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Phantom cosmologies
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We discuss a class of phantomp< — ¢) cosmological models. Except for the phantom we admit various
forms of standard types of matter and discuss the problem of singularities for these cosmologies. The singu-
larities are different from those of standard matter cosmology since they appear for infinite values of the scale
factor. We also find an interesting relation between the phantom models and standard matter models which is
like the duality symmetry of string cosmology.
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[. INTRODUCTION [3,15-21. The phantom type of matter may also arise from
a bulk viscous stress due to particle productj@@] or in
The observation of distant superno\Jae?] has given evi- higher-order theories of gravity23], Brans-Dicke and non-
dence for an accelerating universe filled with matter whichminimally coupled scalar field theori¢24,25.
violates the strong energy conditign+ 3p=0, wherep is The cosmological models which allow for phantom mat-
the pressure ang is the energy density. However, a more t€r appear naturally in the mirage cosmology of the brane-
detailed check of the data suggests that also the matter whi¢kor'd scenarid26] and in kinematically driven quintessence
violates the weak energy conditignt+ p=0,0=0 is admis- (K-€ssencemodels[27]. o
sible at a high confidence levi8—10]. It has been shoy\(n that the matter Wh!Ch IV|oIates the
A possible violation of the energy conditions puts in doubt3trong energy condition allows the cycl(os_cn_latlng, nhon-
some fundamental achievements of general relativity sincci<Ingulab universes[28]. It seems that similar solutions

most of its basic theorems rely on various ener conditions?hOUId also appear for the phantom matter which violates the
y gy eak energy condition.

(null strogg, weaka gom.mant, ave|r<aged hnuII, a\l:feragetyv A different idea of a cyclic universe in which the contract-
strong, and averaged dominams we know the Hawking- ing big crunch phase can be connected with an expanding

Penrose singularity theorems, the positive mass or BoncBig| bang phasf29] has been revived recently in the context
mass theorems, the laws of black hole thermodynamics, angk M-theory cosmology motivated ekpyrotic scenaf&g.
the cosmic censorship conjecture all rely on the energy cony, this reference it has been shown in Ré1] that the only
ditions [11]. Also, for spacetimes which violate the weak way to make a transition from a contracting phase to an
energy condition wormholes can exist and so causality Vioexpanding phase in a flat universe is to violate the weak
lation emerges. However, a necessity to explain observasnergy condition and this gives another motivation for study-
tional data makes us revise these fundamentals and addrggg phantom cosmologies.
some more general theories. Some other proposals which may have something in com-
The physical background for strongly negative pressurenon with the phantom are Cardassian models in which one
matter (phantom may be looked for in string theorf12].  adds an extra power in the energy density term to the Fried-
The point is that the group velocity of a wave packet iSmann equatiofi32—34, or modified Einstein-Hilbert action
negative which leads to behavior of the packet which ismodels in which an extra term of arbitraftyoth positive and
somewhat unusual—namely, it moves in the direction opponegative power of scalar curvature appears in the gravita-

site to the momentum. In such circumstances a wave packgbnal action[35—37. Both these possibilities may be di-
which leaves the comoving volume transfers momentum inteectly motivated by string/M theor|38,39.

the volume which makes negative contribution to the pres-
sure[13,14.

Formally, one can get the phantom by switching the sign
of kinetic energy of the standard scalar field Lagrangian,
i.e., by taking £L=—(1/2)d,¢$d"*$—V(¢) which gives The phantom is a new type of cosmological fluid which
the energy densityo=—(1/2)¢2+V(¢) and the pres- hasavery strong negatiye pressure which violqtes the weak
sure p=—(1/2)$?—V(¢) and leads top+p=— 42<0 energy conditiorf4,5,12, i.e., it obeys the equation of state

Il. BASIC SYSTEM OF EQUATIONS
WITH THE PHANTOM

p=(y—1e=we, Y
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and this implies thap<—op. tom cosmologies. This is also obvious after studying the sim-
In order to study phantom cosmologies, we start our displest solution of Eq(6) for k= A =0, which reads
cussion with the basic system of equations for an isotropic

and homogeneous Friedmann universe which reads as a(t)ect?, (10
kK a2 so that
K?0=—A+3—+3—, 3
a~ a poct™2, (11
) a k a2 In other words, takingy=—1/3 (phantom one hasa(t)
K D=A—25—;—;, (49— and p—= if t—0, while a(t)—0 and 0—0 if t

—oo, On the other hand, in a standard casel/3, for ex-
ample, one has(t)—0 and p—o if t—0, while a(t)
—o and g—0 if t—oo. Similarly, one can show that the
curvature invariants are proportional to the energy density

wherea(t) is the scale factok=0,=1 the curvature index,
A the cosmological constant, and=8=G is the Einstein

constant. . .
Using Eqs(3), (4) one gets the Friedmann equation in theand so they are divergent wherever the density/scale factor
form diverges
2 K2 K A R=«*(3y-2)o,
2 3" @' © ‘ ]

K
RuR*'=—7 (3y—2)2%+ §(3y+2)2 02 (12
After imposing conservation lavpa®?=(3/«x?)C.,=const,

one gets Eq(5) as follows: Another interesting remark can be extracted from H§s.
5 (4) and (8), (9) if we admit shear anisotropy:rgla6 (o9

i d_a :&_ £+ ﬁ 6) =const) and consider nonisotropic Bianchi type IX models.

a2\ dt a3 a? 3° Namely, for y<0, the shear anisotropy cannot dominate

over the phantom matter on the approach to a singularity
The cases which involve all types of cosmological fluids, i.e.whena—», i.e., we have
with y=4/3 (radiation, y=1 (dus), y=2/3 (cosmic
stringg, y=1/3 (domain wall3, and y=0 (cosmological a4 00
constant have been exactly integrated in terms of elliptic oa |7‘>—6 fora— (13
functions[28]. In fact, a large class of oscillatingonsingu- a
lar) solutions have been found.
Now we extend this discussion of the exact cosmologica
solutions into the case of phantom matter wjtk — 1/3 (we
will call it phantom) andy= — 2/3 (we will call it superphan-
tom). One should emphasize that the “border” between IIl. PHANTOM MODELS DUALITY

“standard” and phantom models is given by the value of Tpe system of equation@®), (4) can be presented in the

2

nd this prevents the appearance of chaotic behavior of the
hantom cosmologies of the Bianchi type [%0,41].

barotropic index form of the nonlinear oscillator
vy=0 (w=-1). (7) . D2
X= 3 AX+ D(D—1)kx*~2P=p, (14

Due to the appearance of the higher than four powers of the
scale factor in the Friedmann equation one cannot integrate af . . .
general case which involves phantom matter by elliptic funcaMer introducing the variableiZ]
tions. However, a lot of interesting special solutions can be

found without using the elliptic functions and this is the mat- X=aPW, D(w)= §(1+W). (15)
ter of the present paper. We also include stiff-fluid matter 2
Wlt:;rgm ZtHe conservation law we have For flatk=0 models the oscillatoimathematical pendulum
is in the lower equilibrium position provided <0 and in
poxa 3" for y>0 (8)  the upper equilibrium position providet>0. Itis also easy
to notice that Eq(14) preserves its form under the change
and
D——D, (16)
oxa¥” for y<0 (phantom. (9)
or
From Eq.(9) it is clear that big-bang and big-crunch singu-
larities appear at infinite values of the scale factor for phan- y——7y [wW——(w+2)]. (17)
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It appears that there is a dualitgimilar to the scale-factor which means that the Friedmann equat{hcan be written
duality in pre-big-bang models which is motivated by super-down in the form

string theory duality symmetridgt3,44]) between the scale
factor and its inversa—a ! for standard matter¥>0)
and phantom mattery<0) models. Namely, the standard
models for w=+y—1 are dual to phantom models for
w'=—(2+w)=—vy—1 with respect toy=0 line. For ex-
ample, the domain wall modelg,=1/3 are dual to phantom
models y=—1/3 and cosmic string modelsy{,;=2/3) are

dual to superphantom models. However, this simple duality

is valid only for flat modelssee also Refd.45,46 where
similar results for both flat and nonflat models have bee

obtained and in the nonflat case the analogy might perhaps

be the non-Abelian dualitj47]). In the former case we have
(for walls, the phantom, and <0)

1/2
IAIt) :

—1/2
) 1

Dy=1/2=—Dyp,.

|D|1/2

V3

a,= ( sin (18)

|D|l/2
aph=(sinW|A|t

so that we have

(19

aw=ay; , (20)

From these we can conclude that standard fluids like dust

y=1, radiation y=4/3, and stiff-fluid y=2 are dual to
phantoms withy=—1 (p=—2p), y=4/3, andy=—-2 (p
=—3p), respectively.

Qspot Qpnot Q4+ Quot Qo+ Qo+ Qo+ Qsp=1.
(25)

Now using the variables

a
y=—, u=Hoyt, (26)
Qo

pne turns Eq(6) into the form

dy)? 4 3 2
au = Qgpoy + Qpnoy”+ 8, Y+ Quoy + Qo

F QoY T+ QoY 2+ Qgoy *=Q(y). (27

A. Negative pressure fluids only phantom models

General solutions of Eq27) are given in terms of elliptic
or hyperelliptic functions. Here we concentrate only on exact
elementary solutions leaving a general discussion for a sepa-
rate paper[49]. First, we assume nonvanishing negative
pressure fluids onlyexcept negative\-term which gives
positive pressupe i.e., Q0=Q,0=00=0, so that we
have

dy)? 4 3 2
au =QspoY "+ Qpnoy™+ QoY+ Quoy + Qkro-

(28)

Note that after a change of variables

It is important to notice that duality in scale factor does
not lead to the avoidance of singularity in the energy density
which results from Eq98), (9) and shows that whatever the
behavior of the scale factor, the density diverges leading to a
big-bang singularity.

<| kP

: (29

we have

IV. PHANTOM COSMOLOGICAL MODELS d_p

du

2
) =Qsp0t Qpnop+ QaoP?+ Quop®+ Qyrop?,

For the sake of a possible comparison with observational (30)

data we introduce dimensionless density param¢g&3gig

which may also be useful for exact integration.
2

K Now we consider some special cases and refer to their
Qyo= 3_H(2)9><0’ (2D mathematical discussion presented in the Appendix.
1. No-wall models withQ,,o=Q ;=0
Qo= |2< 1 (22 This case falls under a general classification given in the
Hgag Appendix witha,=Q o€ R, a;=Qpp =0, andag=Qgy
=0 (we exclude the possibility of both phantoms lacking,
Ao i.e., Qsp0=0pn0=0). The possible solutions are thisf.
A= STa (23)  the Appendix
3Hp (1) Qep=0, Qppo>1, and Q,,<0 (case 1.3.2, cf.
Fig. 7);

wherex=sp,ph,w,cs,m,r,st (superphantom, phantom, do-
main walls, cosmic strings, dust, radiation, and stiff-fluid,
respectively, H=a/a, andq= —aa/a?, while [48]

(2) Qsp0>0, Qppe>1—0gp, and (<0 (case 1.3.3

(B Qsp0>0, Qppoe[0;2VQgp(1—V Qo) ], and Qo
>0 (case 2.%

(4) Qspp<1, and(,o>0 (case 2.2.3

(®) Qsp=0, 0<Qppe<1, and,,>0 (case 2.3.4 and

Q0= Qesn= Qo (24)
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FIG. 1. The “bounce” solution(31). The big-bang/big-crunch FIG. 2. Phantom with negative ;o models[case(2) of Sec.
singularities appear for— o sincepcy— at these points so that VA 1] with two branches separated by curvature singuldgom-

this “bounce” in scale factor does not lead to singularity avoidance.pare[44]).

(6) Qsp>0, 0<Qppo<1—Qgp, and Q>0 (case for Qppo+Ospn=1 and Q,pe#0 (see Fig. 3 while for
2.3.5. Qpno=0 we have
Most of these solutiongcases(3), (4), (5), (6)] pass
through zero irx, so there arise infinite values gffor finite
times. Bearing in mind Eq9) one can notice that this cor-
responds to the energy density approaching zero. However,
in cases(1) and (2) one obtains cyclic “bounce” in scale and the behavior of the model is as in Fig. 2.
factor y solution (which is also a “bounce” in the energy
densityp but not singularity avoidance singe—« at finite B. Even powers of the polynomialQ(y) only models

u) of the form In this section we consider only the even powers of the
20 polynomialQ(y) in Eg. (27), i.e.,
AO

y+: * 1 ) (33)
- u—ugp

y= 2 . 2
02— 40000 SINV[Q 10l (U—Ug) ]—Q dy _ _
\/ pho SpO==A0 r{\/| A0|( 0)] ph0(31) (&) ZQsp0y4+QA0y2+QKIO+QrOy 2+Qst0y 4
(34)

which is shown in Fig. 1. In fact, there is a competition

between the positive pressure of a negative cosmologicalnd make the substitution

term and the negative pressure of a phantom, but one is not

able to avoid singularity on the same basis as with negative 1 2du

cosmological constant and domain w4dlk8]. z=—, dp=—, (39
Similar behavior is present in cag®), though now there y y

@s _or_1|y one infir_1it_y—e_ither th_e _scal_e factor coIIap_ses fromSO that Eq.(34) reads

infinite into a finite size in finite time, and continues to

shrink asymptotically to zero, or it expands from zerauat

=—o, and reaches infinite size in a finite time. This is | |

shown in Fig. 2. In fact, this behavior is similar to what one 4l |

has in pre-big-bang cosmolody4] with y_ as a pre-big-

bang branch ang, as a post-big-bang branch. ;‘“
Cases(4), (5), and (6) are analogous to cag@®). The / 2y

appropriate formulas are obtained from those of Sec. 2.3 in / osp=6\

the Appendix, but the graphs are practically like those _ — "

in Fig. 2. -10 s 5 10

2. Phantom only modelsQ ,o=Q,,0=Qk /(=0 -2t

If both phantoms only are present in E§8) we have

1

y: U_UO 2 QspO (32)
pho -

FIG. 3. The model32) for two phantoms only. Two cases are
Qpho shown: Q¢ n=0, Qpro=1 andQgpn=Qppo=1/2.

2
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z\? y
%) :QSpO+QAOZ_I_QK’OZZ+Qr023+QStOZ4' (36) 00

From now on let us assume that there is no radiation and®| \
stiff-fluid in Eq. (34), i.e., Q;0=Q¢0=0. The polynomial \\
coefficients are thencf. the Appendix a,=Qk: o, a1 6 |
=0, anday={2gy. The possible solutions are \

(1") Qk <0, Qpo>1—-Qgy (case 1.3.8 al

(2") Qk0>0, Qpoe[—2VQsp0(1+ VQs);

QA0e[—2QspA1+Q5p0;2 Qg po(1— V)]
(case 2.1 2
(3") Qx10>0, Q0= —2VQg(1+Qgpe) When —
Qsp0<1’ and Qo= _2\/Qsp0( Qspoi 1) when + 5 \1&7\’? U
Qsp>1 (case 2.2.1

(4") Qk0>0, Q<1 andQ;o=2VQsp(1— VQspx) FIG. 4. The model with superphantom, cosmological constant
(case 2.2.3 and Q. y# 0 [solution (2)].

(5") Qk0>0, Q) o<ONQ e[ —2VQsp0(1+ VQsp0); o _

2VQ4p0(1-VQqp0)] (case 2.3.% and ~Cases (4) and (6) are similar to casé2') shown in

(6") Qiip>0, 0<Q,u<1—Qgy (case 2.35 Fig. 4. _ .

All of these contain cases wherepasses through zero, ~ For the solutions of case (p the shape of the function
and that requires a closer analysis. First, because the solgt#) introduced in Eq.(35) is given in Fig. 10 withx re-
tions themselves change, we are interested yiu)  Placed byzandy replaced by in the graph. In terms of the
= 1/y/Z[ 7(u)], which, like before, may become infinite. Sec- Scale factoy(u) these solutions are given in Fig. 6. One of
ond, we are now working in a modified conformal tige ~ them is similar to that of Fig. 1a cycle fromyxg— to a
and to analyze the solution in the cosmological time Minimuminyande and again toy=@—c) and the second
=u/H,, we need to consider the convergence of the integrafiéscribes a cycle iy and ¢ from zero to a maximum and

again to zero.

d
u= J —7]. C. Phantom, walls, andA-term models only
2\z

This is, in fact, a less general case than gdsg so it is

Fortunately, all the solutions are of trigonometric or ox. & straightforward task to apply those solutions here. We have
ponential form, so that the integral reduces to a convergent
elliptic one. In other words, the values afare finite for
finite values ofy. Moreover, in some cases the integral con- 37)
verges withnp—oo. The details are given in particular cases.
Sec. IV A, the qualitative properties remain the same, that is
to say, where the same classes of solutions apply.

d 2
@) =QphoY >+ Qaoy? + Quoy + Qo+ Qmoy ™,

y
Thus, case (1) is again a “bounce” shown in Fig. 1. 140
Case (2) is a peculiar model in which the aforemen- ji o |
tioned integrals converge, anchas finite values for both the [

point in which the size is infinite and when it is zerg (
— o), This is depicted in Fig. 4. [, d
For the solutions of case (B the shape of the function
z(7) introduced in Eq(35) is given in Fig. 9 withx replaced \
by z and # replaced byu in the graph. However, we also el \\
present these solutions in terms of the scale fag{or in )
Fig. 5. From the diagram we can see that there is a static —————
solutiony = const which corresponds to a double root of Eq.
(34) with Q,0=Q40=0. Note that the static model falls %
outside the classification given in the Appendix since the — - . = u
Hubble parameter is equal to zero in this chashich is the

result of the rescaled definition of the time parameten FIG. 5. The solution of case (3. Apart from the static model
Eq. (26)]. Apart from the static model we have four (straight line in the middiethere are four asymptotic solutions: two
asymptotic solutions: two of them asymptotically approachof them asymptotically approach the static model in future infinity

the static model in future infinity while the other two start while the other two start asymptotically with the static model at past
asymptotically with the static model at past infinity. infinity.
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y E. Dust and phantom only models

Although this case is not elementary, we present it as an
important result in which we do not abandon the basic com-
ol ‘ ponent of the universe. Taking all the other terms in €4q)

‘ equal to zero except for du§?,, and phantom(},,, and
making the change of the time coordinatas follows

du
d7=VQpno—=, (43)

v Wy

7%7,
O we have the equation
— y-i-\r\\\
2 1/ — 5 U <ﬂ>2:y4+ Qo 44
dz QphO ,

FIG. 6. The solutions of case (b The first is a cyclic solution
from ycp—o to a minimum iny and ¢ and again toycp—o, which solves by
and the second is a cycle ynand ¢ from zero to a maximum and

again to zero. . 40 0P(7)

y = L
4QphOPZ( 7) = Qmo

(49)

with P(#) the Weierstrass elliptic functiof28].

Despite this solution being elliptic, the evolution is also as
gives in Fig. 4. The first singularity appears whgn-0 and it is
dominated by dust while the second singularity appears
wheny—o and it is dominated by the phantom.

1 d du 38)
p=-, dn=—F4=
y Vy

dy 2 2 3 4
(%) =Qppot QaoP+ QP+ Qg rop”+ Qyop”,
(39 V. CONCLUSION
We have studied cosmological models with phantpm
and this equation is integrable in terms of e”lpth fUnCtionS.<_ o matter which violates the weak energy condition. We
have shown that phantom matter characterized by negative
D. Radiation and superphantom only models barotropic indexy<<0 allows the curvature singularity for
infinite values of the scale factor both in the past and in the
future. We have also shown that the singularity cannot be
dominated by shear so that unlike for standatd0 cos-
mologies in a class of nonisotropic Bianchi type IX phantom
(40) models there should be no chaotic behavior on the approach
to a singularity. We have discussed a simple model of duality
of the scale factor for phantomy&0) and standard «
>0) matter solutions which is like the scale factor duality of
ar |2 pr_e-big-bang _cosmology motivated by superstring theory du-
(_) = Qe+ Q. (41) ality symmetries. _ _
dn om0 0 We have presented a series of exact phantom cosmologies
which integrate elementary, leaving the investigation of the
which solves by full class of models which can be integrated in terms of
elliptic functions for a future papg¢#9]. Apart from phantom

Leaving only the radiation pressufe,, and superphan-
tom Q¢ nonvanishing in Eq(27) and making the substitu-
tion

r=y% dpy=ydu,

we get the simple equation

1 2 matter we have admitted most of the known types of matter
[Eﬂspo(n_ 770)} —1+ Qg content in the Universe with discrete barotropic indgxn
[= , (42)  the equation of state such as dust, radiation, stiff-fluid, do-
Qspo main walls, cosmic strings, and cosmological constant.
One interesting class of solutions we obtained contains
and we have used the condition thaf,=1— Q. models which start with a singularity in which the scale fac-

The typical evolution as considered in terms of the scaldor is infinite (a— =), then decreases, reaching some mini-
factory is similar to that given in Fig. 4. Despite the fact that muma=a,,, finally expanding again into another singular-
the scale factoy reaches either zero or infinity in both situ- ity where @—«). In the standard picture fop>0 matter,
ations there are singularities, fpr- 0 it is dominated by the the Universe follows the sequence: expansion—maximum-—
radiation sop — o« while for y—oc it is dominated by super- recollapse. On the other hand, for phantpriO models one
phantom anc —°, too. has the opposite sequence: collapse—minimum—expansion.
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Another interesting class of solutions is characterized by eigiscriminant A=16a,, and the rootsa;=—2\ag(\ag
ther an expansion from zero energy density to a future cur=1). Clearly,a,<0 would lead toA >0, anda,=0 implies
vature singularity, or a collapse from the infinite value of thea,—0 which contradicts Eq(A2). For a,>0, we would

scale factor into a state of zero energy density. There exist§eeda, e (a,_;a;.), but this does not hold together with

also static solutionggeneralized Einstein static universes gq (A2).

together with asymptotic solutions though asymptotic solu-

Such a case is impossible with the assumptions made.

tions approach the static model either from singularity of the

energy densityin which the scale factaa— =), or from the
state of zero energy densifyn which the scale factoa
—0).

1.2.A=0

As above we could havA =0, but this would lead to

Finally, in the models which contain a mixture of phan- a,=a,;=0, and break Eq(A2). If A>0 the only possibili-

tom and standard mattég.g., dust, radiatiorthere exist two
types of singularitie$with the energy densitg —): one is
dominated by the phantom with the scale fagferc and

ties, namelya;=a; -, are ruled out by the same condition.

1.3.A>0

another is dominated by standard matter with the scale factor

y—0.

We remark that phantom cosmologies form an interestin
set of the models of the universe which do not contradi
observational data of supernovae type la and that their math- 13.1.¢

ematical and physical properties deserve further study.
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APPENDIX: GENERAL CLASSIFICATION OF SOLUTIONS
TO THE CANONICAL EQUATION

We take into account the equation

dx |2
a =a,x?+a;x+apg=W(X) (A1)
together with the constraint
a2+al+aozl, (AZ)

Here we could havea,>0, anda;>a;, or a;<a;_

ihk:h’ reasoning as above, gives in the enec1—a,—a,

1—a,. Alternatively,ag=<0, leads directly t@a;>1—a,.
>e,>0

This requiresa;>0,a,<0 which can hold together with
a;>1—a,. The solution is periodic in the form:

o VA cod azl(u-ug)]-ay

2a,

(Ad)

1.3.2.e,>e,=0
Necessarilyap,=0 and a;=1—a,>1. The solution is

simply

y=(cofTa(u-ug)l-1).  (A5)
2

It passes through zero, unlike the previous one.

1.3.3.,>0>¢,

and seek its solutions that might depict the evolution of the The conditions here ar@,>0 anda;>1-a,. The solu-

Universe, that is, such that=0. We also define; ande, to
be the roots of the equatio(x) =0, andA=ai—4aOaz.
The main constraint oy is the non-negativity of the poly-
nomial W(x) implied by Eq.(Al).

The general solution of EqAL) is

2a,X+ay

5 = costiyay(u—up)]

(A3)

tion now passes through zero twice, which means it is no

longer periodic, but depicts a single “cycle.” The formula is
identical to Eq.(A4).

1.3.4. C=e;>e,

This case would requirag<0 anda;<0, which cannot
hold together with Eq(A2). The plots of 1.3.1, 1.3.2, and
1.3.3 are given in Fig. 7.

whereu, can, in general, be complex. The graphs depicting 2. a;>0

the particular cases were drawn with=0, except for case
2.3.1 whose solution requires,=iw/2\a,. It should be

kept in mind that the solutions may be arbitrarily shifted in

the direction of theu axis.
1.a,<0
1.1.A<0

This makes evolution impossible, 8¢(x) <0 for all real
values ofy. Writing A= a§+ daga,+4ag(ag—1), we getits

2.1.A<0

This is only possible with A>0=a,>0, a,
e(a;_;a;4), which is now a stronger restriction than
=1-a,—ay<1—ay. There are two solutions now, depend-
ing on the choice of the derivative sign in H@\1):

= IA]sint Vax(u—ug)] ~ay

- 2a2

(AB)
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FIG. 7. Cases 1.3.1, 1.3.2, and 1.3.3.
. ) . 2.2.3 when—a;/2a,<0.
These are, respectively, monotonic expansgfoom zero size
to infinity in infinite time) or monotonic collapséin finite
time from finite size. This is plotted in Fig. 8.
22.A=0
this is not the case.

FIG. 9. Case 2.2.1. Case 2.2.2 may be picturea, if 0; case
2.2.2.6126220

Note thata,<0 would lead taA <0 and hencé& >0, and
2.2.1.e;=e,>0

ing solution:

We immediately geti;=ay=0 which yields the follow-
X, = e* Vaz(u=uo)
223612e2<0
ay,>0, soa;=a;_<0, and foray>1 we also havea,
=a;, <0. Forx>e;=—a,/2a, the evolution is either an
unbounded expansion, or an asymptotical collapse.
Xe=F5—
- 2a2

(L+e*V

fag(u=up)y

(A9)

lapse occurs in finite time.

-a
X [ —
= 2a

Fig. 9.

(A7)
When 0=x<e,, the expansion is asymptotical, and col-

L (]_— ei \/a_Z(U_UO))_
2

a;=ay . >0, requiringag<<l. This case is almost identi-
cal to 2.2.1, only the root is now negative, eliminating the
solutionsx=<e,;. The only possibility for collapse is for it to
happen in finite time now.
23A>0

The conditiona;<1—a, applies to all the subcases here
Depending o, there are also further restrictions:
(A8)
Also, x=e; is a static solution which is unstable due to
nearby asymptotic solutions. The plot of 2.2.1 is given in

(1) ag>0 = A>0, soa;¢[a;_ ;a5 ].
(2) a0=0 = a1¢0.

(3) ap<0 = no other conditions.
X
. 2 |
\
\ /
X \
. \ 1.5¢
10
X+
3t
0.5/
) s
X- X+ L L L L L u
-3 -2 -1 1 2 3
1r x 0.5
‘ ‘ ‘ D -l
2 -1 1 2 3
St
FIG. 8. Case 2.1.

FIG. 10. Case 2.3.1. Other cases 2.3.2,2.3.3, 2.3.4, and 2.3.5 are
obtained when the graph is shifted down in the directico that

X_ passes through zemp, <0 andx, >0, x, passes through zero,
andx, intersects the abscissa at two points, respectively.
103519-8
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In general, the situation resembles that in 1.3. All the graphpasses through zero, which is its only non-negative value,
look the same, the only difference being a shift in the thus giving rise to a static universe of zero sixe.behaves
direction. as above. Here, we haegy=0 anda;<0.

2.3.1.e;>e,>0 2.3.3.e,>0>e,

) a,>0 and 0>a, give two admissiplg fe@!ion,s of evolu- a9<0 anda;<1—ag now. Again, it is like 2.3.1 withx _
tion. Forx=e;, we have a “bouncelinfinite size is reached jiscarded.

in infinite time, though. When Osx<e, the evolution is at

most one “cycle” similar to that of 1.3.3. To be exact: 2.3.4.e,=0>¢,
i JA cosh Jay(u—ug)]—a, ap,=0 and 0<a;<1. This is another “bounce” solution

(A10)  which passes through a possible singularitxat0.

+

- 2a.2

2.3.5. >
The plot of 2.3.1 is given in Fig. 10. 35.0>e >

_ a7>0 and 0<a;<1—a,. The solution is separated into
2.3.2.e;>e,=0 ‘ o .
two independent ones, describing expansion or collapse, both
This is almost identical to the previous case, only now  going through zero.
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