PHYSICAL REVIEW D 68, 104001 (2003

Variations on the seventh route to relativity

Edward Andersoh
Astronomy Unit, School of Mathematical Sciences, Queen Mary, London E1 4NS, United Kingdom
(Received 7 February 2003; published 3 November 2003

Wheeler asked how one might derive the Einstein-Hamilton-Jacobi equation from plausible first principles
without any use of the Einstein field equations themselves. In addition to Hojman, KaetaFeitelboim’s
“seventh route to relativity” partial answer to this, there is now a “3-space” partial answer due to Barbour,
Foster and MMurchadha(BFO) which principally differs in that general covariance is no longer presupposed.
BFO's formulation of the 3-space approach is basedbest-matchedictions such as the lapse-eliminated
Baierlein-Sharp-Wheele(BSW) action of general relativitf GR). These give rise to several branches of
gravitational theories including GR on superspace and a theory of gravity on conformal superspace. This paper
investigates the 3-space approach further, motivated both by the hierarchies of increasingly well-defined and
weakened simplicity postulates present in all routes to relativity, and by the requirement that all the known
fundamental matter fields be included. We further the study of configuration spaces of gravity-matter systems
upon which BFGs formulation leans. We note that in further developments the lapse-eliminated BSW actions
used by BFObecome impractical and require generalization. We circumvent many of these problems by the
equivalent use of lapse-uneliminated actions, which furthermore permit us to interprés Bf@ulation
within Kuchats generally covariant hypersurface framework. This viewpoint provides alternative reasons to
BFO's as to why the inclusion of bosonic fields in the 3-space approach gives rise to minimally coupled scalar
fields, electromagnetism and Yang-Mills theory. This viewpoint also permits us to quickly exhibit further
GR-matter theories admitted by the 3-space formulation. In particular, we show that trémpinions of the
theories of Dirac, Maxwell-Dirac and Yang-Mills-Dirac, all coupled to GR, are admitted by the generalized
3-space formulation we present. Thus all the known fundamental matter fields can be accommodated. This
corresponds to being able to pick actions for all these theories which have less kinematics than suggested by
the generally covariant hypersurface framework. For all these theories, Wheeler’s thin sandwich conjecture
may beposed rendering them timeless in Barbour’s sense.
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I. INTRODUCTION limit; the conservation of energy-momentum requires
VG,z=0. Along with these physical considerations, Cartan
Einstein[1] “derived” his field equationg EFES*! [2] proved that the derivation requires the following math-
ematical simplicities: tha® , 5 contains at most second-order

1 derivati is li -
e - _ Matter erivatives and is linear in these. The EFEs may also be
Gap=Rap ZgaﬁR 8T ap @ obtained from the Einstein-Hilbert actidB]

by demanding general covarian@@C) and the Newtonian

Sen= f d*x /= 9(R+ Lyaten); )

IEm""_" address: eda@maths.qmul.ac.uk ~_ an equivalent proof for actions was given by WES). Love-

In this paper, spacetime tensors have lower-case Greek |nd|cqéck [4] has shown that the linearity assumption is unneces-
and space tensors have lower-case Latin indices. Their barred cougéry in dimensiorD<4.
terparts are local Minkowski and Euclidean indices, respectively. Arnowitt, Deser and MisnefADM) [5] split the space-
Bold capital Latin letters denote Yang-Mills internal indices. Capital time metric’ as follows:
Greek letters denote general indices. The indeN, ¢, x, ® and ’
V¥ are reserved for other use. Round brackets surrounding more

than one index of any type denote symmetrization and square _i §_J
brackets denote antisymmetrization; indices which are not part of ¢ é_—k_ N2 ¢ N2 N2

. . . . . . k j
this (ant)symmetrization are set between vertical lingg, is the gaﬁz< ) ’ gaB: ) o
(e+ + +) spacetime metric, with determinagt where the signa- & hij N' s
ture e=—s is —1 for (Lorentzian general relativity(GR), O for m - _N2

strong gravity and 1 for Euclidean GR,, is the spacetime covari-
ant derivative D, is the spatial covariant derivative aff is the )
spatial LaplacianR,; is the spacetime Ricci tensd®, is the space-
time Ricci scalarG,z is the spacetime Einstein tensor ahfg is
the energy-momentum tensar,, is the metric on a spatial hyper-
surface, with determinarit. p,, is its conjugate momentum, with _ 3, iL i

tracep. R,y is the spatial Ricci tensor arRithe spatial Ricci scalar. Shom = f dtf d*x(p"hij = NH=£Hy), @

and rearranged the acti@g) into the Hamiltonian form
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HEGijklpijpkl_\/ﬁRzol (5) deformation; of a_spatial h_ypersurface embedded in a
(—+ + +) Riemannian spacetime. This algebra is the Dirac

H= _2Djpij:0a (6) Algebra,

up to a divergence term. The lapbkand shift¢; have no {H(X), H(y)}=H'(x) 5,i(x,y)+Hi(y)6,i(x,y)
conjugate momenta. Thus the true gravitational degrees of

freedom in general relativityGR) are contained in Riem, the _ _ _

space of Riemannian 3-metrics on a fixed topology taken {H 00 HY)F=Hx) 8,(xy) ®
here to be closed and without boundary. But the true degrees

of freedom are furthermore subjected to the Hamiltonian and ~ {Hi(X), H(V)}=Hi(y) 8,;(x,y) +H;(X) 5,(X,y),
momentum constraintd{ and 7;, respectively. If one can

quotient out the 3-diffeomorphismgvhich are generated by where{,} denote Poisson brackets. Their working is subject

&), one is left with to the assumption that the evolution is path-independent,
which means that the spacetime containing the hypersurface
{Riem} is foliation-invariant; this is the embeddability assumption.
{Superspade- {3-Diffeomorphism’ @) Their further time-reversal assumption is removed 18].

Weakening theiAnsadzein stagegqcf. the earlie{19)), they
which has naturally defined on it the DeWitt supermetricobtain as results tha&t must be ultralocdland quadratic in
Gij =1/\/ﬁ(hi(k|hju)—%hijhk|) present in the remaining its momenta and at most second order in its spatial deriva-
constraint,H. tives (see, however, Sec. I)F

Wheeler listed six routes to GR in 1978]. The first is The hope that pure geometrodynamics is by itself a total
Einstein’s(plus simplicity postulate upgradedhe second is unified theory has largely been abandoned. So asking about
Hilbert’s from Eq.(2). The third and fourth are the two-way H=0, which corresponds to the Einstein-Hamilton-Jacobi
working between Eq2) and Eqs(4),(5),(6); these will con-  equation[by substitutingo" = ¢S/ dh;; , for Jacobi’s principal
cern us in this paper as the arena for Wheeler's queffipn  function S, in Eq. (5)] translates to asking abott?=0,

“If one did not know the Einstein-Hamilton-Jacobi equation, including all the known fundamental matter fieldg, We
how might one hope to derive it straight off from plausible can now assess whether any first principles are truly plau-
first principles, without ever going through the formulation sible by seeing if they extend from a route to relativity alone
of the Einstein field equations themselves?” The fifth andto a route to relativity with all the known fundamental matter
sixth routes mentioned are the Fierz-Pauli spin-2 field in arfields “added on.” The idea of the representation postulate
unobservable flat backgrour@] and Sakharov’s idea that extends additivelyat least naively to matter contributions
gravitation is the elasticity of space that arises from particlgo 7 and’; . Teitelboim[20] provided a partial extension of
physics [9]. One could add some more recent routes toHKT's work to include electromagnetism, Yang-Mills theory
Wheeler’s list, such as from the closed string spectfuifj, and supergravity. One must note the absence of sgiakds

and the interconnection with Yang-Mills phase space in thdrom this list[21].,

Ashtekar variables approadiil]. Among these routes we In contrast, BFOrequire mere closure in place of closure
distinguish three types: to relativity alone, to relativity with as the Dirac Algebra. The strength of their method comes
all known fundamental matter fields “added on,” and to from the generalized Hamiltonian dynamics of Difg2],
genuinely unified theorieévhether partial such as already- which is taken further to provide a highly restrictive scheme
unified Rainich-Misner-Wheeler theorl 2], Kaluza-Klein  based on exhaustigsee[23] for an account They consider
theory[13] and the Weyl gravitoelectromagnetic thediyt], actions constructed according to two principles: best match-
or total such as string theoryFinally, some routes will lead ing and local square rootsee below.

to modifications of GR, such as higher derivative theories or The idea of BFG 3-space approach is to seek for laws of
Brans-Dicke(BD) theory[15] (it is debatable whether string nature that have a relational form. This is taken to mean that
theory reproduces GR since string theory has a BD or “dilatelative configurations alone are meaningful and that the
tonic” coupling). Simplicity postulates may be seen as atime label is to play no role in the formulation. The former is
means of uniquely prescribing GR but there is no reason whychieved by working indirectly with the relative configura-
nature should turn out to be simple in these ways. tion space via best matching. The latter is emphasized by

The original “seventh route to relativity” partial answer working with a manifestly reparametrization-invariant
to Wheeler's question was given by Hojman, Kucleard  Jacobi-type square root actiésee Sec. )l Furthermore it is
Teitelboim (HKT) [16]. As Wheeler suggested, they attachedchosen to have a local square rdgee below. Then the
importance to an embeddability condition, which presup-constraints of GR arise as direct consequences of the imple-
poses 4-dimensionally GC spacetime. However, recentlynentation of these two principles. The 3-space approach ad-
Barbour, Foster and ®lurchadhaBFO) [17] have provided vocates a space rather than spacetime ontology. Rather than
a different partial answewithoutthis presupposition. In this being presupposed, 4-dimensional general covariance and
paper we study whether this (er can be madesatisfactory, the spacetime form of the laws of nature is emergent in the
and how it compares to the HKT answer.

HKT required the “representation postulate”: tHatand
H; be such that they close in the same way as the algebra ofUltralocal means no dependence on spatial derivatives.
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3-space approach. We now carefully state the two principles s (3X—2)Np
for a class of actions from which GR will emerge as essen- H=—D'(N?H,)+ ————H+ £H
tially singled out. N 2\h
1. The universal method dbest matchind17,24,23 is 25(1—X)
used to implement thg-dimensionabliffeomorphism invari- + ————D,(N?D?p). (13

ance by correcting the bare velocities of all bosonic fiéds N

according to the ruIB—>B—£§B.3 For any two 3-metrics on
3-geometries;, 25, this corresponds to keeping the coor-
dinates of%,; fixed while shuffling around those &, until
they are as “close” as possible to thoseXf.

2: A local square rooftaken at each space point before
integration over 3-spages used. Thus the pure gravity ac-
tions considered are of Baierlein-Sharp-Whe¢RSBW) [26]

We require this to vanish in order to have a consistent theory.
The first 3 terms of this are said w@nish weaklyn the sense

of Dirac[22], i.e. they vanish by virtue of the constrairits

'H; . The last term has a chance to vanish in three ways, since
it has three factors which might be zero. Constraints must be
independent ofN, so the third factor means that/\h

= constant We require this new constraint to propagate also,

type, but this leads to the lapse being nontrivially fixed by a con-
stant mean curvatur€CMC) slicing equation. So, fos+# 0,
this forces us to have the DeWitiM(=1) supermetric of
Sesw= J d\ f d*xhysR+A Ty, (9 relativity, which is BFCs “Relativity Without Relativity”
result.
whereA is a cosmological constant. But there is also the=0 possibility regardless of which
Wrmng this form amounts to app|y|ng a temporary sim- Supermetl‘ic is Chose[l29], which is a generalization of
plicity postulate strong gravity[30]. The HKT program would discard this

3. The pure gravity action is constructed with at mostSince itis not a representation of the Dirac Algetatthough
second-order derivativéén the potential, and with a homo- Teitelboim did study strong gravity30]). However, the

geneously quadratic best-matched kinetic term strong gravity theories meet the 3-space approach's immedi-
ate criteria in being dynamically consistent theories of

3-geometries. In this case the theories at most represent na-
1 . _ ture near singularitie@lthough one can expand about them
Tw:ﬁG\a}\?c (hap—=2D (aép)) (hcg—2D(c€q)), (100 to obtain GR and Brans-Dicke thegriut it does illustrate
that the 3-space approach is a fruitful constructive scheme
whereGyj' = Vh(h'h!' ~WHIhX), W= 3, is the inverse of forlﬁgggnda}tggrlt)f;i?r;sa ®lurchadhaBO) found alternative
ths most generalinvertible) ultralocal supermetrid28],  .oniormal theoried31] which are being reformulated by
Gabcd=(1/\/5)(hachbd_X/2habhcd) for X=2W/(3W—1). Anderson, Barbour, Foster and [@urchadha[32] using a
Setting N=Ty/(sR+A), the gravitational momenta new “free end-point” variational principl¢32,33. Confor-

are mal gravity has the action
oL Vho ) .
l=——=_—(hihl9—=WHhIh®%)(h,y— 2D . 2 4
) >N ¢ )(heg (céa)) f o \/s( o 8D ¢) . Ad e
(1D ¢ ) V(e
SC:] dr 23 :
The primary constraint V(4)
1 . X — 3 6
Jh 2
then follows merely from the form of the Lagrangian. In 1 _ 4(¢_£ ®)
addition, variation of the action with respectgpleads to a TC=—G?\R,°_"O)( hap—£¢hapt —ghab>
secondary constraint which is the usual momentum con- Vh ¢
straint(6). M b—E,8)
The propagation o gives[29] % hcd_£§hcd+ 5 é hcd)1 (15)
3\ is the label along curves in superspagii\ is denoted by a Which is consistent fors=1 because it circumvents the
dot. £ is the Lie derivative with respect t4) . above argument about the third factor by independently guar-

“Furthermore, none of the higher-order derivative potentials conanteeing a new slicing equation for the lapse. Despite its lack
sidered by BFOturn out to be dynamically consisteibut see  of GC, conformal gravity is very similar to GR in the sense
Sec. I B. that the true configuration space of GR 35]
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CS+V={Conformal Superspace Volume
{Riem}

:{3-Diffeomorphism};{Vqume—preserving Weyl transformatigns (16)
and conformal gravity arises by considering instead
{Riem}
{Conformal Superspate 7

{3-Diffeomorphisms{Weyl transformations’

This has an infinite number of “shape” degrees of freedomconjectures. We thus arrive at a number of variations of the
whereas there is only one volume degree of freedom. YeB-space approach. We stress that this is not just about im-
removing this single degree of freedom changes one’s usualoving the axiomatization. We must be able to find a version
concept of cosmology, and ought to change the problemthat naturally accommodates sgirfermions coupledl) to
associated with the quantization of the thety permitting  GR if the 3-space approach is to provide a set of plausible
the use of a positive-definite inner product and a new interfirst principles for GR and2) to conformal gravity if this is
pretation forH) [32]. Settings=0 in Eq. (15) gives strong to be a viable alternative. Barbour’s wofR5,41] has been
conformal gravity. One arrives at a further €8 3-space critically discussed by Butterfielf37] and by Smolin[38]
theory if one chooses to work on Ed.6) instead of Eq(17) largely from a philosophical point of view. In contrast, this
[32,34] while retaining a fundamental slicing from the use of paper discusseg&and extends BFO's continuation of this
free-end-point variation. work from a more technical point of view.

To mathematically distinguish GR from these other theo- In Sec. Il, we argue that the BSW princidds problem-
ries, we use atic. First, Barbour’s use of it draws inspiration from the

4: The theory is not conformally invariant, it is obtained Jacobi formulation of mechanics, but in Sec. Il A we point
by conventional variation and has signatére —s= —1. out that the Jacobi formulation itself has limitations and a

The author’s future strategy will involve seeking to over- significant generalization. Furthermore in Secs. 1|1B-D we
rule these alternative theories by thought experiments angoint out that the differences between the BSW and Jacobi
use of current astronomical data, which would tighten theactions are important. Overall, this gives us the “conformal”
uniqueness of GR as a viable 3-space themnyphysical problem in Sec. II C, and the “notion of distance” problem
grounds If such attempts persistently fail, these theories willin Sec. Il D. Second, should the notion of “BSW-type theo-
become established as serious alternatives to GR. So far thies” not include all the theories that permit the BSW elimi-
theories appear consistent with the GR solar system testsation process itself? But when we perform this including
and the CS-V theory will inherit the standard cosmology fermions in Sec. Il E, we find that we obtain not the BSW

from GR. form but rather its generalization. Thus the inclusion of fer-
BFO furthermore considered “adding on” matter to the mions will severely complicate the use of exhaustive proofs
3-geometries,subject to the simplicity postulate. such as those if17,23. We furthermore point out that the

5: The matter potential has at most first-order derivativesgusual higher derivative theories are not being excluded by
and the kinetic term is ultralocal and homogeneous quadratiBFO in Sec. Il F. These last two sections include discussion
in the velocities. Apart from the homogeneity, this parallelsof their HKT counterparts.

Teitelboim’s matter assumptiof&0]. In Sec. Ill, we formalize the second point above by show-

One then discovers in the GR case that the lightcone igg that we could just as well use lapse-uneliminated actions
universal for bosons, a single 1-form obeys Maxwell's elec-for GR and conformal gravity. For GR, these actions may be
trodynamics, and sets of interacting 1-forms obey Yang-Millsstudied within Kuchas GC hypersurface frameworle7].
theory[23]. All these 1-forms have turned out to be mass-This framework brings attention tolt and derivative cou-
less. Considering a 1-form and scalars simultaneously leadding complications in generdSec. IV A), which are, how-
to U(1) gauge theory36]. The GR matter results carry over ever, absent for the minimally coupled scalar, and “acciden-
to conformal gravity[32)]. tally absent” for the Maxwell and Yang-Mills 1-forms, which

We sharpen the understanding of what the 3-space amre what the 3-space approach picks out. But tilt is present
proach is because we are interested in why the impressivier the massiveProca analogues of these 1-forms. We de-
collection of results in the GR case above arises in BFO duce the relation between tilt and the existence of a general-
approach. We seek for tacit simplicity postulates, surveyized BSW form. In Sec. IV B we counter BFOhope that
which assumptions may be weakened and assess the thgust the known fundamental matter fields are being picked
oughness and plausibility of BFOprinciples, results and out by the 3-space approach, by showing that the massless

2-form is also compatible. In Sec. IV C, we find alternative
reasons why the Maxwell 1-form is singled out by the

5We contest BF® speculation that the matter results might lead 3-space approach, from the point of view of the hypersurface
to unification in Sec. IV. framework. We end by explaining out the complica-
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tions that would follow were one to permit derivative-
coupled 1-forms.

PHYSICAL REVIEW D68, 104001 (2003

However, the Jacobi principle in mechanics has a catch:

the conformal factor is not allowed to have zeros. If it does

In Sec. VA, we point out that it is consistent to take thethen the conformal transformation is only valid in regions
bosonic sector of nature to be far simpler than GC mightvhere there are no such zeros. These zeros are physical bar-
have us believe: best matching suffices for its constructionriers in mechanics. For they correspond to zero kinetic en-

An alternative scheme t& using “bare” rather than best-
matched velocities to start off with is discussed, in whi¢h

ergy by the conservation of energy equation. As the configu-
ration space metric is positive-definite, this means that the

gives rise to all the other constraints as integrability condi-velocities must be zero there, so the zeros cannot be tra-
tions. In Sec. VB, we show how all these results also holdversed.

true upon inclusion of spig- fermions. Section V C lists

The Lagrangian(18) is restricted to have a kinetic term

further research topics for fermions in the light of the ad-homogeneously quadratic in the velocities. Lét; ,QA) be

vances made in this paper.

Il. PROBLEMS WITH THE USE OF BSW ACTIONS
A. Insights from mechanics

Suppose the Lagrangin

. 1 .- .
L(a3.93) = 5M*"(am)azar — V(aq) (18)
does not depend oqy,,. Theng, is acyclic variable and its
Euler-Lagrange equation yielgd'=dL/dq,,=c", a constant.
Then the Lagrangian may be modified tqq,,qa)=L
—c"g, using the equation fop" to eliminateq,; this is
known asRouthian reduction

Next, observe that,, may be taken to be the tintein a
conservative mechanical system; we regardgheandt as
functions of the parameter. Then the action takes the pa-
rametrized form

S:fTZL(qA,q—A)t’dr,
T t’

and the equation fgp' may be used to eliminaté from this

(19

by Routhian reduction. One thus obtains the Jacobi action

(20

Sy= sz\/Z(E—V)dcr,

whereE=c! is the total energy andad is the line element
associated with the Riemannian metkilg-, of the configu-
ration space) of the configuration variableg, . Minimiza-
tion of this integral isJacobi’s principle[39]. There is then a
conformally related line element

do?=(E—V)do? (22)

instead a completely general function. Then

72 qIA 2 ’
S:f L(qA ,t—,)t'drzf L£(di,qz)dr (22
71 T1
may be modified to
Ty
SJ:f L(0,,0,)d7 (23
1

by Routhian reduction, wheré=F, some homogeneous lin-
ear function of theq, [39]. For example,F could be a
Finslerian metric functionfrom which we could obtain a
Finslerian metricf -, = 1/2(3%/9q;dq})F?, provided thatF
obeys further conditiong!0] including the nondegeneracy of
fra. So in general the “geometrization problem” of reduc-
ing the motion of a mechanical system to a problem of find-
ing geodesics involves more than the study of Riemannian
geometry.

To some extent, there is conventional freedom in the
choice of configuration space geometry, since we notice that
standard maneuvers can alter whether it is Riemannian. This
is because one is free in how many redundant configuration
variables to include, and in the character of those variables
(for example whether they all obey second-order Euler-
Lagrange equations

As a first example, consider the outcome of the Routhian
reduction of Eq.(18) more carefully:

MAnMFn o CnMAn. o
BV e Sy N

M nn
(29

MFA_

— . 1
L(qA ,QA): E

whereV is a modified potential. So Routhian reduction can
lead to non-Riemannian geometry, on account of the penul-
timate “gyroscopic term’139], which is linear in the veloci-
ties. We consider the reverse of this procedure as a possible
means of arriving at Riemannian geometry to describe sys-

with respect to which the motions of the system are geodetems with linear and quadratic terms. We observe that if the
sics. The point of this method is the reduction of mechanicsinear coefficients depend on configuration variables, then in

problems to the study of well-known geometry.

5Newtonian time is denoted hywhile 7 is a parameter. A dot is

used ford/ ot in mechanics workings and a dash o . A takes
1tonandA takes 1to (—1); nis not to be summed ovey; are

configuration variables with conjugate momepta

general the quadratic structure becomes contaminated with
these variables.

As a second example, higher-than-quadratic systems may
be put into quadratic form b@strogradsky reductiof42], at
the price of introducing extra configuration variables.

We finally note the ordering of the summation and the
square root in
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n—1 C. Lack of validity of the BSW form

do= > MMgpq,, (29 In perfect analogy with mechani¢g1), there is a confor-

AT=1
mally related line element,af= (A +sR)da? in vacuo, for
which we refer to as the “good” or “global square root” Which the motion associated with E8) is geodesid44].
ordering. But the observation in mechanics that such conformal trans-
formations are only valid in regions where the conformal
B. The BSW formulation of GR factor is nonzerbstill holds for GR. It is true that the details

are different, due to the indefiniteness of the GR supermetric.

GR is an already-parametrized theory. This is because thenis causes the zeros to be spurious rather than physical
ADM action (4) (generalized to arbitrargandA at no extra  parriers[43]. For while a zera of the potential corresponds

cosy may be rewritten in the Lagrangian form to a zero of the kinetic term by virtue of the Hamiltonian
constraint, this now means that the velocity need be null, not
szf d)\f dSX\/ﬁNL(hab,habifi 'N) necessarily zero, because of the indefiniteness. Thus the mo-

tion may continue through “on the superspace lightcone,”
T(kii) which is mad_e up of perfectly reasonable Kasner universes,
A+sR+ &) , (26)  rather than grind to a halt. Nevertheless, the conformal trans-
4N? formation used to obtain geodesic motion is not valid, so it is
questionable whether the BSW form is a “geodesic prin-

=f dxf d*xhN

[cf. Eqg. (19)] where ciple,” if in general it describes conformally untransformed
non-geodesic curve®r practical purposes.
Ty= KiniJ_K2, Kij:hij_z[)(igj), (27) To illustrate that the presence of zeros in the potential

term is an important occurrence in GR, we note that the

Then (specifically following BSW[26] or in analogy with ~ Bianchi IX solution has an infinity 01_‘ such_zgro_s as one ap-
Jacobj extremization with respect toN gives N  Proaches the cosmological singularity. This is important be-
=+ m which may be used talgebraically ~Cause itis conjectured by Belinskii, Khalatnikov and Lifshitz
eliminate N from Eg. (26). Thus one arrives at the BSw (BKL) [47] that the behavior of Bianchi IX near the cosmo-
action logical singularity is the generic behavior of a cosmological
solution to GR. This sort of conjecture is acquiring numerical
supporf 48]. The above argument was originally put forward
Sgsw= f d\ f dxh VA+sR)T,. (28) by Burd and Tavakd49] to argue against the validity of the
use of the “Jacobi principle” to characterize chaos in GR
. - T [50]. Our point is that this argument holds agaiasty use,
Although this !OOkS S|m|la_r to the Jacqbl action in mec_han-BFé,S included, of the BSW form in minisuperspace models
ics, there are important differences. First, the GR configura- . .
tion space is infinite-dimensional; with redundancies oneOf the early universe in GR. . ,
can consider it to be superspace ’The DeWitt supermétric i The way ogt O.f th|s argument that we suggest s to ab;tam
defined on superspageointwise éy use of a 2-index to ffom the self-infliction of spurious zeros by not performing
1-index manG G DeWitt reoresented his super- the conformal transformation in the first place, thus abandon-
. PSabca—Sap, DEW! P IS Sup ing the interpretation of the BSW form as a geodesic prin-
metric as a &6 matrix, which is €+ +++ +) and thus ciple in GR. Conformal gravity, however, is distinct from GR

|ndef|n|_te[28]. As a special case, mmsupersp@d_@] is the and has no cosmological singularity, so arguments based on
truncation of superspace obtained by considering homoge[he BKL conjecture are not applicable there. Conformal

H . “ H. H ” ++ X ) . i X
neous metrics alone. “Minisupermetrics” are-(+ +), thus ravity's zeros are real as in mechanics, becaliSeis

they too are indefinite. Second, the BSW action has th ositive-definite, and Barbour and Kurchadha use this to

pad or _Iocal square root ()_rderlr)g. Below, we .f'rSF con- argue that topologies witR<<0 at any point are not allowed
sider minisuperspace, for which this extra complication doesf31]

not arise, since by homogeneity the “good” Jacobi and
“bad” BSW orderings are equivalent.

Finally, BSW’s work led to the thin sandwich conjecture
[45,46, the solubility of which features as a caveat in BEO BFO called the local square root ordering “bad” because
original paper. Being able to pose this conjecture for a theoryt gives one constraint per space point, which would usually
amounts to being able to algebraically eliminate the ldgse render a theory trivial by overconstraining due to the ensuing
from its Lagrangian. This implies that the theory is timelesscascade of secondary constraints. Yet GR contrives to sur-
in Barbour's sens25,41]. The extension of the conjecture vive this because of its hidden foliation invarianf®7].
to include fundamental matter fields has only recently begumowever Giulini[46] has pointed out another reason why the
[46]. This and other investigations are required to assess the
robustness of the conjecture to different theoretical settings,———
to see if in any circumstances it becomes advantageous t0in GR, these are regions for which+R<0 or for which A
base numerical relativity calculations on the algorithm which+R>0. We also note that the sign &f+ R plays an important role
the conjecture provides. in the thin sandwich conjecture.

D. The BSW form is an unknown notion of distance
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local square root ordering is bad: it does not give rise tametric, in the case of minimally coupled matter it contains
known geometry. Below, we extend his finite-dimensionalthe DeWitt supermetric as an isolated block:
counterexample to the geometry being Finslerian.

The BSW form as a notion of distance provides as the Gag(hap) 0

“full metric” on superspace 0 HYatern o |- (32)

1 9 5 If this is the case, it makes sense to study the pure gravity
2 msssw part by itself, which is a prominent feature of almost all the
examples studied in the 3-space approach. We identify this as
a tacit simplicity requirement, for without it the matter de-
=| Gac(u)Ggp(w)+253)(u,w) grees of freedom interfere with the gravitational ones, so it
makes no sense then to study gravity first and then “add on”
matter. In Brans-DickéBD) theory, this is not immediately

Sesw -~ - o the case: this is an example in which there are gravity-boson
X | —=—===6apGcp | (u) 1", (29  kinetic cross-term€,, in the pointwise Riemannian kinetic
VGgpvBuP metric:
. . X
wherev”=h”=h?3" by DeWitt’s 2-index to 1-index map and Ghas(hap) Cax(Nap.x) 33
where hats denote unit “vectors.” So in gener@lysGep Calhap.x)  HY(hgp, x)

=0 is a sufficient condition for the full metric to be degen- ) ) )

erate and hence not FinsldGiulin’s example had a where y is the BD field andX is related to the usual BD
1-dimensional v” so this always occurred But if ~Parameterw by X/2=(w+1)/(20+3). Thus, the metric
GA[BE;C]WEO, the full metric is not a functioriboth in the and dilatonic fields forntogethera theory of gravity with 3

ALB=C] . . degrees of freedom. However, this is a mild example of non-
d|str|but|pnal anq functional senge$o using the BSW form minimal coupling because redefinition of the metric and sca-
asa notion of distance Igads to ‘.‘”kT‘OW“ geometry, so therl%r degrees of freedom permits blockwise isolation of the
IS o scope fqr the practical application of the BSW form orm (32). More disturbing examples are considered below
a geodesic principle. and in Séc IV C

This is to be contrasted with the global square root, for ; .
\ : : N ) We now begin to consider whether and how the 3-space
which the above procedure gives instéadmijRiemannian . L
formulation can accommodate spinfermionic fields,F, .

geometry. For minisuperspace, the local square root workin :
presented does indeed collapse to coincide with this globa%IOIIOWIng the strategy employed above for bosons, the BSW

square root working, and the resultitBemjRiemannian ge- working becomes

ometry is of considerable use in minisuperspace quantum _ _

cosmology[43]. sF=f dxf BxVhNL(hgp,hapi & NF A Fy)
There is also the issue DeWitt raisgtll] that in the study

of superspace one is in fact considering not single geodesics, To(ki) _
but sheavesof them. This corresponds to all the different =f d)\f dx/h| N A+sR+Ug+ g IzJ +Te(FA)
foliations of spacetime in GR, which leads to the problem of 4N

time in quantum gravity51]. Thus there are two difficulties (34)
with applying BFOs formulation of GR. The first will still
plague conformal gravity whereas the second is absent begacausery is linear inF, .2 Then the usual trick for elimi-

cause there is a preferred lapse rather than foliation invarinatingN does not touciig, which is left outside the square
ance. root:

E. The Fermionic contribution to the action is linear SF:f d)‘f X V(VA TSR Up Tyt Tp). (39
Since the kinetic terms of the bosons of nature are also

quadratic in their velocities, we can use the modifications The local square root constraint encodes the correct gravity-

Tg—Tg+Ts, A+SR-A+sR+Ug (30)  fermion Hamiltonian constraint

to accommodate bosonic fields, in a BSW-type action, _ 1 X -

Vh

SB:f dxf *xVhVA+sR+Ug\Ty+Te. (31 (36

This local square root encodes the correct Hamiltonian con-8we see in Sec. IV that the algebraic dependenc&l @mergent

straint for the gravity—boson system. Although the pointwisefrom such decompositions requires rigorous justification. We pro-
Riemannian kinetic metric is larger than the DeWitt super-vide this for Eq.(34) in Sec. V B.
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We postpone the issue of best matchindpich is intertwined  respect to the inclusion of spihfermions. In Sec. V B, we
with gravity-fermion momentum constrajntintil Sec. VB.  will point out the natural existence of GR—spintheory
Our concern in this section is the complication of the con-within the 3-space approach.
figuration space geometry due to the inclusion of fermions.
For now the elimination procedure is analogous not to the
Jacobi working but rather to its generalizati@8). So even
the pointwise geometry of the gravity-fermion configuration
space is now compromisedjA +sR+ UF\/T—ngTF could
sometimes be a Finslerian metric function. By allowing Eq.
(34), we are opening the door to all sorts of complicated
possible actions, such as:

F. Higher derivative theories

We now argue against the significance of the preclusion of
higher derivative theories by BEO'he precluded theories
are easily seenotto be the usual higher derivative theories.
There are two simple ways of noticing this. First, the primary
constraints encoded by the BF@eories with arbitrary

P(h;i ,hji «, - ..) will always be of the form
(M G Fay, . ay,. e ) ’
(2) Arbitrarily complicated compositions of such roots,
powers and sums. . \/FHz _ \/ﬁp+ i pipi— §p2> =0, (37)
(3) More generallyK ,q*, whereK , is allowed to be an Vh : 2
arbitrary function of not only they, but also of theA—1
independent ratios of the velocities. which is not what one gets for the usual higher derivative

(4) The above examples could all be Finslerian or fail totheories. Second, BF©theories have fourth-order terms in
be so by being degenerate. They could also fail to be Finsleheir potentials but their kinetic terms remain quadratic in the
rian if the K, are permitted to béunctionalsof overall de-  velocities, while the usual higher derivative theories’ kinetic
gree 0 in the velocities, which we can take to be a growth oferms are quartic in the velocities. We argue that the mis-

the local-global square root ambiguity. o match of derivatives betweehand P for P#sR+ A over-
We would therefore need to modify the BSW princi@le rules the theories from within the GC framework, so BFO
to a general BSW principl@G that includes spir- fermi-  are doing nothing more than GC can do in this case.

ons. This amounts to dropping the requirement of the matter |t s not clear whether the usual higher derivative theories

field kinetic term being homogeneously quadratic in its ve-could be written in some generalized BSW form. The form

locities, thus bringing into alignment with Teitelboim’s as- would either be considerably more complicated than that of

sumptions. We note that with increasing generality the pospure GR or not exist at all. Which of these is actually true

sibility of uniqueness proofs becomes more remoteshould be checked case by case. We consider this to be a

Although some aims of the 3-space approach such as a fulorthy problem in its own right by the final comment in Sec.

derivation of the universal light-cone would require some|| B, since this problem may be phrased as “for which higher

level of uniqueness proofs for spinfermions, the author’s derivative theories can the thin sandwich formulation be

strategy is to show in this paper that sgifiermions coupled  posed?” To illustrate why there is the possibility of nonex-

to GR do possess a 3-space formulation and also to point oigtence, consider the simplest examgie; «R? theory. The

that the uniqueness results may have to be generalized fall doubly contracted Gauss equation is

view of the generalization of the BSW form required in this

section.

Could we not choose to geometrize the gravity-fermion  R=R-s(K,,K2°—K?)+2sD,(n’D,n?—n2D,n®)

system as a Riemannian geometry instead, by use of the (38)

reverse of Routhian reduction? But the coefficients of the

linear fermionic velocities in the Einstein-Dirac system con-

tain fermionic variables, so the resulting Riemannian geom

etry’s coefficients would contain the fermionic variables in

addition to the metric. We call such an occurrender@ach

of the DeWitt structuresince it means that contact is lost

with DeWitt’s study of the configuration space of pure GR

[28,44). So this choice also looks highly undesirable.

ong?rrl L;Oeg;aertsr ;angﬁ?&gl?cﬁ:;n& %iagogoﬁrilfgrggb_ 9O_n_the other hf':md, iN occurs only linearly in the action then the
. . variational equation foN contains noN and so cannot be used to

lems. S.O this is a big dem""”d on the 3-space approach, a%ﬁminate N. If N occurs homogeneously in the action, then the

one which must be met if the 3-space approach is truly tq,

. . variational equation foN containsN only as an overall factor and
describe nature. Our demands here are less than Wheeler SdB cannot be used to eliminakéeither. Also, itis permissible for

[21]: we are after a route to relativity with all matter “added gerivatives ofN to be present, so long as these terms belong to a
on” rather than a complete unified theory. The HKT route iota) divergence which may then be discarded to leave an action
appears also to be incomplete at this stage: Teitelboim wagepending only algebraically dd. This might conceivably happen
unable to find a hypersurface deformation explanation fofor some cases of higher derivative theories. Finally note that the
spin4 fermions[20]. Thus when we began this work, all form in whichN appears in the action may change under changes of
forms of the seventh route to relativity were incomplete withvariables.

and, whereas one may discard the divergence term in the
3+1 split of R, in the 3+1 split of R?, this divergence is
multiplied by R and so cannot similarly be discarded. So it is
unlikely that the elimination ofN will be algebraicin such
theories, which is a requirement for the BSW procedure.
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Were this algebraic elimination possible, we would get more Ill. LAPSE-UNELIMINATED VARIATIONS
complicated expressions than the local square root form from ON THE 3-SPACE APPROACH

it. Indeed, higher derivative theories are known to have con-
siderably more complicated canonical formulations than GR

We have seen that the interpretation of the BSW form as a

[52]: it is standard to treat them by a variant of Ostrogradsk)ﬂGOdeSiC principle is subject to considerable complications,

reduction adapted to constrained systéb#.

and that it may obscure which theories are permitted or for-

It is worth commenting that HKT’s derivation 6f being bidden in the 3-space approach. We will now show that the
quadratic in its momenta and containing at most second déise of the BSW form, and consequently the problems with
rivatives may also be interpreted as tainted, since it comeks interpretation, may be circumvented by the use of lapse-
about by restricting the gravity to have two degrees of freeuneliminated actions because the content of GR is not af-
dom, as opposed to e.g. the threeRof aR? theory or of fected by lapse eliminatioijust as the Jacobi and Euler-

Brans-Dicke theory. Thus we do not foresee that any

variantagrange interpretations of mechanics are equivalénts

of the seventh route to relativity will be able to find a way easy to show that the equations of motion that follow from
around the second-order derivative assumption of the othéhe N-uneliminated 3-1 “ADM” Lagrangian (26) are

routes.

weakly equivalent to the BSW ones:

SR+ A

ap"
(K

=\/HN(h”

ADM

X
2

) . 2N[ )
= JhN[hii(sR+A)—sRi]— —( PPy — 5P

Vh

N i
2

1 X
ﬁ(sR+A)—ﬁ(pabpab—§p2)
ap" N
=|=—| +3hin,

S

and similarly when matter terms are included. We use arbi- [ gp'l
trary s and W above to simultaneously treat the GR and ( )
strong gravity cases. The ADM propagation of the Hamil-

tonian constraint is slightly simpler than the BSW one,

N

for W=1 or s=0, where it is understood that the evo

)N X
—sR/ T P"Pm — 5 PP

+syVh(D'DIN—-hTD2N) +£,p'l

N ij ab X
+mh PabP™~ 5P

+syh(D'DIN=hID2N)+£,p'l

(39

) N-eliminated

NHC \/H¢6 3 Cc
T_S—VJ d°xNH

N-uneliminated

+h'l

H= iDi(NzHi)+£§H (40) (42)

- for
lution

is carried out by the ADM Euler-Lagrange equations or their Jhot 8D%¢\ Ao* 23

strong gravity analogues. HC=— 3 s( R— ) + st 2 pabpab
We now check that using uneliminated actions does not v ¢ v ‘/H‘f’

damage the conformal branch of the 3-space approach. The (43

conformal gravity actior(15) is equivalent to

the conformal gravity equivalent of the Hamiltonian con-
straint.

We now develop a strategy involving the study of lapse-
uneliminated actions. This represents a first step in disentan-

gling Barbour’s no tim¢25,41] and no scal¢32,33 ideas. It
also permits us to investigate which standard theories exist

(41) according to the other 3-space approach rules, by inspection

8D2%¢ A¢? Te
d*xhNgp* S(R— —
f \/_ d) ¢ V2/3(¢) 4N2
S=| d\
V(¢)2l3
where the lapse is

of formalisms of these theories. We could then choose to
N algebraically eliminate the lapse where possible to show

=3\Tc/[s(R—8D?¢/ )+ Ap?VZ].  The following which of these theories can be formulated in the original

equivalent of Eq(39) holds:

BFO 3-space approach. We emphasize that existence is by no
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means guaranteed: some perfectly good GC formulations of

theories are not best-matched, or do not permit a BSW refor-

mulation because they cannot be made to depend algebra-
ically on the lapse. Thus the uneliminated form can be used

to help test whether the 3-space approach is or can be made
to be a satisfactory scheme for all of nature.

We can furthermore use this lapse-uneliminated formula-
tion to interpret the GR branch of the 3-space approach
within Kuchars hypersurface framework, which has striking
interpretational consequences, to which we now turn.

IV. THE 3-SPACE APPROACH

AND THE HYPERSURFACE FRAMEWORK FIG. 1. The change along an arbitrary deformation of the hyper-
A. Nonderivatively coupled 1-forms surfacey, is split_ according_t05N=5N+ O¢ . Kughérshowed that

) £.= 6, when acting on spatial tensofsee Kuchat.7 and IIl.5).

In his series of four papers, Kuchg7] considerg) the

deformation of a hypersurfacé)) the kinematics of tensor The translational pary? may contain a term 2P3°K .,
fields on the hypersurfac@]l) the dynamics of the fields on due to the possibility oflerivative couplingof the metric to
the hypersurface, andV) geometrodynamics of the fieldS.  the 1-form, while the remainder of#? is denoted bys™, :
The fields are decomposed into perpendicular and tangential

parts. We are mainly concerned with 1-forms in this section, AH = A Hi+ 2 AP3PK 4. (46)
for which the decomposition 15A,=n,A, +efA,; we also For the 1-form field, using the decomposition®?
require the decomposition of the metrig, ;= gabeiez =\ nenf+a2telnf+ \Pnef+ \2Pelef and A\ =72,

—n,ng. Adeformation at a poirk of a hypersurfac& may  \'L=z' (by the definition of canonical momentyone
be decomposed into two parts: thik, for which N(x)=0, obtains
[d2N](X)#0 and the translation for which N(x)#0,
[3.N](x)=0. We follow Kuchais use of first-order actions. AHe=L+Vh(A*2D,A, —\?°D,A,). (47)
For the 1-form, this amounts to rewriting the second-order
action Sp=fd*x\y—gL(A,,VsA,.0.p) by setting A\*#  We also require
=dL/d(VgA,) and using the Legendre transformation W
(A, V:A,,L)— (A, \,5,L), where the “Lagrangian po- ab_ V' qaly b (ab) _ a(a_b)
tential” is L=[A“VyA — L(Aq .\ ap Gag). Then the "hy- APP= T (CAEN D LA N AR, (48)
persurface Lagrangian” is
For the 1-form\*-2 and\?2" play the role of Lagrange mul-
N a 0 na a0 tipliers; one would then use the corresponding multiplier
ONSa= Ld (7 onAL T T 0NAL— NAH "= NoWTH ) equations to attempt to eliminate the multipliers from Eq.
(44)  (44). In our examples belowA, will also occur as a multi-
plier, but this is generally not the case.

The above sort of decomposition holds for any rank of
where 8y is the normal change in the projection, the tensor field. S, P?° and £ are universal for each rank,
A-contribution to the momentum constraigH ; is obtained ~ whereasH, containsL, which has further details of the par-
from 6y=6y—£; (see Fig. 1 integrating by parts where ticular field in question. These three universal features rep-
necessary, and the A-contribution to the Hamiltonian con+esent the kinematics due to the presupposition of spacetime.
straint on a fixed backgroung# °® may be further decom- The £, contribution is “shift kinematics,” while the tilt con-
posed into its translation and tilt parts, tribution is “lapse kinematics.”

The point of Kuchas papers is to construct very general

consistent matter theories by presupposing spacetime and
AHO= aH+ AHS . (45 correctly implementing the resulting kinematics. We are able

to show below that in not presupposing spacetime, BF©

attempting to construct consistent theories by using shift ki-

0References to these complicated papers are pinned down sl matiCS(Wh_iCh is the best matching prinCip!falone’ f"md
these Roman numerals followed by the relevant section numberdNUs attempting to deny the presence of any “lapse kinemat-

We restrict attention te= 1 in this section. ics” in nature. This turns out to be remarkably successful for
e usee? for the projector onto the hypersurface angfor the ~ the bosonic theories of nature. _
perpendicular vector to the hypersurface, &g for the extrinsic We begin by noting that nonderivative-coupled fields are

curvature. The index perpendicular to the hypersurface is denoted lot simpler to deal with than derivative-coupled ones. We
by the subscriptL, the subscript+ denotes the tilt part and the then ask which fields are included in this simpler case, in
subscript t denotes the translational part. which the matter fields do not affect the gravitational part of
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the Hamiltonian constraint so that the gravitational momentavhich is nonultralocal in the momenta. We note that this
remain independent of the matter fields. Now, we realize thatloes nothing to eliminate the remaining term in the tilt: the

this is atacit assumptiorin almost alt?> of BFO's work.

0: The implementation of “adding on” matter is for mat-

Proca field has nonzero tilt.
But, for m=0, the A, multiplier equation gives instead

ter contributions that do not interfere with the structure of thethe Gauss constraint of electromagnetism

gravitational theory.

This amounts to the absence of Christoffel symbols in the

G=D,m?~0. (55)

matter Lagrangians, which is true of minimally coupled sca-

lar fields ©,x=dax) and of Maxwell and Yang-Mills theo-

ries and their massive counterpartsince D ,A,—DpA,

=d,Ap—dpA,). Thus it suffices to start off by considering

This would not usually permi&, to be eliminated from Eq.
(54) but the final form of 4+ ° for m=0 is

the nonderivative-coupled case on the grounds that it in- vh

cludes all the fields hitherto thought to fit in with the BFO
scheme, and also the massive 1-form fields which do not.

Consider then the Proca 1-form. Its Lagrangian is

apfl - ™ A pa
Lproca™ _V[aAB]V AP — 7AaA ) (49
with corresponding Lagrangian potential
L tes) M ae
L=—Z)\ A[aﬁ]+7AaA . (50

1
AHO=— BabBab-i- —— 7w+ A (Dym?~0), (56)

4 2vh

so the cofactor ofA, in Eq. (44) weakly vanishes by 55, so
A, may be taken to “accidentally” drop out. This means that
the tilt of the Maxwell field may be taken to be zero. The tilt
is also zero for the metric and for the scalar field. So far all
these fields are allowed by BF&hd have no tilt, whereas the
disallowed Proca field has tilt.

We can begin to relate this occurrence to the BSW prin-
ciple 2 or 2G. Suppose an action has a piece depending on
d,N in it. Then the immediate elimination &f from it is not
algebraic, so the procedure of BSW is not possible. By defi-

Whereas,H} has in fact been completed to a divergence nition, the tilt part of the Hamiltonian constraint is built from
wHS=A%D, 7" +A D,7* suffices to generate the tilt the 9,N contribution using integration by parts. But, for the

change ofA, andA, for the universal 1-forn{see Kuchar
[1.6). The first term of this vanishes sineet=0 by anti-

symmetry for the 1-forms described by E@9). Also

AP3P=0 by antisymmetry so

o 1 ab 1 a m2 a 2
AH°=1h = Nk S - (AAT-AY)
—NPA | +A D7 (52)

by Egs.(45), (46). The multiplier equation foh ,;, gives

)\abz _2D[bAa]EBab . (52)
For m# 0, the multiplier equation foA, gives
— 1 a
A =-— mz\/ﬁDaW , (53

and elimination of the multipliers in E@51) using Eqs(52),
(53) gives

1 Jh m?\/h
AHo:_z\/ﬁﬂawaJr e BapB?P+ 5 AA®
- (Dam®)? (54)
om2yh

A, -eliminated Proca Lagrangian, this integration by parts
gives a term that is nonultralocal in the moment, t?)?,
which again containi,N within. Thus, for this formulation

of Proca theory, one cannot build a BSW-Proca action to
start off with. Of importance, this problem with spatial de-
rivatives was not foreseen in the simple analogy with the
Jacobi principle in mechanics, where there is only one inde-
pendent variable.

The above argument requires refinement from the treat-
ment of further important physical examples. This is a fast
method of finding matter theories compatible with the
3-space approach by the following argument. If there is no
derivative coupling and if one can arrange for the tilt to play
no part in a formulation of a matter theory, then all that is left
of the hypersurface kinematics is the shift kinematics, which
is the best-matching principle. But complying with hypersur-
face kinematics is a guarantee for consistency so in these
cases best matching suffices for consistency.

First, we consider K interacting 1-form# with
Lagrangian®®

LA=— ( Vi AR+ gcABcAgAg) ( viead
2

m
+ gCADEADBAE“) - 7AaMAaM. (57)

1D, is the Yang-Mills covariant derivative an@gc are the
Yang-Mills structure constants. By(d\sc we strictly mean éCQBC
where A indexes each gauge subgroup in a direct product. Then

2We have argued in Sec. Il E that the exception, Brans-Dickesach such gauge subgroup can be associated with a distinct cou-

theory, is a mild one.

pling constant g.
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We define )\,i',lﬁzaL/a(VBAZ") and the corresponding La- could be viewed either as the interaction ofsérongly fa-
grangian potential is vored but still hypotheticalHiggs field with the electromag-
netic field, or as a warm-up exercise toward the inclusion of
DAE, afB m? aM the interaction term of Maxwell-Dirac theoifyhe classical
5 CBDEABAN " 7AQMA ' theory behind quantum electrodynami{€@ED)] and its stan-
(58 dard model generalizatiofsee Sec. VB The Maxwell-

scalar Lagrangian 1§
The overall tilt contribution is now the sum of the tilt con-

tributions of the individual fields, sqa yH3=AlDamfy  Lis’=—ViuAg VIAP + (9, x— 1A, x) (9" x* +ieAkx*)

9

1 [aB]

4

suffices to generate the tilt change. Aga,i\r’“\A,Pab=0 by an- m2
tisymmetry so - 7’( X*x. (65)
[¢] 1 M ab 1 2 Maa H i ;
A =\h —Z)\ab)\M T +—(A A Now, in addition toA*?, define u*=dL/d(V,x) and v“
=dLlId(V,x*), so the Lagrangian potential is
—-AMA =AM 1 AMD, 72 1 m? _
LM M Va,b] | Hal'Mm L:_Z)\[aﬁb\[aﬁ]_k7AaAa+MaVa_leAa(X*Va_XMa)
g 2
~C haMAPAR+27MAPAY) (59 m
5 wpo(vh ) (59 N TXX*X- 66)
by Egs. (45),(46). The multipliers are)\ﬁ,lb and AT, with
corresponding multiplier equations aH % =A, D,m still suffices to gel?erate the tilas scalars
contribute no till, we have, , Pa’=0, and
M= —2D[pAY =B}, (60)
1
1 e A Z)\ab)\ab+ Mav?t N Eﬂawa— 77)(77)(*)
Ay, =— ——=D,md
ML mz\/ﬁ al/!/M m2
+ 5 X x—ie| Adxt vt xu]
=- \/—(DaWM+gCLMP7T aAD) (61)
. - - =X e —xm, ] (67)
for m# 0. We thus obtain the eliminated form \/H
. e Jh ab m?\/h e The N\, multiplier equation is Eq(52) again, while theA,
Ayt 2\/H7TMa7T 2 BmanB AnaA multiplier equation is now
1 Gua)y=Dam?+ie(x* mx—xm,)=0, (68)
+ ————(D,7M3)(D 62 . . . .
2m2\/ﬁ( am ) (Dpmb) 62) which can be explained in terms of electromagnetism now

having a fundamental source. In constructing ,«H ° from
and the massive Yang-Mills field is left with nonzero tilt. For Eqgs. (45),(46),(67), we can convert the tilt to an algebraic
m=0, the second multiplier equation gives instead the Yangexpression by the sourced Gauss I@8) which again hap-
Mills Gauss constraint pens to cancel with a contribution from the Lagrangian po-
tential:
gM=D,7M2~0. (63
o_ ab a a (o] o
In this case, the tilt is nonzero, but the Yang-Mills Gauss ATt M Aan = ()bt WH T axe M
constraint “accidentally” enables the derivative part of the 1 1
tilt to be converted into an algebraic expression, which then :[Z BapB®— war?+ h
happens to cancel with part of the Lagrangian potential:

X

1 a
5 TaT — )Ty

2

vh + XX

Ay O= 7 BB, =

1 M ﬂ'ﬁﬂ
2¢h e .
vh +A, [Dym?+ie(x* m»— xm,)~0]. (69
+AM(D, 78 +9C e 72AR~0).  (64)
Second, we considad (1) 1-form—scalar gauge theory, 1%This working is unaffected by inclusion of a scalar field poten-
with interactions of the formy* A*d, x andx* yA*A,,. This tial function.
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It is not too hard to show that the last two accidents also A A.—0.0 (72)
. . . . . a a av-’*

accidentally conspire together to wipe out the tilt contribu-

tion in Yang-Mills 1-form—scalar gauge theory. This theory

is also obviously nonderivative-coupled. B. The 3-space approach allows more than the fields of nature

We now present a more general 'Freatment ?‘b‘?“t f[he 9C* We have described how the fields hitherto known to be
currence of ?he'se acmqents. TheY arise from eliminafing permitted by the 3-space approach may be identified within
from its m_ulltlpller equ?uon. For this to make senA@,mugt the GC approach. These fields all have the universal kine-
be a multiplier, thusm=0. Then for general, the multi- 1 a4ic feature called best matching by BF@nd no other
plier equation is significant universal featurgilt or derivative coupling. Are

these fields then the known fundamental matter fields, which
£+Dawa= 0. (70)  somehow have less universal kinematic features than GC
0 would lead one to expect? This question may be subdivided
as follows. Does the 3-space approach single anly the
Then the requirement thak, D,7%+L be independent of known fundamental matter fields? Does the 3-space ap-
A, on using Eq(70) means that-A, (JL/JdA,)+L isinde-  proach single outll the known fundamental matter fields?
pendent ofA, . Thus the accidents occur whenever the La-Kucharmakes no big deal about the simplified form weakly
grangian potential is linear iA, . equivalent to his decomposition of the electromagnetic field,

From the broadening of our understanding due to theyecause it does not close to reproduce the Dirac Algetea
above two examples, we can precisely reformulate the BSWuchar 111.11,12); it only does somodulothe Gauss con-
principle 2 within the GC hypersurface framework as straint of electromagnetisng,. He takes this to be an incon-

2U: We use lapse-uneliminated actions homogeneouslyenience, one which can be got around by adhering to the
quadratic in their velocities and permit only those for WhiChform directly obtained from the decomposition, whereas

the matter contributes a weakly vanishing tilt. BFO take it as a virtue that the simplified form “points out”
We can combine this with dropping the requirement forthe new constrainig, as an integrability condition.
homogeneously quadratic actiofRrinciple 2G) to obtain a The first question can be answered by counterexample.
Principle2UG, in anticipation of the inclusion of spia-fer-  One should interpret the question as coarsely as possible; for
mions. example one could argue that the 3-space approach is not

So for Einstein-Maxwell theory, Einstein-Yang-Mills capable of restricting the possibility of Yang-Mills theory to
theory, and their corresponding scalar gauge theodgshe  the gauge groups conventionally used to describe nature, or
absence of derivative Coupling guarantees that they can Qﬁat by no means is massless 1-form—scalar gauge theory
coupled to GR without disrupting its canonical structure asyuaranteed to occur in nature. Rather than such subcases or
tacitly assumed by BFQ(2) The absence of tilt guarantees effects due to interaction terms, we find it more satisfactory
that the resulting coupled theories can be put into BSW formyg construct a distinct matter theory which is not known to be

Because the theories have homogeneously quadratic kinetigesent in nature. The last section has put us into a good
terms, this is indeed the BSW fori (as opposed to its position to do this.

generalizatior2G), (3) now, the GC hypersurface framework  Consider the 2-fornd,, 5 Lagrangian
guarantees consistency if all the required kinematics are in-
cluded. But the only sort of kinematics left is best matching. _ Lerap M aB
Thus, all these theories are guaranteed to exist as theories in L==VyPog V7O = 7(1)&,8(1) ' (73
BFO's original formulation of the 3-space approach.

These workings begin to sho(if one presupposes space-
time), what sort of obstacles in Kuchsuspacetime ontology
might be regarded as responsible for the uniqueness resu
for bosonic matter when one starts from BEO
3-dimensional ontologysee also Sec. IV

There is a slight procedural complication(8), which we
illustrate for the BFO formulation of Einstein-Maxwell
theory. One starts off with

2

define\*F7= dL/a(V,®,p) and use the Legendre transfor-
ﬁgation to obtain the Lagrangian potential

Lt m’ ap
L:_Z)\ )\[aﬁy]+7q)aﬁ® . (74)

Then (@)H?L:Z(leDawab suffices to generate the 2-form

tilt and ,P3°=0 by antisymmetry. The multipliers ape**®
SBSWAZI d)\f d®xy/hyR—DzA, DEAPI and A,, with corresponding multiplier equationa ..
= _2D[b(bab]EBabC and, form+0,

X Tyt h(A,—E£A) (Ap—£AL), (7D
1
and then one discovers the Gauss constraint of electromag- PP=— Z—Dafrab, (79
netismg is enforced, which one then encodes by the corre- m?vh
sponding “electromagnetic” best matching. This amounts to
the introduction of an auxiliary velocity) (variation of the  which may be used to eliminate the multipliers, giving rise to
action with respect to thi® yields G), according to the nonultralocal form
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Jh 3 7 theories of the simplest free fundamental fields that can ac-

oH°=—B%B, + — 77, Thbd(Darrab) count for nature. One could then investigate all the interac-
4 4\h m?Jh tions involved in the standard modg3]. We note that one

m2 cannot be sure whether it is these simplest field theories that

X (DY) + 7‘Dab¢ab- (76) are present in nature, since our particle accelerators are lo-

cated in a rather flat region. Thus our results are subject to
our ignorance of nature’s unexplored high-curvature regime.
The notion of “simplest” includes relying on replacing par-
tial derivatives with covariant derivatives to find the curved
G =D, m~0 (77)  analogues of the flat laws. Yet this procedure could in prin-
ciple be ambiguou5] or not realized in nature due to puta-
and tive further symmetry reasorn§4].

But for m=0, the®  , multiplier constraint is

C. Derivative coupling and the 3-space 1-formAnsatz

h 3 ,
oM OzZBabCBabc+ mﬂabﬂaﬁ 20, ,(D,7P~0). In their study of 1-forms, BFQused a BSW-type action
with the potential term

(78)
So our massless 2-form’s tilt is zero and this leads to the M2
elimination of®, ,, by the same sort of “accident” that per- Ua=Ca DA DA+ —-AA?, (80)

. D= ; : . 2
mits A, to be eliminated in electromagnetism. So, for this

massless 2-form, best matching is equivalent to all the GC abed acebd adibe abrcd
hypersurface kinematics, and as this guarantees closure, where C*°=C;1h**h>"+ C,h™ "+ Csh™h™ for con-

deduce that there exists a resulting 3-space approach theoti2MC1, Ca, Cs, M), which is na/gural_ within their 3-space
starting with ontology. They then obtaift?{ and A7 in the usual 3-space

way (from the local square root and frogyvariation. Then
the propagation of*H enforcesC;=—C,, C;=0 and also

the Gauss constraint of electromagneti@hwhose propaga-
— 3 [cqabl
Sd’_f d"f d X‘/ﬁ‘/R+D[C®ab]D P tion then enforce$/ =0. Having thus discovered that a new
_ i (Abelian) gauge symmetry is preserg,is then encoded by
X \/Tg+ h2PheY( D 4 — £:P ap) (Prea — £:Pa). the corresponding “electromagnetic” best matching, by in-

(79 troduction of an auxiliary velocit®) [see Eq.(72)]. Identi-
fying ® = A, this is a derivation of Einstein-Maxwell theory

which leads to the enforcement of E§7), which is subse- for A.=[Aq,Ail. o
quently encoded by the introduction of an auxiliary variable We find it pro_ﬂtable_ to also explain this occurrence start-
®,. This working should also hold for ang-form for p ing from the 4-dimensional o_ntology of the GC hy_persurfage
<d, the number of spatial dimensions. Yet only the 1 frar_nework. The natural c_h0|ce of 1-form potent[a}l and ki-
case, electromagnetism, is known to occur. This is evidencBetic terms would then arise from the decomposition of
against BFG speculation that the 3-space approach hints at
“partial unification” of gravity and electromagnetism, since
these extra unknown fields would also be included as natu-
rally as the electromagnetic field. Note also that the ingredi-
ents of low energy string theory are getting included rather
than excludedp-forms, the dilatonic coupl@. .. . These sing the following set of four results froifKucharl1.2),
are, signs that the 3-space approach is not as restrictive as
BFO originally hoped.

The second question must be answered exhaustively. It is VoA, =DpA, — K} AC, (82)
the minimal requirement for the 3-space approach to be
taken seriously as a description of nature. The 3-space ap-

2

M
L=—C*V,A VA, — S AA" (81)

proach gives gravity, electromagnetism and Yang-Mills theo- __ B b
ries such as th&&U(2)xU(1) theory of the electroweak NV A= = ovAa = NKapA™= AL 7N (83)
bosons and th&U(3) theory of the gluons of the strong
force. One may argue that disallowing fundamental Proca
tant v VoAa=DpAa— A, Kap (84)

fields is unimportant, because the photon and gluons are be-
lieved to be massless and the observed masses diVthe

W~ andZ° weak bosons are thought to be not fundamental
but rather acquired by spontaneous symmetry bredl&8y NV.A| = — AL —A%N, (85)
The next problem is the inclusion of spinfermions (see

Sec. VB, in order to complete the 3-space approach for theve obtain that
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S\A, +AZ9,N | 2 ) ) 2
L=—(C1+Cp+Cq)| ———— DPA2A, Syh,p, AP D2A —A, —— | Syhap,
1 2 3 N N
SnAL A, 9N 2 1
+Cy T"—Kacp‘C +(DaAL_KacAC)2 NhabAcﬁNAaéthc,
SnAL A 9N
+ 2('”%+KaCAC)(DaAL—KaCAC) APAIN S hapdihc, AL A h2hPd5h,,dnheg. o

SNAL +ACIN The second bunch consists of the following sorts of terms:
—2C,| N (paa, — A, K) - Cabd DA, S ¢
N
ab c C&CN 1 ab
M2 h ALD ACJFA W 5Nhab1 Nh AL5NAL5Nhab!
_ALKab)(DdAC_ALKCd)__Z (AA’—A AY). (86)
A, A, h3Phcds h,pdnheq- (89

Then, if one chooses to prefer the 4-dimensional ontology
and then to import BF® 3-space assumptions into it, one
finds the following explanations for BE® uniqueness re-
sults from a 4-dimensional perspective.

First, BFOs tacit assumption that addition of a 1-forfy
does not affect the 3-geometry part of the action can b
phrased as there being no derivative coupling2°=0,
which using Eq.(48) implies thatA@@)=0, 7P=—)\'P.
Since \*f=—-2C*F"°V;A,, this by itself implies C;

The naive blockwise Riemannian structure of the configura-
tion space of GR and nonderivative-coupled bosonic fields
(32) can get badly broken by derivative couplifa. Kuchar
IV.5). Either of the above bunches by itself exhibits all the
Fﬁlnpleasant configuration space features we mentioned in
Sec. Il E: the first two terms of E@88) are linear and hence
the geometry is not Riemannian, the third is a metric-matter
cross-term, and the last two terms breach the DeWitt struc-

=—C,, C3=0. ) ture; likewise the first term of Eq89) is linear, the second is
If A, were a velocity as Barbour would argl@3] (fol- 5 ¢ross-term and the third is a breach of the DeWitt structure.
lowing from its auxiliary status, just & and§; are veloci- it the Dewiitt structure is breached in nature, then the study

tles)l it makes sense for the 3-space ansatz to contain Ng¢ pyre canonical gravity and of the isolated configuration

SyA”. But we now see from Eq86) that this by itself is  gpace of pure gravity are undermined. Whereas there is no
also equivalent t€, = — C;, C3=0 from the 4-dimensional  gyjidence for this occurrence, we have argued at the end of
perspective. Also, inspecting E¢B6) for Maxwell theory  ihe |ast section that some forms of derivative coupling are

reveals that only manifest in experimentally unexplored high-curvature
regimes.
c In the hypersurface framework, &, were dynamical,
1 then it would not be a Lagrange multiplier, and so it would
L=—[6nAa—Da(—NA,)]?—C,D"A}(DpA,—D,Ap). grang plier, _
N2[ WA~ Dal DG (DpAa=Day) not have a corresponding multiplier equation with which the

(87)  tilt could be *accidentally” removed, in which case there
would not exist a corresponding BSW form containifxg .

So in fact® =—NA, , soA, itself is not a velocity. Notice This argument, however, is not watertight, because it does
in contrast that the issue of precisely withis does not arise  not prevent some other BSW form from existing since vari-
in the 3-space approach because it is merely an auxiliargbles other thal, could be used in attempts to write down
velocity that appears in the last step of the working. actions that obey the 3-space principles. As an example of

One argument for the 3-space 1-form fidldsatzis sim-  such an attempt, we could use tNedependent variablé,
plicity: consideration of a 3-geometry and a single 3Dto put Proca theory into BSW form. In this case the attempt
1-form leads to Maxwell’s equations. However, we arguefails as far as the 3-space approach is concerned, beAguse
that in the lapse uneliminated form, provided that one isfeatures as a non-best-matched velocity in contradiction with
willing to accept the additional kinematics, we can extendprinciple 1. This shows, however, that criteria for whether a
these degrees of freedom to include a dynamfcal The  matter theory can be coupled to GR in the 3-space approach
3-space approach is abonobt accepting kinematics other are unfortunately rather dependent on the formalism used for
than best matching, but the GC hypersurface framework erthe matter field. The 3-space approach would then amount to
ables us to explore what happens when tilt and derivativeattaching particular significance to formalisms meeting its
coupling kinematics are “switched on.” Working within the description. This is similar in spirit to how those formalisms
GC hypersurface framework, X, is allowed to be dynami- which close precisely as the Dirac Algebra are favored in the
cal, there is derivative coupling, and consistency would rehypersurface framework and the HKT and Teitelbdi2®]
quire the presence of 2 further bunches of terms, with coefpapers. In both cases one is required to find at least one
ficients proportional taC,;+ C, and toCs. The first bunch  compatible formalism for all the known fundamental matter
consists of the following sorts of terms: fields.
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V. DISCUSSION AND THE INCLUSION more complicated shift kinematics than the current
OF SPIN-1 FERMIONS formulation®®

11: Start with a 3-dimensional action with bare velocities.
'H can be deduced immediately from the action, and demand-

ing H~0 leads to a number of other constraints. These are

A. Variations on the seventh route to relativity

The split[Egs.(45),(46)] of AH ° or perhaps more simply
the equation$82), (83), (84), (85) [and their analogues for

hiah K Kuchafll.9 h all then to be encoded by use of auxiliary variables.
\gher-ran tensor(;s_ee €.9. Kuc .9)], sum up the po- This has the immediate advantage of treating the gravita-
sition of best matching within the GC hypersurface frame-

tional best matching on the same footing as the encoding of
work. The required presupposition of embeddability in theI "9 ng ng

. Gauss constraints. The 3-space approach has recently been
GC hypersurface framework leads to three sorts of kinemat- =SP PP y

ics for tensor fields: best matching, tilt and derivative Cou_reformulated this way by G)/!urchadha[55]. .
) : . . We present caveats to this approach both here and in Sec.
pling. All three of these are required in general in order to

. < . V B. Here, we note that for strong gravity,and 1| lead to
guarantee consistency and Kuchapapers are a recipe for inequivalent theories becau$é and H; propagate indepen-
the computation of all the terms required for this consistenc g ' propag P

ydently. So starting from some constraint and the demand of

Thus in GR where it is available, the GC hypersurface, - . . . )
. -integrability might miss out independent but compatible con-
framework is powerful and advantageous as a means of wr i

) . ; ... straints.1 and 1l are, however, equivaleriby inspection of
ing down consistent matter theories. If conformal gravity is .

. ; the constraint algebrasor GR coupled to the known funda-
regarded as a competing theory to GR, it makes sense there-

: ... mental bosonic fields.
fore to question what the 4-geometry of conformal gravity is, :

) : S So far, at least the bosonic sector of nature appears to be
and whether its use could lead to a more illuminating under-

. . i much simpler than the GC hypersurface framework of GR
standing of matter coupling than offered by the 3-space a might suggest, and the 3-space approach may be formulated

proach. We are thus free to ask how special GR is in admiti— two equivalent waysl and 11 as regards best matching
ting a constructive kinematic scheme for coupled consister\gs/ . ! : '
tensorial matter theories. e now consider both and 1l for spin5 fermions.

As BFO formulate it, the 3-space approach denies the
primary existence of the lapse. But we have demonstrated
that whether or not the lapse is eliminated does not affect the Whereas it is true that the spinorial laws of physics may
mathematics, so we would prefer to think of the 3-spacede rewritten in terms of tensof86], the resulting equations
approach as denying “lapse kinematics.” BE@se of BSW are complicated and it is not clear if and how they may be
forms does lead to a more restrictive scheme than GC, bibtained from action principles. Thus we are almost certainly
we have demonstrated in Sec. IV that this restriction can b€ompelled to investigate coupled spinorial and gravitational
understood in terms of when the GC hypersurface frameworfi€!ds by attaching local flat frames to our manifolds.
has no tilt. Furthermore, we have unearthed the tacit simplic- _Thlere are two features we require for the analysis of the
ity postulate0 and have rephrased this and the generalize§Pinz laws of nature coupled to gravity. First, we want the
BSW postulate2G as nonderivative coupling and the no tilt a_naIyS|s to be clea_\r In terms of ?h'ft ?‘”d lapse kinematics,
condition 2UG, respectively, within the GC hypersurface given our success in this paper with this approach. Howeyer,
framework. one should expect the spinors to have further sorts of kine-

Workina in the GC hvpersurface framewofith lapse- m.at.ics not present for tensor fieId_s. Second, we want to ex-
unelimina?ed actions wii/r? only shift kinemat())gas thg ad- plicitly build SQ3,1) (spacetimg spinors out ofSQL3) (spa-
&ial) ones'® We hope to perform this first-principles analysis

and hence investigate the mathematical and physical impli'—n the future. In this paper, we consider the first feature in the

cations of the tilt and derivative-coupling kinematics. Never-fono"\'Ing 4-component spinor formalism.
theless, it is striking that best matching kinematics suffice to
describe all of the known fundamental bosonic fields coupled 15 ) ) o )
to GR. The absence of other kinematics includes the absence ''¢ C_O”s'dﬁr the (_:Ilffclereincc_a bi_tweenb shift k'”efmst'_cs and lapse
of the derivative-coupled theories whose presence in natur}g_rzﬁn?_at'cs to de part:jcu ?ry S'gnt' 'Cfa?t ecauset.o lt e\'/rvasfloc'at'on
would undermine the study of pure canonical gravity of De-V'th TiN€ar and quadrafic conswaints, respectively. We nave no

- . doubt in the correctness of handling linear constraints in physics so
Witt and others. We see our work as support for this study, . X ;

. . . . it would not be a problem if the concept of best matching requires

The less structure is assumed in theoretical physics, the MOl&¢ ement
room 1S Ieft for predlctablllty. Could it really be that nature 1This is standard use of representation theory, based on the acci-
has less kinematics than the GC hypersurface framework Qfantar Lie algebra relatiors O(4)=S0(3)®SO(3), which de-
GR might have us believe? . . _ pends on the dimension of space being 3. This relation is a common
_ We next question whether the best-matching kinematicgoyce of tricks in the particle physics and quantum gravity litera-
itself sho_u_ld be presupp_osed, since it is also striking thafyres. BySQ3,1) and SQ3) spinors, we strictly mean spinors cor-
the additional constraints of the GR-boson  systemyesponding to their universal covering grouf#(2,0) and SU(2),
(H;,G,G7, . ..) areinterpretable as integrability conditions respectively. We are not yet concerned in this paper with the differ-
for H. This allows the following alternative to starting with ences betwee8Q4) and SQ(3,1) from a quantization perspective,
the best-matching principlg which could in principle allow  which render Euclidean quantum programs easier in some respects.

B. Fermions and the 3-space approach
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In Geheniau and Henneaux'¥GH) [57] 4-component gives J,, (andH) so we have recovered all the constraints
spinor study of the Einstein-DiratED) system, the term a5 integrability conditions fof{. One does not recové if
lpykvi—w is decomposed as follows one starts witt#{; or 7/, so in some sensH is privileged.

However, this does highlight our other caveat for the integra-
B o NK - bility idea: one might choose to represent the constraint al-
\/Wy”vizﬂ:i\/ﬁwT[Nyoy' |3|§¢Jr 7¢+ N0y gebra dlﬁgrently by mixing up the usual_ generators. For ex-
ample, a linearly-related set of constraints is considered in
[60], for which the integrability of any of the constraints
, (90 forces the presence of all the others. Our defense against this
is to invoke again that we only require one formulation of the
3-space approach to work, so we would begin with the qua-
dratic constrain?{ nicely isolated.
Second, although derivative couplirigecond termand
s : 1 s tilt (third term appear to be present in ER0), GH ob-
=&y~ ZE[T\EéEls]iV Y, (91)  served that these cancel in the Dirac field contribution to the
Lagrangian density,

—(Y—E3p—drih)

where

1.,. -
RY= 7EESY vy (92)

1 - — = —
‘ ValLo= Vgl = (¢ P V39— VEy* h)—m }
First, observe that the tensorial Lie derivativa/g= &'y ; is olto=1lgl 2 AN N R i

but a piece of the spinorial Lie derivativ@l) [57,58. There (93

is also an additional triad rotation correcti@?) to the ve-

locities in addition to the 3-diffeomorphism-dragging Lie de- ) ] )

rivative correction. The notiorl of best matching must be While Nelson and Teitelboirf60] do not regard their formu-

generalized to accommodate this additional, very naturation’s choice of absence of derivative coupling as a deep

geometric correction: given two spinor-bundle 3-geometriesimplification(they adhere to the HKT school of thought and

3., 2,, the (full spinorial) drag shufflings ofs, (keeping the simplification is not in line with the hypersurface defor-

3., fixed) are accompanied by the rotation shufflings of themation algebrg the GH result is clearly encouraging for the

triads glued to it. The triad rotation correction is associated-space approach. For, once E§0) has been used in Eg.

with a further “locally Lorentz” constraint7,,, [59]. (93), we obtain an action of the forraUG, so we can cast
In thinking from first principles about best matching in ED theory into the2G generalized BSW forn(35).

sufficiently general terms to include the treatment of spinors, Finally, we comment on the inclusion of 1-form-fermion

it is not clear whether the triad rotations need be includednteraction terms of the Einstein-standard model theory

from the start. One might “discover and encode” these as

occurs with the Gauss laws for 1-forms. Also, use of the

“bare” principle 11 may not require a conceptual advance on B

best matching: the Dirac procedure beginning witiwould ifAﬂAZYﬁE%ALl# (94)

provide us with the correctt; , whose encoding would yield

the full & correction for spinors. Pursuing this last line of

approach, Nelson and Teitelboim’s war&0] may be taken A

to imply that#; and 7., are indeed integrability conditions where A takes the values/(1), SU(2) andSU(3) and;

for H. For in terms of Dirac brackefs}*, starting fromH,

{H,H}* gives H; and then we can for{H,H;}* which

are the generators of these groups. The decomposition of
these into spatial quantities is trivial. No additional compli-
cations are expected from the inclusion of such terms, since
(1) they contain no velocities so the definitions of the mo-

"we use barred Greeks for Minkowski indices and barred Latingne_nta _are unaﬁ,eCte@hls includes there being no SCOD? for
for Euclidean indices. The Minkowski metric is denoted by, . derivative couplingand(2) they are part of gauge-invariant
The y* are Dirac matrices, obeying the Dirac Algebna'y” comblnatlons, unllk_e_the Proca term which breaks gauge in-

e . . variance and significantly alters the Maxwell canonical
+y"y*=2n"", which is not to be confused with the Dirac algebra . . .
(8). Dirac’s suited triads are denoted B these obeyEx,—0 theory. In particular, the new terms clearly contribute linearly

- P R By ) ¥oa=0. i, A, to the Lagrangian potential, so by the argument at the
Boo=—N, B Euo= ?‘”9 ExaEp=0up- ¥ Is @ 4-component  eng of Sec. IV A, an accident occurs ensuring that tilt kine-
spinor, with conjugate/=iy°y'. The spacetime spinorial covariant matics is not necessary. Also, clearly the use of the @8
derivative s V%{/IZ v %Qp;yﬂy"w, where Q- is compatible with the inclusion of the interactiori84)

_ — B : f ; ; . . — . . . .
=(V4E,.)E,E, is the spacetime spin connection. The spatialsince, acting on the gauge correction is the opposite sign.
spinorial covariant derivative i@%tﬁZ Yo~ 7wy ¥, where  So our proposed formulation’s combined standard model

wrsp=(DpEra) E%E% is the spatial spin connection. matter Lagrangian is
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A 11—+ s . N BFO's original work) for a best-matchedr. In connection
Law=| 5[4y (Vi iTamEYAL) ¥ with the latter, how is the thin sandwich conjecture for
Einstein-Dirac theory well-behaved? On coupling a 1-form
S e Acmal v — " field, do these results hold for Einstein-Maxwell-Dirac
= (Vi ESA ) ey dl—mydif| + Ly - theory? On couplingKk 1-form fields, do they hold for
Einstein-Yang-Mills-Dirac theories such as the Einstein-
(95  standard model? There is also the issue of whether conformal
A ) gravity can accommodate spinfermions.
Here Ly is given by them=0 version of Eq(57) and we It is worth considering whether any of our ideas for gen-
would need to sum the square bracket over all the knOWréranzing the 3-Space approach extend to canonical super-
fundamental fermionic species, which thus simultaneouslyyravity [61]. This could be seen as a robustness test for our
incorporates all the required accidents. There is also N@jeas and possibly lead to a new formulation of supergravity.
trouble with the incorporation of the Yukawa interaction term Also, supersymmetry is proposed to resolve the hierarchy
yx ¥ which could be required for some fermions to pick up problem and help with many other problems of theoretical
mass from a Higgs scalar. physics[62]. Furthermore, if the hierarchy problem is to be
Thus the Lagrangian for all the known fundamental mat-resolved in this way, the forthcoming generation of particle
ter fields can be built by assuming best-matching kinematicaccelerators are predicted to see superparticles. Hence there
and that the DeWitt structure is respected. The thin sandwicks another reason for asking if the 3-space approach extends
conjecture can be posed for all these fields coupled to GRo supergravity with supersymmetric matter: this may well be
The classical physics of all these fields is timeless in Barsoon required to describe nature. The supergravity constraint
bour’s sense. algebra is not known well enoudb4] to comment whether
the new supersymmetric constraifif arises as an integra-
C. Future developments bility condition for H. Note, however, that Teitelboim was
able to treatS, as arising from the square root &f [63];

We end by suggesting further work toward answering : ) ;
Wheeler’s question in the Introduction stimulated by the ad_however, this means that the bracketfand its conjugate

vances in this paper. It remains to explicitly build a best-gé\t/;‘;?(jins gf I:hls quijr(ralztrlo?riblgrtvz\i/ Egéhgfr ttr?: él%pergra\my
matched generalized BSW ED action starting from a pair o{ inallv. qi E y 1mp f d thi .
spatial SO(3) spinors. Use of Eq90) in Eq. (93 still has Finally, given the competition rorfl7] and this paper, it
' - 298 O B AT S would be interesting to see whether any variamf HKT
remnants of 4-dimensionality in its appearance: it is in terms . .
an be made to accommodate spifiermions, and also to

of 4—compqnent SpINors and D|(ac matrices. Howgver, r(.acal‘rfefine Teitelboim’s GR-matter postulates to the level of
that the Dirac matrices are built out of the Pauli matncesHK.I_,S ure GR postulates

associated witlf5O(3), andchoosing to work in the chiral P P '
representation, the 4-component spinors may be treated as

Yy=[¢p,¢ ], i.e in terms of right-handed and left-handed ACKNOWLEDGMENTS

SQ(3) 2-component spinors. Thus a natural formulation of E A is supported by PPARC. We would like to thank
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integrands  such asVR+Ug\Ty+Te or N(R+Up)

+(1/4N)Ty+ Tg for U and T built from spatial first prin-
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