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Scaling in numerical simulations of domain walls
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We study the evolution of domain wall networks appearing after phase transitions in the early Universe.
They exhibit interesting dynamical scaling behavior which is not yet well understood, and are also simple
models for the more phenomenologically acceptable string networks. We have run numerical simulations in
two- and three-dimensional lattices of sizes up to 40963. The theoretically predicted scaling solution for the
wall area densityA}1/t is supported by the simulation results, while no evidence of a logarithmic correction
reported in previous studies could be found. The energy loss mechanism appears to be direct radiation, rather
than the formation and collapse of closed loops or spheres. We discuss the implications for the evolution of
string networks.
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I. INTRODUCTION

The idea that the symmetries in nature are not respe
by the vacuum plays a crucial role in the unification
forces. Moreover, any broken symmetries that can be ide
fied today were likely to have been restored at high temp
tures@1–3#. These two facts suggest that the Universe und
went phase transitions in its early history. It was realized t
phase transitions may leave the Universe filled with to
logical defects@4,5#, which if massive enough could be ob
served through their density fluctuations@5–7# ~see also@8,9#
for reviews!. More recent work, reviewed in@10,11#, has
explored the dynamics of the formation process in more
tail, and has made apparent a strong connection to conde
matter physics.

Probably the most interesting and important property
defect networks is that they seem to exhibit dynamic scal
This means that they quickly lose memory of their init
conditions and evolve towards configurations which can
characterized by a single length scale~or perhaps a few@12#!
j. This length scale is thought to increase with time with
universal exponent. In a relativistic field theory one can
gue from dimensional analysis thatj(t);t f (Mt), whereM
is the mass scale of the defect. The large-scale dynamic
defects are independent ofM, and so the dynamical scalin
exponent can be naively estimated as 1.

This behavior has been checked by numerically simu
ing classical field theories for domain walls@13–15#, gauge
strings @16–18#, global strings@19,20#, global monopoles
@21–23# and textures@21,24,25#. All the simulations are con-
sistent with the linear scaling law over the range of the sim
lations, but do allow other behaviors: in particular, Pre
Ryden and Spergel suggested that the results for dom
walls would be better fitted byj;t/ ln(t).

Since the original naive scaling arguments were put f
ward, a more quantitative approach to the dynamics of
main wall networks has been proposed by one of the aut
@27–29#, which predicts not only the linear scaling law fo
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domain walls, but also the amplitude of the relation. Clea
a logarithmic correction would be a problem for the a
proach. The main purpose of this paper is to give a m
accurate numerical determination of the scaling law~in 2 and
3 dimensions! and to determine the amplitude, to check t
accuracy of the theoretical predictions in@27,29#.

Our results for the scaling exponents and amplitude
be found in Tables I and II. They are consistent with t
linear scaling law forj, but the numerically determined am
plitudes are higher than the theoretical predictions. A deta
comparison can be found in@29#.

II. DYNAMICS OF DOMAIN WALLS

Domain walls occur in field theories whose manifold
minimum energy states is topologically disconnected~see
e.g.@8#!. The canonical example in relativistic field theory
a theory of a single scalar fieldf(x), with action

S5E d4xA2gS 1

2
]mf]mf2V~f! D , ~1!

where the potentialV is a function with more than one mini
mum, which we take to be the renormalizable form

V~f!5
l

4
~f22m2!2. ~2!

In the cosmological context, the metricgmn is taken to have
the Friedmann-Robertson-Walker form

gmn5R2~ t !hmn ,

where hmn5diag(1,21,21,21) is the Minkowski space
metric andt is conformal time. The field can be conformal
rescaledR(t)f→f, giving an Euler-Lagrange equation

f̈12
Ṙ

R
ḟ2¹2f1lf~f22m2R2!50. ~3!

In the broken phase, (m2.0) there are domain wall solu
tions in which the field changes vacuum over a distance
orderM 21, passing through zero. The solution for an infin
©2003 The American Physical Society06-1
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static planar wall is well known@8# and with an appropriate
choice of coordinates can be written

f5m tanh~Mz!. ~4!

At high temperature the mass parameter receives the
corrections from the fluctuations in fields to whichf is
coupled@1,3#:

m2~T!5m0
22cT2,

wherec is a model-dependent numerical factor. For the p
scalar field theoryc51/6. Thus as the Universe cools th
field undergoes a phase transition from^f&50 to ^f&5
6m(T). As this transition happens at a finite rate, the fie
cannot select the same minimum everywhere at the s
time, and the Universe divides into domains in whichf
takes either positive or negative values. By continuity of
field, these domains must be separated by domain walls@5#
in which the field approximates the configuration given
Eq. ~4! in the transverse direction. The initial size of th
domainsĵ is controlled by the rate at which the transitio
occurs and how strongly damped the field is@10#.

The domain walls are mostly in the form of one infini
boundary separating percolating clusters of the two va
@14,15,19#. The subsequent evolution of the field is dom
nated by the dynamics of this infinite domain wall. The w
has a tension of orderM3, and tries to straighten out and los
energy, and in finite volume eventually one or other vacu
will take over the whole space and the field thereby reac
equilibrium. One way of quantifying the approach to eq
librium is to measure the area density of the domain walA,
or equivalently the curvature scale of the wallj51/A, where
@27#

A5^d~f!u¹fu&. ~5!

At late times, this quantity can only depend on timet and the
mass scaleM. The fact that the wall obeys a Nambu-Go
equation independently ofM @8# indicates thatA5a/t purely
on dimensional grounds, wherea is a constant amplitude
This can be called the naive or ‘‘classical’’ scaling hypothe
for domain walls, which has been put on a more rigoro
footing in @27,29#. The scaling hypothesis, and the theory
dynamic scaling, can be also be applied to other exten
topological defects such as cosmic strings. More gener
one can define a scaling exponentb, such thatA5a/tb, and
one of the goals of this paper is to measure both the expo
b and the amplitudea as accurately as possible.

The first numerical simulations of this system were p
formed by Press, Ryden and Spergel@13,19# who noted that
in comoving coordinates the width of the wall shrinks
R21, and so any numerical simulation with a lattice spac
fixed in comoving coordinates runs the risk of failing to r
solve the domain wall at late times. They showed that ign
ing the R dependence of them2 parameter did not substan
tially affect the dynamics of the walls, and we adopt t
same approach. We also include a damping term to simu
cooling in the early stages of the evolution. Written in fir
order form, the field equations become
10350
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ḟ5p ~6!

ṗ5¹2f2lf~f22m2!2S Ṙ

R
1h Dp. ~7!

The equations may be rescaled tom51, l51, so that the
width of the wall is 1. These classical equations can
thought of as effective equations representing the lo
wavelength dynamics of the quantum field when the occu
tion number is high.

The results of@13,19# seemed to show that a good fit fo
the area scaling law was given by

A} ln~ t !/t, ~8!

in both 2 and 3 dimensions, which is not predicted by t
theory of dynamic scaling for domain walls@27,29#. It is
therefore important to check these numerical simulatio
and after a decade of development in computer technol
one can do much larger simulations in order to elimin
transient effects. Indeed, our largest simulation is perform
on 3D grid of 40963, which gives us a dynamic range o
roughly three orders of magnitude betweent and M 21, the
characteristic response time of the field@34#.

III. NUMERICAL SIMULATIONS

A. Evolution algorithm

We used 2 and 3D cubic lattices with a 2nd order discr
zation of the Laplacian operator. The evolution of the d
cretized system was effected with the Verlet or leapfrog
gorithm, common in molecular dynamics and offering
simple but effective way of discretizing the equations of m
tion ~7!. The scheme is

pn11/25pn21/21 f ~ t,fn ,pn!Dt

fn115fn1pn11/2Dt, ~9!

where f (t,fn ,pn) is the right hand side of Eq.~7!, andpn
5(pn11/21pn21/2)/2. As f is linear inpn , the equation can
easily be rearranged so thatpn11/2 is on the left hand side
The simulations on which the data is based all haveDx
50.3 andDt50.1, except where indicated.

We chose periodic boundary conditions, and restricted
length of the simulation to a maximum time equal toTtot
5NDx/2Dt, the time required for two signals emitted from
the same point and travelling in opposite directions to int
fere with each other. This represents the time it takes for
field to ‘‘notice’’ the finite dimension of the lattice it reside
in.

B. Initial conditions

The main objective of the simulations was not to see
formation of the network, but the evolution at later time
6-2
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and so it is not necessary to start with a proper thermal
tribution. Instead, we try to imitate the configuration of t
field in the potential at some temperature above the crit
T.TC , with a Gaussian distribution around zero ink space.
We created a Gaussian distribution by adding 12 uniform
distributed random numbers of unit variance, an algorit
that is quick and easy to parallelize. By settingfk5050 we
set the average of the distribution to zero and the proc
with transforming the field to thex representation. This is a
alternative to simulating the actual phase transition by
forming the symmetry-breaking potential. The Gaussian d
tribution was chosen to give a pointwise spatial variance
about 1021m, and the value of the volume-averaged fie
was always less than 1028. Bigger ranges for the Gaussia
distribution were found to lead to instabilities unless hi
dissipation was used. This is due to the occasional large
ues of the field, which have high energy densities due to
quartic potential. After initialization the field is left to rol
slowly to the two minima and start oscillating in them.
typical evolution ofufu2 can be seen in Fig. 1.

If the average field were not close to zero in the init
conditions distribute we would have found that the bias
initial conditions would give a different time dependence
the area density@14,15#. Indeed, if one phase is selected
the initial distribution then the evolution of the domain wa
area density can be shown to follow the relation

A}
1

t
e2ct, ~10!

wherec a positive real number. Percolation theory predi
that for a phase occupying a fraction less than a critical va
pc , the infinite wall disappears. The dominant phase ta
over at a characteristic time scale, and quickly fills the en
simulation volume. In our casep.0.561027, far above the
percolation threshold which for a cubic lattice can be sho
to bepc50.31.

C. Beginning the evolution

In the beginning of the simulation dissipation is impos
in order for the field to sink in a controlled manner into t

0 50 100 150 200 250 300 350
— 0.2

0

0.2

0.4

0.6

0.8

1

t

|φ
|2

FIG. 1. Typical evolution ofufu2.
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minima and to remove spurious high frequency modes. T
is controlled by the parameterh in Eq. ~7!. The dissipation
aids the formation of the domain wall network and as soon
this is formed, dissipation is turned off and the system is
to evolve freely. A small amount of time, roughly the sy
tem’s characteristic time, is required for the field to adju
itself into the new equation with no dissipation and contin
to evolve. For that reason any regression on data starts a
time steps after the end of the dissipated period. Turning
dissipation off slowly seems to help the system adjust m
quickly to the new conditions and smooths out the effects
this ‘‘adjustment’’ period. More specifically, the end of th
dissipation periodTD and the beginning of the regressionTR
are specified in the program and their differenceTR2TD is
calculated. As soon as the system reachesTD , dissipation at
time stepn hn is decreased till zero using a Gaussian li
function

hn5h i3expS 2A~n2TD!2

~TR2TD!2 D 3Q~TR2TD!, ~11!

wheren is the time step,h i the initial dissipation andA a real
positive number controlling in more accuracy the length
this period.

Dissipations ranged from 0.1 to 0.3 in the simulations a
affected the system for roughly 10–30 % of the total simu
tion time Ttot , with regression on the results starting at 20
40 % of the total time and the coefficientA was taken to be in
the range 1 to 1.5.

D. Wall area density calculation

The main purpose of the simulations was to check
power law for the evolution of the wall area density. A cru
way of calculating the total wall area is counting the plac
where adjacent lattice points have opposite signs and m
plying by Dx or Dx2 which is a rough estimation of the wa
area at the ‘‘link.’’ More precisely, one should find an acc
rate discretization of the continuum area density operator~5!.

The calculation is made by finding two adjacent latti
points where the field has opposite signs and calculating
gradient of the field at the ‘‘link.’’ For two such adjacen
points $ i , j ,k% and $ i 21,j ,k% the gradient is calculated a
follows. The numerical approximation to the gradient at t
direction of the link is just

D if5
f i , j ,k2f i 21,j ,k

Dx

whereas the gradients at the remaining two directions
taken by averaging over the gradients of nearby links; thj
component of the gradient for example would be

D jf5
1

2 S f i 21,j 11,k2f i 21,j 21,k

2Dx
1

f i , j 11,k2f i , j 21,k

2Dx D .

One needs to account for the orientation of the area elem
at each link, otherwise one will end up overestimating t
area @19,30#. For domain walls in 3D the problem can b
6-3
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resolved by simply multiplying the lattice area estimate b
factor 2

3 @30#, while a similar argument to that given in@30#
gives the factorp/4 in 2D:

A5ALat

2

3
~3D! ~12!

A5ALat

p

4
~2D!. ~13!

The figures showALat , while the tables showA.

IV. RESULTS

A. Wall area density

In all simulations the wall area data started to be tak
shortly after the dissipation had been stopped. Figur
shows the results from a 2D run, fitted to a power law

ALat5at2b ~14!

by regression. Five simulations for the same parameters w
run and an average was taken, with the fit taken on the
eraged area. The results for 2D and 3D simulations are
sented in Tables I and II for Minkowski, radiation an
matter-dominated Friedmann-Robertson-Walker ba

150 200 250 300 350 400
5

6

7

8

9

10

11

12
x 10

–3

t

A
L

at

FIG. 2. Evolution of the wall area densityALat for a 2D simu-
lation, N51024, Dx50.3, andDt50.1.

TABLE I. Area scaling laws for Minkowski, radiation
dominated, and matter-dominated FRW backgrounds in 2 dim
sions. The results are derived from averaging over 5 simulations
each case, withDx50.3, Dt50.1 and a 10242 lattice.

Background Length scaling law

Minkowski 0.765(0.227)t20.987(0.032)

Radiation 0.928(0.165)t20.996(0.018)

Matter 1.145(0.227)t20.992(0.014)
10350
a
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re
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grounds respectively. The biggest 3D simulation (N
54096,Dx50.3, Dt50.08) gave a50.980(60.017), b
50.985(60.003).

There is a suggestion from the simulations that the w
area decreases slightly slower thanb51. However, this de-
viation from theb51 scaling could not be attributed to
relation of the form given in Eq.~8!, as it has been suggeste
@13#. Plotting exp(ALat)3t against time shows that ther
seems to be no logarithmic term in the wall area evoluti
Fig. 3.

It is possible that the departure fromb51 is a finite size
effect. At timest.L, whereL is the comoving box size, the
network will either disappear entirely, or enter a long peri
where there are two~or possibly more! parallel walls. We
combined our data by averagingAlat and then fitting to a
power law, which would produce a curve which is flatt
thant21. We tried to avoid this effect by taking data up to
time L/2 after the dissipation had been switched off: ho
ever, it is still possible that correlations were introduced d
ing the dissipative regime and the system departed from
scaling regime earlier than anticipated. The departure fr
b51 is not statistically significant so this possibility was n
investigated further.

Both the power law and the coefficienta of Eq. ~14!.
present challenges to the analytic method for the calcula
of the wall area density of Ref.@27#, which are compared in

n-
or

TABLE II. Area scaling laws for Minkowski, radiation-
dominated, and matter-dominated FRW backgrounds in 3 dim
sions. The results are derived from averaging over 5 simulations
each case, withDx50.3, Dt50.1 and a 5123 lattice.

Background Area scaling law

Minkowski 0.883(0.141)t20.995(0.026)

Radiation 0.925(0.125)t20.994(0.013)

Matter 0.963(0.122)t20.997(0.012)

150 200 250 300 350 400
1.98

2

2.02

2.04

2.06

2.08

2.1

2.12

t

A
L

at
 ×

 t

FIG. 3. exp(ALatt) against time for the simulation of Fig. 2. A
decay lawALat; log(t)/t would show as a logarithmic increase o
this graph.
6-4
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FIG. 4. Six snapshots from a numerical simulation using the algorithm described in Sec. III, with time increasing left to right an
bottom. The solid isosurfaces are surfaces of small constantufu, while the semitransparent isosurfaces are surfaces of constant mome
density.
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detail in @29#. The power law is very close to the predicte
value of b51, with good precision, but the coefficienta
showed larger fluctuations between runs.

V. CONCLUSIONS

The numerical integration of the equations of motion
the f4 model has given an insight to the dynamics involv
10350
r

in domain wall networks and has provided an accurate w
to support the scaling solution predicted by theoretical co
putations. A power law with exponent very close to 1 w
found to be the best solution according to the simulation d
with no evidence for a logarithmic term suggested in pre
ous studies@13#.

The fact that a domain wall network shows this dynam
scaling over approximately three orders of magnitude in
6-5
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parameterMj, the ratio between the local curvature radi
and the wall width, is remarkable, and has important imp
cations for cosmic string networks. First, it is clear from t
visualizations in Fig. 4~see also@31#! that the energy in the
domain walls is very quickly transferred into propagati
modes of the field: the formation and collapse of clos
loops~2D! or surfaces~3D!, expected in the standard pictu
of the evolution of wall networks@8#, is rare. Indeed, in 2D
self-intersections to form closed loops must be very rare
two segments of wall approach each other they must be
nerically curved away from the point of closest approa
and therefore the acceleration is in the direction which wo
tend to increase the separation. Nonetheless, 2D walls s
perfectly well, so it seems plausible in that case that ene
is being transferreddirectly into radiation. If the amplitude of
the oscillations is large enough they could appear to fo
tiny loops or ‘‘protoloops’’@17,18#.

We believe that our results add weight to the contenti
first put forward in @16#, that extended defects~including
cosmic strings in 3D! have a nonperturbative channel in
propagating modes of the massive fields. At first sight thi
difficult to square with the standard picture, in which wa
and strings obey the Nambu-Goto equations of motion
large curvature radii, for in that case the total energy lock
up in the extended defects is conserved, in the absence
general relativistic effects such as an expanding backgro
or gravitational radiation. It is certainly true that it is possib
to find string trajectories which are very close to being so
tions of the Nambu-Goto equations@17,32#: however, the
initial conditions have to be carefully prepared, and the
istence of these trajectories does not preclude the exist
of a nonperturbative radiative process for defect netwo
Indeed, we maintain that our results are good evidence
there must be such a process.
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APPENDIX: LATTICE CORRECTION FACTOR FOR 2D
WALL LENGTH DENSITY

In Ref. @30# it was shown that the naive lattice estimate
the area density of random domain walls in 3D overcou
the continuum value by a factor of 3/2 in the limit that th
radii of curvature are large compared with the lattice spac
In this section we perform the analagous calculation for t
dimensions, finding it to be 4/p.

The naive estimate is obtained by summing the length
all links containing a wall and dividing by the total volum
A link crossing a wall is defined to be one for which th
values of the fieldf on the sites at either end have oppos
signs. One can immediately see this will overestimate
length, as one is approximating a smooth curve by a
quence of line segments parallel to the lattice vectorsi andj .

In the continuum the center of a domain wall is describ
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by a 2-dimensional curver (s). Consider a segment o
length l, with l !j, wherej is the correlation length of the
curve. WritingDr5r ( l )2r (0)5xi1yj , we see that the lat-
tice approximation to the length is

l Lat5uxu1uyu. ~A1!

In the limit thatl /j→0, the continuum value of the length i
l 5A(x21y2). Hence

l Lat5
l Lat

l
l 5~ ucosau1ucosbu!l ~A2!

where a and b5p/22a are the direction cosines of th
vector Dr . The ratio between the lattice estimate of t
length and the true length is obtained by averaging over
possible orientations of the lattice relative toDr :

K l Lat

l L 5
1

2pE0

2p

da~ ucosau1usinau!5
4

p
, ~A3!

as advertised.
This calculation can be extended to arbitraryl through a

more involved argument. Let us first define the correlat
function

C~r !5^f~r !f~0!&, ~A4!

which is assumed to be smooth atr50, so that

C~r !5C~0!1
1

2
C9~0!r 2. ~A5!

In Refs.@26,27# it is shown that the length densityA of the
locus of zeros of a Gaussian random field in 2 dimension
given by

A5
1

2
A2

C9~0!

C~0!
. ~A6!

This is the value of the length density in the continuum.
On the lattice, we must consider the probability that t

values of the field at opposite ends of a link have oppo
signs, in which case we can say that the link is occupied
a segment of domain wall. Let us call this probabilitypocc,
which is

pocc52P„f~x!.0 and f~x1 iDx!,0…, ~A7!

where the factor of 2 accounts for the opposite casef(x)
.0 andf(x1 iDx),0. The lattice estimate of the lengt
density is then

ALat5
2pocc

Dx
, ~A8!

where the lattice spacing isDx, and the factor 2 comes from
the fact that there are twice as many links as sites in 2
mensions.

Suppose we now define
6-6



a

ed

SCALING IN NUMERICAL SIMULATIONS OF DOMAIN WALLS PHYSICAL REVIEW D 68, 103506 ~2003!
P12„C~r 12!,V…5P„f~x1!.V andf~x2!,V…, ~A9!

whereV is an arbitrary threshold andr 125ux12x2u. One can
then almost trivially write

P12„C~r 12!,V…5E
0

r 12 ]P12

]C~r !

dC~r !

dr
dr. ~A10!

It can be shown@33# that

]P12

]C12
5

1

2p@C~0!22C12
2 #1/2

expS 2
V2

C~0!1C12
D ,

~A11!
r.

-
e,

tt

10350
where C125C(r 12). Hence the lattice estimate of the are
density is

ALat5
2

pDx
cos21S C~Dx!

C~0! D . ~A12!

ProvidingDx is much smaller than the length scale defin
by AuC(0)/C9(0)u, we see that

ALat5
2

p
A2

C9~0!

C~0!
, ~A13!

and hence, from Eq.~A6!, thatALat54A/p.
. D

our
ph/

J.

the
the
@1# D.A. Kirzhnits, JETP Lett.15, 529 ~1972!.
@2# L. Dolan and R. Jackiw, Phys. Rev. D9, 3320~1974!.
@3# D.A. Kirzhnits and A.D. Linde, Ann. Phys.~N.Y.! 101, 195

~1976!.
@4# Y.B. Zeldovich, I.Y. Kobzarev, and L.B. Okun, Zh. Eksp. Teo

Fiz. 67, 3 ~1974!.
@5# T.W. Kibble, J. Phys. A9, 1387~1976!.
@6# Y.B. Zeldovich, Mon. Not. R. Astron. Soc.192, 663 ~1980!.
@7# A. Vilenkin and Q. Shafi, Phys. Rev. Lett.51, 1716~1983!.
@8# A. Vilenkin and E.P.S. Shellard,Cosmic Strings and other To

pological Defects~Cambridge University Press, Cambridg
England, 1994!.

@9# M.B. Hindmarsh and T.W. Kibble, Rep. Prog. Phys.58, 477
~1995!.

@10# W.H. Zurek, Phys. Rep.276, 177 ~1996!.
@11# A. Rajantie, Int. J. Mod. Phys. A17, 1 ~2002!.
@12# D. Austin, E.J. Copeland, and T.W. Kibble, Phys. Rev. D51,

2499 ~1995!.
@13# W.H. Press, B.S. Ryden, and D.N. Spergel, Astrophys. J.347,

590 ~1989!.
@14# D. Coulson, Z. Lalak, and B. Ovrut, Phys. Rev. D53, 4237

~1996!.
@15# S.E. Larsson, S. Sarkar, and P.L. White, Phys. Rev. D55, 5129

~1997!.
@16# G. Vincent, N.D. Antunes, and M. Hindmarsh, Phys. Rev. Le

80, 2277~1998!.
@17# J.N. Moore, E.P. Shellard, and C.J. Martins, Phys. Rev. D65,

023503~2002!.
@18# Moore, Shellard, and Martins@17#.
.

@19# B.S. Ryden, W.H. Press, and D.N. Spergel, Astrophys. J.357,
293 ~1990!.

@20# M. Yamaguchi, J. Yokoyama, and M. Kawasaki, Phys. Rev
61, 061301~R! ~2000!.

@21# D.P. Bennett and S.H. Rhie, Astrophys. J. Lett.406, L7 ~1993!.
@22# M. Yamaguchi, Phys. Rev. D64, 081301~R! ~2001!.
@23# M. Yamaguchi, Phys. Rev. D65, 063518~2002!.
@24# R. Durrer, A. Howard, and Z. Zhou, Phys. Rev. D49, 681

~1994!.
@25# U. Pen, D.N. Spergel, and N. Turok, Phys. Rev. D49, 692

~1994!.
@26# T. Ohta, D. Jasnow, and K. Kawasaki, Phys. Rev. Lett.49,

1223 ~1982!.
@27# M. Hindmarsh, Phys. Rev. Lett.77, 4495~1996!.
@28# M. Hindmarsh and E.J. Copeland, inTopological Defects in

Cosmology, edited by F. Melchiorri and M. Signore~World
Scientific, Singapore, 1997!.

@29# M. Hindmarsh, Phys. Rev. D68, 043510~2003!.
@30# R.J. Scherrer and A. Vilenkin, Phys. Rev. D58, 103501

~1998!.
@31# Animation and images of the simulations can be found on

website at http://www.pact.cpes.susx.ac.uk/arXiv/hep-
0212359

@32# K.D. Olum and J.J. Blanco-Pillado, Phys. Rev. Lett.84, 4288
~2000!.

@33# A.J.S. Hamilton, J.R. Gott III, and D. Weinberg, Astrophys.
309, 1 ~1986!.

@34# Such large simulations are possible only by having part of
simulation volume in memory at any one time, and keeping
rest on disk.
6-7


