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Past attractor in inhomogeneous cosmology
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We present a general framework for analyzing spatially inhomogeneous cosmological dynamics. It employs
Hubble-normalized scale-invariant variables which are defined within the orthonormal frame formalism, and
leads to the formulation of Einstein’s field equations with a perfect fluid matter source as an autonomous
system of evolution equations and constraints. This framework incorporates spatially homogeneous dynamics
in a natural way as a special case, thereby placing earlier work on spatially homogeneous cosmology in a
broader context, and allows us to draw on experience gained in that field using dynamical systems methods.
One of our goals is to provide a precise formulation of the approach to the spacelike initial singularity in
cosmological models, described heuristically by Belinskiıˇ, Khalatnikov and Lifshitz. Specifically, we construct
an invariant set which we conjecture forms the local past attractor for the evolution equations. We anticipate
that this new formulation will provide the basis for proving rigorous theorems concerning the asymptotic
behavior of spatially inhomogeneous cosmological models.
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I. INTRODUCTION

Scales and scale invariance play a crucial role in pra
cally all branches of physics, and general relativity~GR! and
cosmology are no exceptions.1 In these cases one is inte
ested in self-gravitating systems, which in the cosmolog
context requires a matter model as well as a spacetime
scription. This in turn requires consideration of scales.
modern cosmology one assumes that~today! there exists a
global scale—that of the particle horizon. The empirical d
are usually interpreted as follows: on sufficiently large s
tial scales, say a few percent of the particle horizon, eve
thing looks statistically roughly the same in all direction
Combined with the Copernican principle~‘‘we are not lo-
cated at a special place’’!, this suggests that one can repla
a very complicated matter distribution by a simple one:
smooth distribution that is spatially homogeneous and iso
pic, obtained by averaging over sufficiently large spa
scales. Then it is further assumed that one can also app
mate the geometry of the spacetime by a spatially homo
neous and isotropic geometry, i.e., one assumes that the
metrical features trace those of the matter and that poss
‘‘excited geometrical modes,’’ such as gravitational wav
are negligible on these scales. This then leads to mode
the cosmological spacetime by a Robertson-Walker~RW! ge-
ometry.

The assumption of a RW geometry subsequently for
the summed matter content to take the form of a perfect fl
through Einstein’s field equations~EFE!. Although the math-

*Electronic address: Claes.Uggla@kau.se
†Electronic address: H.van.Elst@qmul.ac.uk
‡Electronic address: jwainwri@math.uwaterloo.ca
§Electronic address: ellis@maths.uct.ac.za
1See, e.g., the recent Resource Letter by Wiesenfeld on scal

variance in physics and beyond@1#.
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ematically simplest matter model is a single perfect fluid,
need more complex matter models to describe the real U
verse. Indeed, matter in the Universe consists of many c
ponents: at least~i! radiation~photons!, ~ii ! baryonic matter,
~iii ! neutrinos,~iv! dark matter, and~v! dark energy or quin-
tessence~other components like cosmological magne
fields are usually neglected!. Once the matter content ha
been specified and equations of state, scalar field poten
particle distribution functions, etc., have been chosen,
evolution of the model is determined by the EFE and
matter equations, e.g., the evolution equation for a sc
field. This then leads to a Friedmann-Lemaıˆtre ~FL! model
for the Universe.

The next step, aimed at describing the actual inhomo
neous Universe, is to perturb the FL model and describe
evolution of large-scale structures in the Universe, wh
appear at many scales—filaments and voids, supercluste
galaxies, galaxies, etc. But it is generally believed that lin
perturbation theory can account for them all on these la
scales. And, indeed, the FL scenario and the linear pertu
tions thereof~‘‘almost-FL models’’! form a remarkably suc-
cessful framework—it seems to consistently account
present observational evidence, at least over sufficie
large smoothing scales. Moreover, it forms an interpre
tional framework that encourages and steers further obse
tions. These are currently focused on determining the vari
density contributionsV i ~includingVL for the cosmological
constant!, and the spectrum and growth of density perturb
tions. This is the simplest scenario consistent with curr
observations.

Nevertheless, there are issues that need elucidation th
necessity lie outside the domain of the standard almost
picture. Here are some of them:

~a! To investigate the constraints observations impose
the spacetime geometry of the Universe requires investi
ing a hierarchy of more general models, perhaps charac
ized by assumed ‘‘priors’’~where removing a prior necessa

in-
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ily involves looking beyond one’s favorite model, with th
hope of getting further support for it!.

~b! To understand how special the FL models are and
them into a broader context requires looking beyond the

~c! While the Universe is well described by almost-F
models at present, this may not always have been true, a
may not remain true in the far future; in particular, we wou
like to know the largest class of models that can look like
FL model at some stage of their history.

~d! Using a FL and a linearized FL scenario rules o
possible nonlinear effects, but these may dominate; e.g
structures become much more dense while aggregatin
smaller scales.

~e! GR is a highly nonlinear theory; to prove that th
linear theory is correct requires going beyond linear per
bations.

~f! The averaging and fitting procedures motivating the
models do nota priori commute with the EFE, i.e., startin
with an inhomogeneous model and smoothing it does
necessarily lead to the model that has been smoothed
the outset and then perturbed. This gives rise to a numbe
questions, e.g., can inhomogeneities affect the overall ev
tion? How do they affect observations?

~g! There are deep connections between GR, cosmo
and thermodynamics, e.g., relating~gravitational! entropy
and the arrow of time. To better understand such connect
requires a state space picture describing the set of solut
where one can examine coarse-graining and existence o
tractors on this state space, toward which the evolving c
mological models move. Since entropy requires counting
possiblestates this requires looking at models beyond FL

~h! What is the detailed nature of possible singularities
better understanding of generic features of singularities
their dependence on matter content and initial data m
shed light on how the real Universe evolved initially. The
might also exist at least a local mathematical connection
tween the initial singularity and the singularities of gravit
tional collapse. To understand such a relationship, or its n
existence, again requires an inspection of cosmolog
solutions beyond the restrictions imposed by RW geometr

~i! A better classical understanding of singularities mig
help to produce gravitational theories with greater doma
of validity; e.g., finding asymptotic symmetries of the fie
equations when approaching singularities may provide su
cient structure to asymptotically quantize the theory in a
gime where quantum gravity is supposed to be of imp
tance.

Thus there is ample motivation to probe a larger subse
the cosmological solution space of the EFE than just
almost-FL models. Our first goal in this paper is to develo
framework for this purpose.

In view of the above-mentioned importance of scale
variance in physics, we propose to introduce scale-invar
variables, and to describe the evolution of a cosmolog
model by an orbit in an infinite-dimensional dynamical sta
space, governed by first-order~in time! autonomous evolu-
tion equations derived from the EFE and the matter eq
tions. The behavior of the model in the asymptotic regim
i.e., near the initial singularity and at late times, can th
10350
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possibly be described by a past attractor and a future attra
of the evolution equations.

The appropriate mathematical vehicle for implementi
this proposal is the orthonormal frame formalism, since~i! it
describes the essential degrees of freedom of the gra
tional field in a coordinate independent manner,~ii ! orthonor-
mal frame vectors provide local reference scales and s
allows one to naturally introduce scale-invariant variabl
and ~iii ! it leads directly to first-order~in time! autonomous
evolution equations.

To be more specific, by a cosmological model we mea
four-dimensional spacetime manifoldM endowed with a
Lorentzian metricg which satisfies the EFE with an appro
priate matter or energy distribution. We assume the existe
of a local foliation of the spacetime manifold by a on
parameter family of spacelike 3-surfaces with a futu
directed unit normal congruenceu. We naturally choose this
unit vector field to be the timelike vector field in the orth
normal frame. We assume that the cosmological mode
expanding, i.e., the volume expansion rate2 Q of the normal
congruence is positive. Because we are working in a cos
logical setting we will replaceQ by the Hubble scalar3 H
51

3Q.
In the orthonormal frame formalism, the frame vect

components and the commutation functions are the basic
namical variables for describing gravitational fields, and th
each have physical dimension4 @length#21. The Hubble scalar
also has physical dimension@length#21, and constitutes the
natural cosmological length scale through the Hubble rad
H21. This fact motivates one of the key steps in our a
proach, namely, the introduction ofHubble-normalized vari-
ablesby dividing the frame vector components and the co
mutation functions byH. Curvature quantities such as th
matter density and the orthonormal frame components of
Weyl curvature tensor have physical dimension@length#22,
and hence are normalized by dividing byH2. This process of
Hubble-normalization has two important consequenc
First, dimensional variables are replaced by dimension
ones, leavingH as the only variable carrying physical dime
sions. Secondly, one is essentially factoring out the ove
expansion of the Universe, thereby measuring the dynam
importance of physical quantities~e.g., the matter density!
relative to the overall expansion~cf. Kristian and Sachs@2#!.
This choice also provides a link between mathemati
analysis and observation, since key observational varia
are Hubble-normalized. Earlier investigations of t
asymptotic dynamics of cosmological models using sca
invariant variables dealt withspatially homogeneous (SH
cosmologies, i.e., models that admit a three-parameter gro

2HereQ52(tr k), whereQ is the volume expansion rate of th
normal congruence and (trk) is the trace of the extrinsic curvatur
of the spacelike 3-surfaces.

3When evaluated at the present epoch, the Hubble scalar eq
the Hubble constantH0 , familiar from observational cosmology.

4We will use units such that Newton’s gravitational constantG
and the speed of light in vacuumc are given by 8pG/c251 and
c51.
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of isometries acting on spacelike 3-surfaces@see Wainwright
and Ellis ~WE! @3# and other references therein#, and the
so-called G2 cosmologies, which admit a two-paramete
group of isometries acting on spacelike 2-surfaces~see Refs.
@4# and @5#!. The framework that we develop in this pap
generalizes a program that has been extremely success
a SH context to a completely general spatially inhomo
neous setting, i.e., to models that admit no isometries.
deed, the SH andG2 cosmologies will be incorporated in
natural way as invariant sets of the infinite-dimensio
Hubble-normalized state space. For brevity, and to emp
size that they admit no isometries, we shall refer to the m
els under consideration asG0 cosmologies.

The framework that we are developing can be used
studyboth asymptotic regimes in an ever-expanding cosm
logical model. In this paper we focus on the initial singula
ity. The problem of asymptotics in spacetimes that exhibit
isometries poses a formidable challenge. Nevertheless,
cerning the existence of singularities, remarkable progr
was made several decades ago by Penrose and Haw
leading to their singularity theorems@6,7#. However, the sin-
gularity theorems do not tell us much about the nature of
singularities. Detailed asymptotic analysis, using the
EFE, is required for this purpose. To date rigorous res
have, with few exceptions, been confined to cosmolog
models with isometries, in particular SH andG2 cosmolo-
gies. We shall discuss these results in Sec. V. As reg
initial singularities inG0 cosmologies, heuristic results we
obtained by Belinskiıˇ, Khalatnikov and Lifshitz~BKL ! @8,9#
by making ad hoc metric assumptions that were subs
quently inserted into the EFE with the purpose of show
that they were consistent. This analysis led to a remarka
although heuristic, conjecture that has become part of
folklore of relativistic cosmology.

The BKL conjecture. For almost all cosmological solu-
tions of Einstein’s field equations, a spacelike initial
singularity isvacuum-dominated, local and oscillatory.

For cosmological models with a perfect fluid matt
source, the phrase ‘‘vacuum-dominated,’’ or, equivalen
‘‘matter is not dynamically significant,’’ is taken to mean th
the Hubble-normalized matter density~i.e., the density pa-
rameterV! tends to zero at the initial singularity. The phra
‘‘for almost all’’ is needed because there are a number
exceptional cases. First, if the perfect fluid has a stiff eq
tion of state, the density parameter does not tend to zero~see
Andersson and Rendall@10#!. Secondly, there is a specia
type of initial singularity called anisotropic initial singular-
ity, in the neighborhood of which the solution is approx
mated locally by a spatially flat FL model~see Goode and
Wainwright @11#!, with the result that the density paramet
tends to the value 1. Isotropic initial singularities, howev
only arise from initial data that form a set of measure zer5

5There is in fact a wide variety of known special SH andG2

solutions in which the initial singularity is matter-dominated, i.e.,V
does not tend to zero. Like the isotropic initial singularities, the
singularities only arise from initial data that form a set of meas
zero.
10350
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The word ‘‘local’’ in the BKL conjecture means heurist
cally that the evolution at different spatial points effective
decouples as the initial singularity is approached, with
result that geometrical information propagation is asympt
cally eliminated. It is natural to describe this phenomenon
asymptotic silence of the gravitational field dynamics. We
shall refer to the associated initial singularity as being asi-
lent initial singularity.6

The word ‘‘oscillatory’’ in the BKL conjecture means tha
the evolution into the past along a typical timeline pas
through an infinite sequence of Kasner states, generali
the behavior first encountered in the so-called Mixmas
models~SH models of Bianchi type IX; see Misner@12#!.

Our second main goal in this paper is to give a prec
statement of the BKL conjecture, within the framework
the Hubble-normalized state space.

The plan of this paper is as follows. In Sec. II we deri
the Hubble-normalized evolution equations and constra
for G0 cosmologies that arise from the EFE and the ma
equations. In Sec. III we make a choice of gauge and t
describe some features of the Hubble-normalized state sp
in particular the SH invariant set and the silent boundary.
then define the notion of a silent initial singularity. In Se
IV, by analyzing the dynamics on the silent boundary, we
led to construct an invariant set which we conjecture is
local past attractor forG0 cosmologies with a silent initia
singularity, thereby making precise the notion of an oscil
tory initial singularity. In Sec. V we consider various class
of cosmological models with isometries and use the past
tractor to predict whether the initial singularity is oscillato
or not. We conclude in Sec. VI with a discussion of sile
initial singularities and the BKL conjecture, and raise som
issues for future study. Useful mathematical relations, s
as the propagation laws for the constraints and express
for the Hubble-normalized components of the Weyl curv
ture tensor, have been gathered in the Appendix.

II. EVOLUTION EQUATIONS AND CONSTRAINTS

In this paper, we consider spatially inhomogeneous c
mological models with a positive cosmological constant,L,
and a perfect fluid matter source with a linear barotro
equation of state. We thus have

p̃~m̃ !5~g21!m̃, ~2.1!

where m̃ is the total energy density~assumed to be non
negative! and p̃ the isotropic pressure, in the rest 3-spac
associated with the fluid 4-velocity vector fieldũ, while g is
a constant parameter. The range

1<g<2

is of particular physical interest, since it ensures that
perfect fluid satisfies the dominant and strong energy co

e
e 6For further discussions on the suppression of information pro
gation and asymptotic silence, see Ref.@4#.
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UGGLA et al. PHYSICAL REVIEW D 68, 103502 ~2003!
tions and the causality requirement that the speed of so
should be less than or equal to that of light. The valueg
51 andg5 4

3 correspond to incoherent pressure-free ma
~‘‘dust’’ ! and incoherent radiation, respectively. In cosm
ogy it is natural to single out a future-directed timelike re
erence congruencee05u of unit magnitude. This gives rise
to a (113)-decomposition of the perfect fluid energ
momentum-stress tensor

Tab5muaub12q(aub)1phab1pab , ~2.2!

with

m5G2G1m̃, p5G1
21F ~g21!1S 12

2

3
g D v2Gm,

qa5gG1
21mva, pab5gG1

21mv ^avb& . ~2.3!

The vector fieldv, which represents the peculiar velocity
the fluid relative to the rest 3-spaces ofe0 , is defined by

ũa
ªG~ua1va!, vaua50, ~2.4!

with the Lorentz factor given by

Gª
1

A12v2
, v2

ªvava. ~2.5!

The scalarsG6 ~we shall requireG2 later! are defined by

G6ª16~g21!v2. ~2.6!

To obtain an orthonormal frame,$ea%a50,1,2,3, we supple-
ment the timelike reference congruencee0 with an orthonor-
mal spatial frame$ea%a51,2,3 in the rest 3-spaces ofe0 . The
frame metric is then given byhab5diag@21,1,1,1#. In the
orthonormal frame formalism, introduced in relativistic co
mology, among others, by Ellis@13#, the basic variables ar
the frame vector components, the commutation functions
sociated with the frame, and the matter variables, and
dynamical equations are provided by the EFE, the Jac
identities and the contracted Bianchi identities~the latter, for
a perfect fluid, corresponding to the relativistic extension
Euler’s equations!. We will make use of an extended versio
of this formalism given by van Elst and Uggla@14#. The
dynamical equations consist of two sets, those containing
temporal frame derivativee0 , which we refer to asevolution
equations, and those not containinge0 , which we refer to as
constraints.

To convert the dynamical equations of the orthonorm
frame formalism to a system of partial differential equatio
~PDE!, it is necessary to introduce a set of local coordina
$xm%m50,1,2,35$t,xi% i 51,2,3. We do so by adopting the stan
dard (311)-approach~see, e.g., Refs.@15# and @16#!. Here
e0 is assumed to bevorticity-free and, thus, hypersurface
orthogonal. As is well known, this gives rise to a local foli
tion of the spacetime manifoldM by a one-parameter family
of spacelike 3-surfaces,S:$t5const%. The (311)-approach
leads to the following coordinate expressions for the fra
vector fields~cf. Ref. @14#!:
10350
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e05N21~] t2Ni] i !, ea5ea
i ] i , ~2.7!

whereN andNi are known as the lapse function and the sh
vector field, respectively.

A. Dimensional equation system

We now present the dynamical equations as given in R
@14#, simplified by the assumption thate0 is vorticity-free
(va50). We begin with the commutator equations, whi
serve to introduce the basic gravitational field variables, a
which will later be used to derive some additional evoluti
equations and constraints.
Commutator equations:

@e0 ,ea#~ f !5u̇ae0~ f !2~Hda
b1sa

b2eag
bVg!eb~ f !

~2.8!

05~Ccom!ab~ f !ª@ea ,eb#~ f !

2~2a[adb]
g1eabdndg!eg~ f !, ~2.9!

with f denoting an arbitrary real-valued spacetime sca
HereH is the Hubble scalar which is related to the volum
expansion rateQ of e0 according toHª

1
3 Q. The quantities

u̇a andsab are the acceleration and shear rate ofe0 , respec-
tively, while Va describes the angular velocity of the spat
frame$ea% along the integral curves ofe0 relative to a Fermi-
propagated one. The quantitiesaa and nab determine the
connection on the spacelike 3-surfacesS:$t5const%.

Einstein’s field equations, Jacobi identities and contract
Bianchi identities (Euler’s equations):

Evolution equations:

e0~H !52H22
1

3
~sabsab!2

1

6
~m13p!1

1

3
L

1
1

3
~ea1u̇a22aa!~ u̇a! ~2.10!

e0~aa!52~Hd b
a 1s b

a 2e gb
a Vg!ab

2
1

2
~eb1u̇b!~2Hdab2sab2e g

ab Vg! ~2.11!

e0~sab!523Hsab22n g
^a nb&g1ng

gn^ab&2dg^aeg~ab&!

1egd^a@~eg1u̇g22ag!~n d
b& !12Vg s d

b& #

1pab1~dg^aeg1u̇^a1a^a!~ u̇b&! ~2.12!

e0~nab!52~Hd d
(a 22s d

(a 22e d
g ~a Vg!nb)d

2~eg1u̇g!~egd(as d
b) 2dg(aVb)1dabVg!

~2.13!

e0~m!523H~m1p!2~ea12u̇a22aa!~qa!

2~sabpab! ~2.14!
2-4
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e0~va!5
G1

gG2m
@2gvae0~m!

1„G2d b
a 12~g21!vavb…e0~qb!#, ~2.15!

where

e0~qa!52~4Hd b
a 1s b

a 2e gb
a Vg!qb2dabeb~p!

2~m1p!u̇a2~eb1u̇b23ab!~pab!

1eabgnbdpg
d . ~2.16!

Constraints:

05~CG!ª2~2ea23aa!~aa!2~nabnab!1
1

2
~na

a!216H2

2~sabsab!22m22L ~2.17!

05~CC!a
ª2eb~2Hdab2sab!23absab2eabgnbdsg

d

1qa ~2.18!

05~CJ!
a
ªeb~nab1eabgag!22abnab. ~2.19!

Note that we arenot provided with evolution equations fo
any of the7 coordinate gauge source functionsN and Ni

~which reside ine0) or the frame gauge source functionsu̇a

andVa. Note also that these ten gauge source functions
not appear in the constraints. Independent of a choice
gauge~to be discussed in Sec. III!, the evolution equations
~2.8! and ~2.10!–~2.16! propagate the constraints~2.9! and
~2.17!–~2.19! along the integral curves ofe0 according to
Eqs.~A1!–~A4! in the Appendix.

There are, in addition, twogauge constraintsthat restrict
four of the gauge source functions, given by

05~Cv!a
ª@eabg~eb2ab!2nag#u̇g ~2.20!

05~Cu̇!aªN21ea~N!2u̇a . ~2.21!

The former is a consequence of assuminge0 to be vorticity-
free, the latter follows from Eq.~2.8! upon substitution of
Eq. ~2.7!. The propagation of the gauge constraints along
integral curves ofe0 can be established once a choice
temporal gauge has been made@as this determines what th
currently unknown frame derivativese0(u̇a) and e0(N)
should be#.

B. Scale-invariant equation system

We now introduce Hubble-normalized frame, connect
and matter variables as follows:

­0ª
1

H
e0 , ­aª

1

H
ea , ~2.22!

7Employing the terminology of Friedrich@17#, Sec. 5.2.
10350
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$U̇a,Sab ,Aa,Nab ,Ra%ª$u̇a,sab ,aa,nab ,Va%/H
~2.23!

$V,VL ,P,Qa,Pab%ª$m,L,p,qa,pab%/~3H2!.
~2.24!

It follows from Eq. ~2.3! that

P5G1
21F ~g21!1S 12

2

3
g D v2GV, Qa5

g

G1
Vva,

Pab5
g

G1
Vv ^avb& . ~2.25!

Expressing the Hubble-normalized frame derivatives­0 and
­a with respect to the local coordinates introduced in E
~2.7! leads to

­05N21~] t2Ni] i !, ­a5Ea
i] i , ~2.26!

where

NªNH, Ea
i
ª

ea
i

H
. ~2.27!

In order to write the dimensional equation system in Hubb
normalized form, it is necessary to introduce thedeceleration
parameter qand thespatial Hubble gradient ra , defined by

~q11!ª2
1

H
­0H, ~2.28!

r aª2
1

H
­aH. ~2.29!

The definition~2.28!, together with Raychaudhuri’s equatio
~2.10! and Eqs.~2.23! and ~2.24!, lead to the following key
expression forq:

q52S21
1

2
~V13P!2VL2

1

3
~­a2r a1U̇a22Aa!U̇a,

~2.30!

whereS2
ª

1
6 (SabSab).

We now use Eqs.~2.28! and ~2.29! to write the commu-
tator equations~2.8! and ~2.9! in Hubble-normalized form.
The result is

@­0 ,­a# f 52~r a2U̇a!­0f 1~qda
b2Sa

b1eag
bRg!­b f ,

~2.31!

05~Ccom!ab~ f !ª@­a ,­b# f

2@2~r [a1A[a!db]
g1eabdNdg#­g f . ~2.32!
2-5
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We now write the evolution equations~2.10!–~2.16! and
the constraints~2.17!–~2.19! in Hubble-normalized form.8

Evolution equations:

­0Aa5~qd b
a 2S b

a 1e gb
a Rg!Ab

2
1

2
~­b2r b1U̇b!~2dab2Sab2e g

ab Rg!,

~2.33!

­0Sab5~q22!Sab22N g
^a Nb&g1Ng

gN^ab&2dg^a~­g

2r g!Ab&1egd^a@~­g2r g1U̇g22Ag!N d
b&

12RgS d
b& #13Pab1~dg^a­g2r ^a1U̇ ^a

1A^a!U̇b&, ~2.34!

­0Nab5~qd d
(a 12S d

(a 12e d
g ~aRg !Nb)d

2~­g2r g1U̇g!~egd(aS d
b) 2dg(aRb)

1dabRg!, ~2.35!

­0V5~2q21!V23P2~­a22r a12U̇a22Aa!Qa

2~SabPab!, ~2.36!

­0va5
G1

gG2V
@2gva~­022q22!V1~G2d b

a

12~g21!vavb…~­022q22!Qb#, ~2.37!

­0VL52~q11!VL , ~2.38!

where9

­0Qa5@2~q21!d b
a 2S b

a 1e gb
a Rg#Qb2dab~­b22r b!P

2~V1P!U̇a2~­b22r b1U̇b23Ab!Pab

1eabgNbdPg
d . ~2.39!

Constraints:

05~CG!ª12Vk2S22V2VL , ~2.40!

05~CC!a
ª­bSab1~2d b

a 2S b
a !r b

23AbSab2eabgNbdSg
d13Qa, ~2.41!

8In explicit component form these equations are available on
at the URL given in Ref.@18#. An earlier scale-invariant equatio
system~based on an orthonormal frame formulation!, which em-
ploys the once-contracted second Bianchi identities and Weyl
vature variables, was derived by two of the authors~H.v.E. and
C.U.! and given in Ref.@19#, but no specific choice of tempora
gauge or spatial frame was introduced then.

9We give the Hubble-normalized relativistic Euler equations, E
~2.36! and ~2.37!, in explicit form in the Appendix; see Eqs.~A6!
and ~A7!.
10350
05~CJ!
a
ª~­b2r b!~Nab1eabgAg!

22AbNab, ~2.42!

05~CL!aª~­a22r a!VL , ~2.43!

where

Vkª2
1

3
~2­a22r a23Aa!Aa1

1

6
~NabNab!2

1

12
~Na

a!2.

~2.44!

We have also included an evolution equation and a constr
for VL , which are a direct consequence of Eqs.~2.24!,
~2.28! and ~2.29!.

The role of the spatial Hubble gradientr a requires com-
ment. One can use the Codacci constraint~2.41! to express
r a in terms of Hubble-normalized variables. The resulti
formula for r a involves the inverse of the matrix (2d b

a

2S b
a ), and in order to avoid this algebraic complicatio

we propose to treatr a as a dependent variable. Choosingf
5H in the commutator equations~2.31! and ~2.32!, and
making use of Eqs.~2.28! and ~2.29!, leads to both an evo
lution equation and a constraint forr a :

­0r a5~qda
b2Sa

b1eag
bRg!r b1~­a2r a1U̇a!~q11!,

~2.45!

05~Cr !
a
ª@eabg~­b2Ab!2Nag#r g . ~2.46!

These equations constitute integrability conditions for E
~2.28! and ~2.29!.

When we write the evolution equations and constraints
PDE by expressing­0 and­a in terms of partial derivatives
using Eq.~2.26!, the frame componentsEa

i enter into the
equations as dependent variables. Successively choosif
5xi , i 51,2,3, in the commutator equations~2.31! and~2.32!
leads to an evolution equation and a constraint forEa

i :

­0Ea
i5~qda

b2Sa
b1eag

bRg!Eb
i2N21­aNi ,

~2.47!

05~Ccom! ab
i

ª2~­[a2r [a2A[a!Eb]
i

2eabdNdgEg
i . ~2.48!

Finally, we give the Hubble-normalized form of the gau
constraints~2.20! and ~2.21!:

05~CW!a
ª@eabg~­b2r b2Ab!2Nag#U̇g , ~2.49!

05~CU̇!aª­a ln N1~r a2U̇a!. ~2.50!

III. GAUGE FIXING AND THE HUBBLE-NORMALIZED
STATE SPACE

In the previous section we presented a constrained sys
of coupled PDE that govern the evolution ofG0 cosmolo-
gies. The dependent variables are~i! the spatial frame vecto
field componentsEa

i , ~ii ! the spatial Hubble gradien

e

r-

.
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r a , and~iii ! the gravitational field and matter variablesSab ,
Aa, Nab , V, va, andVL .

The system of PDE is underdetermined due to the p
ence of the gauge source functions

N, Ni , U̇a, Ra,

which reflects the fact that there is freedom in the choice
the local coordinates and of the orthonormal frame. We n
use this gauge freedom to specify the gauge source f
tions, and then proceed to describe some aspects of
Hubble-normalized state space.

A. Fixing the gauge

We begin by using the coordinate freedom to set the s
vector field in Eqs.~2.7! and ~2.26! to zero:

Ni50. ~3.1!

We then choose the timelike reference congruencee0 so that

­aN50. ~3.2!

We are then free to specialize the time coordinatet so that

N51. ~3.3!

The effect of these choices is that the dimensional la
function in Eq.~2.7! is given byN5H21, as follows from
Eq. ~2.27!. The gauge constraint~2.50!, taken in conjunction
with the above conditions, reduces to

05~CU̇!a
sv5~r a2U̇a!⇒U̇a5r a , ~3.4!

thus determining the frame gauge source functionsU̇a . The
advantage of making the choices~3.1! and ~3.3! is that the
temporal frame derivative­0 , given by Eqs.~2.26!, simpli-
fies to a partial derivative,

­05] t . ~3.5!

The combined gauge choices~3.1! and ~3.3! have a simple
geometrical interpretation in terms of thevolume densityV
associated with the family of spacelike 3-surfacesS:$t
5const%, which is defined by

V21
ªdet~ea

i !. ~3.6!

Using Eq.~3.1!, the commutator equations yield

N21
] tV
V 53, Ea

i ] iV
V 522Aa2] iEa

i1r a . ~3.7!

It follows with Eq. ~3.3! that

V5,0
3e3tm̂, ~3.8!

wherem̂5m̂(xi) is a freely specifiable positive real-value
function ofxi , which we consider given, and,0 is the unit of
the physical dimension@length#. We thus refer to this gaug
choice as theseparable volume gauge. Note that the reduced
10350
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gauge constraint~3.4! propagates alonge0 according to Eq.
~A5! in the Appendix.This ensures the local existence (
time) of the separable volume gauge.

Equations ~3.7! and ~3.8! subsequently yield the con
straint

05~CA!a ªAa1
1

2
~] iEa

i2r a1Ea
i] i ln m̂!. ~3.9!

Finally we use a time- and space-dependent rotation of
spatial frame to relate the frame gauge source functionsRa

to the off-diagonal components of the shear rate tensor
cording to10

~R1 ,R2 ,R3!T5~S23,S31,S12!
T. ~3.10!

At this stage there is no freedom remaining in the choice
frame.11 The coordinate freedom is

t85t1const, xi85 f i~xj !.

An important question, which we do not pursue
present, except in a footnote in Sec. V, is to what extent
analysis in this paper~in particular the construction of the
past attractor! depends on the choice of temporal gauge. H
we use the separable volume gauge, as defined by Eqs.~3.1!
and ~3.3!, which appears to be particularly well-adapted
Hubble-normalized variables. ForG2 cosmologies, which we
shall refer to later, the usual and most convenient temp
gauge is the so-called separable area gauge~see, e.g., Ref.
@4#!.

B. Hubble-normalized state space

1. Overview

The Hubble-normalized state vector forG0 cosmologies
is given by

X5~Ea
i ,r a ,Sab ,Nab ,Aa,V,va,VL!T. ~3.11!

The evolution equations and constraints in the previous s
tion can be written concisely in the form

] tX5F~X,] iX,] i] jX!, ~3.12!

05C~X,] iX!, ~3.13!

10In contrast to the present frame choice, one can use the fr
freedom to reduce the number of variables, e.g., by diagonaliz
the shear rate tensor. However, the present choice leads to
simplification of the equations when it comes to analyzing the p
attractor. There are other useful choices; in particular, when one
a preferred spatial direction induced by an isometry. In such a c
it is often advantageous to choose theRa-component associate
with the preferred direction to have the opposite sign compa
with the present choice.

11With the exception of the special cases when the shear
tensor is locally rotationally symmetrical or zero; when the frame
uniquely determined, all the Hubble-normalized connection a
curvature variables employed are scalar invariants.
2-7
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with the spatial derivatives appearing linearly~apart from the
evolution equation forr a). A surprising feature of the evo
lution equations is that they contain second-order spatial
rivatives; in this respect they are reminiscent of a system
quasilinear diffusion equations. The only second-order s
tial derivatives in the evolution equations, however, are th
of the spatial Hubble gradient,] i] j r a , and they appear only
in the evolution equation forr a itself. They arise due to the
fact that in the separable volume gauge the deceleration
rameterq contains the first spatial derivatives ofr a . In fact,
in the separable volume gauge Eq.~2.30! for q assumes the
form

q52S21G1
21@~3g22!1~22g!v2#V2VL

2
1

3
~­a22Aa!r a. ~3.14!

The term­aq in the evolution equation forr a , Eq. ~2.45!,
thus contains] i] j r a .

A second noteworthy feature of the system of PDE~3.12!
is that the evolution equation forEa

i is homogeneous, which
implies that the equationEa

i50 defines an invariant set. W
shall discuss the significance of this set later in this sect
In order to clearly exhibit these aspects of the evolut
equations, we now decompose the Hubble-normalized s
vector ~3.11! as follows:

X5~Ea
i ,r a!T

% Y, ~3.15!

where

Y5~Sab ,Nab ,Aa,V,va,VL!T. ~3.16!

We can now write the system~3.12! in a more explicit form
as follows:

] tEa
i5~qda

b2Sa
b1eag

bRg!Eb
i , ~3.17!

with q given by Eq.~3.14!, and

] tr a5FGa
b~Y!1

2

3
~­a1r a!AbG r b1Ga

bg~Y!­br g

2
1

3
­a~­br b!1­aG~Y!, ~3.18!

] tYA5FA~Y!1FA
Ba~Y!­aYB1FA

ab~Y!­ar b

1FA
a~Y!r a , ~3.19!

with

­a5Ea
i] i .

The coefficientsGa
b , Ga

bg , G, FA , FA
Ba , FA

ab andFA
a

are functions of the components ofY.

2. Spatially homogeneous cosmologies

We now discuss how the SH cosmologies are descri
within the G0 framework. These are obtained by requirin
10350
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that the spatial frame derivatives of the gravitational fie
and matter variablesY, and of the normalization factorH, be
zero, i.e.,

­aY50, r a50. ~3.20!

It then follows that all the dimensional commutation fun
tions and matter variables are constant on the space
3-surfacesS:$t5const%, which are thus the orbits of a three
parameter group of isometries. The evolution equatio
~3.18! and~3.19! imply that the SH restrictions~3.20! define
an invariant set of the full evolution equations, which w
shall call theSH invariant set. Indeed, Eq.~3.18! is trivially
satisfied, and Eq.~3.19! reduces to a system of ordinary di
ferential equations, namely

] tYA5FA~Y!. ~3.21!

The nontrivial constraints defined by (CG), (CC)a and (CJ)
a

@cf. Eqs. ~2.40!–~2.42!# become purely algebraical restric
tions onY, which we write symbolically as

C~Y!50. ~3.22!

An important aspect of this process of specialization is t
the evolution equation~3.17! for Ea

i decouples from the
evolution equation forY, which means thatthe dynamics of
SH cosmologies can be analyzed using only Eqs. (3.21)
(3.22) ~cf. WE!. In this context, one can think of the var
ables Y as defining areduced Hubble-normalized stat
space, of finite dimension, for the SH cosmologies.

In the SH context the restrictionva50 defines an invari-
ant subset, giving the so-called nontilted SH cosmolog
and the Bianchi classification of the isometry group leads
a hierarchy of invariant subsets, some of which have b
analyzed in detail in the literature. For example, the con
tions

va50, Aa50, Nab50 ~aÞb!, Ra50, VL50,
~3.23!

give the nontilted SH perfect fluid cosmologies of class A
the canonical frame~see WE, Chap. 6, but with some diffe
ences in notation!.

Specializing further, by requiring the shear rate to be ze

Sab50, ~3.24!

in addition to conditions~3.20!, we obtain theFL invariant
set, which describes the familiar Friedmann-Lemaıˆtre cos-
mologies. Equations~3.20! and~3.24! imply that va50 and
Sab50, whereSab is the tracefree part of the 3-Ricci curva
ture ~see Appendix 3!, and hence that the spacelik
3-surfacesS:$t5const% are of constant curvature. In add
tion, the electric and magnetic parts of the Weyl curvatu
~see Appendix 3! are zero, 05Eab5Hab . The deceleration
parameter simplifies to

q5
1

2
~3g22!V2VL .
2-8
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3. Silent boundary

We noted earlier that, because the evolution equa
~3.17! for Ea

i is homogeneous, the equation

Ea
i50 ~3.25!

defines an invariant set of the full evolution equations.12 In
the Introduction we discussed the notion of asilent initial
singularity, which was introduced heuristically as an initi
singularity with the property that the evolution along neig
boring timelines decouples as the singularity is approach
In Sec. IV we shall make a formal definition of a silent initi
singularity, but for now we note that a key requirement for
initial singularity to be silent is

lim
t→2`

Ea
i50, ~3.26!

i.e., the orbit that describes the evolution of the model is p
asymptotic to the invariant setEa

i50. We will thus refer to
this invariant set as thesilent boundary.

On the silent boundary, the evolution equation~3.18! for
r a simplifies to the homogeneous form

] tr a5FGa
b~Y!1

2

3
r aAbG r b . ~3.27!

It follows that the equation

r a50 ~3.28!

defines an invariant subset of the silent boundary. On
invariant subset the remaining evolution equation~3.19! re-
duces to

] tYA5FA~Y!, ~3.29!

which coincides with the evolution equation~3.21! for the
SH cosmologies. The remaining constraints are purely a
braical, and can be written symbolically as

C~Y!50. ~3.30!

One thus obtains a representation of the SH dynamics on
invariant set

Ea
i50, r a50, ~3.31!

i.e., within the silent boundary. SinceEa
i50, however, the

spatial dependence of the Hubble-normalized variablesY is
completely unrestricted, and hence these solutions of
evolution equations and constraints donot in general corre-
spond to exact solutions of the EFE.

12Note that this does not necessarily imply limt→2` Ea
i50.
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IV. SILENT INITIAL SINGULARITIES AND THE
GENERALIZED MIXMASTER ATTRACTOR

In this section, we formalize the notion of a silent initi
singularity, which was introduced heuristically in Sec. I13

We then construct an invariant set in the silent boundary
we conjecture is the local past attractor forG0 cosmologies
with a silent initial singularity. The detailed structure of th
past attractor in turn relies heavily on our knowledge of t
asymptotic dynamics near the initial singularity in SH co
mologies.

A. Silent initial singularities

In terms of Hubble-normalized variables and the se
rable volume gauge, the spacelike initial singularity in aG0
cosmology is approached ast→2`. We now define asilent
initial singularity to be one which satisfies

lim
t→2`

Ea
i50, ~4.1!

lim
t→2`

r a50, ~4.2!

and

lim
t→2`

­aY50, ~4.3!

where theEa
i are the Hubble-normalized components of t

spatial frame vectors@see Eq. ~2.26!#, r a is the spatial
Hubble gradient@see Eq. ~2.29!# and Y represents the
Hubble-normalized gravitational field and matter variab
@see Eq.~3.16!#. More precisely, we require that Eqs.~4.1!–
~4.3! are satisfiedalong typical timelines ofe0 .

One might initially think that the condition~4.3! is a con-
sequence of Eq.~4.1!, since

­aY5Ea
i ]Y

]xi .

However, the analysis of Gowdy solutions with so-call
spikes~see Refs.@20#, @21# and @22#! shows that the partia
derivatives]Y/]xi can diverge ast→2`. Thus the require-
ment~4.3! demands that theEa

i tend to zero sufficiently fast
We now present some evidence to justify proposing

above definition. First, for SH cosmologies, which we ha
seen satisfy the restrictions~3.20!, the evolution equation for
the Ea

i decouples from the equation forY. This evolution
equation, in conjunction with the known results about t
asymptotic behavior of the variablesY ~see WE, Chaps. 5
and 6, and Ringstro¨m @23#!, provides strong evidence tha
typical solutions satisfy14 the remaining requirement~4.1! for
a silent initial singularity. An example of an exceptional cla

13The concepts we propose for classifying an initial singularity
‘‘silent’’ can be applied analogously to final singularities.

14We are indebted to Hans Ringstro¨m for helpful discussions on
this matter.
2-9
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of SH solutions, i.e., solutions for which the initial singula
ity is not silent, are those that are past asymptotic to the
Kasner solution~the Taub form of Minkowski spacetime!,
given by

ds252dT21T2dx21,0
2~dy21dz2!,

whereT is clock time. In terms of the dimensionless sep
rable volume timet5 ln(T/,0), this line element reads

,0
22ds25e2t~2dt21dx2!1dy21dz2,

from which it follows that

lim
t→2`

Ea
i5diag~3,0,0!.

Secondly, further evidence is provided by recent resea
on G2 cosmologies, although the situation is clouded by
fact that an area time gauge rather than the separable vo
gauge is used~but see the footnote in the next section abo
the gauge issue!. Indeed, one can use the asymptotic analy
of vacuum orthogonally transitiveG2 cosmologies~the so-
called Gowdy solutions@24,25#; in the present context see i
particular Ref.@26#! to show that the conditions~4.1! and
~4.3! are satisfied along typical timelines, even when spi
occur. However, in generalG2 cosmologies the situation i
more complicated and further studies are needed to esta
if condition ~4.3! holds or if it is violated along exceptiona
timelines due to the presence of spikes.15

These results suggest that the notion of a silent ini
singularity may be of importance as regards the descrip
of generic spacelike initial singularities. Further support
provided by heuristic arguments of a physical nature, as
lows. We anticipate that generic spacelike initial singularit
are associated with increasingly strong gravitational fie
gradually approaching local curvature radii of Planck-sc
order, which will lead to the formation ofparticle horizons
~see, e.g., Rindler@27,28#!. The existence of particle horizon
is governed by null geodesics, which satisfy

15dabS E i
a dxi

dt D S E j
b dxj

dt D ~4.4!

@see Eq.~A25! in the Appendix#, whereE i
a are the compo-

nents of the Hubble-normalized 1-forms associated with
orthonormal frame:

E i
a Eb

i5d b
a . ~4.5!

If particle horizons form, we expect that the past-direc
null geodesics emanating from a chosen pointP will satisfy
xi(t)→xH

i ~const! and dxi /dt→0, as t→2`. It follows
from Eq. ~4.4! that

E i
a dxi

dt
→ba,

15Woei Chet Lim~private communication!.
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with dabbabb51, and, hence, that

S lim
t→2`

Ea
i Dba50.

Since this must hold for all null geodesics emanating fromP,
ba is arbitrary, implying that the limit~4.1! holds. In other
words, we expect that the increasingly strong gravitatio
field associated with a typical spacelike initial singular
will lead to the first condition in the proposed definition of
silent initial singularity.

We now show heuristically that condition~4.3! restricts
the scale of spatial inhomogeneities as the initial singula
is approached. IfEa

i tends to zero at an exponential
bounded rate ast→2` ~as in SH andG2 cosmologies!, the
coordinate distance to the particle horizon in a directionba

will also tend to zero at an exponentially bounded rate:

DxH
i 'baEa

i as t→2`.

The changeDY in the Hubble-normalized variablesY corre-
sponding to a changeDxH

i is approximated by

DY'
]Y

]xi DxH
i 'ba­aY.

It thus follows from the limit~4.3! that DY→0 ast→2`.
In other words,the physical significance of the limit (4.3) i
that spatial inhomogeneities have superhorizon scale asy
totically as t→2`, and, hence, up to the particle horizo
scale a solution is asymptotically SH.

With the preceding discussion as motivation we no
make our first conjecture.

Conjecture 1. For almost all cosmological solutions of
Einstein’s field equations, a spacelike initial singularity
is silent.

Proving this conjecture entails establishing the limits~4.1!–
~4.3!.

B. Stable subset into the past

We think of the evolution of the Hubble-normalized sta
vectorX(t,xi), for fixed xi , as being described by an orbit i
a finite-dimensionalHubble-normalized state space. Ast→
2`, this orbit will be asymptotic to apast attractor, which,
in accordance with the definition of a silent initial singulari
@see Eqs.~4.1!–~4.3!#, will be contained in the subset of th
silent boundary defined by

Ea
i50, r a50. ~4.6!

The evolution of a spatially inhomogeneous model is d
scribed by infinitely many such orbits, each of which
asymptotic to the past attractor. The details of the appro
to the past attractor, however, will depend on spatial posit
xi , thereby reflecting the spatial inhomogeneity of the mod
On the other hand, the evolution of an SH model will
described by a single orbit. The essential point is thatthe
dynamics in the invariant set~4.6!, which govern the
2-10
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asymptotic dynamics of both classes of models, is determ
by the SH evolution equations and constraints, as shown in
Sec. III B 3.

The next step in constructing the putative past attracto
to partition the Hubble-normalized state vectorX into stable
and unstable variables, as regards evolution into the p
First, within our framework, the BKL conjecture means th

lim
t→2`

V50, lim
t→2`

VL50 ~4.7!

~i.e., the initial singularity is vacuum-dominated!. Secondly,
asymptotic analysis and numerical experiments for SH c
mologies andG2 cosmologies suggest that

lim
t→2`

Aa50, lim
t→2`

Nab50~aÞb!, ~4.8!

along a typical orbit. It is thus convenient to decompose
Hubble-normalized state vectorX as follows:

X5Xs% Xu ,

where

Xs5„Ea
i ,r a ,Aa,Nab~aÞb!,V,VL…

T ~4.9!

and

Xu5~Sa ,Ra,Na ,va!T. ~4.10!

Here, for brevity, we have written16

SaªSaa , NaªNaa .

In terms of this notation, our conjectures~4.1!, ~4.2!, ~4.7!
and ~4.8! can be written

lim
t→2`

Xs50. ~4.11!

We shall refer to the variablesXs as thestable variables, and
the remaining variablesXu in Eq. ~4.10! as theunstable vari-
ables. We shall provide evidence that the variablesXu remain
bounded ast→2`, but that their limits do not exist. We
note in passing that further justification for the terminolo
‘‘stable’’ and ‘‘unstable’’ in this context will be provided
shortly, when we show that the variables inXs are stable on
the Kasner circles, while the variables inXu are unstable.

We now list the evolution equations on the subsetXs
50. First, the variablesSa , Ra andNa satisfy

] tS152~12S2!S112~R2
22R3

2!23S1 , ~4.12!

] tR15@22~12S2!1S22S3#R1 , ~4.13!

] tN152~S21S1!N1 , ~4.14!

where

16Not to be confused with the notation used in Ref.@30#, whereS1

was defined to be equal toS23, and cycle on~1,2,3!.
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S1ª
2

9
N1

22
1

3
N1~N21N3!2

1

9
~N22N3!2, ~4.15!

and cycle on~1,2,3!. These variables are restricted by th
Gauß constraint~2.40!, which now reads

15S21
1

6
~N1

21N2
21N3

2!2
1

12
~N11N21N3!2, ~4.16!

with

S25
1

6
~S1

21S2
21S3

212R1
212R2

212R3
2!. ~4.17!

Secondly, the evolution equation forva now reads

] tv
a5

1

G2
@~3g24!~12v2!1~22g!~Sbgvbvg!#va

2@S b
a 2e gb

a ~Rg1N d
g vd!#vb, ~4.18!

where it is convenient to retain the index notation. We n
for future use that Eq.~4.18! implies

] tv
25

2

G2
~12v2!@~3g24!v22~Sabvavb!#. ~4.19!

Although the variablesXu are unstable into the past,
turns out that certain combinations of these unstable v
ables are in fact stable. First, the limit~4.11!, in conjunction
with the equation for] tNab(aÞb) and the Codacci con
straint, leads to the following limits:

lim
t→2`

RaNb50, aÞb. ~4.20!

As a result, the subset of the Hubble-normalized state sp
defined by

Xs50 ~4.21!

is an invariant set only if the following restrictions hold:

RaNb50, aÞb. ~4.22!

The essential point is that the productsRaNb (aÞb) are
stable into the past.

Secondly, we can make use of known results about
models to motivate another limit, in addition to Eq.~4.20!.
We introduce the function

DNª~N1N2!21~N2N3!21~N3N1!2. ~4.23!

If DNÞ0, i.e., if more than oneNa is nonzero, then Eq
~4.22! implies Ra50. Then the evolution equations~4.12!–
~4.14! reduce to the evolution equations for vacuum S
models of class A. It has been shown17 that solutions of these
evolution equations satisfy

17See Ringstro¨m @23# for the case where theNa have the same
sign~Bianchi type IX case!. Numerical simulations suggest that th
result is also true in the Bianchi type VIII case.
2-11
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lim
t→2`

DN50. ~4.24!

It is thus plausible that if Eqs.~4.11! and~4.20! hold, then so
does Eq.~4.24!. We shall refer to the invariant set defined b

Xs50, RaNb50 ~aÞb!, DN50, ~4.25!

as thestable subsetinto the past and make the followin
conjecture.

Conjecture 2. The local past attractorA2 for G0 cos-
mologies with a silent initial singularity is a subset of
the stable subset.

Proving this conjecture entails proving the limits~4.11!,
~4.20! and ~4.24!, assuming the validity of Eqs.~4.1!–
~4.3!.

We believe that this conjecture can be strengthened, h
ever. In order to do this, we need to describe how the Kas
vacuum solutions are represented within the present fra
work.

C. Kasner circles

The line element for the Kasner vacuum solutions is

,0
22ds252dT21T2p1dx21T2p2dy21T2p3dz2,

where the Kasner exponentsp1 , p2 andp3 are constants tha
satisfy

p11p21p351, p1
21p2

21p3
251,

and,0T is clock time. The Kasner exponents can take val
that are described by the inequalities2 1

3 <p1<0<p2< 2
3

<p3<1 ~or permutations thereof!; see Ref.@31#, p. 196.
Relative to the natural orthonormal frame associated w
this line element, the Hubble-normalized connection va
ables are all zero except for the shear rate tensor, whic
diagonal and given by

Sab5diag~3p121,3p221,3p321!.

One can also represent the Kasner solutions relative
spatial frame that is not Fermi-propagated, as is the sp
frame specified by Eq.~3.10!. Some of these alternative rep
resentations are important in what follows.

Within our formulation, all possible representations of t
Kasner solutions are given by

05Aa5Nab5V5va5VL , ~4.26!

r a50, ­aSbg50, ­[aEb]
i50, ~4.27!

with theRa given by Eq.~3.10!. The Gauß constraint~2.40!,
together with Eqs.~4.16! and ~3.14!, implies that

S251, q52. ~4.28!

The evolution of the nonzero variablesEa
i andSab is gov-

erned by
10350
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] tEa
i5~2da

b2Sa
b1eag

bRg!Eb
i ~4.29!

] tS
ab52egd^aRgS d

b& , ~4.30!

as follows from Eqs.~3.17! and ~2.34!.
In the physical region of the Hubble-normalized sta

space, i.e., det(Ea
i)Þ0, Eqs. ~4.27! imply that Sab

5Sab(t), and that the spatial coordinate freedom can
used to obtainEa

i5Ea
i(t), confirming that the Kasner so

lutions are SH and of Bianchi type I. On the silent bounda
(Ea

i50), however, Eqs.~4.27! become trivial, with the re-
sult thatthe spatial dependence ofSab is unrestricted. One
thus obtains a representation of the Kasner dynamics loc
on the silent boundary, even though the line element,
given by Eq.~A25! in the Appendix, is singular. Indeed, th
Kasner dynamics on the silent boundary is described by
orbits that satisfyXs50 and the additional restrictionNa
50, as follows from Eqs.~4.9! and~4.26!. We shall refer to
this subset, defined by

Xs50, Na50, ~4.31!

as theKasner set on the silent boundary.
The evolution equations on the Kasner set are obtained

setting S251 and Sa50 in Eqs. ~4.12! and ~4.13!, which
yields

] tS152~R2
22R3

2!, ~4.32!

] tR15~S22S3!R1 , ~4.33!

and cycle on~1,2,3!. Note that the evolution equations fo
Sa andRa decouple from that ofva, discussed below.

It is important to note that if the spatial frame isnot
Fermi-propagated (RaÞ0), the Sab evolve in time, with
S251, both on and off the silent boundary. On the oth
hand, if the spatial frameis Fermi-propagated (Ra50), then
Sab is constant in time by Eq.~4.30!, and diagonal:

Sab5diag~S1 ,S2 ,S3!, ~4.34!

with 22<S1<21<S2<1<S3<2 ~or permutations
thereof!. Thus, if the spatial frame is Fermi-propagated, t
Kasner orbits on the silent boundary are equilibrium poi
of the shear evolution equations. SinceSab is tracefree and
satisfiesS251, we obtain

S11S21S350 ~4.35!

and

S1
21S2

21S3
256. ~4.36!

The dynamics on the Kasner set also includes the evolu
equations~4.18! for va ~with Nab50). It follows that if the
Sab satisfy Eqs.~4.34!–~4.36!, then the evolution equation
~4.18! and ~4.19! for va admit the equilibrium sets

va50 or v251,

where the latter condition is also to be supplemented w
one of the six choices forv5(v1 ,v2 ,v3)T, namely
2-12
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v56Ea , a51,2,3, ~4.37!

whereE15(1,0,0)T, etc. Thus, there existsevensets of equi-
librium points forming circles inSab-space, which we shall
call Kasner circles@the intersection of the plane~4.35! with
the sphere~4.36!#, depending on the value ofv in Eq. ~4.37!,
which we denote by

K, K6a .

In addition, it follows from Eq.~4.18! that for specific values
of Sa subject to Eqs.~4.35! and ~4.36!, there are six addi-
tional lines of equilibrium points, given by

S153g24, v1.0 or v1,0, v25v350,
~4.38!

and cycle on~1,2,3!, which join the various Kasner circles.
At this stage, we digress to describe the symmetry pr

erties of the Kasner circles. Each circle is divided into s
equivalent sectors, which we will label according to the o
dering of the diagonal shear componentsSa , which satisfy
Eqs. ~4.35! and ~4.36!. For example, in sector~123! these
parameters satisfyS1,S2,S3 , etc. The sectors meet a
points where two of theSa are equal. These points are o
two types, conventionally labeledTa ~the ‘‘Taub points’’!
andQa , given by18

T1 : ~S1 ,S2 ,S3!5~2,21,21!,

18The Ta correspond to the Taub form for Minkowski spacetim
in the exact Kasner solution, and theQa correspond to the locally
rotationally symmetrical nonflat Kasner solution.

Q

T2
Q

3T

Q1T

P3

P2

P1
1

2

11Σ

Σ22

Σ33

, ,

,

,,

,

,,

,

(123)

(132)

(312)

(321)

(231)

(213)

N

R1

R1

3N 3R 2R

3R

3R

1N

1N

3

2

2N 2R R1

2R3N

FIG. 1. A Kasner circle showing the six equivalent sectors a
the variables that are unstable into the past in each sector.
10350
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Q1 : ~S1 ,S2 ,S3!5~22,1,1!, ~4.39!

and cycle on~1,2,3!. Figure 1 represents the planeS11S2
1S350 in Sab-space, containing a Kasner circle, and sho
ing the six sectors and the pointsTa andQa . The figure also
shows three additional points labeledPa , which lie outside a
Kasner circle, forming an equilateral triangle whose sides
tangential to the circle. These points, which are given by

P1 : ~S1 ,S2 ,S3!5~24,2,2!,

and cycle on~1,2,3!, will be used to describe the so-calle
curvature transition sets.

D. Transition sets

The dynamics in the stable subset, defined by Eq.~4.25!,
is essentially determined by the fact that each Kasner e
librium point is a saddle point, with at least two of the nin
variablesNa , Ra andva being unstable into the past. Whic
of these variables are unstable at a particular Kasner p
can be quickly determined bylinearizing Eqs.~4.14!, ~4.13!
and~4.18! in the neighborhood of such a point. On the Ka
ner circleK this yields

] tN152~11S1!N1 , ~4.40!

] tR15~S22S3!R1 , ~4.41!

] tv15~3g242S1!v1 , ~4.42!

and similarly for indices 2 and 3. On the Kasner circlesK61
~where, nearby,v15617dv1 , dv1.0), the linearized
equations forN1 andR1 remain unchanged, while Eq.~4.18!
yields

] tdv1522
~3g242S1!

~22g!
dv1 , ~4.43!

] tv25~S12S2!v2 , ~4.44!

] tv35~S12S3!v3 , ~4.45!

and similarly for indices 2 and 3 onK62 andK63 , respec-
tively. It follows that

N1 is unstable into the past⇔11S1,0,

R1 is unstable into the past⇔S22S3,0,

v1 is unstable into the past onK⇔3g242S1,0,

v1 is unstable into the past onK61⇔3g242S1.0,

v2 is unstable into the past onK61⇔S12S2,0,

v3 is unstable into the past onK61⇔S12S3,0,

and similarly for indices 2 and 3. The arcs of the Kasn
circles on which the variablesNa and Ra are unstable are
shown in Fig. 1, and those on which the variablesva are
unstable are shown in Figs. 2 and 3. A given Kasner equi

d
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1Q

Q

Q2

T3
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2T
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3

v1
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= 3γ−4Σ11
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1Q

Q

Q2

v1 v2,

v1 v3,

v v3,2

3
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v1

v

= 3γ−4Σ11

FIG. 2. The Kasner circleK showing the arcs on which the variablesva are unstable into the past. Figure 2~a! shows the case53 ,g
,2 and Fig. 2~b! the case 1,g,
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rium point P thus has an unstable manifold~into the past!.19

The key property of this unstable manifold is thateach of its
orbits join P to some other Kasner point. The simplest such
orbits are those on which only one of the nine variablesNa ,
Ra andva is nonzero, or those on which twova are nonzero
but with extreme tilt (v251). These special orbits, which w
shall refer to collectively astransition sets, are listed by
name and symbol in Table I. In this table the subscrip
letter on theT indicates the ‘‘excited’’ variable. We now dis
cuss these transition sets in turn.

First, there are thecurvature transition sets, TNa
, a

51,2,3, which are shown in Fig. 4. In this and all subsequ
figures, orbits are directed toward the past. For a51 the
curvature transition orbits are given by

~12k!~22S2!5~11k!~22S3!, ~4.46!

wherek is a parameter that satisfies21<k<1. This relation
follows from Eqs.~4.12! and ~4.14! with 05N25N35Ra.
In the spatially homogeneous setting these orbits describe
Taub vacuum Bianchi type II solutions, and determine
past attractor for vacuum and nontilted SH models of Bi
chi type VIII and type IX~in a Fermi-propagated frame; se
WE, Fig. 6.6 on p. 138, and pp. 143–7, but note differen
in labeling!. These curvature transitions link different ‘‘Kas
ner epochs,’’ according to a transition law for the Kasn
exponents first found by BKL~see Ref.@8#, pp. 535–7; also
WE, p. 236!. We derive this transition law in Appendix 4.

Secondly, there are theframe transition sets, TRa
, which

are shown in Fig. 5. Fora51 they are given by

S15k,

wherek is a parameter that satisfies22,k,2. In the spa-
tially homogeneous setting these transition sets map a K
ner solution into a physically equivalent Kasner soluti

19As Figs. 1–3 show, the unstable manifold is at most fiv
dimensional.
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through rotation of the spatial frame byp/2 about one of its
axes. For example, the transition setsTR1

result in the inter-

changeS2,S3→S3,S2 , as can be seen by comparin
Figs. 1 and 5~a!.

Thirdly, there are thetilt transition sets, Tva
, which are

shown in Fig. 6. They are simply lines withSa constant and
one of theva nonzero. Whether the orbits join a point onK
to a point on one of the Kasner circlesK6a , or vice versa,
depends on the values of theSa ~see Figs. 2 and 3!. The
reversal of direction of these orbits is governed by the
lines of equilibrium points given by Eq.~4.38!.

Finally, there are theextreme-tilt transition sets, Tvavb.

Let us consider the subsetv251 ~with fixed Sa). Thenva

5ea, whereea is a unit vector, which may be parametrize
according to

ea5~cosq,sinq cosw,sinq sinw!T, 0<q<p,

0<w<2p. ~4.47!

-

3

v3

v2

v v3,2

v v3,2

= 3γ−4Σ11

1T1 Q

T3

Q
2T

Q2

(312)

(213)

(123)(231)

(132)(321)

FIG. 3. The Kasner circlesK61 showing the arcs on which the
variablesva are unstable into the past. The variablev1 is unstable
on the boldface arc to the right of the lineS1153g24.
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We then obtain from Eq.~4.18! a simple dynamical system
for the polar angles$q, w%, given by

] tq52a2 sin 2q, a2
ª

3

2
~2p11p2 cos2 w1p3 sin2 w!,

] tw52b2 sin 2w, b2
ª2

3

2
~p22p3!. ~4.48!

It is easily seen that ifS1,S2,S3 ~or equivalently p1
,p2,p3), then the past attractor of this dynamical system

given by $q,w%5$ 1
2 p, 1

2 p% and $q,w%5$ 1
2 p, 3

2 p%, and,
hence,

lim
t→2`

ea56E3 , ~4.49!

and similarly for other orderings ofSa . Thus extreme-tilt
transition sets are orbits that lie on the extreme-tilt sph
v251 in va-space, with 05Na5Ra, andSa fixed. Figure 7
shows the direction corresponding toS1,S2,S3 , i.e., the
arc ~123! on the Kasner circles. The other cases can be
tained by interchanging 1, 2 and 3. The pointsB6a in Fig. 7
correspond to the points on the Kasner circlesK6a deter-
mined by the values of theSa . The directions of the orbits
joining the pointsB6a depend on the ordering of theSa .

TABLE I. The transition sets.

Name Symbol Transitions

K→K (va50)
curvature TNa

or
K6a→K6a (v251)
K→K (va50)

frame TRa
or
K6a→K6a (v251)

tilt Tva
K→K6a or vice versa
(Sab fixed!

extreme tilt Tvavb
K6a→K6b

(aÞb) (Sab fixed, v251)
10350
s
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E. Structure of the past attractor

We are now in a position to state our conjecture conce
ing the local past attractor of theG0 evolution equations for
generic initial data satisfying the constraints. We introdu
the following notation:

TNªøTNa
, TRªøTRa

, TtiltªøTva
,

TextremeªøTvavb
, KextremeªøK6a . ~4.50!

Thus,TN is the union of all curvature transition sets,TR is the
union of all frame transition sets, etc.~see Table I for the
complete list of transition sets!.

We now make the following conjecture concerning t
local past attractorA2.

Conjecture 3. The local past attractorA2 for G0 cos-
mologies with a silent initial singularity is given by

A25KøKextremeøTNøTRøTtiltøTextreme. ~4.51!

The essential property of the various transition sets is
they define so-calledinfinite heteroclinic sequenceson the
past attractor, i.e., infinite sequences of Kasner equilibri
points joined by transition sets, oriented into the past.
particular, a typical Kasner point will be the starting point f

1
1P

2P

3P

T1 Q

T3

Q
2T

Q2

3

FIG. 4. The curvature transition setTN1
. The setsTN2

andTN3

are obtained by cycling on~1,2,3!.
Q1T 1

2Q

T2
Q

3T

3

FIG. 5. The frame transitions setsTR1
~a!, TR2

~b! andTR3
~c!.
2-15



s
h

d
ll

f

e

th

m-

,
it

ets

tilt

by

p-
rob-

e
s

hi

ster
d
n

ast

m-
the
this
se
ch

or
er

UGGLA et al. PHYSICAL REVIEW D 68, 103502 ~2003!
infinitely many heteroclinic sequences~infinitely many, be-
cause at least two transition sets emanate from each Ka
point!. The significance of the heteroclinic sequences is t
an orbit that is asymptotic to the past attractor~for given
values of thexi) will shadow a heteroclinic sequence, an
hence the cosmological model will be approximated loca
by a sequence of Kasner states.

The conjectured past attractor,A2, is a proper subset o
the stable subset, defined by Eq.~4.25!. Thus, in addition to
the stable variables~4.9!, various expressions involving th
unstable variablesNa , Ra and va will tend to zero on the
attractor, even though the limits of these variables ast→
2` do not exist. The desired expressions depend on
following quantities:

N2
ªNaNa, R2

ªRaRa, v2
ªvava,

and

1Q

1

11Σ = 3γ−4

1T

FIG. 6. The tilt transition setTv1
.

B

2B

B

3

2

1

B 3

1B

B

v

αv = (0,1,0)

αv = (0,-1,0)

= (0,0,-1)αv

= (0,0,1)αv

= (1,0,0)α

= (-1,0,0)αv

FIG. 7. The extreme-tilt transition sets on the extreme-tilt sph
v251, 05Na5Ra, with Sa fixed andS1,S2,S3 .
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DNª~N1N2!21~N2N3!21~N3N1!2,

together with analogous quantitiesDR andDv for Ra andva.
The past attractor is then characterized by the following li
its @in addition to Eqs.~4.1!–~4.3! and ~4.11!#:

limt→2`N2R250, ~4.52!

limt→2`v2~12v2!~N21R2!50, ~4.53!

limt→2`~DN ,DR!5~0,0!, ~4.54!

limt→2`„Dv~N21R2!,Dv~12v2!…5~0,0!, ~4.55!

limt→2`v1v2v350. ~4.56!

The limits ~4.52! and ~4.53! imply that if Na (Ra, respec-
tively! is active, thanRa (Na , respectively! must be close to
zero, and likewise eitherv2 or 12v2 must be close to zero
as on theTNa

(TRa
) transition sets, respectively. The lim

~4.53! also implies that ifv2 is not close to 0 or 1, thenNa
and Ra must be close to zero, as on the tilt transition s
Tva

. The limit ~4.54! implies that at most oneNa and at most

oneRa can be active simultaneously, as on theTNa
andTRa

transition sets. The limit~4.55! implies that if two va are
active simultaneously,~i.e.,DvÞ0), thenNa andRa must be
close to zero andv2 must be close to 1, as on the extreme-
transition setsTvavb

.

The conjectured structure of the past attractorA2 in terms
of Kasner equilibrium points and transition sets, as given
Eq. ~4.51!, or as described by the limits~4.1!–~4.3!, ~4.11!
and ~4.52!–~4.56!, embodies the notion that as one a
proaches the attractor into the past along an orbit, the p
ability that more than one of the nine unstable variablesNa ,
Ra andva is active during any one transition~except for the
extreme-tilt transition sets on which twova are nonzero, but
are constrained byv251) tends to zero. Evidence that th
probability of multiple transitions involving pairs such a
(R1 ,N1) or (R1 ,R2) tends to zero ast→2` is provided by
numerical simulations for nontilted SH models of Bianc
type VI21/9* , reported by Hewittet al. @30#.

We shall refer to the local past attractorA2, defined by
Eq. ~4.51!, as thegeneralized Mixmaster attractor, since it
generalizes the past attractor for the so-called Mixma
models~SH models of Bianchi type IX; see WE, p. 146, an
Table II to follow!, making precise the heuristic notion of a
oscillatory initial singularity.

V. COSMOLOGIES WITH ISOMETRIES

In Sec. IV, we proposed a detailed structure for the p
attractor forG0 cosmologies with a silent initial singularity
@see Eq.~4.51!#. Classes of cosmologies that admit an iso
etry of some sort are described by invariant sets of
Hubble-normalized state space. In this section we exploit
fact to predict the structure of the past attractor for the
more specialized models, thereby providing a link to mu
recent research.

For models with an isometry it is possible that one
e
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TABLE II. Perfect fluid SH cosmologies with oscillatory initial singularity.

Class of models
Nonzero

unstable variables Past attractor

nontilted type VIII and type IX
~WE, p. 146, Ringstro¨m @23#!

N1 , N2 , N3 KøTN

nontilted type VI21/9*
~Hewitt et al. @30#!

N3 , R1 , R3 KøTN3
øTR1

øTR3

tilted type II
~Hewitt et al. @29#!

N3 , R1 , R3 , v1 KøK1øTN3
øTR1

øTR3
øTv1
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more of the nine unstable variablesNa , Ra or va is required
to be zero, leading to two possibilities.

~i! The initial singularity isoscillatory.
This possibility occurs if each arc of the various Kasn

circles has at least one unstable variable~refer to Figs. 1–3!.
The attractor will then include all available transition se
and the evolution into the past along a typical timeline w
be described by an infinite sequence of Kasner states, p
bly of a more specialized nature than forG0 cosmologies.

~ii ! The initial singularity isKasner-like.
This possibility occurs if at least one arc on one of t

Kasner circles has no unstable variables. The arc~s! in ques-
tion then form the past attractor, and the evolution into
past along a typical timeline will be described by a spec
Kasner state. A cosmological solution with this type of s
gularity is also referred to as beingasymptotically velocity(-
term)-dominated, a term that has its origins in the work o
Eardley, Liang and Sachs@32# and Isenberg and Moncrie
@33#.

We now present various classes of cosmologies w
isometries, whose initial singularities have been discusse
the literature, and give the conjectured past attractor in te
of our formulation. The specific nature of the isometry det
mines whether the initial singularity is oscillatory or Kasne
like.

First, we consider SH cosmologies, which, as we ha
seen in Sec. III B 2, can be described by the fini
dimensional reduced state space defined by the variableY.
Since the definition of the generalized Mixmaster attrac
A2 involves only the variablesY, the attractor also exists a
an invariant set in this reduced state space. Indeed, we
jecture that in this contextA2 is the past attractor for the
general class of SH cosmologies, and that it will thus contain
the past attractors for the three special classes of SH
mologies with an oscillatory singularity that have been a
lyzed in detail to date. In Table II we give these three spe
classes of SH cosmologies and list the key references. T
papers use Hubble-normalized variables, but there are s
differences in the labeling of variables compared to
present paper. It is notoriously difficult to prove rigoro
results about oscillatory singularities and little progress
been made until recently, when Ringstro¨m @23#, in a remark-
able piece of mathematical analysis, rigorously establis
the existence of the past attractor for the class of nonti
Bianchi type IX cosmologies, by proving the required limi
conjectured earlier by WE~see p. 146–7!.

Secondly, we consider spatially inhomogeneous cosm
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gies. Most recent research on the initial singularity has b
restricted in two ways:

~i! the spacetime is assumed to have compact spatial
tions,

~ii ! the energy-momentum-stress tensor is assumed t
zero ~vacuum solutions!.
The first restriction is made because it enables one to pr
results about the global existence of solutions. It does
however, affect the structure of the past attractor, since
determined by the dynamics along individual timelines.
view of the BKL conjecture, namely that matter is not si
nificant dynamically as the initial singularity is approache
one might believe that the second restriction can be m
without loss of generality when determining the past attr
tor. This conclusion is not valid, however. Our analysis lea
to the conjecture that the past attractor for vacuumG0 mod-
els is in fact the much simpler set given by

Avac
2 5KøTNøTR , ~5.1!

since the Hubble-normalized state vector for vacuum mod
does not contain the peculiar velocity variableva, which
implies that the extreme Kasner circlesKextremeand the tran-
sition setsTtilt andTextremecannot be part of the past attract
@see Eq.~4.51!#. Nevertheless, determining the vacuum p
attractor is an important first step in determining the p
attractor for nonvacuum models.

In Table III we list the classes of vacuum spatially inh
mogeneous cosmologies whose initial singularity has b
studied. In each case we can predict immediately whether
singularity will be oscillatory or Kasner-like. In the table w
give the past attractor for each class, which is a subset of
general vacuum attractorAvac

2 .20

20At this stage the reader might be concerned with the fact
these models have not been studied in the separable volume g
However, we believe that, due to asymptotic silence, our discus
is ‘‘gauge robust,’’ i.e., that the local asymptotic temporal behav
is not affected by the choice of temporal gauge. To make this m
substantial we note that the choiceN51 andNi50 was not nec-
essary for obtaining our picture of the past attractor. Any su
ciently smooth choiceN~X! such thatN is positive and bounded on
the attractor does not change the flow on the past attractor and
one would obtain the same results as the choiceN51 yields; Ni

can be similarly generalized. We also note that these are not ne
sary conditions, and that even wider sets of gauge choices ar
lowed if one takes into account the detailed structure of the EF
2-17
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TABLE III. Past attractor for vacuum spatially inhomogeneous cosmologies with isometries. In the
three cases the initial singularity is Kasner-like, and in the last two cases the initial singularity is oscil
In all cases we have adopted the convention of aligning the frame vector fielde3 with ~one of! the Killing
vector field~s!.

Class of models
Nonzero

unstable variables
Vacuum past

attractor

Polarized Gowdy[ diagonalG2

~Isenberg and Moncrief@33#!
all zero K

Unpolarized Gowdy[ OT G2

~Kichenassamy and Rendall@26#!
N3 , R1 arc(T2Q1),K

PolarizedT2-symmetric
[G2 with one HO KVF

~Isenberg and Kichenassamy@35#!

R3 arc(T3Q2T1Q3),K

T2-symmetric[ genericG2

~Bergeret al. @38#!
N3 , R1 , R3 KøTN3

øTR1
øTR3

U(1)-symmetric[ genericG1

~Berger and Moncrief@36#!
all nonzero KøTNøTR
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One class of vacuum models is not included in Table
the so-called polarizedU(1)-symmetric models~Berger and
Moncrief @34#!. These areG1 cosmologies for which the
single spacelike Killing vector field is hypersurfac
orthogonal. The reason for this exclusion is that the dyna
cal consequences of the hypersurface-orthogonality co
tion are not compatible with our choice of spatial fram
given by Eq.~3.10!. These models could be incorporated
making a different choice of spatial frame, as discussed
footnote@10#, but we will not pursue this matter here.

It should be noted that in the papers listed in Table III t
conclusions about the dynamics near the initial singula
are not expressed in terms of a past attractor: we have re
mulated their results within our dynamical systems fram
work, and at this stage most of the results about the p
attractor have not been rigorously established. The pa
referred to use a metric-based approach21 instead of the or-
thonormal frame approach. Some of them make use of
so-called Fuchsian algorithm to establish the asymptotics
Kasner-like initial singularity~see Refs.@26# and@35#! while
others rely on a Hamiltonian formalism and the so-cal
method of consistent potentials to predict whether the ini
singularity will be oscillatory or not~see Refs.@36#, @37# and
@38#!. In this approach, the transitions between Kasner st
are described heuristically as bounces off potential walls
termined by the Hamiltonian. Some of these papers also
scribe numerical simulations that display a finite number
Mixmaster oscillations.

VI. CONCLUDING REMARKS

In this paper we have developed a mathematical fra
work for analyzing the dynamics ofG0 cosmologies, and in
particular the BKL conjecture discussed in the Introductio
A key step was the introduction of scale-invariant variabl

21In a recent paper@39#, however, the Gowdy models are analyz
using scale-invariant variables introduced in Refs.@5# and @4#.
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using the Hubble scalar defined by a timelike reference c
gruence as the normalization factor. One of the principal
vantages of Hubble-normalization lies in the behavior of
dynamical variables as the initial singularity is approach
the dimensional variables diverge, while, for at least a
neric family of solutions,the Hubble-normalized variable
remain bounded.

The structure of the evolution equations and constra
led to the introduction of thesilent boundaryin the Hubble-
normalized state space and enabled us to define asilent ini-
tial singularity. The next step was to construct thegeneral-
ized Mixmaster attractor, which makes precise the notion o
an oscillatory initial singularity in aG0 cosmology, while
having a simple geometrical structure~see Figs. 1–7!, and
allowed three precise conjectures on cosmological dynam
at early times to be formulated~Conjecture 1 in Sec. IV A,
Conjecture 2 in Sec. IV B, and Conjecture 3 in Sec. IV E!.
The construction of the past attractor also highlights a
clarifies the important role of SH dynamics in theG0 con-
text. Indeed, there is now considerable evidence, both
merical and analytical, that SH dynamics influences
asymptotic dynamics of spatially inhomogeneous cosmo
gies near the initial singularity in a significant way. Our fo
mulation places this relationship on a sound footing:the lo-
cal past attractor for G0 cosmologies with a silent initia
singularity is the past attractor for SH cosmologies. We are
now in a position to restate the BKL conjecture in a prec
form:

For almost all cosmological solutions of Einstein’s
field equations, a spacelike initial singularity issilent,
vacuum-dominatedandoscillatory.

Proving this conjecture entails establishing all the lim
associated with Conjectures 1, 2, and 3 in Sec. IV. As a fi
step, one would have to complete the proof for the SH m
els, begun by Ringstro¨m @23#. A natural second step would
be to consider the simplest class of spatially inhomogene
2-18
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models with an oscillatory initial singularity, namely the g
neric G2 models~see Table III!, restricting consideration to
vacuum solutions for simplicity. Analyzing the role of th
spatial derivatives in a neighborhood of the silent bound
will be a major step in this analysis, and will clearly prese
a formidable challenge.

This unifying statement incorporates certain fundamen
physical ideas about singularities, partially supported
known examples and theorems. It is useful to revisit the c
jectured physical behavior in a way that highlights vario
aspects of the situation:

~i! The generic cosmological initial singularity is a stron
gravity phenomenon, and so should be linked to trapped
faces, which intuitively capture the notion of ultrastron
gravitational fields~and thus also to the standard singular
theorems!.

~ii ! The generic cosmological initial singularity is likely t
be a spacelike curvature singularity because a null singu
ity will be very special and timelike singularities will b
their nature intersect relatively few worldlines of matter~but
confirming this will depend on implementing a good me
sure on the space of cosmological models, which is nee
in any case in order to put on a firm footing all talk abo
probabilities!.

~iii ! The generic spacelike curvature singularity is a sca
curvature singularity, since nonscalar curvature singulari
require fine tuning of initial data.

~iv! If the energy conditions are strictly obeyed, the c
vature singularity is generically Weyl curvature dominate
at least when vorticity in the matter fluid is not significa
~this is not the case if the energy conditions are just marg
ally satisfied, as exemplified by stiff perfect fluids, but the
are not physically likely states!.

~v! The strong-gravity regime associated with the init
state leads to particle horizons, and spatial inhomogene
are constrained to have superhorizon scale as the initial
gularity is approached.

~vi! Increased strength of the gravitational field and
collapse of particle horizons lead to asymptotic silence,
on the scale of the particle horizon solutions therefore
asymptotically SH.

~vii ! The past attractor describing asymptotic spatially
homogeneous dynamics is thus given by the general
Mixmaster attractor.

~viii ! Final singularities are in essence the time reverse
initial singularities, and so we expect the above ideas to
ply there too, and conversely that ideas from gravitatio
collapse can throw some light on cosmological initial sing
larities. In particular, in generic gravitational collapse, ang
lar momentum plays a fundamental physical role, so t
should also be true in many time-reversed cases, i.e., a
initial singularity; but when this is true, matter is dynam
cally important, in contrast to the cases considered abov

Each of these issues needs to be investigated and giv
precise mathematical statement; e.g., the last may rela
the hypothesis that the tilt transition sets can be interpre
as physical or dynamical effects of vorticity in the matt
fluid and associated transverse peculiar velocity compone
In each case we wish to link our results and conjecture
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physical ideas. The challenge is to explain the differen
between the past attractor for vacuumG0 models and the
past attractor for perfect fluidG0 models @compare Eqs.
~4.51! and ~5.1!# using physical principles. It is often state
that ‘‘matter~energy! does not matter’’ in the approach to th
initial singularity—this view is reflected in our pas
asymptotic limits for the matter variablesV and VL . But,
perhaps—and this is rather heuristic and speculative at
stage—‘‘matter linear momentum does matter’’ and/or ‘‘ma
ter angular momentum does matter.’’

In the end the major physical statements are:
~a! Ultrastrong gravitational fields will occur in the earl

Universe, associated with local restrictions on causality.
~b! Propagating gravitational waves are not important

the cosmological context, but tidal forces are, and indeed
often more important than the gravitational fields caused
rectly by the matter.

~c! The relation between tidal forces and vorticity in th
matter fluid is unclear and may contain some of the m
interesting physics.

The relation between them is that—if our conjectures
correct—in the early Universe, energy and informati
mainly propagate along timelike world lines rather th
along null rays. When matter moves relative to the irro
tional timelike reference congruence, as must be the c
when vorticity in the matter fluid is dynamically importan
then the energy and information will flow with the matte
The primary effect of the gravitational field is in determinin
the motion of the matter through Coulomb-like effects;
the other hand, the effect of the matter on the gravitatio
field is primarily through concentrating that field into sma
regions, while conserving the constraints which embody
Gauß law underlying the Coulomb-like behavior. The effe
of spatial curvature is to generate oscillatory behavior in ti
forces as this concentration takes place, as seems to be
acteristic of generic cosmological initial singularities; b
this is not wavelike in the sense of conveying information
different regions, it is just a localized oscillation.

It is issues such as these that need to be investigated w
further developing the themes studied here.
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APPENDIX

1. Propagation of constraints

Propagation of dimensional constraints:

e0@~Ccom!ab~ f !#5~Ccom!ab@e0~ f !#22H~Ccom!ab~ f !12s [a
g~Ccom!b]g~ f !22egd[aVg~Ccom!b]

d~ f !, ~A1!

e0~CG!522H~CG!12~ea12u̇a22aa!~CC!a1eabg~Ccom!ab~Vg!, ~A2!

e0~CC!a52@4Hd b
a 1s b

a 2e gb
a Vg#~CC!b2

1

6
~dabeb22u̇a!~CG!1

1

2
eabg~eb1u̇b23ab!~CJ!g

2
3

2
n b

a ~CJ!
b1

1

2
nb

b~CJ!
a2~Ccom! b

a ~ u̇b2ab!2
1

2
eabg~Ccom!bd~ng

d!

1
1

4
ebgd~Ccom!bg~n d

a !, ~A3!

e0~CJ!
a52@2Hd b

a 2s b
a 2e gb

a Vg#~CJ!
b2

1

2
eabg~Ccom!bg~H !1

1

2
eabg~Ccom!bd~sg

d!

2
1

4
ebgd~Ccom!bg~s d

a !2~Ccom! b
a ~Vb!. ~A4!

Propagation of dimensionless gauge fixing condition:

] t~CU̇!a
sv52~da

b1Sa
b2eag

bRg!~CU̇!b
sv. ~A5!

2. Hubble-normalized relativistic Euler equations

Upon substitution of the matter variables~2.25!, Eqs.~2.36! and ~2.37! assume the explicit form

­0V52
g

G1
va­aV1G1

21@2G1q2~3g22!2~22g!v22g~Sabvavb!2g~­a22r a12U̇a22Aa!va1gva­a ln G1#V,

~A6!

­0va52vb­bva1dab­b ln G12
~g21!

g
~12v2!dab~­b ln V22r b!1G2

21F ~g21!~12v2!~­bvb!2~22g!vb­b ln G1

1
~g21!

g
~22g!~12v2!vb~­b ln V22r b!1~3g24!~12v2!1~22g!~Sbgvbvg!1G2~U̇bvb!

1@G122~g21!#~Abvb!Gva2S b
a vb1e bg

a Rbvg2U̇a2v2Aa1eabgNbdvgvd. ~A7!

Using va5vea, eaea51, we easily obtain from Eq.~A7!

­0v252va­av21
2

G2
~12v2!Fva­a ln G11~g21!v2~­ava!2

~g21!

g
~12v2!va~­a ln V22r a!1~3g24!v2

2~Sabvavb!2G2~U̇ava!22~g21!v2~Aava!G , ~A8!

­0ea52veb­bea1
1

v
pab­b ln G12

1

v
~g21!

g
~12v2!pab~­b ln V22r b!2p b

a S g
b eg1s b

a Rb2
1

v
p b

a U̇b2vp b
a Ab

1vs b
a N g

b eg. ~A9!

Herep b
a
ªd b

a 2eaeb ands b
a
ªe bg

a eg.
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3. Hubble-normalized curvature variables

The Hubble-normalized 3-Ricci curvature of a spacel
3-surfaceS:$t5const% is defined through the symmetric
tracefree and trace parts. The trace partVk was given in Eq.
~2.44!, while the tracefree part is given by

Sabª2
1

3
e ^a

gd ~­ugu2r ugu22Augu!Nb&d1
1

3
~­^a2r ^a!Ab&

1
2

3
N^a

gNb&g2
1

3
Ng

gN^ab& . ~A10!

The quantitiesSab and Vk satisfy the Hubble-normalized
twice-contracted 3-Bianchi identity given by

0[~­b22r b23Ab!Sab2eabgNbdSg
d

1
1

3
dab~­b22r b!Vk . ~A11!

Employing Eq.~A10!, we can write the evolution equatio
for Sab in the alternative form

­0Sab5~q22!Sab23~Sab2Pab!1egd^a@2RgS d
b&

2N g
b& U̇d#1~dg&a­g2r ^a1U̇ ^a1A^a!U̇b&.

~A12!

The conformal curvature properties of a spacelike 3-surf
S:$t5const% are encoded in the Hubble-normalize
3-Cotton-York tensor

Cabªe ^a
gd ~­ugu22r ugu2Augu!Sb&d23N^a

gSb&g

1
1

2
Ng

gSab . ~A13!

The Hubble-normalized Weyl curvature variables take
explicit form

Eab5Sab1
1

3
Sab2

1

3
S^a

gSb&g2
1

2
Pab , ~A14!

Hab5
1

3
e ^a

gd ~­ugu2r ugu2Augu!Sb&d

2N^a
gSb&g1

1

6
Ng

gSab , ~A15!

with Sab defined in Eq.~A10!.

4. Curvature transitions

Although the relation~4.46! implicitly gives the rule for
the relationship between two Kasner epochs,k is not particu-
larly suitable for explicitly describing the ‘‘Kasner transfo
mation law’’ for curvature transitions. However, that law c
be elegantly obtained in the present dynamical syste
framework as follows. The solutions on theTN1

subset are
determined by
10350
e

e

s

1

12
N1

2512S2,

and

S152413Z, S2522
3

2
r 1Z, S3522

3

2
r 2Z,

] tZ522~12S2!Z,

wherer 6ª16A12a2, aP@0,1#, is a constant, and wher
12S25 3

4 @(a22)Z12#@(a12)Z22#. An orbit starts
~with time direction reversed toward the past! from a Kasner
point whereZ5Z252/(21a), and ends at a Kasner poin
whereZ5Z152/(22a). That is,Z is a parameter on the
individual orbits that increases monotonically fromZ2 to Z1

toward the past, whilea labels the different orbits. The valu
Z50 determines the pointP1 outside the Kasner circle in
Fig. 1. It is possible to express the constanta, and, hence,
r 6 , in terms of the standard Kasner parameteru>1 ~see,
e.g., BKL @8#, p. 528!, where we assume that we are cons
ering orbits that originate from sector~123! and thus that
p1,p2,p3 . Then (r 1 ,a,r 2)52(u2,u,1)/(11u2), and
thusa might be viewed as a compactified Kasner parame
The above formulae directly yield the standard transform
tion laws from the initial Kasner exponents$pa% to the final
Kasner exponents$pa8 % for orbits originating from sector
~123!:

p185
2p1

112p1
, p285

p212p1

112p1
, p385

p312p1

112p1
.

~A16!

Curvature transitions from other sectors than~123! are easily
obtained through permutations.

5. Inverting the commutator equations

The commutator equations can be used to solve for
connection variables in terms of the frame variables. Let
introduce thedual frame variables ei

a of ea
i , and their

Hubble-normalized counterpartsE i
a
ªH e i

a . The dual
frame variables can be used to conveniently describe the
element, giving

ds25H22@2N2dt21dabE i
a E j

b ~Nidt1dxi !~Njdt1dxj !#.
~A17!

As Ea
i and E i

a satisfy the relationsE i
a Eb

i5d b
a and

E i
a Ea

j5d i
j , one finds with Eq.~2.47! that theE i

a evolve
according to

­0E i
a 52~qd b

a 2S b
a 2e gb

a Rg!E i
b 1N21E j

a ] iN
j .

~A18!

On the other hand, from appropriately inverting Eqs.~2.47!,
~2.48! and ~2.50! we obtain the explicit expressions
2-21



UGGLA et al. PHYSICAL REVIEW D 68, 103502 ~2003!
q5
1

3
E i

a ­0Ea
i1

1

3
N21] iN

i , ~A19!

Sab52dg^aE i
g ­0Eb&

i2N21dg^aE i
g ­b&N

i , ~A20!

Ra5
1

2
ea

b
g E i

b ­0
iEg

i1
1

2
N21ea

b
g E i

b ­gNi , ~A21!

Aa1r a5
1

2
E i

b ­aEb
i2

1

2
] iEa

i , ~A22!

Nab5E i
(a eb)gd­gEd

i , ~A23!

U̇a2r a5­a ln N. ~A24!
n-

m

f
n-

-

9

,

10350
When working in theseparable volume gauge, determined
by conditions~3.3! and~3.1!, the line element takes the form

ds25H22@2dt21dabE i
a E j

b dxidxj #. ~A25!

Combining the above result forAa1r a with the constraint
~3.9! makes it then possible to solve forr a and Aa sepa-
rately:

r a5
1

3
E i

b Ea
j] jEb

i1
1

3
Ea

i] i ln m̂, ~A26!

Aa5
1

6
E i

b Ea
j] jEb

i2
1

2
] iEa

i2
1

3
Ea

i] i ln m̂.

~A27!
L:

iv.

n-

.
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