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Braneworld cosmological models with anisotropy
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For a cosmological Randall-Sundrum braneworld with anisotropy, i.e., of Bianchi type, the modified Ein-
stein equations on the brane include components of the five-dimensional Weyl tensor for which there are no
evolution equations on the brane. If the bulk field equations are not solved, this Weyl term remains unknown,
and many previous studies have simply prescribed it asad hoc. We construct a family of Bianchi braneworlds
with anisotropy by solving the five-dimensional field equations in the bulk. We analyze the cosmological
dynamics on the brane, including the Weyl term, and shed light on the relation between anisotropy on the brane
and the Weyl curvature in the bulk. In these models, it is not possible to achieve geometric anisotropy for a
perfect fluid or scalar field—the junction conditions require anisotropic stress on the brane. But the solutions
can isotropize and approach a Friedmann brane in an anti–de Sitter bulk.
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I. INTRODUCTION

High-energy physics theories have recently inspired re
tively simple phenomenological models in which one c
test some of the consequences of string theories. Randal
Sundrum@1,2# proposed a model that captures some of
essential features of the dimensional reduction of
dimensional supergravity introduced by Hor˘ava and Witten
@3,4#. The second Randall-Sundrum~RS2! scenario@2# is a
five-dimensional anti–de Sitter (AdS5) ‘‘bulk’’ spacetime
with an embedded Minkowski 3-brane where matter fie
are confined and Newtonian gravity is effectively reproduc
at low energies. The RS2 scenario was generalized
Friedmann-Robertson-Walker~FRW! brane, showing that the
Friedmann equation at high energies givesH2;r2, in con-
trast with the general-relativistic behaviorH2;r @5–8#.

As shown in@9#, the modified field equations on the bran
have two new contributions from extra-dimensional gravi

Gab52Lgab1k2Tab16
k2

l
Sab2Eab , ~1!

wherel is the brane tension~the vacuum energy of the bran
when Tab50), andL and k are the four-dimensional cos
mological and gravitational constants, respectively, given
terms of l and the fundamental constants of the bu
(L5 ,k5) by

L5
L5

2
1

l2

12
k5

2 , k25
l

6
k5

4 . ~2!

The termSab is quadratic inTab and dominates at high
energies (r.l). The five-dimensional Weyl tensor is felt o
the brane via its projectionEab . This Weyl term is deter-
mined by the bulk metric, not by equations on the brane
FRW braneworlds, the bulk is Schwarzschild-AdS5 @10–12#,
andEab reduces to a simple Coulomb term that gives rise
‘‘dark radiation’’ on the brane. The simplest generalizatio
of FRW braneworlds are Bianchi braneworlds.
0556-2821/2003/68~10!/103520~9!/$20.00 68 1035
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By making an assumption about the Weyl term on t
brane, the dynamics of a Bianchi type I brane was studie
@13#, and it was shown that high-energy effects from ext
dimensional gravity remove the anisotropic behavior near
singularity that is found in general relativity. This was e
tended via a phase space analysis of Bianchi types I an
braneworlds@14,15#, showing that the anisotropy is negl
gible close to the singularity for perfect fluid models with
barotropic linear equation of statep5wr, with 0,w,1 a
constant, opposite to the general relativity case. It was t
suggested that this may be generic in cosmological bra
worlds, which was supported by subsequent work@16,17#
~see also@18–20#!. However, a perturbative analysis@21#
suggests that this may only be true for homogeneous mod

These studies, and others@22–33#, considered only the
dynamical equations on the brane, making various assu
tions about the Weyl term in the absence of knowledge of
bulk metric. In @34# a bulk metric with a Kasner brane wa
presented. However, since the Kasner metric is a solutio
the four-dimensional Einstein vacuum equations, the b
metric is a simple warped extension; the general result, w
the generic form of the bulk metric, is given in@35#.1 The
simplest example of this general result is a Minkowski bra
leading to the RS2 solution. Another example is t
Schwarzschild black string solution@36#.2 Up to now, no
complete solutions, i.e., for the brane and bulk metrics, h
been found for cosmological Bianchi braneworlds.2 The key
difficulty is to find anisotropic generalizations of AdS5 that
can incorporate anisotropy on a cosmological brane, and
are necessarily non-conformally flat.

Previous studies of Bianchi braneworlds have conside
the effects ofSab under various assumptions onEab . Here
we tackle the question of the construction of complete m

1Note that this result is sensitive to the form of the bulk fie
equations, and it breaks down in the presence of a Gauss-Bo
term in the gravitational action@44#.

2In @39#, solutions with an anisotropic bulk containing a blac
hole with a non-spherical horizon were found.
©2003 The American Physical Society20-1
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els for cosmological braneworlds with anisotropy, that is,
want to construct both the metric in the bulk and on t
3-brane, so thatEab is determined and not assumedad hoc.

II. THE GEOMETRY OF THE BULK

For a five-dimensional bulk spacetime with a negat
cosmological constant,L5,0, and no additional matte
sources, the Einstein equations are

5GAB1L5
5gAB50. ~3!

In order to construct cosmological braneworlds with anis
ropy we start from the ansatz used by@5,6# ~see also
@37,38#!:

5ds252n2~ t,y!dt21a2~ t,y!dSk
21b2~ t,y!dy2, ~4!

wheredSk
2 is the line element of the three-dimensional ma

mally symmetric surfaces$t5t* ,y5y* %, with a curvature
index k50,61. Clearly, all the hypersurfaces$y5y* % in-
herit a FRW metric. Although the Einstein equations~3! can
be completely solved for the metric~4!, the explicit complete
solution~bulk1brane! ~see@5,6#! was found forḃ50, which
corresponds to Gaussian normal coordinates adapted to
foliation with normal nAdxA5dy. Since the bulk is
Schwarzschild-AdS5, an alternative approach is based on
moving brane in static spherical bulk coordinates@11,12#,

5ds252 f ~r !dT21
dr2

f ~r !
1r 2dSk

2 , ~5!

where

f ~r !5k1
r 2

,2
2

m

r 2
. ~6!

Here,2526/L5, so that, is the curvature scale of the bulk
When the parameterm, the mass of the bulk black hole
vanishes, the solution is simply AdS5, so that the bulk Weyl
tensor, and hence the brane Weyl term, vanish. IfmÞ0, then
the tidal field of the black hole generates a non-zero W
term on the brane. The existence of the black hole hori
requires thatm>0 for a flat or closed geometry, an
m>2,2/4 for the open case. The brane trajectory isr
5a(t), where t is the cosmological proper time on th
brane anda(t) is the scale factor, whose evolution is dete
mined by the junction conditions. For aZ2-symmetric brane,
this gives the modified Friedmann equation on the brane

H21
k

a2 5
k2

3
rS 11

r

2l D1
L

3
1

m

a4 , ~7!

where the high-energy correction term isr2/l and the last
term on the right is the dark radiation term.

A natural extension of the ansatz in Eq.~4! that will in-
troduce anisotropy is~compare@39# for a similar approach!:

5ds252n2~ t,y!dt21hIJ~ t,y!v IvJ1b2~ t,y!dy2, ~8!
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where v I5v i
Idxi are one-forms invariant under a Bianc

group ~see@40# for details!, and hIJv IvJ is the metric in-
duced on the surfaces$t5t* ,y5y* %. For simplicity, we
consider only Bianchi type I models (v i

I5d i
I) ~the procedure

for non-Abelian Bianchi groups is essentially the same! with
a diagonal metrichIJ :

5ds252a0
2~ t,y!dt21(

i 51

3

ai
2~ t,y!~dxi !21b2~ t,y!dy2.

~9!

The field equations~3! for this metric are non-linear partia
differential equations~PDEs! in (t,y), like the field equa-
tions for the metric~4!. In the case of the metric~4! the $ty%
component of the field equations provides a relation t
leads to a set of first integrals. However, this procedure d
not work for Eq. ~9!, and one must deal with non-linea
PDEs. We have not been able to find a procedure to so
them analytically.

These difficulties indicate that in order to find analyt
solutions we should abandon the generic case and con
special solutions that do not require PDEs. We try a sta
and Gaussian normal ansatz,

5ds252e2A0(y)dt21(
i 51

3

e2Ai (y)~dxi !21dy2, ~10!

where we pay the price that the brane is no longer static
the coordinate system. This ansatz can in fact be seen
five-dimensional generalization of a similar ansatz@41# used
in the search for four-dimensional static and cylindrica
symmetric spacetimes describing cosmic strings in the p
ence of a non-vanishing cosmological constant. The fi
equations for the metric~10! are

Aa91Aa8 (
b50

3

Ab82
v2

4
50, ~11!

(
0<a,b<3

Aa8Ab82
3

8
v250, ~12!

wherev54/,.
In order to solve these equations, we introduce the de

minant of the metric,

u2~y!5expS 2 (
a50

3

AaD . ~13!

Multiplying Eq. ~11! by u(y) and summing overa, we get

u92v2u50, ~14!

with the first integral,

u822v2u21C50, ~15!

whereC is an arbitrary constant of integration. Onceu(y) is
known,Aa(y) can be obtained by quadrature:
0-2
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Aa85
1

4

u8

u
1

Ca

u
, ~16!

which comes from the integration of Eq.~11!. The constants
Ca are constrained by Eqs.~12! and ~13!:

(
a50

3

Ca50, ~17!

(
0<a,b<3

CaCb5
3

8
C. ~18!

These imply

~C11C2!21~C11C3!21~C21C3!252
3

4
C. ~19!

Taking the square of Eq.~17! and using Eq.~18! yields
equivalently

(
a50

3

Ca
252

3

4
C. ~20!

Thus C can never be positive, and theCa’s must be the
coordinates of a three-sphere of radiusA23C/2, hence
uCau<A23C/2.

WhenC50 the parametersCa must all be zero as well
In this particular case,

Aa~y!5Aa
o1

v

4
~y2yo!, ~21!

whereAa
o are integration constants. This model correspon

as expected, to an exact AdS5 bulk.
Thus, we are left to consider negative values forC, and

we rewrite it asC52v2B2. By Eq. ~15!,

u~y!5B sinh@v~y2yo!#, ~22!

and then Eq.~16! gives

Aa~y!5Aa
o1

1

4
lnuu~y!u1Cav~y!, ~23!

wherev851/u, so that

v~y!5
1

2vB
lnH cosh@v~y2yo!#21

cosh@v~y2yo!#11J . ~24!

Finally, we can write the bulk metric solution as

e2Aa5Na
2 usinh@v~y2yo!#u1/2H cosh@v~y2yo!#21

cosh@v~y2yo!#11J qa

,

~25!

where qa5Ca /vB ~recall thatvBÞ0), and Na are con-
stants whose value can be chosen by rescaling coordin
but which satisfy the constraint
10352
s,

es,

)
a50

3

Na
25B2, ~26!

which follows from Eqs.~13! and~22!. The exponentsqa are
constrained by Eqs.~17! and ~20!:

uqau<
3

4
. ~27!

Note that this is a more restrictive bound than the one fou
above only from Eq.~20!.

We consider first the special caseC15C25C352C0/3,
with two possible sets of parameters in Eq.~25!, namely
(q0

6 ,qi
6)5(7 3

4 ,6 1
4 ). These two special cases a

Schwarzschild-AdS5, with k50, written in Gaussian norma
coordinates.~Thek521 case corresponds to Bianchi V, an
the k51 case to Bianchi IX.! We see this via a coordinat
transformation in the metric of Eq.~5!:

r 45
8m

v2
$17cosh@v~y2yo!#%, ~28!

and the remaining coordinates are rescaled by constants
depend onm, v, and Na . It follows that qa

1 leads to a
negative massm, which we exclude, so thatqa

2 is the physi-
cal solution~with a black hole horizon!.

This shows that our general five-dimensional bulk so
tion, Eq.~25!, can be seen as ananisotropic generalization of
Schwarzschild-AdS5. This distinguishes our anisotropic so
lution from the vacuum Kasner braneworld@34#.

We now investigate the character of the singular poiny
5yo via curvature scalars. It turns out to be more conveni
to use a new set of constants,

d1

2
5q21q3 ,

d2

2
5q11q3 ,

d3

2
5q11q2 , ~29!

with

d1
21d2

21d3
253. ~30!

The isotropic casesqa
6 correspond to the points (61,61,

61) on the 2-sphere~30!. The square of the bulk Weyl ten
sor,C 25 5CABCD

5CABCD is given by

C 25
v4

16 sinh4@v~y2yo!#
$212~d1

41d2
41d3

4!

118 cosh2@v~y2yo!#136d1d2d3cosh@v~y2yo!#%.

~31!

The behavior nearyo is

C 2 →
y→yo

39136d1d2d32~d1
41d2

41d3
4!

16~y2yo!4
. ~32!
0-3
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There are four sets of constantsdi that lead to zero numera
tor: D15(21,1,1), D25(1,21,1)D35(1,1,21), and D4
5(21,21,21). For these cases,C 2 is regular atyo :

C 25
9v4

8$cosh@v~y2yo!#11%4
. ~33!

For all other values of thedi ’s, y5yo is a curvature singu-
larity. The casesD1 , D2, andD3 are equivalent in the sens
that they represent the same spacetime. The caseD4 is
Schwarzschild-AdS5 ~with positive mass!, andy5yo corre-
sponds to the horizon of the black hole, sincef „r (y5yo)…
50, and not to the singularity. Thus the Gaussian coo
nates only cover the exterior of the black hole.

Far fromy5yo , C 2 decays exponentially,

C 2 →
y→`

9

2
v4e22vy. ~34!

This behavior, which is completely independent of the p
rametersdi ~or Ci), means that our general anisotropic so
tion is asymptotically AdS5. The square of the bulk Rieman
tensor, the Kretschmann scalarR 25 5RABCD

5RABCD, is

R 25C 21
5

32
v4. ~35!

III. EMBEDDING OF THE BRANE

In order to obtain Bianchi I cosmological models the e
bedding of the brane must respect the Bianchi I symmetr
so the most general embedding is

t5S~t!, xi5Xi , y5Y~t!, ~36!

where$t,Xi% are local coordinates on the brane. The norm
to the brane is

nAdxA5
e

A12V2
~2VeA0dt1dy!. ~37!

Heree561 determines the orientation of the normal, andV
is a function defined by the coordinate velocity of the bra

V25
Ẏ2

11Ẏ2
, ~38!

so thatuVu<1. The functionsS and Y are not independent
sincenAdxA must vanish identically on the brane,

Ṡ25~11Ẏ2!e22A0(Y). ~39!

We use a local foliation of the bulk such that the brane
itself a hypersurface of the foliation. This foliation is d
scribed by the normal~37!, with V being now a function ofy.
The brane is then determined by the choices~36! and ~38!.
An alternative way of determining the location of the bran
10352
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which will be also useful, is to prescribe the functionV(y)
and then the embedding is given by Eqs.~38! and~39! up to
an integration constant.

We introduce the vectors

uAdxA5
1

A12V2
~2eA0dt1Vdy!, ~40!

eA
i dxA5eAidxi , ~41!

which together withnA form an orthonormal basis for th
bulk. The vectoruA is a four-velocity tangent to the foliation
and hence to the brane. The condition~39! ensures thatt is
the proper time on the brane of the observers with fo
velocity uA.

The metric inherited by the brane and other hypersurfa
of the foliation is the first fundamental form,

gAB5 5gAB2nAnB , ~42!

so that

gtt52
e2A0

12V2
, gi j 5e2Ai d i j , ~43!

gty52Ve2A0gtt , gyy5V2e22A0gtt . ~44!

The extrinsic curvature~second fundamental form! is

KAB5
1

2
£ngAB5gA

CgB
D 5¹CnD , ~45!

where £ is the Lie derivative andKAB5K (AB) , KABnB50.
Then

Ktt52e
e2A0

~12V2!3/2H A081
VV8

~12V2!
J , ~46!

Ki j 5e
e2Ai

A12V2
Ai8d i j , ~47!

Kty52Ve2A0Ktt , ~48!

Kyy5V2e22A0Ktt , ~49!

with trace

K5
e

A12V2 H u8

u
1

VV8

~12V2!
J . ~50!

Using Eq.~38!, one can give a geometrical interpretation
terms in the extrinsic curvature. The factorA12V2 is
A11Ẏ2, i.e., the inverse of the arclength of the embedd
function Y(t), whereas theVV8 term can be written as
Ÿ/(11Ẏ2), i.e., the curvature times the arclength.
0-4
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A. Projection of the bulk Weyl tensor onto the brane

The modified Einstein equations~1! on the brane contain
the projection of the bulk Weyl tensor@9#,

EAC5 5CABCDnBnD, ~51!

which is symmetric, tracefree and orthogonal tonA. Relative
to any observer, and in particular the observer with the p
ferred four-velocityuA, this can be decomposed as@42,43#

EAB52k2HUS uAuB1
1

3
hABD12Q(AuB)1PABJ , ~52!

where hAB5gAB1uAuB projects into the comoving res
space ofuA, U is the Weyl energy density on the brane,QA
is the Weyl momentum flux on the brane, andPAB is the
Weyl anisotropic stress on the brane.

Bianchi-I symmetry enforcesQA50, while

U5
1

2k2u2 H C0~u822C0!1
3

8
v2B2J , ~53!

PAB5
1

k2 (
i 51

3

PieiAeiB , (
i 51

3

Pi50, ~54!

where

Pi5
C013Ci

3u S u8

4u
1

C0

u D
2

1

u~12V2!
F ~C013Ci !S u8

4u
1

Ci

u D1
v2B2216Ci

2

4u G .
~55!

Clearly,PAB50 for the isotropic case.

IV. BRANEWORLD MATTER FIELDS

While the induced metric is continuous, there are disc
tinuities in its first derivatives across the brane, so that th
is a jump in the extrinsic curvature. In the case ofZ2 sym-
metry with the brane as a fixed point, the junction conditio
determine the brane energy-momentum tensor in terms o
extrinsic curvature:

TAB2lgAB52
2

k5
2 ~KAB2KgAB!. ~56!

The energy-momentum tensor can be decomposed,
tive to observers with four-velocityuA, as

TAB5ruAuB1phAB12q(AuB)1pAB , ~57!

wherer, p, qA , andpAB are, respectively, the energy de
sity, isotropic pressure, momentum density, and anisotro
stresses measured byuA.
10352
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For a Bianchi I braneworld, the symmetries enforceqA
50. From Eqs.~46!–~49! and ~56!, we find that for our
Bianchi I models,

r1l5
2e

k5
2A12V2

S C0

u
2

3

4

u8

u
D , ~58!

p2l5
2e

k5
2A12V2 H 3

4

u8

u
1

1

3

C0

u
1

VV8

~12V2!
J . ~59!

pAB5(
i 51

3

p ieiAeiB , (
i 51

3

p i50, ~60!

where

p i52
2e

k5
2A12V2

S C013Ci

3u
D . ~61!

The anisotropic directional pressurespi5p1p i are

pi2l5
2e

k5
2A12V2 H 3

4

u8

u
2

Ci

u
1

VV8

~12V2!
J . ~62!

In our case, since we do not have momentum density,
vanishing of the anisotropic stresses implies a perfect-fl
energy-momentum tensor. This happens if and only ifC0
523Ci , for all i; i.e., the brane can support a perfect flui
if and only if the metric is isotropic. Furthermore, Eqs.~55!
and~61! show thatthe Weyl anisotropic stressesPi vanish if
and only if the matter anisotropic stressesp i vanish. There-
fore, geometric anisotropy enforces, via the extrinsic cur
ture and the junction conditions, anisotropy in the mat
fields. This may be a peculiar feature of our solution, ba
on the ansatz Eq.~10!. However, it may be a generic featur
of anisotropic cosmological braneworlds.

The fluid kinematics of the matter are described by
expansion, Q5¹AuA, the shear, sAB5@h(A

C hB)
D

2 1
3 hCDhAB#¹CuD , the vorticity,vAB5h[A

C hB]
D ¹DuC , and the

acceleration,u̇A5uB¹BuA. For Bianchi symmetry, the matte
flow is geodesic and irrotational,vAB505u̇A . The expan-
sion and shear for our Bianchi I braneworlds are given b

Q5
V

A12V2
S 3

4

u8

u
2

C0

u
D , ~63!

sAB5(
i 51

3

s ieiAeiB , (
i 51

3

s i50, ~64!

where

s i5
V

A12V2
S C013Ci

3u
D . ~65!

Equations~58! and ~63! imply

r1l52
2e

k5
2V

Q. ~66!
0-5
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To ensure that the brane is expanding for positive ene
density, we requiree/V,0. Equations~61! and ~65! also
imply

pAB52
2e

k5
2V

sAB . ~67!

We have checked that our expressions satisfy the genera
Friedmann equation for a Bianchi brane@13,42#:

1

9
Q25

k2

3
rS 11

r

2l D2
k2

4l
pABpAB1

L

3
1

k2

3
U1

1

6
sABsAB .

~68!

V. SOME EXPLICIT MODELS

We can construct explicit cosmological models using
freedom still available in embedding the 3-brane. Choos
the parametersqa , which are subject to the constraints~17!
and~18!, defines the bulk spacetime. The embeddingY(t) is
a function of one variable~proper time!, and involves the
freedom to choose the direction of the normalnA, and the
sign e which defines its orientation.

One way to construct a particular cosmology on t
3-brane is to prescribe the densityr. Using Eq.~58!, V can
then be obtained as a function ofy,

V2512F 2

k5
2~r1l!

S C0

u
2

3

4

u8

u D G 2

. ~69!

Then the embedding is completely determined by integ
ing,

t2to56EyA12V2

V
dy, ~70!

which gives an implicit form of the functionY(t). However,
one cannot use any physical argument or intuition in orde
start with a cosmologically relevant densityr as a function
of the coordinate of the extra dimension.

A more appealing procedure is to start by prescribing
embedding functionY(t), or equivalently the redefined
function

x~t!5v@y~t!2yo#. ~71!

ThenV(t) andS(t) are given by Eqs.~38! and~39!, respec-
tively, andr(t) by Eq. ~58!. Using this approach, we inves
tigate under what circumstances a Minkowski brane can
embedded in our anisotropic bulk, how we can recover
standard embedding of a FRW brane in the isotropic ca
and, finally, several examples of the embedding of an
tropic branes in a general anisotropic bulk.

A. Embedding of a Minkowski brane

The simplest embedding isx(t)5x* 5const (.0),
which impliesV50, so that thegAB(t,Xi ,x* ) are constant,
10352
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by Eqs. ~43! and ~44!, and the 3-brane is Minkowskian
However, the matter variables are constants that do not v
ish in general,

r* 5lcS 3 coshx* 24q0

3 sinhx*
D2l, ~72!

p* 5l2lcS 9 coshx* 14q0

9 sinhx*
D , ~73!

so the models obtained in this way are not empty. Here

lc52e
6

,k5
2

, ~74!

so thatulcu is the critical tension corresponding to the R
fine tuning@1,2,9#, i.e., for whichL50:

L5
3

,2 F S l

lc
D 2

21G . ~75!

In general the matter fluid will not be perfect because
anisotropic stresses~61! only vanish when the bulk space
time is isotropic (q013qi50, for all i ). Note that takinge
521 @see Eq.~74!#, there always exists a finite positivel
such thatr.0. For instance, in the isotropic case whe
q05 3

4 , this condition is satisfied by anyl such that

l,lcAcoshx* 21

coshx* 11
. ~76!

In general, the brane cannot be empty: ifr* 505p* ,
pAB50, thenqa50, which is incompatible with the con
straint equation~18!.

If we embed the brane atx* !1, then

r* ;lcF324q0

3x*
1

x*
2 G2l. ~77!

Then, for2 3
4 <q0, 3

4 , the matter density grows very larg
unless the brane tensionl is also unrealistically large. In the
isotropic case, it decreases asx* approaches the black hol
horizon atx50, where it becomes negative. On the oth
hand, if we place the brane at a large distance,x* @1,

r* ;lc2l, p* ;2r* . ~78!

This result is independent of the parametersqa so it means
we can have a nearly vacuum brane embedded in our an
tropic bulk solution for large enoughx* if we choosel as
the critical brane tensionlc . The existence of this embed
ding is something one should have expecteda priori, be-
cause our five-dimensional solution asymptotically a
proaches an AdS5 spacetime for largex.

To sum up, we have shown that we canembed a non-
vacuum Minkowskian brane in a general anisotropic bulk. In
order to make the 3-brane empty we have to locate it asy
totically far from y5y0. These results generalize the fin
0-6
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ings of @10# that a Minkowski brane can be embedded in
~isotropic! Schwarzschild-AdS5 bulk.

B. Embedding of a FRW brane

In the isotropic case, for a bulk spacetime withqa
1 which

correspond to the pointD4 on the sphere~30!, we follow
@11,12# and choose

x~t!5arccoshF v2

8m
a4~t!21G . ~79!

Substituting in Eq.~58!, we get the effective Friedman
equation ~7! with k50, thus recovering the results o
@6,9,11,12# for an isotropic bulk. Note that in this case th
anisotropic stress tensor~60! is identically zero and the mat
ter on the brane is a perfect fluid. A combination of Eqs.~58!
and ~59! also leads to the effective Raychaudhuri equat
@42#,

Ḣ52H22
k2

6
~r13p!2

k2

6l
r~2r13p!2

m

a4
1

L

3
.

~80!

The cosmological dynamics of this case have been ex
sively investigated for a barotropic linear equation of st
@14,15#.

C. Embedding of an anisotropic brane

The metric tensor on the brane has Bianchi I form,

ds252dt21(
i 51

3

ai
2~t!~dxi !2, ~81!

and the mean scale factor of the universe isa(t)
5(a1a2a3)1/3. There are infinite ways of constructing the
models as there are infinite ways of prescribing the emb
ding. Here we just present a few examples.

Example I. We have

x~t!5Vt, ~82!

with 0<t,` andV.0. In this caser grows very large at
early times and asymptotically reaches a constant valu
late times. Positivity of the energy density requires that

0,l<lcA11S V

v
D 2

, ~83!

where the equality corresponds to an asymptotically vacu
universe. The anisotropic stress vanishes at late times an
fluid becomes perfect. The universe expands exponential
the far future,

a~t! →
t→`

eVt/4, ~84!

independent of the constantsqa defining the bulk spacetime
In the early universe,
10352
n

n-
e

d-

at

m
the
in

a~t! →
t→0

t (324q0)/12, ai~t! →
t→0

t (124qi )/4. ~85!

@The exponent ina(t) is always positive.# These cosmologi-
cal models do not isotropize as we approach the initial s
gularity, in contrast with the results of@13–15#, where as-
sumptions were imposed on the Weyl anisotropic stres
This example shows thatthe Weyl anisotropic stresses ca
affect significantly the dynamical behavior near the singul
ity.

Note also that despite the fact that the universe is colla
ing in the past, there exist models within the family of sol
tions for which at least one spatial dimension could be
panding~e.g.,q3523/4,q05q15q251/4). In the future the
ai(t) approach the mean radiusa(t) and all the models
become isotropic. For the embedding~82! the equation of
state has a simple analytical expression,

w~t!52F ~12a!eVt1~11a!e2Vt18q0/9

~12a!eVt1~11a!e2Vt24q0/3
G , ~86!

wherea5l/lcA11(V/v)2 is a normalized brane tension
with 0,a<1 by Eq. ~83!. For q0.0 the equation of state
becomes singular ast increases. Forq050 and any value of
a, we havew521. As a approaches its maximum value
the equation of state has a transient period withw.0 before
reaching the constant value21. However, whena51, w
tends to 1/3, i.e. the matter behaves as a radiation fluid, e
though the expansion is increasing exponentially due to g
metrical effects. Some examples of the fluid behavior adm
ted by the embedding are shown in Fig. 1.

Example II. We have

x~t!54b ln~Vt!, ~87!

with V21<t,` and V,b.0. The qualitative behavior is
very similar to that of example I. Here the brane tension h

5 10 15 20 25

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

5 10 15 20 25

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

FIG. 1. Evolution of the equation of statew as a function of
proper time t/V, Eq. ~86!, for ~a! q0520.001 and ~b! q0

520.4. The curves in both graphs correspond to valuesa
51, 0.999 999 999, 0.9999, 0.1 from top to bottom.
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to satisfy the new condition 0,l<lc instead of Eq.~83! in
order to haver.0. The universe isotropizes in the futur
with mean radius

a~t! →
t→`

~Vt!b, ~88!

which includes radiation-domination (b5 1
2 ), matter-

domination (b5 2
3 ), and power-law inflation (b.1).

Example III. We have

x~t!5arccoshF ~Vt!2b11

~Vt!2b21
G , ~89!

with V21<t,` andV,b.0. The scale factors are

ai~t!5F2~Vt!b(124qi )

~Vt!2b21
G 1/4

, ~90!

so that each spatial direction can have different rates
expansion/contraction, and the universe does not isotro
in the future, unlike examples I and II. However, the mod
do isotropize in the past. The mean scale factor shows tha
these models are expanding in the past and collapsing in
future. ~In @15# a similar qualitative behavior was found in
Bianchi I brane when the mass of the bulk black hole
negative.! In this case the matter content never behaves
perfect fluid.

VI. DISCUSSION

We have constructed complete~brane1bulk geometry!
cosmological braneworlds with anisotropy. These solutio
are the first such models with matter content. Our ans
starts from a static form for the bulk metric, Eq.~10!, with
the brane moving relative to the static frame. The anisotr
arises from imposing Bianchi symmetries on a family of h
mogeneous 3-surfaces. For the sake of simplicity, we o
considered the Abelian Bianchi I case, but other groups
be treated following the same approach.

There are two important aspects of the construction
cosmological braneworlds.

The bulk geometry. In our case, this is given by Eq.~25!,
where the parametersqa control the anisotropy. The aniso
tropic bulk curvature produces a nonzero Weyl anisotro
tensorPAB which, as shown in the examples of the previo
section, can have a fundamental impact on the dynam
s

et
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Previous studies of Bianchi braneworld dynamics which i
posead hocassumptions onPAB are unable to treat consis
tently the relation between the bulk and brane geometrie

The embedding. This is where most of the freedom arise
~a function of one variable!. As shown by the examples in
the previous section, the dynamics are very sensitive to
embedding. From the physical point of view, this leads to
question of what is the most natural state of movement fo
brane. However, this question cannot be answered in the
nomenological context of the RS2 scenarios.

In choosing the embedding of the brane it is very imp
tant to consider the following general feature of our mode
when the brane is close toy5yo , the effects of the anisot
ropy are important for the cosmological dynamics, where
when it is located far fromy5yo , we have an effectively
FRW cosmological model~in an anisotropic bulk!. This fact
can be seen from the relative shear eigenvalues,

s i

Q
→
x@1

,

9

C013Ci

u
→

x→`

0. ~91!

This is illustrated by examples I and II, where in the futu
the brane isotropizes, and also by example III, where
contrast, the brane approaches FRW in the past.

A striking feature of our models is that geometric anis
ropy on the brane, from the Bianchi symmetry, imposes
the bulk curvature and the junction conditions, anisotropy
the matter content of the brane. In other words, it is n
possible within our family of models to have a perfect flu
matter content~including the case of a minimally couple
scalar field!—anisotropic pressure in the matter is unavo
able unless the brane geometry reduces to Friedmann
ropy. This feature may be a consequence of the simplicity
the bulk metric ansatz that we used, but it raises an inter
ing challenge, i.e., to find complete Bianchi braneworld s
lutions with perfect fluid matter and nonzero anisotropy.
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