectively.

As indicated by arrows at the top of the figure, differe
theories displayed in a row are related to each other
means of supersymmetric extension or by restriction to n
dynamical dilaton.

Two fermionic extensions~MFDS and SFDS! correspond
to GDT, which is indicated by the large bracket.

Relations between different models are described by
rows. Double-headed arrows are used if the correspond
relation indicates complete equivalence, or, at least, holds
the most important class of the connected theories. Sim
arrows point from the more general theories towards the
stricted ones.

Labels with a tilde indicate that this relation is a straigh
forward generalization of the corresponding relation amo
bosonic theories~e.g.A↔Ã). Relations among different ar
rows within the same part of the figure~bosonic part or su-
persymmetric part, respectively! are indicated by primes~e.g.
A↔A8).

The equivalenceA between PSM and GDT~respectively
A8 for nondynamical dilaton! in the bosonic case is well
5-2
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COMPLETE SOLUTION OF 2D SUPERFIELD . . . PHYSICAL REVIEW D68, 104005 ~2003!
known @26,27,33# so thatÃ amounts to a trivial generaliza
tion of A, when anticommuting fields are included@13#. It
connects MFS to minimal field dilaton supergravity~MFDS!,

the fermionic extension of GDT~the same is true forÃ8).
The proof of the quite nontrivial equivalenceD provides

the basis of our present paper. We first establish it betw
the NDMFS and the SFNDS theory, bothwithout dynamical
dilaton, following the pathD8 in Fig. 1. In a second step
SFNDS and SFDS are found to be connected by

~super-!conformal transformation (B̃9 backwards!, which in
the GPSM frame possesses a counterpart in a special t
space diffeomorphism~path B̃ backwards! between MFS0
and MFS. That latter transformation turns out to be a gen
alization of the conformal transformation linking GDT an
NDDT in the pure bosonic case~path B). We have found
that in this way the more complicated direct relation of t
general models~path D) is sufficiently transparent. This
strategy is especially important also for keeping track of
proper way the symmetry transformations are mapped u
each other following those successive steps.

Another equivalence is established between theories
nondynamical dilaton (MFS0 and SFNDS, respectively! and
the model of Howe@25#. For the restricted class of action
with invertible ~pre-!potential this may be obtained by th
elimination of a superfield~path C̃) or, alternatively, by the
pathD8→E. This last equivalence also allows one to rela
MFS0 directly ~i.e. without usingD8, but insteadÃ8→E) to
Howe’s supergravity@25#.

On the basis of those relations the technical advantage
GPSM supergravity can be exploited in full detail for th
SFDS theories of Ref.@32#: Proceeding ‘‘top down’’ from the
box MFS in Fig. 1 (Ã→D) and using the known genera
solution for the MFS0 @13# together with~the inverted arrow!
B̃, we are able to give the complete analytic solution for
general superfield dilaton supergravity of Ref.@32#, includ-
ing all fermionic contributions.

Another example where the opposite way, the ‘‘botto
up’’ sequence (D→Ã) is to be chosen, is important for th
determination of the supergravity generalization of the g
desic within the GPSM formulation because the supers
metric line element or the super-point particle can be defi
straightforwardly in the superfield formulation only.

The paper is organized as follows: In Sec. II at first~Sec.
II A ! the basic features of GPSMs are reviewed shortly. T
~Sec. II B! the subset MFS of ‘‘genuine’’ supergravities
described as determined in Ref.@14# and the corresponding
MFDS ~Sec. II C! which is obtained after elimination of cer
tain auxiliary3 fields. They include the part of the spin
connection which, at the PSM level, depends on the bos
torsion and the target-space coordinates except the dil
and the dilatino.

Section III is devoted to the superfield approach of
supergravity, where it suffices to consider the standard c

3These ‘‘auxiliary’’ fields in the~G!PSM approach should not b
confused with auxiliary fields in a superfield formulation.
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with vanishing bosonic torsion. The important role
~super-!conformal transformations is explained in Sec.
which prepares the ground for the equivalence proof of m
mal field supergravity, as deduced from GPSMs, with dila
superfield supergravity. The proof is presented in Sec. V.
exact classical solutions of 2D superfield supergravity@32#
are obtained in Sec.VI. Another application~Sec. VII! is the
formulation of a supergeodesic, defined as the motion o
test particle in the background of minimal field supergravi
Here only some very simple special cases are discusse
e.g. the null-directions and the consequences for the su
gravity background generating the Schwarzschild soluti
In the Appendixes we collect details of our notation a
some lengthy formulas.

II. GRADED POISSON-SIGMA MODEL AND MINIMAL
FIELD SUPERGRAVITY

A. Graded Poisson-sigma model

A general GPSM consists of scalar fieldsXI(x), which
are themselves coordinates of a graded Poisson man
with Poisson tensorPIJ(X)5(21)IJ11PJI(X). The indexI,
in the generic case, includes commuting as well as antic
muting fields.4 In addition one introduces the gauge potent
A5dXIAI5dXIAmI(x)dxm, a one form with respect to the
Poisson structure as well as with respect to the 2D wo
sheet coordinates. The GPSM action reads5

SGPSM5E
M

dXI`AI1
1

2
PIJAJ`AI

5E e~]0XIA1I2]1XIA0I1PIJA0JA1I !d
2x. ~1!

The Poisson tensorPIJ must have a vanishing Nijenhuis ten
sor ~obey a Jacobi-type identity with respect to the Schou
bracket related as$XI ,XJ%5PIJ to the Poisson tensor!

PIL]LPJK1g-perm~ IJK !50, ~2!

where the sum runs over the graded permutations. Due to
~2! the action~1! is invariant under the symmetry transfo
mations

dXI5PIJ«J , dAI52d« I2~] I P
JK!«KAJ , ~3!

where the term de I in the second of these equations provid
the justification for callingAI ‘‘gauge fields.’’

For a generic~G!PSM the commutator of two transforma
tions ~3! is a symmetry modulo the equations of motio
~e.o.m.s!. Only for PIJ linear in XI a closed~and linear! Lie
algebra is obtained, and Eq.~2! reduces to the Jacobi identit
for the structure constants of a Lie group. If the Poiss

4The usage of different indices as well as other features of
notation are explained in Appendix A. For further details one sho
consult Refs.@13,28#.

5If the multiplication of forms is evident in what follows, the
wedge symbol will be omitted.
5-3
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L. BERGAMIN AND W. KUMMER PHYSICAL REVIEW D 68, 104005 ~2003!
tensor is singular—the actual situation in any application
2D ~super-!gravity due to the odd dimension of the boson
part of the tensor—there exist~one or more! Casimir func-
tions C(X) obeying

$XI ,C%5PIJ
]C

]XJ
50, ~4!

which, when determined by the field equations of motion,
constants of motion. The variation ofAI and XI in Eq. ~1!
yields the GPSM field equations

dXI1PIJAJ50, ~5!

dAI1
1

2
~] I P

JK!AKAJ50. ~6!

In the application to two dimensionalN5(1,1)
supergravity,6 the gauge potentials comprise the spin conn
tion vab5veab , the zweibein and the gravitino:

AI5~Af ,Aa ,Aa!5~v,ea ,ca!,

XI5~Xf,Xa,Xa!5~f,Xa,xa!. ~7!

The fermionic componentsca ~‘‘gravitino’’ ! and xa ~‘‘di-
latino’’ ! are Majorana spinors. Local Lorentz invariance d
termines thef-components of the Poisson tensor

Paf5Xbeb
a , Paf52

1

2
xbg3

b
a , ~8!

and the supersymmetry transformation is encoded inPab. In
a purely bosonic theory, the only arbitrary component of
Poisson tensor isPab5veab, where the locally Lorentz in-
variant ‘‘potential’’ v5v(f,Y) describes different model
(Y5XaXa/2). Evaluating Eq.~1! with that Pab and Paf

from Eq. ~8! the action (e5 1
2 eabeb`ea is the volume form,

Dea5dea1vea
beb)

SPSM5E
M

~fdv1XaDea1ev ! ~9!

is obtained. The physically most interesting models are
scribed by potentials quadratic inXa

v5YZ~f!1V~f!. ~10!

They include spherically reduced Einstein gravity@15–18#,
the string inspired black hole@19#, the simplified model with
Z50 and linearV(f) @20–24#, the bosonic part of the Howe
model @25#, etc.

Potentials of type~10! allow the integration of the~single!
Casimir functionC in Eq. ~4!

6More complicated identifications of the 2D Cartan variables w
AI are conceivable@40#.
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C5eQ(f)Y1W~f!, Q~f!5E
f1

f

dw Z~w!,

W~f!5E
f0

f

dweQ(w)V~w!, ~11!

where e.g., in spherically reduced gravityC on-shell is pro-
portional to the ADM-mass in the Schwarzschild solution

The auxiliary variablesXa and the torsion-dependent pa
of the spin connectionv can be eliminated byalgebraic
equations of motion~path A in Fig. 1!. Then the action re-
duces to the familiar generalized dilaton theory in terms
the dilaton fieldf and the metric:

SGDT5E d2xeS 1

2
Rf2

1

2
Z]mf]mf1V~f! D . ~12!

Both formulations are equivalent at the classical@26,27# as
well as at the quantum level@34–36#.

For theories with nondynamical dilaton@Z50 in Eq.
~10!# a further elimination off is possible if the potentia
V(f) is invertible. In this way one arrives at a theory sole
formulated in terms of the zweibeinem

a ~pathC in Fig. 1!.

B. Minimal field supergravity

For N5(1,1) supergravity@cf. Eq. ~7!# a generic fermi-
onic extension of the action~9! is obtained by making gen
eral Lorentz invariantAnsätzefor Paa,Pab together with the
fermionic extension ofPab5eab(v1x2v2) of the bosonic
case (x25xaxa). Then the Jacobi identity~2! is solved.
Here Eq.~8! and the bosonic potentialv are a given input.
This leads to an algebraic, albeit highly ambiguous solut
with several arbitrary functions@13#. In addition, the fermi-
onic extensions generically exhibit new singular terms. A
not all bosonic models permit such an extension for
whole range of their bosonic fields, sometimes even no
tension is allowed.

As shown by the present authors@14#, it is, nevertheless,
possible to select ‘‘genuine’’ supergravity from this huge s
of theories. This is possible by a generalization of the st
dard requirements for a ‘‘true’’ supergravity@41–45# to the
situation, where deformations from the dilaton fieldf are
present. To this end the nonlinear symmetry~3!, which is
closed on-shell only, is—in a first step—related to a mo
convenient~off-shell closed! algebra of Hamiltonian con-
straints GI5]1XI1PIJ(X)A1I . The Hamiltonian obtained
from Eq. ~1! in terms of these constraints takes the fo
@2,14,46#

H5E dx1 GIA0I . ~13!

In a second step a certain linear combination of theGI , sug-
gested by the ADM parametrization@14,47,48#, maps theGI

algebra upon a deformed version of the superconformal
gebra~deformed Neuveu-Schwarz, respectively, Ramond
gebra!. This algebra is appropriate to impose restrictio
which represent a natural generalization of the requireme
5-4
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COMPLETE SOLUTION OF 2D SUPERFIELD . . . PHYSICAL REVIEW D68, 104005 ~2003!
from supergravity to theories deformed by the dilaton field
turned out that the subset of models allowed by these res
tions uniquely leads to the GPSMsupergravityclass of theo-
ries @called ‘‘minimal field supergravity’’ ~MFS! in our
present paper# with the Poisson tensor7

Pab5S V1YZ2
1

2
x2S VZ1V8

2u
1

2V2

u3 D D eab, ~14!

Pab5
Z

4
Xa~xgagbg3!a1

iV

u
~xgb!a, ~15!

Pab522iXcgc
ab1S u1

Z

8
x2Dg3ab, ~16!

where the three functionsV, Z and the ‘‘prepotential’’u de-
pend on the dilaton fieldf only. Besides the fixed compo
nents ofPIJ according to Eq.~8! supergravity requires the
existence of supersymmetry transformations, which are g
erated by the first term in Eq.~16!. It has been a central resu
of Ref. @14# that Pab must be of the form~16!, i.e. the
generator of supersymmetry transformations is not allow
to receive any deformations with respect to its form fro
rigid supersymmetry. Furthermore in order to satisfy the c
dition ~2! V, Z andu must be related by (u85du/df)

V~f!52
1

8
„~u2!81u2Z~f!…. ~17!

Thus, starting from a certain bosonic model with poten
~10! in Eq. ~14!, the only restriction remains that it must b
expressible in terms of a prepotentialu by Eq. ~17!. This
happens to be the case for most physically interesting th
ries @15–25#. Inserting the Poisson tensor~8!, ~14!–~16! into
Eq. ~1! the ensuing action becomes@the covariant derivatives
are defined in Eq.~A7!#

SMFS5E
MS f dv1XaDea1xaDca

1eS V1YZ2
1

2
x2S VZ1V8

2u
1

2V2

u3 D D
1

Z

4
Xa~xgagbebg3c!1

iV

u
~xgaeac!1 iXa~cgac!

2
1

2 S u1
Z

8
x2D ~cg3c!D . ~18!

For later reference we also define the simpler model withZ̄

50 (MFS0), where the fields are denoted by (f̄,X̄a,x̄a) and
(v̄,ēa ,c̄a)

7The constantũ0 in Ref. @14# has been fixed asũ0522. This is in
agreement with standard supersymmetry conventions.
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SMFS0
~f̄,X̄a,x̄a;v̄,ēa ,c̄a!5SMFSuZ50; fields→fields.

~19!

In terms of Eq.~8! and Eqs.~14!–~16! the supersymmetry
transformations of the MFS model, according to Eq.~3!,
read:

df5
1

2
~xg3«!, ~20!

dXa52
Z

4
Xb~xgbgag3«!2

iV

u
~xga«!, ~21!

dxa52iXc~«gc!
a2S u1

Z

8
x2D ~«g3!a, ~22!

dv5
Z8

4
Xb~xgbgag3«!ea1 i S V

u D 8
~xga«!ea

1S u81
Z8

8
x2D ~«g3c!, ~23!

dea5
Z

4
~xgagbg3«!eb22i ~«gac!, ~24!

dca52~D«!a1
Z

4
Xa~gagbg3«!aeb1

iV

u
~gb«!aeb

1
Z

4
xa~«g3c!. ~25!

We list neither here nor below transformations with the th
bosonic parameters« i . The symmetry transformation gene
ated by Eq.~8! corresponds to the local Lorentz transform
tions, the other two, by the field-dependent choice of
symmetry parameter«a5jmAma , describe 2D diffeomor-
phismsjm @49#. Clearly, the invariance with respect to th
latter three transformations is also evident from the expl
form of the action~18!.

C. Minimal field dilaton supergravity

The PSM form of the action~18! represents a theory with
nonvanishing bosonic torsion. This can be seen easily fr
the e.o.m. obtained by variation ofXa. Nevertheless, it is
~locally and globally! equivalent to a theory with dynamica
dilaton field and vanishing bosonic torsion. We recall t
basic steps of this relation~path Ã in Fig. 1! as applied al-
ready to the GPSM in@13#. For this purpose the action~18!
is most conveniently abbreviated as

LMFS5E
M

S f dv1XaDea1xaDca1
1

2
PABeBeAD ,

~26!

where nowA5(a,a) only includes the zweibeinea and the
gravitinoea5ca components~cf. Appendix A!. Varying Eq.
~26! with respect toXa leads to the torsion equation
5-5
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L. BERGAMIN AND W. KUMMER PHYSICAL REVIEW D 68, 104005 ~2003!
Dea1
1

2
~]aPAB!eBeA50, ~27!

which can be used to substitute the independent spin con
tion v by the dependent8 supersymmetry covariant conne
tion ṽ and by the torsiont̃:

va5ea
mvm5ṽa2 t̃a, ~28!

ṽa5emn]nema2 i emn~cngacm!, ~29!

t̃a52
1

2
~]aP̂AB!emneBneAm, ~30!

P̂AB5PAB12ida
Adb

BXcgc
ab . ~31!

By partially integrating the torsion dependent part of E
~26! some derivatives are moved onto the dilaton fieldf and
the action reads~up to total derivatives!:

SMFS5E d2x eS 1

2
R̃f1~xs̃!2

1

2
P̂ABemneBneAm

1S Xa1em
a emn~]nf!1

1

2
em

a emn~xg3cn! D t̃aD .

~32!

The curvature scalar

R̃52* dṽ52emn]nṽm ~33!

through Eq.~29! depends on the torsion free spin connect
ṽ which, in turn, may be expressed as well by the me
gmn5em

a ena . In addition, the fermionic partner of the curva
ture scalar has been introduced, which is defined as

s̃a5* ~D̃c!a5emnS ]ncma1
1

2
ṽn~g3cm!aD . ~34!

Varying again with respect toXa finally allows one to elimi-
nate this field as well:

Xa52ea
memnS ~]nf!1

1

2
~xg3cn! D . ~35!

Inspecting the original action~26! one realizes that this is th
e.o.m. of the independent spin connectionv. It is important
to notice that the structure of Eq.~35! does not depend on th
details of the Poisson tensor, but is determined solely by
condition of local Lorentz invariance. Equations~28! and
~35! are algebraic and even linear in the variables to
eliminated. Therefore, they may be reinserted into the ac
~32!:

8Here and also in the superfield approach below supersymm
covariant quantities acquire a tilde when they denotedependent
variables.
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SMFDS5E d2x eS 1

2
R̃f1~xs̃!2

1

2
P̂ABU

Xa

emneBneAmD .

~36!

Here Xa indicates that this field should be replaced by E
~35!.

Because in the MFS the Poisson tensorPab depends qua-
dratically on Xa @cf. Eq. ~14!#, according to Eq.~35! the
usual quadratic dynamical term for the dilaton fieldf is
produced. Thus, reinserting the Poisson tensor~14!–~16!
with Eq. ~35! into Eq. ~36! yields the minimal fielddilaton
supergravity~MFDS!:

SMFDS5E d2x eS 1

2
R̃f1~xs̃!

1V2
1

4u
x2S VZ1V814

V2

u2 D
2

1

2
ZS ]mf]mf1

1

2
~xg3cm!]mf

1
1

2
emn]nf~xcm! D2

iV

u
emn~xgncm!

1
u

2
emn~cng3cm!D . ~37!

This action describes dilaton supergravity theories with m
mal field content and vanishing bosonic torsion: The boso
variableem

a appears explicitly, but it also is contained in th

dependent spin connectionṽ according to Eq.~29!. Beside
the dilaton fieldf the fermionic dilatinoxa remains. Clearly
for Z50 ~NDMFS in Fig. 1! the dynamical terms for the
dilaton field disappear@V̄5V̄(f̄), etc.#:

SNDMFS5E d2x ēS 1

2
R̃̄f̄1~ x̄ s̃̄ !1V̄2

1

4ū
x̄2S V̄814

V̄2

ū2 D
2

iV̄

ū
emn~ x̄gnc̄m!1

ū

2
emn~ c̄ng3c̄m!D . ~38!

While a further elimination of the dilatino is possible fo
quite general NDMFS models~discussed in Sec. V A!, one
can get rid off in certain very special~simple! cases of Eq.
~38! only, namely for invertible potential termsV, respec-
tively, u @cf. Eq. ~17!#.

The supersymmetry transformations of the MFDS mo
follow by eliminatingXa andv in Eqs.~20!, ~22!, ~24! and
~25!. Except for Eq.~25! the new transformation rules ar
immediate by substitutingXa by Eq.~35!. In Eq. ~25! we use
the explicit formula of the covariant torsion@cf. Eq. ~30!
with Eqs.~14!–~16!#

t̃a52ZS Xa1
1

4
~xgagbcn!eb

nD . ~39!

try
5-6
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After some algebra the result

df5
1

2
~xg3«!, ~40!

dxa522i emnS ]nf1
1

2
~xg3cn! D ~«gm!a

2S u1
Z

8
x2D ~«g3!a, ~41!

dem
a 5

Z

4
~xgagbg3«!emb22i ~«gacm!, ~42!

dcma52~D̃«!a1
iV

u
~gm«!a1

Z

4 S ]nf~gmgn«!a

1
1

2
~cmgnx!~gng3«!aD ~43!

is obtained.
The action~37! with its symmetry transformations~40!–

~43! is most convenient for a comparison with a superfi
formulation of 2D supergravity, because in Eq.~37! the
bosonic torsion vanishes and it is precisely this case
which the standard supergravity has been developed.

III. SUPERFIELD DILATON SUPERGRAVITY

Any formulation of dilaton supergravity in superspace
embedded in the background of pure 2D super-geome
The simplest nontrivial superfield extension of the topolo
cal bosonic 2D action*d2x eR is obtained by promoting the
determinante5A2g to the superdeterminantE, and the cur-
vatureR to a component of a real superfieldS, which appears
in a functionF(S). At the same time the integration is ex
tended to an integral overN5(1,1) superspace@zM

5(xm,um)#:

SHowe5E d2x d2u EF~S!. ~44!

In the following Eq.~44! will be referred to as the ‘‘Howe-
action’’ because the analysis of 2D supergravity in terms
superfields goes back to the seminal paper@25# of this author.
In the notation and conventions of the Appendixes~cf. also
Ref. @13# and the superspace conventions of@28#! the respec-
tive u-expansions read

E5eS 122i ~uz!1
1

2
u2~A12z21l2! D , ~45!

S5A12~ug3s̃ !12i A~uz!1
1

2
u2~emn]nṽm

2A~A12z21l2!24i ~zg3s̃ !!. ~46!

For reasons that will become clear in Sec. V B superfi
components are consistently expressed by underlined let
10400
r
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exceptem
a . za and la

a are the components of the Loren
covariant decomposition of the gravitinoca

a5ea
mcm

a accord-

ing to Eq. ~B7!. The dependent variablesṽ, R̃ and s̃ are
defined by the Eqs.~29!, ~33! and~34!, when substituting all
variables therein by underlined ones.

The independent variables in the Howe-action~44! are the
components of the zweibeinea, of its fermionic partnerca

and an auxiliary fieldA. Inserting the decomposition~B7! of
c and integrating out superspace Eq.~44! reduces to@cf. Eq.
~B1!, derivatives with respect toA are indicated by a dot#:

SHowe5E d2x eS 1

2
ḞR̃2A~AḞ2F!12F̈s̃2

22i AF̈~cagag3s̃ !2
1

2
A2F̈~cmcm!

1S 1

2
A2F̈2~AḞ2F! D emn~cng3cm! D . ~47!

Here F(A) is F(S)uu50, the body of the functionF(S) in
Eq. ~44!. The action~47! remains invariant under the supe
gravity transformations9 @as in the notation for the fields,« is
used to distinguish that transformation parameter from« in
Eqs.~40!–~43!#:

dem
a522i ~«gacm!, dem

a52i ~«gmca!, ~48!

dcm
a52S ~D̃«!a1

i

2
A~«gm!aD , ~49!

dA522S ~«g3s̃ !2
i

2
Aem

a~«gacm! D . ~50!

As it stands, Eq.~47! cannot be equivalent to a more gene
supergravity likeSMFDS in Eq. ~37!. Only for Eq. ~19!, the
special case of a nondynamical dilaton, a relation will
worked out in Sec. V A, but Eq.~47! is clearly insufficient to
represent the general theory with dynamical dilaton field.

In order to describe the superfield generalization of
bosonic GDT withdynamicaldilaton @as exemplified by Eq.
~12!#, f is promoted to a superfield as well and one arrives
the general superfield dilaton supergravities~SFDS, cf. Fig.
1! of Park and Strominger@32#

SSFDS5E d2x d2u E„J~F!S1K~F!DaFDaF1L~F!….

~51!

The general dilaton supergravity model of this type is d
scribed by three functionsJ(F), K(F) and L(F) of the
dilaton superfield

9In agreement with our systematic notation e.g. the covariant

rivative D̃ refers to the dependent spin connection~29! for the
underlined components of the superfield.
5-7



t
s

pa

th
u
a

he

c

s

the

in

lly
sin-
ole

ct,
ical
ars
the
long
c-

cal
nal
ool.

the

en-
o

-
lo

L. BERGAMIN AND W. KUMMER PHYSICAL REVIEW D 68, 104005 ~2003!
F5f1
1

2
ug3x1

1

2
u2F. ~52!

In Eq. ~52! a scalar dilaton fieldf appears as the lowes
component. From superspace geometry the standard tran
mation rules@25,28#

df52
1

2
«g3x, ~53!

dxa522~g3«!aF1 i ~g3gb«!a~cbg3x!

22i ~g3gm«!a]mf, ~54!

dF522i ~« z!F2
i

2
„«gmg3~D̃mx!…

1~« lm!„~cmg3x!22]mf… ~55!

are an immediate consequence. Integrating out supers
and elimination of the auxiliary fieldsF andA by their ~al-
gebraic! e.o.m.s is straightforward but leads to rather leng
expressions. We, therefore, relegate some relevant form
to Appendix B. Furthermore, we assume in the following th
the reparametrizationJ(F)→F is possible, so that onlyK
and L remain as two free functions. This agrees with t
appearance of onlyZ andV and with the simple factorf in
front of R̃ in the bosonic part ofSMFDS in Eq. ~37!.10

Then Eq.~51! becomes@L(f) andK(f) are the body of
L(F) andK(F), derivatives thereof are taken with respe
to f]

SSFDS5E d2xeS 1

2
R̃f1~x s̃!12KS ]mf]mf2

i

4
xgm]mx

2~cngmgng3x!]mf D12KL22LL8

1Lemn~cng3cm!1 iL 8~zg3x!1
1

4 S 1

2
L92K8L

1K~cngmgncm! Dx2D , ~56!

with the corresponding symmetry transformations

dem
a522i ~«gacm!, dem

a52i ~«gmca!, ~57!

dcm
a52~D̃ «!a2

i

2 S 4KL2L82
1

4
K8x2D ~«gm!a,

~58!

df52
1

2
«g3x, ~59!

10For models of the form~51! that do not allow a global reparam
etrization of this type, the equivalence to a GPSM discussed be
holds patch-wise, only.
10400
for-

ce
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las
t

t

dxa52L~g3«!a1 i ~g3gb«!a~cbg3x!22i ~g3gm«!a]mf.

~60!

We shall need below also the special caseK50 of the action
~56!, called SFNDS in Fig. 1:

SSFNDS5E d2x ēS 1

2
R̃̄ f̄1~ x̄ s̃̄ !2L̄L̄81L̄emn~ c̄ng3c̄m!

1 i L̄ 8~ c̄g3x̄ !1
1

8
L̄9x̄2D . ~61!

It is written in terms of barred variablesf̄, x̄, ēm
a and c̄ in

analogy to the notation of NDMFS, Eq.~38!.
The basic task~pathD in Fig. 1! of Sec. V is to show the

equivalence ofSMFDS in Eq. ~37! with SSFDS in Eq. ~56!,
togetherwith a correct translation of the transformation law
~40!–~43! into Eqs.~57!–~60!. In view of the quite different
structures this clearly has no obvious answer, although
number of fields and their type@(e,f,c,x) for MFDS, re-
spectively (e,f,c,x) for SFDS# coincide. Therefore, first
the transformations connecting theories ‘‘horizontally’’
Fig. 1 must be discussed.

IV. TARGET SPACE DIFFEOMORPHISMS
AND CONFORMAL TRANSFORMATIONS

Transformations of fields in a certain action generica
lead to new theories when those transformations contain
gularities. A famous case is the string inspired black h
model @19# which, even in interaction with minimally
coupled matter, by a dilaton field dependent~singular! con-
formal transformation can be brought to flat space. In fa
this is the basic reason for being able to find the class
solution in that model. The black hole singularity disappe
in flat space, and thus the global geometric properties of
theory experience a profound change. Nevertheless, as
as such a transformation is performed only locally in fun
tion space and if, at the end of the day, for the physi
interpretation one returns to the variables of the origi
theory, this detour can be a very valuable mathematical t

A. Target space diffeomorphism in GPSMs

Different GPSMs can be mapped upon each other by
target space diffeomorphism

XI⇒X̄I5X̄I~X!. ~62!

It is straightforward to check that the action~1! is form-
invariant under this diffeomorphism when the gauge pot
tials and the Poisson tensor are transformed according t

ĀI5
]XJ

]X̄I
AJ , ~63!

P̄IJ5~X̄I ]
←

K!PKL~ ]
→

LX̄J!. ~64!
w

5-8
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Here ]W I @cf. Eq. ~A10!# is the usual derivative acting to th
right and]Q I acts as

f ]Q I5~21! I ( f 11)]W I f . ~65!

We emphasize again at this point that Eq.~62! need not hold
globally and thus physics may be different in two mod
connected by such a transformation, when, e.g. in the cas
gravity theories, theĀI are identified with the Cartan vari
ables associated to the new gauge field coordinates.

The two models fromPIJ and P̄IJ clearly obey twodif-
ferentsets of symmetry transformations, cf. Eq.~3!. The re-
lation among them can be written as

d̄X̄I5dX̄I~X!, ~66!

d̄ĀI5dĀI~A,X!1e.o.m.s, ~67!

«̄ I5
]XJ

]X̄I
«J . ~68!

The necessity for the appearance of the e.o.m.s in Eq.~67! is
easily seen when inserting the transformed« in the charac-
teristic derivative term of Eq.~3!:

dĀI~A,X!52
]XJ

]X̄I
dS ]X̄K

]XJ
«̄KD 1•••

52d«̄ I2~21!K
]XJ

]X̄I
dS ]X̄K

]XJ D «̄K1•••. ~69!

Obviously this produces terms of the form dX̄, which are
absent in the rest of the transformation. This indicates
each dX̄I has to be removed by the e.o.m.s~5! to arrive at the
transformation law as given in Eq.~3! for «̄(«,X). Finally
we note that the e.o.m.s~5! transform into the same ones fo
X̄ andĀ, while the e.o.m.s~6! transform into e.o.m.s of both
types~5! and ~6! in terms ofX̄ and Ā.

It is worth mentioning a specialty of the GPSM structu
at this point. In an action based on linear symmetry trans
mations new related actions are usually obtained by a r
rangement of invariant functions—e.g. the rearrangemen
superfields to obtain the general Park-Strominger mo
from the special case withK50 as discussed below. On th
other hand, the GPSM action is not constructed by the c
position of invariant functions and supergravity invariant d
rivatives, but the invariant is always the whole action. Th
modifying a GPSM actionnecessarilyimplies the modifica-
tion of the symmetry transformations@cf. Eq. ~68!#.

B. Conformal transformation for MFS and MFDS

In GPSM-theories conformal transformations are a spe
type of target space diffeomorphisms. They, in particu
may be used to connect~path B̃ in Fig. 1! the MFS models
~18! to MFS0 models ~19! with vanishing bosonic torsion
10400
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(Z̄50) or, equivalently, the MFDS models~37! to related
models without dynamical dilaton~NDMFS, pathB̃8 in Fig.
1!. The MFS0 action ~19! is mapped upon Eq.~18! of MFS
by @cf. Ref. @13#, Eqs.~5.42!, ~5.48!#

f5f̄, Xa5e2Q(f)/2X̄a, xa5e2Q(f)/4x̄a, ~70!

v5v̄1
Z

2 S X̄bēb1
1

2
x̄bc̄bD , ea5eQ(f)/2ēa ,

ca5eQ(f)/4c̄a , ~71!

with Q defined in Eq.~11!. After the fieldsXa and the part of
v dependent on bosonic torsion have been eliminated
ensuing NDMFS action~38! is connected with the genera
MFDS action~37! by the same transformation rules forf,
x, ea , andc as given in Eqs.~70! and~71!. The prepotential
u transforms according to

u5e2Q(f)/2ū, ~72!

which leads to a canonical transformation ofV̄(f)5

2 1
4 ūū8 into Eq. ~17!, such that the combinationēV̄5eV

remains invariant.
The symmetry transformations of the MFS models~20!–

~25! with respect to the variables with and without a b
respectively, are equivalent up to equations of motion ofv

~or just as wellv̄). In contrast, applying Eqs.~70!,~71! to the
symmetry transformations of the MFDS model@Eqs. ~40!–
~43!# with Z̄50 reproduces the ones forZÞ0 without re-
course to the e.o.m.s ofv. Indeed, the latter have been us
explicitly therein to eliminate the independent part of t
spin connection.

In the NDMFS action~38! also the dilatino no longer
represents a dynamical field. Variation with respect tox̄a

leads to

x̄a52
8

ū9
12i

ū8

ū9
em

n~gmc̄n!a , ~73!

and ~provided ū9Þ0) the dilatino may be eliminated alto

gether. The resulting action in terms ofea , c andf @ R̃̄ and

s̃̄ are dependent variables as in Eqs.~33!,~34!, but with Z̄
50]

SNDMFS
(2) 5E d2xS 1

2
R̃̄f2

4

ū9
s̃̄22

1

8
~ ū2!822i

ū8

ū9

3ēa
m~ c̄mgag3s̃̄ !1S ū

2
2

1

4

~ ū8!2

ū9
D

3emn~ c̄ng3c̄m!1
1

4

~ ū8!2

ū9
~ c̄mc̄m!D ~74!

is invariant under the symmetry transformations
5-9
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dēm
a 522i ~«gac̄m!, ~75!

dc̄m
a 52~ D̃̄«!a1

i ū8

4
~«gm!a, ~76!

df52
4

ū9
~ s̃̄g3«!2

i ū8

ū9
ēa

m~ c̄mgag3«!. ~77!

C. Conformal transformation in superspace

A similar conformal transformation connecting the ge
eral dilaton superfield action SFDS~51! to a model with
nondynamical dilaton field@NDMFS, K50 in Eq. ~51!# is
also known in superspace@32# ~path B̃9 in Fig. 1!.11 It must
contain a multiplication of the superzweibeinEM

A with a fac-
tor L(F) depending on the full superspace multipletF. The
resulting action is again an integral over superspace.
consequence thereof is the fact that a kinetic term forf
necessarily implies a kinetic term forx. It is known that a
super-Weyl transformation preserving the constraints on
supertorsion~with vanishing bosonic torsion! has the form
@25#

ĒM
a5LEM

a , ĒM
a5LEM

a1 iEM
aga

abDbL1/2. ~78!

In our case we are interested in the consequence of
transformation on the action~61! of SFNDS. Choosing in
Eq. ~78!

L5exp@s~F!#, s8522K, ~79!

in the action~61! produces the general SFDS action~56!.
The different components are related by

f5f̄, x5e2s/2x̄, em
a 5esēm

a , ~80!

cm
a 5es/2c̄m

a 1
i

2
Kes/2ēm

a ~ x̄gag3!a, ~81!

where for s, respectively,K the bodys(f), respectively,
K(f), is understood.

V. EQUIVALENCE OF GPSM AND SUPERFIELD
DILATON SUPERGRAVITY

A. Equivalence for nondynamical dilaton

Inspection of the SFNDS superfield action~61! without
dynamical dilaton and of the actionSNDMFS in Eq. ~38!,
which originated from the GPSM formulation of supergra
ity, shows that in this special case the two theories are
same, identifying

11We reemphasize that at the level of dilaton theories with van
ing bosonic torsion all known results@25,32# from 2D supergravity
can be taken over.
10400
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c̄5c̄, x̄5x̄, f5f, L̄~f!5
ū~f!

2
. ~82!

It can be checked straightforwardly that the equivalen
holds as well at the level of the symmetry transformatio
when « and « are identified@cf. Eqs. ~40!–~43! with Z50
and Eqs.~57!–~60! with K50]. Indeed, this relation of the
Park-Strominger model withK50 to a GPSM~interpreted
as a model with nonlinear super-Poincare´ algebra! had been
observed already before@30,50#. In the GPSM-based formal
ism the identification corresponds to the sequence of p
Ã8→D8 in Fig. 1 @13,31#.

For a nondynamical dilatonf we observe yet anothe
identification betweenSNDMFS of Eq. ~38! andSHowe of Eq.
~47!, when the dilatino in the former case has been elim
nated as in Eq.~74!. Indeed Eqs.~74! and~47!, as well as the
corresponding symmetry transformations~75!–~77! and
~48!–~50!, are identical for

c5c̄, A52
ū8

2
,

F~A!5
1

2
~ ū~f~A!!2f~A!ū8~f~A!!!. ~83!

In Eq. ~73! we had to assume thatu9Þ0 and thus the invert-
ibility of the first equation of Eq.~83! is guaranteed.

The equivalence~83! corresponds to the stepsÃ8→E in
Fig. 1. Alternatively the pathE establishes a relationD8
→E between two superspace actions, namely superfield
laton supergravity with nondynamical dilaton@SFNDS, Eq.
~61!# and the model of Howe~47!. D8→E and C̃ are not
identical: RelationC̃ can entirely be formulated in supe
space and holds@as its bosonic counterpartC, cf. comment
below Eq.~12!# in very special cases only~invertible poten-
tials or prepotentials, respectively!. On the other hand, the
pathD8→E does not correspond to the elimination of a s
perfield. Instead the two superfields in the version of Eq.~51!

with12 K50, Ēa5(ēa,c̄a,Ā) and F̄5(f̄,x̄,F̄), are related
to the superfield in the model of HoweEa5(ea,ca,A) by the
steps

SFNDS
~ ēa,c̄a,Ā!

~f̄,x̄,F̄ !
——→

D8

elimination of Ā and F̄

NDMFS
~ ēa,c̄a!

~f̄,x̄ !
,

NDMFS
~ ēa,c̄a!

~f̄,x̄ ! ——→
E

reinterpretationf̄→A

elimination of x̄

Howe~ea,ca,A!.

Obviously this equivalence combines components of diff
ent superfields in Eq.~51! into the components of the supe
field S of Eq. ~44!. Whenever the last equation in Eq.~83!

can be solved explicitly forA, D8→E is equivalent toC̃.
-

12This action corresponds to the sum of Eqs.~B8! and ~B10!.
5-10
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However, C̃ is meaningful if and only if such a solutio
exists, while Eq.~74!—the result ofD8→E—does not de-
pend on the latter.

B. Dynamical dilaton

One may think that by means of~super-!conformal trans-
formations, proceeding along the pathsB̃ respectively,B̃9,
also in the general case the identification~path D! can be
established in a straightforward manner. However, with
dynamical dilaton the problem remains how to relate t
fields (c,x), respectively (c,x), because no obvious iden
tification thereof is apparent. Also the relation between
symmetry transformations is far from trivial. Indeed, com
parison of Eq.~37! and Eqs.~40!–~43! with Eq. ~56! and
Eqs.~57!–~60! immediately leads to two important observ
tions.

While the SFDS action~56! includes standard kinetic
terms for both the dilaton fieldf and its supersymmetric
partnerx, in the MFDS formulation forf such a term is
generated too, but not for the dilatino.

The transformations of the zweibeine, Eq.~57! in the
SFDS action and Eq.~42! in the MFDS action, are different
But in any comparison of the two models we had to assu
that the zweibeine should be the same. Thus the gravitinc
andc appearing on the rhs of these transformations mus
different.

In contrast to the super-Weyl transformation in supersp
~path B̃9 in Fig. 1!, the conformal transformation leadin
from MFS0 ~19! with Z50 to the MFS~37! (ZÞ0, pathB̃
in Fig. 1! depends on the dilaton fieldf alone@cf. Eqs.~70!
and ~71!#. One could, of course, try to introduce more com
plicated transformations including also a dependence on
dilatino x. It turns out that this is neither necessary nor p
sible: as pointed out above, the relation~35!, leading to the
kinetic term for f, does not depend on the details of t
Poisson tensor and hence not on a peculiarity of some sp
class of models. In factanyGPSM with local Lorentz invari-
ance after elimination ofXa andv exhibits at best a kinetic
term inf, but never inx. A similar conclusion holds for the
symmetry transformations~cf. the comment at the end o
Sec. IV A!.

On the other hand, the missing kinetic term forx in
MFDS could be generated by an appropriate mixing ofc and
x in c. It is not difficult to find the correct relation. Whe
the SFNDS model~61! is transformed according to Eq.~80!
one could try to replace Eq.~81! by the simpler rule

c5es/2c̄. ~84!

This implies a new definition of the gravitinoc. On the other
hand, in this way a connection with the MFDS action~37!,
the one following from the GPSM approach, can be est
lished. Namely, identifying the gravitinoc in Eq. ~84! with
the gravitino of that action produces all terms there, provid

f5f, x5x, K~f!52
1

4
Z~f!, L~f!5

u

2
.

~85!
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Now all terms on the left-hand side of Eq.~85! refer to
superfield supergravity, whereas on the rhs we find quant
defined in the GPSM-based MFDS approach. This is
surprising, as the transformation rules~80! together with Eq.
~84! of SFDS by taking into accountK52 1

4 Z are
equivalent13 to the transformations off, e, x andc in Eqs.
~70! and ~71!.

So far we followed the pathsD8→B̃8 in Fig. 1. In order
to establish the relationD between SFDS and MFDS, th
main goal of this section, theAnsatz

cm
a 5cm

a 1
i

8
Z~f!em

a eab~xgb!a ~86!

together with Eq.~85! suggests itself by comparison of Eq
~84! with Eq. ~81!. It follows when the conformal factors in
the two terms on the rhs of Eq.~81! are absorbed first in a
redefinition of c̄; then the conformal transformations~70!
and ~71! for xa, ea andca are taken into account. Not su
prisingly, all contributions to Eq.~37! linear in Z are repro-
duced. But also terms proportional toZ2 are found to cancel.

There seems to remain a difference in the symmetry tra
formations. Assuming «5« one obtains (D5dMFDS
2dSFDS)

Df50, Dxa5
Z

8
x2~g3«!a ,

Dem
a 5

Z

2
eabx«emb ,

Dcma52
Z

4
x«~g3cm!a . ~87!

However, this is nothing else but a local Lorentz transform
tion @cf. Eq. ~A7!# with field dependent parameter«f

5
Z

2
x«. An analogous transformation emerges as well in

GPSM based formalism: the application of Eq.~68! leads to
( «̄ denotes the symmetry parameter of the MFS0 model with
Z̄50)

«f5 «̄f1
Z

2 S Xb«b1
1

2
xb«bD , «a5eQ(f)/2«̄a ,

«a5eQ(f)/4«̄a . ~88!

The superspace parameters« obey a similar relation, but
with the opposite sign in front ofZ/2 in the first equation.
Thus, a supersymmetry transformation«̄a5 «̄a in MFS0, re-
spectively SFNDS, under the conformal transformatio
~70!, ~71!, and~80! becomes@«5(«f ,«a ,«a)#

«̄5~0,0,«̄a!→«5S Z

4
x«,0,«aD , ~89!

«̄5~0,0,«̄a!→«5S 2
Z

4
x«,0,«aD . ~90!

13Notice the similarity between Eqs.~11! and ~79!.
5-11
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Adding the two contributions to«f and«f , respectively,
yields the result found in Eq.~87!: «f5Z/2 x«. This termi-
nates the proof that the minimal field supergravity in t
sense of Ref.@14# is—up to elimination of auxiliary fields—
equivalent to SFDS, the superfield dilaton gravity of Pa
and Strominger. The symmetry transformations are map
correctly upon each other, modulo a local field-depend
Lorentz transformation.

It may be useful to conclude this section with a compi
tion of the relevant formulas which, in agreement with t
corresponding sequence of steps in Fig. 1, relate mini
field supergravity with the superfield dilaton theory of Re
@32#.
Actions: Seven different actions that describe in some se
2D supergravity have been presented. These are

~1! the GPSM based MFS of Eq.~18! and the special ver
sion MFS0 thereof with vanishing bosonic torsion~19!,

~2! general dilaton supergravity MFDS in Eq.~37! with its
special version with nondynamical dilaton~38!
~NDMFS!,

~3! SFDS of Eq.~56! and SFNDS of Eq.~61!, which both
originate from the general dilaton superfield theory
Park and Strominger~51!,

~4! the model of Howe in Eqs.~44! and ~47! which, when
derived from NDMFS~38! by elimination of the di-
latino, takes the form~74!.

Transformations: The dilaton fieldf and the zweibeineem
a

coincide for all models.
path Ã: The MFS fields (f,Xa,xa) and (v,ea ,ca) are

reduced to the set (f,xa,ea ,ca) of MFDS by Eqs.~28!–
~30! and ~33!–~35!.

paths B̃,B̃8,B̃9: At each level~MFS, MFDS and SFDS! a
special target space transformation connects the models
nondynamical dilaton~barred variables: MFS0, MFNDS,
SFNDS! to the general ones. For MFS this relation turns o
to be the conformal transformation of Eqs.~70! and ~71!
which, when restricted to the fields (f,xa,ea ,ca), also
holds for MFDS vs NDMFS. For SFDS the super-We
transformations~78! and ~80!,~81! are applied.

path D: After elimination of the auxiliary fields in SFDS
@Eqs. ~B11! and ~B12!#, this theory is equivalent to MFDS
the identification of the remaining fields and~pre-!potentials
is contained in Eqs.~85! and~86!, the supersymmetry trans
formations are equivalent up to a local Lorentz transform
tion ~87!.

path E: The NDMFS action allows the elimination of th
dilatino @Eq. ~73!#, leading to a theory that may be identifie
with the model of Howe@Eq. ~83!#. Only in certain cases
pathE is equivalent to the superfield relationC̃. Therefore, a
combination of the pathsE→C̃ cannot be used as an alte
native toD8.

VI. SOLUTION OF THE GENERAL DILATON
SUPERGRAVITY MODEL

The close relation between the general GPSM describ
MFS supergravity and the general superfield supergra
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~51! can be used to combine the advantages of both
proaches. We first use the fact that in MFS, as a GPSM,
manifestly simpler to arrive at the complete~classical and
quantum! solution of a 2D gravity system. Using the list o
formulas described in the last paragraph of the preced
section it can be mapped directly into the complete ex
solution of the Park-Strominger supergravity~51!, where we
assume that a redefinition ofF by the replacementJ(F)
→F is possible everywhere.

As supergravity in two dimensions without matter has
propagating degrees of freedom the physical content of
system is encoded in the Casimir functions~4!. Every GPSM
gravity possesses at least one Casimir function, as
bosonic part of the tensor has odd dimension@cf. Eq. ~11!#.
For the MFS0 model @Eq. ~18! with Z50] this function can
be chosen as@13#

C̄5Ȳ2
1

8
ū21

1

16
x̄2ū8. ~91!

Because the on-shell Casimir function is a constant it m
be conformally invariant. Thus a simple change of variab
according to Eqs.~70! and ~71! leads to

C5eQS Y2
1

8
u21

1

16
x2CxD , ~92!

Cx5u81
1

2
uZ. ~93!

Eliminating the auxiliary fieldXa by Eq. ~35!, the Casimir
function of the MFDS model of Eq.~37! becomes@the spe-
cial case of NDMFS~38! is found by settingQ5Z50]

CMFDS5eQS 2
1

2
]nf]nf2

1

8
u22

1

2
]nf~xg3cn!

1
1

16
x2S u81

1

2
uZ2cncnD D . ~94!

For explicit calculations the expressions are written m
conveniently in terms of light-cone coordinates~cf. Appen-
dix A!. AssumingX11Þ0 one can introduce the Lorentz
scalars

r (1)5
x1

AuX11u
, r (2)5AuX11ux2. ~95!

The solution of the MFS0 model ~19! has been derived al
ready in Ref. @13# Sec. 8, the conformal transformatio
~70!,~71! of which yields the general solution of MFS~18!.
The strategy to obtain in a straightforward way the gene
solution for a~G!PSM model consists in following the step
set out in Ref.@51# ~cf. @33#!. The final result is best param
etrized in terms of~almost-!Casimir-Darboux coordinates
which can be identifieda posteriori. Indeed, introducing new
gauge-potentialsAI5(AC ,Af ,A11 ,A(1) ,A(2)) that corre-
spond to the target space variablesX I

5(C,f,X11,r (1),r (2)) @cf. Eqs.~62! and~63!#, all AI can
5-12
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be expressed in terms of theX I by the solution of their
e.o.m.s, except forAC . The e.o.m. ofAC simply reads

dC50 ~96!

and therefore we introduce a new integration functionF:

dC50⇒dAC50⇒AC52dF. ~97!

Thus the solution is parametrized in terms of the tar
space variablesX I and the free functionF. Denoting byV
the component ofPab5Veab @cf. Eq. ~14!#

V5V1YZ2
1

2
x2S VZ1V8

2u
1

2V2

u3 D , ~98!

the general analytic solution on a patch withX11Þ0 and
C5constÞ0 can be written as

v5
dX11

X11
2eQVAY2

eQ

8C
Cxr (1)dY

2
Z

4
eQS uZ

8C
r (2)r (1)df1

1

4
Cxr (2)r (1)dF

2
s

A2C
r (2)dY D , ~99!

X11e1152df2eQX11X22AY2eQ
u

16C
r (2)r (1)df

1
s

4A2
S eQ

C S r (2)1
su

2A2
r (1)D dY

2r (1)dr (1)D , ~100!

e22

X11
52eQAY , ~101!

AuX11uc15
eQ

8
Cxr (2)AY

1
s

2A2
S dr (1)2eQ

us

2A2C
S dY1

1

2
ZYdf D D ,

~102!

c2

AuX11u
52

eQ

8
Cxr (1)AY1eQ

s

2A2C
S dY1

Z

2
Y df D .

~103!

Beside the abbreviationCx in Eq. ~93! a new variable and its
gauge potential, namely (s5signX11)
10400
t

Y5r (2)2
su

2A2
r (1), AY5dF1eQ

s

4A2C2
Y dY,

~104!

have been introduced. It should be noticed that in Eqs.~102!
and~103! half of the terms produced byY in AY vanish due
to the Grassmann property (r (1))25(r (2))250.

In Eqs. ~99!–~103! X22 and Y are dependent variable
according to Eq.~92! with Y5X11X22 at C5constÞ0 and
Eq. ~105!. Further arbitrary functions aref,dF and the fer-
mionic r (1),r (2).

It is straightforward to check that the spinorc̃ defined as
(s5signX11)

c̃5eQ/2Y ~105!

commutes14 with everything but itself. From the Schoute
bracket

$c̃,c̃%522A2seQC ~106!

it follows that for C[0 an additional fermionic Casimi
function c̃ arises. On a patch withX1150, butX22Þ0, we
can define an analogous quantityĉ with r (2) andr (1) inter-
changed.c̃5const relatesr (1) and r (2) @cf. Eq. ~105!#. Its
associated gauge potential is@cf. Eq. ~97!# Ã52df . The
general solution reads

v5
dX11

X11
2eQV dF1eQ/2

s

2A2
Cxr (1)df

2
Z

2
eQ/2S r (2)df 1eQ/2

1

8
Cxr (2)r (1)dF D ,

~107!

X11e1152df2eQX11X22 dF2
1

2S s

2A2
r (1)dr (1)

1eQ/2S r (2)1
su

2A2
r (1)D df D , ~108!

e22

X11
52eQ dF, ~109!

AuX11uc15
eQ

8
Cxr (2) dF1

s

2A2
~dr (1)1eQ/2u df !,

~110!

c2

AuX11u
52

eQ

8
Cxr (1) dF2eQ/2 df . ~111!

14All commutators refer to the definition below Eq.~1!.
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L. BERGAMIN AND W. KUMMER PHYSICAL REVIEW D 68, 104005 ~2003!
Beside the anticommuting constantc̃ the free functions of
this solution are dF, df , f, X11 and r (1). X22 and r (2)

are dependent variables according to Eq.~92! with C50 and
Eq. ~105! with c̃5const.

For certain potentials~10! also solutions withX11

5X2250 may appear, which can describe a ‘‘supersymm
ric ground-state’’@32#. Thenx50 and the discussion reduce
to the pure bosonic case~cf. e.g. Ref.@52# for a situation
where such a solution appears!.

VII. COUPLING OF SUPERSYMMETRIC TEST-PARTICLE
IN MINIMAL FIELD SUPERGRAVITY

To find the proper invariant coupling of a test-particle
supergravity seems to be a hopeless task when one
within the GPSM related MFS model. On the other hand
order to study global properties for any of the solutions o
tained above a ‘‘super-geodesic’’ is needed. For a problem
this type, where simple access to an invariant expressio
needed, the superfield approach is the method of choice.
path of a super-particle is described by the mapt→zM(t)
with coordinates15

zM5~xm,um!. ~112!

Holonomic indices are transformed into anholonomic on
according to

xa5em
a xm, ua5dm

aum. ~113!

Due to the second equation~113! no separate notation@cf.
Eq. ~A8!# for the components ofum is needed andum

5(u1,u2).
The action of a super-particle with massm moving along

the curvezM(t) may be written as@53–57#

SPP5E dtS g21~ żMEM
11żNEN

22!

1
m2

2
g2mżMEM

AGAD . ~114!

It exhibits the well-known additional fermionick symmetry
@55#:

dkzMEM
a50,

dkzMEM
152S mk11A2

k2

g
żMEM

11D ,

dkzMEM
252S mk21A2

k1

g
żMEM

22D , ~115!

dkg524żM~EM
1k21EM

2k1!.

15xm5xm(t) andum5um(t) are taken in this section without ex
plicitly indicating the difference to the free variablesx andu in the
preceding sections.
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The action~114! is a condensed expression which includ
both the massless and the massive case. The limitm→0 of
Eq. ~114! leads to the standard action of the massless p
particle, while the formula for the massive particle to
found in most of the literature is recovered by rescalingg̃

52mg and k̃652mk6.
In contrast to bosonic gravity the action~114! does not

contain the full super-line element

~ds!25dzM
^ dxNGNM52dzMEM

11
^ dzNEN

22

12dzMEM
1

^ dzNEN
2 . ~116!

The standard super-particle~114! with m50 only considers
the first part of Eq.~116!, including bosonic anholonomic
indices to be summed over@53–55#, which by itself is in-
variant under supergravity transformations. We do not p
vide a detailed comparison of the consequences of the
approaches~114! and~116! within this work. But it is impor-
tant to notice that even the casem50 in Eq. ~114! leads to
different equations of motion in the supersymmetry sec
than the ones following from Eq.~116!.16

In the standard gauge~B3!–~B6! the connectionGA re-
duces to the result in flat superspace with the only nonv
ishing components

G15u2, G25u1. ~117!

To explore the global structure of two-dimensional sup
gravity with this super-particle the solutions~99!–~103! and
~107!–~111! must be inserted in Eq.~114!. To this end the
u-expansion of Eq.~114! must be calculated explicitly. After
some super-algebra the first term of Eq.~114! ~relevant for
the massless super-particle! takes the form

g21~ żMEM
11żNEN

22!5g21~ ẋmem
111A2u̇1u1

12A2ẋmcm
1u11u2u1Aẋmem

11!

3~ ẋnen
221A2u̇2u2

12A2ẋncn
2u21u2u1Aẋnen

22!,

~118!

while the Wess-Zumino contribution becomes

żMEM
AGA5 u̇1u21 u̇2u11 ẋmcm

1u21 ẋmcm
2u1

1 ẋmṽmu2u1. ~119!

When inserting the classical solution forA @Eq. ~B12!# and
the explicit expression for the dependent spin-connectionṽ

16What is meant by ‘‘global’’ properties of a solution is wel
known to depend on the ‘‘device’’ by which~super-!geodesics are
defined. Already in the purely bosonic case with nonvanishing
sion the use of ‘‘geodesics’’~depending on Christoffel symbol
only! or ‘‘autoparallels’’ ~depending also on the contorsion! may
lead to different global properties.
5-14
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COMPLETE SOLUTION OF 2D SUPERFIELD . . . PHYSICAL REVIEW D68, 104005 ~2003!
@cf. Eq. ~29!# in Eqs. ~118! and ~119!, the action of the su-
persymmetric test-particle~114! is parametrized in terms o
the zweibeinem , the gravitinocm , the dilaton fieldf and
the dilatinox. By means of the identification~85! and ~86!
the action~114! turns into a function ofem , cm , f andx:

SPP5E dtH g21A11A221
m2

2
g2m~B121B21!J ,

~120!

A115 ẋmem
11S11

1

2
Zx2u12

1

2
u2S 1

2
uZ1

1

2
u82

1

16
Z8x2DD

1A2u̇1u112A2ẋmcm
1u1, ~121!

B125 u̇1u21
1

4
u2ẋmṽm1 ẋmcm

1u21
Z

4A2
ẋmem

11x2u2.

~122!

Here A22 and B21 are defined through Eqs.~121! and
~122! by the interchange of allexplicit anholonomic indices
1→2, 2→1.

A. Gauge choice

When the supersymmetric test-particle moves on the
pergravity background, the zweibein and the gravitino in E
~120! are replaced by their classical solutions~100!–~103! or
~108!–~111! respectively. In principle, ‘‘super-geodesics
could then be obtained from variation of Eq.~114! or ~120!,
respectively. This task simplifies considerably when an
propriate gauge-fixing is used:

~1! The solutions from MFS depend, among others, on
variableX11, which is not present in superspace. T
supersymmetric test-particle being manifestly invaria
under local Lorentz transformations, we can elimina
this dependence by a~finite! local Lorentz transforma-
tion. Thus on any patch withX11Þ0 we can fix its
value toX1151 or X11521, depending on the sign
of the original configuration. ForX1150 we have to
parametrize the solution analogously in terms ofX22

~cf. Sec. VI!.
~2! k-symmetry can be used to gauge one of the fermio

variables to a constant@58#. It turns out thatu̇2[0 is the
preferable choice forX11Þ0.

~3! It has been argued in Ref.@12# that the classical solution
~99!–~103! is equivalent to the corresponding solution
the purely bosonic model up to local supersymme
transformations. Thus locally all fermionic target-spa
degrees of freedom could be gauged away:r (1)[0,
r (2)[0 and consequentlyc6[0. One might ask
whether this zero fermion~ZF! gauge is accessible an
allowed.
10400
u-
.

-

e

t
e

ic

y

Concerning the question whether the ZF gauge is allow
one should consult the situation in the purely bosonic ca
There the line element, after elimination ofY5X11X22 by
means of the Casimir constant, is determined by two a
trary functionsF andf. The ‘‘gauge’’ dF50 is forbidden by
the requirement of nonsingular gravity, namely that the
terminant of the metric should be different from zero.
would be natural, although not strictly necessary, to trans
these arguments directly to supergravity, i.e. demandin
nonsingular super-determinant. However, as can be s
from Eq.~45!, the vanishing of that determinant is controlle
by its bosonic contributions. Thus within this line of arg
ments the ZF gauge is allowed.

Typically the accessibility of a gauge is more difficult
answer than the question whether it is allowed. Beside
mere mathematical challenge to describe finite gauge tr
formations, accessibility involves subtle physical questio
as well. For MFS the mathematical aspect found a defin
answer@12#: By means of a finite GPSM gauge transform
tion any solution can be brought to ZF gauge.17

The physical aspect is more involved. Indeed, unde
finite transformation not only the specific solution of the fie
equations itself, but also the ‘‘device’’ defining th
~super-!geodesics~e.g., the super-point particle action! must
be transformed. This last step can be omitted if and onl
the new solution together with theold device turns out to
have the same physics as thenew solution with some ‘‘in-
variant’’ device.18 This does not necessarily imply that th
solution does not transform at all, but solely that the tw
systems are physically~albeit not mathematically! equiva-
lent. This is often the case for brokenbosonicsymmetries,
where states~field configurations! exhibit such a degeneracy
On the other hand, some well-known symmetries do not
low the simplification of using the old device: The conform
transformation discussed in Sec. IV is a bosonic example
that. In the present context it is important thatbrokensuper-
symmetry does not allow the above shortcut as well. Inde
breaking of supersymmetry never leads to an equiva
class of states with the same physical properties.19 But, as
may be checked easily by inserting any of the solutions
Sec. VI, including the one considered in Ref.@12#, into the
supersymmetry transformations~22! and~25!, many of them
break at least half of the supersymmetries~cf. Ref. @32# and

17The explicit proof had been performed in Ref.@12# for MFS0

only, but it generalizes straightforwardly to MFS by the use of t
conformal transformations~70! and ~71!.

18A simple example is a wave packet solution in classical fi
theory. Clearly the solution breaks~global! rotation symmetry as the
wave packet moves in a certain direction. In an ‘‘invariant’’ syste
of detectors, the latter are~or can be! arranged in a rotationally
symmetric way. Then physics~measurement of the wave packe!
remains the same.

19In contrast to the example in footnote 18 broken supersymm
acting on a bosonic wave packet produces fermions. Then
obviously relevant whether the detector has been transformed to
this is the case it would still register ‘‘bosons’’ although it wou
receive fermionic contributions as well.
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L. BERGAMIN AND W. KUMMER PHYSICAL REVIEW D 68, 104005 ~2003!
the systematic study of supersymmetric solutions in R
@59#!. Therefore, with respect to the transformation propo
in Ref. @12# the device must be transformed as well. Thus
expect that in the generic case the global properties of
solutions of Sec. VI do depend on fermionic backgrou
fields, if these fields cannot be transformed away by me
of unbrokensupersymmetries.

Despite the problems of physical accessibility of the
gauge we will, for simplicity, restrict our analysis below
this specific class of solutions. This choice also correla
with the observation that classical field equations usu
possess solutions with vanishing fermion fields.20 Inserting it
into the super-determinant~45! yields a nontrivial result,
namely

E5eS 12
1

2
u2u1~uZ1u8! D . ~123!

For nonsingular gauges—in the usual sense—the supe
terminant is nonvanishing and doesnot reduce to the purely
bosonic result, although the dilatino and the gravitino of
background have been gauged away, because the ferm
partneru1(t) of the bosonic geodesicxm(t) survives.

Besides the drastic simplification of the pointparticle a
tion, this gauge is very convenient also from the techni
point of view, as it permits an easy application for both s
lutions ~99!–~103! and ~107!–~111! derived in the previous
section. It should be kept in mind, though, that the ZF gau
is problematic. Nevertheless, for a first cursory explorat
of super-geodesics derived from Eqs.~120!–~122! it cer-
tainly is a convenient starting point.
~4! In the bosonic sector an Eddington-Finkelstein like gau

is the most convenient one@33#. To this end the world-
sheet coordinatesxm are chosen such that the remaini
target space variablesF(x) andf(x) describe the trivial
embedding

F~x![x0~t!5F~t!, f~x![x1~t!5f~t!. ~124!

These will be our bosonic coordinates in the followin
The pointparticle action~120! with the solution ~99!–

~103! in the gauge choice as proposed in~1!–~4! above, to-
gether with Eq.~124! simplifies to

SPP5E dtS S PP
bosonic1S PP

SUSY1
m2

2
gD , ~125!

S PP
bosonic5g21eQḞ~ḟ1j~f!Ḟ !, ~126!

S PP
SUSY5g21@u2u1m~f!•eQḞ~ḟ1j~f!Ḟ !

2A2u̇1u1~ḟ1jḞ !#

2m†u2u̇11u2u1@ Ḟ„Z•j~f!1j8~f!…1Z•ḟ#‡.

~127!

20There are, of course, counterexamples, e.g., the solution~107!–

~111! for c̃Þ0 in Eq. ~105!.
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The dependence on the dilatonf occurs in the coefficient of
bosonic torsionZ and in two functionsj(f) andm(f) de-
fined as

j~f!5C1
1

8
eQu2, m~f!52u•Z2u8. ~128!

B. Orbits of the massless point particle

To explore the global structure of a certain gravitation
background the equations of motion from Eqs.~125!–~127!
have to be derived. To this end the variation with respec
the super-coordinates$zM%5$F,f,u1% has to be calculated
It is convenient to reparametrize the curvezM(t) in such a
way thatġ[0. Then the variations can be written as

g•dFSPP5
]

]t
$2eQ~ḟ12jḞ !~11u2u1m!1A2u̇1u1j

1mgu2u1~Zj1j8!% ~129!

g•dfSPP5eQ~11u2u1m!„~j81Zj!Ḟ22F̈…

1eQu2u1m8jḞ22eQu2u̇1mḞ

2A2u̇1u1j8Ḟ1A2ü1u1

2mg~u2u1Ḟ~Z8j1Zj81j9!2u2u̇1Z!

~130!

g•du1SPP52eQu2mḞ~ḟ1jḞ !1A2u1~f̈1j8ḟḞ1jF̈ !

12A2u̇1~ḟ1jḞ !1mgu2~ Ḟ~Zj1j8!1ḟZ!.

~131!

Equation~129! is a total derivative as]/]F is a Killing field.
The expression in the curly brackets corresponds to the
lated constant of motion. To solve Eqs.~130! and~131! with
the constant of motion~129! in full generality is a daunting
task which we do not attempt in the present work. For illu
trative purposes we find it sufficient to consider special ca
with some physical relevance. The massless particlem
50) together with its supersymmetric orbitu1(t) already
allows the discussion of different physically interesting an
lytic solutions. In the cases to be treated below further
strictions will be made:

~1! ‘‘Minkowski ground state models’’: Within bosonic
theories of gravity a special subset is determined by the c
dition that atC50 in Eq. ~11! the metric of these theorie
reduces to the one of Minkowski space@26,33#. This implies
a relation between the functionsZ(f) andV(f) in Eq. ~10!,
which for supergravity becomes just the conditionm50, i.e.
the relation

u8

u
52Z ~132!
5-16
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between the prepotential and the function which determi
nonvanishing bosonic torsion. Spherically reduced grav
from d54 belongs to this class with (l is an arbitrary con-
stant!

ZSRG52~2f!21, uSRG52 lAf, ~133!

but also more general models which are asymptotically fl
if u(`)→`.

~2! The ~bosonic! light-like directionsS PP
bosonic50 corre-

spond to especially simple solutions. They are character
by

~2a! Ḟ50,
~2b! ḟ1jḞ50.

1. Minkowski ground-state models

The solution of the purely bosonic model withm50 is
regarded as a given input in this section. Actually, the int
esting cases will be covered by solutions of the type~2a! and
~2b! above.

For m50 andm50 the variation~131! vanishes if

]t~ḟ1jḞ !u112~ḟ1jḞ !u̇150 ~134!

holds. The solutions can be classified as follows:

~A! ḟ1jḞ50. This is the special casem50 of ~2b!
above and will be discussed together with the gene
solutions of this type below.

~B! u̇15 1
2 ]t log(ḟ1jḞ)u1.

The general solution of~B! is

u15
1

Auḟ1jḞu
l, ~135!

wherel is an arbitrary constant spinor. The space of an
commuting variables of this class of solutions can be par
etrized by the two constant spinorsl andu2. In a bosonic
superfunctionA with body AB and soulAS therefore the de-
composition

A~t!5AB~t!1AS~t!5AB~t!1u2la~t! ~136!

can be introduced. HereAB(t) and a(t) are ordinary
bosonic functions.

As Eq. ~135! does not depend onu2 any t-derivative of
u1 is again proportional tou1 ~or zero!, which especially
means thatu1(t) has no simple zeros. The singularity in E
~135! corresponds to a light-like direction~A! of the bosonic
line element.

Evaluating the variations~129! and ~130! with the solu-
tion ~135! they simplify to

]t„e
Q~ḟ12jḞ !…50, ~137!

~j81Zj!Ḟ22F̈50, ~138!
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which are the relations from the purely bosonic model. T
motion of u1 is determined up to the initial value accordin
to Eq.~134!, i.e. up to the numerical value ofl in Eq. ~135!.
Due to the absence of theu ’s in Eqs. ~137! and ~138!, the
evolution off andF will not depend on the fermionic vari
ables. But as all bosonic quantities must be regarded
~commuting! superfunctions, respectively, supernumbers
soul can still be introduced in them by an appropriate cho
of the initial values for these fields. An example of this ty
is evaluated below.

2. Light-like solution (2a) with µÅ0

The vanishing of Eq.~131! relates the motion in the di
rectionu1 to ḟ and f̈:

u̇152
1

2

f̈

ḟ
u1. ~139!

Again the evolution ofu1(t) does not depend onu2 and the
general solution

u1~t!5~ḟ !21/2l ~140!

with an arbitrary constant spinorl is an immediate conse
quence. The space of anticommuting coordinates is ag
two-dimensional and may be parametrized by (u2,l).

As a consequence of Eq.~140! the term}u̇1u1 in the
action ~127! vanishes. Thus the complete action~125! is
identically zero forḞ50 and these orbits are not only nu
directions of the bosonic part of the action, but of the who
super-particle action~125!.

In terms of the solution~140! Eq. ~130! vanishes identi-
cally, whereas the constant of motion~129! can be brought
into the form

eQ~11u2u1m!ḟ5k. ~141!

Herek is some constant super-number. After some straig
forward super-algebra thet derivative of Eq.~141! is found
as

f̈52ḟ2S Z1
1

2
u2u1mZ1u2u1m8D . ~142!

The body of this equation is seen to yield the correct lig
like geodesicf̈52Zḟ2. Inserting this relation into Eq
~139! @the terms}m in Eq. ~142! vanish due to (u1)250]
leads to

u̇15
1

2
Zu1ḟ. ~143!

As Z5dQ/df @cf. Eq. ~11!# Eq. ~143! can be transformed
into a total derivative and the general solution foru1 @Eq.
~140!# can be expressed alternatively as

u1~t!5eQ/2l. ~144!
5-17
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The constant spinorl appearing in this solution is the sam
as the one in Eq.~140!.

To solve Eq. ~141! a decomposition according to Eq
~136! is necessary. Using the relations

k5kB1kS , ]tkB5]tkS50, ~145!

eQ(f)5eQ(fB)@11Z~fB!fS#, ~146!

the body and soul of Eq.~141! become

eQ(fB)ḟB5kB , ~147!

eQ(fB)ḟS1kBZ~fB!fS1kBu2u1m~fB!5kS , ~148!

where in Eq.~148! ḟB has been eliminated by means of E
~147!. The latter equation is equivalent to the one of t
bosonic model, but the value of the completef(t) receives
contributions from fS as well. With the souls fS

5u2lw(t) andkS5u2l k̃ for f andk in Eq. ~148! become

eQ(fB)ẇ1kBZ~fB!w1kBeQ(fB)/2m~fB!5 k̃. ~149!

For a complete set of initial values for super-coordina
zM(t50) and for the constant of motionk, Eqs.~144!, ~147!
and ~149! uniquely determine the evolution of the two d
namical variablesf andu1. Certainly, Eqs.~147! and~149!
cannot be solved in general. In certain cases, howeve
simple solution can be obtained:

Due to Eq.~143! the purely bosonic solution correspon
to a special choice of initial values, namelyu150. Indeed,
if u150 for anyt5t0, all t-derivatives onu1(t0) vanish
as well and consequentlyu1 is zero everywhere. In this cas
the constant of motion has a vanishing soul as well.

Models with vanishing bosonic torsion (Z50) possess a
simple solution with a nontrivial fermionic sector. As bo
u1 and u2 are constant in this case Eq.~141! becomes a
total derivative@cf. Eq. ~128!#:

]

]t
~f2u2u1u!5k⇒f2u2u1u2c5kt. ~150!

Both k andc are supernumbers, wherec is determined by the
initial value of f as

c5f02u2u1u~f0!. ~151!

The explicit solution is

fB5kBt1f0 , ~152!

fS5u2u1
„u~fB!2u~f0!…1kSt, ~153!

where it has been assumed that the initial value off is
bosonic:f05fB0. This class of solutions is especially inte
esting as it determines the null-directions of a massless s
point particle on a background described by the mode
Howe @25#.

As an example with nonvanishing bosonic torsion
consider spherically reduced gravity from four dimensio
10400
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i.e., a combination of~2a! with m50 and Eq.~133!. As ḟ

1jḞÞ0 here, the situation is given by~B! above. Inserting
Eq. ~133! into Eqs.~147! and ~144! and after integration of
the former relation, one finds after a simple redefinition
(1/2)(kBt1cB)→t

fB5t2, u1~t!5
l

t
. ~154!

The determination of the soul off simplifies in this special
case, asm(f)[0. The integrating factor of the differentia
equation~149! is given by

r~t!5
1

2t
, ~155!

which yields the last dynamical quantity as

fS5u2ltS cS1 k̃
2t2cB

kB
D . ~156!

Obviously the value offS(t) does not depend on the evo
lution of u1(t) in Eq. ~154!. This is a consequence ofm
50 and, as already discussed above, holds in
Minkowski ground-state theory. Therefore, with the spec
choice cS5 k̃50 the soul off vanishes for allt, but of
course, one is not forced to choose the integration const
like that. Nevertheless, a nontrivial coupling of the boso
variablef to the u variables is somehow artificial. On th
other hand,u1(t) does depend on the behavior offB and
thus even in this simple example the bosonic and the fer
onic part of the pointparticle do not decouple from ea
other. The evolution ofu1(t) shows a singularity att50, a
point where with our choice oft the singularity of the
Schwarzschild black hole atf50 is encountered.

3. Light-like Solution (2b) with µÅ0

Equation~131! vanishes trivially in this case, while Eqs
~129! and ~130! ~except forj50) are related by

Eq. ~129!5j•Eq. ~130!. ~157!

The remaining only differential equation reads

eQ~11u2u1m!ḟ1A2ju̇1u15k. ~158!

If we had still u̇1}u1, Eq. ~158! does reduce to Eq.~141!,
which, of course, is expected to hold for the body of the t
equations. Thus the solution~139! is one of the solutions for
Eq. ~158!, with the samef(t) as derived in the previous
section~notice, however, the different behavior ofF).

Nevertheless, Eq.~158! allows solutions withu̇1 not pro-
portional tou1. This does not lead to a nonvanishing acti
~125!, as the latter is proportional toḟ1jḞ. Again one ob-
serves that any bosonic null-direction is a null-direction
the whole super-particle.

To discuss the general solution the split into soul a
body is made again:
5-18
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eQ(fB)ḟB5kB, ~159!

eQ(fB)ḟS1kBZ~fB!fS1kBu2u1m~fB!

1A2j~fB!u̇1u15kS . ~160!

By introducing the general decomposition foru1

u1~t!5 f ~t!eQ/2l1g~t!u2, f ~0!51, g~0!50,
~161!

and using againfS(t)5u2lw(t), Eq. ~160! becomes

eQ(fB)ẇ1kBZ~fB!w1kBeQ(fB)/2m~fB! f ~t!

1A2j~fB!S eQ(fB)/2@ ġ~t! f ~t!2 ḟ ~t!g~t!#

2e2Q(fB)/2
1

2
kBZ f~t!g~t! D5 k̃. ~162!

Obviously the system is underdetermined, because three
functionsw, f, andg obey one single first order differentia
equation. The special situation ofm50 follows straightfor-
wardly by setting this function to zero in all equations of th
section.

VIII. CONCLUSION AND OUTLOOK

The formulation of supergravity as a superfield~dilaton!
theory is well-known since the seminal works of Howe@25#
and Park and Strominger@32#. This approach uses the seco
order formalism with vanishing bosonic torsion. Unless t
dilaton superfield is nondynamical, this field appears in
second order action, which applies to most models wit
bosonic potential of direct physical relevance like Einst
gravity, spherically reduced from D dimensions. Also t
string inspired CGHS model@19# ~the formal limit D→`)
belongs to this class.

The complicated structure of the equations of motion i
second order formalism, together with the large number
~auxiliary! field variables in superfield supergravity, probab
has been the main reason why to this day no full solution
generic 2D supergravity with dynamical dilaton@32# has
been published.21

Our present work closes this lacuna. Also for the fi
time—we believe—a manageable treatment is provided
‘‘supergeodesics,’’ the motion of a super-point particle in
very general supergravity background solution which, no
theless, is described by a minimal set of fields.

In order to achieve these results—which by far do n
exhaust the list of further applications—one relies heav
upon the knowledge gained in first order 2D bosonic grav
@1,2# and the more general concept of Poisson-sigma mo
@7,8#.

Within this approach not only in bosonic gravity man
~without interaction with matter: essentially all! classical and

21Cf. the comment below Eq.~50! in @32#.
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quantum problems have found a complete solution@33#, but
the graded extension of Poisson-sigma models also open
door towards a similar treatment of supergravity-like theor
@13#. A subset of those graded Poisson-sigma models~MFS
in Fig. 1!, already identified by the present authors as ‘‘gen
ine’’ supergravities from their algebra of Hamiltonian co
straints @14#, is equivalent to a second order superdilat
theory ~MFDS!. The latter, in a more roundabout way~path
B̃8→D8→B̃9 in Fig. 1! is shown here to beidentical to the
superfield dilaton theory of Ref.@32# ~SFDS in Fig. 1!, when
different auxiliary fields in the latter are eliminated, whe
certain conformal transformations are made and when
gravitino field is redefined appropriately. We also were a
to prove that during these procedures the corresponding
persymmetric transformations are mapped exactly upon e
other—with a local Lorentz transformation mixed in onl
The chain of formulas which provides the identification
superfield dilaton supergravity@32# with the corresponding
class of supergravity theories derived from the grad
Poisson-sigma approach is compiled at the end of Sec
These formulas should be consulted together with a fl
diagram of Fig. 1 and the corresponding list of actions.

Of course, once this identification is established, the g
eral solution of MFS, obtained after a conformal transform
tion ~target space diffeomorphism in GPSM parlance! from
the solution published already in Ref.@13#, represents the
general solution of superfield supergravity of Ref.@32# ~cf.
Sec. VI!. Our only technical restriction has been that a fu
ther arbitrary function of the dilaton superfieldF @J(F) in
the action of Ref.@32#, respectively our Eq.~51!# has been
assumed to be invertible so that the replacementJ(F)→F is
possible. This restriction is not serious as on the one hand
physically interesting theories~spherically reduced gravity
etc.! are of this form anyhow. On the other hand, this inve
sion is permitted locally in function space, so that the on
further complication can be that the general solution is va
only in a certain patch in this case.

This general solution of superfield supergravity~after a
suitable choice of gauge-fixings among the bosonic sym
tries! depends on a bosonic constant Casimir functionC and
on two bosonic functions dF and f, which may be inter-
preted as the coordinates of the world sheet. ForCÞ0 the
anticommuting space is parametrized by two free fermio
functions, atC[0 one of them is replaced by an anticom
muting constant Casimir function and an anticommuting df .

As argued in Ref.@12# the two fermionic gauge-degree
of freedom ofN5(1,1) supergravity could be used locally t
put those functions to zero@zero fermion gauge~ZF gauge!#
so that the bosonic solution survives after all as the o
‘‘nontrivial’’ one, as long as no interactions with matter a
considered. Indeed, by only demanding a nonsingular de
minant of the supermetric—generalizing the nonsingula
restriction of bosonic gravity—this ZF gauge would be pe
mitted, and, in this philosophy, pure supergravity would b
come ‘‘trivial,’’ because the gravitino can be ‘‘gauged away
However, whether such a gauge is ‘‘physically’’ accessib
depends on the way a ‘‘measuring device’’~e.g. super-
geodesic! is transformed in this process. Only for a ve
restricted class of solutions an ‘‘invariant’’ device can
5-19
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constructed, namely when such a solution does not br
supersymmetry. In the generic case our solution, as we
the bosonic one of Ref.@32#, show explicit supersymmetry
breaking. The general solution provided in the present w
covers all cases, but in the applications presented in
present paper—for simplicity—backgrounds in the ZF gau
are considered, only.

The formulation of the massive super-point particle, mo
ing along a ‘‘super-geodesic’’ is straightforward in the sup
field formalism, but so far—for lack of a general solution
the supergravity background—has been very difficult
work with in practice. Mapping the action of that partic
into the GPSM-based formalism by means of the identifi
tion found in our present work, leads to a system of sup
geodesic equations~Sec. VII! which describes the motion in
a background solution. Interestingly enough, even in the
gauge ~with gravitino set to zero identically! the bosonic
geodesics~the ‘‘body’’ ! are accompanied by an orbit in th
superpartner~‘‘soul’’ ! of the bosonic coordinates. This ope
an interesting field of detailed investigations of such syste
where body and soul may mutually influence each othe
the quest for a globally complete solution~described by a
‘‘super-Penrose diagram’’!. We only present some simple ex
amples here with massless~light-like! movement and espe
cially concentrate also on theories with Minkowski grou
state models in their bosonic sector. Such backgrounds
come flat for C50. They include e.g. the Schwarzschi
solution, but also other models which are not asymptotica
flat.

Clearly the range of further studies, made possible by
present work, is very broad because the~G!PSM technology
is extremely powerful, not only at the classical, but in p
ticular also at the quantum level@1–4,33–36,60#. On the
other hand, superspace techniques allow one to couple m
fields in a straightforward way to MDFS and NDMFS~cf.
Fig. 1!. Therefore a path integral quantization of MF
coupled to matter fields becomes manageable@39#. Also
questions like the one concerning a fermionic counterpar
the ~bosonic! virtual Black Hole@37,38# can be expected to
find an answer—as well as a plethora of further resea
directions, e.g., the inclusion of Yang-Mills fields, just
name one of them@51,52,61#.
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APPENDIX A: NOTATIONS AND CONVENTIONS

These conventions are identical to@13,28#, where addi-
tional explanations can be found.

Genericindices~used in the context of GPSM’s! are chosen
from the middle of the alphabet:
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I,J,K, . . . include both commuting and anticommutin
objects. Generalized commutation relations are written in
standard way

v IwJ5~21! IJwJv I , ~A1!

where the indices in the exponent take values 0~commuting
object! or 1 ~anticommuting object!.

i ,j,k, . . . aregeneric commuting indices.

To label holonomiccoordinates, letters from the middle o
the alphabet are used:

M,N,L, . . . can be both commuting and anticommutin
m,n,l , . . . are commuting.
m, n, r, . . . are anticommuting.

Anholonomiccoordinates are labeled by letters from the b
ginning of the alphabet:

A,B,C, . . . can be both commuting and anticommuting
a,b,c, . . . are commuting.
a,b,g, . . . are anticommuting.
The indexf is used to indicate the dilaton component

the GPSM fields:

Xf5f, Af5v. ~A2!

The summation convention is alwaysNW→SE, espe-
cially for a fermionx: x25xaxa . Our conventions are ar
ranged in such a way that almost every bosonic expressio
transformed trivially to the graded case when using this su
mation convention and replacing commuting indices by g
eral ones. This is possible together with exterior derivativ
acting from the right, only. Thus the graded Leibniz rule i
given by

d~AB!5AdB1~21!B~dA!B. ~A3!

In terms of anholonomic indices the metric and the sy
plectic 232 tensor are defined as

hab5hab5S 1 0

0 21D , eab52eab5S 0 1

21 0D ,

eab5eab5S 0 1

21 0D . ~A4!

The metric in terms of holonomic indices is obtained
gmn5en

bem
a hab and for the determinant the standard expr

sione5det em
a 5A2det gmn is used. The volume form read

e5 1
2 eabeb`ea .

The g matrices are used in a chiral representation:
5-20
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g0
a

b5S 0 1

1 0D , g1
a

b5S 0 1

21 0D ,

g3
a

b5~g1g0!a
b5S 1 0

0 21D . ~A5!

The matrices (ga)ab5eadga
d

b and (g3)ab are symmetric in
$a,b%. The most important relations among theg matrices
are

gagb5hab11eabg3, gag35gbeb
a . ~A6!

Covariant derivatives of anholonomic indices with resp
to the geometric variablesea5dxm eam and ca5dxm cam
include the two-dimensional spin-connection one formvab

5veab. When acting on lower indices the explicit expre

sions read (12 g3 is the generator of Lorentz transformatio
in spinor space!:

~De!a5dea1vea
beb , ~Dc!a5dca2

1

2
vg3

a
bcb .

~A7!

Finally light-cone components are introduced. As w
work with spinors in a chiral representation we can use

xa5~x1,x2!, xa5S x1

x2
D . ~A8!

For Majorana spinors upper and lower chiral components
related byx15x2 , x252x1 , x25xaxa52x2x1 . Vec-
tors in light-cone coordinates are given by

v115
i

A2
~v01v1!, v225

2 i

A2
~v02v1!. ~A9!

Derivatives with respect to these components are wri
compactly as

]K5
]

]XK
5~]f ,]11 ,]22 ,]1 ,]2!. ~A10!

The additional factori in Eq. ~A9! permits a direct identifi-
cation of the light-cone components with the components
the spin-tensor vab5 ivcgc

ab/A2 . This implies that
h11u2251 ande22u1152e11u2251. Theg matrices in
light-cone coordinates become

~g11!a
b5A2i S 0 1

0 0D , ~g22!a
b52A2i S 0 0

1 0D .

~A11!

APPENDIX B: SUPERSPACE INTEGRATION

As for fermionic fields the square of the superspace v
ables is abbreviated byu25uaua . Superspace is integrate
out by
10400
t

re

n

f

i-

1

2E du2 u251. ~B1!

Our covariant derivative with respect to anholonomic indic
is

Da5]a1 i ~gau!a]a . ~B2!

With these conventions and the particular choice of ga
used in this work the components22 of the super-zweibein
read@13#

Em
a5em

a12i ~ugacm!1
1

2
u2Aem

a , ~B3!

Em
a5cm

a2
1

2
ṽm~ug3!a1

i

2
A~ugm!a

2
1

2
u2S 3

2
A cm

a1 i ~ s̃gmg3!a2A~zgm!aD ,

~B4!

Em
a5 i ~uga!m , ~B5!

Em
a5dm

aS 12
1

4
u2AD , ~B6!

whereṽ and s̃ are defined as in Eqs.~29! and~34!, respec-
tively, however, expressed in terms of underlined fields.
superspace it is often useful to introduce the Lorentz cov
ant decomposition of the gravitino field

ca
a5~zga!a1la

a , za5
1

2
~caga!a ,

la
a5

1

2
~cbgagb!a . ~B7!

Finally we provide the relevant superspace integrations
the general dilaton model of Ref.@32#. According to Eq.~51!
the following integrations have to be performed:

E d2u EJ~F!S5eS 1

2
R̃J1J8~x s̃!1J8F A1

1

8
J9A x2D ,

~B8!

22Field components in a superfield are denoted by underli
symbols throughout.
5-21
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E d2u EK~F!DaFDaF

5eS2KS ]mf]mf2
i

4
xgm]mx1F22~cngmgng3x!]mfD

1
1

4
Kx2~cngmgncm!1

1

4
K8x2F D , ~B9!

E d2u EL~F!

5eS ~A12z21l2!L1L8„F1 i ~zg3x!…1
1

8
L9~x x! D .

~B10!
s,

ys

s

A.

v,

r

of
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Evaluating Eq.~51! with Eqs. ~B8!–~B10!, the variation of
the action with respect to the auxiliary fieldsA andF yields
the elimination conditions for those fields:

F52
1

J8
S L1

1

8
J9x2D , ~B11!

A54
KL

~J8!2
2

L8

J8
1S KJ9

2~J8!2
2

1

4

K8

J8
D x2. ~B12!
p.

s.

cial

.

hys.
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