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Phantom cosmologies
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We discuss a class of phantom (p,2%) cosmological models. Except for the phantom we admit various
forms of standard types of matter and discuss the problem of singularities for these cosmologies. The singu-
larities are different from those of standard matter cosmology since they appear for infinite values of the scale
factor. We also find an interesting relation between the phantom models and standard matter models which is
like the duality symmetry of string cosmology.
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I. INTRODUCTION

The observation of distant supernovae@1,2# has given evi-
dence for an accelerating universe filled with matter wh
violates the strong energy condition%13p>0, wherep is
the pressure and% is the energy density. However, a mo
detailed check of the data suggests that also the matter w
violates the weak energy condition%1p>0,%>0 is admis-
sible at a high confidence level@3–10#.

A possible violation of the energy conditions puts in dou
some fundamental achievements of general relativity si
most of its basic theorems rely on various energy conditi
~null, strong, weak, dominant, averaged null, averag
strong, and averaged dominant!. As we know the Hawking-
Penrose singularity theorems, the positive mass or Bo
mass theorems, the laws of black hole thermodynamics,
the cosmic censorship conjecture all rely on the energy c
ditions @11#. Also, for spacetimes which violate the wea
energy condition wormholes can exist and so causality v
lation emerges. However, a necessity to explain obse
tional data makes us revise these fundamentals and ad
some more general theories.

The physical background for strongly negative press
matter ~phantom! may be looked for in string theory@12#.
The point is that the group velocity of a wave packet
negative which leads to behavior of the packet which
somewhat unusual—namely, it moves in the direction op
site to the momentum. In such circumstances a wave pa
which leaves the comoving volume transfers momentum
the volume which makes negative contribution to the pr
sure@13,14#.

Formally, one can get the phantom by switching the s
of kinetic energy of the standard scalar field Lagrangi
i.e., by taking L52(1/2)]mf]mf2V(f) which gives
the energy density%52(1/2)ḟ21V(f) and the pres-
sure p52(1/2)ḟ22V(f) and leads to%1p52ḟ2,0
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@3,15–21#. The phantom type of matter may also arise fro
a bulk viscous stress due to particle production@22# or in
higher-order theories of gravity@23#, Brans-Dicke and non-
minimally coupled scalar field theories@24,25#.

The cosmological models which allow for phantom ma
ter appear naturally in the mirage cosmology of the bra
world scenario@26# and in kinematically driven quintessenc
~k-essence! models@27#.

It has been shown that the matter which violates
strong energy condition allows the cyclic~oscillating, non-
singular! universes @28#. It seems that similar solution
should also appear for the phantom matter which violates
weak energy condition.

A different idea of a cyclic universe in which the contrac
ing big crunch phase can be connected with an expand
big bang phase@29# has been revived recently in the conte
of M-theory cosmology motivated ekpyrotic scenario@30#.
In this reference it has been shown in Ref.@31# that the only
way to make a transition from a contracting phase to
expanding phase in a flat universe is to violate the we
energy condition and this gives another motivation for stu
ing phantom cosmologies.

Some other proposals which may have something in co
mon with the phantom are Cardassian models in which
adds an extra power in the energy density term to the Fr
mann equation@32–34#, or modified Einstein-Hilbert action
models in which an extra term of arbitrary~both positive and
negative! power of scalar curvature appears in the gravi
tional action @35–37#. Both these possibilities may be d
rectly motivated by string/M theory@38,39#.

II. BASIC SYSTEM OF EQUATIONS
WITH THE PHANTOM

The phantom is a new type of cosmological fluid whi
has a very strong negative pressure which violates the w
energy condition@4,5,12#, i.e., it obeys the equation of stat

p5~g21!%5w%, ~1!

with negative barotropic index

g5w11,0, ~2!
©2003 The American Physical Society19-1
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and this implies thatp,2%.
In order to study phantom cosmologies, we start our d

cussion with the basic system of equations for an isotro
and homogeneous Friedmann universe which reads as

k2%52L13
k

a2
13

ȧ2

a2
, ~3!

k2p5L22
ä

a
2

k

a2
2

ȧ2

a2
, ~4!

wherea(t) is the scale factor,k50,61 the curvature index
L the cosmological constant, andk258pG is the Einstein
constant.

Using Eqs.~3!, ~4! one gets the Friedmann equation in t
form

ȧ2

a2
5

k2

3
r2

k

a2
1

L

3
. ~5!

After imposing conservation law%a3g5(3/k2)Cg5const,
one gets Eq.~5! as follows:

1

a2 S da

dt D
2

5
Cg

a3g
2

k

a2
1

L

3
. ~6!

The cases which involve all types of cosmological fluids, i
with g54/3 ~radiation!, g51 ~dust!, g52/3 ~cosmic
strings!, g51/3 ~domain walls!, and g50 ~cosmological
constant! have been exactly integrated in terms of ellip
functions@28#. In fact, a large class of oscillating~nonsingu-
lar! solutions have been found.

Now we extend this discussion of the exact cosmolog
solutions into the case of phantom matter withg521/3 ~we
will call it phantom! andg522/3 ~we will call it superphan-
tom!. One should emphasize that the ‘‘border’’ betwe
‘‘standard’’ and phantom models is given by the value
barotropic index

g50 ~w521!. ~7!

Due to the appearance of the higher than four powers of
scale factor in the Friedmann equation one cannot integra
general case which involves phantom matter by elliptic fu
tions. However, a lot of interesting special solutions can
found without using the elliptic functions and this is the m
ter of the present paper. We also include stiff-fluid mat
with g52.

From the conservation law we have

%}a23g for g.0 ~8!

and

%}a3ugu for g,0 ~phantom!. ~9!

From Eq.~9! it is clear that big-bang and big-crunch sing
larities appear at infinite values of the scale factor for ph
10351
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tom cosmologies. This is also obvious after studying the s
plest solution of Eq.~6! for k5L50, which reads

a~ t !}t2/3g, ~10!

so that

%}t22. ~11!

In other words, takingg521/3 ~phantom! one hasa(t)
→` and %→` if t→0, while a(t)→0 and %→0 if t
→`. On the other hand, in a standard caseg51/3, for ex-
ample, one hasa(t)→0 and %→` if t→0, while a(t)
→` and %→0 if t→`. Similarly, one can show that th
curvature invariants are proportional to the energy den
and so they are divergent wherever the density/scale fa
diverges

R5k2~3g22!%,

RmnRmn5
k4

4 F ~3g22!21
1

3
~3g12!2G%2. ~12!

Another interesting remark can be extracted from Eqs.~3!,
~4! and ~8!, ~9! if we admit shear anisotropys0

2/a6 (s0

5const) and consider nonisotropic Bianchi type IX mode
Namely, for g,0, the shear anisotropy cannot domina
over the phantom matter on the approach to a singula
whena→`, i.e., we have

%a3ugu.
s0

2

a6
for a→` ~13!

and this prevents the appearance of chaotic behavior of
phantom cosmologies of the Bianchi type IX@40,41#.

III. PHANTOM MODELS DUALITY

The system of equations~3!, ~4! can be presented in th
form of the nonlinear oscillator

Ẍ2
D2

3
LX1D~D21!kX122/D50, ~14!

after introducing the variables@42#

X5aD(w), D~w!5
3

2
~11w!. ~15!

For flatk50 models the oscillator~mathematical pendulum!
is in the lower equilibrium position providedL,0 and in
the upper equilibrium position providedL.0. It is also easy
to notice that Eq.~14! preserves its form under the change

D→2D, ~16!

or

g→2g @w→2~w12!#. ~17!
9-2
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It appears that there is a duality~similar to the scale-facto
duality in pre-big-bang models which is motivated by sup
string theory duality symmetries@43,44#! between the scale
factor and its inversea→a21 for standard matter (g.0)
and phantom matter (g,0) models. Namely, the standar
models for w5g21 are dual to phantom models fo
w852(21w)52g21 with respect tog50 line. For ex-
ample, the domain wall modelsgw51/3 are dual to phantom
modelsg521/3 and cosmic string models (gcs52/3) are
dual to superphantom models. However, this simple dua
is valid only for flat models~see also Refs.@45,46# where
similar results for both flat and nonflat models have be
obtained and in the nonflat case the analogy might perh
be the non-Abelian duality@47#!. In the former case we hav
~for walls, the phantom, andL,0)

aw5S sin
uDu1/2

A3
uLut D 1/2

, ~18!

aph5S sin
uDu1/2

A3
uLut D 21/2

, ~19!

so that we have

aw5aph
21 , Dw51/252Dph . ~20!

From these we can conclude that standard fluids like d
g51, radiation g54/3, and stiff-fluid g52 are dual to
phantoms withg521 (p522%), g54/3, andg522 (p
523%), respectively.

It is important to notice that duality in scale factor do
not lead to the avoidance of singularity in the energy den
which results from Eqs.~8!, ~9! and shows that whatever th
behavior of the scale factor, the density diverges leading
big-bang singularity.

IV. PHANTOM COSMOLOGICAL MODELS

For the sake of a possible comparison with observatio
data we introduce dimensionless density parameters@38,48#

Vx05
k2

3H0
2
%x0 , ~21!

VK05
K

H0
2a0

2
, ~22!

VL0
5

L0

3H0
2

, ~23!

wherex[sp,ph,w,cs,m,r ,st ~superphantom, phantom, do
main walls, cosmic strings, dust, radiation, and stiff-flu
respectively!, H5ȧ/a, andq52äa/ȧ2, while @48#

VK805Vcs02VK0 , ~24!
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which means that the Friedmann equation~6! can be written
down in the form

Vsp01Vph01VL0
1Vw01VK801Vm01V r01Vst051.

~25!

Now using the variables

y5
a

a0
, u5H0t, ~26!

one turns Eq.~6! into the form

S dy

duD 2

5Vsp0y41Vph0y31VL0
y21Vw0y1VK80

1Vm0y211V r0y221Vst0y24[Q~y!. ~27!

A. Negative pressure fluids only phantom models

General solutions of Eq.~27! are given in terms of elliptic
or hyperelliptic functions. Here we concentrate only on ex
elementary solutions leaving a general discussion for a s
rate paper@49#. First, we assume nonvanishing negati
pressure fluids only~except negativeL-term which gives
positive pressure!, i.e., Vm05V r05Vst050, so that we
have

S dy

duD 2

5Vsp0y41Vph0y31VL0y21Vw0y1VK80 .

~28!

Note that after a change of variables

p[
1

y
, ~29!

we have

S dp

duD 2

5Vsp01Vph0p1VL0p21Vw0p31VK80p4,

~30!

which may also be useful for exact integration.
Now we consider some special cases and refer to t

mathematical discussion presented in the Appendix.

1. No-wall models withVw0ÄVK80Ä0

This case falls under a general classification given in
Appendix with a25VL0PR, a15Vph0>0, anda05Vsp0
>0 ~we exclude the possibility of both phantoms lackin
i.e., Vsp05Vph050). The possible solutions are thus~cf.
the Appendix!:

~1! Vsp050, Vph0.1, and VL0,0 ~case 1.3.2, cf.
Fig. 7!;

~2! Vsp0.0, Vph0.12Vsp0, andVL0,0 ~case 1.3.3!;
~3! Vsp0.0, Vph0P@0;2AVsp0(12AVsp0)#, and VL0

.0 ~case 2.1!;
~4! Vsp0,1, andVL0.0 ~case 2.2.3!;
~5! Vsp050, 0,Vph0,1, andVL0.0 ~case 2.3.4!; and
9-3
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~6! Vsp0.0, 0,Vph0,12Vsp0, and VL0.0 ~case
2.3.5!.

Most of these solutions@cases~3!, ~4!, ~5!, ~6!# pass
through zero inx, so there arise infinite values ofy for finite
times. Bearing in mind Eq.~9! one can notice that this cor
responds to the energy density approaching zero. Howe
in cases~1! and ~2! one obtains cyclic ‘‘bounce’’ in scale
factor y solution ~which is also a ‘‘bounce’’ in the energy
density% but not singularity avoidance since%→` at finite
u) of the form

y5
2VL0

AVph0
2 24Vsp0VL0 sin@AuVL0u~u2u0!#2Vph0

~31!

which is shown in Fig. 1. In fact, there is a competitio
between the positive pressure of a negative cosmolog
term and the negative pressure of a phantom, but one is
able to avoid singularity on the same basis as with nega
cosmological constant and domain walls@28#.

Similar behavior is present in case~3!, though now there
is only one infinity—either the scale factor collapses fro
infinite into a finite size in finite time, and continues
shrink asymptotically to zero, or it expands from zero au
52`, and reaches infinite size in a finite time. This
shown in Fig. 2. In fact, this behavior is similar to what o
has in pre-big-bang cosmology@44# with y2 as a pre-big-
bang branch andy1 as a post-big-bang branch.

Cases~4!, ~5!, and ~6! are analogous to case~3!. The
appropriate formulas are obtained from those of Sec. 2.
the Appendix, but the graphs are practically like tho
in Fig. 2.

2. Phantom only models:VL0ÄVw0ÄVK80Ä0

If both phantoms only are present in Eq.~28! we have

y5
1

Vph0S u2u0

2 D 2

2
Vsp0

Vph0

~32!

5 10 15 20 25
u

1

2

3

4

5

y

FIG. 1. The ‘‘bounce’’ solution~31!. The big-bang/big-crunch
singularities appear fory→` since%}y→` at these points so tha
this ‘‘bounce’’ in scale factor does not lead to singularity avoidan
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for Vph01Vsp051 and Vph0Þ0 ~see Fig. 3! while for
Vph050 we have

y656
1

u2u0
, ~33!

and the behavior of the model is as in Fig. 2.

B. Even powers of the polynomialQ„y… only models

In this section we consider only the even powers of
polynomialQ(y) in Eq. ~27!, i.e.,

S dy

duD 2

5Vsp0y41VL0y21VK801V r0y221Vst0y24

~34!

and make the substitution

z[
1

y2
, dh[

2du

y
, ~35!

so that Eq.~34! reads

.

-3 -2 -1 1 2 3
u

0.5

1

1.5

2

2.5

3

3.5

4

y

y+y-

FIG. 2. Phantom with negativeVL0 models@case~2! of Sec.
IV A 1 # with two branches separated by curvature singularity~com-
pare@44#!.

-10 -5 5 10
u

-4

-2

2

4

y

Ωsp=0

Ωsp= 1--2

FIG. 3. The model~32! for two phantoms only. Two cases ar
shown:Vsp050, Vph051 andVsp05Vph051/2.
9-4
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S dz

dh D 2

5Vsp01VL0z1VK80z21V r0z31Vst0z4. ~36!

From now on let us assume that there is no radiation
stiff-fluid in Eq. ~34!, i.e., V r05Vst050. The polynomial
coefficients are then~cf. the Appendix!: a25VK80 , a1
5VL0, anda05Vsp0. The possible solutions are

(18) VK80,0, VL0.12Vsp0 ~case 1.3.3!;
(28) VK80.0, VL0P@22AVsp0(11AVsp0);

VL0P@22Vsp0~11Vsp0!;2AVsp0(12AVsp0)]
~case 2.1!;

(38) VK80.0, VL0522AVsp0(11AVsp0) when
Vsp0,1, and VL0522AVsp0(AVsp061) when
Vsp0.1 ~case 2.2.1!;

(48) VK80.0, Vsp0,1 and VL052AVsp0(12AVsp0)
~case 2.2.3!;

(58) VK80.0, VL0,0`VL0¹@22AVsp0(11AVsp0);
2AVsp0(12AVsp0)# ~case 2.3.1!; and

(68) VK80.0, 0,VL0,12Vsp0 ~case 2.3.5!.
All of these contain cases wherez passes through zero

and that requires a closer analysis. First, because the
tions themselves change, we are interested iny(u)
51/Az@h(u)#, which, like before, may become infinite. Se
ond, we are now working in a modified conformal timeh,
and to analyze the solution in the cosmological timet
5u/H0, we need to consider the convergence of the integ

u5E dh

2Az
.

Fortunately, all the solutions are of trigonometric or e
ponential form, so that the integral reduces to a converg
elliptic one. In other words, the values ofu are finite for
finite values ofh. Moreover, in some cases the integral co
verges withh→`. The details are given in particular case

Although the relation betweeny andz is different than in
Sec. IV A, the qualitative properties remain the same, tha
to say, where the same classes of solutions apply.

Thus, case (18) is again a ‘‘bounce’’ shown in Fig. 1.
Case (28) is a peculiar model in which the aforeme

tioned integrals converge, andu has finite values for both the
point in which the size is infinite and when it is zero (h
→`). This is depicted in Fig. 4.

For the solutions of case (38) the shape of the function
z(h) introduced in Eq.~35! is given in Fig. 9 withx replaced
by z and h replaced byu in the graph. However, we als
present these solutions in terms of the scale factory(u) in
Fig. 5. From the diagram we can see that there is a s
solutiony5const which corresponds to a double root of E
~34! with V r05Vst050. Note that the static model fall
outside the classification given in the Appendix since
Hubble parameter is equal to zero in this case@which is the
result of the rescaled definition of the time parameteru in
Eq. ~26!#. Apart from the static model we have fou
asymptotic solutions: two of them asymptotically approa
the static model in future infinity while the other two sta
asymptotically with the static model at past infinity.
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Cases (48) and (68) are similar to case~2’! shown in
Fig. 4.

For the solutions of case (58), the shape of the function
z(h) introduced in Eq.~35! is given in Fig. 10 withx re-
placed byz andh replaced byu in the graph. In terms of the
scale factory(u) these solutions are given in Fig. 6. One
them is similar to that of Fig. 1~a cycle fromy}%→` to a
minimum iny and% and again toy}%→`) and the second
describes a cycle iny and % from zero to a maximum and
again to zero.

C. Phantom, walls, andL-term models only

This is, in fact, a less general case than case(1), so it is
a straightforward task to apply those solutions here. We h

S dy

duD 2

5Vph0y31VL0y21Vw0y1VK801Vm0y21,

~37!

which after the change of variables

1 2 3 4
u

2

4

6

8

10

y

FIG. 4. The model with superphantom, cosmological const
andVK80Þ0 @solution (28)].

-2 -1 1 2
u

0.5

1

1.5

2

2.5

3

3.5

4

y

FIG. 5. The solution of case (38). Apart from the static model
~straight line in the middle! there are four asymptotic solutions: tw
of them asymptotically approach the static model in future infin
while the other two start asymptotically with the static model at p
infinity.
9-5
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p[
1

y
, dh[

du

Ay
~38!

gives

S dy

dh D 2

5Vph01VL0p1Vw0p21VK80p31Vm0p4,

~39!

and this equation is integrable in terms of elliptic function

D. Radiation and superphantom only models

Leaving only the radiation pressureV r0 and superphan
tom Vsp0 nonvanishing in Eq.~27! and making the substitu
tion

r[y6, dh[y4du, ~40!

we get the simple equation

S dr

dh D 2

5Vsp0r 1V r0 , ~41!

which solves by

r 5

F1

2
Vsp0~h2h0!G2

211Vsp0

Vsp0
, ~42!

and we have used the condition thatV r0512Vsp0.
The typical evolution as considered in terms of the sc

factory is similar to that given in Fig. 4. Despite the fact th
the scale factory reaches either zero or infinity in both situ
ations there are singularities, fory→0 it is dominated by the
radiation so%→` while for y→` it is dominated by super
phantom and%→`, too.

-2 -1 1 2
u

2

4

6

8

y

y-

y+

FIG. 6. The solutions of case (58). The first is a cyclic solution
from y}%→` to a minimum iny and % and again toy}%→`,
and the second is a cycle iny and% from zero to a maximum and
again to zero.
10351
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E. Dust and phantom only models

Although this case is not elementary, we present it as
important result in which we do not abandon the basic co
ponent of the universe. Taking all the other terms in Eq.~27!
equal to zero except for dustVm0 and phantomVph0 and
making the change of the time coordinateu as follows

dh5AVph0

du

Ay
, ~43!

we have the equation

S dy

dh D 2

5y41
Vm0

Vph0
, ~44!

which solves by

y25
4Vm0P~h!

4Vph0P 2~h!2Vm0

, ~45!

with P(h) the Weierstrass elliptic function@28#.
Despite this solution being elliptic, the evolution is also

in Fig. 4. The first singularity appears wheny→0 and it is
dominated by dust while the second singularity appe
wheny→` and it is dominated by the phantom.

V. CONCLUSION

We have studied cosmological models with phantomp
,2% matter which violates the weak energy condition. W
have shown that phantom matter characterized by nega
barotropic indexg,0 allows the curvature singularity fo
infinite values of the scale factor both in the past and in
future. We have also shown that the singularity cannot
dominated by shear so that unlike for standardg.0 cos-
mologies in a class of nonisotropic Bianchi type IX phanto
models there should be no chaotic behavior on the appro
to a singularity. We have discussed a simple model of dua
of the scale factor for phantom (g,0) and standard (g
.0) matter solutions which is like the scale factor duality
pre-big-bang cosmology motivated by superstring theory
ality symmetries.

We have presented a series of exact phantom cosmolo
which integrate elementary, leaving the investigation of
full class of models which can be integrated in terms
elliptic functions for a future paper@49#. Apart from phantom
matter we have admitted most of the known types of ma
content in the Universe with discrete barotropic indexg in
the equation of state such as dust, radiation, stiff-fluid,
main walls, cosmic strings, and cosmological constant.

One interesting class of solutions we obtained conta
models which start with a singularity in which the scale fa
tor is infinite (a→`), then decreases, reaching some mi
muma5amin , finally expanding again into another singula
ity where (a→`). In the standard picture forg.0 matter,
the Universe follows the sequence: expansion–maximu
recollapse. On the other hand, for phantomg,0 models one
has the opposite sequence: collapse–minimum–expan
9-6
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Another interesting class of solutions is characterized by
ther an expansion from zero energy density to a future c
vature singularity, or a collapse from the infinite value of t
scale factor into a state of zero energy density. There ex
also static solutions~generalized Einstein static universe!
together with asymptotic solutions though asymptotic so
tions approach the static model either from singularity of
energy density~in which the scale factora→`), or from the
state of zero energy density~in which the scale factora
→0).

Finally, in the models which contain a mixture of pha
tom and standard matter~e.g., dust, radiation! there exist two
types of singularities~with the energy density%→`): one is
dominated by the phantom with the scale factory→` and
another is dominated by standard matter with the scale fa
y→0.

We remark that phantom cosmologies form an interes
set of the models of the universe which do not contrad
observational data of supernovae type Ia and that their m
ematical and physical properties deserve further study.
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APPENDIX: GENERAL CLASSIFICATION OF SOLUTIONS
TO THE CANONICAL EQUATION

We take into account the equation

S dx

duD 2

5a2x21a1x1a05W~x! ~A1!

together with the constraint

a21a11a051, ~A2!

and seek its solutions that might depict the evolution of
Universe, that is, such thatx>0. We also definee1 ande2 to
be the roots of the equationW(x)50, andD5a1

224a0a2.
The main constraint ony is the non-negativity of the poly
nomial W(x) implied by Eq.~A1!.

The general solution of Eq.~A1! is

2a2x1a1

AD
5cosh@Aa2~u2u0!# ~A3!

whereu0 can, in general, be complex. The graphs depict
the particular cases were drawn withu050, except for case
2.3.1 whose solution requiresu05 ip/2Aa2. It should be
kept in mind that the solutions may be arbitrarily shifted
the direction of theu axis.

1. a2,0

1.1. D,0

This makes evolution impossible, asW(x),0 for all real
values ofy. Writing D5a1

214a0a114a0(a021), we get its
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discriminant D̃516a0, and the rootsa17522Aa0(Aa0
61). Clearly,a0,0 would lead toD.0, anda050 implies
a250 which contradicts Eq.~A2!. For a0.0, we would
needa1P(a12 ;a11), but this does not hold together wit
Eq. ~A2!.

Such a case is impossible with the assumptions made

1.2. D50

As above we could haveD̃50, but this would lead to
a05a150, and break Eq.~A2!. If D̃.0 the only possibili-
ties, namelya15a17 , are ruled out by the same condition

1.3. D.0

Here we could havea0.0, and a1.a11 or a1,a12

which, reasoning as above, gives in the enda1512a22a0
.12a0. Alternatively,a0<0, leads directly toa1.12a0.

1.3.1.e1.e2.0

This requiresa1.0,a0,0 which can hold together with
a1.12a0. The solution is periodic in the form:

x5
AD cos@Aua2u~u2u0!#2a1

2a2
. ~A4!

1.3.2.e1.e250

Necessarilya050 and a1512a2.1. The solution is
simply

y5
a1

2a2
~cos@Aua2u~u2u0!#21!. ~A5!

It passes through zero, unlike the previous one.

1.3.3.e1.0.e2

The conditions here area0.0 anda1.12a0. The solu-
tion now passes through zero twice, which means it is
longer periodic, but depicts a single ‘‘cycle.’’ The formula
identical to Eq.~A4!.

1.3.4. 0>e1.e2

This case would requirea0<0 anda1,0, which cannot
hold together with Eq.~A2!. The plots of 1.3.1, 1.3.2, and
1.3.3 are given in Fig. 7.

2. a2.0

2.1. D,0

This is only possible with D̃.0⇒a0.0, a1
P(a12 ;a11), which is now a stronger restriction thana1
512a22a0,12a0. There are two solutions now, depen
ing on the choice of the derivative sign in Eq.~A1!:

x65
6AuDu sinh@Aa2~u2u0!#2a1

2a2
. ~A6!
9-7
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These are, respectively, monotonic expansion~from zero size
to infinity in infinite time! or monotonic collapse~in finite
time from finite size!. This is plotted in Fig. 8.

2.2. D50

Note thata0,0 would lead toD̃,0 and henceD.0, and
this is not the case.

2.2.1.e15e2.0

a0.0, so a15a12,0, and fora0.1 we also havea1
5a11,0. For x.e152a1/2a2 the evolution is either an
unbounded expansion, or an asymptotical collapse.

x65
2a1

2a2
~11e6Aa2(u2u0)!. ~A7!

When 0<x,e1, the expansion is asymptotical, and co
lapse occurs in finite time.

x65
2a1

2a2
~12e6Aa2(u2u0)!. ~A8!

Also, x5e1 is a static solution which is unstable due
nearby asymptotic solutions. The plot of 2.2.1 is given
Fig. 9.

5 10 15 20 25
u

2

4

6

x

1.3.1

1.3.2

1.3.3

FIG. 7. Cases 1.3.1, 1.3.2, and 1.3.3.
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1

2

3

4
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FIG. 8. Case 2.1.
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2.2.2.e15e250

We immediately geta15a050 which yields the follow-
ing solution:

x65e6Aa2(u2u0). ~A9!

2.2.3.e15e2,0

a15a11.0, requiringa0,1. This case is almost identi
cal to 2.2.1, only the root is now negative, eliminating t
solutionsx<e1. The only possibility for collapse is for it to
happen in finite time now.

2.3 D.0

The conditiona1,12a0 applies to all the subcases her
Depending ona0 there are also further restrictions:

~1! a0.0 ⇒ D̃.0, soa1¹@a12 ;a11#.
~2! a050 ⇒ a1Þ0.
~3! a0,0 ⇒ no other conditions.

-3 -2 -1 1 2 3
u

-1

-0.5

0.5

1

1.5

2

x

x+

x-

FIG. 10. Case 2.3.1. Other cases 2.3.2, 2.3.3, 2.3.4, and 2.3.
obtained when the graph is shifted down in the directionx so that
x2 passes through zero,x2,0 andx1.0, x1 passes through zero
andx1 intersects the abscissa at two points, respectively.
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u
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1
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3

4

x

-
a1
-------
2 a2

x+ x-

FIG. 9. Case 2.2.1. Case 2.2.2 may be pictured ifa150; case
2.2.3 when2a1/2a2,0.
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In general, the situation resembles that in 1.3. All the gra
look the same, the only difference being a shift in they
direction.

2.3.1.e1.e2.0

a0.0 and 0.a1 give two admissible regions of evolu
tion. Forx>e1, we have a ‘‘bounce’’~infinite size is reached
in infinite time, though!. When 0<x<e1, the evolution is at
most one ‘‘cycle’’ similar to that of 1.3.3. To be exact:

x65
6AD cosh@Aa2~u2u0!#2a1

2a2
. ~A10!

The plot of 2.3.1 is given in Fig. 10.

2.3.2.e1.e250

This is almost identical to the previous case, only nowx2
s.

y

D

t

riz

-

10351
spasses through zero, which is its only non-negative va
thus giving rise to a static universe of zero size.x1 behaves
as above. Here, we havea050 anda1,0.

2.3.3.e1.0.e2

a0,0 anda1,12a0 now. Again, it is like 2.3.1 withx2

discarded.

2.3.4.e150.e2

a050 and 0,a1,1. This is another ‘‘bounce’’ solution
which passes through a possible singularity atx50.

2.3.5. 0.e1.e2

a0.0 and 0,a1,12a0. The solution is separated int
two independent ones, describing expansion or collapse,
going through zero.
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