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Braneworld cosmological models with anisotropy
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For a cosmological Randall-Sundrum braneworld with anisotropy, i.e., of Bianchi type, the modified Ein-
stein equations on the brane include components of the five-dimensional Weyl tensor for which there are no
evolution equations on the brane. If the bulk field equations are not solved, this Weyl term remains unknown,
and many previous studies have simply prescribed #hbkoc We construct a family of Bianchi braneworlds
with anisotropy by solving the five-dimensional field equations in the bulk. We analyze the cosmological
dynamics on the brane, including the Weyl term, and shed light on the relation between anisotropy on the brane
and the Weyl curvature in the bulk. In these models, it is not possible to achieve geometric anisotropy for a
perfect fluid or scalar field—the junction conditions require anisotropic stress on the brane. But the solutions
can isotropize and approach a Friedmann brane in an anti—de Sitter bulk.
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[. INTRODUCTION By making an assumption about the Weyl term on the
brane, the dynamics of a Bianchi type | brane was studied in
High-energy physics theories have recently inspired relaf13], and it was shown that high-energy effects from extra-
tively simple phenomenological models in which one candimensional gravity remove the anisotropic behavior near the
test some of the consequences of string theories. Randall arghgularity that is found in general relativity. This was ex-
Sundrum[1,2] proposed a model that captures some of theended via a phase space analysis of Bianchi types | and V
essential features of the dimensional reduction of 1ltraneworlds[14,15, showing that the anisotropy is negli-
dimensional supergravity introduced by ldea and Witten  giple close to the singularity for perfect fluid models with a
[3,4]. _The s_econd Rgndall-SundrumSZ) scenario[ 2] IS' @ parotropic linear equation of stape=wp, with 0O<w<1 a
five-dimensional anti—de Sitter (Adp “bulk” spacetime  ¢onstant, opposite to the general relativity case. It was then
with an embedded Minkowski 3-brane where matter fieldssyggested that this may be generic in cosmological brane-
are confined and Newtonian gravity is effectively reproducedyorids, which was supported by subsequent wiig,17]
at_Iow energies. The RS2 scenario was gerjeralized to &ee also[18-20). However, a perturbative analysig1]
Friedmann-Robertson-WalkeFRW) brane, showing that the gy ggests that this may only be true for homogeneous models.
Friedmann equation at high energies giv#&~ p?, in con- These studies, and othef82-33, considered only the
trast with the general-relativistic behavisi*~ p [5-8]. dynamical equations on the brane, making various assump-
As shown in[9], the modified field equations on the brane tjons about the Weyl term in the absence of knowledge of the
have two new contributions from extra-dimensional gravity: hylk metric. In[34] a bulk metric with a Kasner brane was
presented. However, since the Kasner metric is a solution of
the four-dimensional Einstein vacuum equations, the bulk
metric is a simple warped extension; the general result, with
the generic form of the bulk metric, is given [B85]. The
where\ is the brane tensiofthe vacuum energy of the brane Simplest example of this general result is a Minkowski brane,
whenT,z=0), andA and « are the four-dimensional cos- leading to the RS2 solution. Another example is the

mological and gravitational constants, respectively, given irochwarzschild black string solutiof86].~ Up to now, no
terms of A and the fundamental constants of the bulkComplete solutions, i.e., for the brane and bulk metrics, have

2
K
_ 2
Gaﬁ——Aga[ﬁ—K Taﬁ—f—ﬁysaﬁ_galg, (1)

(As,xs) by been found for cosmological Bianchi braneworfdehe key
difficulty is to find anisotropic generalizations of Ag#hat
Ae A2 A can incorporate anisotropy on a cosmological brane, and that
A= 75 + 1_2,{%, KZZE K‘S‘_ 2 are necessarily non-conformally flat.

Previous studies of Bianchi braneworlds have considered
the effects ofS,; under various assumptions @h;. Here

The term S, is quadratic inT,; and dominates at high \ve tackle the question of the construction of complete mod-
energies p>\). The five-dimensional Weyl tensor is felt on

the brane via its projectiod, ;. This Weyl term is deter-

mined by the bulk metric, not by equations on the brane. In i\ote that this result is sensitive to the form of the bulk field

FRW braneworlds, the bulk is Schwarzschild-Ad$0-12,  equations, and it breaks down in the presence of a Gauss-Bonnet
and&,; reduces to a simple Coulomb term that gives rise taerm in the gravitational actiof44].

“dark radiation” on the brane. The simplest generalizations 2in [39], solutions with an anisotropic bulk containing a black
of FRW braneworlds are Bianchi braneworlds. hole with a non-spherical horizon were found.
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els for cosmological braneworlds with anisotropy, that is, wewhere w'IwildXi are one-forms invariant under a Bianchi
want to construct both the metric in the bulk and on thegroup (see[40] for detail3, and h;;0'’ is the metric in-

3-brane, so thaf,; is determined and not assumad hoc

II. THE GEOMETRY OF THE BULK

duced on the surfaceg=t, ,y=y,}. For simplicity, we
consider only Bianchi type | model&)(z 5{) (the procedure
for non-Abelian Bianchi groups is essentially the samih
a diagonal metrid,;:

For a five-dimensional bulk spacetime with a negative

cosmological constantAs<0, and no additional matter

sources, the Einstein equations are

*Gpg+As’dap=0. 3

3
Sds?=—aj(t,y)dt?+ Zl aZ(t,y)(dx)2+b(t,y)dy>2

(€)

In order to construct cosmological braneworlds with anisot-The field equationg3) for this metric are non-linear partial

ropy we start from the ansatz used I§,6] (see also
[37,39):

Sds?= —n?(t,y)dt>+a%(t,y)dS 2+ b2(t,y)dy?, (4

differential equationgPDES in (t,y), like the field equa-
tions for the metrig4). In the case of the metri@) the{ty}
component of the field equations provides a relation that
leads to a set of first integrals. However, this procedure does
not work for Eg.(9), and one must deal with non-linear

whered3 2 is the line element of the three-dimensional maxi-PDEs. We have not been able to find a procedure to solve

mally symmetric surface§t=t, ,y=y,}, with a curvature
index k=0,=1. Clearly, all the hypersurfacdy=y,} in-
herit a FRW metric. Although the Einstein equatids can
be completely solved for the metrid), the explicit complete

solution(bulk+brane (see[5,6]) was found fob=0, which

them analytically.

These difficulties indicate that in order to find analytic
solutions we should abandon the generic case and consider
special solutions that do not require PDEs. We try a static
and Gaussian normal ansatz,

corresponds to Gaussian normal coordinates adapted to the 3

foliation with normal n,dx"=dy. Since the bulk is

Schwarzschild-AdS§ an alternative approach is based on a

moving brane in static spherical bulk coordinaft$,12,

dr?
Sds?=—f(r)dT?+ —f(r)+r2d2§, (5)
where
)
f(r)=k+ﬁ—r—2. (6)

Here¢?= —6/As, so thatf is the curvature scale of the bulk.
When the parameten, the mass of the bulk black hole,

vanishes, the solution is simply AgSso that the bulk Weyl
tensor, and hence the brane Weyl term, vanisj.#f0, then

Sd2= — 2P d 2+ > AW (dx)2+dy?,  (10)
=1

where we pay the price that the brane is no longer static in
the coordinate system. This ansatz can in fact be seen as a
five-dimensional generalization of a similar angat] used

in the search for four-dimensional static and cylindrically
symmetric spacetimes describing cosmic strings in the pres-
ence of a non-vanishing cosmological constant. The field
equations for the metri¢l0) are

3 2

w
AZ‘—’_A;;;ZO A;;— - 0, (11
AA 3 02 0 (12)
~ 2 w?=0,
o=ap<s “ P 8

the tidal field of the black hole generates a non-zero Weyl
term on the brane. The existence of the black hole horizogvhere w=4/¢.

requires thatu=0 for a flat or closed geometry, and

In order to solve these equations, we introduce the deter-

w=—{(?/4 for the open case. The brane trajectoryris minant of the metric,

=a(7), where 7 is the cosmological proper time on the
brane anda(7) is the scale factor, whose evolution is deter-
mined by the junction conditions. ForZ-symmetric brane,
this gives the modified Friedmann equation on the brane,

(13

3
u?(y)= exp( 2 Zo Aa) .

Multiplying Eq. (11) by u(y) and summing over, we get

H2+k—K2 1+ 2 +A+’M 7
2 3ttt @ 0~ w?u=0, (14
where the high-energy correction termgé&/\ and the last with the first integral,
term on the right is the dark radiation term.
A natural extension of the ansatz in Eg) that will in- u’'?— w?u?+C=0, (15)

troduce anisotropy iscompare[39] for a similar approach
whereC is an arbitrary constant of integration. Onaey) is
Sds?=—n?(t,y)dt?+h;(t,y) o' 0’ +b?(t,y)dy?, (8)  known,A,(y) can be obtained by quadrature:
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A’—lu/+C“ 16
VAT (10

which comes from the integration of E(L1). The constants
C, are constrained by Eg$l2) and (13):

> c,=0

(17
a=0
> C,Cu==C (18)
O=sa<p
These imply
3
(c1+c2)2+(c1+c3)2+(c2+c3)2:—Zc. (19

Taking the square of Eq(l7) and using Eq.(18) yields
equivalently
3 , 3
> Ci=-,C (20)
Py 4

Thus C can never be positive, and the,’s must be the
coordinates of a three-sphere of radiys-3C/2, hence

Ic,|<V=3Cl2.

WhenC=0 the parameter€, must all be zero as well.

In this particular case,

AL(Y) =A%+ 7 (Y=Yo), (21)

whereA? are integration constants. This model corresponds

as expected to an exact AgdBulk.
Thus, we are left to consider negative values @rand
we rewrite it asC= — w?B2. By Eq. (15),

u(y)=Bsin{w(y—Yo)], (22
and then Eq(16) gives
1
Ay)=A%+ Z'ﬂIU(y)IJrCav(y), (23
wherev’ =1/u, so that
1 coshw(y—yy)]—1
v(y)= 2wB [cosr[w(y—yo)]ﬂLl ' (24

Finally, we can write the bulk metric solution as

cosliw(y—yo)]—1]1
coshw(y—y,)]+1

25)
C,/wB (recall thatwB+#0), andN, are con-

eZA“=Nilsinf[w(y—yo)]ll’z(

whereq,=

stants whose value can be chosen by rescaling coordinates,

but which satisfy the constraint

PHYSICAL REVIEW D58, 103520 (2003

(26)

3
I1 NZ=82
a=0

which follows from Eqs(13) and(22). The exponentg,, are
constrained by Eqg17) and (20):

3
|qa|$Z' (27)

Note that this is a more restrictive bound than the one found
above only from Eq(20).

We consider first the special ca€g=C,=C3=—C/3,
with two possible sets of parameters in E&5), namely
(do .07 )=(+%,%£%). These two special cases are
Schwarzschild-AdS with k=0, written in Gaussian normal
coordinates(Thek= —1 case corresponds to Bianchi V, and
the k=1 case to Bianchi IX.We see this via a coordinate
transformation in the metric of Eg5):

8
r“=w—’§{1icosr[w(y—yo>]}, (28)

and the remaining coordinates are rescaled by constants that
depend onu, », andN,. It follows that g, leads to a
negative masg., which we exclude, so thaf, is the physi-
cal solution(with a black hole horizon

This shows that our general five-dimensional bulk solu-
tion, Eq.(25), can be seen as amisotropic generalization of
SchwarzschildAdS;. This distinguishes our anisotropic so-
lution from the vacuum Kasner branewoflg4].

We now investigate the character of the singular pgint

Y, Via curvature scalars. It turns out to be more convenient
to use a new set of constants,

dy

d,
5 =Go+ 03,  =0U1+0s, 73=q1+q2, (29

with

d?+d3+d3= (30)
The isotropic cases, correspond to the points*(1,*1,
+1) on the 2-spher€30). The square of the bulk Weyl ten-
sor,C?=°Cpgcp CABCP is given by
2 w” 4, 44, 44
Co= 21— (d{+d5+d
16sinH[w(y—yo)]{ (di+d+dy)

+18 cosR[ w(y—Y,)]+36d;d,dscost w(y —Yy,) 1}

(31
The behavior neay, is
39+ 36d,d,d;— (d]+
c? 102d3—( - )' (32)
Y=Yo 16(y —Yo)
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There are four sets of constamtsthat lead to zero numera- which will be also useful, is to prescribe the functiviy)
tor: D;=(-1,1,1),D,=(1,-1,1)D3=(1,1-1), and D,  and then the embedding is given by E¢8) and(39) up to
=(—1,—1,—1). For these case€? is regular aty,: an integration constant.
We introduce the vectors
9w*

O Blcostiaty—yo T+ 1" %9 Aot e

Yo — — 0
udx W( eodt+Vdy), (40

For all other values of the;’s, y=y, is a curvature singu-

larity. The case®, D,, andD5 are equivalent in the sense e'AdXA:eAidXi, (41)
that they represent the same spacetime. The Eases

Schwarzschild-Ad$ (with positive masg andy=y, corre-  which together withn, form an orthonormal basis for the
sponds to the horizon of the black hole, sirfde(y=y,))  bulk. The vectou? is a four-velocity tangent to the foliation,
=0, and not to the singularity. Thus the Gaussian coordiand hence to the brane. The conditi@®) ensures that is

nates only cover the exterior of the black hole. the proper time on the brane of the observers with four-
Far fromy=vy,, C? decays exponentially, velocity uA.
9 The metric inherited by the brane and other hypersurfaces
c? §w4e72wy' (34) of the foliation is the first fundamental form,
y—®©
gae= "gas—NaNg, (42)

This behavior, which is completely independent of the pa-
rameterd; (or C;), means that our general anisotropic solu-SO that
tion is asymptotically AdS The square of the bulk Riemann

tensor, the Kretschmann scal®@r= °Rpgcp°RABCP, is e?ho .
ABCD 0= — 2 gij = eZA. 5”‘ , (43)
5 1-V
R2=C*+ — o™ 35
32 (39 Oty = —Ve Pogy, gyyzvze—ongn_ (44)
Ill. EMBEDDING OF THE BRANE The extrinsic curvaturégsecond fundamental fornis
In order to obtain Bianchi | cosmological models the em- 1 c.Ds
bedding of the brane must respect the Bianchi | symmetries, Kag=5£n0a8= 0498 " Vo » (45

so the most general embedding is
where £ is the Lie derivative andap=K ag), Kagn®=0.

t=S(r), X=X, y=Y(7), 36 Then
where{7,X'} are local coordinates on the brane. The normal e2Ao VV/
to the brane is Ky=—¢ A , (46)
(1_\/2)3/2 (1_V2)
€
nadxA=————(—Velodt+dy). (37 e2A
1_V2 Kij:e_—Ai,(sija (47)
V1-V?
Heree= =1 determines the orientation of the normal, ahd
is a function defined by the coordinate velocity of the brane, Kiy= —Ve PoKy,, (48
y'2 —\/20—2A
V2=Y—., (39 Kyy=Ve Ky, (49
1+Y? _
with trace
so that|V|<1. The functionsS and Y are not independent;
sincen,dx® must vanish identically on the brane, € u Vv’
K= —+ . (50
1-Vv2 | U (1-V?

P=(1+Y?)e 2P, (39

We use a local foliation of the bulk such that the brane istuefﬁg I|Er?(t?12) g)?t?i:gg ggvaaau?;omfgzc?ggg%zr%wu;n 0
itself a hypersurface of the foliation. This foliation is de- — ) ' .

scribed by the normdB7), with V being now a function of. V1+Y<, i.e., the inverse of the arclength of the embedding

The brane is then determined by the choi¢g® and(38). ~ function Y(7), whereas thevV’ term can be written as
An alternative way of determining the location of the brane,Y/(1+Y?), i.e., the curvature times the arclength.
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A. Projection of the bulk Weyl tensor onto the brane

The modified Einstein equatioris) on the brane contain

the projection of the bulk Weyl tens$®],

PHYSICAL REVIEW D58, 103520 (2003

For a Bianchi | braneworld, the symmetries enforge
=0. From Eqgs.(46)—(49) and (56), we find that for our
Bianchi | models,

_5 BD 2e Cyo 33U
Enc="Cagcpn™n”, (51) pHA= —(_O_ __) (58)
o _ _ KE 1-v2lu 4u
which is symmetric, tracefree and orthogonahfo Relative
to any observer,.ami in particular the observer with the pre- 2¢ 3u° 1C, vV’
ferred four-velocityu”, this can be decomposed [&@2,43 p—A= —_—— - (59)
kEV1-V2[4 U 3u (1-Vv?
1
5AB=—K2(Z/{( UAUB+_hAB +ZQ(AUB)+PAB y (52) 3 3
3 _ _
WAB_iZl Ti€ACB, igl ™ =0, (60)
where hyg=0gag+ UaUg projects into the comoving rest
space ofu®, U is the Weyl energy density on the bra@,  Where
is the Weyl momentum flux on the brane, afyg is the
; : 2€ Co+3C;
Weyl anisotropic stress on the brane. = (61)
Bianchi-I symmetry enforce®,=0, while ' ng/l_v2 3u
1 3 The anisotropic directional pressungs=p+ m; are
U= ———{Co(u’' —2Cp) + = w’B?}, (53
2k2u2| ° v 8 2¢ [3u ¢ vV
pi—7\=2— - ~E (62
B 3 kEJ1-VZ |4 U U (1-V?
Pas= Py ;1 Pi€iagie , 21 Pi=0, (54 In our case, since we do not have momentum density, the

where

 Co+3C u’+CO
[ TR VTR
(Cot+3C)

— 4
4u U 4u

w?B?~ 16(31

1 u’ &)+
u(1—V?)

(59

Clearly, P,g=0 for the isotropic case.

IV. BRANEWORLD MATTER FIELDS

vanishing of the anisotropic stresses implies a perfect-fluid
energy-momentum tensor. This happens if and onlg 4f
=—3C;, for alli; i.e., the brane can support a perfect fluid

if and only if the metric is isotropicFurthermore, Eqg55)
and(61) show thatthe Weyl anisotropic stress@% vanish if
and only if the matter anisotropic stressesvanish There-
fore, geometric anisotropy enforces, via the extrinsic curva-
ture and the junction conditions, anisotropy in the matter
fields. This may be a peculiar feature of our solution, based
on the ansatz Eq10). However, it may be a generic feature
of anisotropic cosmological braneworlds.

The fluid kinematics of the matter are described by the
expansion, ®=V,u®, the shear, oag=[h{,hg
—3h®Phag]Veup , the vorticity, wag=h{ahg Vpuc, and the
accelerationy”= uBVgu®. For Bianchi symmetry, the matter

While the induced metric is continuous, there are disconflow is geodesic and irrotationakg=0=u,. The expan-
tinuities in its first derivatives across the brane, so that ther&ion and shear for our Bianchi | braneworlds are given by

is a jump in the extrinsic curvature. In the caseZofsym-

metry with the brane as a fixed point, the junction conditions 0= v E u_ _ & (63)
determine the brane energy-momentum tensor in terms of the Ji—v2l4u u)
extrinsic curvature:
3 3
2 UABZ__El Ti€ASB Zl 0i=0, (64)
Tag=Aga=— — (Kag—=Kgap). (56) = =
Ks
where
The energy-momentum tensor can be decomposed, rela- v Cn+3C.
tive to observers with four-velocity”, as o= 0 : (65)
yi-v2l 3u
Tag=pUpUp+ Phag+2Qalp)+ Tas, (57 , _
A= PUAUs T PRABT “lalle) T Tas Equations(58) and (63) imply
wherep, p, qa, and m,g are, respectively, the energy den- 2¢
sity, isotropic pressure, momentum density, and anisotropic prA=———0. (66)
stresses measured by. K5V
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To ensure that the brane is expanding for positive energpy Egs. (43) and (44), and the 3-brane is Minkowskian.
density, we requires/V<0. Equations(61) and (65) also = However, the matter variables are constants that do not van-

imply ish in general,
2¢ . [3coshx, —4do

TABT Ké_VUAB' (67) Px= Ac( 3 sinhx, A, (72
We have checked that our expressions satisfy the generalized D, =\— (9 costx, +4do (73
Friedmann equation for a Bianchi braf8,42: * ¢\ 9sinhx, ’
1., K2 p K2 B A K21 AB so the models obtained in this way are not empty. Here
§® —?p 1+§ _Kﬂ- 7TAB+§+?Z/[+€0' OAB- .

(68) Ae=—€e—, (74)
ks

V. SOME EXPLICIT MODELS _ - _ _
so that|\¢| is the critical tension corresponding to the RS

We can construct explicit cosmological models using thefine tuning[1,2,9, i.e., for whichA =0:
freedom still available in embedding the 3-brane. Choosing
the parameterg,, which are subject to the constrairffs?) 3/ N2
and(18), defines the bulk spacetime. The embeddiiig) is = —ZH ) - }
a function of one variabléproper timg, and involves the ¢

freedom to choose the direction of the normél and the In general the matter fluid will not be perfect because the
sign e which defines its orientation. 9 P

One way to construct a particular cosmology on theanlsotroplc stresse1) only vanish when the bulk space-

: : . : time is isotropic ¢y+39;=0, for alli). Note that takinge
3-brane is to prescribe the densjiy Using Eq.(58), Vcan ' ! . L .
then be obtained as a function wf =—1 [see Eq(74)], there always exists a finite positive

such thatp>0. For instance, in the isotropic case where
2 do=23, this condition is satisfied by any such that

(69)
AN<A/ coshx, —1 (76)
¢ Vcoshx, +1°

v (79

VZ=1-

2 (Co 3u’)
k(p+r)l U 4u

Then the embedding is completely determined by integrat-

Ing, In general, the brane cannot be emptypif=0=p, ,
wag=0, thenq,=0, which is incompatible with the con-
y\1—V? straint equatior(18).
T ToT if v (70) If we embed the brane at, <1, then
which gives an implicit form of the functiol (7). However, pL~\ 3—4q0+x_* N (77)
one cannot use any physical argument or intuition in order to * e 3x, 2 '

start with a cosmologically relevant densjtyas a function
of the coordinate of the extra dimension. Then, for—3=<qo<%, the matter density grows very large
A more appealing procedure is to start by prescribing thdinless the brane tensianis also unrealistically large. In the
embedding functionY(7), or equivalently the redefined isotropic case, it decreases s approaches the black hole
function horizon atx=0, where it becomes negative. On the other
hand, if we place the brane at a large distanger 1,

X(7)=w[Y(7) =Y.l (7D

ThenV(7) andS(7) are given by Eqs(38) and(39), respec- _ o )

tively, andp(7) by Eq.(58). Using this approach, we inves- This result is independent of the parametggsso it means
tigate under what circumstances a Minkowski brane can b¥/€ ¢an have a nearly vacuum brane embedded in our aniso-
embedded in our anisotropic bulk, how we can recover thdropic bulk solution for large enougk, if we choosex as
standard embedding of a FRW brane in the isotropic casdhe critical brane tension.. The existence of this embed-
and, finally, several examples of the embedding of anisoding is something one should have expectegriori, be-

tropic branes in a general anisotropic bulk. cause our five-dimensional solution asymptotically ap-
proaches an AdSspacetime for large.

To sum up, we have shown that we cambed a non-
vacuum Minkowskian brane in a general anisotropic bihk

The simplest embedding isx(7)=x, =const (>0), order to make the 3-brane empty we have to locate it asymp-
which impliesV=0, so that thegag(7,X',X,) are constant, totically far from y=y,. These results generalize the find-

Px ~Nc™ N, Py~~~ Py (78)

A. Embedding of a Minkowski brane
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ings of [10] that a Minkowski brane can be embedded in a T T
(isotropig Schwarzschild-AdSbulk. o.4j(a)

0.2

B. Embedding of a FRW brane -
In the isotropic case, for a bulk spacetime with which 0‘05
correspond to the poinb, on the spheré30), we follow 02k

[11,17] and choose

2

w
x(7)= arccos{r— at(n -1

8u . (79 »0.6;

Substituting in Eq.(58), we get the effective Friedmann
equation (7) with k=0, thus recovering the results of N
[6,9,11,12 for an isotropic bulk. Note that in this case the T N B I R T
anisotropic stress tens@O0) is identically zero and the mat-
ter on the brane is a perfect ﬂu'd',A combination Of_ EGS) . FIG. 1. Evolution of the equation of state as a function of
and (59 also leads to the effective Raychaudhuri equationyroper time 7/Q, Eq. (86), for (a) go=—0.001 and (b) qo
[42], =—0.4. The curves in both graphs correspond to valaes
=1, 0.999 999 999, 0.9999, 0.1 from top to bottom.

H=—H2 Kz( +3p) 2(2+3) s
g (PT3P)— gy Plept 3P a4 3 a(7) — 7374012 5 (1) F1-4a)4, (85)

(80) 7—0 7—0

The cosmological dynamics of this case have been extenThe exponent ira() is always positive. These cosmologi-
sively investigated for a barotropic linear equation of stateca| models do not isotropize as we approach the initial sin-

[14,15. gularity, in contrast with the results ¢.3—15, where as-
sumptions were imposed on the Weyl anisotropic stresses.
C. Embedding of an anisotropic brane This example shows thdahe Weyl anisotropic stresses can
The metric tensor on the brane has Bianchi | form, ;’;tlgect significantly the dynamical behavior near the singular-
3 _ Note also that despite the fact that the universe is collaps-
ds?=—dr2+ >, a%(7)(dx)?, (81)  ing in the past, there exist models within the family of solu-
i=1

tions for which at least one spatial dimension could be ex-
panding(e.g.,qs= — 3/490=q,=9,=1/4). In the future the
a;(7) approach the mean radiieg 7) and all the models

ecome isotropic. For the embeddif8R) the equation of
State has a simple analytical expression,

and the mean scale factor of the universe agr)
=(aya,a3)®. There are infinite ways of constructing these
models as there are infinite ways of prescribing the embe
ding. Here we just present a few examples.

Example | We have
(1—a)e*™+ (1+a)e 7+ 8q,/9

(1-a)e?™+(1+a)e 27— 4qy/3]

X(7)=Q7, (82) w(T)=— (86)

with 0= 7<<ec and()>0. In this case grows very large at , i i
early times and asymptotically reaches a constant value §fheré@=»MA\cy1+(Q/w)® is a normalized brane tension,

late times. Positivity of the energy density requires that ~ With 0<a=1 by Eq.(83). Forqo>0 the equation of state
becomes singular asincreases. Fogy=0 and any value of

2 a, we havew= —1. As « approaches its maximum value,
, (83)  the equation of state has a transient period withO before
reaching the constant valuel. However, whena=1, w

tends to 1/3, i.e. the matter behaves as a radiation fluid, even

where the equality corresponds to an asymptotically vacuurgyo,gh the expansion is increasing exponentially due to geo-
universe. The anisotropic stress vanishes at late times and thestrical effects. Some examples of the fluid behavior admit-
fluid becomes perfect. The universe expands exponentially iy g by the embedding are shown in Fig. 1.

the far future, Example 1l We have

a(r) — e (84)

T—®

Q

w

O<As=A\/1+

X(7)=4B81In(Q7), (87)

independent of the constandg defining the bulk spacetime. with O~ 1<7<% and(,3>0. The qualitative behavior is
In the early universe, very similar to that of example |. Here the brane tension has
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to satisfy the new condition©@\ <\ instead of Eq(83) in Previous studies of Bianchi braneworld dynamics which im-
order to havep>0. The universe isotropizes in the future, posead hocassumptions ofP,g are unable to treat consis-
with mean radius tently the relation between the bulk and brane geometries.
The embeddingrhis is where most of the freedom arises
a(r) — (1), (88)  (a function of one variable As shown by the examples in
= the previous section, the dynamics are very sensitive to the
embedding. From the physical point of view, this leads to the
question of what is the most natural state of movement for a
brane. However, this question cannot be answered in the phe-
nomenological context of the RS2 scenarios.
In choosing the embedding of the brane it is very impor-
, (89)  tant to consider the following general feature of our models:
when the brane is close to=y,, the effects of the anisot-
ropy are important for the cosmological dynamics, whereas
when it is located far frony=y,, we have an effectively

which includes radiation-domination B&3), matter-

domination 8=%), and power-law inflation §>1).
Example IIl We have

(Qn?+1

(Qn?-1

X(7)= arccos{r

with Q1< 7<% and(),8>0. The scale factors are
1/4 FRW cosmological moddiin an anisotropic bulk This fact

2(Q r)PL—4a) i -
a(r)=|—————| , (90) ~ can be seen from the relative shear eigenvalues,
Q-1
. . i . aj 4 C0+ 3C|
so that each spatial direction can have different rates of ® "9 v 0 (97
expansion/contraction, and the universe does not isotropize x>1 X0

in the future, unlike examples | and Il. However, the models

do isotropize in the past. The mean scale factor shows that alihis is illustrated by examples I and II, where in the future
these models are expanding in the past and collapsing in tH8e brane isotropizes, and also by example I, where by
future. (In [15] a similar qualitative behavior was found in a contrast, the brane approaches FRW in the past.

Bianchi | brane when the mass of the bulk black hole is A striking feature of our models is that geometric anisot-

negative) In this case the matter content never behaves as 8Py on the brane, from the Bianchi symmetry, imposes via
perfect fluid. the bulk curvature and the junction conditions, anisotropy on

the matter content of the brane. In other words, it is not
VI. DISCUSSION possible within our family of models to have a perfect fluid
matter contentincluding the case of a minimally coupled
We have constructed completeranet+bulk geometry  scalar field—anisotropic pressure in the matter is unavoid-
cosmological braneworlds with anisotropy. These solutionsble unless the brane geometry reduces to Friedmann isot-
are the first such models with matter content. Our ansatropy. This feature may be a consequence of the simplicity of
starts from a static form for the bulk metric, EQ.0), with  the bulk metric ansatz that we used, but it raises an interest-
the brane moving relative to the static frame. The anisotropyng challenge, i.e., to find complete Bianchi braneworld so-
arises from imposing Bianchi symmetries on a family of ho-lutions with perfect fluid matter and nonzero anisotropy.
mogeneous 3-surfaces. For the sake of simplicity, we only
considered the Abelian Bianchi | case, but other groups can
be treated following the same approach.
There are two important aspects of the construction of We thank Bill Bonnor for bringing Ref.41] to our atten-
cosmological braneworlds. tion. A.C. acknowledges support from the University of
The bulk geometryin our case, this is given by E5), Portsmouth and the Alexander von Humboldt Stiftung/
where the parameters, control the anisotropy. The aniso- Foundation. R.M. is supported by PPARC. C.F.S. is sup-
tropic bulk curvature produces a nonzero Weyl anisotropigorted by the EPSRC and thanks the Institutfheoretische
tensorP,g Which, as shown in the examples of the previousPhysik of the UniversitaHeidelberg for hospitality during
section, can have a fundamental impact on the dynamicshe last stages of this work.
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