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Conserved cosmological perturbations
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A conserved cosmological perturbation is associated with each quantity whose local evolution is determined
entirely by the local expansion of the Universe. It may be defined as the appropriately normalized perturbation
of the quantity, defined using a slicing of spacetime such that the expansion between slices is spatially
homogeneous. To first order, on superhorizon scales, the slicing with unperturbed intrinsic curvature has this
property. A general construction is given for conserved quantities, yielding the curvature pertutbadiorell
as other more recently considered conserved perturbations. The construction may be extended to higher orders
in perturbation theory and even into the non-perturbative regime.
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[. INTRODUCTION in the inflaton field, it is supposed to be conserved between-

the end of inflation and the primordial era, and in the alter-
Observation of the peak structure in the cosmic micro-native curvaton scenarid2,13 (see alsd14,15) ¢ is sup-
wave background anisotropy has now confirmed that cosmaposed to be conserved after the curvaton detdscently,

logical perturbations are present before the relevant scalggrther conserved quantities and; have been considered
enter the horizon, with an almost flecale-invariantspec-  that are associated with the perturbations in individual en-
trum [1-3]. The only known explanation for this state of ergy densitiesp; [11] and number densities; of conserved
affairs is that the perturbations originate during an almosgyantities|19]. The conservation of the former is invoked in
exponential inflation, from the vacuum fluctuation of one orhe cyrvaton scenario, during the era when the curvaton field
more light scalar fieldS.In the simplest case only one light ;g oscillating and? is growing. The latter are invoked when
field is responsible for the perturbations observed, either th‘éonsidering possible isocurvature components of the primor-

Inflztctlr:)%r_ns org;eﬂ:)_tshgr ﬂlglr?z.it'on classical cosmological er—dial density perturbation.
ng 'S €xp lon, ! gicalp In this paper, we present a unified treatment of the con-

turbations first come into existence a few Hubble times after - - o
horizon exit during inflation. At that stage the situation is S€rved quantitieg, & and¢;, which is more complete than
very simple; each light fielddefined as one with an effective anything that has been given before. Taking the particular
mass much less than the Hubble paramelteihas a Gauss- €xample of{ as a starting point, we begin in Sec. Il by
ian perturbation with an almost flat spectruril/=)?. The  showing how, to any order in cosmological perturbation
problem is to evolve this simple initial condition forward in theory, conserved quantities may be constructed from pertur-
time to the primordial nucleosynthesis epoch, in the face obations that are defined on a spacetime slicing of uniform
our ignorance about the detailed evolution of the Universaéntegrated expansion. Here and throughout this paper we re-
before nucleosynthesis. fer to the choice of temporal gauge, defining the spatial hy-
Fortunately, scales of cosmological interest are still farpersurfaces of fixed coordinate time, as the spacesiming
outside the horizon at nucleosynthesis. As a result there exisind the choice of spatial gauge, defining the worldlines of
perturbations which are under suitable conditions conservedixed spatial coordinates, as thiereading In Sec. Ill, we
and largely avoiding the need for more detailed informationshow that in the usual case of first-order perturbation theory,
One of thes¢8—11] is the “curvature perturbationZ, which  the spatially flat slicing is one of uniform expansion if the
is associated with the perturbation in the total energy densitghear of the worldlines is negligible. In Sec. IV we consider
p.“ In the usual case thdt originates from the perturbation the comoving shear, and show that it is expected to be neg-
ligible in the entire superhorizon regime. In Sec. V we gen-

IA related hypothesis replaces inflation by an era of Collapseerahze the construction and consider the conserved quantities

(“pre-big-bang” [4,30,9 or “ekpyrotic” [31,29,), but there is so g and ¢ ._We cor_\clude in Sec. VI. The appendices discuss
far no accepted theory of a bounce and therefore no firm predictio§Ome peripheral issues.
from collapsing cosmologies. In particular, there is so far no ac-
cepted string-theoretic description of a boufi¢é

°The quantity¢ defines the curvature perturbation on spacetime 3An analogous scenario has been proposed in the pre-big-bang
slices of uniform energy density. As we discuss in Sec. IV, on suscenario [16,17]. In this scenario though, the required scale-
perhorizon scales it is practically the sameTasvhich defines the invariant curvaton field perturbations will be generated only if the
curvature perturbation on slices orthogonal to comoving worldlinescurvaton has a non-trivial coupling and for particular initial condi-
The latter quantity is thep,, of [28]. tions[18,5].
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[l. ENERGY CONSERVATION AND THE CURVATURE slice the integration gives as a unique function of the local
PERTURBATION integrated expansioN up to an initial integration constant:
In this section we explain the general principle which al- —
P g priee p=p(N+N), ®

lows us to construct conserved quantities. We focus on the

particularly important example of the curvature perturbationyhere the integration constant for each worldlim, is

{ [8-11], after which it is clear how other conserved pertur- getermined by the actual density on the initial hypersurface,
bations may be constructed. The curvature perturbatien ol =;(5N)

so called because it defines the curvature perturbation on stgbsequen.t spacetime slices of fixedcorrespond to a

slices of uniform energy densif1]. Equivalently though, uniform integrated expansiomslicing of the spacetimé
via the gauge transformations of Sec. lll, it defines the en- ’

. . . . : meaning that the integrated expansion going from one slice
ergy densn)E pjerturbanon on spatially flat slices, according Qo another is spatially homogeneous. For linear perturbations
the formulal9

about a FRW cosmology, there is an infinity of such uniform-
Sp N slicings, since we can start with any initial slice and propa-
= (1) gate it by calculatindN from that slice along each comoving
3(p+P) worldline. In Secs. Ill and 1V, we show that on superhorizon
scales a particular uniformy-slicing is the uniform curvature
slicing (i.e., the one with unperturbed intrinsic scalar curva-
ture). In what follows we will restrict our attention to spa-
tially flat FRW models and will refer to this as the spatially
flat slicing.
Now we come to the crucial point. When evaluating the
p=—3H(p+P), 2) densityp on any uniformN incing, th_e pe.rturbatiorﬁN of
the quantity appearing in Ed8) is time independent, by
whereH is the Hubble expansion rate aRds the pressure. construction. This statement holds to any order in cosmologi-
In the real perturbed Universe, the same B).still holds  cal perturbation theory so long as one can construct a
along each comoving worldline, so long as the dot is taken taniform-N slicing along the comoving worldlines.

¢

This definition is the one that we shall use.

Our starting point is the energy continuity equation. In an
unperturbed Friedmann-Robertson-WalK&RW) universe
the continuity equation for the energy densjiytakes the
form

denote the derivative with respect to the proper tirredong Writing 6N in terms of the density perturbation on spa-
the comoving worldline and we defin locally through the tially flat slices, to first order, one finds the conserved quan-
equation tity
1. .dv dN ) d
HE§V la, (3) 5N:d—5 = ,p :H—p (9)
p p'(N) p

whereV is an infinitesimal comoving volume. Equivalently,

A X . which is — ¢ defined in Eq.(1). This derivation is close in
the local continuity equation may be written as

spirit to the analysis of Sasaki and Stew@®] who studied
dp multi-field inflation models and identified the curvature per-
Vo—=—(p+P), (4)  turbation with the perturbed expansion with respect to an

dv initially flat slice. The relation between their calculation of
or the curvature perturbation and ours is explained in Appendix
A.

dp To arrive at the conserved quantigy we considered the
an =~ "3 tP), (5)  flat slicing. Were we instead to use some other uniform-

expansion slicing, the conserved quantity defined by the right

whereN is the local logarithmic integrated expansitthe  hand side of Eq(9) would be different from¢, but it would
number of Hubble timesdefined as be related to by the gauge transformatiof25). Hence it
would be conserved if and only i is conserved, and we

lose no generality by fixing the choice of the uniform-
NEJ Hd7. ©) expansion slicing as the flat one.
The constancy of (on sufficiently large scales and as-
Our crucial assumption now is that the pressure perturbasuming that the pressure perturbation is adiabatias ob-
tion is practically adiabatic. This assumption means that theained several years a@8] in the context of Einstein gravity.
local pressuré® is a practically unique function of local en- More recently, its constancy under the same condition was
ergy densityp, i.e., obtained directly from the local conservation of enefg¥]

P=P(p), (7)
_ “Note that this isnot the same as theniform Hubbleslicing
whereP is the same function for all worldlines. This allows introduced by Bardeef28,8] which refers to the local expansion
Eq. (5) to be integrated. Setting=0 on an initial spacetime rate of the normals.
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using a purely geometric argument equivalent to the one thatirbations about a FRW geometry. To define the perturba-
we have given. In the present paper, we are going to show itions one has to choose a coordinate system which reduces to
Secs. lll and IV that in this context all superhorizon scalesEg. (12) in the limit where the perturbations vanish. Such a
are “sufficiently large;” in other words, we will show that coordinate systenigauge defines a time slicingthe spatial
the flat slicing is a uniform-expansion one on all superhori-hypersurfaces with constant time coordinated a threading
zon scales. (the worldlines with constant space coordinates the

It is worth noting that the conservation gfcan hold in  spacetime. Since the coordinate system is required to coin-
even more general circumstances, because it comes from tie@e with Eqg.(12) in the limit where the perturbations van-
generalized adiabatic condition, E¢B), which may hold ish, the slicing and threading coincide with the unperturbed
even if the energy conservation equati@ fails. Thus,  ones in that limit. We shall take this requirement for granted
will be conserved even if there is an additional source &m when referring to a “generic” slicing or threading.
on the right-hand side of Ed5), so long asxQ (the energy Once the perturbations are defined, their evolution to first
transfer per Hubble timeis itself a unique function of the order may be described using the unperturbed coordinate

local density for all worldlines, i.eQ=Q(p), as reported in  System, and Fourier components with different wave vectors

Ref. [21]. k decouple. The superhorizon regime is the regiaté/k
Going to second order, and again working on some>1.
uniform-N slicing, the conserved quantity is In this paper we are interested in the scalar mode of the
perturbations in the metrigo gravitational waves or vortic-
dN 1 d2N ity). In a generic gauge the Fourier components of the metric
ON= b Spt 5 a0 —(8p)? (100 perturbation are specified by functioAsB, D andE.°
769o=—A (13
_dp 1y :
; ,3(5p) 11 a 28gyi=—B;=ik;B (14)
p’ 2p
3a~269;=6;,D+P,E (15

This second-order extension of the conserved quatthgs
not been given beforlt will be useful in propagating for- Kk
ward the evolution of second-order perturbations produced =— 5 — —E (16)
during inflation [23-25 through the end of inflation and k2

relating them to observations. Also, we note that Sasaki and

Tanaka[23] have shown that it is possible to use a uniform-WhereP;; projects out the traceless part;

N slicing to study non-linear field perturbations on large

scales during inflation. kikj 1

Pijz_?"'g&ij 17)
I1l. UNIFORM EXPANSION BETWEEN FLAT SLICES

The main goal of this section is to show that the Iocaland

expansion of the Universe between spatially flat slices is uni- —y=D+1E. (18)
form on sufficiently large scales where shear is negligible.
This result is purely geometric, making no reference to thdJnder the coordinate transformatidr-t+At and x'—x
theory of gravity. Our treatment amplifies the original one in +Ax', with the Fourier component afx' of the form
Ref.[11], and in particular we show for the first time that the
result is independent of the spacetime threading that defines Axi= —i ﬁ

) X'=—i—AX, (19
the expansion. k

A. The metric perturbation the metric components transform according to

The unperturbed FRW metric and comoving coordinates AA= — At (20)
are defined by the line element
ds’= —dt®+a%(t) §;dx'dx, (12) AB=aAx+kAt (21

;?Ze(?ip;)?dlng to metric componerdgo=—1, go;=0 and AD=— gAx— HAt 22)
]We lare interested in the perturbed spacetime that is our
Universe, which we assume can be described by linear per—————
%These are the quantities defined[®6], and are equal respec-
tively to the quantitiesA, B(®, H, andH!® of Bardeen[28]. The
SIt can be verified that the second-order parsdf coincides with  quantitiesAx and At below are respectively thé and aT of
the gauge-invariant quantity(§2/2)+ﬁ defined in Ref[22]. Bardeen, and the quantity in Eq. (45) is theu(so) of Bardeen.
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AE=KAX (23 Going to a new threading corresponding to the transforma-
tion, Eq. (19), the change in the Fourier component of the
Ay=HAt. (24)  local velocity field of the threads is

The perturbatiork can be eliminated by a transformation of

the spatial coordinates, whilg depends only on the slicing.

The latter defines the intrinsic scalar 3-curvature of the slic-

ing, and is called its curvature perturbation. The corresponding changes in the shear and the expansion
The perturbation in a generic scalar quantitdefined in  are equal and opposite,

the unperturbed Universe, such as energy density, pressure or )

the value of a scalar field, has the transformation A(60)=—Ao=KkAX, (34)

. ki -
Aw;=Axi=—j E'Ax. (33)

Ag=—gAt. (25)  while the perturbationss and A are unchanged. It follows
that Eq. (32) is valid for any threading, not only for the
Applied to the energy density, this transformation along withcoordinate threading(In [11], Eq. (32) was given for the
Eg. (24) leads to the gauge-invariant definition of the curva-special case of the threading normal to the coordinate slic-
ture perturbatiory, ing.) Note also thafA(56)|<k/a for |Av|=|aAx|<1 so
the expansion of all worldlines becomes the same on large
S <
§:_¢_H._p. (26) scallzles Wher¢(<aH. - . o
p ollowing [11] we consider, instead df, the expansiom
with respect to coordinate time. Its perturbation is
Evaluated on slices of uniform density it is indeed the cur- _ _
vature perturbation, but evaluated on flat slices it specifies 60=—-3y—o. (35
instead the energy density perturbation through (&jy.
For the flat slicing (/=0) this becomes
B. Shear and the expansion rate ~
60=—o. (36)
A given threading of spacetime is associated with an ex-
pansiond, a traceless symmetric sheayi and an antisym-  This result is true for any choice of the threading that defines
metric vorticity w;; . At a given spacetime point, in a locally the expansion rate, and has been derived without any refer-
inertial rest frame, these quantities are given by the standarehce to a theory of gravity.

decompositior] 26,40, The expressions given so far are valid quite generally. We
L are interested though in superhorizon scales. On sufficiently

AW, =308+ ai; + w;; (27) . ;
W= 3voT o) i large scales the shear must become negligible compared with

the Hubble parameter, so that we recover an unperturbed

FRW universe. It follows thas# is negligible on sufficiently
large scales, or in other words that the expansion between
successive flat slices becomes unperturbed. This means that
on sufficiently large scales we can make the approximation

wherew; is the three-velocity of the infinitesimally nearby
threads. The expansiahgives the rate of increase with re-
spect to proper time of an infinitesimal volume’ expand-
ing with the threads,

1dvy

6= 5iiaiwj=]—}a. (29) B(x,t)=3H(t), (37)

For the scalar perturbations that we are considering, the vowvhere H(t) is the usual unperturbed quantity adds the

ticity vanishes, and the shear takes the form expansion with respect to coordinate time of a generic
threading. (Remember that we consider only threadings
oij=Pjjo. (290 which coincide with the unperturbed one in the limit of zero
perturbation.
We shall callo- the shear as well. Using Eq.(37), we can combine the results of Secs. Il and

In a given gauge, the metric perturbations determine théll to derive the following general result for cosmological
shear and expansion rate of the coordinate threads accordipgrturbations.

to the expressiong27] Consider a monotonically increasing or decreasing quan-
) tity f, defined in some region of spacetime, and its first-order
o=E (300  perturbationsf defined on the spatially flat slicing. Consider
also some threading of spacetime, defining an infinitesimal
56=3D —3HA. (31)  volume elemen. If f satisfies a local conservation equation
of the form
The second relation may be written as df
50=—3y—o—3HA. 32) Vap =Y (38)
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then the rate of change of the perturbation the Einstein tensor derived from the metric. This leads to a
purely geometrical definition of, e.g., the comoving density
of perturbation, which need have nothing to do with the motion
Xi=—H T (39 of particles. However at relatively late cosmic times, it may
be safe to assume that the Einstein field equations are satis-
is fied with the stress-energy tensor related to particle physics
content in the usual way.
Xi=1to (40) The other assumption we make is that anisotropic stress is
negligible on superhorizon scales. As noted by Bardeen in
where ¢ is the shear of the threading. As a resii, is 1980 [28], significant anisotropic stress on superhorizon
conserved on sufficiently large scales, where the shear ®cales would generate shear and the curvature perturbation,
negligible. but there is no known mechanism for generating such stress.
We first note that any spatial gauge transformation, Eq.
C. The variation of ¢ (19), corresponds to a change in the local physical velocity
Avi=aAw; [Eq. (33)]. This generates a change in the shear
|Ag|/H=vk/aH. Since we are dealing with small perturba-
tions,v<1 so that Ac|/H<k/aH.
_ H It follows that we need only establish E¢43) for the
{=——F50Ppag o0, (41)  shear of the comoving threading, whiohshall denote from
p+P now on. Generalizing the discussion of Bard¢28] to in-
clude the case where/p may vary, we shall show that in

Taking the derivative of Eq26) and using the local con-
servation of energy along comoving worldlines one finds

where o is the shear of the comoving worldlines and the

non-adiabatic part of the pressure perturbation is fact
b |o|/H<(k/aH)2. (44)
OP o= 6P — — dp. (42
P The comoving shear is related to two commonly used gauge-

(In Appendix C we comment on the apparent Contradictioninvariant variables, namely the curvature perturbatioR of

. . i - slices orthogonal to comoving worldlinégsomoving slices
between the adiabatic CO“d'F'O” for .the pressure pe'rturba.tlognd the curvature perturbatidn of zero-shear hypersurfaces
and the pressure perturbation defined on comoving slic

e
during single-field inflation. &he Bardeen potentef

This result was derived by essentially the above method K
in [11]. It was first derivedby a different method, and actu- g_ V=
ally for the curvature perturbatioR) in [28], Egs.(5.19— H aH
(5.21. In the particular case that the Universe consists en-
tirely of matter and radiation is given by Eq.(61). One (The quantityV defines the velocity; of the comoving
easily check$19] that this expression is compatible with Eq. worldlines relative to the zero-shear threading, through the

2
(R+®). (45)

aH

(42). relationv;=—i(k;/k)V [26].) The curvature perturbatioR
is closely related to the curvature of uniform-density slices,
IV. SHEAR ON SUPERHORIZON SCALES &
According to Eq.(40), the quantityX; is conserved on H 8pcom
scales which are sufficiently large thats negligible. In this R={— ——, (46)
section we argue that any superhorizon scale is sufficiently P
large in this context. To be more precise, we argue that the
shear satisfies where the subscript “com” denotes the comoving slicing.
The combined energy and momentum constraints of Ein-
|o|/H<(klaH), (43 stein’s equations relate the comoving density perturbation to
the Bardeen potential:
which ensures that in one Hubble time the chang&iris
less thark/aH.’ Hs > K \2
. . . L. Pcom
In making the argument, we shall invoke the Einstein field . = —| b, (47)
equations. This is not much of a restriction as we do not P 9(1+w)\aH

necessarily have to specify any physical origin for the stress-
energy tensor, but simply equate it with a fixed multiple of wherew=P/p. Thus we can rewrite E¢45) for the comov-
ing shear in terms of and the Bardeen potential, giving

’On the left hand side of this expressianjis the typical magni-
tude of the shear on scakedefined for instance 426] the square 8We are defining— R=y with the right hand side evaluated on
root of its spectrun, (k). comoving slices, which corresponds to established conventions.
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2 2
{1_ 9(1+w)

2

i+

2 Using these same equations, we can understand the super-
}CI)- (48) horizon evolution of the shear and the curvature perturba-
tions in a collapsing UniverseN— —»). For w<1, the

Equation(48) ensures that the comoving shear will be smallshear grows relative to the Hubble rate, andoes not re-
(o/H<{) on superhorizon scales so long as the Bardeemain constant. The critical case=1 (maximally stiff fluid)
potential® remains of the same order &sNotice also that ~occurs if the energy density is dominated by scalar fields
if the & remains finite on large scales, then the comovingwith negligible potential. This is supposed to happen in the
density perturbation, Eq47), also vanishes on large scales, Pre-big-bang scenario, and in the late stages of the second
and R andé’ are equa(and Constaoton |arge Sca|ed_The version of the ekpyl’otiC Scenal’[@9] where the bounce is
vanishing of the density perturbation and the perturbation irfupposed to be singular from the four-dimensional view-
the local Hubble rate on comoving slices on large scales igoint. Forw=1, { on superhorizon scales grows logarithmi-
discussed in Appendix BHowever, it has been argu¢ag]  cally with respect to cosmic time and has a strongly scale-
that cosmological perturbation theory can still be valid everdependent spectrufB0]. (It is however{30] still small at the
if certain curvature perturbations, in particuldr, become string epoch, which in the pre-big-bang scenario is supposed
formally bigger than one. to be the bounce epogh.

The Bardeen potential is not uniquely determined by the In the first version of the ekpyrotic scenafidl], where
value of ¢, but the Einstein’s equations give a first-order the bounce is supposed to be non-singular from the four-

evolution equatiorf26] (in the absence of anisotropic stress dimensional viewpoint, collapse is driven by a scalar field
[28]) with a steep negative potential which violates the dominant

energy condition and gives>1. The same is supposed to
3 happen in the second version of the ekpyrotic scen@2®
b=- 5(1+W)§' 49 4 early times. In these cases, the shear rapidly decreases
[32,33 and ¢ is constant on large scales, with a strongly
During conventional slow-roll inflationwith w~—1 and  scale-dependent spectrum}’kaZ_ The Bardeen potential
d<H®D), the Bardeen potential is indeed smali~—3(1 @, related to by Eq. (50), grows rapidly and has a flat
+w)¢/2 on superhorizon scales. But we wish to eliminatespectrum[34,29,33 Pg%<k°. But Eq.(40) shows that it is
the possibility that the Bardeen potential subsequently beenly the comoving shear that affecfs and the shear is re-
comes large on superhorizon scales. lated to spatial gradients of the Bardeen potential (E§). A
We will restrict the rest of our discussion in this section toscale-invariant Bardeen potentiab ¢k°) corresponds to a
strictly adiabatic matter perturbations, withP,,=0, but  strongly tilted blue spectrum for the shear%k?).
consider non-adiabatic perturbations in Appendix D. For

k
aH

k
aH

o

H aH

k 2

aH

5+3w 1

,l'_"_
H™*® 5 3

adiabatic perturbations, Eqg41), (48) and (49) yield V. OTHER CONSERVED QUANTITIES
coupled first-order equations for the evolution oand @, o .
which to lowest order irk/aH gives Generalizing from the construction of the conserved
quantity { given in Sec. Il it is clear that for any monotoni-
1 k \? cally increasing or decreasing quantity, satisfying a local
H "= aH P, (500 conservation equation of the form
. 5+3w 3 af
Ho M0+ = —®=— S (1+w)¢, (51) Vo, =v(, (55)
which yield two independent long-wavelength solutions,we can construct a conserved perturbation that is given to
which are represented by first order as
- of
(=C,, (52 xfE—HT, (56)
q)zc_e—(5+3\7v)N/2, (53)

with &f evaluated on some unifori-slicing which we will

wherewN=fwdN. The first of these solutions, with con- take to be the spatially flat one. This construction giyes
stant{ on large scales, remains the “growing mode” solution =X, as a special case, and we shall now see how it gives the
so long as other conserved quantiti€s andZ; [11,19.

H 1goccfk293(2W woLNE, (54) A. Separately conserved energy densities
for the “decaying mode” on large scales, approaches zero. Suppose the total energy densjyof the Universe is a
This is always true in an expanding univergé-¢ +) so  sum of componentg;, each one of them either radiation or
long asw—w, <1, i.e.,P<p. This is easily interpreted as matter, and with no energy transfer between the components.
the condition for the decay of the shear relative to the Hubblén that case the pressure of each component is a unique func-
rate (o/H) in an expanding universe. tion of its energy P;= p;/3 for radiation and®;=0 for mat-
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ter and each component satisfies its own separate energientionally defined relative to the photon density to be
conservation equatidr(since there is no energy transfer Scom=Scomy, Sg=8g, andS,=S,,) are found by obser-
vation to be at most of ordef [36—38,4. Since radiation
V%: —(pi+P)) (57) dominates, one deduces from E1) that  is constant on
2% R large scales to high accuracy during this era.
) The other era, which occurs in the recently proposed cur-
As a result there are the separately conserved perturbationgaton scenarid12,13 (see also[14,15), is the era(after

inflation, but before primordial nucleosynthésishen the

=%, (58 massive curvaton fiel@ oscillates P,=0) in a radiation
5 background P,=p,/3),
Pi
:_H? (59) pP=pstpr- (64)
Here, ¢, is supposed to be negligible so that the total curva-
= E opi (60) ture perturbatiory is given by Eq.(61) as
3 pitPy’
3ps
where 8p; is evaluated on the flat slicing. This is another {W=7r—=—C- (65
4p+3p,

result of[11].
One can express the total density perturbatioms a  Well before the curvaton decays, the radiation is supposed to

weighted sum of the separadg; dominate so that grows like p,/p,>a(t), providing an
example where the totdl is not conserved on superhorizon
> pid scales after inflation.
{= : (61) iy
2 p B. Conserved number densities
I

If n; is a conserved number density, thenis inversely
proportional to the volumé& A conservation law of the form
ngiven in Eq.(38) is satisfied withy(f) = —f andf=n;, lead-
ing to the conservation of the first-order perturbati@g]

If the ¢; are all equal, thed={¢; which is constant. Other-
wise { may have some variation, determined by the co
served isocurvature perturbations defined by

S5i=3(4- 1) (62 Z=x, = %‘;_” (66)
The condition that the; are equal is just the adiabatic con- I
dition, that all of the separate energy densitasd hence the These conserved quantities find an applicati@d,39 in
total pressureare uniform on slices of uniform total energy connection with the three isocurvature perturbaticiygn,
density. Sg and S, . BeforeT~1 MeV, these quantities are not the
There are two eras in the early Universe where separatelgppropriate ones to consider, because the separate energy
conserved; have been invoked. One is the comparativelydensity perturbationg; may vary with time or be simply
late era, beginning when the temperature falls below 1 Mewndefined.(The latter is the case fafg before the quark-
and ending when cosmological scales start to approach tHeadron transition. One can however consider instead the
horizon® number densityn.qy, of cold dark matter particles, the den-
The energy density during this era has four componentssity ng of baryon number and the density of lepton num-
ber. Each of these number densities corresponds to a con-
p=pcomtpetp, TPy, (63)  served quantity after some epoch, which may be regarded as
the epoch when the quantity originates. The corresponding

perturbationg; are thus conserved, and after the temperature
the four conserved quantiti€gpy, ¢g, ¢,, and¢, deter- falls below 1 MeV they determine the three isocurvature

mine the evolution of the entire set of cosmological pertur-Perturbations according to the formuld]
bations after horizon entry, and can therefore be determined 1o P 6
by observation. The three isocurvature perturbati@on- sScom={com ¢ (67)

$Se=i{s—¢ (68)

with the radiation(photons and neutrinpsdominating the
matter(cold dark matter and baryonic mattefhe values of

%In this expression) is the volume which is comoving with the
flow of p;. This is not strictly the same as the volume which is
comoving with the flow of total energy density, but we have shown “The volume should be the one comoving with the flow of the
in Sec. Ill that on superhorizon scales the expansion of all comovconserved quantity, but as already stated we are going to show in
ing volumes become equivalent. See Ezy). Secs. lll and IV that the choice of comoving volume is irrelevant on
Recall that electron-positron annihilation and neutrino decou-sSuperhorizon scales. This irrelevance is assumed implicitly when
pling both take place when the temperature is around 1 MeV. the conservation of; is discussed if19].
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In the last formula¢ is the lepton asymmetry which must APPENDIX A: THE SASAKI-STEWART

satisfy the nucleosynthesis constrdigit<0.07. In this way, EXPRESSION FOR £

the three isocurvature perturbations can be calculéted

S . On superhorizon scales, E@5) becomes
shown to vanishgiven a model of the early Universe. P @5

56=—34¢. (A1)
VI. CONCLUSIONS

hi h h how local ion | This is valid in any gauge. Choose now a gauge whose slic-
In this paper we have shown how local conservation law§y,, s fiat at timet,, and uniform density at time Integrat-

(e.g., energy conservation or b.aryo.n number conser\batior]ng fromt, to t, and usingZ= — ¢ on the slice at, we find
can lead to conserved perturbations in cosmology. Whenev%r]at on superhorizon scales

we have a local continuity equation of the form given in Eq.
(38), then we can construct a cosmological perturbation 1 [t
which is conserved after uniform expansion along comoving L(x,1)= §f 0dt= 6Ngq x,t) (A2)
worldlines. 1

In particular we have shown that in linear perturbation . : .
theory the integrated expansion along comoving Worldlineé’vhereN$S(X’tl't) IS the.mtegrated.expfansmn.from t_hg flat
between spatially flat slices is just given by the comovingSIICe attimet,, to the unlf_orm-densny slice at timte This is
shear. Thus on sufficiently large scal@ghere the shear is e expression of Sasaki and Stew@®], used by them to

negligible the quantityX; defined in Eq.(39) derived from calculate the curvature perturbation at the end of multi-field
the conservation equatiof38) is conserved. The choice of inflation. It is practically independent of the threading that

spatially flat slices gives a gauge-invariant definition of the_deflnes the expansion, by virtue of the fact that we are deal-

; . . ith superhorizon scales.

conserved quantity. This is a purely geometrical result/"9 W! . _ .
whose derivation does not require any gravitational fieIdh Oé” exkprgssmn, Eq9), fe.adsg;].‘ oN. I_n colr)(t:irastlwgh .
equations. We only require the gravitational field equation§ € Sasakl-Stewart expression, this one Is valid only during

in order to estimate the actual comoving shear, finding it P €ra whenZ is c_onstant, corresponding to an adla_lbatlc
be negligible on superhorizon scales. pressure perturbation. To understand the relation with the

The best known example is the curvature perturbagion Sasaki-Stewart expression, we can integrate (Bgfrom a

=X, , which specifies the total density perturbation on Spa_u_niform-c_jensit_y %"”Ce at iméto a flat slice at timd,, bOth .
tially flat slices or equivalently the curvature perturbation ont'm.eS bgmg V.V'th'n the era when the pressure perturbation is
uniform-density slices is constant on sufficiently large adiabatic. Using 3= dp/(p+P) on the slice at; we get the
scalegwhere the comoving shear is negligipfer adiabatic time-independent result

density perturbations, for which the local pressure is a
unique function of the local density and hence the total en-
ergy conservation is of the form required in E88). We

{=—06N, (A3)

h h that hori incid it th whereN= — Nggis the integrated expansidrom t to t;. We
ave shown that on superhorizon scalespincides wi € see that the “integration constan8N introduced in Sec. Il

comoving curvature perturbation. can be interpreted as a perturbation in the integrated expan-

It is also possible to construct other perturbed quantitiesgio hetween two slices, and that it is eq(as it must bpto

such as the separate curvature perturbagieaX, for any SNgs.

perfect fluid whose energy is separately conserded, or

ZiEXni, for any conserved number density obeying a lo- APPENDIX B: UNIFORM HUBBLE PARAMETER
cal conservation equation of the form= —3n; [19]. ON COMOVING SLICES

The general argument we have given for the existence of ) . ~ .
conserved quantities is not restricted to linear perturbation N @ given gauge, the perturbation in the expansiawith
theory. As an example we give an expression for the cont€SPect to coordinate time is given by EgS), which for the
served quantity to second-order in the density perturbation. f{at slicing becomes Eq36),

is necessary to understand the evolution of second order den-

sity perturbations in order, for example, to make any estimate 00=—o. (B1)
of the primordial non-Gaussianity expected in density pertur- _
bations produced from inflation. On superhorizon scales this give$d|/H<1, valid for any

threading. In other words, the expansion with respect to co-
ordinate time is practically unperturbed on flat slices.
We could instead consider the perturbation in the expan-
We are grateful to Marco Bruni, Cyril Cartier, Karim Ma- sion with respect to proper time, given by E§2). On the
lik, and Takahiro Tanaka for useful discussions. This workcomoving slices one ha&gs.(5.20 and(5.21) of Bardeen
was supported in part by PPARC grants PPA/G/S/1999]28]; see alsd26])

ACKNOWLEDGMENTS

103515-8



CONSERVED COSMOLOGICAL PERTURBATIONS PHYSICAL REVIEW B8, 103515(2003

R=— ¢com= HAom, (B2) ing single-field slow-roll inflation(and even afterwards pro-
vided that no other field plays a significant rplélowever,
and therefore on comoving slices the potenti®l(¢) is uniform, and as a
result
(60)com=—0. (B3)
Like Eq. (B1), this expression is valid for any choice of the P com= 5pcom- (C2)

threading that defines the expansion, and on superhorizon
scales it gived86|/H<1 practically independently of the This is not in accordance with the strict definition, EG1),
threading. In other words, the expansion with respect t®f an isocurvature pressure perturbation. In particular, during
proper time is practically unperturbed on comoving slicesslow-roll inflaton p=—P(=V) which means that the adia-
for any choice of the threading. In particular the comovingbatic condition for the pressure perturbation is
expansion is practically unperturbed on such slic#s/H
<1l SP=—8p. (C3

We argued in Sec. Yassuming that anisotropic stress is
negligible that on super-horizon scalé¢®|<1. From Egs.

(44) and (47) this implies that on comoving slices On a generic slicing this is well satisfied, but on the comov-

ing slicing it is at variance with Eq.C2). All that matters,

K \2 though, is that both the pressure perturbation and the energy
|5H/H|=O((ﬁ> ) (B4) density perturbation are both very small on the comoving
slices. Or, to put it differently, that the pressure perturbation
K\2 is very small on uniform-density slices. This is enough to
| 6pcom | :o< (_) ) (B5) ensure that the local pressure is a practically unique function
aH of the energy density, leading to the conclusion thiais

To summarize, on comoving slices, the perturbations in thé:OnStant during single-field inflation.

locally defined Hubble parameter and in the energy density

are both negligible in the superhorizon regime. The only sig-

nificant perturbations on comoving slices are therefore cur- APPENDIX D: SHEAR ON SUPERHORIZON SCALES
vature perturbatiorR, and the pressure perturbation if it is FOR NON-ADIABATIC PERTURBATIONS

not adiabatic. The statements of the previous paragraph re- , )
main true if we replace the comoving slicing by the uniform- I we relax the assumption that the matter perturbations

density slicing, since we argued in Sec. IV that these slicing§r® adiabatic used in the final part of Sec. IV to calculate the
practically coincide on superhorizon scales. shearo on superhorizon scalébut still assuming no aniso-

tropic stresy then we no longer have a closed system of

APPENDIX C: THE ADIABATIC CONDITION equations for and®. However, we can still estimat® in

ON THE PRESSURE PERTURBATION the long-wavelength regime givénand integrating Eq51),
In the text we defined the adiabatic condition on the pres- 2 . 543w
sure perturbation as the condition that the local pressure is a §H‘1<I>+ 3 O=—(1+w){. (D1)

practically unique function of the local energy density. Tak-

ing it to be absolutely unique, we obtain the familiar adia-
batic condition We also need an initial condition a few Hubble times after

horizon exit during slow-roll inflation. Starting with the
S5P=(Plp)dp. (C1)  vacuum fluctuation, direct calculation shows tfiaat this
stage is either practically constafsingle-field inflation or
However, on the comoving slicing wheé is anomalously only varying slowly on the Hubble time scalenulti-field
small, and on the uniform-density slicing where it vanishesjnflation). Through Eg. (D1) this gives ®=—(3/2)(1
it is too strong to require that this expression is valid; there is+w) 7, and hence®|<|Z|.
no reason why the slices of uniform pressure should exactly We are now going to argue that E@1) will keep |®|
coincide with the slices of uniform energy density even if the<|{| throughout the super-horizon era. A rough argument is
local pressure is a “practically” unique function of the local the following. Suppose that insteg®|> || in some super-
energy density. horizon regime. Then EqD1) becomes
An example is provided by single-field slow-roll inflation.
During slow-roll the locally-defined inflaton field is a prac- 2
tically unique function of proper timep(7), up to the choice “H YIn®)=—
of origin for . On superhorizon scales, where spatial gradi- 3
ents are practically negligible, this gives practically unique
functions p(7) and P(7), making P a practically unique where we used the energy conditian> — 1 which is always
function of p. In other words, the adiabatic condition for the satisfied in scalar field theory with a positive kinetic energy.
pressure perturbation is satisfied on super-horizon scales dufFhis equation shows tha®| would always be decreasing in

5+ 3w(t)

3 <~ (23, (D2)
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any expanding universe where|>|/|, suggesting that where
such a regime cannot actually be reached starting from the
initial condition |®|<|{]. Ina
InF=
|

5+3w(a’)
A more direct argument is to integrate Ef1), giving

2

d(lna’). (D4)

nag

Assuming thatZ is never very much bigger than its primor-

|
Fb=— §f b [1+w(a’)]JF(a’)¢(a’)d(Ina’), (D3)  dial value, this will give|®|<|{| for any reasonable behav-
2)na ior of w(a).
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