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Conserved cosmological perturbations
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A conserved cosmological perturbation is associated with each quantity whose local evolution is determined
entirely by the local expansion of the Universe. It may be defined as the appropriately normalized perturbation
of the quantity, defined using a slicing of spacetime such that the expansion between slices is spatially
homogeneous. To first order, on superhorizon scales, the slicing with unperturbed intrinsic curvature has this
property. A general construction is given for conserved quantities, yielding the curvature perturbationz as well
as other more recently considered conserved perturbations. The construction may be extended to higher orders
in perturbation theory and even into the non-perturbative regime.
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I. INTRODUCTION

Observation of the peak structure in the cosmic mic
wave background anisotropy has now confirmed that cos
logical perturbations are present before the relevant sc
enter the horizon, with an almost flat~scale-invariant! spec-
trum @1–3#. The only known explanation for this state o
affairs is that the perturbations originate during an alm
exponential inflation, from the vacuum fluctuation of one
more light scalar fields.1 In the simplest case only one ligh
field is responsible for the perturbations observed, either
inflaton or some other field.

According to this explanation, classical cosmological p
turbations first come into existence a few Hubble times a
horizon exit during inflation. At that stage the situation
very simple; each light field~defined as one with an effectiv
mass much less than the Hubble parameterH) has a Gauss
ian perturbation with an almost flat spectrum, (H/2p)2. The
problem is to evolve this simple initial condition forward
time to the primordial nucleosynthesis epoch, in the face
our ignorance about the detailed evolution of the Unive
before nucleosynthesis.

Fortunately, scales of cosmological interest are still
outside the horizon at nucleosynthesis. As a result there e
perturbations which are under suitable conditions conser
and largely avoiding the need for more detailed informati
One of these@8–11# is the ‘‘curvature perturbation’’z, which
is associated with the perturbation in the total energy den
r.2 In the usual case thatz originates from the perturbatio

1A related hypothesis replaces inflation by an era of colla
~‘‘pre-big-bang’’ @4,30,5# or ‘‘ekpyrotic’’ @31,29,6#!, but there is so
far no accepted theory of a bounce and therefore no firm predic
from collapsing cosmologies. In particular, there is so far no
cepted string-theoretic description of a bounce@7#.

2The quantityz defines the curvature perturbation on spaceti
slices of uniform energy density. As we discuss in Sec. IV, on
perhorizon scales it is practically the same asR which defines the
curvature perturbation on slices orthogonal to comoving worldlin
The latter quantity is thefm of @28#.
0556-2821/2003/68~10!/103515~10!/$20.00 68 1035
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in the inflaton field, it is supposed to be conserved betwe
the end of inflation and the primordial era, and in the alt
native curvaton scenario@12,13# ~see also@14,15#! z is sup-
posed to be conserved after the curvaton decays.3 Recently,

further conserved quantitiesz i and z̃ i have been considere
that are associated with the perturbations in individual
ergy densitiesr i @11# and number densitiesni of conserved
quantities@19#. The conservation of the former is invoked
the curvaton scenario, during the era when the curvaton fi
is oscillating andz is growing. The latter are invoked whe
considering possible isocurvature components of the prim
dial density perturbation.

In this paper, we present a unified treatment of the c

served quantitiesz, z i and z̃ i , which is more complete than
anything that has been given before. Taking the particu
example ofz as a starting point, we begin in Sec. II b
showing how, to any order in cosmological perturbati
theory, conserved quantities may be constructed from pe
bations that are defined on a spacetime slicing of unifo
integrated expansion. Here and throughout this paper we
fer to the choice of temporal gauge, defining the spatial
persurfaces of fixed coordinate time, as the spacetimeslicing
and the choice of spatial gauge, defining the worldlines
fixed spatial coordinates, as thethreading. In Sec. III, we
show that in the usual case of first-order perturbation the
the spatially flat slicing is one of uniform expansion if th
shear of the worldlines is negligible. In Sec. IV we consid
the comoving shear, and show that it is expected to be n
ligible in the entire superhorizon regime. In Sec. V we ge
eralize the construction and consider the conserved quan
z i and z̃ i . We conclude in Sec. VI. The appendices discu
some peripheral issues.

e

n
-

e
-

.

3An analogous scenario has been proposed in the pre-big-b
scenario @16,17#. In this scenario though, the required sca
invariant curvaton field perturbations will be generated only if t
curvaton has a non-trivial coupling and for particular initial cond
tions @18,5#.
©2003 The American Physical Society15-1
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II. ENERGY CONSERVATION AND THE CURVATURE
PERTURBATION

In this section we explain the general principle which
lows us to construct conserved quantities. We focus on
particularly important example of the curvature perturbat
z @8–11#, after which it is clear how other conserved pertu
bations may be constructed. The curvature perturbationz is
so called because it defines the curvature perturbation
slices of uniform energy density@11#. Equivalently though,
via the gauge transformations of Sec. III, it defines the
ergy density perturbation on spatially flat slices, according
the formula@9#

z5
dr

3~r1P!
. ~1!

This definition is the one that we shall use.
Our starting point is the energy continuity equation. In

unperturbed Friedmann-Robertson-Walker~FRW! universe
the continuity equation for the energy densityr takes the
form

ṙ523H~r1P!, ~2!

whereH is the Hubble expansion rate andP is the pressure
In the real perturbed Universe, the same Eq.~2! still holds
along each comoving worldline, so long as the dot is take
denote the derivative with respect to the proper timet along
the comoving worldline and we defineH locally through the
equation

H[
1

3
V 21

dV
dt

, ~3!

whereV is an infinitesimal comoving volume. Equivalentl
the local continuity equation may be written as

Vdr

dV 52~r1P!, ~4!

or

dr

dN
523~r1P!, ~5!

where N is the local logarithmic integrated expansion~the
number of Hubble times! defined as

N[E Hdt. ~6!

Our crucial assumption now is that the pressure pertu
tion is practically adiabatic. This assumption means that
local pressureP is a practically unique function of local en
ergy densityr, i.e.,

P5 P̄~r!, ~7!

whereP̄ is the same function for all worldlines. This allow
Eq. ~5! to be integrated. SettingN50 on an initial spacetime
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slice the integration givesr as a unique function of the loca
integrated expansionN up to an initial integration constant

r5 r̄~N1dN!, ~8!

where the integration constant for each worldline,dN, is
determined by the actual density on the initial hypersurfa
ruN505 r̄(dN).

Subsequent spacetime slices of fixedN correspond to a
uniform integrated expansionslicing of the spacetime,4

meaning that the integrated expansion going from one s
to another is spatially homogeneous. For linear perturbati
about a FRW cosmology, there is an infinity of such unifor
N slicings, since we can start with any initial slice and prop
gate it by calculatingN from that slice along each comovin
worldline. In Secs. III and IV, we show that on superhoriz
scales a particular uniform-N slicing is the uniform curvature
slicing ~i.e., the one with unperturbed intrinsic scalar curv
ture!. In what follows we will restrict our attention to spa
tially flat FRW models and will refer to this as the spatial
flat slicing.

Now we come to the crucial point. When evaluating t
densityr on any uniform-N slicing, the perturbationdN of
the quantity appearing in Eq.~8! is time independent, by
construction. This statement holds to any order in cosmolo
cal perturbation theory so long as one can construc
uniform-N slicing along the comoving worldlines.

Writing dN in terms of the density perturbation on sp
tially flat slices, to first order, one finds the conserved qu
tity

dN5
dN

dr
dr5

dr

r8~N!
5H

dr

ṙ
~9!

which is 2z defined in Eq.~1!. This derivation is close in
spirit to the analysis of Sasaki and Stewart@20# who studied
multi-field inflation models and identified the curvature pe
turbation with the perturbed expansion with respect to
initially flat slice. The relation between their calculation
the curvature perturbation and ours is explained in Appen
A.

To arrive at the conserved quantityz, we considered the
flat slicing. Were we instead to use some other unifor
expansion slicing, the conserved quantity defined by the r
hand side of Eq.~9! would be different fromz, but it would
be related toz by the gauge transformation~25!. Hence it
would be conserved if and only ifz is conserved, and we
lose no generality by fixing the choice of the uniform
expansion slicing as the flat one.

The constancy ofz ~on sufficiently large scales and a
suming that the pressure perturbation is adiabatic! was ob-
tained several years ago@8# in the context of Einstein gravity
More recently, its constancy under the same condition w
obtained directly from the local conservation of energy@11#

4Note that this isnot the same as theuniform Hubbleslicing
introduced by Bardeen@28,8# which refers to the local expansio
rate of the normals.
5-2
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CONSERVED COSMOLOGICAL PERTURBATIONS PHYSICAL REVIEW D68, 103515 ~2003!
using a purely geometric argument equivalent to the one
we have given. In the present paper, we are going to sho
Secs. III and IV that in this context all superhorizon sca
are ‘‘sufficiently large;’’ in other words, we will show tha
the flat slicing is a uniform-expansion one on all superho
zon scales.

It is worth noting that the conservation ofz can hold in
even more general circumstances, because it comes from
generalized adiabatic condition, Eq.~8!, which may hold
even if the energy conservation equation~5! fails. Thus,z
will be conserved even if there is an additional source termQ
on the right-hand side of Eq.~5!, so long asQ ~the energy
transfer per Hubble time! is itself a unique function of the
local density for all worldlines, i.e.,Q5Q̄(r), as reported in
Ref. @21#.

Going to second order, and again working on so
uniform-N slicing, the conserved quantity is

dN5
dN

dr
dr1

1

2

d2N

dr2
~dr!2 ~10!

5
dr

r8
2

1

2

r9

r83
~dr!2. ~11!

This second-order extension of the conserved quantityz has
not been given before.5 It will be useful in propagating for-
ward the evolution of second-order perturbations produ
during inflation @23–25# through the end of inflation and
relating them to observations. Also, we note that Sasaki
Tanaka@23# have shown that it is possible to use a unifor
N slicing to study non-linear field perturbations on lar
scales during inflation.

III. UNIFORM EXPANSION BETWEEN FLAT SLICES

The main goal of this section is to show that the loc
expansion of the Universe between spatially flat slices is u
form on sufficiently large scales where shear is negligib
This result is purely geometric, making no reference to
theory of gravity. Our treatment amplifies the original one
Ref. @11#, and in particular we show for the first time that th
result is independent of the spacetime threading that defi
the expansion.

A. The metric perturbation

The unperturbed FRW metric and comoving coordina
are defined by the line element

ds252dt21a2~ t !d i j dxidxj , ~12!

corresponding to metric componentsg00521, g0i50 and
gi j 5d i j a

2.
We are interested in the perturbed spacetime that is

Universe, which we assume can be described by linear

5It can be verified that the second-order part ofdN coincides with
the gauge-invariant quantity2(z2/2)1z1

2 defined in Ref.@22#.
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turbations about a FRW geometry. To define the pertur
tions one has to choose a coordinate system which reduc
Eq. ~12! in the limit where the perturbations vanish. Such
coordinate system~gauge! defines a time slicing~the spatial
hypersurfaces with constant time coordinate! and a threading
~the worldlines with constant space coordinates! of the
spacetime. Since the coordinate system is required to c
cide with Eq.~12! in the limit where the perturbations van
ish, the slicing and threading coincide with the unperturb
ones in that limit. We shall take this requirement for grant
when referring to a ‘‘generic’’ slicing or threading.

Once the perturbations are defined, their evolution to fi
order may be described using the unperturbed coordin
system, and Fourier components with different wave vect
k decouple. The superhorizon regime is the regimeaH/k
@1.

In this paper we are interested in the scalar mode of
perturbations in the metric~no gravitational waves or vortic
ity!. In a generic gauge the Fourier components of the me
perturbation are specified by functionsA, B, D andE,6

1
2 dg00[2A ~13!

a22dg0i[2Bi[ ik iB ~14!

1
2 a22dgi j [d i j D1Pi j E ~15!

52cd i j 2
kikj

k2
E, ~16!

wherePi j projects out the traceless part;

Pi j [2
kikj

k2
1

1

3
d i j ~17!

and

2c[D1 1
3 E. ~18!

Under the coordinate transformationt→t1Dt and xi→xi

1Dxi , with the Fourier component ofDxi of the form

Dxi52 i
ki

k
Dx, ~19!

the metric components transform according to

DA52Ḋt ~20!

DB5aḊx1kDt ~21!

DD52
k

3
Dx2HDt ~22!

6These are the quantities defined in@26#, and are equal respec
tively to the quantitiesA, B(0), HL andHT

(0) of Bardeen@28#. The
quantities Dx and Dt below are respectively theL and aT of
Bardeen, and the quantityV in Eq. ~45! is thevS

(0) of Bardeen.
5-3
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DE5kDx ~23!

Dc5HDt. ~24!

The perturbationE can be eliminated by a transformation
the spatial coordinates, whilec depends only on the slicing
The latter defines the intrinsic scalar 3-curvature of the s
ing, and is called its curvature perturbation.

The perturbation in a generic scalar quantityg defined in
the unperturbed Universe, such as energy density, pressu
the value of a scalar field, has the transformation

Dg52ġDt. ~25!

Applied to the energy density, this transformation along w
Eq. ~24! leads to the gauge-invariant definition of the curv
ture perturbationz,

z52c2H
dr

ṙ
. ~26!

Evaluated on slices of uniform density it is indeed the c
vature perturbation, but evaluated on flat slices it speci
instead the energy density perturbation through Eq.~1!.

B. Shear and the expansion rate

A given threading of spacetime is associated with an
pansionu, a traceless symmetric shears i j and an antisym-
metric vorticityv i j . At a given spacetime point, in a locall
inertial rest frame, these quantities are given by the stand
decomposition@26,40#,

] iwj5
1
3 ud i j 1s i j 1v i j , ~27!

wherewi is the three-velocity of the infinitesimally nearb
threads. The expansionu gives the rate of increase with re
spect to proper timet of an infinitesimal volumeV expand-
ing with the threads,

u5d i j ] iwj5
1

V
dV
dt

. ~28!

For the scalar perturbations that we are considering, the
ticity vanishes, and the shear takes the form

s i j 5Pi j s. ~29!

We shall calls the shear as well.
In a given gauge, the metric perturbations determine

shear and expansion rate of the coordinate threads acco
to the expressions@27#

s5Ė ~30!

du53Ḋ23HA. ~31!

The second relation may be written as

du523ċ2s23HA. ~32!
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Going to a new threading corresponding to the transform
tion, Eq. ~19!, the change in the Fourier component of t
local velocity field of the threads is

Dwi5Ḋxi52 i
ki

k
Ḋx. ~33!

The corresponding changes in the shear and the expan
are equal and opposite,

D~du!52Ds5kḊx, ~34!

while the perturbationsc and A are unchanged. It follows
that Eq. ~32! is valid for any threading, not only for the
coordinate threading.„In @11#, Eq. ~32! was given for the
special case of the threading normal to the coordinate s
ing.… Note also thatuD(du)u,k/a for uDvu5uaḊxu,1 so
the expansion of all worldlines becomes the same on la
scales wherek!aH.

Following @11# we consider, instead ofu, the expansionũ
with respect to coordinate time. Its perturbation is

dũ523ċ2s. ~35!

For the flat slicing (c50) this becomes

dũ52s. ~36!

This result is true for any choice of the threading that defin
the expansion rate, and has been derived without any re
ence to a theory of gravity.

The expressions given so far are valid quite generally.
are interested though in superhorizon scales. On sufficie
large scales the shear must become negligible compared
the Hubble parameter, so that we recover an unpertur
FRW universe. It follows thatdũ is negligible on sufficiently
large scales, or in other words that the expansion betw
successive flat slices becomes unperturbed. This means
on sufficiently large scales we can make the approximati

ũ~x,t !53H~ t !, ~37!

whereH(t) is the usual unperturbed quantity andũ is the
expansion with respect to coordinate time of a gene
threading. ~Remember that we consider only threadin
which coincide with the unperturbed one in the limit of ze
perturbation.!

Using Eq.~37!, we can combine the results of Secs. II a
III to derive the following general result for cosmologic
perturbations.

Consider a monotonically increasing or decreasing qu
tity f, defined in some region of spacetime, and its first-or
perturbationd f defined on the spatially flat slicing. Conside
also some threading of spacetime, defining an infinitesim
volume elementV. If f satisfies a local conservation equatio
of the form

V d f

dV 5y~ f !, ~38!
5-4
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then the rate of change of the perturbation

Xf[2H
d f

ḟ
~39!

is

Ẋf5
1
3 s ~40!

where s is the shear of the threading. As a result,Xf is
conserved on sufficiently large scales, where the shea
negligible.

C. The variation of z

Taking the derivative of Eq.~26! and using the local con
servation of energy along comoving worldlines one finds

ż52
H

r1P
dPnad2s, ~41!

where s is the shear of the comoving worldlines and t
non-adiabatic part of the pressure perturbation is

dPnad[dP2
Ṗ

ṙ
dr. ~42!

~In Appendix C we comment on the apparent contradict
between the adiabatic condition for the pressure perturba
and the pressure perturbation defined on comoving sl
during single-field inflation.!

This result was derived by essentially the above met
in @11#. It was first derived~by a different method, and actu
ally for the curvature perturbationR) in @28#, Eqs.~5.19!–
~5.21!. In the particular case that the Universe consists
tirely of matter and radiation,z is given by Eq.~61!. One
easily checks@19# that this expression is compatible with E
~41!.

IV. SHEAR ON SUPERHORIZON SCALES

According to Eq.~40!, the quantityXf is conserved on
scales which are sufficiently large thats is negligible. In this
section we argue that any superhorizon scale is sufficie
large in this context. To be more precise, we argue that
shear satisfies

usu/H!~k/aH!, ~43!

which ensures that in one Hubble time the change inXf is
less thank/aH.7

In making the argument, we shall invoke the Einstein fie
equations. This is not much of a restriction as we do
necessarily have to specify any physical origin for the stre
energy tensor, but simply equate it with a fixed multiple

7On the left hand side of this expression,s is the typical magni-
tude of the shear on scalek, defined for instance as@26# the square
root of its spectrumPs(k).
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the Einstein tensor derived from the metric. This leads t
purely geometrical definition of, e.g., the comoving dens
perturbation, which need have nothing to do with the mot
of particles. However at relatively late cosmic times, it m
be safe to assume that the Einstein field equations are s
fied with the stress-energy tensor related to particle phy
content in the usual way.

The other assumption we make is that anisotropic stres
negligible on superhorizon scales. As noted by Bardeen
1980 @28#, significant anisotropic stress on superhoriz
scales would generate shear and the curvature perturba
but there is no known mechanism for generating such str

We first note that any spatial gauge transformation,
~19!, corresponds to a change in the local physical veloc
Dv i[aDwi @Eq. ~33!#. This generates a change in the she
uDsu/H5vk/aH. Since we are dealing with small perturb
tions, v!1 so thatuDsu/H!k/aH.

It follows that we need only establish Eq.~43! for the
shear of the comoving threading, whichs shall denote from
now on. Generalizing the discussion of Bardeen@28# to in-
clude the case whereP/r may vary, we shall show that in
fact

usu/H!~k/aH!2. ~44!

The comoving shear is related to two commonly used gau
invariant variables, namely the curvature perturbation2R of
slices orthogonal to comoving worldlines~comoving slices!
and the curvature perturbationF of zero-shear hypersurface
~the Bardeen potential!:8

s

H
5

k

aH
V5S k

aHD 2

~R1F!. ~45!

„The quantityV defines the velocityv i of the comoving
worldlines relative to the zero-shear threading, through
relationv i52 i (ki /k)V @26#.… The curvature perturbationR
is closely related to the curvature of uniform-density slic
z:

R5z2
Hdrcom

ṙ
, ~46!

where the subscript ‘‘com’’ denotes the comoving slicing.
The combined energy and momentum constraints of E

stein’s equations relate the comoving density perturbation
the Bardeen potential:

Hdrcom

ṙ
5

2

9~11w! S k

aHD 2

F, ~47!

wherew[P/r. Thus we can rewrite Eq.~45! for the comov-
ing shear in terms ofz and the Bardeen potential, giving

8We are defining2R[c with the right hand side evaluated o
comoving slices, which corresponds to established conventions
5-5
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s

H
5S k

aHD 2

z1S k

aHD 2F12
2

9~11w! S k

aHD 2GF. ~48!

Equation~48! ensures that the comoving shear will be sm
(s/H!z) on superhorizon scales so long as the Bard
potentialF remains of the same order asz. Notice also that
if the F remains finite on large scales, then the comov
density perturbation, Eq.~47!, also vanishes on large scale
andR and z are equal~and constant! on large scales.~The
vanishing of the density perturbation and the perturbation
the local Hubble rate on comoving slices on large scale
discussed in Appendix B.! However, it has been argued@28#
that cosmological perturbation theory can still be valid ev
if certain curvature perturbations, in particularF, become
formally bigger than one.

The Bardeen potential is not uniquely determined by
value of z, but the Einstein’s equations give a first-ord
evolution equation@26# ~in the absence of anisotropic stre
@28#!

H21Ḟ1F513w

2
2

1

3 S k

aHD 2GF52
3

2
~11w!z. ~49!

During conventional slow-roll inflation~with w;21 and

Ḟ!HF), the Bardeen potential is indeed small,F;23(1
1w)z/2 on superhorizon scales. But we wish to elimina
the possibility that the Bardeen potential subsequently
comes large on superhorizon scales.

We will restrict the rest of our discussion in this section
strictly adiabatic matter perturbations, withdPnad50, but
consider non-adiabatic perturbations in Appendix D. F
adiabatic perturbations, Eqs.~41!, ~48! and ~49! yield
coupled first-order equations for the evolution ofz and F,
which to lowest order ink/aH gives

H21ż.S k

aHD 2

F, ~50!

H21Ḟ1
513w

2
F52

3

2
~11w!z, ~51!

which yield two independent long-wavelength solution
which are represented by

z.C1 , ~52!

F.C2e2(513w̃)N/2, ~53!

where w̃N5*wdN. The first of these solutions, with con
stantz on large scales, remains the ‘‘growing mode’’ solutio
so long as

H21ż}C2k2e3(2w2w̃21)N/2, ~54!

for the ‘‘decaying mode’’ on large scales, approaches ze
This is always true in an expanding universe (N→1`) so
long asw→w`,1, i.e., P,r. This is easily interpreted a
the condition for the decay of the shear relative to the Hub
rate (s/H) in an expanding universe.
10351
l
n

g

n
is

n

e

e-

r

,

o.

le

Using these same equations, we can understand the s
horizon evolution of the shear and the curvature pertur
tions in a collapsing Universe (N→2`). For w,1, the
shear grows relative to the Hubble rate, andz does not re-
main constant. The critical casew51 ~maximally stiff fluid!
occurs if the energy density is dominated by scalar fie
with negligible potential. This is supposed to happen in
pre-big-bang scenario, and in the late stages of the sec
version of the ekpyrotic scenario@29# where the bounce is
supposed to be singular from the four-dimensional vie
point. Forw51, z on superhorizon scales grows logarithm
cally with respect to cosmic time and has a strongly sca
dependent spectrum@30#. ~It is however@30# still small at the
string epoch, which in the pre-big-bang scenario is suppo
to be the bounce epoch.!

In the first version of the ekpyrotic scenario@31#, where
the bounce is supposed to be non-singular from the fo
dimensional viewpoint, collapse is driven by a scalar fie
with a steep negative potential which violates the domin
energy condition and givesw@1. The same is supposed t
happen in the second version of the ekpyrotic scenario@29#
at early times. In these cases, the shear rapidly decre
@32,33# and z is constant on large scales, with a strong
scale-dependent spectrumP z

1/2}k2. The Bardeen potentia
F, related toz by Eq. ~50!, grows rapidly and has a fla
spectrum@34,29,35# P F

1/2}k0. But Eq. ~40! shows that it is
only the comoving shear that affectsz, and the shear is re
lated to spatial gradients of the Bardeen potential, Eq.~48!. A
scale-invariant Bardeen potential (F}k0) corresponds to a
strongly tilted blue spectrum for the shear (s}k2).

V. OTHER CONSERVED QUANTITIES

Generalizing from the construction of the conserv
quantityz given in Sec. II it is clear that for any monoton
cally increasing or decreasing quantity, satisfying a lo
conservation equation of the form

V] f

]V 5y~ f !, ~55!

we can construct a conserved perturbation that is given
first order as

Xf[2H
d f

ḟ
, ~56!

with d f evaluated on some uniform-N slicing which we will
take to be the spatially flat one. This construction givesz
[Xr as a special case, and we shall now see how it gives
other conserved quantitiesz i and z̃ i @11,19#.

A. Separately conserved energy densities

Suppose the total energy densityr of the Universe is a
sum of componentsr i , each one of them either radiation o
matter, and with no energy transfer between the compone
In that case the pressure of each component is a unique f
tion of its energy (Pi5r i /3 for radiation andPi50 for mat-
5-6
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ter! and each component satisfies its own separate en
conservation equation9 ~since there is no energy transfer!

V]r i

]V 52~r i1Pi !. ~57!

As a result there are the separately conserved perturbat

z i[Xr i
~58!

52H
dr i

ṙ i

~59!

5
1

3

dr i

r i1Pi
, ~60!

where dr i is evaluated on the flat slicing. This is anoth
result of @11#.

One can express the total density perturbationz as a
weighted sum of the separatez i ;

z5
( ṙ iz i

( ṙ i

. ~61!

If the z i are all equal, thenz5z i which is constant. Other
wise z may have some variation, determined by the co
served isocurvature perturbations defined by

Si j [3~z i2z j !. ~62!

The condition that thez i are equal is just the adiabatic co
dition, that all of the separate energy densities~and hence the
total pressure! are uniform on slices of uniform total energ
density.

There are two eras in the early Universe where separa
conservedz i have been invoked. One is the comparative
late era, beginning when the temperature falls below 1 M
and ending when cosmological scales start to approach
horizon.10

The energy density during this era has four componen

r5rCDM1rB1rn1rg , ~63!

with the radiation~photons and neutrinos! dominating the
matter~cold dark matter and baryonic matter!. The values of
the four conserved quantitieszCDM , zB , zn , and zg deter-
mine the evolution of the entire set of cosmological pert
bations after horizon entry, and can therefore be determ
by observation. The three isocurvature perturbations~con-

9In this expression,V is the volume which is comoving with the
flow of r i . This is not strictly the same as the volume which
comoving with the flow of total energy density, but we have sho
in Sec. III that on superhorizon scales the expansion of all com
ing volumes become equivalent. See Eq.~34!.

10Recall that electron-positron annihilation and neutrino dec
pling both take place when the temperature is around 1 MeV.
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ventionally defined relative to the photon density to
SCDM[SCDMg , SB[SBg andSn[Sng) are found by obser-
vation to be at most of orderz @36–38,2#. Since radiation
dominates, one deduces from Eq.~61! that z is constant on
large scales to high accuracy during this era.

The other era, which occurs in the recently proposed c
vaton scenario@12,13# ~see also@14,15#!, is the era~after
inflation, but before primordial nucleosynthesis! when the
massive curvaton fields oscillates (Ps50) in a radiation
background (Pr5r r /3),

r5rs1r r . ~64!

Here,z r is supposed to be negligible so that the total cur
ture perturbationz is given by Eq.~61! as

z~ t !5
3rs

4r r13rs
zs . ~65!

Well before the curvaton decays, the radiation is suppose
dominate so thatz grows like rs /r r}a(t), providing an
example where the totalz is not conserved on superhorizo
scales after inflation.

B. Conserved number densities

If ni is a conserved number density, thenni is inversely
proportional to the volume.11 A conservation law of the form
given in Eq.~38! is satisfied withy( f )52 f and f 5ni , lead-
ing to the conservation of the first-order perturbation@19#

z̃ i[Xni
5

1

3

dni

ni
. ~66!

These conserved quantities find an application@19,39# in
connection with the three isocurvature perturbationsScdm,
SB andSn . BeforeT;1 MeV, these quantities are not th
appropriate ones to consider, because the separate e
density perturbationsz i may vary with time or be simply
undefined.~The latter is the case forzB before the quark-
hadron transition.! One can however consider instead t
number densityncdm of cold dark matter particles, the den
sity nB of baryon number and the densitynL of lepton num-
ber. Each of these number densities corresponds to a
served quantity after some epoch, which may be regarde
the epoch when the quantity originates. The correspond
perturbationsz̃ i are thus conserved, and after the temperat
falls below 1 MeV they determine the three isocurvatu
perturbations according to the formulas@19#

1
3 SCDM[z̃CDM2z ~67!

1
3 SB[z̃B2z ~68!

v-

-

11The volume should be the one comoving with the flow of t
conserved quantity, but as already stated we are going to sho
Secs. III and IV that the choice of comoving volume is irrelevant
superhorizon scales. This irrelevance is assumed implicitly w

the conservation ofz̃ i is discussed in@19#.
5-7
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1

3
Sn[

45

7 S j

p D 2

~ z̃L2z!. ~69!

In the last formula,j is the lepton asymmetry which mus
satisfy the nucleosynthesis constraintuju,0.07. In this way,
the three isocurvature perturbations can be calculated~or
shown to vanish! given a model of the early Universe.

VI. CONCLUSIONS

In this paper we have shown how local conservation la
~e.g., energy conservation or baryon number conservat!
can lead to conserved perturbations in cosmology. When
we have a local continuity equation of the form given in E
~38!, then we can construct a cosmological perturbat
which is conserved after uniform expansion along comov
worldlines.

In particular we have shown that in linear perturbati
theory the integrated expansion along comoving worldlin
between spatially flat slices is just given by the comov
shear. Thus on sufficiently large scales~where the shear is
negligible! the quantityXf defined in Eq.~39! derived from
the conservation equation~38! is conserved. The choice o
spatially flat slices gives a gauge-invariant definition of t
conserved quantity. This is a purely geometrical res
whose derivation does not require any gravitational fi
equations. We only require the gravitational field equatio
in order to estimate the actual comoving shear, finding i
be negligible on superhorizon scales.

The best known example is the curvature perturbatioz
[Xr , which specifies the total density perturbation on s
tially flat slices or equivalently the curvature perturbation
uniform-density slices.z is constant on sufficiently large
scales~where the comoving shear is negligible! for adiabatic
density perturbations, for which the local pressure is
unique function of the local density and hence the total
ergy conservation is of the form required in Eq.~38!. We
have shown that on superhorizon scales,z coincides with the
comoving curvature perturbation.

It is also possible to construct other perturbed quantit
such as the separate curvature perturbationz i[Xr i

for any
perfect fluid whose energy is separately conserved@11#, or
z̃ i[Xni

, for any conserved number densityni obeying a lo-

cal conservation equation of the formṅi523ni @19#.
The general argument we have given for the existenc

conserved quantities is not restricted to linear perturba
theory. As an example we give an expression for the c
served quantity to second-order in the density perturbatio
is necessary to understand the evolution of second order
sity perturbations in order, for example, to make any estim
of the primordial non-Gaussianity expected in density per
bations produced from inflation.
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APPENDIX A: THE SASAKI-STEWART
EXPRESSION FOR z

On superhorizon scales, Eq.~35! becomes

dũ523ċ. ~A1!

This is valid in any gauge. Choose now a gauge whose s
ing is flat at timet1, and uniform density at timet. Integrat-
ing from t1 to t, and usingz52c on the slice att, we find
that on superhorizon scales

z~x,t !5
1

3Et1

t

ũdt5dNSS~x,t ! ~A2!

whereNSS(x,t1 ,t) is the integrated expansion from the fl
slice at timet1, to the uniform-density slice at timet. This is
the expression of Sasaki and Stewart@20#, used by them to
calculate the curvature perturbation at the end of multi-fi
inflation. It is practically independent of the threading th
defines the expansion, by virtue of the fact that we are d
ing with superhorizon scales.

Our expression, Eq.~9!, readsz52dN. In contrast with
the Sasaki-Stewart expression, this one is valid only dur
an era whenz is constant, corresponding to an adiaba
pressure perturbation. To understand the relation with
Sasaki-Stewart expression, we can integrate Eq.~5! from a
uniform-density slice at timet to a flat slice at timet1, both
times being within the era when the pressure perturbatio
adiabatic. Using 3z5dr/(r1P) on the slice att1 we get the
time-independent result

z52dN, ~A3!

whereN52NSS is the integrated expansionfrom t to t1. We
see that the ‘‘integration constant’’dN introduced in Sec. II
can be interpreted as a perturbation in the integrated ex
sion between two slices, and that it is equal~as it must be! to
2dNSS.

APPENDIX B: UNIFORM HUBBLE PARAMETER
ON COMOVING SLICES

In a given gauge, the perturbation in the expansionũ with
respect to coordinate time is given by Eq.~35!, which for the
flat slicing becomes Eq.~36!,

dũ52s. ~B1!

On superhorizon scales this givesudũu/H!1, valid for any
threading. In other words, the expansion with respect to
ordinate time is practically unperturbed on flat slices.

We could instead consider the perturbation in the exp
sion with respect to proper time, given by Eq.~32!. On the
comoving slices one has„Eqs.~5.20! and ~5.21! of Bardeen
@28#; see also@26#…
5-8
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Ṙ[2ċcom5HAcom, ~B2!

and therefore

~du!com52s. ~B3!

Like Eq. ~B1!, this expression is valid for any choice of th
threading that defines the expansion, and on superhor
scales it givesuduu/H!1 practically independently of the
threading. In other words, the expansion with respect
proper time is practically unperturbed on comoving slic
for any choice of the threading. In particular the comovi
expansion is practically unperturbed on such slices,dH/H
!1.

We argued in Sec. V~assuming that anisotropic stress
negligible! that on super-horizon scalesuFu!1. From Eqs.
~44! and ~47! this implies that on comoving slices

udH/Hu5OS S k

aHD 2D ~B4!

udrcom/ru5OS S k

aHD 2D . ~B5!

To summarize, on comoving slices, the perturbations in
locally defined Hubble parameter and in the energy den
are both negligible in the superhorizon regime. The only s
nificant perturbations on comoving slices are therefore c
vature perturbationR, and the pressure perturbation if it
not adiabatic. The statements of the previous paragraph
main true if we replace the comoving slicing by the uniform
density slicing, since we argued in Sec. IV that these slici
practically coincide on superhorizon scales.

APPENDIX C: THE ADIABATIC CONDITION
ON THE PRESSURE PERTURBATION

In the text we defined the adiabatic condition on the pr
sure perturbation as the condition that the local pressure
practically unique function of the local energy density. Ta
ing it to be absolutely unique, we obtain the familiar ad
batic condition

dP5~ Ṗ/ ṙ !dr. ~C1!

However, on the comoving slicing wheredr is anomalously
small, and on the uniform-density slicing where it vanish
it is too strong to require that this expression is valid; there
no reason why the slices of uniform pressure should exa
coincide with the slices of uniform energy density even if t
local pressure is a ‘‘practically’’ unique function of the loc
energy density.

An example is provided by single-field slow-roll inflation
During slow-roll the locally-defined inflaton field is a pra
tically unique function of proper time,f(t), up to the choice
of origin for t. On superhorizon scales, where spatial gra
ents are practically negligible, this gives practically uniq
functions r(t) and P(t), making P a practically unique
function ofr. In other words, the adiabatic condition for th
pressure perturbation is satisfied on super-horizon scales
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ing single-field slow-roll inflation~and even afterwards pro
vided that no other field plays a significant role!. However,
on comoving slices the potentialV(f) is uniform, and as a
result

dPcom5drcom. ~C2!

This is not in accordance with the strict definition, Eq.~C1!,
of an isocurvature pressure perturbation. In particular, dur
slow-roll inflaton r.2P(.V) which means that the adia
batic condition for the pressure perturbation is

dP.2dr. ~C3!

On a generic slicing this is well satisfied, but on the como
ing slicing it is at variance with Eq.~C2!. All that matters,
though, is that both the pressure perturbation and the en
density perturbation are both very small on the comov
slices. Or, to put it differently, that the pressure perturbat
is very small on uniform-density slices. This is enough
ensure that the local pressure is a practically unique func
of the energy density, leading to the conclusion thatz is
constant during single-field inflation.

APPENDIX D: SHEAR ON SUPERHORIZON SCALES
FOR NON-ADIABATIC PERTURBATIONS

If we relax the assumption that the matter perturbatio
are adiabatic used in the final part of Sec. IV to calculate
shears on superhorizon scales~but still assuming no aniso
tropic stress! then we no longer have a closed system
equations forz andF. However, we can still estimateF in
the long-wavelength regime givenz and integrating Eq.~51!,

2

3
H21Ḟ1

513w

3
F.2~11w!z. ~D1!

We also need an initial condition a few Hubble times af
horizon exit during slow-roll inflation. Starting with the
vacuum fluctuation, direct calculation shows thatz at this
stage is either practically constant~single-field inflation! or
only varying slowly on the Hubble time scale~multi-field
inflation!. Through Eq. ~D1! this gives F.2(3/2)(1
1w)z, and henceuFu!uzu.

We are now going to argue that Eq.~D1! will keep uFu
&uzu throughout the super-horizon era. A rough argumen
the following. Suppose that insteaduFu@uzu in some super-
horizon regime. Then Eq.~D1! becomes

2

3
H21~ ln F!̇ .2

513w~ t !

3
,2~2/3!, ~D2!

where we used the energy conditionw.21 which is always
satisfied in scalar field theory with a positive kinetic energ
This equation shows thatuFu would always be decreasing i
5-9
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any expanding universe whereuFu@uzu, suggesting that
such a regime cannot actually be reached starting from
initial condition uFu!uzu.

A more direct argument is to integrate Eq.~D1!, giving

FF52
3

2Eln a1

lna

@11w~a8!#F~a8!z~a8!d~ ln a8!, ~D3!
m
9

to
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v.

e
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.

o,

10351
e
where

ln F5E
ln a1

ln a S 513w~a8!

2 Dd~ ln a8!. ~D4!

Assuming thatz is never very much bigger than its primo
dial value, this will giveuFu&uzu for any reasonable behav
ior of w(a).
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