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We present a general framework for analyzing spatially inhomogeneous cosmological dynamics. It employs
Hubble-normalized scale-invariant variables which are defined within the orthonormal frame formalism, and
leads to the formulation of Einstein’s field equations with a perfect fluid matter source as an autonomous
system of evolution equations and constraints. This framework incorporates spatially homogeneous dynamics
in a natural way as a special case, thereby placing earlier work on spatially homogeneous cosmology in a
broader context, and allows us to draw on experience gained in that field using dynamical systems methods.
One of our goals is to provide a precise formulation of the approach to the spacelike initial singularity in
cosmological models, described heuristically by Belingkhalatnikov and Lifshitz. Specifically, we construct
an invariant set which we conjecture forms the local past attractor for the evolution equations. We anticipate
that this new formulation will provide the basis for proving rigorous theorems concerning the asymptotic
behavior of spatially inhomogeneous cosmological models.
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[. INTRODUCTION ematically simplest matter model is a single perfect fluid, we
need more complex matter models to describe the real Uni-
Scales and scale invariance play a crucial role in practiverse. Indeed, matter in the Universe consists of many com-
cally all branches of physics, and general relativiBR) and  ponents: at leadi) radiation(photons, (ii) baryonic matter,
cosmology are no exceptiohdn these cases one is inter- (iii) neutrinos,(iv) dark matter, andv) dark energy or quin-
ested in self-gravitating systems, which in the cosmologicatessence(other components like cosmological magnetic
context requires a matter model as well as a spacetime déields are usually neglectedOnce the matter content has
scription. This in turn requires consideration of scales. Inbeen specified and equations of state, scalar field potentials,
modern cosmology one assumes tttatlay there exists a particle distribution functions, etc., have been chosen, the
global scale—that of the particle horizon. The empirical dateevolution of the model is determined by the EFE and the
are usually interpreted as follows: on sufficiently large spaimatter equations, e.g., the evolution equation for a scalar
tial scales, say a few percent of the particle horizon, everyfield. This then leads to a Friedmann-LétraiFL) model
thing looks statistically roughly the same in all directions. for the Universe.
Combined with the Copernican principléwe are not lo- The next step, aimed at describing the actual inhomoge-
cated at a special placg’this suggests that one can replaceneous Universe, is to perturb the FL model and describe the
a very complicated matter distribution by a simple one: aevolution of large-scale structures in the Universe, which
smooth distribution that is spatially homogeneous and isotroappear at many scales—filaments and voids, superclusters of
pic, obtained by averaging over sufficiently large spatialgalaxies, galaxies, etc. But it is generally believed that linear
scales. Then it is further assumed that one can also approxperturbation theory can account for them all on these large
mate the geometry of the spacetime by a spatially homogescales. And, indeed, the FL scenario and the linear perturba-
neous and isotropic geometry, i.e., one assumes that the geiiens thereof(*almost-FL models”) form a remarkably suc-
metrical features trace those of the matter and that possibleessful framework—it seems to consistently account for
“excited geometrical modes,” such as gravitational wavespresent observational evidence, at least over sufficiently
are negligible on these scales. This then leads to modelinigirge smoothing scales. Moreover, it forms an interpreta-
the cosmological spacetime by a Robertson-Walk&W) ge-  tional framework that encourages and steers further observa-
ometry. tions. These are currently focused on determining the various
The assumption of a RW geometry subsequently forceslensity contribution$); (including ), for the cosmological
the summed matter content to take the form of a perfect fluitonstany, and the spectrum and growth of density perturba-
through Einstein’s field equatiofEFE). Although the math-  tions. This is the simplest scenario consistent with current

observations.

Nevertheless, there are issues that need elucidation that by
*Electronic address: Claes.Uggla@kau.se necessity lie outside the domain of the standard almost-FL
Electronic address: H.van.Elst@gmul.ac.uk picture. Here are some of them:
*Electronic address: jwainwri@math.uwaterloo.ca (&) To investigate the constraints observations impose on
SElectronic address: ellis@maths.uct.ac.za the spacetime geometry of the Universe requires investigat-
ISee, e.g., the recent Resource Letter by Wiesenfeld on scale ifidg a hierarchy of more general models, perhaps character-

variance in physics and beyontl]. ized by assumed “priorstwhere removing a prior necessar-
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ily involves looking beyond one’s favorite model, with the possibly be described by a past attractor and a future attractor
hope of getting further support for)it of the evolution equations.

(b) To understand how special the FL models are and put The appropriate mathematical vehicle for implementing
them into a broader context requires looking beyond them.this proposal is the orthonormal frame formalism, sitiget

(c) While the Universe is well described by almost-FL describes the essential degrees of freedom of the gravita-
models at present, this may not always have been true, andtibnal field in a coordinate independent mantiif,orthonor-
may not remain true in the far future; in particular, we would mal frame vectors provide local reference scales and so it
like to know the largest class of models that can look like aallows one to naturally introduce scale-invariant variables,
FL model at some stage of their history. and (iii ) it leads directly to first-ordefin time) autonomous

(d) Using a FL and a linearized FL scenario rules outevolution equations.
possible nonlinear effects, but these may dominate; e.g., as To be more specific, by a cosmological model we mean a
structures become much more dense while aggregating f@ur-dimensional spacetime manifold endowed with a
smaller scales. Lorentzian metriog which satisfies the EFE with an appro-

(e) GR is a highly nonlinear theory; to prove that the priate matter or energy distribution. We assume the existence
linear theory is correct requires going beyond linear perturof a local foliation of the spacetime manifold by a one-
bations. parameter family of spacelike 3-surfaces with a future-

(f) The averaging and fitting procedures motivating the Fldirected unit normal congruence We naturally choose this
models do not priori commute with the EFE, i.e., starting unit vector field to be the timelike vector field in the ortho-
with an inhomogeneous model and smoothing it does noformal frame. We assume that the cosmological model is
necessarily lead to the model that has been smoothed froekpandingi.e., the volume expansion rét® of the normal
the outset and then perturbed. This gives rise to a number Qfongruence is positive_ Because we are Working in a cosmo-
questions, e.g., can inhomogeneities affect the overall evolypgical setting we will replace® by the Hubble scaldrH
tion? How do they affect observations? =10.

(g) There are deep connections between GR, cosmology |n the orthonormal frame formalism, the frame vector
and thermodynamics, e.g., relatingravitational entropy  components and the commutation functions are the basic dy-
and the arrow of time. To better understand such connectiongamical variables for describing gravitational fields, and they
requires a state space picture describing the set of solutionggch have physical dimensibjength] ~*. The Hubble scalar
where one can examine coarse-graining and existence of aitso has physical dimensidiength] %, and constitutes the
tractors on this state space, toward which the evolving cosnatural cosmological length scale through the Hubble radius
mological models move. Since entropy requires counting of4-1. This fact motivates one of the key steps in our ap-
possiblestates this requires looking at models beyond FL. proach, namely, the introduction bfubble-normalized vari-

(h) What is the detailed nature of possible singularities? Agplesby dividing the frame vector components and the com-
better understanding of generic features of singularities anghytation functions byH. Curvature quantities such as the
their dependence on matter content and initial data mighfnatter density and the orthonormal frame components of the
shed light on how the real Universe evolved initially. ThereWey| curvature tensor have physical dimensftength 2,
might also exist at least a local mathematical connection begnd hence are normalized by dividing Hy. This process of
tween the initial singularity and the singularities of gravita- Hypble-normalization has two important consequences.
tional collapse. To understand such a relationship, or its norgirst, dimensional variables are replaced by dimensionless
existence, again requires an inspection of cosmologicahnes, leavindd as the only variable carrying physical dimen-
solutions beyond the restrictions imposed by RW geometriessjons. Secondly, one is essentially factoring out the overall

(i) A better classical understanding of singularities mightexpansion of the Universe, thereby measuring the dynamical
help to produce gravitational theories with greater domain$mportance of physical quantitie®.g., the matter density
of validity; e.g., finding asymptotic symmetries of the field re|ative to the overall expansidof. Kristian and Sachg2]).
equations when approaching singularities may provide suffiThis choice also provides a link between mathematical
cient structure to asymptotically quantize the theory in a reanalysis and observation, since key observational variables
gime where quantum gravity is supposed to be of imporyre * Hubble-normalized. Earlier investigations of the
tance. _ o asymptotic dynamics of cosmological models using scale-

Thus there is ample motivation to probe a larger subset ofyyariant variables dealt witispatially homogeneous (SH)

the cosmological solution space of the EFE than just thosmologiesi.e., models that admit a three-parameter group
almost-FL models. Our first goal in this paper is to develop a

framework for this purpose. e

In view of the above-mentioned importance of scale in- 2pere @ = — (1r k), where® is the volume expansion rate of the
variance in physics, we propose to introduce scale-invarian{ormal congruence and (i) is the trace of the extrinsic curvature
variables, and to describe the evolution of a cosmologicabs the spacelike 3-surfaces.
model by an orbit in an infinite-dimensional dynamical state 3when evaluated at the present epoch, the Hubble scalar equals
space, governed by first-ordén time) autonomous evolu-  the Hubble constarttl,, familiar from observational cosmology.
tion equations derived from the EFE and the matter equa-“we will use units such that Newton's gravitational constént
tions. The behavior of the model in the asymptotic regimesand the speed of light in vacuumare given by 8G/c?>=1 and
i.e., near the initial singularity and at late times, can thenc=1.
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of isometries acting on spacelike 3-surfagsse Wainwright The word “local” in the BKL conjecture means heuristi-
and Ellis (WE) [3] and other references thergirand the cally that the evolution at different spatial points effectively
so-called G, cosmologies which admit a two-parameter decouples as the initial singularity is approached, with the
group of isometries acting on spacelike 2-surfase® Refs. result that geometrical information propagation is asymptoti-
[4] and[5]). The framework that we develop in this paper cally eliminated. It is natural to describe this phenomenon as
generalizes a program that has been extremely successful #symptotic silence of the gravitational field dynamitde

a SH context to a completely general spatially inhomogeshall refer to the associated initial singularity as beingj-a
neous setting, i.e., to models that admit no isometries. Intent initial singularity.®

deed, the SH an, cosmologies will be incorporated in a  The word “oscillatory” in the BKL conjecture means that
natural way as invariant sets of the infinite-dimensionalthe evolution into the past along a typical timeline passes
Hubble-normalized state space. For brevity, and to emphahrough an infinite sequence of Kasner states, generalizing
size that they admit no isometries, we shall refer to the modthe behavior first encountered in the so-called Mixmaster
els under consideration &, cosmologies models(SH models of Bianchi type IX; see Misngt2]).

The framework that we are developing can be used to Our second main goal in this paper is to give a precise
study both asymptotic regimes in an ever-expanding cosmo-statement of the BKL conjecture, within the framework of
logical model. In this paper we focus on the initial singular-the Hubble-normalized state space.
ity. The problem of asymptotics in spacetimes that exhibit no The plan of this paper is as follows. In Sec. Il we derive
isometries poses a formidable challenge. Nevertheless, cothe Hubble-normalized evolution equations and constraints
cerning the existence of singularities, remarkable progresfor G, cosmologies that arise from the EFE and the matter
was made several decades ago by Penrose and Hawkirgguations. In Sec. Ill we make a choice of gauge and then
leading to their singularity theorenfi§,7]. However, the sin-  describe some features of the Hubble-normalized state space,
gularity theorems do not tell us much about the nature of thén particular the SH invariant set and the silent boundary. We
singularities. Detailed asymptotic analysis, using the fullthen define the notion of a silent initial singularity. In Sec.
EFE, is required for this purpose. To date rigorous resultsV, by analyzing the dynamics on the silent boundary, we are
have, with few exceptions, been confined to cosmologicaled to construct an invariant set which we conjecture is the
models with isometries, in particular SH ai@} cosmolo- local past attractor fof5, cosmologies with a silent initial
gies. We shall discuss these results in Sec. V. As regardsingularity, thereby making precise the notion of an oscilla-
initial singularities inG, cosmologies, heuristic results were tory initial singularity. In Sec. V we consider various classes
obtained by BelinskjiKhalatnikov and Lifshit2BKL) [8,9] of cosmological models with isometries and use the past at-
by making ad hoc metric assumptions that were subse-tractor to predict whether the initial singularity is oscillatory
quently inserted into the EFE with the purpose of showingor not. We conclude in Sec. VI with a discussion of silent
that they were consistent. This analysis led to a remarkablénitial singularities and the BKL conjecture, and raise some
although heuristic, conjecture that has become part of thissues for future study. Useful mathematical relations, such
folklore of relativistic cosmology. as the propagation laws for the constraints and expressions
for the Hubble-normalized components of the Weyl curva-

The BKL conjectureFor almost all cosmological solu- ture tensor, have been gathered in the Appendix.

tions of Einstein’s field equations, a spacelike initial

singularity isvacuum-dominated, local and oscillatory

. . . II. EVOLUTION EQUATIONS AND CONSTRAINTS
For cosmological models with a perfect fluid matter

source, the phrase “vacuum-dominated,” or, equivalently, In this paper, we consider spatially inhomogeneous cos-
“matter is not dynamically significant,” is taken to mean that mological models with a positive cosmological constan,
the Hubble-normalized matter densitiye., the density pa- and a perfect fluid matter source with a linear barotropic
rameter()) tends to zero at the initial singularity. The phraseequation of state. We thus have

“for almost all” is needed because there are a number of

exceptional cases. First, if the perfect fluid has a stiff equa- P()=(y—1)x&, (2.1
tion of state, the density parameter does not tend to (za®

Andersson and RenddflL0]). Secondly, there is a special where Z is the total energy densityassumed to be non-
type of initial singularity called afsotropic initial singular-  negativé andP the isotropic pressure, in the rest 3-spaces
ity, in the neighborhood of which the solution is approxi- associated with the fluid 4-velocity vector fidlid while vy is
mated locally by a spatially flat FL modé¢see Goode and g constant parameter. The range

Wainwright [11]), with the result that the density parameter

tends to the value 1. Isotropic initial singularities, however, 1<y<2

only arise from initial data that form a set of measure Zero.

is of particular physical interest, since it ensures that the

SThere is in fact a wide variety of known special SH aGg perfect fluid satisfies the dominant and strong energy condi-
solutions in which the initial singularity is matter-dominated, i&.,
does not tend to zero. Like the isotropic initial singularities, these
singularities only arise from initial data that form a set of measure SFor further discussions on the suppression of information propa-
zero. gation and asymptotic silence, see Hédf.
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tions and the causality requirement that the speed of sound eo=N_1(t9t—Nit9i), ea:eai d; 2.7
should be less than or equal to that of light. The valyes

=1 andy=13 correspond to incoherent pressure-free mattewhereN andN' are known as the lapse function and the shift
(“dust”) and incoherent radiation, respectively. In cosmol-vector field, respectively.

ogy it is natural to single out a future-directed timelike ref-

erence congruenag=u of unit magnitude. This gives rise A. Dimensional equation system

to a (1+3)-decomposition of the perfect fluid energy-

momentum-stress tensor We now present the dynamical equations as given in Ref.

[14], simplified by the assumption tha is vorticity-free

Tap= mUaUp+ 2qaUp) + Phap+ 7ap (2.2 (w*=0). We begin with the commutator equations, which
serve to introduce the basic gravitational field variables, and
with which will later be used to derive some additional evolution
) equations and constraints.
w=T2G,%, p=GiY(y—1)+|1- 57)1}2 “, Commutator equations:
[en.e.](f)=U.e(f)—(H3,P+0,F~e,, 07 esf)
P=7yG 'uv?,  Tap=¥G: v (alp) - (2.3 29
The vector fieldv, which represents the peculiar velocity of 0=(Ccomap(f):=[es,€5](f)
the fluid relative to the rest 3-spacesegf is defined by —(2a,8,7+ eaﬁ(gn‘”)ey(f ), 2.9
T2:=T'(u?+0v?), v,u?=0, (2.9 ) ) ) _
with f denoting an arbitrary real-valued spacetime scalar.
with the Lorentz factor given by HereH is the Hubble scalar which is related to the volume
expansion rat® of g, according toH:=30. The quantities
1 ) u®ando,; are the acceleration and shear rategfrespec-
I':= = v =va0° (2.9 tively, while O describes the angular velocity of the spatial

frame{e,} along the integral curves & relative to a Fermi-
propagated one. The quantitie$' and n,; determine the

The scalarss.. (we shall requireG _ later) are defined b X ;
- a 4 y connection on the spacelike 3-surface$t=const.

—1+ _ 2

Gur=1x(y=1)o™ 29 Einstein’s field equations, Jacobi identities and contracted
To obtain an orthonormal framég,}a—o123 We supple- Bianchi identities (Euler’s equations):
ment the timelike reference congruergewith an orthonor-  gyolytion equations:
mal spatial framge,},—13in the rest 3-spaces @f. The
frame metric is then given byy,,=diad —1,1,1,7. In the 1 1 1
orthonormal frame formalism, introduced in relativistic cos- &(H)=—H?~ §(O-a,80-aﬁ)_ g(rt3p+3A
mology, among others, by Ellisl3], the basic variables are
the frame vector components, the commutation functions as- 1 ) i
sociated with the frame, and the matter variables, and the + §(euz+ U,—2a,)(u®) (2.10
dynamical equations are provided by the EFE, the Jacobi
identities and the contracted Bianchi identitise latter, for
a perfect fluid, corresponding to the relativistic extension of €
Euler’s equations We will make use of an extended version 1
of this formalism given by van Elst and Ugg[d4]. The — 5 (€t Up)(2H 8- F—ef OY)  (2.1))
dynamical equations consist of two sets, those containing the
temporal frame derivativey, which we refer to agvolution By _
equations and those not containingy, which we refer to as So(0™)=

(a%)=—(H 5“ﬁ+ o“ﬁ— 5“7B97)aﬁ

— aB_onla apB) _ s¥(a
3Ho B 2n y nﬁ)'}’_’_ny'}’n( B) 57( ey(aﬁ))

constraints _ _ +675<a[(e7+ u,— 2ay)(nﬂ> 5)-1—2070@5]
To convert the dynamical equations of the orthonormal
frame formalism to a system of partial differential equations + Pt (57 e, +ul*+al")(uP) (2.12

(PDB), it is necessary to introduce a set of local coordinates

{X*} i=01257{t.:X}i=123 We do so by adopting the stan- gy (n®)=—(H§*;—20("5—2¢7 @ Q,)nk°

dard (3+1)-approach(see, e.g., Ref§15] and[16]). Here . 5 )

g, is assumed to beorticity-free and, thus, hypersurface- —(&,+U,) (0P s = 57*0P) + 5°PQ)
orthogonal. As is well known, this gives rise to a local folia- (2.13
tion of the spacetime manifold1 by a one-parameter family '
of spacelike 3-surf§ice§:{t=_cons}. The (3+ 1)-approach eo( )= —3H(u+p)—(e,+20,—2a,)(q%)
leads to the following coordinate expressions for the frame

vector fields(cf. Ref.[14]): —(apmP) (2.14
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ay G+ _ a {Ua,zaﬁ,Aa,Nalg,Ra}::{ua,gaﬁ,aa,naﬂ,Qa}/H
&(v®)= yG,M[ yv e u) (2.23
+(G_§“B+2(’y— 1)U“UB)€‘0(C]B)], (2.19 {Q,QA,P,Qainaﬁ}‘:{M,A,paqaa’naﬁ}/(g’Hz)-
where (2.29

o @ a o o It follows from Eq. (2.3 that
&(q%) = —(AH 8", + 0 y— €%, 07)qP— 5Fey(p) a.23

—(p+p)u*—(eg+Uz—3ag)(m*F 2
(wPIUT (8 F U= 3a) (7) P=G.! (y-1)+ 1—§y)uz 0, Q=g
+€aﬂ7n[g§77y5. (216) +
Constraints: 0%
Haﬂ:G_+QU<aUB)' (223

1
= = — ay __ ap — a2 2
0=(Co)=2(28,~3a,)(a%) = (Nagn™) + Z(n“ )"+ 6H Expressing the Hubble-normalized frame derivatiggsand

d, with respect to the local coordinates introduced in Eq.

—(04p0*P)—2p—2A (2.17) (2.7) leads to
0=(Co)"=—es(2H5™~ o)~ 3ago" ~ e ng,0,° do=N""o-N'g)), 9,=E/3;,  (2.26
+qg“ (2.18
where
0=(C,)*:=e4(n*F+e*F7a ) —2azn*~. (2.19 _
e,
Note that we aranot provided with evolution equations for N:=NH, E, = (2.27)

any of thé coordinate gauge source functiohs and N

(which reside ingy) or the frame gauge source function® . . . . .
andQ®. Note also that these ten gauge source functions dbn order to write the dimensional equation system in Hubble-

not appear in the constraints. Independent of a choice O?Z:;ngg:rd fo;r;,trl;[ég r;eti(;elsl-slﬁl%ltg mrgg?euncte d?eef:ﬁ;%tlgn
gauge(to be discussed in Sec. )JIthe evolution equations P ® P 9 & y

(2.8 and (2.10—(2.16 propagate the constraint2.9) and

(2.17—-(2.19 along the integral curves af, according to i ___i
Eqgs.(A1)—(A4) in the Appendix. (A+1):== 1 dH, (228
There are, in addition, twgauge constraintshat restrict
four of the gauge source functions, given by 1
Mi=— ﬁﬂaH. (2.29
0=(cw)a==[e“37(eﬁ—aﬁ)—n‘”]uy (2.20
0=(Cy),:=N"te,(N)—0,. (2.21) The definition(2.28), together with Raychaudhuri’s equation

(2.10 and EQgs.(2.23 and(2.24), lead to the following key

The former is a consequence of assumigdo be vorticity- ~ €XPression fou:

free, the latter follows from Eq(2.8) upon substitution of
Eq. (2.7). The propagation of the gauge constraints along the

1 1 . :
—ov2, —O—Z(9 — — a
integral curves ofg, can be established once a choice of q=25°+ 2(Q+3P) 2y 3(0a FatUa=2A,)U",

temporal gauge has been mdds this determines what the (2.30
currently unknown frame derivativegy(U®) and ey(N)
should bé. whereX2:=; (3,53 ).
We now use Egs(2.28 and(2.29 to write the commu-
B. Scale-invariant equation system tator equationg2.8) and (2.9) in Hubble-normalized form.
The result is

We now introduce Hubble-normalized frame, connection
and matter variables as follows: )
[00,0,1f=—(r,—U,)df +(058,/—3 P+ €,,PR G,
1 1 (2.3
80':ﬁe01 aa':ﬁea! (222)
0= (Ceomlap(f ) =[ 0o, O]

"Employing the terminology of FriedricfL7], Sec. 5.2. —[2(r [t ALe) 87+ €45N°710, 1. (2.32
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We now write the evolution equatior{2.10—(2.16 and
the constraint$2.179—(2.19 in Hubble-normalized forrfi.

Evolution equations:
FA“=(q8" 53— 3%+ € sRYAP
— %(aﬁ—rﬁ Up)(25°F—32F— e RY),
(2.33
93 *P=(q—2)S“F— 2N NAY+N_IN(*F) - 5%(g,
—1 )AP+ X (g, —r +U —2A )N,

+2R, 3P ]+ 311%F + (87@g, —r{a+ Ute

+AlYUAs, (2.34
INP=(qs'" +25(“;+2€7“R, )NF)°
—(9,—1,+U,)(e"%o5h) — 57 (0RE)
+ 5*PRY), (2.39
P =(29—-1)Q—3P—(d,—2r,+2U,—2A,)Q"
— (2 ,pl17R), (2.3
v = G [— ¥ dy—2q—2)Q+(G_5*
¥G_Q A
+2(y— v g)(do—2q—2)Q”], (2.37
DQ\=2(q+1)Q,, (2.39

wheré
FQ=[2(q—1) 8%~ 3%+ € RVIQP— 5°B(Jp—2r )P

—(Q+P)U*—(d5—2r g+ Uz—3A,) T

+ e PYNg,IT 2. (2.39
Constraints:
0=(Cg):=1—-Q—32-0-Q,, (2.40
0=(Co)* =S P+ (25% =2 p)r P
—3ASP— e PINgS °+3Q%, (2.4

8In explicit component form these equations are available online
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0=(C)*=(d5—1 ) (N*F+ e“P7A )

—2AN“, (2.42

0=(Cp)ai=(0,=2r,)Qy, (2.43

where

Q 120 2r ,—3A A“+1N Neh 1N“2
k*— 3( a ra a) 6( af ) 12( @ ) .
(2.49

We have also included an evolution equation and a constraint
for O, , which are a direct consequence of E@2.24),
(2.28 and(2.29.

The role of the spatial Hubble gradient requires com-
ment. One can use the Codacci constréhtl) to express
r, in terms of Hubble-normalized variables. The resulting
formula for r,, involves the inverse of the matrix 2,
—E“B), and in order to avoid this algebraic complication,
we propose to treat, as a dependent variable. Choosiing
=H in the commutator equation&.31) and (2.32, and
making use of Eqs(2.28 and(2.29, leads to both an evo-
lution equation and a constraint foy,:

Il o= (08,7 =3 P+ €, PRI g+ (0,—1,+U,)(q+1),
(2.45

(2.46

These equations constitute integrability conditions for Egs.
(2.28 and(2.29.

When we write the evolution equations and constraints as
PDE by expressing, and d, in terms of partial derivatives
using Eq.(2.26), the frame component&,' enter into the
equations as dependent variables. Successively chodsing
=x',1=1,2,3, in the commutator equatiof&31) and(2.32
leads to an evolution equation and a constraintEgr:

O=(Cr)“:=[e“37(0B—Aﬁ)— N“"]r,.

aOEai = (q5aﬁ_2aﬁ+ an'BRy) E,BI —N_lﬂaNi,
(2.47)
0=(Coom' wp'=2(Fa~T1a= Ara) Ey

- GalgﬁNayE,}/i .

(2.48

Finally, we give the Hubble-normalized form of the gauge
constraintg2.20 and(2.21):

0=(Cy) =[PV (=T 5—Ag) —N*"]U,,, (2.49

0=(C))gi=d, INN+(r,—U,). (2.50

at the URL given in Ref[18]. An earlier scale-invariant equation
system(based on an orthonormal frame formulajiowhich em-
ploys the once-contracted second Bianchi identities and Weyl cur-
vature variables, was derived by two of the auth@sv.E. and
C.U) and given in Ref[19], but no specific choice of temporal ] ) ]
gauge or spatial frame was introduced then. In the previous section we presented a constrained system
We give the Hubble-normalized relativistic Euler equations, EqsOf coupled PDE that govern the evolution Gf, cosmolo-

(2.36 and (2.37), in explicit form in the Appendix; see Eq§A6) gies. The dependent variables &nethe spatial frame vector
and(A7). field componentsE,', (ii) the spatial Hubble gradient

IIl. GAUGE FIXING AND THE HUBBLE-NORMALIZED
STATE SPACE
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r ., and(iii) the gravitational field and matter variabEg;, gauge constrain{3.4) propagates along, according to Eq.
A% Ngg, Q,v% andQ, . (A5) in the Appendix.This ensures the local existence (in
The system of PDE is underdetermined due to the presime) of the separable volume gauge
ence of the gauge source functions Equations(3.7) and (3.8 subsequently yield the con-
o straint
j\[y Nll UCY, ROK'
1 : .
which reflects the fact that there is freedom in the choice of 0=(Cp) o :=Ast E(ﬁiEa'_ra+ E,dInfm). (3.9

the local coordinates and of the orthonormal frame. We now
use this gauge freedom to specify the gauge source fun¢inally we use a time- and space-dependent rotation of the
tions, and then proceed to describe some aspects of thgpatial frame to relate the frame gauge source functighs
Hubble-normalized state space. to the off-diagonal components of the shear rate tensor ac-
cording td°
A. Fixing the gauge

: . . _ R1,Ry,R3)T=(203,231,212) - 3.1
We begin by using the coordinate freedom to set the shift (R1,Ro.Rg) = (223,251,212 (310

vector field in Eqs(2.7) and(2.26) to zero: At this stage there is no freedom remaining in the choice of
Ni=0 3. frame!! The coordinate freedom is

’_ i1 figyi
We then choose the timelike reference congruesgcso that t'=t+const, x"=T(x).
An important question, which we do not pursue at
present, except in a footnote in Sec. V, is to what extent the

analysis in this papefin particular the construction of the
past attractgrdepends on the choice of temporal gauge. Here
N=1. (3.3  We use the separable volume gauge, as defined by(Eds.
and (3.3), which appears to be particularly well-adapted to
The effect of these choices is that the dimensional lapsélubble-normalized variables. F&, cosmologies, which we
function in Eq.(2.7) is given byN=H "1, as follows from shall refer to later, the usual and most convenient temporal
Eq. (2.27). The gauge constraiii2.50, taken in conjunction gauge is the so-called separable area gdsge, e.g., Ref.

9,N=0. (3.2

We are then free to specialize the time coordirtate that

with the above conditions, reduces to [4]).
0=(Cy)Y=(r,—U,)=U,=r,, (3.9 B. Hubble-normalized state space
thus determining the frame gauge source functidps The 1. Overview
advantage of making the choic€3.1) and (3.3 is that the The Hubble-normalized state vector f@; cosmologies
temporal frame derivativé,, given by Egs(2.26), simpli- is given by
fies to a partial derivative,

X=(E, 14,205 Nug, A% Q00T (3.1D
00= (9'[ . (35)
The evolution equations and constraints in the previous sec-
The combined gauge choic€3.1) and (3.3) have a simple tion can be written concisely in the form
geometrical interpretation in terms of tvelume density)
associated with the family of spacelike 3-surfacggt IX=F(X,d;X,0;9;X), (3.12
= const, which is defined by

) 0=C(X,d;X), (3.13
V- li=dete,). (3.6
Using Eq.(3.1), the commutator equations yield 0n contrast to the present frame choice, one can use the frame
freedom to reduce the number of variables, e.g., by diagonalizing
N—lﬁzg, E iivz —2A —9E 41 (3.7 the shear rate tensor. However, the present choice leads to great
’ o | " . . . . . . .

1% “y @ simplification of the equations when it comes to analyzing the past

attractor. There are other useful choices; in particular, when one has

It follows with Eqg. (3.3 that a preferred spatial direction induced by an isometry. In such a case

3 304 it is often advantageous to choose tR&-component associated
V={e”m, (3.9 with the preferred direction to have the opposite sign compared

. with the present choice.
wherem=m(x') is a freely specifiable positive real-valued jih the exception of the special cases when the shear rate
function ofx', which we consider given, anft} is the unit of  tensor is locally rotationally symmetrical or zero; when the frame is
the physical dimensioflengthl. We thus refer to this gauge uniquely determined, all the Hubble-normalized connection and
choice as theseparable volume gaugblote that the reduced curvature variables employed are scalar invariants.
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with the spatial derivatives appearing lineaf@part from the that the spatial frame derivatives of the gravitational field
evolution equation for ,). A surprising feature of the evo- and matter variable¥, and of the normalization factdt, be
lution equations is that they contain second-order spatial dezero, i.e.,

rivatives; in this respect they are reminiscent of a system of

quasilinear diffusion equations. The only second-order spa- d,Y=0, r,=0.
tial derivatives in the evolution equations, however, are those ) ) )
in the evolution equation for,, itself. They arise due to the tions and matter variables are constant on the spacelike
fact that in the separable volume gauge the deceleration pa-Surfacess:{t=cons}, which are thus the orbits of a three-

(3.20

rameterq contains the first spatial derivatives iof. In fact,
in the separable volume gauge E®.30 for g assumes the
form

q=2%2+G;[(3y—2)+(2— y)v?]Q—Q,

1
—5(0a—2Aa)r“. (3.19
The termd,q in the evolution equation for,, Eq. (2.49,
thus containg);d;r, .

A second noteworthy feature of the system of PGE.2)
is that the evolution equation f@,' is homogeneoysvhich

implies that the equatiok,,' =0 defines an invariant set. We
shall discuss the significance of this set later in this sectio

equations, we now decompose the Hubble-normalized stal

vector(3.11) as follows:

X=(E )Y,

a 'V«

(3.15
where
Y=(2,5.Nug, A% Q0% 0 ). (3.16

We can now write the systeli3.12) in a more explicit form
as follows:
HE,=(06,P-3 P+e,PRVE,, (3.17

with g given by Eq.(3.14), and

=G Ay 20 AP G PYY)éd
o =[G, ( )+§( T y) rgt G (Y)dgr,

1
=3 9(9pr") +0,G(Y), (3.19
HYA=Fa(Y) +FA% ()3, Yp+FAP(Y) 0,1 4
+F A (Y)r,, (3.19
with
0a: Eaiai .

The coefficientsz #, G,#7, G, Fp, F 2%, F,*# andF ,“
are functions of the components %t

2. Spatially homogeneous cosmologies

We now discuss how the SH cosmologies are described
within the G, framework. These are obtained by requiring

parameter group of isometries. The evolution equations
(3.18 and(3.19 imply that the SH restriction&3.20 define

an invariant set of the full evolution equations, which we
shall call theSH invariant setindeed, Eq(3.18) is trivially
satisfied, and Eq3.19 reduces to a system of ordinary dif-
ferential equations, namely

(3.21

The nontrivial constraints defined b¢d), (Cc)“ and (C)“
[cf. Egs. (2.40—(2.42] become purely algebraical restric-
tions onY, which we write symbolically as

Y a=Fa(Y).

n, . . o
r{An important aspect of this process of specialization is that

fhe evolution equatior{3.17) for E, decouples from the

evolution equation foly, which means thathe dynamics of
SH cosmologies can be analyzed using only Egs. (3.21) and
(3.22) (cf. WE). In this context, one can think of the vari-
ables Y as defining areduced Hubble-normalized state
space of finite dimension, for the SH cosmologies.
In the SH context the restriction®=0 defines an invari-
ant subset, giving the so-called nontilted SH cosmologies,
and the Bianchi classification of the isometry group leads to
a hierarchy of invariant subsets, some of which have been
analyzed in detail in the literature. For example, the condi-
tions
v*=0, A*=0, Ng=0 (a#p), “=0, Q,=0,
(3.23

give the nontilted SH perfect fluid cosmologies of class A in
the canonical framésee WE, Chap. 6, but with some differ-
ences in notation

Specializing further, by requiring the shear rate to be zero,

2.5=0, (3.29

in addition to conditiong3.20, we obtain theFL invariant
set which describes the familiar Friedmann-Letmaicos-
mologies. Equationg3.20 and(3.24) imply thatv“=0 and
Sq.p=0, whereS,; is the tracefree part of the 3-Ricci curva-
ture (see Appendix B and hence that the spacelike
3-surfacesS:{t=cons} are of constant curvature. In addi-
tion, the electric and magnetic parts of the Weyl curvature
(see Appendix Bare zero, 6=&,5="H,5. The deceleration
parameter simplifies to

1
0=5(3y-2)0-Q,.
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3. Silent boundary IV. SILENT INITIAL SINGULARITIES AND THE

We noted earlier that, because the evolution equation GENERALIZED MIXMASTER ATTRACTOR

(3.17 for E,' is homogeneous, the equation In this section, we formalize the notion of a silent initial
_ singularity, which was introduced heuristically in Sec? 1.
E,/=0 (3.25  We then construct an invariant set in the silent boundary that

we conjecture is the local past attractor {8 cosmologies
defines an invariant set of the full evolution equatiéhtn ~ With a silent initial singularity. The detailed structure of the
the Introduction we discussed the notion ositent initial ~ Past attractor in turn relies heavily on our knowledge of the
singularity, which was introduced heuristically as an initial @ymptotic dynamics near the initial singularity in SH cos-
singularity with the property that the evolution along neigh-mologies.
boring timelines decouples as the singularity is approached.

In Sec. IV we shall make a formal definition of a silent initial A. Silent initial singularities
singularity, but for now we note that a key requirementforan |, terms of Hubble-normalized variables and the sepa-
initial singularity to be silent is rable volume gauge, the spacelike initial singularity iGg
. cosmology is approached &s> —o. We now define ailent
lim E,'=0, (3.26 initial singularity to be one which satisfies
t——x
lim E,'=0, (4.2)
i.e., the orbit that describes the evolution of the model is past t——e
asymptotic to the invariant s&,'=0. We will thus refer to .
this invariant set as thsilent boundary lim r,=0, (4.2)
On the silent boundary, the evolution equati@l8 for e
r, simplifies to the homogeneous form and
T o= [GaB(YH graA'B}rB. (3.27) tﬂrl %Y =0, “3

where theE ' are the Hubble-normalized components of the
spatial frame vectorg§see Eq.(2.26)], r, is the spatial
Hubble gradient[see Eq.(2.29] and Y represents the
re=0 (328 Hubble-normalized gravitational field and matter variables

[see Eq(3.16]. More precisely, we require that Eqg.1)—
defines an invariant subset of the silent boundary. On thig4.3) are satisfiecalong typical timelines o, .

It follows that the equation

invariant subset the remaining evolution equat{8rl9 re- One might initially think that the conditiofd.3) is a con-
duces to sequence of Eq4.1), since
Y a=Fa(Y), (3.29 8 Y=E i Y
a a (9XI *

which coincides with the evolution equatidB.21) for the
SH cosmologies. The remaining constraints are purely alggslowever, the analysis of Gowdy solutions with so-called

braical, and can be written symbolically as spikes(see Refs[20], [21] and[22]) shows that the partial
derivativesgY/dx' can diverge as— —o. Thus the require-
C(Y)=0. (3.30  ment(4.3 demands that thg,,' tend to zero sufficiently fast.

We now present some evidence to justify proposing the
One thus obtains a representation of the SH dynamics on tHfaPOve definition. First, for SH cosmologies, which we have
invariant set seen satisfy the restrictiont8.20, the evolution equation for
the E,' decouples from the equation faf. This evolution
equation, in conjunction with the known results about the
asymptotic behavior of the variablés (see WE, Chaps. 5
. and 6, and Ringstro [23]), provides strong evidence that
i.e., within the silent boundary. Sindg,'=0, however, the typical solutions satisf{f the remaining requiremef.1) for

spatial dependence of the Hubble-normalized variallés g silent initial singularity. An example of an exceptional class
completely unrestricted, and hence these solutions of the

evolution equations and constraints kot in general corre-
spond to exact solutions of the EFE. 3The concepts we propose for classifying an initial singularity as
“silent” can be applied analogously to final singularities.
» %We are indebted to Hans Ringatmafor helpful discussions on
12Note that this does not necessarily imply {im ., E,'=0. this matter.

E'=0, r,=0, (3.31
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of SH solutions, i.e., solutions for which the initial singular- with 5aﬁb“bﬁzl, and, hence, that
ity is not silent, are those that are past asymptotic to the flat .
Kasner solution(the Taub form of Minkowski spacetime ( lim Ea')bazo-
given by to e

ds?= — d T2+ T2dx2+ €2(dy2+d2), Since this must hold for all null geodesics emanating fidm
X o(dy z) b“ is arbitrary, implying that the limi{4.1) holds. In other

whereT is clock time. In terms of the dimensionless Sepa_words, we expect that the increasingly strong gravitational

rable volume time = In(T/¢€y), this line element reads field associated with a typical spacelike initial singularity
will lead to the first condition in the proposed definition of a
€5zdszze2t(—dt2+ dx?) +dy?+dZ, silent initial singularity.
We now show heuristically that conditio@.3) restricts
from which it follows that the scale of spatial inhomogeneities as the initial singularity

_ is approached. IfE,' tends to zero at an exponentially

lim E,'=diag3,0,0. bounded rate as— — (as in SH and3, cosmologie} the

t——o

coordinate distance to the particle horizon in a directién

Secondly, further evidence is provided by recent researcwIII also tend to zero at an exponentially bounded rate:

on G, cosmologies, although the situation is clouded by the AX,~b%E,l as t——o.
fact that an area time gauge rather than the separable volume “

gauge is usedout see the footnote in the next section aboutThe change\Y in the Hubble-normalized variablés corre-

the gauge issyelndeed, one can use the asymptotic analysisponding to a changAxiH is approximated by

of vacuum orthogonally transitiv&, cosmologiegthe so-

called Gowdy solution§24,25; in the present context see in v .

particular Ref.[26]) to show that the condition&t.1) and AY~ 7 Axy~b%d,Y.

(4.3) are satisfied along typical timelines, even when spikes

occur. However, in generdb, cosmologies the situation is |t thus follows from the limit(4.3) that AY —0 ast— —oo.

more complicated and further studies are needed to establigh other wordsthe physical significance of the limit (4.3) is

if condition (4.3) holds or if it is violated along exceptional that spatial inhomogeneities have superhorizon scale asymp-

timelines due to the presence of spikes. totically as t——o, and, hence, up to the particle horizon
These results suggest that the notion of a silent initiakcale a solution is asymptotically SH.

singularity may be of importance as regards the description With the preceding discussion as motivation we now

of generic spacelike initial singularities. Further support ismake our first conjecture.

provided by heuristic arguments of a physical nature, as fol-

lows. We anticipate that generic spacelike initial singularities  Conjecture 1 For almost all cosmological solutions of
are associated with increasingly strong gravitational fields, Ejnstein’s field equations, a spacelike initial singularity

gradually approaching local curvature radii of Planck-scale s sjlent.

order, which will lead to the formation gfarticle horizons . ) i ) o )

(see, e.g., Rindld27,28). The existence of particle horizons Proving this conjecture entails establishing the lindts)—
is governed by null geodesics, which satisfy :

B N dx! 8 dx! B. Stable subset into the past
1=105,4 E E

rat )| e “4

We think of the evolution of the Hubble-normalized state

_ _ Y vectorX(t,x'), for fixed X, as being described by an orbit in
[see Eq(A25) in the Appendij, whereE®; are the compo- 4 finite_dimensionaHubble-normalized state space. &s-

nents of the Hubble-normalized 1-forms associated with the_ ., this orbit will be asymptotic to @ast attractor which
orthonormal frame: ’ )

in accordance with the definition of a silent initial singularity
Eep i_ge 45 [see Eqs(4.1)—(4.3)], will be contained in the subset of the
=g B : silent boundary defined by
If particle horizons form, we expect that the past-directed Ei=0 r.=o0. (4.6
null geodesics emanating from a chosen p&nwill satisfy « e

X'(t)—xy; (consy and dx/dt—0, ast——c. It follows  The evolution of a spatially inhomogeneous model is de-

from Eq. (4.4) that scribed by infinitely many such orbits, each of which is
| asymptotic to the past attractor. The details of the approach
E« d_XHbQ to the past attractor, however, will depend on spatial position

dt x', thereby reflecting the spatial inhomogeneity of the model.

On the other hand, the evolution of an SH model will be
described by a single orbit. The essential point is that
SWoei Chet Lim(private communication dynamics in the invariant set4.6), which govern the
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asymptotic dynamics of both classes of models, is determined
by the SH evolution equations and constrajrg#s shown in
Sec. 1IIB3.

The next step in constructing the putative past attractor ignd cycle on(1,2,3. These variables are restricted by the
to partition the Hubble-normalized state veclointo stable  GauR constraint2.40), which now reads
and unstable variables, as regards evolution into the past.
First, within our framework, the BKL conjecture means that

2 1 1
8= Nf~ 3Ni(N2+N3)— 5 (N~ Ng)?, (4.9

lim Q=0,

t——x

lim Q,=0 4.7

t——

(i.e., the initial singularity is vacuum-dominajedsecondly,

asymptotic analysis and numerical experiments for SH cos-

mologies ands, cosmologies suggest that

lim A%=0,

t——c t

lim N,z=0(a#B), (4.9

along a typical orbit. It is thus convenient to decompose the

Hubble-normalized state vectdr as follows:

X=X®X,,
where
Xs=(E, /T 0, A%Nyp(aB),Q,0,)7 (4.9
and
Xy=(2a,RENg 09T (4.10

Here, for brevity, we have writtéf
Ea::Eaa’ Na::Naa'

In terms of this notation, our conjectur¢s.l), (4.2), (4.7)
and(4.8) can be written

lim Xs=0.

t——o0

(4.1

We shall refer to the variablesg as thestable variablesand
the remaining variableX, in Eq. (4.10 as theunstable vari-
ables We shall provide evidence that the variab¥esremain

bounded ags— —<, but that their limits do not exist. We
note in passing that further justification for the terminology The essential

“stable” and “unstable” in this context will be provided
shortly, when we show that the variablesXg are stable on
the Kasner circles, while the variablesXp, are unstable.

We now list the evolution equations on the subXet
=0. First, the variable%, ,, R* andN,, satisfy

021=2(1-39)3,+2(R5—R3)—3S,, (4.12
ARy =[—2(1-3%)+3,—33]Ry, (4.13
N =2(22+3 )Ny, (4.14

where

8Not to be confused with the notation used in R&0], where3,
was defined to be equal ®,3, and cycle on(1,2,3.

2 1 2 2 2 1 2

1=3 +6(N1+N2+N3)—1—2(N1+N2+N3) , (419
with

2 1 2 2 2 2 2 2
2 =g(21+22+23+2R1+2R2+2R3). (4.17
Secondly, the evolution equation fof* now reads

a 1 2 B @
=5 [By=4)(1-v)+ (2= (Zgp oo

—[29— € 5(R"+N” ) Jv¥, (4.18
where it is convenient to retain the index notation. We note
for future use that Eq4.18 implies

2 2 2 2 @

dv =G—(1—v N(By—4)v?— (2,5 "vP)]. (4.19
Although the variables, are unstable into the past, it
turns out that certain combinations of these unstable vari-
ables are in fact stable. First, the lingt.12), in conjunction
with the equation forg;N,z(a# B) and the Codacci con-

straint, leads to the following limits:

lim R,N=0, a#p. (4.20

t—

As a result, the subset of the Hubble-normalized state space
defined by

Xs=0 (4.20
is an invariant set only if the following restrictions hold:
R.Ng=0, a#p. (4.22

point is that the produ@®gN; (a# B) are
stable into the past.

Secondly, we can make use of known results about SH
models to motivate another limit, in addition to Ed.20).
We introduce the function

An:=(N1N2)+ (NoNg)*+ (NgNy)?. (4.23

If Ay#0, i.e., if more than oné\, is nonzero, then Eq.
(4.22 implies R*=0. Then the evolution equatiorid.12—
(4.14 reduce to the evolution equations for vacuum SH
models of class A. It has been shaWfthat solutions of these
evolution equations satisfy

See Ringstrm [23] for the case where thB, have the same
sign(Bianchi type IX casp Numerical simulations suggest that this
result is also true in the Bianchi type VIII case.
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lim Ay=0. (4.24 HE, =(28,P-3 P+e, PRVE, (4.29

t——o

03 P=2e"%eR 3P 4.3
It is thus plausible that if Eq$4.11) and(4.20 hold, then so ! ¢ e (4.30

does Eq(4.24). We shall refer to the invariant set defined by as follows from Eqs(3.17 and(2.34).
In the physical region of the Hubble-normalized state
Xs=0, RNg=0 (a#p), Ay=0. (429  gpace, ie., deE)#0, Egs. (4.27 imply that S g
=3 ,4(t), and that the spatial coordinate freedom can be

as thestable subsetnto the past and make the following g i .
used to obtairE, =E_ (t), confirming that the Kasner so-

conjecture. lutions are SH and of Bianchi type I. On the silent boundary
Conjecture 2The local past attractod™ for G, cos- (E,'=0), however, Eqs(4.27) become trivial, with the re-
mologies with a silent initial singularity is a subset of syt thatthe spatial dependence &f,; is unrestricted One
the stable subset. thus obtains a representation of the Kasner dynamics locally
Proving this conjecture entails proving the limit.12), on the silent bour_1dary, even thou_gh _the line element, as
(4.20 and (4.24, assuming the validity of Eqg4.1)— given by Eq.(A_25) in the Appendlx, is smg_ular. Indeed, the
(4.3. Kasner dynamics on the silent boundary is described by the

We believe that this conjecture can be strengthened, howRPits that satisfyX;=0 and the additional restrictioN,
ever. In order to do this, we need to describe how the Kasner 0 as follows from Eqs(4.9) and(4.26. We shall refer to
vacuum solutions are represented within the present framdbis subset, defined by

work. X¢=0, N,=0, (4.31

C. Kasner circles as theKasner set on the silent boundary
The evolution equations on the Kasner set are obtained by

The line element for the Kasner vacuum solutions is . > k 7
setting>“=1 andS,=0 in Egs.(4.12 and (4.13, which

€5 %ds?= —d T2+ T2P1dx?+ T2P2dy? 4 T2P3d 2, yields
where the Kasner exponenis, p, andp; are constants that 921=2(R5—Rj), (4.32
satisfy

R1=(2,—23)Ry, (4.33

— 2 2 2__

P1P2TPs=1, Pitpztpi=1, and cycle on(1,2,3. Note that the evolution equations for
and(,T is clock time. The Kasner exponents can take values-« @NdR" decouple from that ob “, discussed below.
that are described by the inequalitiest <p,<0<p,<2 It is important to note that if the spatlgl frame ot
<ps=1 (or permutations therepfsee Ref.[31], p. 196. Fermi-propagatedR*#0), the X, evolve in fime, with
Relative to the natural orthonormal frame associated with~ =1, both on and off the silent boundary. On the other
this line element, the Hubble-normalized connection vari-nand, if the spatial framis Fermi-propagatedR®=0), then
ables are all zero except for the shear rate tensor, which &ap 1 constant in time by E¢(4.30, and diagonal:

diagonal and given by S, p=diags,,3, 3), (4.34

2ap=diag3p;— 1,30~ 1,305~ 1). with —2<3,<-1<3,<1<3,<2 (or permutations
One can also represent the Kasner solutions relative to thereoj. Thus, if the spatial frame is Fermi-propagated, the

. . . . . Kasner orbits on the silent boundary are equilibrium points
spatial frame that is not Fermi-propagated, as is the spatia : . . ;
o . of the shear evolution equations. Sirkg is tracefree and
frame specified by Eq.3.10. Some of these alternative rep- PN ;
X : . satisfies®“=1, we obtain
resentations are important in what follows.
Within our formulation, all possible representations of the S,+3,+3,=0 (4.35
Kasner solutions are given by
and

r,=0, 9,25,=0, d,Ez'=0, (4.2 The dynamics on the Kasner set also includes the evolution
_ ) ) equationg4.18) for v* (with N,z=0). It follows that if the
with theR® given by Eq.(3.10. The Gauld constrairi2.40, 3, satisfy Eqs(4.34—(4.36), then the evolution equations
together with Eqs(4.16) and(3.14), implies that (4.18 and (4.19 for v admit the equilibrium sets

32=1, q=2. (4.28 v¥=0 or v’=1,

The evolution of the nonzero variablés, andX 5 is gov-  where the latter condition is also to be supplemented with
erned by one of the six choices for=(v,v,,v3)", namely
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o Q1 (21,22,23)=(—2,1,1, (4.39

and cycle on(1,2,3. Figure 1 represents the pladg+2.,
+23=01in 2 ,z-space, containing a Kasner circle, and show-
ing the six sectors and the pointg andQ, . The figure also
shows three additional points labelBg, which lie outside a
Kasner circle, forming an equilateral triangle whose sides are
tangential to the circle. These points, which are given by

Pii (21,27,23)=(—4,2,2,

and cycle on(1,2,3, will be used to describe the so-called
curvature transition sets.

D. Transition sets

The dynamics in the stable subset, defined by (B®R5),
is essentially determined by the fact that each Kasner equi-
librium point is a saddle point, with at least two of the nine
variablesN,, R* andv “ being unstable into the past. Which
of these variables are unstable at a particular Kasner point
can be quickly determined Hinearizing Egs.(4.14), (4.13
and(4.18 in the neighborhood of such a point. On the Kas-

) . . ) ner circle this yields
FIG. 1. A Kasner circle showing the six equivalent sectors and

the variables that are unstable into the past in each sector. N;=2(1+>,)Ny, (4.40
v==*E,, «=123, (4.37 hR1=(2,—23)Ry, (4.41
whereE;=(1,0,0)', etc. Thus, there exiseversets of equi- dw1=(3y—4-3)vy, (4.42

librium points forming circles i, s-space, which we shall o o )
call Kasner circlegthe intersection of the plan@.35 with ~ and similarly for indices 2 and 3. On the Kasner cirdles,
the spheré4.36)], depending on the value ofin Eq.(4.39,  (Where, nearbyv,=*1%6v,, 6v,>0), the linearized

which we denote by equations folN; andR; remain unchanged, while E4.18
yields
K, Kig-
- oS0 :_2(37’_4—21) Sv (4.43
In addition, it follows from Eq(4.18 that for specific values L (2=7y) L '
of %, subject to Eqs(4.35 and (4.36), there are six addi-
tional lines of equilibrium pointsgiven by dvo=(21—2)vy, (4.44
21:3’)/_4, l)l>0 or Ul<0, 02:U3:0, &tv3:(21_23)v31 (445)
(4.38

and similarly for indices 2 and 3 ok, and K. 3, respec-

and cycle on(1,2,3, which join the various Kasner circles. tively. It follows that
At this stage, we digress to describe the symmetry prop-
erties of the Kasner circles. Each circle is divided into six
equivalent sectors, which we will label according to the or-
dering of the diagonal shear componehts, which satisfy
Egs. (4.35 and (4.36. For example, in sectofl23 these
parameters satisf§ ;<X ,<3;, etc. The sectors meet at

points where two of the , are equal. Tht‘else points are of 4, is unstable into the past ofC. ;<3y—4—3,>0,
two types, conventionally labeled, (the “Taub points”

andQ,,, given by® v, is unstable into the past oi. ;=3 ,—3,<0,

N, is unstable into the pastl+3,<0,
R, is unstable into the past3,—2;<0,

v, is unstable into the past o 3y—4-3,<0,

T (21,22,23)=(2,-1,-1), v3 is unstable into the past oK. &3, —23<0,

and similarly for indices 2 and 3. The arcs of the Kasner
The T, correspond to the Taub form for Minkowski spacetime Circles on which the variable, and R* are unstable are
in the exact Kasner solution, and the, correspond to the locally shown in Fig. 1, and those on which the variabigs are
rotationally symmetrical nonflat Kasner solution. unstable are shown in Figs. 2 and 3. A given Kasner equilib-
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VieTy P | V2, V3

\ 2

211=3y4

T T I =3y

FIG. 2. The Kasner circléC showing the arcs on which the variable$ are unstable into the past. Figuréa2shows the casg<y
<2 and Fig. ?b) the case ¥ y<3.

rium point P thus has an unstable manifdlitito the past'®  through rotation of the spatial frame by2 about one of its
The key property of this unstable manifold is tlegich of its  axes. For example, the transition sé}gl result in the inter-
orbits join P to some other Kasner poifithe simplest such  changes ,<3,—-3,<3,, as can be seen by comparing
orbits are those on which only one of the nine variags  Figs. 1 and &a).
R“ andv“ is nonzero, or those on which twd" are nonzero Thirdly, there are thailt transition sets 7, , which are
but with extreme tilt ¢?=1). These special orbits, which we “
shall refer to collectively agransition sets are listed by
name and symbol in Table I. In this table the subscripte
letter on theT indicates the “excited” variable. We now dis-
cuss these transition sets in turn. " reversal of direction of these orbits is governed by the six
First, there are thecurvature transition setsTNa, a lines of equilibrium points given by Eq4.38).
=1,2,3, which are shown in Fig. 4. In this and all subsequent Fing|ly, there are theextreme-tilt transition sets7, |,
figures, orbits are directed toward the pasFor a=1 the Let us consider the subsef=1 (with fixed S.,). The;vc;

curvature transition orbits are given by e horaet 15 & umit vector, which may be parametized
(1-K)(2—3,)=(1+k)(2—33), (4.46  according to

shown in Fig. 6. They are simply lines with, constant and
ne of thev® nonzero. Whether the orbits join a point &h
0 a point on one of the Kasner circl&s, ,, or vice versa,
depends on the values of ti¥%, (see Figs. 2 and)3The

wherek is a parameter that satisfiesl<k<1. This relation e?=(cos®,sind cose,sind sing)’, O=I=m,
follows from Egs.(4.12) and (4.14 with 0=N,=Nz;=R*.
In the spatially homogeneous setting these orbits describe the
Taub vacuum Bianchi type Il solutions, and determine the
past attractor for vacuum and nontilted SH models of Bian-
chi type VIII and type IX(in a Fermi-propagated frame; see
WE, Fig. 6.6 on p. 138, and pp. 143-7, but note differences
in labeling. These curvature transitions link different “Kas-
ner epochs,” according to a transition law for the Kasner
exponents first found by BKlsee Ref[8], pp. 535-7; also
WE, p. 236. We derive this transition law in Appendix 4.
Secondly, there are thleame transition sets7g , which

are shown in Fig. 5. For=1 they are given by

21: k,
wherek is a parameter that satisfies2<<k<2. In the spa- 1
tially homogeneous setting these transition sets map a Kas- 3 = T,
ner solution into a physically equivalent Kasner solution @2 i $11=3y-4

FIG. 3. The Kasner circlek . ; showing the arcs on which the
1%As Figs. 1-3 show, the unstable manifold is at most five-variablesy® are unstable into the past. The variableis unstable
dimensional. on the boldface arc to the right of the lig,;=3y—4.
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TABLE I. The transition sets.

Name Symbol Transitions
K—K (v*=0)
curvature 7},& or
Kia—Kiq (v?=1)
K—K (v*=0)
frame Tr or

Kta_)’Cta (Uzzl)

tilt 7,, K— K., or vice versa
(2o fixed)
extreme tilt Tvuv;s Kio—Kapg
(a#pB) (Zap fixed, v?=1)

We then obtain from Eq(4.18 a simple dynamical system
for the polar angle$d, ¢}, given by
FIG. 4. The curvature transition s&, . The sets7y, and 7y,

are obtained by cycling ofi,2,3.

3
— _ A2 i 2. (_ H
di=—-a’sin2d, a 2 (=P1t P2 COS ¢+ pssint ), E. Structure of the past attractor
We are now in a position to state our conjecture concern-
3 ing the local past attractor of thH@, evolution equations for
dyp=—b?sin2p, bZ=-— 5(pz_ P3). (4.48  generic initial data satisfying the constraints. We introduce

the following notation:

_ _ _ ' Tyi=UTy, Tr=UTg, Ty=UT,,
It is easily seen that iff,<3,<3; (or equivalentlyp, : ‘ ’

<.p2< p3), then the lpasi attractor of this dylnarrllcal system is Toromd=U T, oy Keoxroma=U K. (4.50
given by {9,¢}={5m,57} and {&,¢}={37,57}, and,
hence, Thus, 7y is the union of all curvature transition sefg is the

union of all frame transition sets, ettsee Table | for the
im e“e + E (4.49 complete list of transition sets . .
R — =3 ' We now make the following conjecture concerning the
local past attractord ™.

Conjecture 3 The local past attractod™ for G, cos-

and similarly for other orderings dt,. Thus extreme-tilt mologies with a silent initial singularity is given by

transition sets are orbits that lie on the extreme-tilt sphere
v?=1 inv*-space, with &N_,=R¢%, and3 , fixed. Figure 7 A™ = KU Kexromdd TWUTRU Tt U Toxrome. (450
shows the direction corresponding¥q<2,<23, i.e., the

arc (123 on the Kasner circles. The other cases can be obThe essential property of the various transition sets is that
tained by interchanging 1, 2 and 3. The poiBts, in Fig. 7  they define so-calledhfinite heteroclinic sequencemn the
correspond to the points on the Kasner circles, deter-  past attractor, i.e., infinite sequences of Kasner equilibrium
mined by the values of thE ,. The directions of the orbits points joined by transition sets, oriented into the past. In
joining the pointsB.., depend on the ordering of th%, . particular, a typical Kasner point will be the starting point for

Q T,

el
<
<
<

Q

T, Q3
FIG. 5. The frame transitions se‘f’ﬁl (a), 7’R2 (b) and 7’R3 (c).
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An=(N3N2) 2+ (NoNg) 2+ (NgNy)?,

together with analogous quantitidg andA , for R* andv *.
The past attractor is then characterized by the following lim-
its [in addition to Eqs(4.1)—(4.3) and (4.1D)]:

lim,_,_.N?R2=0, (4.52

lim,_, _.v?(1—v?)(N?+R?)=0, (4.53

lime_ _..(Ay,AR)=(0,0), (4.54

lim,_, _..(A,(N?>+R?),A,(1-v?))=(0,0), (4.55
lim,_, _..v1v,03=0. (4.56

The limits (4.52 and (4.53 imply that if N, (R“, respec-

tively) is active, tharR* (N, , respectively must be close to
zero, and likewise either? or 1—v? must be close to zero,
as on theTNa(TRa) transition sets, respectively. The limit

(4.53 also implies that ifv? is not close to 0 or 1, theN,,

infinitely many heteroclinic sequencéisfinitely many, be and R must be close to zero, as on the tilt transition sets
intinitely y nic sequ inite’y Y D& 7 The limit (4.54) implies that at most ond, and at most
cause at least two transition sets emanate from each Kasnét«

point). The significance of the heteroclinic sequences is thaPN€R® can be active simultaneously, as on e and7g,
an orbit that is asymptotic to the past attractfor given  transition sets. The limit4.55 implies that if twov® are
values of thex') will shadow a heteroclinic sequence, and active simultaneouslyj.e.,A,#0), thenN, andR* must be
hence the cosmological model will be approximated locallyclose to zero and? must be close to 1, as on the extreme-tilt
by a sequence of Kasner states. transition setsz;auﬁ.

The conjectured past attractod,”, is a proper subset of  The conjectured structure of the past attractorin terms
the stable subset, defined by E4.25. Thus, in addition to  of Kasner equilibrium points and transition sets, as given by
the stable variable§t.9), various expressions involving the Eq. (4.51), or as described by the limitg.1)—(4.3), (4.11)
unstable variablesl,, R* andv® will tend to zero on the and (4.52—(4.56), embodies the notion that as one ap-
attractor, even though the limits of these variablest-as  proaches the attractor into the past along an orbit, the prob-
—co do not exist. The desired expressions depend on thebility that more than one of the nine unstable variablgs

T3 =34 K

FIG. 6. The tilt transition sef, .

following quantities: R* andv® is active during any one transitidiexcept for the
extreme-tilt transition sets on which twd® are nonzero, but
N%:=N_N¢ R%*=R,R% v?%=v 0% are constrained by2=1) tends to zero. Evidence that the

probability of multiple transitions involving pairs such as
(R1,N;) or (Rq,R,) tends to zero as— —« is provided by
numerical simulations for nontilted SH models of Bianchi
type VI* 4, reported by Hewitet al. [30].
By vi=(100) We shall refer to the local past attractdi”, defined by
} Eq. (4.5)), as thegeneralized Mixmaster attractpsince it
generalizes the past attractor for the so-called Mixmaster
models(SH models of Bianchi type IX; see WE, p. 146, and
, Table Il to follow), making precise the heuristic notion of an
{B_p v¥=(0-1,0) oscillatory initial singularity.

and

B-3
va=(0,0,-1)

Bz v¥=(0,0,1) V. COSMOLOGIES WITH ISOMETRIES

In Sec. IV, we proposed a detailed structure for the past
attractor forG, cosmologies with a silent initial singularity
[see Eq(4.5))]. Classes of cosmologies that admit an isom-
etry of some sort are described by invariant sets of the
Hubble-normalized state space. In this section we exploit this

B_1 va=(-1,0,0) fact to predict the structure of the past attractor for these
more specialized models, thereby providing a link to much

FIG. 7. The extreme-tilt transition sets on the extreme-tilt sphergrecent research.
v?=1, 0=N,=R%, with 3, fixed andZ;<3,<3;. For models with an isometry it is possible that one or

103502-16



PAST ATTRACTOR IN INHOMOGENEOUS COSMOLOGY PHYSICAL REVIEW B8, 103502 (2003

TABLE Il. Perfect fluid SH cosmologies with oscillatory initial singularity.

Nonzero
Class of models unstable variables Past attractor
nontilted type VIII and type IX N1, Ny, N3 KUy
(WE, p. 146, Ringstnm [23])
nontilted type VI 1/ Nz, Ry, R3 KUT\,UTr UTg,
(Hewitt et al.[30])
tilted type 1l N3, Ry, Rs, vy ICUIC1U7}\,3UTR1U7§3UTUI

(Hewitt et al.[29])

more of the nine unstable variablbs,, R* orv® is required  gies. Most recent research on the initial singularity has been

to be zero, leading to two possibilities. restricted in two ways:
(i) The initial singularity isoscillatory. (i) the spacetime is assumed to have compact spatial sec-
This possibility occurs if each arc of the various Kasnertions,

circles has at least one unstable varialoéder to Figs. 1-8 (ii) the energy-momentum-stress tensor is assumed to be

The attractor will then include all available transition sets,zero(vacuum solutions
and the evolution into the past along a typical timeline will The first restriction is made because it enables one to prove
be described by an infinite sequence of Kasner states, possesults about the global existence of solutions. It does not,
bly of a more specialized nature than 8 cosmologies. however, affect the structure of the past attractor, since it is
(ii) The initial singularity isKasner-like determined by the dynamics along individual timelines. In
This possibility occurs if at least one arc on one of theview of the BKL conjecture, namely that matter is not sig-
Kasner circles has no unstable variables. Théspio ques-  nificant dynamically as the initial singularity is approached,
tion then form the past attractor, and the evolution into theone might believe that the second restriction can be made
past along a typical timeline will be described by a specificwithout loss of generality when determining the past attrac-
Kasner state. A cosmological solution with this type of sin-tor. This conclusion is not valid, however. Our analysis leads
gularity is also referred to as beimgpymptotically velocity(- to the conjecture that the past attractor for vacuagmod-
term)-dominateda term that has its origins in the work of els is in fact the much simpler set given by

Eardley, Liang and Sach$82] and Isenberg and Moncrief B
[33]. Avac= KUTWU T, (5.

. We now present various cla}gses of cosmolqgles W'ﬂ.%ince the Hubble-normalized state vector for vacuum models
isometries, whose initial singularities have been discussed iHoes not contain the peculiar velocity variahié, which

e efaure, a1d et criecrd past lUacor ) g tat he extre Kasner GrcEgpcand he -
. LY o : “sition setsTy; and 7, nnot rt of th t attractor
mines whether the initial singularity is oscillatory or Kasner- > 0" S€ ST and ZexremeCANNOL be part of the past attracto

like. [see Eq(4.51)]. Nevertheless, determining the vacuum past

First, we consider SH cosmologies, which, as we haveattractor is an important first step in determining the past

. ! ..~ attractor for nonvacuum models.
e A S S sy v, I TAD Il e [ e lasses ofvacuum spataly o
P y mogeneous cosmologies whose initial singularity has been

Slpqe the definition of the generalized Mixmaster attracmrstudied. In each case we can predict immediately whether the
A~ involves only the variable¥, the attractor also exists as

N invariant set in this reduced stat Indeed. w singularity will be oscillatory or Kasner-like. In the table we
a ariant set In this reduced state space. indeed, we Coaive the past attractor for each class, which is a subset of the
jecture that in this contextd™ is the past attractor for the

- 20

general class of SH cosmologjesd that it will thus contain general vacuum attractod,qc.

the past attractors for the three special classes of SH cos-__

mologies with an oscillatory singularity that have been ana- ,, . . .
. . : . At this stage the reader might be concerned with the fact that

z;‘;gelg gftsa:_ll t:ogz;{gllol nig:glr? dII”vSvte trglévi;her:?etrgr:feip_?_ﬁ:lhese models have not been studied in the separable volume gauge.

9 . . y ) owever, we believe that, due to asymptotic silence, our discussion
papers use Hubble-normalized variables, but there are so

rTi]se“gauge robust,” i.e., that the local asymptotic temporal behavior

differences in the labeling of variables compared to theﬁs not affected by the choice of temporal gauge. To make this more

present paper. It is notoriously difficult to prove rigorous g pstantial we note that the choidé=1 andN' =0 was not nec-
results about oscillatory singularities and little progress hagssary for obtaining our picture of the past attractor. Any suffi-
been made until recently, when R|n9m@23], inaremark-  ciently smooth choica/(X) such that\is positive and bounded on
able piece of mathematical analysis, rigorously establisheghe attractor does not change the flow on the past attractor and thus
the existence of the past attractor for the class of nontilte@ne would obtain the same results as the chdiéel yields; N’
Bianchi type IX cosmologies, by proving the required limits, can be similarly generalized. We also note that these are not neces-
conjectured earlier by Wisee p. 146-)7 sary conditions, and that even wider sets of gauge choices are al-
Secondly, we consider spatially inhomogeneous cosmoldewed if one takes into account the detailed structure of the EFE.
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TABLE lll. Past attractor for vacuum spatially inhomogeneous cosmologies with isometries. In the first
three cases the initial singularity is Kasner-like, and in the last two cases the initial singularity is oscillatory.
In all cases we have adopted the convention of aligning the frame vectoefielidh (one of the Killing
vector fields).

Nonzero Vacuum past
Class of models unstable variables attractor
Polarized Gowdy= diagonalG, all zero K
(Isenberg and Moncrigi33])
Unpolarized Gowdy OT G, N3, Ry arc(T,Q.)CK
(Kichenassamy and Rend#&f16))
PolarizedT,-symmetric R3 arc(T;Q,T,1Q3)CK
=G, with one HO KVF
(Isenberg and Kichenassarf35))
T,-symmetrie= genericG, N3, Ry, R3 KUT\,UTg UTg,
(Bergeret al. [38])
U(1)-symmetrie= genericG; all nonzero KUTyU 7R

(Berger and Moncrief36])

One class of vacuum models is not included in Table Ill,using the Hubble scalar defined by a timelike reference con-
the so-called polarized (1)-symmetric modeléBerger and  gruence as the normalization factor. One of the principal ad-
Moncrief [34]). These areG; cosmologies for which the vantages of Hubble-normalization lies in the behavior of the
single spacelike Killing vector field is hypersurface- dynamical variables as the initial singularity is approached:
orthogonal. The reason for this exclusion is that the dynamithe dimensional variables diverge, while, for at least a ge-
cal consequences of the hypersurface-orthogonality condheric family of solutionsthe Hubble-normalized variables
tion are not compatible with our choice of spatial frame,emain bounded
given by Eq.(3.10. These models could be incorporated by  The structure of the evolution equations and constraints
making a different choice of spatial frame, as discussed ifleq to the introduction of theilent boundaryin the Hubble-

footnor:e[llc(j)]i)but W%Wri]” not ﬂursue thisl_ma(;tgr he[j' N normalized state space and enabled us to defisiteat ini-
It should be noted that in the papers listed in Table Il they;, singularity. The next step was to construct tgeneral-

conclusions about .the dynamics near the |n!t|al smgularltylzed Mixmaster attractgrwhich makes precise the notion of
are not expressed in terms of a past attractor: we have refor- ; Lo o X

: s : an oscillatory initial singularity in &, cosmology, while
mulated their results within our dynamical systems frame-

work, and at this stage most of the results about the pasr}avmg a simple g_eometrl_cal structufsee Figs. .1_)7 and .
. : allowed three precise conjectures on cosmological dynamics
attractor have not been rigorously established. The pape

r . : ;
referred to use a metric-based apprdadhstead of the or- at early times to be formulate@onjecture 1 in Sec. VA,

Conjecture 2 in Sec. IVB, and Conjecture 3 in Sec. WE
thonormal frame approach. Some of them make use of tht]:_ . .

; . . . he construction of the past attractor also highlights and
so-called Fuchsian algorithm to establish the asymptotics atg]arifies the important role of SH dynamics in tt& con-
Kasner-like initial singularitysee Refs|26] and[35)) while text. Indeed tf?ere is how conside?/able evidence, both nu-
others rely on a Hamiltonian formalism and the so-called er.ical and’ analvtical. that SH_dvnamics inﬂue’nces the
method of consistent potentials to predict whether the initia';:S mototic d nam%cs o'f spatiall in%omo eneous cosmolo-
singularity will be oscillatory or notsee Refs[36], [37] and ymp y P y 9

[38]). In this approach, the transitions between Kasner state%ieS near the initia_l singul_arity ?n a significant waly. Our for-
are described heuristically as bounces off potential walls der_nulanon places this relationship on a sqund fO.Ot'tmi. I.O.'
al past attractor for G cosmologies with a silent initial

termined by the Hamiltonian. Some of these papers also déx

scribe numerical simulations that display a finite number 0f5|ngqlar|ty IS .the past attractor for SH cqsmolog!We are
Mixmaster oscillations. now in a position to restate the BKL conjecture in a precise

form:

VI. CONCLUDING REMARKS

) ) For almost all cosmological solutions of Einstein’s
In this paper we have developed a mathematical frame- fiq|q equations, a spacelike initial singularitysient,
work for analyzing the dynamics @, cosmologies, and in vacuum-dominatednd oscillatory.

particular the BKL conjecture discussed in the Introduction.

A key step was the introduction of scale-invariant variables, Proving this conjecture entails establishing all the limits
associated with Conjectures 1, 2, and 3 in Sec. IV. As a first
step, one would have to complete the proof for the SH mod-

2Yin a recent papdi39], however, the Gowdy models are analyzed €els, begun by Ringstr [23]. A natural second step would
using scale-invariant variables introduced in R¢f.and[4]. be to consider the simplest class of spatially inhomogeneous

103502-18



PAST ATTRACTOR IN INHOMOGENEOUS COSMOLOGY PHYSICAL REVIEW B8, 103502 (2003

models with an oscillatory initial singularity, namely the ge- physical ideas. The challenge is to explain the difference
neric G, models(see Table lll, restricting consideration to between the past attractor for vacuu®y models and the
vacuum solutions for simplicity. Analyzing the role of the past attractor for perfect fluids, models[compare Egs.
spatial derivatives in a neighborhood of the silent boundary4.51) and (5.1)] using physical principles. It is often stated
will be a major step in this analysis, and will clearly presentthat “matter(energy does not matter” in the approach to the
a formidable challenge. initial singularity—this view is reflected in our past

This unifying statement incorporates certain fundamentaasymptotic limits for the matter variabl€ and (), . But,
physical ideas about singularities, partially supported byperhaps—and this is rather heuristic and speculative at this
known examples and theorems. It is useful to revisit the constage—*“matter linear momentum does matter” and/or “mat-
jectured physical behavior in a way that highlights variouster angular momentum does matter.”
aspects of the situation: In the end the major physical statements are:

(i) The generic cosmological initial singularity is a strong- (g Ultrastrong gravitational fields will occur in the early
gravity phenomenon, and so should be linked to trapped suignjverse, associated with local restrictions on causality.
faCES, which |ntU|t|V€|y Capture the notion of Ultrastrong (b) Propagating gravitationa| waves are not important in
gravitational fieldgand thus also to the standard singularity the cosmological context, but tidal forces are, and indeed are
theorems often more important than the gravitational fields caused di-

(ii) The generic cosmological initial singularity is likely to rectly by the matter.
be a spacelike curvature singularity because a null singular- (c) The relation between tidal forces and vorticity in the
ity will be very special and timelike singularities will by matter fluid is unclear and may contain some of the most
their nature intersect relatively few worldlines of matteut  interesting physics.
confirming this will depend on implementing a good mea-  The relation between them is that—if our conjectures are
sure on the space of cosmological models, which is needegbrrect—in the early Universe, energy and information
in any case in order to put on a firm footing all talk aboutmajinly propagate along timelike world lines rather than
probabilities. along null rays. When matter moves relative to the irrota-

(i) The generic spacelike curvature singularity is a scalational timelike reference congruence, as must be the case
curvature singularity, since nonscalar curvature singularitiegyhen vorticity in the matter fluid is dynamically important,
require fine tuning of initial data. then the energy and information will flow with the matter.

(iv) If the energy conditions are strictly obeyed, the cur-The primary effect of the gravitational field is in determining
vature singularity is generically Weyl curvature dominated,the motion of the matter through Coulomb-like effects; on
at least when VortiCity in the matter fluid is not Significant the other hand, the effect of the matter on the gravitationa]
(this is not the case if the energy conditions are just marginfield is primarily through concentrating that field into small
ally satisfied, as exemplified by stiff perfect fluids, but theseregions, while conserving the constraints which embody the
are not physically likely statgs Gauf law underlying the Coulomb-like behavior. The effect

(v) The strong-gravity regime associated with the initial of spatial curvature is to generate oscillatory behavior in tidal
state leads to particle horizons, and spatial inhomogeneitiggrces as this concentration takes place, as seems to be char-
are constrained to have superhorizon scale as the initial sigcteristic of generic cosmological initial singularities; but
gularity is approached. this is not wavelike in the sense of conveying information to

(vi) Increased strength of the gravitational field and thegjfferent regions, it is just a localized oscillation.

collapse of particle horizons lead to asymptotic silence, and |t js issues such as these that need to be investigated when
on the scale of the particle horizon solutions therefore argyrther developing the themes studied here.

asymptotically SH.

(vii) The past attractor describing asymptotic spatially in-
hqmogeneous dynamics is thus given by the generalized ACKNOWLEDGMENTS
Mixmaster attractor.
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APPENDIX

1. Propagation of constraints

Propagation of dimensional constraints
eo[(Ccom)a,B(f )= (Ccom)aﬁ[eo(f )]1=2H(Ccom) aﬂ(f )+ Za[ay(ccom)ﬂ] y(f )— 2575[0(9 y(Ccom)ﬁ] 5(f ) (A1)

€0(Ce) = —2H(Cg) +2(8,+2U,—2a,)(Cc) “+ €*#(Coom) ap(£,), (A2)
3 a a 1 ; 1 .
e(Ceo)*=—[4HS6 ptog—e€ ,/BQV](CC)B—6(5"ﬁeﬁ—2u‘)‘)(CG)+ 56“57(6ﬁ+u5—3aﬁ)(03)7
3 a B 1 B a a (B B 1 af 3
_En B(CJ) +§n5 (C*—(Ceom ,B(U —a )_Ef y(Ccom)ﬁé(ny)

1
+2 €P7°(Ceom gy(N%5), (A3)

1 1
&(Cy*=—[2H "= 05— €*,5071(C)P = 5 €Y (Coom) gy (H) + 5 e (Ceomps(7,)

1
= 2 €7 (Coom (75~ (Ceam) "4 Q). (A%)

Propagation of dimensionless gauge fixing condition:

H(CY)Y=—(8,,+3 €, R)(CYY. (A5)

2. Hubble-normalized relativistic Euler equations

Upon substitution of the matter variabl€s 25, Egs.(2.36 and(2.37) assume the explicit form

I =— lv“ﬂaQ+G11[2G+q—(3y—2)—(2— V)02 = V(2 450 0P) = V(D= 21 4+ 2U ,—2A,)0 %+ Y0, In G, ]Q,

G,
(AB)
v *=—vPp*+ 5PdyIn G, — (r—1) (1-0%)8P(5IN Q=21 )+ G| (y—1)(1—0?)(9pP) — (2= y)vPIsIn G,
_1 .
+ (77 ) (2= ) (1=0H)vP(9sIN Q=21 )+ (3y—4)(1—v?) + (2= y)(2 g v ")+ G_(U gvP)

+[Gy—2(y= D I(ApP) [v =3 P+ e 5 RPY = U*—v2A*+ €PN g0 v°. (A7)

Usingv“=ve®, e,e*=1, we easily obtain from EqA7)

(y—1)

2
Iv’=—0v%9v°+ —(1-v?

& v4d,ING, +(y—1)v3(d %) —

(1-0v%)v%d,InQ—2r,)+(3y—4)v?
— (2,0 0P = G_(U ") —2(y—1)vA (A9 |, (A8)

N s 4 1(y—1)

1 .
1-02)p*P(d5In Q—2r 5) —p® 3P e7+s% RE— —p* ,UP—vp* AP
(1-v9)p*F(dgin rp)—pp2’ 87 +s% vpﬁU vp“p

+vs”,NP e7. (A9)
Herep®,:=0%;—e%ez ands®s:=€“5, €.
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3. Hubble-normalized curvature variables 1, )
The Hubble-normalized 3-Ricci curvature of a spacelike =125
3-surface S:{t=cons} is defined through the symmetric-

tracefree and trace parts. The trace gagtwas given in Eq.  and

(2.44), while the tracefree part is given by

3 3
212—4+3Z, 2222——I‘+Z, 2322—§I’_Z,

1 1
o
Sap==3€ (a7 T1y =28, )Ng)s+ (I T () Ag) 2

3

2 1 HZ=-2(1-3?)Z,
+ 3NW Ny~ 3NN, - (A10) ‘ (1-29
wherer ., :=1+1—a? «e[0,1], is a constant, and where
The quantitiesS,z and () satisfy the Hubble-normalized 1-32=3[(a—2)Z+2][(«+2)Z—2]. An orbit starts
twice-contracted 3-Bianchi identity given by (with time direction reversed toward the pasbm a Kasner
e o B _apy s point whereZ=Z_=2/(2+ «), and ends at a Kasner point
0=(dp—2r5—3Ap)S €""NgsS, whereZ=7,=2/(2—«). That is,Z is a parameter on the
1 individual orbits that increases monotonically fran to Z
+ 3 5%B( 95— 21 ) Q. (A11) toward the past, whiler labels the different orbits. The value
Z=0 determines the poir?; outside the Kasner circle in
Fig. 1. It is possible to express the constantand, hence,
r., in terms of the standard Kasner paramaterl (see,
e.g., BKL[8], p. 528, where we assume that we are consid-

Employing Eq.(A10), we can write the evolution equation
for X 4 in the alternative form

aoﬁaﬁz(q—2)2“3—3(S“B—H“B)+eyﬁ(a[ZR@B)ﬁ ering orbits that originate from sect¢t23) and thus that
_ _ _ P1<pP,<ps. Then (., a,r_)=2(?u,1)/(1+u?), and
- N5>7U 5]+(67>“ay— rletylet aleyyh), thus a might be viewed as a compactified Kasner parameter.

The above formulae directly yield the standard transforma-
(A12) tion laws from the initial Kasner exponenfp,} to the final

The conformal curvature properties of a spacelike 3-surfac§asner exponentgp.} for orbits originating from sector
S:{t=cons} are encoded in the Hubble-normalized (123:
3-Cotton-York tensor
s , . —h1 , _P2t2p; ,_P3t2p;
Cap=€""(al By~ 205~ Ay S5~ 3N(,"Sp), P15 %p, P27 172p, P3T1v2p,

1 (Al6)
+ > N, Sqp- (A13)
Curvature transitions from other sectors tl{a83) are easily

The Hubble-normalized Wey! curvature variables take thePt@ined through permutations.

explicit form
5. Inverting the commutator equations

1 1 1 :
Eap=Sapt 53 ap— —2<a723>y_ S, (Al4) The commutator equations can be used to solve for the
3 3 2 connection variables in terms of the frame variables. Let us
introduce thedual frame variables & of e,', and their
HaB:E675<a(3\y\_rIyI_A\yI)Eﬁﬁ Hubble-normalized counterpart&®;:=H e“,. The dual
3 frame variables can be used to conveniently describe the line
1 element, giving
_ Y _ Y
N2 g5+ Ny Zap: (ALS) @2 - A2dr+ 5,5E% EF (Nidt+dx) (Nidt+dx)].
. o (A7)
with S,z defined in Eq(A10).
N As E,' and E? satisfy the relationsE“,E;' =6, and
4. Curvature transitions E“E,J =4/, one finds with Eq(2.47) that theE®, evolve
Although the relation(4.46) implicitly gives the rule for ~according to
the relationship between two Kasner epodhis, not particu-
larly suitable for explicitly describing the “Kasner transfor- FoE" =~ (05" s~ 25— € 4R?) EBi+N’1E“J-(9iNJ'.
mation law” for curvature transitions. However, that law can (A18)
be elegantly obtained in the present dynamical systems
framework as follows. The solutions on thg subset are  On the other hand, from appropriately inverting E¢547),
determined by (2.48 and (2.50 we obtain the explicit expressions
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1 S When working in theseparable volume gaugeetermined
q=3 E%dE, + §/\/‘ aiN', (A19) by conditions(3.3) and(3.1), the line element takes the form

) ) g2 _ 442 @ =B Avidyi
S ap= — 8o By — N1, EN AN, (A20) ds’=H"?[—dt*+5,,E4EF,dXdX].  (A25)

1 1 Combining the above result fok,+r, with the constraint
Re— 3 €y EﬂiaoiEyl+ ENflEaBy E,BiayNi, (A21) (3.9 makes it then possible to solve fof, and A, sepa-

rately:
1 s i1 i 1 Be i 1 .

Aa+ra=§E iaaEB—Eo’?iEa , (A22) ra=§E E, 5JE3+§Eaf7i Inr, (A26)

N“P=E( ef 709 E I, (A23) 1, o 11

Aa: gE iEa a]EB - Eé’iEa - §Ea &i In m.

U,~r,=d,InN. (A24) (A27)
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