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Variations on the seventh route to relativity

Edward Anderson*
Astronomy Unit, School of Mathematical Sciences, Queen Mary, London E1 4NS, United Kingdom

~Received 7 February 2003; published 3 November 2003!

Wheeler asked how one might derive the Einstein-Hamilton-Jacobi equation from plausible first principles
without any use of the Einstein field equations themselves. In addition to Hojman, Kucharˇ and Teitelboim’s
‘‘seventh route to relativity’’ partial answer to this, there is now a ‘‘3-space’’ partial answer due to Barbour,
Foster and O´ Murchadha~BFÓ! which principally differs in that general covariance is no longer presupposed.
BFÓ’s formulation of the 3-space approach is based onbest-matchedactions such as the lapse-eliminated
Baierlein-Sharp-Wheeler~BSW! action of general relativity~GR!. These give rise to several branches of
gravitational theories including GR on superspace and a theory of gravity on conformal superspace. This paper
investigates the 3-space approach further, motivated both by the hierarchies of increasingly well-defined and
weakened simplicity postulates present in all routes to relativity, and by the requirement that all the known
fundamental matter fields be included. We further the study of configuration spaces of gravity-matter systems
upon which BFÓ’s formulation leans. We note that in further developments the lapse-eliminated BSW actions
used by BFO´ become impractical and require generalization. We circumvent many of these problems by the
equivalent use of lapse-uneliminated actions, which furthermore permit us to interpret BFO´ ’s formulation
within Kuchař’s generally covariant hypersurface framework. This viewpoint provides alternative reasons to
BFÓ’s as to why the inclusion of bosonic fields in the 3-space approach gives rise to minimally coupled scalar
fields, electromagnetism and Yang-Mills theory. This viewpoint also permits us to quickly exhibit further
GR-matter theories admitted by the 3-space formulation. In particular, we show that the spin-1

2 fermions of the
theories of Dirac, Maxwell-Dirac and Yang-Mills-Dirac, all coupled to GR, are admitted by the generalized
3-space formulation we present. Thus all the known fundamental matter fields can be accommodated. This
corresponds to being able to pick actions for all these theories which have less kinematics than suggested by
the generally covariant hypersurface framework. For all these theories, Wheeler’s thin sandwich conjecture
may beposed, rendering them timeless in Barbour’s sense.

DOI: 10.1103/PhysRevD.68.104001 PACS number~s!: 04.20.Fy
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I. INTRODUCTION

Einstein@1# ‘‘derived’’ his field equations~EFEs!1

Gab5Rab2
1

2
gabR58pTab

Matter ~1!

by demanding general covariance~GC! and the Newtonian

*Email address: eda@maths.qmul.ac.uk
1In this paper, spacetime tensors have lower-case Greek ind

and space tensors have lower-case Latin indices. Their barred c
terparts are local Minkowski and Euclidean indices, respectiv
Bold capital Latin letters denote Yang-Mills internal indices. Capi
Greek letters denote general indices. The indicesN, N, j, x, F and
C are reserved for other use. Round brackets surrounding m
than one index of any type denote symmetrization and squ
brackets denote antisymmetrization; indices which are not par
this ~anti!symmetrization are set between vertical lines.gab is the
(e111) spacetime metric, with determinantg, where the signa-
ture e52s is 21 for ~Lorentzian! general relativity~GR!, 0 for
strong gravity and 1 for Euclidean GR.¹a is the spacetime covari
ant derivative,Da is the spatial covariant derivative andD2 is the
spatial Laplacian.Rab is the spacetime Ricci tensor,R is the space-
time Ricci scalar,Gab is the spacetime Einstein tensor andTab is
the energy-momentum tensor.hab is the metric on a spatial hyper
surface, with determinanth. pab is its conjugate momentum, with
tracep. Rab is the spatial Ricci tensor andR the spatial Ricci scalar
0556-2821/2003/68~10!/104001~20!/$20.00 68 1040
limit; the conservation of energy-momentum requir
¹aGab50. Along with these physical considerations, Cart
@2# proved that the derivation requires the following mat
ematical simplicities: thatGab contains at most second-orde
derivatives and is linear in these. The EFEs may also
obtained from the Einstein-Hilbert action@3#

SEH5E d4xA2g~R1LMatter!; ~2!

an equivalent proof for actions was given by Weyl@3#. Love-
lock @4# has shown that the linearity assumption is unnec
sary in dimensionD<4.

Arnowitt, Deser and Misner~ADM ! @5# split the space-
time metric as follows:

gab5S jkj
k2N2 j j

j i hi j
D , gab5S 2

1

N2

j j

N2

Ni

N2
hi j 2

j ij j

N2

D
~3!

and rearranged the action~2! into the Hamiltonian form

SADM5E dtE d3x~pi j ḣi j 2NH2j iHi !, ~4!
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H[Gi jkl p
i j pkl2AhR50, ~5!

Hi[22D j pi
j50, ~6!

up to a divergence term. The lapseN and shiftj i have no
conjugate momenta. Thus the true gravitational degree
freedom in general relativity~GR! are contained in Riem, the
space of Riemannian 3-metrics on a fixed topology ta
here to be closed and without boundary. But the true deg
of freedom are furthermore subjected to the Hamiltonian
momentum constraintsH and Hi , respectively. If one can
quotient out the 3-diffeomorphisms~which are generated b
j i), one is left with

$Superspace%5
$Riem%

$3-Diffeomorphisms%
, ~7!

which has naturally defined on it the DeWitt supermet
Gi jkl 51/Ah(hi (kuhj u l )2

1
2 hi j hkl) present in the remaining

constraint,H.
Wheeler listed six routes to GR in 1973@6#. The first is

Einstein’s~plus simplicity postulate upgrades!. The second is
Hilbert’s from Eq.~2!. The third and fourth are the two-wa
working between Eq.~2! and Eqs.~4!,~5!,~6!; these will con-
cern us in this paper as the arena for Wheeler’s question@7#:
‘‘If one did not know the Einstein-Hamilton-Jacobi equatio
how might one hope to derive it straight off from plausib
first principles, without ever going through the formulatio
of the Einstein field equations themselves?’’ The fifth a
sixth routes mentioned are the Fierz-Pauli spin-2 field in
unobservable flat background@8# and Sakharov’s idea tha
gravitation is the elasticity of space that arises from part
physics @9#. One could add some more recent routes
Wheeler’s list, such as from the closed string spectrum@10#,
and the interconnection with Yang-Mills phase space in
Ashtekar variables approach@11#. Among these routes we
distinguish three types: to relativity alone, to relativity wi
all known fundamental matter fields ‘‘added on,’’ and
genuinely unified theories~whether partial such as alread
unified Rainich-Misner-Wheeler theory@12#, Kaluza-Klein
theory@13# and the Weyl gravitoelectromagnetic theory@14#,
or total such as string theory!. Finally, some routes will lead
to modifications of GR, such as higher derivative theories
Brans-Dicke~BD! theory@15# ~it is debatable whether strin
theory reproduces GR since string theory has a BD or ‘‘d
tonic’’ coupling!. Simplicity postulates may be seen as
means of uniquely prescribing GR but there is no reason w
nature should turn out to be simple in these ways.

The original ‘‘seventh route to relativity’’ partial answe
to Wheeler’s question was given by Hojman, Kucharˇ and
Teitelboim~HKT! @16#. As Wheeler suggested, they attach
importance to an embeddability condition, which presu
poses 4-dimensionally GC spacetime. However, rece
Barbour, Foster and O´ Murchadha~BFÓ! @17# have provided
a different partial answerwithout this presupposition. In this
paper we study whether this is~or can be made! satisfactory,
and how it compares to the HKT answer.

HKT required the ‘‘representation postulate’’: thatH and
Hi be such that they close in the same way as the algebr
10400
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deformations of a spatial hypersurface embedded in
(2111) Riemannian spacetime. This algebra is the Dir
Algebra,

$H~x!,H~y!%5H i~x!d ,i~x,y!1H i~y!d ,i~x,y!

$Hi~x!,H~y!%5H~x!d ,i~x,y! ~8!

$Hi~x!,Hj~y!%5Hi~y!d , j~x,y!1Hj~x!d ,i~x,y!,

where$,% denote Poisson brackets. Their working is subj
to the assumption that the evolution is path-independ
which means that the spacetime containing the hypersur
is foliation-invariant; this is the embeddability assumptio
Their further time-reversal assumption is removed in@18#.
Weakening theirAnsätze in stages~cf. the earlier@19#!, they
obtain as results thatH must be ultralocal2 and quadratic in
its momenta and at most second order in its spatial der
tives ~see, however, Sec. II F!.

The hope that pure geometrodynamics is by itself a to
unified theory has largely been abandoned. So asking a
H50, which corresponds to the Einstein-Hamilton-Jaco
equation@by substitutingpi j 5]S/]hi j , for Jacobi’s principal
function S, in Eq. ~5!# translates to asking aboutCH50,
including all the known fundamental matter fields,C. We
can now assess whether any first principles are truly p
sible by seeing if they extend from a route to relativity alo
to a route to relativity with all the known fundamental matt
fields ‘‘added on.’’ The idea of the representation postul
extends additively~at least naively! to matter contributions
to H andHi . Teitelboim@20# provided a partial extension o
HKT’s work to include electromagnetism, Yang-Mills theor
and supergravity. One must note the absence of spin-1

2 fields
from this list @21#.

In contrast, BFO´ require mere closure in place of closu
as the Dirac Algebra. The strength of their method com
from the generalized Hamiltonian dynamics of Dirac@22#,
which is taken further to provide a highly restrictive schem
based on exhaustion~see@23# for an account!. They consider
actions constructed according to two principles: best ma
ing and local square roots~see below!.

The idea of BFO´ ’s 3-space approach is to seek for laws
nature that have a relational form. This is taken to mean
relative configurations alone are meaningful and that
time label is to play no role in the formulation. The former
achieved by working indirectly with the relative configur
tion space via best matching. The latter is emphasized
working with a manifestly reparametrization-invaria
Jacobi-type square root action~see Sec. II!. Furthermore it is
chosen to have a local square root~see below!. Then the
constraints of GR arise as direct consequences of the im
mentation of these two principles. The 3-space approach
vocates a space rather than spacetime ontology. Rather
being presupposed, 4-dimensional general covariance
the spacetime form of the laws of nature is emergent in

2Ultralocal means no dependence on spatial derivatives.
1-2
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VARIATIONS ON THE SEVENTH ROUTE TO RELATIVITY PHYSICAL REVIEW D68, 104001 ~2003!
3-space approach. We now carefully state the two princip
for a class of actions from which GR will emerge as ess
tially singled out.

1: The universal method ofbest matching@17,24,25# is
used to implement the3-dimensionaldiffeomorphism invari-
ance by correcting the bare velocities of all bosonic fieldB

according to the ruleḂ→Ḃ2£jB.3 For any two 3-metrics on
3-geometriesS1 , S2, this corresponds to keeping the coo
dinates ofS1 fixed while shuffling around those ofS2 until
they are as ‘‘close’’ as possible to those ofS1.

2: A local square root~taken at each space point befo
integration over 3-space! is used. Thus the pure gravity ac
tions considered are of Baierlein-Sharp-Wheeler~BSW! @26#
type,

SBSW5E dlE d3xAhAsR1LATW, ~9!

whereL is a cosmological constant.
Writing this form amounts to applying a temporary sim

plicity postulate
3: The pure gravity action is constructed with at mo

second-order derivatives4 in the potential, and with a homo
geneously quadratic best-matched kinetic term

TW5
1

Ah
GW

abcd~ ḣab22D (ajb)!~ ḣcd22D (cjd)!, ~10!

whereGW
i jkl 5Ah(hikhjl 2Whi j hkl), WÞ 1

3 , is the inverse of
the most general~invertible! ultralocal supermetric@28#,
Gabcd

X 5(1/Ah)(hachbd2X/2habhcd) for X52W/(3W21).
Setting 2N5ATW /(sR1L), the gravitational momenta

are

pi j 5
]L

]ḣi j

5
Ah

2N
~hichjd2Whi j hcd!~ ḣcd22D (cjd)!.

~11!

The primary constraint

H[2Ah~sR1L!1
1

Ah
S pi j pi j 2

X

2
p2D50 ~12!

then follows merely from the form of the Lagrangian.
addition, variation of the action with respect toj i leads to a
secondary constraint which is the usual momentum c
straint ~6!.

The propagation ofH gives @29#

3l is the label along curves in superspace;]/]l is denoted by a
dot. £j is the Lie derivative with respect toj i .

4Furthermore, none of the higher-order derivative potentials c
sidered by BFO´ turn out to be dynamically consistent~but see
Sec. II F!.
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N
Di~N2Hi !1

~3X22!Np

2Ah
H1£jH

1
2s~12X!

N
Da~N2Dap!. ~13!

We require this to vanish in order to have a consistent the
The first 3 terms of this are said tovanish weaklyin the sense
of Dirac @22#, i.e. they vanish by virtue of the constraintsH,
Hi . The last term has a chance to vanish in three ways, s
it has three factors which might be zero. Constraints mus
independent ofN, so the third factor means thatp/Ah
5constant. We require this new constraint to propagate al
but this leads to the lapse being nontrivially fixed by a co
stant mean curvature~CMC! slicing equation. So, forsÞ0,
this forces us to have the DeWitt (W51) supermetric of
relativity, which is BFÓ’s ‘‘Relativity Without Relativity’’
result.

But there is also thes50 possibility regardless of which
supermetric is chosen@29#, which is a generalization o
strong gravity@30#. The HKT program would discard this
since it is not a representation of the Dirac Algebra~although
Teitelboim did study strong gravity@30#!. However, the
strong gravity theories meet the 3-space approach’s imm
ate criteria in being dynamically consistent theories
3-geometries. In this case the theories at most represen
ture near singularities~although one can expand about the
to obtain GR and Brans-Dicke theory! but it does illustrate
that the 3-space approach is a fruitful constructive sche
for alternative theories.

Indeed, Barbour and O´ Murchadha~BO! found alternative
conformal theories@31# which are being reformulated b
Anderson, Barbour, Foster and O´ Murchadha@32# using a
new ‘‘free end-point’’ variational principle@32,33#. Confor-
mal gravityhas the action

SC5E dl

E d3xAhf4AsS R2
8D2f

f D1
Lf4

V~f!2/3
ATC

V~f!2/3
,

volume V5E d3xAhf6 ~14!

TC5
1

Ah
G(W50)

abcd S ḣab2£jhab1
4~ḟ2£jf!

f
habD

3S ḣcd2£jhcd1
4~ḟ2£jf!

f
hcdD , ~15!

which is consistent fors51 because it circumvents th
above argument about the third factor by independently gu
anteeing a new slicing equation for the lapse. Despite its l
of GC, conformal gravity is very similar to GR in the sen
that the true configuration space of GR is@35#

-

1-3
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CS1V[$Conformal Superspace1 Volume%

5
$Riem%

$3-Diffeomorphisms%$Volume-preserving Weyl transformations%
~16!

and conformal gravity arises by considering instead

$Conformal Superspace%5
$Riem%

$3-Diffeomorphisms%$Weyl transformations%
. ~17!
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This has an infinite number of ‘‘shape’’ degrees of freedo
whereas there is only one volume degree of freedom.
removing this single degree of freedom changes one’s u
concept of cosmology, and ought to change the proble
associated with the quantization of the theory~by permitting
the use of a positive-definite inner product and a new in
pretation forH) @32#. Settings50 in Eq. ~15! gives strong
conformal gravity. One arrives at a further CS1V 3-space
theory if one chooses to work on Eq.~16! instead of Eq.~17!
@32,34# while retaining a fundamental slicing from the use
free-end-point variation.

To mathematically distinguish GR from these other the
ries, we use

4: The theory is not conformally invariant, it is obtaine
by conventional variation and has signaturee52s521.

The author’s future strategy will involve seeking to ove
rule these alternative theories by thought experiments
use of current astronomical data, which would tighten
uniqueness of GR as a viable 3-space theoryon physical
grounds. If such attempts persistently fail, these theories w
become established as serious alternatives to GR. So fa
theories appear consistent with the GR solar system te
and the CS1V theory will inherit the standard cosmolog
from GR.

BFÓ furthermore considered ‘‘adding on’’ matter to th
3-geometries,5 subject to the simplicity postulate.

5: The matter potential has at most first-order derivativ
and the kinetic term is ultralocal and homogeneous quadr
in the velocities. Apart from the homogeneity, this parall
Teitelboim’s matter assumptions@20#.

One then discovers in the GR case that the lightcon
universal for bosons, a single 1-form obeys Maxwell’s ele
trodynamics, and sets of interacting 1-forms obey Yang-M
theory @23#. All these 1-forms have turned out to be mas
less. Considering a 1-form and scalars simultaneously le
to U(1) gauge theory@36#. The GR matter results carry ove
to conformal gravity@32#.

We sharpen the understanding of what the 3-space
proach is because we are interested in why the impres
collection of results in the GR case above arises in BF´ ’s
approach. We seek for tacit simplicity postulates, surv
which assumptions may be weakened and assess the
oughness and plausibility of BFO´ ’s principles, results and

5We contest BFO´ ’s speculation that the matter results might le
to unification in Sec. IV.
10400
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conjectures. We thus arrive at a number of variations of
3-space approach. We stress that this is not just about
proving the axiomatization. We must be able to find a vers
that naturally accommodates spin-1

2 fermions coupled~1! to
GR if the 3-space approach is to provide a set of plaus
first principles for GR and~2! to conformal gravity if this is
to be a viable alternative. Barbour’s work@25,41# has been
critically discussed by Butterfield@37# and by Smolin@38#
largely from a philosophical point of view. In contrast, th
paper discusses~and extends! BFÓ’s continuation of this
work from a more technical point of view.

In Sec. II, we argue that the BSW principle2 is problem-
atic. First, Barbour’s use of it draws inspiration from th
Jacobi formulation of mechanics, but in Sec. II A we po
out that the Jacobi formulation itself has limitations and
significant generalization. Furthermore in Secs. II B–D
point out that the differences between the BSW and Jac
actions are important. Overall, this gives us the ‘‘conforma
problem in Sec. II C, and the ‘‘notion of distance’’ proble
in Sec. II D. Second, should the notion of ‘‘BSW-type the
ries’’ not include all the theories that permit the BSW elim
nation process itself? But when we perform this includi
fermions in Sec. II E, we find that we obtain not the BS
form but rather its generalization. Thus the inclusion of f
mions will severely complicate the use of exhaustive pro
such as those in@17,23#. We furthermore point out that the
usual higher derivative theories are not being excluded
BFÓ in Sec. II F. These last two sections include discuss
of their HKT counterparts.

In Sec. III, we formalize the second point above by sho
ing that we could just as well use lapse-uneliminated acti
for GR and conformal gravity. For GR, these actions may
studied within Kucharˇ’s GC hypersurface framework@27#.
This framework brings attention totilt and derivative cou-
pling complications in general~Sec. IV A!, which are, how-
ever, absent for the minimally coupled scalar, and ‘‘accid
tally absent’’ for the Maxwell and Yang-Mills 1-forms, which
are what the 3-space approach picks out. But tilt is pres
for the massive~Proca! analogues of these 1-forms. We d
duce the relation between tilt and the existence of a gene
ized BSW form. In Sec. IV B we counter BFO´ ’s hope that
just the known fundamental matter fields are being pick
out by the 3-space approach, by showing that the mass
2-form is also compatible. In Sec. IV C, we find alternati
reasons why the Maxwell 1-form is singled out by th
3-space approach, from the point of view of the hypersurf
framework. We end by explaining out the complic
1-4
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VARIATIONS ON THE SEVENTH ROUTE TO RELATIVITY PHYSICAL REVIEW D68, 104001 ~2003!
tions that would follow were one to permit derivative
coupled 1-forms.

In Sec. V A, we point out that it is consistent to take t
bosonic sector of nature to be far simpler than GC mi
have us believe: best matching suffices for its construct
An alternative scheme to1 using ‘‘bare’’ rather than best
matched velocities to start off with is discussed, in whichH
gives rise to all the other constraints as integrability con
tions. In Sec. V B, we show how all these results also h
true upon inclusion of spin-1

2 fermions. Section V C lists
further research topics for fermions in the light of the a
vances made in this paper.

II. PROBLEMS WITH THE USE OF BSW ACTIONS

A. Insights from mechanics

Suppose the Lagrangian6

L~qD̂ ,q̇D̂!5
1

2
M D̂Ĝ~qP̂!q̇D̂q̇Ĝ2V~qP̂! ~18!

does not depend onqn . Thenqn is a cyclic variable and its
Euler-Lagrange equation yieldspn[]L/]q̇n5cn, a constant.
Then the Lagrangian may be modified toL̄(qD ,q̇D)[L
2cnq̇n using the equation forpn to eliminate q̇n ; this is
known asRouthian reduction.

Next, observe thatqn may be taken to be the timet in a
conservative mechanical system; we regard theqD and t as
functions of the parametert. Then the action takes the pa
rametrized form

S5E
t1

t2
LS qD ,

qD8

t8
D t8dt, ~19!

and the equation forpt may be used to eliminatet8 from this
by Routhian reduction. One thus obtains the Jacobi actio

SJ5E
t1

t2A2~E2V!ds, ~20!

whereE[ct is the total energy and ds2 is the line element
associated with the Riemannian metricMGD of the configu-
ration spaceQ of the configuration variablesqD . Minimiza-
tion of this integral isJacobi’s principle@39#. There is then a
conformally related line element

ds̃25~E2V!ds2 ~21!

with respect to which the motions of the system are geo
sics. The point of this method is the reduction of mechan
problems to the study of well-known geometry.

6Newtonian time is denoted byt while t is a parameter. A dot is

used for]/]t in mechanics workings and a dash for]/]t . D̂ takes
1 to n andD takes 1 to (n21); n is not to be summed over.qD̂ are

configuration variables with conjugate momentapD̂.
10400
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However, the Jacobi principle in mechanics has a ca
the conformal factor is not allowed to have zeros. If it do
then the conformal transformation is only valid in regio
where there are no such zeros. These zeros are physica
riers in mechanics. For they correspond to zero kinetic
ergy by the conservation of energy equation. As the confi
ration space metric is positive-definite, this means that
velocities must be zero there, so the zeros cannot be
versed.

The Lagrangian~18! is restricted to have a kinetic term
homogeneously quadratic in the velocities. LetL(qD̂ ,q̇D̂) be
instead a completely general function. Then

S5E
t1

t2
LS qD ,

qD8

t8
D t8dt[E

t1

t2L~qD̂ ,qD̂
8 !dt ~22!

may be modified to

SJ5E
t1

t2L̄~qD ,qD8 !dt ~23!

by Routhian reduction, whereL̄5F, some homogeneous lin
ear function of theqD8 @39#. For example,F could be a
Finslerian metric functionfrom which we could obtain a
Finslerian metricf GD51/2(]2/]qG8]qD8 )F2, provided thatF
obeys further conditions@40# including the nondegeneracy o
f GD . So in general the ‘‘geometrization problem’’ of redu
ing the motion of a mechanical system to a problem of fin
ing geodesics involves more than the study of Riemann
geometry.

To some extent, there is conventional freedom in
choice of configuration space geometry, since we notice
standard maneuvers can alter whether it is Riemannian.
is because one is free in how many redundant configura
variables to include, and in the character of those variab
~for example whether they all obey second-order Eul
Lagrange equations!.

As a first example, consider the outcome of the Routh
reduction of Eq.~18! more carefully:

L̄~qD ,q̇D!5
1

2 S MGD2
MDnMGn

Mnn D q̇Dq̇G1
cnMDn

Mnn
q̇D2V̄,

~24!

whereV̄ is a modified potential. So Routhian reduction c
lead to non-Riemannian geometry, on account of the pe
timate ‘‘gyroscopic term’’@39#, which is linear in the veloci-
ties. We consider the reverse of this procedure as a pos
means of arriving at Riemannian geometry to describe s
tems with linear and quadratic terms. We observe that if
linear coefficients depend on configuration variables, then
general the quadratic structure becomes contaminated
these variables.

As a second example, higher-than-quadratic systems
be put into quadratic form byOstrogradsky reduction@42#, at
the price of introducing extra configuration variables.

We finally note the ordering of the summation and t
square root in
1-5
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EDWARD ANDERSON PHYSICAL REVIEW D68, 104001 ~2003!
ds5A (
D,G51

n21

M̃GDq̇Gq̇D, ~25!

which we refer to as the ‘‘good’’ or ‘‘global square root
ordering.

B. The BSW formulation of GR

GR is an already-parametrized theory. This is because
ADM action ~4! ~generalized to arbitrarys andL at no extra
cost! may be rewritten in the Lagrangian form

S5E dlE d3xAhNL~hab ,ḣab ;j i ;N!

5E dlE d3xAhNS L1sR1
Tg~k i j !

4N2 D , ~26!

@cf. Eq. ~19!# where

Tg5k i j k
i j 2k2, k i j 5ḣi j 22D ( ij j ) . ~27!

Then ~specifically following BSW@26# or in analogy with
Jacobi! extremization with respect toN gives N
56ATg /(L1sR), which may be used toalgebraically
eliminate N from Eq. ~26!. Thus one arrives at the BSW
action

SBSW5E dlE d3xAhA~L1sR!Tg. ~28!

Although this looks similar to the Jacobi action in mecha
ics, there are important differences. First, the GR configu
tion space is infinite-dimensional; with redundancies, o
can consider it to be superspace. The DeWitt supermetr
defined on superspacepointwise. By use of a 2-index to
1-index mapGabcd→GAB , DeWitt represented his supe
metric as a 636 matrix, which is (211111) and thus
indefinite@28#. As a special case, minisuperspace@43# is the
truncation of superspace obtained by considering homo
neous metrics alone. ‘‘Minisupermetrics’’ are (211), thus
they too are indefinite. Second, the BSW action has
‘‘bad’’ or ‘‘local square root’’ ordering. Below, we first con
sider minisuperspace, for which this extra complication d
not arise, since by homogeneity the ‘‘good’’ Jacobi a
‘‘bad’’ BSW orderings are equivalent.

Finally, BSW’s work led to the thin sandwich conjectu
@45,46#, the solubility of which features as a caveat in BFO´ ’s
original paper. Being able to pose this conjecture for a the
amounts to being able to algebraically eliminate the lapsN
from its Lagrangian. This implies that the theory is timele
in Barbour’s sense@25,41#. The extension of the conjectur
to include fundamental matter fields has only recently be
@46#. This and other investigations are required to assess
robustness of the conjecture to different theoretical settin
to see if in any circumstances it becomes advantageou
base numerical relativity calculations on the algorithm wh
the conjecture provides.
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C. Lack of validity of the BSW form

In perfect analogy with mechanics~21!, there is a confor-

mally related line element, ds̃25(L1sR)ds2 in vacuo, for
which the motion associated with Eq.~28! is geodesic@44#.
But the observation in mechanics that such conformal tra
formations are only valid in regions where the conform
factor is nonzero7 still holds for GR. It is true that the detail
are different, due to the indefiniteness of the GR superme
This causes the zeros to be spurious rather than phy
barriers@43#. For while a zeroz of the potential correspond
to a zero of the kinetic term by virtue of the Hamiltonia
constraint, this now means that the velocity need be null,
necessarily zero, because of the indefiniteness. Thus the
tion may continue throughz ‘‘on the superspace lightcone,
which is made up of perfectly reasonable Kasner univers
rather than grind to a halt. Nevertheless, the conformal tra
formation used to obtain geodesic motion is not valid, so i
questionable whether the BSW form is a ‘‘geodesic pr
ciple,’’ if in general it describes conformally untransforme
non-geodesic curvesfor practical purposes.

To illustrate that the presence of zeros in the poten
term is an important occurrence in GR, we note that
Bianchi IX solution has an infinity of such zeros as one a
proaches the cosmological singularity. This is important
cause it is conjectured by Belinskii, Khalatnikov and Lifshi
~BKL ! @47# that the behavior of Bianchi IX near the cosm
logical singularity is the generic behavior of a cosmologic
solution to GR. This sort of conjecture is acquiring numeric
support@48#. The above argument was originally put forwa
by Burd and Tavakol@49# to argue against the validity of th
use of the ‘‘Jacobi principle’’ to characterize chaos in G
@50#. Our point is that this argument holds againstany use,
BFÓ’s included, of the BSW form in minisuperspace mode
of the early universe in GR.

The way out of this argument that we suggest is to abs
from the self-infliction of spurious zeros by not performin
the conformal transformation in the first place, thus aband
ing the interpretation of the BSW form as a geodesic pr
ciple in GR. Conformal gravity, however, is distinct from G
and has no cosmological singularity, so arguments base
the BKL conjecture are not applicable there. Conform
gravity’s zeros are real as in mechanics, becauseTC is
positive-definite, and Barbour and O´ Murchadha use this to
argue that topologies withR,0 at any point are not allowed
@31#.

D. The BSW form is an unknown notion of distance

BFÓ called the local square root ordering ‘‘bad’’ becau
it gives one constraint per space point, which would usua
render a theory trivial by overconstraining due to the ensu
cascade of secondary constraints. Yet GR contrives to
vive this because of its hidden foliation invariance@17#.
However Giulini@46# has pointed out another reason why t

7In GR, these are regions for whichL1R,0 or for which L
1R.0. We also note that the sign ofL1R plays an important role
in the thin sandwich conjecture.
1-6
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local square root ordering is bad: it does not give rise
known geometry. Below, we extend his finite-dimension
counterexample to the geometry being Finslerian.

The BSW form as a notion of distance provides as
‘‘full metric’’ on superspace

1

2

]2

]vA~u!]vB~w!
SBSW

2

5F G̃AC~u!G̃BD~w!12d (3)~u,w!

3S SBSW

AG̃BDvBvD
G̃A[BG̃C]DD ~u!G v̂Av̂C, ~29!

wherevA[ḣA5ḣab by DeWitt’s 2-index to 1-index map an
where hats denote unit ‘‘vectors.’’ So in general,G̃A[BG̃C]D
50 is a sufficient condition for the full metric to be dege
erate and hence not Finsler~Giulini’s example had a
1-dimensional vA so this always occurred!. But if
G̃A[BG̃C]DÞ0, the full metric is not a function~both in the
distributional and functional senses!. So using the BSW form
as a notion of distance leads to unknown geometry, so th
is no scope for the practical application of the BSW form
a geodesic principle.

This is to be contrasted with the global square root,
which the above procedure gives instead~semi-!Riemannian
geometry. For minisuperspace, the local square root work
presented does indeed collapse to coincide with this glo
square root working, and the resulting~semi!Riemannian ge-
ometry is of considerable use in minisuperspace quan
cosmology@43#.

There is also the issue DeWitt raised@44# that in the study
of superspace one is in fact considering not single geode
but sheavesof them. This corresponds to all the differe
foliations of spacetime in GR, which leads to the problem
time in quantum gravity@51#. Thus there are two difficulties
with applying BFÓ’s formulation of GR. The first will still
plague conformal gravity whereas the second is absent
cause there is a preferred lapse rather than foliation inv
ance.

E. The Fermionic contribution to the action is linear

Since the kinetic terms of the bosons of nature are a
quadratic in their velocities, we can use the modification

Tg→Tg1TB , L1sR→L1sR1UB ~30!

to accommodate bosonic fieldsBD in a BSW-type action,

SB5E dlE d3xAhAL1sR1UBATg1TB. ~31!

This local square root encodes the correct Hamiltonian c
straint for the gravity–boson system. Although the pointw
Riemannian kinetic metric is larger than the DeWitt sup
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metric, in the case of minimally coupled matter it contai
the DeWitt supermetric as an isolated block:

S GAB~hab! 0

0 HLS
Matter~hab!

D . ~32!

If this is the case, it makes sense to study the pure gra
part by itself, which is a prominent feature of almost all t
examples studied in the 3-space approach. We identify thi
a tacit simplicity requirement, for without it the matter d
grees of freedom interfere with the gravitational ones, s
makes no sense then to study gravity first and then ‘‘add
matter. In Brans-Dicke~BD! theory, this is not immediately
the case: this is an example in which there are gravity-bo
kinetic cross-termsCAx in the pointwise Riemannian kineti
metric:

S GAB
X ~hab! CAx~hab ,x!

CxB~hab ,x! Hxx
Matter~hab ,x!

D ~33!

where x is the BD field andX is related to the usual BD
parameterv by X/25(v11)/(2v13). Thus, the metric
and dilatonic fields formtogethera theory of gravity with 3
degrees of freedom. However, this is a mild example of n
minimal coupling because redefinition of the metric and s
lar degrees of freedom permits blockwise isolation of t
form ~32!. More disturbing examples are considered bel
and in Sec. IV C.

We now begin to consider whether and how the 3-sp
formulation can accommodate spin-1

2 fermionic fields,FD .
Following the strategy employed above for bosons, the B
working becomes

SF5E dlE d3xAhNL~hab ,ḣab ;j i ;N;FD ,ḞD!

5E dlE d3xAhFNS L1sR1UF1
Tg~k i j !

4N2 D 1TF~ ḞD!G
~34!

becauseTF is linear in ḞD .8 Then the usual trick for elimi-
natingN does not touchTF , which is left outside the squar
root:

SF5E dlE d3xAh~AL1sR1UFATg1TF!. ~35!

The local square root constraint encodes the correct grav
fermion Hamiltonian constraint

FH[2Ah~L1sR1UF!1
1

Ah
S pi j p

i j 2
X

2
p2D50.

~36!

8We see in Sec. IV that the algebraic dependence onN emergent
from such decompositions requires rigorous justification. We p
vide this for Eq.~34! in Sec. V B.
1-7
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EDWARD ANDERSON PHYSICAL REVIEW D68, 104001 ~2003!
We postpone the issue of best matching~which is intertwined
with gravity-fermion momentum constraint! until Sec. V B.
Our concern in this section is the complication of the co
figuration space geometry due to the inclusion of fermion

For now the elimination procedure is analogous not to
Jacobi working but rather to its generalization~23!. So even
the pointwise geometry of the gravity-fermion configurati
space is now compromised:AL1sR1UFATg1TF could
sometimes be a Finslerian metric function. By allowing E
~34!, we are opening the door to all sorts of complicat
possible actions, such as:

~1! kAGS1 . . . Skq̇S1
. . . q̇Sk

.
~2! Arbitrarily complicated compositions of such root

powers and sums.
~3! More generally,KDq̇D, whereKD is allowed to be an

arbitrary function of not only theqD but also of theD21
independent ratios of the velocities.

~4! The above examples could all be Finslerian or fail
be so by being degenerate. They could also fail to be Fin
rian if the KD are permitted to befunctionalsof overall de-
gree 0 in the velocities, which we can take to be a growth
the local-global square root ambiguity.

We would therefore need to modify the BSW principle2
to a general BSW principle2G that includes spin-12 fermi-
ons. This amounts to dropping the requirement of the ma
field kinetic term being homogeneously quadratic in its v
locities, thus bringing5 into alignment with Teitelboim’s as
sumptions. We note that with increasing generality the p
sibility of uniqueness proofs becomes more remo
Although some aims of the 3-space approach such as a
derivation of the universal light-cone would require som
level of uniqueness proofs for spin-1

2 fermions, the author’s
strategy is to show in this paper that spin-1

2 fermions coupled
to GR do possess a 3-space formulation and also to poin
that the uniqueness results may have to be generalize
view of the generalization of the BSW form required in th
section.

Could we not choose to geometrize the gravity-ferm
system as a Riemannian geometry instead, by use of
reverse of Routhian reduction? But the coefficients of
linear fermionic velocities in the Einstein-Dirac system co
tain fermionic variables, so the resulting Riemannian geo
etry’s coefficients would contain the fermionic variables
addition to the metric. We call such an occurrence abreach
of the DeWitt structure, since it means that contact is lo
with DeWitt’s study of the configuration space of pure G
@28,44#. So this choice also looks highly undesirable.

For 40 years the natural accommodation of spin-1
2 fermi-

ons in geometrodynamics@21# has been a source of prob
lems. So this is a big demand on the 3-space approach,
one which must be met if the 3-space approach is truly
describe nature. Our demands here are less than Wheele
@21#: we are after a route to relativity with all matter ‘‘adde
on’’ rather than a complete unified theory. The HKT rou
appears also to be incomplete at this stage: Teitelboim
unable to find a hypersurface deformation explanation
spin-12 fermions @20#. Thus when we began this work, a
forms of the seventh route to relativity were incomplete w
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respect to the inclusion of spin-1
2 fermions. In Sec. V B, we

will point out the natural existence of GR–spin-1
2 theory

within the 3-space approach.

F. Higher derivative theories

We now argue against the significance of the preclusion
higher derivative theories by BFO´ . The precluded theories
are easily seennot to be the usual higher derivative theorie
There are two simple ways of noticing this. First, the prima
constraints encoded by the BFO´ theories with arbitrary
P(hi j ,hi j ,k , . . . ) will always be of the form

AhH52AhP1
1

Ah
S pi j p

i j 2
X

2
p2D50, ~37!

which is not what one gets for the usual higher derivat
theories. Second, BFO´ ’s theories have fourth-order terms i
their potentials but their kinetic terms remain quadratic in
velocities, while the usual higher derivative theories’ kine
terms are quartic in the velocities. We argue that the m
match of derivatives betweenT andP for PÞsR1L over-
rules the theories from within the GC framework, so BF´

are doing nothing more than GC can do in this case.
It is not clear whether the usual higher derivative theor

could be written in some generalized BSW form. The fo
would either be considerably more complicated than tha
pure GR or not exist at all. Which of these is actually tr
should be checked case by case. We consider this to
worthy problem in its own right by the final comment in Se
II B, since this problem may be phrased as ‘‘for which high
derivative theories can the thin sandwich formulation
posed?’’ To illustrate why there is the possibility of none
istence, consider the simplest example,R1aR2 theory. The
full doubly contracted Gauss equation is

R5R2s~KabK
ab2K2!12sDa~nbDbna2naDbnb!

~38!

and, whereas one may discard the divergence term in
311 split of R, in the 311 split of R2, this divergence is
multiplied byR and so cannot similarly be discarded. So it
unlikely that the elimination ofN will be algebraic in such
theories, which is a requirement for the BSW procedur9

9On the other hand, ifN occurs only linearly in the action then th
variational equation forN contains noN and so cannot be used t
eliminate N. If N occurs homogeneously in the action, then t
variational equation forN containsN only as an overall factor and
so cannot be used to eliminateN either. Also, it is permissible for
derivatives ofN to be present, so long as these terms belong t
total divergence which may then be discarded to leave an ac
depending only algebraically onN. This might conceivably happen
for some cases of higher derivative theories. Finally note that
form in whichN appears in the action may change under change
variables.
1-8
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Were this algebraic elimination possible, we would get m
complicated expressions than the local square root form f
it. Indeed, higher derivative theories are known to have c
siderably more complicated canonical formulations than
@52#; it is standard to treat them by a variant of Ostrograds
reduction adapted to constrained systems@52#.

It is worth commenting that HKT’s derivation ofH being
quadratic in its momenta and containing at most second
rivatives may also be interpreted as tainted, since it com
about by restricting the gravity to have two degrees of fr
dom, as opposed to e.g. the three ofR1aR2 theory or of
Brans-Dicke theory. Thus we do not foresee that any var
of the seventh route to relativity will be able to find a wa
around the second-order derivative assumption of the o
routes.
rb
nd
il

n
ei

no
T
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III. LAPSE-UNELIMINATED VARIATIONS
ON THE 3-SPACE APPROACH

We have seen that the interpretation of the BSW form a
geodesic principle is subject to considerable complicatio
and that it may obscure which theories are permitted or
bidden in the 3-space approach. We will now show that
use of the BSW form, and consequently the problems w
its interpretation, may be circumvented by the use of lap
uneliminated actions because the content of GR is not
fected by lapse elimination~just as the Jacobi and Eule
Lagrange interpretations of mechanics are equivalent!. It is
easy to show that the equations of motion that follow fro
the N-uneliminated 311 ‘‘ADM’’ Lagrangian ~26! are
weakly equivalent to the BSW ones:
S ]pi j

]l D
ADM

5AhNS hi j
sR1L

2
2sRi j D2

2N

Ah
S pimpm

j2
X

2
pi j pD1

N

2Ah
hi j S pabp

ab2
X

2
p2D1sAh~DiD jN2hi j D2N!1£jp

i j

5AhN@hi j ~sR1L!–sRi j #2
2N

Ah
S pimpm

j2
X

2
pi j pD1sAh~DiD jN2hi j D2N!1£jp

i j

2
N

2
hi j FAh~sR1L!2

1

Ah
S pabp

ab2
X

2
p2D G

5S ]pi j

]l D
BSW

1
N

2
hi j H, ~39!
n-

e-
tan-

xist
tion
to

ow
nal
y no
and similarly when matter terms are included. We use a
trary s and W above to simultaneously treat the GR a
strong gravity cases. The ADM propagation of the Ham
tonian constraint is slightly simpler than the BSW one,

Ḣ5
s

N
Di~N2Hi !1£jH ~40!

for W51 or s50, where it is understood that the evolutio
is carried out by the ADM Euler-Lagrange equations or th
strong gravity analogues.

We now check that using uneliminated actions does
damage the conformal branch of the 3-space approach.
conformal gravity action~15! is equivalent to

S5E dl

E d3xAhNf4FsS R2
8D2f

f D1
Lf4

V2/3~f!
1

TC

4N2G
V~f!2/3

~41!

where the lapse is N
5 1

2 ATC/@s(R28D2f/f)1Lf4/V2/3#. The following
equivalent of Eq.~39! holds:
i-

-

r

t
he

S ]pi j

]l D
N-uneliminated

5S ]pi j

]l D
N-eliminated

1hi j S NH C

2
2

Ahf6

3V E d3xNH CD
~42!

for

H C[2
Ahf4

V2/3 FsS R2
8D2f

f D1
Lf4

V2/3 G1
V2/3

Ahf4
pabpab

~43!

the conformal gravity equivalent of the Hamiltonian co
straint.

We now develop a strategy involving the study of laps
uneliminated actions. This represents a first step in disen
gling Barbour’s no time@25,41# and no scale@32,33# ideas. It
also permits us to investigate which standard theories e
according to the other 3-space approach rules, by inspec
of formalisms of these theories. We could then choose
algebraically eliminate the lapse where possible to sh
which of these theories can be formulated in the origi
BFÓ 3-space approach. We emphasize that existence is b
1-9
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EDWARD ANDERSON PHYSICAL REVIEW D68, 104001 ~2003!
means guaranteed: some perfectly good GC formulation
theories are not best-matched, or do not permit a BSW re
mulation because they cannot be made to depend alge
ically on the lapse. Thus the uneliminated form can be u
to help test whether the 3-space approach is or can be m
to be a satisfactory scheme for all of nature.

We can furthermore use this lapse-uneliminated formu
tion to interpret the GR branch of the 3-space appro
within Kuchař’s hypersurface framework, which has strikin
interpretational consequences, to which we now turn.

IV. THE 3-SPACE APPROACH
AND THE HYPERSURFACE FRAMEWORK

A. Nonderivatively coupled 1-forms

In his series of four papers, Kucharˇ @27# considers~I! the
deformation of a hypersurface,~II ! the kinematics of tenso
fields on the hypersurface,~III ! the dynamics of the fields on
the hypersurface, and~IV ! geometrodynamics of the fields.10

The fields are decomposed into perpendicular and tange
parts. We are mainly concerned with 1-forms in this secti
for which the decomposition is11 Aa5naA'1ea

aAa ; we also
require the decomposition of the metric,gab5gabea

aeb
b

2nanb . A deformation at a pointx of a hypersurfaceS may
be decomposed into two parts: thetilt , for which N(x)50,
@]aN#(x)Þ0 and the translation, for which N(x)Þ0,
@]aN#(x)50. We follow Kucharˇ’s use of first-order actions
For the 1-form, this amounts to rewriting the second-or
action SA5*d4xA2gL(Aa ,¹bAa ,gab) by setting lab

5]L/](¹bAa) and using the Legendre transformatio
(Aa ,¹bAa ,L)→(Aa ,lab ,L), where the ‘‘Lagrangian po-
tential’’ is L5@lab¹bAa2L#(Aa ,lab ,gab). Then the ‘‘hy-
persurface Lagrangian’’ is

dNSA5E
S
d3x~p'dNA'1padNAa2NAH o2Na

AH a
o!

~44!

where dN is the normal change in the projection, th
A-contribution to the momentum constraintAH a

o is obtained
from dN5dN2£j ~see Fig. 1! integrating by parts where
necessary, and the A-contribution to the Hamiltonian c
straint on a fixed backgroundAH o may be further decom
posed into its translation and tilt parts,

AH o5 AH t
o1 AH 2”

o . ~45!

10References to these complicated papers are pinned dow
these Roman numerals followed by the relevant section numb
We restrict attention tos51 in this section.

11We useea
a for the projector onto the hypersurface andna for the

perpendicular vector to the hypersurface, andKab for the extrinsic
curvature. The index perpendicular to the hypersurface is den
by the subscript', the subscript2” denotes the tilt part and th
subscript t denotes the translational part.
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The translational partAH t
o may contain a term 2APabKab

due to the possibility ofderivative couplingof the metric to
the 1-form, while the remainder ofAH t

o is denoted byAHt :

AH t
o5 AHt12 APabKab . ~46!

For the 1-form field, using the decompositionlab

5l''nanb1la'ea
anb1l'bnaeb

b1labea
aeb

b and la'5pa,
l''5p' ~by the definition of canonical momentum!, one
obtains

AHt5L1Ah~l'aDaA'2labDaAb!. ~47!

We also require

APab5
Ah

2
~2A(aul'ub)1A'l (ab)2A(apb)!. ~48!

For the 1-form,l'a andlab play the role of Lagrange mul
tipliers; one would then use the corresponding multipl
equations to attempt to eliminate the multipliers from E
~44!. In our examples below,A' will also occur as a multi-
plier, but this is generally not the case.

The above sort of decomposition holds for any rank
tensor field.H 2”

o , Pab and £j are universal for each rank
whereasHt containsL, which has further details of the pa
ticular field in question. These three universal features r
resent the kinematics due to the presupposition of spacet
The £j contribution is ‘‘shift kinematics,’’ while the tilt con-
tribution is ‘‘lapse kinematics.’’

The point of Kucharˇ’s papers is to construct very gener
consistent matter theories by presupposing spacetime
correctly implementing the resulting kinematics. We are a
to show below that in not presupposing spacetime, BFO´ are
attempting to construct consistent theories by using shift
nematics~which is the best matching principle! alone, and
thus attempting to deny the presence of any ‘‘lapse kinem
ics’’ in nature. This turns out to be remarkably successful
the bosonic theories of nature.

We begin by noting that nonderivative-coupled fields a
a lot simpler to deal with than derivative-coupled ones. W
then ask which fields are included in this simpler case,
which the matter fields do not affect the gravitational part

by
rs.

ed

δ δ

δ Σξ

Ν N

FIG. 1. The change along an arbitrary deformation of the hyp
surfaceS is split according todN5dN1dj . Kuchař showed that
£j5dj when acting on spatial tensors~see Kucharˇ I.7 and III.5!.
1-10
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VARIATIONS ON THE SEVENTH ROUTE TO RELATIVITY PHYSICAL REVIEW D68, 104001 ~2003!
the Hamiltonian constraint so that the gravitational mome
remain independent of the matter fields. Now, we realize
this is atacit assumptionin almost all12 of BFÓ’s work.

0: The implementation of ‘‘adding on’’ matter is for ma
ter contributions that do not interfere with the structure of
gravitational theory.

This amounts to the absence of Christoffel symbols in
matter Lagrangians, which is true of minimally coupled sc
lar fields (Dax5]ax) and of Maxwell and Yang-Mills theo-
ries and their massive counterparts~since DaAb2DbAa
5]aAb2]bAa). Thus it suffices to start off by considerin
the nonderivative-coupled case on the grounds that it
cludes all the fields hitherto thought to fit in with the BF´

scheme, and also the massive 1-form fields which do no
Consider then the Proca 1-form. Its Lagrangian is

LProca52¹[aAb]¹
[aAb]2

m2

2
AaAa, ~49!

with corresponding Lagrangian potential

L52
1

4
l [ab]l [ab]1

m2

2
AaAa. ~50!

WhereasAH2”
o has in fact been completed to a divergen

~A!H 2”
o 5AaDap'1A'Dapa suffices to generate the ti

change ofA' and Aa for the universal 1-form~see Kucharˇ
III.6!. The first term of this vanishes sincep'50 by anti-
symmetry for the 1-forms described by Eq.~49!. Also
APab50 by antisymmetry so

AH o5AhF2
1

4
labl

ab1
1

2h
papa1

m2

2
~AaAa2A'

2 !

2labA[a,b] G1A'Dapa ~51!

by Eqs.~45!, ~46!. The multiplier equation forlab gives

lab522D [bAa][Bab . ~52!

For mÞ0, the multiplier equation forA' gives

A'52
1

m2Ah
Dapa, ~53!

and elimination of the multipliers in Eq.~51! using Eqs.~52!,
~53! gives

AH o5
1

2Ah
papa1

Ah

4
BabB

ab1
m2Ah

2
AaAa

1
1

2m2Ah
~Dapa!2, ~54!

12We have argued in Sec. II E that the exception, Brans-Di
theory, is a mild one.
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which is nonultralocal in the momenta. We note that th
does nothing to eliminate the remaining term in the tilt: t
Proca field has nonzero tilt.

But, for m50, the A' multiplier equation gives instead
the Gauss constraint of electromagnetism

G[Dapa'0. ~55!

This would not usually permitA' to be eliminated from Eq.
~54! but the final form ofAH o for m50 is

AH o5
Ah

4
BabBab1

1

2Ah
papa1A'~Dapa'0!, ~56!

so the cofactor ofA' in Eq. ~44! weakly vanishes by 55, so
A' may be taken to ‘‘accidentally’’ drop out. This means th
the tilt of the Maxwell field may be taken to be zero. The t
is also zero for the metric and for the scalar field. So far
these fields are allowed by BFO´ and have no tilt, whereas th
disallowed Proca field has tilt.

We can begin to relate this occurrence to the BSW pr
ciple 2 or 2G. Suppose an action has a piece depending
]aN in it. Then the immediate elimination ofN from it is not
algebraic, so the procedure of BSW is not possible. By d
nition, the tilt part of the Hamiltonian constraint is built from
the ]aN contribution using integration by parts. But, for th
A'-eliminated Proca Lagrangian, this integration by pa
gives a term that is nonultralocal in the momenta, (Dapa)2,
which again contain]aN within. Thus, for this formulation
of Proca theory, one cannot build a BSW–Proca action
start off with. Of importance, this problem with spatial d
rivatives was not foreseen in the simple analogy with
Jacobi principle in mechanics, where there is only one in
pendent variable.

The above argument requires refinement from the tre
ment of further important physical examples. This is a f
method of finding matter theories compatible with t
3-space approach by the following argument. If there is
derivative coupling and if one can arrange for the tilt to pl
no part in a formulation of a matter theory, then all that is l
of the hypersurface kinematics is the shift kinematics, wh
is the best-matching principle. But complying with hypersu
face kinematics is a guarantee for consistency so in th
cases best matching suffices for consistency.

First, we consider K interacting 1-formsAa
K with

Lagrangian.13

LA52S ¹[aAb]
A 1

g

2
CA

BCAb
BAa

CD S ¹ [aAA
b]

1
g

2
CADEADbAEaD2

m2

2
AaMAaM. ~57!

e

13Da is the Yang-Mills covariant derivative andCABC are the
Yang-Mills structure constants. By gCA

BC we strictly mean gACABC
A

whereA indexes each gauge subgroup in a direct product. T
each such gauge subgroup can be associated with a distinct
pling constant gA.
1-11
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We define lM
ab5]L/ ](¹bAa

M) and the corresponding La
grangian potential is

L52
1

4
lM

[ab]l [ab]
M 2

g

2
CBDEAb

DAa
ElabB1

m2

2
AaMAaM.

~58!

The overall tilt contribution is now the sum of the tilt con
tributions of the individual fields, so(AM)H 2”

o 5A'
MDapM

a

suffices to generate the tilt change. Again,AM
Pab50 by an-

tisymmetry so

AM
H o5AhF2

1

4
lab

M lM
ab1

1

2h
pa

MpM
a 1

m2

2
~Aa

MAM
a

2A'
MA'M !2lM

abA[a,b]
M G1A'

MDapM
a

2
g

2
CMPQ~AhlabMAb

PAa
Q12pMA'

PAa
Q! ~59!

by Eqs. ~45!,~46!. The multipliers arelM
ab and A'

M , with
corresponding multiplier equations

lab
M 522D [bAa]

M[Bab
M , ~60!

AM'52
1

m2Ah
DapM

a

[2
1

m2Ah
~DapM

a 1gCLMPpLaAa
P! ~61!

for mÞ0. We thus obtain the eliminated form

AM
H o5

1

2Ah
pMapMa1

Ah

4
BMabB

Mab1
m2Ah

2
AMaAMa

1
1

2m2Ah
~DapMa!~DbpMb! ~62!

and the massive Yang-Mills field is left with nonzero tilt. F
m50, the second multiplier equation gives instead the Ya
Mills Gauss constraint

G M[DapMa'0. ~63!

In this case, the tilt is nonzero, but the Yang-Mills Gau
constraint ‘‘accidentally’’ enables the derivative part of t
tilt to be converted into an algebraic expression, which th
happens to cancel with part of the Lagrangian potential:

AM
H o5

Ah

4
BM

abBab
M 1

1

2Ah
pa

MpM
a

1A'
M~DapM

a 1gCLMPpLaAa
P'0!. ~64!

Second, we considerU(1) 1-form–scalar gauge theory
with interactions of the formx* Am]mx andx* xAmAm . This
10400
-

s

n

could be viewed either as the interaction of a~strongly fa-
vored but still hypothetical! Higgs field with the electromag
netic field, or as a warm-up exercise toward the inclusion
the interaction term of Maxwell-Dirac theory@the classical
theory behind quantum electrodynamics~QED!# and its stan-
dard model generalization~see Sec. V B!. The Maxwell-
scalar Lagrangian is14

LMS
U(1)52¹[aAb]¹

[aAb]1~]mx2 ieAmx!~]mx* 1 ieAmx* !

2
mx

2

2
x* x. ~65!

Now, in addition to lab, define ma5]L/ ](¹ax) and na

5]L/ ](¹ax* ), so the Lagrangian potential is

L52
1

4
l [ab]l [ab]1

m2

2
AaAa1mana2 ieAa~x* na2xma!

1
mx

2

2
x* x. ~66!

~A!H 2”
o 5A'Dapa still suffices to generate the tilt~as scalars

contribute no tilt!, we haveA,x,x* Pab50, and

A,x,x* H t
o5AhF2

1

4
labl

ab1mana1
1

h S 1

2
papa2pxpx* D

1
mx

2

2
x* x2 ieS Aa@x* na2xma#

2
A'

Ah
@x* px* 2xpx# D G . ~67!

The lab multiplier equation is Eq.~52! again, while theA'

multiplier equation is now

GU(1)[Dapa1 ie~x* px* 2xpx!50, ~68!

which can be explained in terms of electromagnetism n
having a fundamental source. In constructingA,x,x* H o from
Eqs. ~45!,~46!,~67!, we can convert the tilt to an algebra
expression by the sourced Gauss law~68! which again hap-
pens to cancel with a contribution from the Lagrangian p
tential:

A,x,x* H o52labA[a,b]2~ma1na!f ,a1 (A)H 2”
o 1 A,x,x* H t

o

5F1

4
BabB

ab2mana1
1

h S 1

2
papa2pxpx* D

1
mx

2

2
x* xG

1A'@Dapa1 ie~x* px* 2xpx!'0#. ~69!

14This working is unaffected by inclusion of a scalar field pote
tial function.
1-12
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It is not too hard to show that the last two accidents a
accidentally conspire together to wipe out the tilt contrib
tion in Yang-Mills 1-form–scalar gauge theory. This theo
is also obviously nonderivative-coupled.

We now present a more general treatment about the
currence of these accidents. They arise from eliminatingA'

from its multiplier equation. For this to make sense,A' must
be a multiplier, thusp'50. Then for generalL, the multi-
plier equation is

]L

]A'

1Dapa50. ~70!

Then the requirement thatA'Dapa1L be independent o
A' on using Eq.~70! means that2A'(]L/]A')1L is inde-
pendent ofA' . Thus the accidents occur whenever the L
grangian potential is linear inA' .

From the broadening of our understanding due to
above two examples, we can precisely reformulate the B
principle 2 within the GC hypersurface framework as

2U: We use lapse-uneliminated actions homogeneou
quadratic in their velocities and permit only those for whi
the matter contributes a weakly vanishing tilt.

We can combine this with dropping the requirement
homogeneously quadratic actions~Principle2G! to obtain a
Principle2UG, in anticipation of the inclusion of spin-1

2 fer-
mions.

So for Einstein-Maxwell theory, Einstein-Yang-Mill
theory, and their corresponding scalar gauge theories,~1! the
absence of derivative coupling guarantees that they ca
coupled to GR without disrupting its canonical structure
tacitly assumed by BFO´ . ~2! The absence of tilt guarantee
that the resulting coupled theories can be put into BSW fo
Because the theories have homogeneously quadratic ki
terms, this is indeed the BSW form2 ~as opposed to its
generalization2G!, ~3! now, the GC hypersurface framewor
guarantees consistency if all the required kinematics are
cluded. But the only sort of kinematics left is best matchin
Thus, all these theories are guaranteed to exist as theori
BFÓ’s original formulation of the 3-space approach.

These workings begin to show~if one presupposes spac
time!, what sort of obstacles in Kucharˇ’s spacetime ontology
might be regarded as responsible for the uniqueness re
for bosonic matter when one starts from BFO´ ’s
3-dimensional ontology~see also Sec. IV C!.

There is a slight procedural complication in~3!, which we
illustrate for the BFO´ formulation of Einstein-Maxwell
theory. One starts off with

SBSWA
5E dlE d3xAhAR2D [aAb]D

[aAb]

3ATg1hab~Ȧa2£jAa!~Ȧb2£ jAb!, ~71!

and then one discovers the Gauss constraint of electrom
netismG is enforced, which one then encodes by the cor
sponding ‘‘electromagnetic’’ best matching. This amounts
the introduction of an auxiliary velocityQ ~variation of the
action with respect to thisQ yields G), according to
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Ȧa→Ȧa2]aQ. ~72!

B. The 3-space approach allows more than the fields of nature

We have described how the fields hitherto known to
permitted by the 3-space approach may be identified wit
the GC approach. These fields all have the universal k
matic feature called best matching by BFO´ , and no other
significant universal feature~tilt or derivative coupling!. Are
these fields then the known fundamental matter fields, wh
somehow have less universal kinematic features than
would lead one to expect? This question may be subdivi
as follows. Does the 3-space approach single outonly the
known fundamental matter fields? Does the 3-space
proach single outall the known fundamental matter fields
Kuchařmakes no big deal about the simplified form weak
equivalent to his decomposition of the electromagnetic fie
because it does not close to reproduce the Dirac Algebra~see
Kuchař III.11,12!; it only does somodulo the Gauss con-
straint of electromagnetism,G. He takes this to be an incon
venience, one which can be got around by adhering to
form directly obtained from the decomposition, where
BFÓ take it as a virtue that the simplified form ‘‘points out
the new constraint,G, as an integrability condition.

The first question can be answered by counterexam
One should interpret the question as coarsely as possible
example one could argue that the 3-space approach is
capable of restricting the possibility of Yang-Mills theory
the gauge groups conventionally used to describe nature
that by no means is massless 1-form–scalar gauge th
guaranteed to occur in nature. Rather than such subcas
effects due to interaction terms, we find it more satisfact
to construct a distinct matter theory which is not known to
present in nature. The last section has put us into a g
position to do this.

Consider the 2-formFab Lagrangian

L52¹[gFab]¹
[gFab]2

m2

2
FabFab, ~73!

definelabg5]L/](¹gFab) and use the Legendre transfo
mation to obtain the Lagrangian potential

L52
1

4
l [abg]l [abg]1

m2

2
FabFab. ~74!

Then (F)H 2”
o 52F'bDapab suffices to generate the 2-form

tilt and FPab50 by antisymmetry. The multipliers arelabc

and A'a with corresponding multiplier equationslabc
522D [bFab][Babc and, formÞ0,

F'
b 52

1

m2Ah
Dapab, ~75!

which may be used to eliminate the multipliers, giving rise
the nonultralocal form
1-13
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FH o5
Ah

4
BabcBabc1

3

4Ah
pabpab1

7

8m2Ah
hbd~Dapab!

3~Dcp
cd!1

m2

2
FabF

ab. ~76!

But for m50, theF'b multiplier constraint is

G b[Dapab'0 ~77!

and

FH o5
h

4
BabcBabc1

3

4Ah
pabpab12F'b~Dapab'0!.

~78!

So our massless 2-form’s tilt is zero and this leads to
elimination ofF'b by the same sort of ‘‘accident’’ that per
mits A' to be eliminated in electromagnetism. So, for th
massless 2-form, best matching is equivalent to all the
hypersurface kinematics, and as this guarantees closure
deduce that there exists a resulting 3-space approach th
starting with

SF5E dlE d3xAhAR1D [cFab]D
[cFab]

3ATg1habhcd~Ḟ [ab]2£jFab!~Ḟ [cd]2£jFcd!,

~79!

which leads to the enforcement of Eq.~77!, which is subse-
quently encoded by the introduction of an auxiliary variab
Qb . This working should also hold for anyp-form for p
<d, the number of spatial dimensions. Yet only thep51
case, electromagnetism, is known to occur. This is evide
against BFO´ ’s speculation that the 3-space approach hints
‘‘partial unification’’ of gravity and electromagnetism, sinc
these extra unknown fields would also be included as n
rally as the electromagnetic field. Note also that the ingre
ents of low energy string theory are getting included rat
than excluded:p-forms, the dilatonic coupling . . . . These
are signs that the 3-space approach is not as restrictiv
BFÓ originally hoped.

The second question must be answered exhaustively.
the minimal requirement for the 3-space approach to
taken seriously as a description of nature. The 3-space
proach gives gravity, electromagnetism and Yang-Mills th
ries such as theSU(2)3U(1) theory of the electroweak
bosons and theSU(3) theory of the gluons of the stron
force. One may argue that disallowing fundamental Pr
fields is unimportant, because the photon and gluons are
lieved to be massless and the observed masses of theW1,
W2 andZ0 weak bosons are thought to be not fundamen
but rather acquired by spontaneous symmetry breaking@53#.
The next problem is the inclusion of spin-1

2 fermions ~see
Sec. V B!, in order to complete the 3-space approach for
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theories of the simplest free fundamental fields that can
count for nature. One could then investigate all the inter
tions involved in the standard model@53#. We note that one
cannot be sure whether it is these simplest field theories
are present in nature, since our particle accelerators are
cated in a rather flat region. Thus our results are subjec
our ignorance of nature’s unexplored high-curvature regim
The notion of ‘‘simplest’’ includes relying on replacing pa
tial derivatives with covariant derivatives to find the curv
analogues of the flat laws. Yet this procedure could in pr
ciple be ambiguous@6# or not realized in nature due to puta
tive further symmetry reasons@54#.

C. Derivative coupling and the 3-space 1-formAnsatz

In their study of 1-forms, BFO´ used a BSW-type action
with the potential term

UA5CabcdDbAaDdAc1
M2

2
AaAa, ~80!

~where Cabcd5C1hachbd1C2hadhbc1C3habhcd for con-
stantC1 , C2 , C3 , M ), which is natural within their 3-space
ontology. They then obtainAH and AHi in the usual 3-space
way ~from the local square root and fromj i-variation!. Then
the propagation ofAH enforcesC152C2 , C350 and also
the Gauss constraint of electromagnetismG, whose propaga-
tion then enforcesM50. Having thus discovered that a ne
~Abelian! gauge symmetry is present,G is then encoded by
the corresponding ‘‘electromagnetic’’ best matching, by
troduction of an auxiliary velocityQ @see Eq.~72!#. Identi-
fying Q5A0, this is a derivation of Einstein-Maxwell theor
for Aa5@A0 ,Ai #.

We find it profitable to also explain this occurrence sta
ing from the 4-dimensional ontology of the GC hypersurfa
framework. The natural choice of 1-form potential and k
netic terms would then arise from the decomposition of

L52Cabgd¹bAa¹dAg2
M2

2
AaAa. ~81!

Using the following set of four results from~Kuchař II.2!,

¹bA'5DbA'2KbcA
c, ~82!

N¹'Aa52dNAa2NKabA
b2A']aN ~83!

¹bAa5DbAa2A'Kab ~84!

N¹'A'52dNA'2Aa]aN, ~85!

we obtain that
1-14
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L52~C11C21C3!S dNA'1Aa]aN

N D 2

1C1F S dNAa1A']aN

N
1KacA

cD 2

1~DaA'2KacA
c!2G

12C2S dNAa1A']aN

N
1KacA

cD ~DaA'2Ka
cA

c!

22C3S dNA'1Ac]cN

N D ~DaAa2A'K !2Cabcd~DbAa

2A'Kab!~DdAc2A'Kcd!2
M2

2
~AaAa2A'A'!. ~86!

Then, if one chooses to prefer the 4-dimensional ontolo
and then to import BFO´ ’s 3-space assumptions into it, on
finds the following explanations for BFO´ ’s uniqueness re-
sults from a 4-dimensional perspective.

First, BFÓ’s tacit assumption that addition of a 1-formAa
does not affect the 3-geometry part of the action can
phrased as there being no derivative coupling,APab50,
which using Eq.~48! implies that l (ab)50, pb52l'b.
Since lab522Cabgd¹d Ag , this by itself implies C1
52C2 , C350.

If A' were a velocity as Barbour would argue@33# ~fol-
lowing from its auxiliary status, just asN andj i are veloci-
ties!, it makes sense for the 3-space ansatz to contain
dNA'. But we now see from Eq.~86! that this by itself is
also equivalent toC152C2 , C350 from the 4-dimensiona
perspective. Also, inspecting Eq.~86! for Maxwell theory
reveals that

L5
C1

N2
@dNAa2Da~2NA'!#22C1DbAa~DbAa2DaAb!.

~87!

So in factQ52NA' , soA' itself is not a velocity. Notice
in contrast that the issue of precisely whatQ is does not arise
in the 3-space approach because it is merely an auxil
velocity that appears in the last step of the working.

One argument for the 3-space 1-form fieldAnsatzis sim-
plicity: consideration of a 3-geometry and a single 3
1-form leads to Maxwell’s equations. However, we arg
that in the lapse uneliminated form, provided that one
willing to accept the additional kinematics, we can exte
these degrees of freedom to include a dynamicalA' . The
3-space approach is aboutnot accepting kinematics othe
than best matching, but the GC hypersurface framework
ables us to explore what happens when tilt and derivat
coupling kinematics are ‘‘switched on.’’ Working within th
GC hypersurface framework, ifA' is allowed to be dynami-
cal, there is derivative coupling, and consistency would
quire the presence of 2 further bunches of terms, with co
ficients proportional toC11C2 and toC3. The first bunch
consists of the following sorts of terms:
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DbAaA'dNhab , AbS DaA'2A'

]aN

N D dNhab ,

1

N
habAcdNAadNhbc ,

AbAdhacdNhabdNhcd, A'A'hachbddNhabdNhcd .
~88!

The second bunch consists of the following sorts of term

habS A'DcAc1Ac
]cN

N D dNhab,
1

N
habA'dNA'dNhab ,

A'A'habhcddNhabdNhcd . ~89!

The naive blockwise Riemannian structure of the configu
tion space of GR and nonderivative-coupled bosonic fie
~32! can get badly broken by derivative coupling~cf. Kuchař
IV.5!. Either of the above bunches by itself exhibits all t
unpleasant configuration space features we mentione
Sec. II E: the first two terms of Eq.~88! are linear and hence
the geometry is not Riemannian, the third is a metric-ma
cross-term, and the last two terms breach the DeWitt str
ture; likewise the first term of Eq.~89! is linear, the second is
a cross-term and the third is a breach of the DeWitt structu
If the DeWitt structure is breached in nature, then the stu
of pure canonical gravity and of the isolated configurati
space of pure gravity are undermined. Whereas there is
evidence for this occurrence, we have argued at the en
the last section that some forms of derivative coupling
only manifest in experimentally unexplored high-curvatu
regimes.

In the hypersurface framework, ifA' were dynamical,
then it would not be a Lagrange multiplier, and so it wou
not have a corresponding multiplier equation with which t
tilt could be ‘‘accidentally’’ removed, in which case ther
would not exist a corresponding BSW form containingA' .
This argument, however, is not watertight, because it d
not prevent some other BSW form from existing since va
ables other thanA' could be used in attempts to write dow
actions that obey the 3-space principles. As an example
such an attempt, we could use theN-dependent variableA0
to put Proca theory into BSW form. In this case the attem
fails as far as the 3-space approach is concerned, becauA0
features as a non-best-matched velocity in contradiction w
principle 1. This shows, however, that criteria for whether
matter theory can be coupled to GR in the 3-space appro
are unfortunately rather dependent on the formalism used
the matter field. The 3-space approach would then amoun
attaching particular significance to formalisms meeting
description. This is similar in spirit to how those formalism
which close precisely as the Dirac Algebra are favored in
hypersurface framework and the HKT and Teitelboim@20#
papers. In both cases one is required to find at least
compatible formalism for all the known fundamental mat
fields.
1-15
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V. DISCUSSION AND THE INCLUSION
OF SPIN-1

2 FERMIONS

A. Variations on the seventh route to relativity

The split@Eqs.~45!,~46!# of AH o or perhaps more simply
the equations~82!, ~83!, ~84!, ~85! @and their analogues fo
higher-rank tensors~see e.g. Kucharˇ III.9!#, sum up the po-
sition of best matching within the GC hypersurface fram
work. The required presupposition of embeddability in t
GC hypersurface framework leads to three sorts of kinem
ics for tensor fields: best matching, tilt and derivative co
pling. All three of these are required in general in order
guarantee consistency and Kucharˇ’s papers are a recipe fo
the computation of all the terms required for this consisten
Thus in GR where it is available, the GC hypersurfa
framework is powerful and advantageous as a means of w
ing down consistent matter theories. If conformal gravity
regarded as a competing theory to GR, it makes sense th
fore to question what the 4-geometry of conformal gravity
and whether its use could lead to a more illuminating und
standing of matter coupling than offered by the 3-space
proach. We are thus free to ask how special GR is in adm
ting a constructive kinematic scheme for coupled consis
tensorial matter theories.

As BFÓ formulate it, the 3-space approach denies
primary existence of the lapse. But we have demonstra
that whether or not the lapse is eliminated does not affect
mathematics, so we would prefer to think of the 3-spa
approach as denying ‘‘lapse kinematics.’’ BFO´ ’s use of BSW
forms does lead to a more restrictive scheme than GC,
we have demonstrated in Sec. IV that this restriction can
understood in terms of when the GC hypersurface framew
has no tilt. Furthermore, we have unearthed the tacit simp
ity postulate0 and have rephrased this and the generali
BSW postulate2G as nonderivative coupling and the no t
condition 2UG, respectively, within the GC hypersurfac
framework.

Working in the GC hypersurface framework~with lapse-
uneliminated actions with only shift kinematics! has the ad-
ditional advantage that we are immediately able to turn
and hence investigate the mathematical and physical im
cations of the tilt and derivative-coupling kinematics. Nev
theless, it is striking that best matching kinematics suffice
describe all of the known fundamental bosonic fields coup
to GR. The absence of other kinematics includes the abs
of the derivative-coupled theories whose presence in na
would undermine the study of pure canonical gravity of D
Witt and others. We see our work as support for this stu
The less structure is assumed in theoretical physics, the m
room is left for predictability. Could it really be that natur
has less kinematics than the GC hypersurface framewor
GR might have us believe?

We next question whether the best-matching kinema
itself should be presupposed, since it is also striking t
the additional constraints of the GR-boson syst
(Hi ,G,G J, . . . ) areinterpretable as integrability condition
for H. This allows the following alternative to starting wit
the best-matching principle1, which could in principle allow
10400
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more complicated shift kinematics than the curre
formulation.15

1I: Start with a 3-dimensional action with bare velocitie
H can be deduced immediately from the action, and dema

ing Ḣ'0 leads to a number of other constraints. These
all then to be encoded by use of auxiliary variables.

This has the immediate advantage of treating the grav
tional best matching on the same footing as the encodin
Gauss constraints. The 3-space approach has recently
reformulated this way by O´ Murchadha@55#.

We present caveats to this approach both here and in
V B. Here, we note that for strong gravity,1 and1I lead to
inequivalent theories becauseH andHi propagate indepen
dently. So starting from some constraint and the demand
integrability might miss out independent but compatible co
straints.1 and1I are, however, equivalent~by inspection of
the constraint algebras! for GR coupled to the known funda
mental bosonic fields.

So far, at least the bosonic sector of nature appears t
much simpler than the GC hypersurface framework of G
might suggest, and the 3-space approach may be formul
in two equivalent ways1 and 1I as regards best matching
We now consider both1 and1I for spin-12 fermions.

B. Fermions and the 3-space approach

Whereas it is true that the spinorial laws of physics m
be rewritten in terms of tensors@56#, the resulting equations
are complicated and it is not clear if and how they may
obtained from action principles. Thus we are almost certai
compelled to investigate coupled spinorial and gravitatio
fields by attaching local flat frames to our manifolds.

There are two features we require for the analysis of
spin-12 laws of nature coupled to gravity. First, we want th
analysis to be clear in terms of shift and lapse kinemat
given our success in this paper with this approach. Howe
one should expect the spinors to have further sorts of k
matics not present for tensor fields. Second, we want to
plicitly build SO~3,1! ~spacetime! spinors out ofSO~3! ~spa-
tial! ones.16 We hope to perform this first-principles analys
in the future. In this paper, we consider the first feature in
following 4-component spinor formalism.

15We consider the difference between shift kinematics and la
kinematics to be particularly significant because of their associa
with linear and quadratic constraints, respectively. We have
doubt in the correctness of handling linear constraints in physic
it would not be a problem if the concept of best matching requi
refinement.

16This is standard use of representation theory, based on the
dental Lie algebra relationSO(4)>SO(3)% SO(3), which de-
pends on the dimension of space being 3. This relation is a com
source of tricks in the particle physics and quantum gravity lite
tures. BySO~3,1! andSO~3! spinors, we strictly mean spinors co
responding to their universal covering groups,SL~2,C! and SU~2!,
respectively. We are not yet concerned in this paper with the dif
ences betweenSO~4! andSO~3,1! from a quantization perspective
which render Euclidean quantum programs easier in some resp
1-16
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In Géhéniau and Henneaux’s~GH! @57# 4-component
spinor study of the Einstein-Dirac~ED! system, the term
c̄gl̄¹l̄

s
c is decomposed as follows17

Auguc̄gl̄¹l̄
s
c5 iAhc†FNg 0̄g l̄ D l̄

s
c1

NK

2
c1N, l̄ g

0̄g l̄ c

2~ ċ2£j
sc2]Rc!G , ~90!

where

£j
sc5j ic ,i2

1

4
E[ r̄ u

i £jEus̄] ig
s̄g r̄c, ~91!

]Rc5
1

4
E[ r̄

i
Ės̄] ig

r̄g s̄c. ~92!

First, observe that the tensorial Lie derivative £jc5j ic ,i is
but a piece of the spinorial Lie derivative~91! @57,58#. There
is also an additional triad rotation correction~92! to the ve-
locities in addition to the 3-diffeomorphism-dragging Lie d
rivative correction. The notion1 of best matching must be
generalized to accommodate this additional, very natu
geometric correction: given two spinor-bundle 3-geometr
S1 , S2, the ~full spinorial! drag shufflings ofS2 ~keeping
S1 fixed! are accompanied by the rotation shufflings of t
triads glued to it. The triad rotation correction is associa
with a further ‘‘locally Lorentz’’ constraintJm̄n̄ @59#.

In thinking from first principles about best matching
sufficiently general terms to include the treatment of spino
it is not clear whether the triad rotations need be includ
from the start. One might ‘‘discover and encode’’ these
occurs with the Gauss laws for 1-forms. Also, use of
‘‘bare’’ principle 1I may not require a conceptual advance
best matching: the Dirac procedure beginning withH would
provide us with the correctHi , whose encoding would yield
the full j i correction for spinors. Pursuing this last line
approach, Nelson and Teitelboim’s work@60# may be taken
to imply thatHi andJm̄n̄ are indeed integrability condition
for H. For in terms of Dirac brackets$,%* , starting fromH,
$H,H%* gives Hi and then we can form$H,Hi%* which

17We use barred Greeks for Minkowski indices and barred La
for Euclidean indices. The Minkowski metric is denoted byhm̄n̄ .

The gl̄ are Dirac matrices, obeying the Dirac Algebragm̄gn̄

1gn̄gm̄52hm̄n̄, which is not to be confused with the Dirac algeb
~8!. Dirac’s suited triads are denoted byEl̄

m ; these obeyE0̄a50,

E0̄052N, Em̄
s
En̄s5hm̄n̄ and El̄aEb

l̄5gab . c is a 4-component

spinor, with conjugatec̄5 ig 0̄c†. The spacetime spinorial covarian

derivative is ¹n̄
s
c5c ,n̄2

1
4 Vr̄s̄n̄gr̄gs̄c, where Vr̄s̄n̄

5(¹bEr̄a)Es̄
a
En̄

b is the spacetime spin connection. The spa

spinorial covariant derivative isDp̄
s
c5c ,p̄2

1
4 v r̄ s̄p̄g r̄g s̄c, where

v r̄ s̄p̄5(DbEr̄a)Es̄
a
Ep̄

b is the spatial spin connection.
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givesJm̄n̄ ~andH) so we have recovered all the constrain
as integrability conditions forH. One does not recoverH if
one starts withHi or Jm̄n̄ , so in some senseH is privileged.
However, this does highlight our other caveat for the integ
bility idea: one might choose to represent the constraint
gebra differently by mixing up the usual generators. For
ample, a linearly-related set of constraints is considered
@60#, for which the integrability of any of the constraint
forces the presence of all the others. Our defense agains
is to invoke again that we only require one formulation of t
3-space approach to work, so we would begin with the q
dratic constraintH nicely isolated.

Second, although derivative coupling~second term! and
tilt ~third term! appear to be present in Eq.~90!, GH ob-
served that these cancel in the Dirac field contribution to
Lagrangian density,

AuguLD5AuguF1

2
~ c̄gl̄¹l̄

s
c2¹l̄

s
c̄gl̄c!2mcc̄cG .

~93!

While Nelson and Teitelboim@60# do not regard their formu-
lation’s choice of absence of derivative coupling as a de
simplification~they adhere to the HKT school of thought an
the simplification is not in line with the hypersurface defo
mation algebra!, the GH result is clearly encouraging for th
3-space approach. For, once Eq.~90! has been used in Eq
~93!, we obtain an action of the form2UG, so we can cast
ED theory into the2G generalized BSW form~35!.

Finally, we comment on the inclusion of 1-form-fermio
interaction terms of the Einstein-standard model theory

i fAt I
Ac̄gb̄Eb̄

m
Am

I c ~94!

whereA takes the valuesU(1), SU(2) andSU(3) andt I
A

are the generators of these groups. The decompositio
these into spatial quantities is trivial. No additional comp
cations are expected from the inclusion of such terms, si
~1! they contain no velocities so the definitions of the m
menta are unaffected~this includes there being no scope f
derivative coupling! and~2! they are part of gauge-invarian
combinations, unlike the Proca term which breaks gauge
variance and significantly alters the Maxwell canonic
theory. In particular, the new terms clearly contribute linea
in A' to the Lagrangian potential, so by the argument at
end of Sec. IV A, an accident occurs ensuring that tilt kin
matics is not necessary. Also, clearly the use of the form~93!
is compatible with the inclusion of the interactions~94!

since, acting onc̄ the gauge correction is the opposite sig
So our proposed formulation’s combined standard mo
matter Lagrangian is

s

l

1-17
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LSM
A 5F1

2
@c̄gl̄~¹l̄

s
2 i fAt I

AEl̄
m
Am

I !c

2~¹l̄
s
1 i fAt I

AEl̄
m
Am

I !c̄gl̄c#2mcc̄c G1LYM
A .

~95!

Here LYM
A is given by them50 version of Eq.~57! and we

would need to sum the square bracket over all the kno
fundamental fermionic species, which thus simultaneou
incorporates all the required accidents. There is also
trouble with the incorporation of the Yukawa interaction te
c̄xc which could be required for some fermions to pick
mass from a Higgs scalar.

Thus the Lagrangian for all the known fundamental m
ter fields can be built by assuming best-matching kinema
and that the DeWitt structure is respected. The thin sandw
conjecture can be posed for all these fields coupled to
The classical physics of all these fields is timeless in B
bour’s sense.

C. Future developments

We end by suggesting further work toward answer
Wheeler’s question in the Introduction stimulated by the
vances in this paper. It remains to explicitly build a be
matched generalized BSW ED action starting from a pair
spatialSO(3) spinors. Use of Eq.~90! in Eq. ~93! still has
remnants of 4-dimensionality in its appearance: it is in ter
of 4-component spinors and Dirac matrices. However, re
that the Dirac matrices are built out of the Pauli matric
associated withSO(3), andchoosing to work in the chira
representation, the 4-component spinors may be treate
c5@cD ,cL#, i.e in terms of right-handed and left-hande
SO(3) 2-component spinors. Thus a natural formulation
ED theory in terms of 3-dimensional objects exists. To
commodate neutrino~Weyl! fields, one would consider a
singleSO(3) spinor, that is setc5@0,cL#, m50 before the
variation is carried out. While we are free to accommod
all the known fundamental fermionic fields in the 3-spa
approach, one cannot predict the number of Dirac and W
fields present in nature nor their masses nor the nongra
tional forces felt by each field. So, consider actions w
integrands such asAR1UFATg1TF or N(R1UF)
1(1/4N)Tg1TF for UF andTF built from spatial first prin-
ciples using SO(3) spinors. ObtainH and treat its propaga
tion exhaustively to obtain constraint algebras. Is a unive
light-cone recovered? Is Einstein-Dirac theory singled o
One could attempt this work for a bareTF or ~more closely to
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BFÓ’s original work! for a best-matchedTF . In connection
with the latter, how is the thin sandwich conjecture f
Einstein-Dirac theory well-behaved? On coupling a 1-fo
field, do these results hold for Einstein-Maxwell-Dira
theory? On couplingK 1-form fields, do they hold for
Einstein-Yang-Mills-Dirac theories such as the Einste
standard model? There is also the issue of whether confo
gravity can accommodate spin-1

2 fermions.
It is worth considering whether any of our ideas for ge

eralizing the 3-space approach extend to canonical su
gravity @61#. This could be seen as a robustness test for
ideas and possibly lead to a new formulation of supergrav
Also, supersymmetry is proposed to resolve the hierar
problem and help with many other problems of theoreti
physics@62#. Furthermore, if the hierarchy problem is to b
resolved in this way, the forthcoming generation of partic
accelerators are predicted to see superparticles. Hence
is another reason for asking if the 3-space approach exte
to supergravity with supersymmetric matter: this may well
soon required to describe nature. The supergravity constr
algebra is not known well enough@64# to comment whether
the new supersymmetric constraintSm̄ arises as an integra
bility condition for H. Note, however, that Teitelboim wa
able to treatSm̄ as arising from the square root ofH @63#;
however, this means that the bracket ofSm̄ and its conjugate
gives H, so it is questionable whether the supergravityH
retains all of the primary importance of the GRH.

Finally, given the competition from@17# and this paper, it
would be interesting to see whether any variant18 of HKT
can be made to accommodate spin-1

2 fermions, and also to
refine Teitelboim’s GR-matter postulates to the level
HKT’s pure GR postulates.
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