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Scaling in numerical simulations of domain walls
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We study the evolution of domain wall networks appearing after phase transitions in the early Universe.
They exhibit interesting dynamical scaling behavior which is not yet well understood, and are also simple
models for the more phenomenologically acceptable string networks. We have run numerical simulations in
two- and three-dimensional lattices of sizes up to 409e theoretically predicted scaling solution for the
wall area densityA« 1/t is supported by the simulation results, while no evidence of a logarithmic correction
reported in previous studies could be found. The energy loss mechanism appears to be direct radiation, rather
than the formation and collapse of closed loops or spheres. We discuss the implications for the evolution of
string networks.
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I. INTRODUCTION domain walls, but also the amplitude of the relation. Clearly,
a logarithmic correction would be a problem for the ap-
The idea that the symmetries in nature are not respecte@groach. The main purpose of this paper is to give a more
by the vacuum plays a crucial role in the unification of accurate numerical determination of the scaling (aw2 and
forces. Moreover, any broken symmetries that can be identi3 dimensionsand to determine the amplitude, to check the
fied today were likely to have been restored at high temperaaccuracy of the theoretical predictions[®i7,29.
tures[1-3]. These two facts suggest that the Universe under- Our results for the scaling exponents and amplitude can
went phase transitions in its early history. It was realized thabe found in Tables I and Il. They are consistent with the
phase transitions may leave the Universe filled with topodinear scaling law fo, but the numerically determined am-
logical defectd4,5], which if massive enough could be ob- plitudes are higher than the theoretical predictions. A detailed
served through their density fluctuatidis-7] (see als¢8,9] ~ comparison can be found [i29].
for reviews. More recent work, reviewed ifil0,11], has

explored the dynamics of the formation process in more de- Il. DYNAMICS OF DOMAIN WALLS
tail, and has made apparent a strong connection to condensed . I in field theori h ifold of
matter physics. Domain walls occur in field theories whose manifold o

Probably the most interesting and important property of MiNiMUM energy states is topologically disconnectsde

defect networks is that they seem to exhibit dynamic scaling‘.a'g'[8])' The canonical example in relativistic field theory is

This means that they quickly lose memory of their initial @ theory of a single scalar field(x), with action
conditions and evolve towards configurations which can be

characterized by a single length scéde perhaps a fel2]) S= f d*xy—g
&. This length scale is thought to increase with time with a

universal exponent. In a relativistic field theory one can ar
gue from dimensional analysis théft) ~tf(Mt), whereM

is the mass scale of the defect. The large-scale dynamics
defects are independent bf, and so the dynamical scaling A
exponent can be naively estimated as 1. V(¢)= Z(¢2—M2)2- 2

This behavior has been checked by numerically simulat-

ing classical field theories for domain walls3-19, gauge |, the cosmological context, the met,, is taken to have
strings [16—-18, global strings[19,20, global monopoles ihe Friedmann-Robertson-Walker form
[21-23 and texture$21,24,25. All the simulations are con-

sistent with the linear scaling law over the range of the simu- 9,,=R%(1) 1,
lations, but do allow other behaviors: in particular, Press,

Ryden and Spergel suggested that the results for domawwhere 7,,=diag(1-1,—1,—1) is the Minkowski space
walls would be better fitted bg~t/In(t). metric andt is conformal time. The field can be conformally
Since the original naive scaling arguments were put forrescaledR(t) ¢— ¢, giving an Euler-Lagrange equation

ward, a more quantitative approach to the dynamics of do- .
main wall networks has been proposed by one of the authors . R. 5 5 oo
[27-29, which predicts not only the linear scaling law for ¢>+2§¢—V ¢+ Nd($"— p°R7)=0. &)

1
50, d=V(¢) |, (1)

‘where the potentiaV is a function with more than one mini-
g?um, which we take to be the renormalizable form

In the broken phase,u?>0) there are domain wall solu-
*Email address: t.garagounis@sussex.ac.uk tions in which the field changes vacuum over a distance of
"Email address: m.b.hindmarsh@sussex.ac.uk orderM ~1, passing through zero. The solution for an infinite
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static planar wall is well knowf8] and with an appropriate b= 6)
choice of coordinates can be written
¢=ptanh(Mz). 4 . R
T=V2p-Np($*—pu®) = | g+ 7|7 @)
At high temperature the mass parameter receives thermal
corrections from the fluctuations in fields to which is
coupled[1,3]: The equations may be rescaledge=1, A=1, so that the
width of the wall is 1. These classical equations can be
,LLZ(T)=,LL§—CT2, thought of as effective equations representing the long-

) . wavelength dynamics of the quantum field when the occupa-
wherec is a model-dependent numerical factor. For the pur&jon number is high.
scalar field theoryc=1/6. Thus as the Universe cools the  The results 0f13,19 seemed to show that a good fit for

field undergoes a phase transition fram)=0 to (@)= the area scaling law was given by
+u(T). As this transition happens at a finite rate, the field

cannot select the same minimum everywhere at the same
time, and the Universe divides into domains in whigh

takes either positive or negative values. By continuity of the . ) o )
field, these domains must be separated by domain i&jls N both 2 and 3 dimensions, which is not predicted by the

in which the field approximates the configuration given bytheory of dynamic scaling for domain wal[27,29. It is
Eq. (4) in the transverse direction. The initial size of the therefore important to check these numerical simulations,

and after a decade of development in computer technology

one can do much larger simulations in order to eliminate
The domain walls are mostly in the form of one infinite transient _effects. Indeed,_ our I_argest simulation_ is performed

boundary separating percolating clusters of the two vacug" 3D grid of 4098, which gives us a dynamlcirfmge of

[14,15,19. The subsequent evolution of the field is domi- roughly thrge orders of magnltude petweteand M™%, the

nated by the dynamics of this infinite domain wall. The wall Characteristic response time of the fig&#].

has a tension of ordév 3, and tries to straighten out and lose

AxIn(t)/t, (8

domainsé is controlled by the rate at which the transition
occurs and how strongly damped the field i§)].

energy, and in finite volume eventually one or other vacuum IIl. NUMERICAL SIMULATIONS

will take over the whole space and the field thereby reaches ) _

equilibrium. One way of quantifying the approach to equi- A. Evolution algorithm

librium is to measure the area density of the domain wall We used 2 and 3D cubic lattices with a 2nd order discreti-

or equivalently the curvature scale of the we# 1/A, where  zation of the Laplacian operator. The evolution of the dis-

[27] cretized system was effected with the Verlet or leapfrog al-

gorithm, common in molecular dynamics and offering a

A=(58(¢)|V ). (5 simple but effective way of discretizing the equations of mo-

. . . . ion (7). Th h [
At late times, this quantity can only depend on titrend the tion (7). The scheme is

mass scaléVl. The fact that the wall obeys a Nambu-Goto Tos12= Tn_1ot+ F(t, 70 At

equation independently &f [8] indicates thalA=a/t purely

on dimensional grounds, whegeis a constant amplitude.

This can be called the naive or “classical” scaling hypothesis bn+1= Pnt i 1AL ©

for domain walls, which has been put on a more rigorous

footing in[27,29. The scaling hypothesis, and the theory of wheref(t,¢,,m,) is the right hand side of Eq7), and 7,

dynamic scaling, can be also be applied to other extendeé (7, 1+ m,_12)/2. Asfis linear in7,, the equation can

topological defects such as cosmic strings. More generallygasily be rearranged so that,., 1/, is on the left hand side.

one can define a scaling exponénsuch thatA=a/t?, and  The simulations on which the data is based all have

one of the goals of this paper is to measure both the exponert0.3 andAt=0.1, except where indicated.

b and the amplitude as accurately as possible. We chose periodic boundary conditions, and restricted the
The first numerical simulations of this system were per-length of the simulation to a maximum time equal g,

formed by Press, Ryden and SperpEs,19 who noted that =NAx/2At, the time required for two signals emitted from

in comoving coordinates the width of the wall shrinks asthe same point and travelling in opposite directions to inter-

R™1, and so any numerical simulation with a lattice spacingfere with each other. This represents the time it takes for the

fixed in comoving coordinates runs the risk of failing to re- field to “notice” the finite dimension of the lattice it resides

solve the domain wall at late times. They showed that ignorin.

ing the R dependence of tha? parameter did not substan-

tially affect the dynamics of the walls, and we adopt the

same approach. We also include a damping term to simulate

cooling in the early stages of the evolution. Written in first  The main objective of the simulations was not to see the

order form, the field equations become formation of the network, but the evolution at later times,

B. Initial conditions
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minima and to remove spurious high frequency modes. This

1r 1 is controlled by the parametey in Eq. (7). The dissipation
aids the formation of the domain wall network and as soon as
0.8 1 this is formed, dissipation is turned off and the system is left
to evolve freely. A small amount of time, roughly the sys-
o6k | tem’s characteristic time, is required for the field to adjust
N itself into the new equation with no dissipation and continue
S g4l | to evolve. For that reason any regression on data starts a few

time steps after the end of the dissipated period. Turning the
dissipation off slowly seems to help the system adjust more
quickly to the new conditions and smooths out the effects of
J this “adjustment” period. More specifically, the end of the
1 dissipation period  and the beginning of the regressidp

are specified in the program and their differefge-Tp is
—0.2 5 50 100 150 200 250 300 350 qalculated. As soon as the sy§tem reac‘ljgs dissipatiqn at_

t time stepn 7, is decreased till zero using a Gaussian like
function

0.2

FIG. 1. Typical evolution of ¢|2.

- . _ p(—A(n—TD)Z)
and so it is not necessary to start with a proper thermal dis- Tn=miXexp —————— | X0O(Tg—Tp), (1)
tribution. Instead, we try to imitate the configuration of the (Tr—Tp)?
field in the potential at some temperature above the critical
T>Tc, with a Gaussian distribution around zerokispace. wheren is the time stepy,; the initial dissipation andé a real
We created a Gaussian distribution by adding 12 uniformlypositive number controlling in more accuracy the length of
distributed random numbers of unit variance, an algorithnthis period.
that is quick and easy to parallelize. By settihg-o=0 we Dissipations ranged from 0.1 to 0.3 in the simulations and
set the average of the distribution to zero and the proceedffected the system for roughly 10—-30 % of the total simula-
with transforming the field to the representation. This is an tion time T,,;, with regression on the results starting at 20—
alternative to simulating the actual phase transition by de40 % of the total time and the coefficieitwas taken to be in
forming the symmetry-breaking potential. The Gaussian disthe range 1 to 1.5.
tribution was chosen to give a pointwise spatial variance of
about 10!, and the value of the volume-averaged field
was always less than 18. Bigger ranges for the Gaussian ) i )
distribution were found to lead to instabilities unless high ~The main purpose of the simulations was to check the
dissipation was used. This is due to the occasional large vaRoWer law for the evolution of the wall area density. A crude
ues of the field, which have high energy densities due to th&/@y of calculating the total wall area is counting the places
quartic potential. After initialization the field is left to roll Where adjacent Iatztlce points have opposite signs and multi-
slowly to the two minima and start oscillating in them. A Plying by Ax or Ax* which is a rough estimation of the wall
typical evolution of| |2 can be seen in Fig. 1. area e}t the_“lln.k." More preqsely, one should.ﬁnd an accu-
If the average field were not close to zero in the initial "ate discretization of the continuum area density oper@&or
conditions distribute we would have found that the biased 'he calculation is made by finding two adjacent lattice
initial conditions would give a different time dependence inPCints where the field has opposite signs and calculating the
the area density14,15. Indeed, if one phase is selected in gradient of the field at the “link.” For two such adjacent

the initial distribution then the evolution of the domain wall Points {i,j.k} and{i—1jk} the gradient is calculated as
area density can be shown to follow the relation follows. The numerical approximation to the gradient at the
direction of the link is just

D. Wall area density calculation

1
Ax e °, (10 Ade Dijk— Di-1jk
AX
wherec a positive real number. Percolation theory predicts
that for a phase occupying a fraction less than a critical valugvhereas the gradients at the remaining two directions are
p.. the infinite wall disappears. The dominant phase takesaken by averaging over the gradients of nearby links;jthe
over at a characteristic time scale, and quickly fills the entirecomponent of the gradient for example would be
simulation volume. In our cage=0.5+10 7, far above the
percolation threshold which for a cubic lattice can be shown A 1/ i qjrix— Pi-1j-1x N i1k~ Pij-1k

to bep,=0.31. %72 2AX 2Ax

C. Beginning the evolution One needs to account for the orientation of the area element

In the beginning of the simulation dissipation is imposedat each link, otherwise one will end up overestimating the
in order for the field to sink in a controlled manner into the area[19,30. For domain walls in 3D the problem can be

103506-3



T. GARAGOUNIS AND M. HINDMARSH

12

11f

ALat

5 \ \ \ \
150 200 250 300 350 400
t

FIG. 2. Evolution of the wall area density, ,; for a 2D simu-
lation, N=1024, Ax=0.3, andAt=0.1.

resolved by simply multiplying the lattice area estimate by a

factor 3 [30], while a similar argument to that given j80]
gives the factorr/4 in 2D:

2
A=Al (3D) (12)

a
A=Al (2D). (13)
The figures showA ,;, while the tables shova.

IV. RESULTS

A. Wall area density

In all simulations the wall area data started to be take

PHYSICAL REVIEW D68, 103506 (2003

TABLE II. Area scaling laws for Minkowski, radiation-
dominated, and matter-dominated FRW backgrounds in 3 dimen-
sions. The results are derived from averaging over 5 simulations for
each case, witlhx=0.3, At=0.1 and a 512lattice.

Background Area scaling law
Minkowski 0.883(0.141f) 0-995(0.026)
Radiation 0.925(0.125) 0-994(0013)
Matter 0.963(0.123) 0-997(0012)
grounds respectively. The biggest 3D simulatioiN (

=4096,Ax=0.3,At=0.08) gave a=0.980(x0.017), b
=0.985(+0.003).

There is a suggestion from the simulations that the wall
area decreases slightly slower thas 1. However, this de-
viation from theb=1 scaling could not be attributed to a
relation of the form given in Eq8), as it has been suggested
[13]. Plotting exph ,)Xt against time shows that there
seems to be no logarithmic term in the wall area evolution,
Fig. 3.

It is possible that the departure frdo=1 is a finite size
effect. At timest>L, wherelL is the comoving box size, the
network will either disappear entirely, or enter a long period
where there are twdgor possibly morg parallel walls. We
combined our data by averaginy,; and then fitting to a
power law, which would produce a curve which is flatter
thant™. We tried to avoid this effect by taking data up to a
time L/2 after the dissipation had been switched off: how-
ever, it is still possible that correlations were introduced dur-
ing the dissipative regime and the system departed from the
scaling regime earlier than anticipated. The departure from
b=1 is not statistically significant so this possibility was not
investigated further.

Both the power law and the coefficieat of Eq. (14).
present challenges to the analytic method for the calculation
of the wall area density of Ref27], which are compared in

n

shortly after the dissipation had been stopped. Figure 2

shows the results from a 2D run, fitted to a power law

A=at™® (14)

2.12

2.1y

by regression. Five simulations for the same parameters were 5 ogl
run and an average was taken, with the fit taken on the av-
eraged area. The results for 2D and 3D simulations are pre-_, ggl
sented in Tables | and Il for Minkowski, radiation and *_

matter-dominated  Friedmann-Robertson-Walker  back- <5 g4l

TABLE |. Area scaling laws for Minkowski, radiation-
dominated, and matter-dominated FRW backgrounds in 2 dimen-
sions. The results are derived from averaging over 5 simulations for

200

250

300

350

400

each case, witthx=0.3, At=0.1 and a 1024lattice. 2
Background Length scaling law 1985
Minkowski 0.765(0.227) 0-987(0.032)

Radiation 0.928(0.165) 0-996(0-018)
Matter 1.145(0.227) 0-992(0.014)

FIG. 3. expf ,t) against time for the simulation of Fig. 2. A
decay lawA ;;~log(t)/t would show as a logarithmic increase on
this graph.
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FIG. 4. Six snapshots from a numerical simulation using the algorithm described in Sec. Ill, with time increasing left to right and top to
bottom. The solid isosurfaces are surfaces of small conkgantwvhile the semitransparent isosurfaces are surfaces of constant momentum

density.

detail in[29]. The power law is very close to the predicted in domain wall networks and has provided an accurate way
value of b=1, with good precision, but the coefficieat to support the scaling solution predicted by theoretical com-
showed larger fluctuations between runs. putations. A power law with exponent very close to 1 was
found to be the best solution according to the simulation data
with no evidence for a logarithmic term suggested in previ-
ous studieg13].

The numerical integration of the equations of motion for  The fact that a domain wall network shows this dynamic
the ¢* model has given an insight to the dynamics involvedscaling over approximately three orders of magnitude in the

V. CONCLUSIONS
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parameteM ¢, the ratio between the local curvature radiuspy a 2-dimensional curve (o). Consider a segment of
and the wall width, is remarkable, and has important impli-length|, with |<¢, where¢ is the correlation length of the
cations for cosmic string networks. First, it is clear from thecurve. WritingAr=r(1)—r(0)=xi+yj, we see that the lat-
visualizations in Fig. 4see alsd31]) that the energy in the tice approximation to the length is

domain walls is very quickly transferred into propagating

modes of the field: the formation and collapse of closed =X +1y]. (A1)
loops(2D) or surfaceg3D), expected in the standard picture

of the evolution of wall networkgg], is rare. |ndeed, in ZD, In the limit that|/§—>0, the continuum value of the |ength is
self-intersections to form closed loops must be very rare; it =/(x*+y?). Hence

two segments of wall approach each other they must be ge-

nerically curved away from the point of closest approach, I :Iﬁﬂ = (|cosal| +|cosg))! (A2)
and therefore the acceleration is in the direction which would o

tend to increase the separation. Nonetheless, 2D walls scale o )

perfectly well, so it seems plausible in that case that energj?héré @ and g=m/2—a are the direction cosines of the
is being transferredirectly into radiation. If the amplitude of Vector Ar. The ratio between the lattice estimate of the
the oscillations is large enough they could appear to fornlength and the true length is obtained by averaging over all

tiny loops or “protoloops”[17,18). possible orientations of the lattice relative Ao:

We believe that our results add weight to the contention, | 1 (2n 4
first put forward in[16], that extended defectSncluding <Lat> = _f da(|cosa|+|sinal)=—, (A3)
cosmic strings in 3D have a nonperturbative channel into | 2mJo ™

propagating modes of the massive fields. At first sight this is
difficult to square with the standard picture, in which walls as advertised.

and strings obey the Nambu-Goto equations of motion for This calculation can be extended to arbitraprough a
large curvature radii, for in that case the total energy lockednore involved argument. Let us first define the correlation
up in the extended defects is conserved, in the absence of &#nction

general relativistic effects such as an expanding background

or gravitational radiation. It is certainly true that it is possible C(r)=(¢(r)¢(0)), (A4)

to find string trajectories which are very close to being solu- , . | .
tions of the Nambu-Goto equatiorjd7,32: however, the which is assumed to be smoothrat 0, so that

initial conditions have to be carefully prepared, and the ex- 1

istence of these trajectories does not preclude the existence C(r)=C(0)+ =C"(0)r?. (A5)
of a nonperturbative radiative process for defect networks. 2
Indeed, we maintain that our results are good evidence th%

there must be such a process. Refs.[26,27] it is shown that the length densi#y of the

locus of zeros of a Gaussian random field in 2 dimensions is
given by
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On the lattice, we must consider the probability that the
values of the field at opposite ends of a link have opposite
APPENDIX: LATTICE CORRECTION FACTOR FOR 2D signs, in which case we can say that the link is occupied by
WALL LENGTH DENSITY a segment of domain wall. Let us call this probability.,
In Ref.[30] it was shown that the naive lattice estimate ofWhICh 'S
the area density of random domain walls in 3D overcounts Pocc=2P(¢(X)>0 and ¢(x+iAx)<0), (A7)
the continuum value by a factor of 3/2 in the limit that the
radii of curvature are large compared with the lattice spacingwhere the factor of 2 accounts for the opposite céa$g)
In this section we perform the analagous calculation for twa>0 and ¢(x+iAx)<0. The lattice estimate of the length

dimensions, finding it to be 4. density is then
The naive estimate is obtained by summing the length of
all links containing a wall and dividing by the total volume. 2Pocc

A link crossing a wall is defined to be one for which the (A8)

values of the fieldp on the sites at either end have opposite
signs. One can immediately see this will overestimate thevhere the lattice spacing isx, and the factor 2 comes from
length, as one is approximating a smooth curve by a sethe fact that there are twice as many links as sites in 2 di-
guence of line segments parallel to the lattice vedtaursd]. mensions.

In the continuum the center of a domain wall is described Suppose we now define
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P1(C(r1),V)=P(d(x1)>V and ¢(x,)<V), (A9) where C,,=C(r,,). Hence the lattice estimate of the area
density is
whereV is an arbitrary threshold and,=|x; —X,|. One can

then almost trivially write 2

Ala=——COS 1( (A12)

C(AX))
mAX ’

12 Py, dC(r) c(0)

F’lz(C(rlz),V)=f0r 3C(r) dr dr.  (A10)

Providing Ax is much smaller than the length scale defined

by /|C(0)/C"(0)|, we see that
It can be showr33] that

JP 1 V? A =E\/ _gO (A13)
12_ % Lat T C(O) ’

= exp — s
dC12 27 C(0)%—C3,]¥2 C(0)+Cy,

(Al11) and hence, from EqA6), thatA, ,=4A/ .
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