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Small-scale clumps in the galactic halo and dark matter annihilation
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Production of small-scale dark matter~DM! clumps is studied in the standard cosmological scenario with an
inflation-produced primeval fluctuation spectrum. Special attention is given to the three following problems.~i!
The mass spectrum of small-scale clumps withM&103M ( is calculated with the tidal destruction of the
clumps taken into account within a hierarchical model of clump structure. Only 0.1–0.5 % of small clumps
survive the stage of tidal destruction in each logarithmic mass intervalD ln M;1. ~ii ! The mass distribution of
clumps has a cutoff atMmin due to the diffusion of DM particles out of fluctuation and free streaming at later
stages.Mmin is a model-dependent quantity. In the case that the neutralino, considered as a pureB-ino, is a DM
particle, Mmin;1028M ( . ~iii ! The evolution of the density profile in a DM clump does not result in a
singularity because of the formation of the core under the influence of tidal interaction. The radius of the core
is Rc;0.1R, whereR is the radius of the clump. The applications for annihilation of DM particles in the
Galactic halo are studied. The number density of clumps as a function of their mass, radius, and distance to the
Galactic center is presented. The enhancement of the annihilation signal due to clumpiness, valid for arbitrary
DM particles, is calculated. In spite of a small survival probability, the global annihilation signal in most cases
is dominated by clumps. For the observationally preferable value of the index of the primeval fluctuation
spectrumnp'1, the enhancement of the annihilation signal is described by a factor of 2 to 5 for different
density profiles in a clump.
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I. INTRODUCTION

Both analytic calculations@1,2# and numerical simulations
@3–5# predict the existence of dark matter clumps in the G
lactic halo. The density profile in these clumps according
analytic calculations@6–9# and numerical simulations@4,10#
is r(r )}r 2b. The average density of the dark matter~DM!
in Galactic halo itself also exhibits a similar density profi
~relative to the Galactic center! in both approaches. The DM
profile in clusters of galaxies is discussed in@11# and in
references therein. In the analytic approach of Gurevich
Zybin ~see the review@9# and references therein! the density
profiles are predicted to be universal, withb'1.7– 1.9 for
clumps, galaxies, and two-point correlation functions of g
axies. In numerical simulations the density profiles can
evaluated only for relatively large scales due to the limi
mass resolution. The value ofb differs in different simula-
tions fromb51.0 @10# to b51.5 @3# and may be nonuniver
sal for objects of different mass scales@12#. An attempt at an
analytical explanation of the results of the numerical simu
tions has been performed in@13,14#. The phase-space densi
profiles of DM halos are investigated in@15#.

A central cusp in the Galactic halo and the smaller-sc
clumps results in the enhancement of the DM annihilat
rate and thus in stronger signals in the form of gamma ra
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radio emission, positrons, and antiprotons. The gamma
and radio signal from the central cusp in the Galactic h
was first discussed in@16,17#. Recently this problem was
examined in@18–22#. The enhancement of the DM annihila
tion rate due to the clumpiness of the DM halo was fi
pointed out in@1#. Neutralino annihilation in clumps can re
sult in a very large diffuse gamma ray flux@23# in the model
of the clumpy DM by Gurevichet al. @2#. Calculations of
positron and antiproton production in the clumpy DM ha
have been performed, e.g., in@18# ~see also@24–26#!. Re-
cently, the annihilation of DM in the clumps has been stud
in @27–32#. The synchrotron flux from DM annihilation
products in clumps in the presence of the Galactic magn
field is considered in@33#. Constraints on the DM clumpi-
ness in the halos from heating of the disk galaxies is exa
ined in @34,35#.

The main purpose of this work is evaluation of the e
hancement of the annihilation signal due to the presenc
the small clumps of DM in the Galactic-halo.

Small-scale self-gravitating dark matter clumps, whi
will be referred to as DMCs or simply as clumps, may ha
formed in the early universe due to several mechanis
These DMCs may be formed~i! by the growth of adiabatic
or isothermal fluctuations~originating at inflation! during the
matter-dominated epoch; or~ii ! from the density fluctuations
in models with topological defects~cosmic strings and do
main walls! @1#; or ~iii ! during the radiation-dominated er
from nonlinear isothermal fluctuations~originating in phase
transitions in the early universe! @36# or from large-
amplitude adiabatic fluctuations@37#.
©2003 The American Physical Society03-1
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In this paper we shall consider only the most conserva
case of adiabatic fluctuations which enter the nonlinear s
of evolution in the matter-dominated epoch with an inflatio
induced initial power-law power spectrum.

Small-scale clumps are formed only if the fluctuation a
plitudes in the spectrum are large enough at the corresp
ing small scales. The inflation models predict the power-l
primeval fluctuation spectrum. If the power-law indexnp
>1, DMCs are formed in a wide range of scales. During
universe expansion the small clumps are captured by
larger ones, and the larger clumps consist of the smaller o
and of continuously distributed DM. A convenient analy
formalism, which describes this hierarchical clustering sta
tically, is the Press-Schechter theory@38# and its extensions
in particular the ‘‘excursion set’’ formalism developed b
Bondet al. @39# ~for a clear introduction, see@40#!. However,
this theory does not include the important process of ti
destruction of small clumps inside the bigger ones. We t
this process into account in Sec. V and obtain the mass fu
tion for the small-scale DMCs in the Galactic halo. In t
case of a power-law spectrum only a small fraction of
captured clumps survives, but even this small fraction
enough to dominate the total annihilation rate in the Gala
halo.

In the hierarchical theory of large-scale structure form
tion in the universe the first objects formed have some m
mal massMmin . The value of this mass is determined by t
spectrum of initial fluctuations and by the properties of D
particles@2,41#. This value is crucial for calculation of th
DM annihilation rate. The estimates ofMmin existing in the
literature for neutralino DM are substantially different, fro
Mmin;10212M ( in @42# to Mmin;(1027– 1026)M ( in @43#.
In Sec. III we present our calculations and discuss the pr
ous results.

The DM annihilation rate crucially depends on the dens
profile r(r )}r 2b of DM particles in a clump and on th
distanceRc where the density growth is cut off. This regio
is called the core. The radius of the core has been estim
in the literature in the different approximations. The estim
tion Rc /R;deq

3 , wheredeq is the density fluctuation ampli
tude at the end of the radiation-dominated epoch, was
tained in@9#. It was found from the behavior of the dampe
mode of nonlinear fluctuations. A black hole or baryonic co
in the center of the DMC can strongly affect the dens
saturation atr→0 for a very massive DMC@9,19–21#. Cal-
culations@16,23# of the inward flux of DM particles into the
dense central region of a DMC also result, due to annih
tion of DM particles, in a very small radius of the centr
core Rc . The above mentioned process is essential for
formation of the DMC core only in the case of almost pe
fectly spherically symmetrical clumps.

We shall estimate the radius of the core imposed by t
interaction, which gives the largestRc among those known in
the literature. In the spherically symmetric self-gravitati
clump at the stage of its formation the nondissipative D
particles are moving nearly radially in the oscillation regim
The presence of a nonspherical~tidal! external gravitational
field causes the deflection of particle trajectories in the clu
from the radial ones. This process prevents the developm
10300
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of the central singularity in a clump and results in the co
formation.

During the radiation-dominated epoch the small fluctu
tions d5dr/r!1 grow very slowly. In the matter-
dominated stage these fluctuations start to grow fast@44# in
the regimed}t2/3. Fluctuations get detached from the ge
eral cosmological expansion and start contracting a
reaching the nonlinear valued>1. These nonlinear fluctua
tions finally form the DM clumps. Analytic studies of th
nonlinear evolution of fluctuations have been performed
many authors. One of the most detailed analytical
proaches was developed by Gurevich and Zybin@9#. In this
formalism at a certain moment of gravitational contracti
the density singularity forms in the center of a nonline
fluctuation. From this singularity point the density caust
~i.e., the boundary of regions with a different number
streams! expand outward. The secondary caustics appea
side the primary ones and their number increases fast
time. This multistream instability was discovered and stud
in detail in @9#. It was demonstrated that the stationary u
versal density profiler(r )}r 2b with b51.7– 1.9 is formed
as a result of streams mixing. The maximum density of D
particles in a clump is reached at the center.

In our consideration of the clump formation we shall fo
low for convenience the theoretical scenario of Gurevich a
Zybin @9#. However, the effects of tidal interaction, which
the main result of our work, are valid for a much broad
class of scenarios.

The processes described above are valid for all DM p
ticles which can be considered as nondissipative. The sig
production depends on the annihilation cross section
thus on the nature of the DM particles. However, our strate
is to calculate the enhancement of the signal due to the
clumpiness in comparison with an isotropic unclumped d
tribution of DM. As a guide we shall take the neutralino
the DM particle, but essentially our results for enhancem
of the annihilation signal are relevant for a wide class
other DM particles.

We perform our calculations for a cosmological mod
with the matter densityVm50.3 and the cosmological term
VL512Vm.0.7. The presence of theL term influences
only the value ofreq and does not affect the formation o
low-mass DMCs. This is because theL term contributes neg-
ligibly to the total cosmological density at time scales wh
the low-mass DMCs formation occurs. We shall use the
dex ‘‘eq’’ for the values at the moment of equality~i.e., the
transition from the radiation-dominated to the matte
dominated epoch!. We shall use the Hubble constant 7
km s21 Mpc21.

II. ENHANCEMENT OF ANNIHILATION SIGNAL DUE TO
CLUMPS

Let us consider a DM clump with the internal densi
profile r int(r ) and a total massM5*4pr 2r int(r )dr. The an-
nihilation rate in a single clump is given by

Ṅcl54pE
0

`

r 2dr r int
2 ~r !mx

22^sannv&5
3

4p

^sannv&
mx

2

M2

R3 S,

~1!
3-2
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SMALL-SCALE CLUMPS IN THE GALACTIC HALO AND . . . PHYSICAL REVIEW D68, 103003 ~2003!
wheremx is the mass of a DM particle~not necessarily the
neutralino!, v is the relative velocity of two DM particles a
the collision,sann is the annihilation cross section andR is
the virial radius of a clump. The functionS is determined by
Eq. ~1! and depends on the DM distribution in a clump,
particular,S51 for the simplest case of a uniform clum
whenr int(r )5const atr<R andr int(r )50 at r .R.

The expansion of̂sannv& over the relative velocityv of
two DM particles has the form

^sannv&5a1bv21cv41¯ , ~2!

wherea has a contribution from thes-wave amplitude only,
and b from both s and p waves. Sincev is very small,
^sannv& can be put outside the integral in Eq.~1!.

We shall use the following parametrization of the dens
profile in a clump:

r int~r !5H rc , r ,Rc ,

rcS r

Rc
D 2b

, Rc,r ,R,

0, r .R.

~3!

Using r int(r ) from Eq. ~3! it is easy to calculateS from Eq.
~1! as

S~xc ,b!5
~32b!2

3~2b23! S 2b

3
xc

322b21D S 12
b

3
xc

32bD 22

,

~4!

wherexc5Rc /R. Another approach to the parametrization
the clump structure was used in@29#.

The clumps in the Galactic halo are distributed over
least three parameters, massM, radiusR, and distance from
the Galactic center,l: ncl(M ,R,l ). This distribution can also
depend on the parameters that describe the internal stru
of the clumps,b andxc , from Eq.~3!. We shall discuss this
dependence in Sec. IV. In particular, it will be demonstra
that xc5xc(M ,R), while b is a universal constant. Thus th
differential number density of DMCs in the halo can be wr
ten as

dNcl5ncl~ l ,M ,R!d3l dM dR. ~5!

The observed signal at the position of the Earth from D
particle annihilation in the clumps is proportional to th
quantity

I cl5
1

4p E
0

p

dz sinzE
0

r max~z! 2pr 2dr

r 2 E
Mmin

Mmax
dME

Rmin

Rmax
dR

3ncl„l ~z,r !,M ,R…Ṅcl~M ,R!, ~6!

wherer is the distance from the Sun~Earth! to a clump and
z is the angle between the line of observation and the di
tion to the Galactic center. The distancel between a clump
and the Galactic center can be given in terms ofr, r ( ~dis-
tance from the Sun to the Galactic center!, andz as l (z,r )
5(r 21r (

2 22rr ( cosz)1/2, and the maximum distance from
10300
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the Sun to the outer halo border in the direction ofz,
r max(z)5(RH

2 2r(
2 sin2 z)1/2, whereRH;100 kpc is the Galac-

tic halo virial radius andr (58.5 kpc is the distance from th
Sun to the Galactic center.

An additional annihilation signal is given by unclump
DM in the halo with homogeneous~i.e., smoothly spread!
densityrDM( l ), wherel is the distance to the Galactic cente

I hom5
^sannv&

2 E
0

p

dz sinzE
0

r max~z!

dr rDM
2 @ l ~z,r !#/mx

2.

~7!

The enhancementh of the signal due to the presence
clumps is given by

h5
I cl1I hom

I hom
. ~8!

This quantity describes the global enhancement of the
nihilation signal observed at the Earth~e.g., the flux of radio,
gamma, and neutrino radiations! as compared with the usua
calculations from annihilation of unclumpy DM. From Eq
~8!, ~7!, and~6! one can see that the enhancementh does not
depend on the properties of DM particles, in particular,
the annihilation cross section and is fully determined by
parameters of DM clumpiness. Further exact calculations
this paper will be performed using Eqs.~6!–~8!, but now we
shall turn to the approximate expression forh.

We shall accept now the simplifying assumptions. We
sume that the space density of clumps in the halo,ncl( l ), is
proportional to the unclumpy DM densityrDM( l ): ncl( l )
5jrDM( l )/M with j!1. This assumption holds with goo
accuracy for the small-scale clumps. In contrast, the dis
bution of large-scale clumps obtained in the numerical sim
lations@45# is rather different from the density distribution o
the small clumps, especially in a central part of the h
because of the tidal disruption of clumps there. However,
clump signal is determined mostly by clumps of the minim
mass. We neglect here the distribution of clumps overM and
R. Instead we shall use a mean density of DM particles ins
a clumpr̄ int53M /4pR3. Finally, we shall introduce for con
venience the effective density of DM particles in the ha
defined as

r̃DM[
*0

pdz sinz*0
r max~z!dr rDM

2 @ l ~z,r !#

*0
pdz sinz*0

r max~z!dr rDM@ l ~z,r !#
. ~9!

As a result, we obtain for an enhancement factor the con
nient estimate

h'11jS~xc ,b!
r̄ int

r̃DM
, ~10!

where j is the fraction of DM in the form of clumps~see
above! andS(xc ,b) is given by Eq.~4!. For typical param-
eters~see details in the following sections!, np.1, b.1.8,
xc.0.05, S(xc ,b).5, r̃H;rDM(r ();0.3 GeV cm23, r̄ int
;2310222 g cm23, j;0.001, the numerical estimateh
;3 follows from Eq.~10!.
3-3
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III. CLUMPS OF MINIMAL MASSES

The number of clumps in the halo increases at sm
clump massesM, and the signal from clumpsI cl crucially
depends onMmin in the clump distribution, as Eq.~6! shows.
The value ofMmin is determined by a leakage of DM pa
ticles from the overdense fluctuations in the early univer
We shall first describe this process qualitatively and th
present numerical calculations.

Cold dark matter~CDM! particles at high temperatureT
.Tf;0.05mx are in thermodynamical~chemical! equilib-
rium with cosmic plasma, when their number density is d
termined by temperature. After freezing att.t f and T
,Tf , the DM particles remain for some time inkineticequi-
librium with the plasma, when the temperature of the CD
particlesTx is equal to the temperature of the plasmaT, but
the number densitynx is determined by the freezing conce
tration and expansion of the universe. At this stage the C
particles are not perfectly coupled to the cosmic plasma. C
lisions between a CDM particle and fast particles of the a
bient plasma result in exchange of momenta and a C
particle diffuses in space. Due to diffusion the DM particl
leak from the small-scale fluctuations and thus their distri
tion has a cutoff at the minimal massMD .

When the energy relaxation time for DM particlest rel
becomes larger than the Hubble timeH21(t), the DM par-
ticles get out of kinetic equilibrium. This condition dete
mines the time of kinetic decouplingtd . At t>td the CDM
particles are moving in the free streaming regime and
fluctuations on the scale of

l fs5a~ t0!E
td

t0 v~ t8!dt8

a~ t8!
~11!

and smaller are washed away@herea(t) is the scaling factor
of the expanding universe andv(t) is the velocity of a DM
particle at epocht#. The corresponding minimal mass at e
och t0 ,

M fs5
4p

3
rx~ t0!l fs

3 , ~12!

is much larger thanMD . Numerical calculations below~for
the neutralino! show thatMD is close toMmin from @42# and
M fs to Mmin from @43#.

The calculation of the minimal massMmin in the mass
spectrum of fluctuations is obviously model dependent.
the DM particle we shall consider the neutralinox, for which
we take the pureB-ino state (x5B̃). As the calculations
below show, the temperature of kinetic decoupling for a r
sonable range of parameters isTd;100 MeV, and thus we
can consider a cosmic plasma consisting of relativistic e
trons, positrons, neutrinos, and photons in thermal equ
rium.

The cross sections for scattering ofB-inos off the left
~right! electron and left neutrino are given in Appendix A
The cross section fornx scattering is given by Eq.~A5! and
for ex scattering it is 17 times larger, if we assume eq
10300
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masses of selectrons and sneutrinos~we shall usem̃ for both
the left and right selectron and sneutrino masses, andM̃2

5m̃22mx
2).

First of all we shall calculate the momenttd and tempera-
ture Td of kinetic decoupling of the neutralino, using th
condition

1

t rel
.H~ t !, ~13!

whereH(t)51/(2t) is the Hubble constant andt rel(T) is the
energy relaxation time for the neutralino at the temperat
of the electron-neutrino gasT. The relaxation timet rel is
determined by collisions of neutralinos with fermionsnL ,
eL , andeR . The neutralino can be considered as a particle
rest because the rest system coincides with the cente
mass system with an accuracy of orderAT/mx. Let dp be
the neutralino momentum obtained in one scattering:

~dp!252v2~12cosu!, ~14!

wherev andu are the neutrino energy and scattering ang
respectively.

Let us introduce the number density of relativistic ferm
ons with one polarization and with energyv:

n0~v!5
1

2p2

v2

ev/T11
. ~15!

Then for the energy relaxation timet rel we have

1

t rel
5

1

Ek

dEk

dt
5

40

2Ekmx
E dVE dv n0~v!S dsel

dV D
f Lx

~dp!2,

~16!

whereEk.(3/2)T is the mean kinetic energy of the neutra
nos, and (dsel /dV) f Lx is given by Eq.~A5!. The number 40
in Eq. ~16! is obtained by counting degrees of freedom: thr
neutrinos and antineutrinos~or nL

c in the case of Majorana
neutrinos! give six, eL andeL

c give two, and two right~sin-
glet! states for electrons and positrons gives 34, because
cross sections are 17 times larger.

After integration in Eq.~16! we obtain

1

t rel

5
40G~7!ae.m.

2

9p cos4 uW

T6

M̃4mx

. ~17!

Using Eq.~13! and the connection between the age and te
perature of the universe,

t5
2.42

Ag*
S T

1 MeVD 22

s, ~18!

whereg* is the number of degrees of freedom, we obta
numerically
3-4
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td53.531025S mx

100 GeVD
21/2S M̃

1 TeV
D 22S g*

10D 23/4

s,

~19!

and

Td5150S mx

100 GeVD
1/4S M̃

1 TeV
D S g*

10D 1/8

MeV. ~20!

We shall present in this section calculations made i
physically transparent way, considering the diffusive leak
of neutralinos at the stage of kinetic equilibrium and fr
streaming when neutralinos get out of kinetic equilibrium.
Appendix B we shall study both stages together in the f
malism of the kinetic equation, as was done in@42#. Al-
though our methods are not identical, their comparison
plies that the absence of free streaming is responsible fo
contradiction with differentMmin discussed above. The inde
pendent approach in Appendix B confirms the results
tained below.

A. Diffusion cutoff of the mass spectrum

We can come now to the calculation ofMD , the minimal
mass in the fluctuation spectrum caused by diffusion of n
tralinos out of an overdense fluctuation. We calculate
diffusion coefficient using the method given in@46# ~Sec.
12!. Consider a neutralino moving with a nonrelativistic v
locity vW . In the rest system of this particle the momentu
distribution of relativistic fermions is anisotropic:

n~pW !d3p5
dVap2dp

~2p!3

1

ep~11v cosa!/T11
, ~21!

where a is the angle between the directions ofvW and the
momentum of the incoming fermion.

The momentum transfer in a single scattering equ
pW (12cosu) after averaging over the azimuthal angles.

The corresponding friction force experienced by the n
tralino is

fW r540E dVuE d3p n~pW !S dsel

dVu
D

f lx

pW ~12cosu!52B21vW ,

~22!

whereB is the particle mobility and the factor 40 takes in
account scattering on all fermions as in Eq.~17!. Then the
diffusion coefficient is

D5BT5
3p cos4 uWM̃4

40G~6!ae.m.
2 T5 . ~23!

Diffusion equation in the comoving system has the form

]d~xW ,t !

]t
5

D~ t !

a2~ t !
DxWd~xW ,t !. ~24!

The diffusion coefficientD(t) is time dependent because
T(t). The solution of Eq.~24! for the Fourier component is
10300
a
g
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-
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dkW~ t !5dkW~ t f !exp$2k2Cg
*
5/4M̃4~ t5/22t f

5/2!%, ~25!

whereC5const. The factorCg
*
5/4M̃4(t5/22t f

5/2) in front of
k2 in Eq. ~25! is the diffusion length squaredlD

2 (t)/a2(t) in
the comoving coordinates. This value determines the m
mal mass in the density perturbation spectrum due to di
sion of neutralinos from a fluctuation:

MD5
4p

3
rx~ td!lD

3 ~ td!

54.3310213S mx

100 GeVD
215/8

3S M̃

1 TeV
D 23/2S g*

10D 215/16

M ( . ~26!

The functional dependence of Eq.~25! and numerical value
of Eq. ~26! obtained in the diffusion approximation coincid
with the corresponding results obtained by a differe
method in@42#.

B. Free streaming cutoff of the mass spectrum

We shall consider now the free streaming cutoff of t
mass spectrum qualitatively described in the beginning
this section. We gave there an estimate of the minimal m
due to free streaming. In the accurate calculations below
shall take into account the angular and velocity distribut
of leaking neutralinos, and the exact dependence ofa(t) at
age;teq, which affect the value ofM fs .

After the moment of kinetic decouplingtd , neutralinos
move freely in the expanding universe background,a(t)dxW
5vW (t)dt, wherexW is the comoving particle coordinate. Th
coordinatesxW at some momentt are determined by the initia
coordinatesqW and velocityvW d at the moment of kinetic de
coupling td :

xW5 fW~qW ,vW d ,t !5qW 1E
td

t vW ~ t8!dt8

a~ t8!
5qW 1g~ t !vW d , ~27!

where

g~ t !5a~ td!E
td

t dt8

a2~ t8!
, ~28!

vW (t)5vW da(td)/a(t) for nonrelativistic particles. Now for the
neutralino number density at the pointxW we have

n~xW ,t !5E d3vdf~vW d!(
qW
*

n~qW * ,td!UD fW

DqW
U

qW 5qW
*

5E d3vdf~vW d!E d3q n~qW ,td!d~3!
„xW2 fW~qW ,vW d ,t !…,

~29!

whered (3) is the Dirac delta function,D fW /DqW is the Jaco-
bian, andf(vW d) is the neutralino velocity distribution func
3-5
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tion at the momenttd . The summation in Eq.~29! goes over
all roots qW * of the equationxW5 fW(qW ,vW d ,t) from Eq. ~27!.
This sum in fact has only one term because the func
f (qW ,vW d ,t) in Eq. ~27! is a single-valued one.

From Eqs.~27! and ~29! we find the Fourier component

nkW~ t !5nkW~ td!E d3vdf~vW d!e2 ikWvW dg~ t !. ~30!

Assuming the velocity distribution at the moment of deco
pling f(vW d) to be Maxwellian

f~vW d!5S mx

2pTd
D 3/2

expH 2
mxvd

2

2Td
J , ~31!

we obtain

nkW~ t !5nkW~ td!e2~1/2!k2g2~ t !Td /mx, ~32!

i.e., up to the momentt all perturbations are washed out b
free streaming inside the physical length scale

l fs~ t !5a~ t !g~ t !S Td

mx
D 1/2

. ~33!

This length scale corresponds to the clump of minimal m

M fs~ t !5
4p

3
rx~ t !l fs

3 ~ t !, ~34!

whererx(t)5reqaeq
3 /a3(t). The time dependence ofM fs(t)

is regulated bya(t). In the radiation-dominated epoch
M fs(t) grows logarithmically with time. This growth is satu
rated in the matter-dominated epoch. The resultingMmin at t0
can easily be calculated usinga(t) as the solution of the
Friedmann equation:

a~h!5aeqF2
h

h*
1S h

h*
D 2G ,

t5aeqh* F S h

h*
D 2

1
1

3 S h

h*
D 3G . ~35!

In these equationsh
*
2252pGreqaeq

2 /3, aeq is the value of
the scaling factor at the momentteq,

req5r0~11zeq!
351.1310219S h

0.7D
8S Vm

0.3D
4

g cm23,

~36!

11zeq52.353104Vmh2, and r051.9310229Vmh2

g cm23. The presence of the cosmological constantL affects
only the valuereq and does not influence the evolutio
M fs(t) because the contribution ofL to the total cosmologi-
cal density is negligible at smallt. Putting Eq.~35! into Eq.
~28!, we find after integration

Mmin5
p1/4

219/431/4

req
1/4td

3/2

G3/4 S Td

mx
D 3/2

ln3H 24

pGreqtd
2J . ~37!
10300
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Using Eqs.~19! and ~20! we obtain numerically

Mmin51.531028S mx

100 GeVD
215/8S M̃

1 TeV
D 23/2

3S g*
10D 215/16S L*

83 D 3

M ( , ~38!

whereL* is the logarithm from Eq.~37!.
Our calculations agree well with@43# as far as the mos

important quantityTd is concerned~the scattering cross sec
tion is involved only there!. The calculation ofMmin from Td
in our case involves nonradial propagation of neutralinos i
fluctuation and their distribution over velocities, Eqs.~27!–
~32!. We include also the accurate time dependence of
scaling factora(t). The calculations in@43# follow the semi-
quantitative scheme described at the beginning of Sec. III
this stage of the calculations we have a difference descr
by a factor of 7.

In conclusion, in this section we have considered two p
cesses of washing out the cosmological density perturbat
in a neutralino gas. The first process is the neutralino di
sion due to scattering off neutrinos, electrons, and positro
This process is effective until neutralinos are in kinetic eq
librium with the cosmological plasma. Up to the moment
decoupling td all perturbations with massM,MD
.(10213– 10212)M ( are washed out. The second process
neutralino free streaming. Starting later, att.td , it washes
out the larger perturbations withM<M fs and determines
Mmin in the clump mass distribution at the present epoch
given by Eq.~38!.

IV. CORE OF A DARK MATTER CLUMP

In this section we shall consider smearing of the singu
density profile in a clump due to tidal forces and calcula
the radiusRc of the core produced.

Clumps, as well as galaxies, originate near the maxima
cosmological density perturbationsd(rW)5@r(rW)2 r̄ #/ r̄. At
the matter-dominated stage the density perturbations gro
d}t2/3. In the nonlinear regimed*1, a multiflux instability
develops in a clump, and a singular density profile is form
@9#. If the velocity field in the central part of the clump i
disturbed and becomes weakly nonradial, the flow is ov
turned, a singularity does not form, and the density profile
smoothed. In@9# the core radius is estimated asxc.deq

3 !1
by consideration of the perturbation of the velocity field d
to the damped mode of the cosmological density pertur
tions. Heredeq is the initial density fluctuation value at th
end of the radiation-dominated epoch. In@23# the core is
produced for a spherically symmetric clump by inverse flo
caused by annihilation of DM particles. We shall show he
that these phenomena are not the main effects and th
much stronger disturbance of the velocity field in the core
produced by tidal forces. These forces originate due to
nonsphericity of the perturbation considered and the p
ence of other fluctuations nearby, including a fluctuation o
larger scale in which the considered fluctuation can be s
merged.
3-6
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Core formation in a fluctuation begins at the linear sta
of evolution and continues at the beginning of the nonlin
stage. The tidal forces diminish with timet @see Eq.~53!
below#, and the duration of this phase is proportional tot.
Once the core is produced it is not destroyed in the follow
evolution. The stage of core formation continues appro
mately from teq to the time of maximal expansionts and a
little above, when a clump is detached from the expansion
the universe and evolves in the nonlinear regime. Soon a
this period, a clump enters the hierarchical stage of evo
tion, when the tidal forces can destroy it, but survivi
clumps retain their cores.

Let us expand the gravitational potential in a series n
the maximum of the density fluctuation taken asrW50W at
arbitrary timet during thelinear growth of density perturba
tions:

f~rW,t !5f01
]f

]r iU
0

r i1
1

6
F l l u0d i j r

i r j1
1

2
Ti j u0r i r j1¯ ,

~39!

where

F i j 5
]2f~rW !

]r i]r j , Ti j 5F i j 2
1

3
F l l d i j . ~40!

The first term of the series in Eq.~39! does not influence the
particle motion. The second term is zero as a condition
maximum density. The third term describes the spheric
symmetric part of the potential~including the potential of the
homogeneous background! and also the perturbation poten
tial. It governs the radial motion of the particles. Accordi
to the Poisson equation one has

F l l 5Df~rW !54pGr̄@11d~rW !#. ~41!

Finally, the fourth term, which contains the traceless ma
Ti j , describes the tidal forces. They disturb the radial mot
of the particles and result in production of the core.

We shall start with definitions and notation. We assu
that density perturbationsd(rW) are Gaussian with a powe
spectrumP(k):

^dkW
* dkW8&5~2p!3P~k!dD

~3!~kW2kW8!, dkW5E d~rW !eikW rWd3r ,

~42!

where dD
(3)(kW2kW8) is the Dirac delta function and angula

brackets correspond to ensemble averaging. The power s
trum Peq(k) at time teq is connected with the primordia
power spectrumPp(k) ~at the epochs before horizon cros
ing! by the relationPeq(k)5Pp(k)T2(k), whereT(k) is the
transfer function for cold dark matter~see, e.g.,@47#!.

From Eq.~41! it follows that the power spectrumPF(k)
of potential perturbations is related toP(k) as

PF~k!5~4p!2G2r̄2k24P~k!. ~43!

Let us introduce the moments of the spectrumP(k):
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s~ j !
2 5

1

2p2 E
0

`

k2dk P~k!k2 j , ~44!

and the similar momentss( j )
2 for the perturbation field of the

gravitational potential. Calculating the divergent mome
for a given massM we assume the smoothing procedure
@47#.

From Eq.~43! it follows that

s~ j !
2 5~4p!2G2r̄2s~ j 22!

2 ~45!

for j >2. Let us definez i j 5]2d(rW)/]r i]r j . Then according
to @47# its mean value over the ensemble is

^z i j zkl&5
s~2!

2

15
~d i j dkl1d ikd j l 1d i l d jk!, ~46!

which results in

^Ti j Tji &5
2

3
s~2!

2 5
2

3
~4p!2G2r̄2s~0!

2 ~47!

~in the following we shall use the notations[s (0)). Let us
introduce the important physical quantityn, the height of the
peak density in units of dispersion~the peak height!:

n5deq/seq~M !, ~48!

whereseq(M )[s(teq,M ).
After introduction of these quantities we shall move

calculation of DM particle velocities and core radius. T
velocity vW (t) is given by the sum of the radial velocityvW rad
and an additional velocityvW tid , which will be considered as a
small correction caused by tidal forces. The radial veloc
will be calculated without tidal interaction taking into ac
count from the equation

dvW rad

dt
52gradf~r !, ~49!

where the spherically symmetric potentialf(r ) is given by
the third term in the right hand side~RHS! of Eq. ~39!. This
equation determines the radial motion of the particle, and
solution is given in the parametric form as@44#

r 5r s cos2 u, u1
1

2
sin 2u5

2

3 S 5deq

3 D 3/2 t2ts

teq
. ~50!

The moment of maximum clump expansionts and the dis-
tancer 5r s at this moment are

ts

teq
5

3p

4 S 5deq

3 D 23/2

,
r s

r eq
5

3

5deq
, ~51!

wheredeq is the initial fluctuation value~at t5teq).
Tidal forces give rise to the additional velocityvW tid . Its

evolution is described by the equation

dv tid,i

dt
52Ti j ~ t !r j ~52!
3-7
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where in the linear approximation

Ti j ~ t !5Ti j ~ teq!S t

teq
D 24/3

. ~53!

The linear approximation for tidal forces is justified becau
they are generated by large-scale perturbations which
come nonlinear later than the small-scale perturbation un
consideration.

Now we find the valuevW tid at the moment when the den
sity nonlinearity sets in,d.1, or more exactly at the momen
of maximum expansionts . After integration of Eq.~52! with
the help of Eq.~50! we obtain

v tid,i~ ts!5181/3S 5deq

3 D 1/2

teqf ~deq!Ti j ~ teq!r
j~ ts!, ~54!

where the function

f ~deq!5
2

3 E~5deq/3!1/2

p/2

dfS f2
1

2
sin 2f D 24/3

sin4 f ~55!

is plotted in Fig. 1. We may use approximatelyf (deq).1 for
the values ofdeq of interest@asymptoticallyf (deq)→1.32 at
deq→0].

To find the core radiusRc of the clump we shall use a
method similar to that in@9#. Since rotvW tid50 and divvW tid
50, the tensorTi j has the following diagonal form in the
coordinate system connected with the main axes:

Ti j8 5S t

t

22t
D . ~56!

The valuet from Eq. ~56! is connected with the core radiu
Rc due to the energy relationDE.DV, where DE
.*d3r r int(ts)v tid

2 (ts)/2 is the work performed by tida
forces, andDV.GMMc /R, whereMc;4pRc

3rc/3, is the
potential energy of the core. It gives for the relative co
radius

FIG. 1. Functionf (deq) defined by Eq.~55!. The ratio of the
core radius to the clump radius in the typical case.0.3n22f (deq).
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Gr̄ int
f 2~deq!. ~57!

From the invariance of the matrix trace relative to the chan
of coordinates one has

t25Ti j8 Tji8 /65Ti j Tji /6. ~58!

Since the correlator

^Ti j d&5 K S F i j 2
1

3
F l l d i j D @F l l ~4pGr̄ !2121#L 50,

~59!

the quantitiesd andTi j are statistically independent and w
may average them independently. Averaging^t2& over the
tidal force fieldTi j with the help of Eqs.~47! and ~58!, we
obtain the main result of this section for the relative co
radius:

xc5
Rc

R
.

p25/3313/3

53 Greqteq
2 n22f 2~deq!.0.3n22f 2~deq!,

~60!

wheren is given by Eq.~48!.
The fluctuations withn;0.5– 0.6 havexc;1, i.e., these

fluctuations are practically destroyed by tidal interactio
Most of the galactic clumps are formed fromn;1 peaks. As
will be demonstrated in Sec. VI, those clumps that surv
until now are characterized byn.1.6, but the main contri-
bution to the annihilation signal is given by the clumps w
n.2.5 for whichxc.0.05.

In an alternative approach for calculation of the core
dius, one may defineRc as the minimum deviation of a typi
cal particle trajectory from the center of the clump. Aft
clump virialization a particle at the average distanceR/2
from the center has an angular momentummv tidR/2. At t
.ts the tidal force is already small and the angular mom
tum is approximately concerved. Then at the minimum d
tance from the coreRc , one hasRcV;v tidR/2, whereV
5(2GM/R)1/2 is the velocity of a typical particle in the
center of the virialized clump. Calculatingv tid from Eq. ~54!
and using Eq.~47!, one obtains

xc.0.15n21f ~deq!, ~61!

which numerically is very close to Eq.~60! for typical values
of n.1 – 3.

The core radius, given by Eq.~60!, is much larger than
xc.deq

3 obtained in@9# and xc from @23#. The core radius
found in @23# is valid only in a perfectly symmetric case.

Several remarks are in order.
Tidal forces prevent the appearance of singularity dur

evolution of the clump, but if such a singularity has som
how appeared, tidal interactions cannot destroy it.

In the calculations above we operated with average t
force, described by Eq.~47!. In reality this force fluctuates
due to the positions of the surrounding fluctuations, wh
can overlap with the considered one or be far away from
3-8
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As a result some clumps can be destroyed and those su
ing have different core radiiRc . This effect increases th
annihilation signal.

We assume that the DM distribution within the core
much flatter thanr 2b. BetweenRc and the beginning of the
asymptotic regimer int}r 2b there is a transition zone. Dur
ing hierarchical evolution~see the next section! this zone
expands due to tidal interaction in the hierarchical structu
However, this interaction cannot destroy the existing cor

The above calculations are also valid for the formation
galaxies. It is useful to compare Eq.~60! with observations
of galaxies. In@47# the number of peaks in the Gaussi
random field is confronted with the observed density of s
ral and elliptical galaxies. It was found that these galaxies
formed mostly from peaks withn.3. According to Eq.~60!
for these peaksxc.0.033. The rotation curves in the centr
part of dwarf and low surface brightness galaxies are m
sured@48,49# and constant-density cores were revealed.
isting observations do not contradict the presence of an
tended uniform core with radiusRc5xcR;3.3 kpc in spiral
and elliptical galaxies. However, at these distances the b
onic matter dominates, which makes the observation of
DM core even more difficult. The extreme valueRc5R cor-
responds tonmin'0.55f . The Gaussian peaks with thesen
are completely washed out by tidal forces and do not p
duce gravitationally bound objects. The intermediate casn
.1 corresponds to most numerous dwarf and irregular
axies with the pronounced overdensity in the central cor

V. TIDAL DESTRUCTION OF CLUMPS
IN THE HIERARCHICAL MODEL

In this section we shall study the destruction of clumps
the tidal interaction which occurs at the formation of hier
chical structures, but a long time before galaxy formati
This interaction arises when two clumps pass near each o
and when a clump moves in the external gravitational field
the bigger object~host! to which this clump belongs. In both
cases a clump is exited by the external gravitational fie
i.e., its constituent particles obtain additional velocities in
c.m. system. The clump is destroyed if its internal ene
increaseDE exceeds the corresponding total energyuEu
;GM2/2R. In Sec. V B we shall calculate the rate of exc
tation energy production due to both aforementioned p
cesses. In Sec. V C we shall calculate the survival probab
for a clump in the hierarchical model, in which the smal
clumps are embedded in a bigger one, and the latter en
into a bigger clump, etc. But first we shall describe the n
essary generalities and definitions.

A. Generalities and definitions

The formation of DM objects with a fixed massM at the
linear stage is distributed over formation epochst f . In the
spherical model of the Press-Schechter theory@38,40# the
density perturbation at the epoch of object formation is eq
to dc53(12p)2/3/20.1.686:

d~M ,t f !5dc ~62!
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Equation~62! gives theformation criterionfor DM objects.
The formation criterion alone does not determinet f for a
given massM, becaused(M ) has a Gaussian distribution
The formation timet f can be fixed by an additional cond
tion, e.g.,n51 @see Eq.~48!#. The DM objects that satisfy
the formation criterion ~62! and n51, or equivalently
s(M ,t f)5dc , will be referred to astypical objects. For a
given massM they are characterized by a fixed epoch
formation t f . In some parts of our consideration we sh
simplify the problem, assuming that clumps aretypical in-
stead of taking into account their distribution overt f .

We confine ourselves here only to the power-law sp
trum of fluctuationsPeq(k)}kn, in which case

seq~M !}M 2~n13!/6. ~63!

The effective power-law indexn obtained from the expres
sion above can be given as

n52326
] ln seq~M !

] ln M
. ~64!

In the case of an arbitraryP(k) spectrum,seq(M ) also has
an arbitrary dependence onM. Equation~64! definesneff for
some mass intervalDM . In realistic cases@see, e.g., Eq.
~92!#, Eq. ~64! is a good approximation because the pow
law indexn depends only weakly onM.

We shall introduce for convenience the characteristic v
ues of typical objects labeled by the indexL and described
by the conditions(tL ,ML)5dc at some fixed momenttL or
redshift zL . We can choose these quantities arbitrarily~be-
cause they will not enter into the final results!, but satisfying
the conditionzL@(VL /Vm)21, e.g., takingzL;5 – 10. The
convenience of these normalizing values is that att,tL the
L term can be neglected, while small-scale object format
occurs at these epochs. Let us introduce also the dimens
less massm as

m5M /ML .

Using the formation criterion~62! we obtain

d~M ,t f !5deq

11zeq

11zf
5dc ~65!

because the growth factor for the rising modeDg(t)}(1
1z)}t2/3 in the standard cosmological model at the matt
dominated epoch. For a single clump with massM obeying
deq5nseq(M ) with an arbitraryn one has

r̄ int5kr̄~zf !5kreqS 11zeq

11zf
D 3

5kreq

n3seq
3 ~M !

dc
3 , ~66!

and

R5S 3M

4pr̄ int
D 1/3

5n21RLm~n15!/6, ~67!

whereM andR are, respectively, the mass and radius of
clump, k518p2.178 and RL5@3M /4pkr̄(tL)#1/3. The
3-9
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value of k describes the increasing clump density duri
contraction and it can be found from Eq.~50! ~see also@40#!.

The number density of unconfined~free! clumps~i.e., of
those not belonging to the more massive objects! is given by
the Press-Schechter formulas@40#

fPS~ t,M !dM

5S 2

p D 1/2 r

M

dc

Dg~ t !seq
2

dseq

dM
expF2

dc
2

2Dg~ t !2seq
2 GdM,

~68!

where the growth factorDg(t) is normalized asDg(teq)51.
Let us consider the Press-Schechter distribution for
clumps hosted by the larger clump at the momentt f of its
formation. Taking into account the density increase factok
we obtain

cPS~ t f ,m!dm5kfPS~ t f ,m!dm. ~69!

As will be demonstrated in this section the clumps are
stroyed by tidal interaction and each clump has a small
vival probability j,0.01. A surviving clump during its life-
time is surrounded by other clumps with a distribution giv
by Eq. ~69!. When a host clump is destroyed, the survivi
clump finds itself hosted by a larger clump with the sm
clump distribution inside given by the same Eq.~69! but with
larger t f . Since the tidal destruction is most effective
small distances, one should always consider the smallest
sible host clump of the hierarchical structure, and the dis
bution of the small clumps around the one under consid
ation is always given by Eq.~69!. The characteristic time is
the time of formationt f of the smallest host clump, althoug
the time of destruction can be much larger thant f .

The total energy~kinetic and potential! of a clump is
given by

uEu5
32b

2~522b!

GM2

R
. ~70!

B. The rate of internal energy growth

Consider a host clump with massMh and radiusRh , and
with the small clumps inside having the distribution~69! and
moving in the common gravitational potential with a veloc
dispersion ;Vh.GMh /Rh . Interacting tidally with its
neighbors, a small clump increases its internal energy.
calculate first the rate of internal energy increase due to th
interactions. The mass of the considered clump isM
5mML , it is characterized by an arbitraryn, and its inter-
action with a target clump occurs at the impact parametel.
The target clump is characterized by a massM 8, radiusR8,
radius of the coreRc85xcR with xc;0.1, and universal den
sity distribution~3!.

The increase of internal energy of a clumpM during one
flyby in the momentum approximation@50# is given by

DE5
1

2 E d3r r~r !~vx2 ṽx!
2, ~71!
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where vx is the velocity increaseof DM particles in the
direction of the axisx, andṽx is the same for the c.m. of th
clump. The axisx connects the c.m.’s of two clumps whe
the distance between them is the shortest. One has app
mately

vx2 ṽx.
]vx

] l
D l 5

]vx

] l
r cosc, ~72!

wherec is the polar angle in spherical coordinates.
For nearly straightforward propagation, the angle betwe

vW rel and the line connecting c.m.’s of the clumps evolves

df

dt
52

v rel

l
cos2 f, ~73!

wherev rel.&Vh . Changing the variablet to f in the New-
ton equation one gets

dvx

df
52

GM8@r 8~f!#

v rell
cosf, ~74!

and after integration of this equation

vx5
2GM8

v relR8
g~y!, ~75!

wherey5 l /R8,

g~y!55
y21, y.1,

F11y32b~12y2!1/2
2F1S 32b

2
,
1

2
,
3

2
,12y2D

2~12y2!1/2G /y, y,1,

~76!

and 2F1 is the hypergeometric function.
The rate of internal energy growth due to collisions w

all other clumps is

Ė5E 2p lv reldlE dM8c~M 8,t !DE. ~77!

After simple calculations, one obtains

Ė5
4p~32b!

3~52b!

G2MR2

v rel
E

M

Mh
dM8M 82c~M 8,t !

3F l

R82 1
1

2 S 1

R822
1

Rh
2D G , ~78!

where

l5E
xc8

1

dy yS dg

dyD
2

50.11 ~79!

for xc850.1 and the dependence ofl on xc8 is very weak.
As the second process of tidal destruction, we shall c

sider the interaction with the common gravitational poten
3-10
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of a host clump. The energy gain per mass unit at a dista
r from the c.m. of the considered small clumpm during one
periastron passage@50# is

^Ep&5
GMh

Rh
3 r 2S Rh

Rp
D b

xecc~e!A~vt!, ~80!

wheree is the eccentricity, the functionxecc is presented in
@50#, the adiabatic correctionA(x)5(11x2)2g, g.2.5– 3,
and Rp is the periastron separation. The energy gain o
clump during one periodTorb is DE5*^Ep&r int(r )d3r , and
the rate of energy growth is

Ė5
2DE

Torb
. ~81!

The rate of energy growth due to both of the aforementio
processes is given by the sum of Eqs.~78! and ~81!. Using
the distribution~69! in the integral of~78! and the total en-
ergy of a clump given by Eq.~70!, we find

1

T~m,mh ,n,nh!
[

Ė

E
.2tL

21mnh
9/2n23m~n13!/2mh

23~n13!/4 ,

~82!

where

m5
21/2k1/2~522b!

3~52b! F S Rh

Rp
D b

A~vt!xecc~e!

1
1

4p1/2Un13

n11US 2l1
n15

n19D G . ~83!

The first term in the square brackets describes the interac
with the common gravitational field of the host clump, wh
the second term describes ‘‘collisions’’ with small clum
inside the host clump. Usually the former is larger than
latter. For calculations we shall consider an average o
with Rh /Rp.2 andTorb.2Rh /Vh , and putA(vt)xecc(e)
;1. If we neglect the tidal interactions with the small clum
@the second term in the square brackets in Eq.~83!# and use
b51.8, one hasm.9.6. The dependence of our final resu
~mass function of the clumps! on m is weak, going approxi-
mately asm21/3.

C. Survival probability in the hierarchical model

A small clump with massm during its lifetime can be a
constituent part of many host clumps of successively lar
massesm8 and virial velocitiesV8. After tidal disruption of
the lightest host, a small clump automatically become
constituent part of the heavier host, etc. Transition of a sm
clump from one host to another occurs almost continuou
in time up to formation of a host where tidal destructi
becomes inefficient. The fraction of small clumps with ma
m escaping the tidal destruction is given bye2J, with

J.(
m8

Dt

T~m,m8,n,n8!
, ~84!
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where the summation goes over the intermediate big clum
which successively host the small clumpm, andDt approxi-
mately equals the difference of formation times of two su
cessive hosts.

Let us introduce the notation:m1 is the mass of the firs
~lightest! host clump which contains the considered lig
clump m, and mn is the last such object, e.g., the Galac
halo. A formation epoch for the host clumpm8 is

t f~m8,n8!5tLS 11z8

11zL
D 23/2

5tLm8~n13!/4n823/2. ~85!

Note thatJ does not depend ontL since it enters linearly in
t f and inT as seen from Eq.~82!.

The first host gives a major contribution to the clum
destruction, especially if its massm1 is close tom and n1
.n. For the considered clumpm and for the first two hosts
seq(M ).seq(M1).seq(M2) because seq(M ) depends
weakly onM according to Eq.~64!. The considered clumpm
and the first two hosts differ mainly in their masses and
the values ofn (n>n1>n2). It justifies the following sim-
plification: we consider all hosts beginning from the seco
one as typical objects (n i51 for i 52,3,...) and, separating
the first term in the sum~84!, substitute the remaining sum
by the integral.

J.
t f~m2 ,n251!2t f~m1 ,n1!

T~m,m1 ,n,n1!

1E
m2

mn 1

T~m,m8,n,n851!

dtf~m8,n851!

dm8
dm8.

~86!

We may now change the lower limitm2 to m1 in the above
integral because it depends onm2 weakly, only through
m2

(n13)/2 with (n13)/2!1, wheren is given by Eq.~64!. In
addition we may put the upper limitmn→` without loss of
accuracy. Inserting Eq.~82! into Eq. ~86! we finally obtain
the following approximate expression forJ:

J.2m
n1

9/2

n3 S m

m1
D ~n13!/2

~12n1
23/2!u~n121!

1mn23S m

m1
D ~n13!/2

, ~87!

where the step functionu(x)51 for x.0 and 0 forx<0. In
the case ofn151 the formation moment of the first hos
almost coincides with the formation moment of the seco
one, for whichn251 in the approach used.

The differential fraction of mass in the form of clump
which escape tidal destruction in the hierarchical objects
be found as
3-11
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j~n,n!
dm

m
dn5dm dn~2/p!e2n2/2E

0

n

dn1e2n1
2/2

3E
t f ~m,n!

`

dt1U]2F~m,t1!

]m]t1
Ue2J, ~88!

where the variablem1 in J is connected witht1 and n1 ac-
cording to Eq.~85!, F(m,t) is the mass fraction of uncon
fined clumps with masses smaller thanm at the momentt,
which according to@40# is given by

F~m,t !5erfH dc

&seq~M !Dg~ t !
J . ~89!

Here erf(x) is the error integral andDg(t) is the growth
factor. After numerical calculations forb51.8 we finally ob-
tain

j~n,n!.~2p!21/2e2n2/2~n13!y~n!, ~90!

where the functiony(n) is plotted in Fig. 2. It depends
weakly onb.

This is the main result of this section. We shall refer toj
as to theclump survival probability.

Our final result, the distribution of surviving clumps ov
their massesM and n, which for fixed M determines the
clump radiusR, is given byj(n,n)dn dM/M , wherej de-
pends very weakly onM only through the weak dependenc
of n(M ) @see Eq.~64!#. For the most numerous clumps wit
n51 and for the unit intervalsdn and d ln M, j has the
meaning of the fraction of the DM mass in the form
clumps relative to free DM particles, as introduced in E
~10!. By integrating overn, we obtain

j int.0.01~n13!. ~91!

This means that, for differentn, about 0.1–0.5% of clumps
survive the stage of tidal destruction in each logarithm
mass intervalD ln M;1.

Several remarks are in order.
The physical meaning of the surviving clump distributio

j(n,n)dn dM/M is different from that for unconfined~free!

FIG. 2. Functiony(n) from Eq. ~90! obtained by the numerica
integration of Eq.~88!. This curve is valid with good accuracy fo
all b from the interval 1<b<2.
10300
.

c

clumps given by the Press-Schechter mass function]F/]m.
The surviving clump distribution implies that each DM pa
ticle belongs simultaneously to several host clumps put i
each other, and for this reason the integral*j dm/m is di-
vergent.

To calculatej we need to know the power-law indexn in
the perturbation spectrum, which can be taken asneff from
Eq. ~64! for a givenseq(M ). To find the latter, the primeva
~e.g., inflation! power spectrum of the fluctuations is neede
The simplest inflation models givePp(k)}knp with np'1.
The analysis of the WMAP measurement of the cosmic
crowave background~CMB! anisotropy@51# gives a power-
law spectrum withnp50.9960.04 in good agreement with
np51. However, when data from the galaxy power spectr
with two degrees of freedom andLy-a are included in analy-
sis, the best-fit favors a mild tilt,np50.9660.02.

The varianceseq(M )5s (0) from Eq. ~44! in the small-
scale range is found in@52# ~see also@53#!. We present this
result as

seq~M !.
231024

Af s~VL!
F lnS k

keq
D G3/2S k

kh0
D ~np21!/2

.8.23103.7~np21!23F120.06 logS M

M (
D G3/2

3S M

M (
D ~12np!/6

, ~92!

wherekeq andkh0 correspond to the mass inside the cosm
logical horizon at the momentsteq and t0 , respectively, and

f s~VL!51.0420.82VL12VL
2 ~93!

according to@52#. We used above the relationk}M 21/3 and
the values

Meq51.531049Vm
22h24 g, Mh05631055Vmh21 g.

~94!

Using the power-law spectrum of fluctuations down
small scales, while normalization by the CMB anisotropy
performed at a large scale, implies an extrapolation of
spectrum by many orders of magnitude. Such extrapola
is justified only by the confidence in inflation models whic
predict the power-law spectrum valid for many orders
mass magnitude.

It is interesting to note that the differential number dens
of clumps in the Galactic halon(M )dM}dM/M2, obtained
from Eq. ~90!, is very close~including the normalization
coefficient! to that obtained in the numerical simulations f
clumps with large massesM>108M ( @n(M )dM
}dM/M1.9 @4##. Strictly speaking, our calculations are n
valid for clumps with these masses, because of their dest
tion in the halo up to the present epocht0 and accretion of
new clumps onto the halo. Nevertheless, for the small in
val of masses where the power-law spectrum can be use
a rather good approximation, our approach can be roug
valid.
3-12
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VI. NUMERICAL RESULTS

In this section we shall present the numerical results
our calculations: the enhancement factor for the annihila
signal, the distribution of DM clumps over their massesM
and radiiR, and the distribution of clumps in the Galact
halo.

Using Eqs.~6! and ~7! we find the enhancement of th
annihilation signal due to clumpiness of the halo as
generalization of Eq.~10! for the clumps distributed ove
M andR:

h~Mmin ,np!

511
1

r̃DM
E

nmin

`

dnE
Mmin

dM

M
S@b,xc~n!#jr̄ int~M ,n!,

~95!

where

j5j~n,n! ~96!

is defined by Eq.~90!, the effective spectrum indexn(M ,np)
is calculated from Eq.~64! for the primeval~inflation! spec-
trum indexnp , with seff(M) taken in the form~92!; r̄ int is
given by Eq.~66! andnmin.0.55. The functionS is taken in
the form ~4!, which corresponds to the density profile~3!,
and we used Eq.~60! for the clump virial radiusR.

Most of the surviving clumps are formed from fluctu
tions with a mean value of the peak height

^n&.
*dn ne2n2/2y~n!

*dn e2n2/2y~n!
.1.6. ~97!

Meanwhile, the main contribution to the enhancement of
annihilation signal~95! comes from the clumps with an e
fective value of the peak height

^n&ann.
**dn nSjr̄ intdM/M

**dn Sjr̄ intdM/M
.2.5 ~98!

FIG. 3. The global enhancementh of the annihilation signal
from Eq.~95! as a function of the minimal clump massMmin , for a
clump density profile with indexb51 and for different indicesnp

of the primeval perturbation spectrum. The curves are marked
the values ofnp .
10300
f
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e

e

for b51.8. The clumps withn.2.5 havexc.0.05.
For the Galactic halo we use the Navarro-Frenk-Wh

~NFW! density profile@10#

rDM~ l !5
r0

~ l /L !~11 l /L !2 , ~99!

with L545 kpc according to@54#, andr0 fixed by the local
density valuerDM(r ()50.3 GeV cm23. With these param-
eters the halo mass within the virial radius of 100 kpc
1012M ( . Equation ~9! gives r̃H51.02rH(r (), i.e., these
values practically coincide.

The values of global enhancementh(Mmin ,np) as given
by Eq.~95! are displayed in Figs. 3–5 for different values
Mmin , b, andnp . As a representative example consider t
clump with the Gurevich-Zybin@9# density profile withb
51.8 ~see Fig. 5!: numerically h55 for Mmin52
31028M ( and np51.0. It strongly increases at smalle
Mmin and largernp . For example, fornp51.1 and 1.2 at the
same Mmin5231028M ( , the enhancement becomes tr
mendously large,h5130 and 43103, respectively.

Our approach is based on the hierarchical cluster
model in which smaller-mass objects are formed earlier t
larger ones, i.e.,seq(M ) diminishes with the growth ofM.
This condition is satisfied for objects with massM.Mmin
.231028M ( only if the primordial power spectrum has th

y

FIG. 4. The same as Fig. 3 but forb51.5.

FIG. 5. The same as Fig. 3 but forb51.8.
3-13
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BEREZINSKY, DOKUCHAEV, AND EROSHENKO PHYSICAL REVIEW D68, 103003 ~2003!
value of the power indexnp.0.84. As seen from Figs. 3–5
in this case the enhancement of the annihilation signal in
is absent,h.1, for np,0.9.

We discussed above the global enhancement of the a
hilation signal. In fact the enhancement varies in differe
directions relative to the Galactic center~GC!. It can easily
be seen from Eqs.~6! and ~7!, which show that whileI cl is
proportional toncl( l ) @and thus torDM( l ) everywhere excep
the core#, I hom is proportional torDM

2 ( l ). This implies that
the relative contribution ofI hom increases in the direction
close to the GC whererDM( l ) is larger. This effect is further
enhanced by the destruction of the clumps in the core aro
the GC. Our numerical calculations confirm this expectati
the ratio of enhancement in the directions to the GC a
anticenter is 0.2 for a NFW density profile and for the co
radius of 3 kpc. Therefore, the presence of the clumps dim
ishes the anisotropy of the annihilation signal, caused by
density profile of DM in the halo.

Our results suffer from uncertainties in the input para
eters. As was mentioned abover̃DM.rDM(r (). It remains
approximately true not only for the NFW density profile b
also for other profiles discussed in the literature. For
ample, for an isothermal profile with the core radius 10 k
r̃DM50.65rDM(r (). Another uncertainty in the value ofh is
imposed by the value ofrDM(r (). According to different
estimatesrDM(r ()50.2– 0.6 GeV cm23. The corresponding
uncertainty inh is given by a factor of 0.5–1.5.

For illustration, we shall numerically describe the prop
ties of the clumps which give the main contribution to t
annihilation rate. Basically, they are those withM;Mmin
andn;^n&. The rms fluctuation valuesseq(M ) for clumps
with minimal massMmin.231028M ( and for np51 and
1.2 areseq50.015 and 0.14, respectively, according to E
~92!. From Eq. ~98! the effective value ofn5deq/seq is
^n&.2.5. From Eqs.~66! and ~67! it follows that clumps
with this n are characterized by the density and radiusr̄ int
.2310222 g cm23, R.3.631015 cm and r̄ int.2
310219 g cm23, R.3.731014 cm for np51 and 1.2, re-
spectively. The part of the Galactic halo mass in the form
these clumps is of the order ofj int;0.002 according to Eq
~91!. The mean number density of the clumps in the halo
;25 pc23.

We have given above the characteristic values for
clumps with the dominant contribution to the annihilatio
signal. The general distribution of clumps in the Galac
halo can be readily calculated numerically from Eq.~90!,
changing ~for given M! the distribution overn by that
over dR:

ncl~M ,R!d ln M d ln R5
rDM~r (!

M
j~M ,n!d ln M dn.

~100!

Note that the definition of the clump number densityncl here
does not coincide with the similar one in Eq.~5! wheredN is
given perdR anddM.

The distributionMncl(M ,R) is presented in Fig. 6 as
function ofR for differentM and for a distance 8.5 kpc from
the Galactic center.
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The radius of a clumpR in the most general case is de
termined by M and n. Due to the weak dependence
seq(M ) on M, the radius of the clumpR(M ) with suffi-
ciently good accuracy is proportional toM1/3. From Eqs.
~66! and ~67! we have

R.1.531016S M

1026M (
D 1/3S n

2.5D
21

cm, ~101!

for np51.0. Fornp51.1 the numerical factor in Eq.~101! is
5.531015 cm.

How are clumps distributed in the Galactic halo? O
may expect that this distribution is the same as the distri
tion of the free DM particles in the halo. This is true for larg
distancesl from the Galactic center, while at smalll the tidal
interaction with stars results in the destruction of sm
clumps and in the formation of a core with radiusLc in the
clump distribution. The destruction of a clump propagati
in the space filled by stars has been studied in@9#. The de-
struction is important only for clumps inside the bulge, i.
at a distancel<3 kpc from the Galactic center. Clumps ou
side the bulge at distances 3< l<10 kpc can interact tidally
with stars in the disk. But the time of crossing the disk
very small~in comparison with orbital period! and this pro-
cess is not important.

The number density of clumps outside the bulge is p
portional to the halo density, e.g., tojrDM( l ) in the case of
the NFW distribution given by Eq.~99!, or can be obtained
from Eq. ~99! and Fig. 6 by simple scaling.

The density distribution for stars in the bulge according
@55# is given by

rs~ l !5H r̃~ l / r̃ !21.8, l , r̃ ,

r̃~ l / r̃ !23, l . r̃ ,
~102!

where r̃51.8M ( /pc3 and r̃ 5800 pc. From Eq.~46! of @2#
by substituting Eq.~102! we obtain that inside the bulge (l
<3 kpc), the clumps withM<1024M ( are destroyed dur-
ing the Hubble time. Thus, for these masses the core ra
Lc coincides with the size of the bulgeLbulge.3 kpc.

FIG. 6. The mass density of clumps in the Galactic ha
Mncl(M ,R) in units of M ( /kpc3, from Eq.~100!, as a function of
their radiusR at the distance 8.5 kpc from the Galactic center
np51.0. The curves are labeled by the values of the clump ma
in M (
3-14



e
w

ig

a
n
o
i

fo

es

a
er
he
ri

io
e

si
v

p

r-
-
a
o

as
nd
y.

er
. A
eir
in

vi-
ng
ing

tic

ctic

d in

the
re,

y a
he
ing

ter-

i-
M

the
ast
o-

fu-
ns,

er-
a-
the

med

-
y a

e

SMALL-SCALE CLUMPS IN THE GALACTIC HALO AND . . . PHYSICAL REVIEW D68, 103003 ~2003!
Clumps with M>1024M ( are destroyed during th
Hubble time within distances from the Galactic center sho
in Fig. 7 for np51.0 and 1.1 andn52.5. This distance
defines the radius of the coreLc for clumps of the given
massM.

Our calculations for enhancement of the annihilation s
nal disagree with those in@16,27,28#.

In @16# the singularity in the Galactic center is cut at
very small core radius, which results in too strong an an
hilation signal. According to our calculations the radius
the core is much larger, and the distribution of the clumps
the halo also has a core.

In @27,28# a large enhancement of the signal is found
heavy clumps withM.106M ( @27# andM.102M ( @28#. If
it were true, the total signal from clumps withM>Mmin
would be too large. A too small core radius was used in th
calculations, too.

VII. CONCLUSIONS

We have calculated the number density of the small-sc
clumps in the Galactic halo and their distribution ov
massesM, radii R, and distances to the Galactic center in t
framework of the standard cosmological model with the p
meval density perturbationP(k)}knp taken from the infla-
tion models withnp.1 ~the Harrison-Zeldovich spectrum!.
The most important element of our calculations is inclus
of the tidal interactions, which result in the formation of th
clump core and destruction of small-scale clumps.

We consider the most conservative case of the Gaus
adiabatic fluctuations which enter the nonlinear stage of e
lution, tnl , at the matter-dominated epochtnl.teq, whereteq
is the moment of equality. The time of small-scale clum
formationt f for a clump with massM is given by two equa-
tions: the formation criteriond(M ,t f)5dc and the height of
the peak density of a fluctuation in units of dispersionn
5deq/seq(M ), taken at the epochteq @see Eqs.~48! and~62!
for explanation and notation#. All the processes we are inte
ested in take place att>teq at the stage of nonlinear evolu
tion. We study the growth of fluctuations in the nonline
regime in the framework of the Press-Schechter theory

FIG. 7. The radiusLc of the Galactic core~in kpc! in the distri-
bution of clumps with massesM for np51.0 and 1.1 in the case
n52.5.
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hierarchical clustering with the tidal interactions included
the new element. The picture of hierarchical clustering a
clump destruction can be described in the following wa
Clumps of minimal mass are formed first. A clump of larg
mass, which hosts the smaller clumps, is formed later
bigger clump, which includes the hosts considered with th
content, is formed later, etc. The clumps are destroyed
tidal interactions with other small clumps and by the gra
tational field of a host clump, with the former process bei
subdominant. The calculated mass density of the surviv
clumps,j(M ,n)dn dM/M , with massM andn, is given by
Eq. ~90!, with the survival probability being typicallyj
;0.001– 0.005. The clump number density in the Galac
halo ncl(M ,R) for the clumps with massM and radiusR is
shown in Fig. 6. These clumps are distributed in the Gala
halo as a function of the distance to the Galactic centerl. At
large distances the distribution must be the same as foun
the numerical simulations~e.g., the NFW profile!. At small
distances there is a core produced by tidal interaction of
clumps with the stars in the bulge. The radius of the co
Lc , is given in Fig. 7 atM>1024M ( , and it is equal to the
radius of the bulgeLc;3 kpc for smaller clump masses.

The mass spectrum of the clumps is characterized b
cutoff at Mmin . Its value depends on the properties of t
DM particle, and thus it is model dependent. The exist
calculations of Mmin differ drastically: from Mmin
;10212 M ( @42# to Mmin;1027 M ( @43#.

Cold dark matter particles at high temperatureT.Tf
;0.05mx are in thermodynamical~chemical! equilibrium
with the cosmic plasma, when their number density is de
mined by temperature. After decoupling att.t f and T
,Tf , the DM particles remain for some time in kinetic equ
librium with the plasma, when the temperature of the CD
particlesTx is equal to the temperature of the plasmaT, but
the number densitynx is not Planckian any more. At this
stage the CDM particles are not perfectly coupled to
cosmic plasma. Collisions between a CDM particle and f
particles of ambient plasma result in the exchange of m
mentum and a CDM particle diffuses in space. Due to dif
sion, the DM particles leak from the small-scale fluctuatio
and thus their distribution has a cutoff at minimal massMD .
The diffusion coefficient is determined by the elastic scatt
ing of DM particles off the plasma particles. Our calcul
tions, made for the neutralino, for which we have chosen
pureB-ino state, give

MD54.3310213S mx

100 GeVD
215/8S M̃

1 TeV
D 23/2

M ( ,

~103!

wheremx is the neutralino mass andM̃ is ~approximately!
the mass of the sneutrino and selectron, which are assu
to be equal. The functional dependence of Eq.~25! and nu-
merical value of Eq.~26! obtained in the diffusion approxi
mation coincide with the corresponding results obtained b
different method in@42#.

When the energy relaxation time for DM particles,t rel ,
becomes larger than the Hubble timeH21(t), DM particles
get out of kinetic equilibrium. This condition determines th
3-15
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BEREZINSKY, DOKUCHAEV, AND EROSHENKO PHYSICAL REVIEW D68, 103003 ~2003!
time of kinetic decouplingtd . At t>td CDM particles are
moving in the free streaming regime and all fluctuations
the free streaming scalel fs and smaller are washed out. I
contrast to@43#, we have calculated the free streaming leng
l fs taking into account the distribution of neutralino~B-ino!
velocities over absolute values and angles from radial di
tions. The cosmological expansion in the vicinity ofteq is
taken exactly, without the usual step-function approximati
Our value ofMmin due to the free streaming effect is

Mmin51.531028S mx

100 GeVD
215/8S M̃

1 TeV
D 23/2

M ( ;

~104!

see Eq.~38! for more parameters involved.
When normalized to the same masses of neutralino

slepton, our value ofMmin coincides only within an order o
magnitude with@43#.

The evolution of a density fluctuation in the nonline
regime results in the density profile of a clump. The analy
theory of this phenomenon was developed by Gurevich
Zybin ~for a review, see@9#!; for the numerical simulations
see@3,10#. The initial single-stream flow leads to formatio
of the initial singularity. In contrast to energy-dissipatin
matter ~e.g., baryons!, in the flow of nondissipative matte
the multistream instability develops@9#, when at one point
several streams with different radial velocities exist. The s
faces with different numbers of streams are separated
caustics, whose number increases rapidly toward the ce
The matter is gravitationally captured in such a structure
density singularity is produced in the center, unless ad
tional phenomena are included in consideration. Of these
interaction with the damped mode@9# and annihilation of
DM particles@23# were previously studied. We have demo
strated here that tidal forces due to the external gravitatio
field cause the deflection of DM particles from radial motio
and thus prevent the formation of a singularity. The co
produced has a radiusRc given in the approximate form as

xc5
Rc

R
.0.3n22, ~105!

@see Eq.~60! for the exact expression and the discuss
afterward#. This radius is much bigger than those obtained
@9,23#.

The majority of clumps are formed fromn;1 peaks,
while the surviving clumps are characterized on average
n.1.6. The clumps which give the dominant contribution
the annihilation signal haven.2.5.

In spite of the small survival probabilityj;0.1– 0.5 %,
clumps in most cases provide the dominant contribution
the annihilation rate in the halo. The enhancement of
annihilation signal can be characterized by the ratioh5(I cl
1I hom)/I hom, where I cl is the annihilation signal from the
clumps, andI hom that from homogeneously distributed DM
particles with the NFW density profile in the Galactic ha
The main contribution toh is given by n.2.5 and M
.Mmin . The signal enhancementh is shown numerically in
Figs. 3–5. One can see that for almost all allowed value
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the primeval perturbation spectrum indexnp>1.0 the anni-
hilation signal from clumps gives the dominant contributio
This result does not depend on the properties of the D
particles.

The observations favor the spectrum indexnp51.0 @51#.
Enhancement of the annihilation signal for this value ofnp is
described by the factor 2–5 for differentb with uncertainties
due to the values ofMmin and other parameters.

The clumps which give the dominant contribution to t
annihilation signal have approximately the following prope
ties in the casenp51: the massM;Mmin and n;2.5, the
radiusR.3.631015 cm, and the radius of the coreRc.1.8
31014 cm, the mean internal density of the clumpr̄ int.2.5
310222 g cm23, the fraction of the halo mass in the form o
these clumpsj int;0.002, and the mean number density
these clumps in the haloncl;25 pc23.

Recently, the HEAT Collaboration detected an excess
flux of cosmic ray positrons at energyE;10 GeV@56#. Ac-
cording to@57#, if this positron flux is produced by annihila
tion of neutralinos an enhancement factor of the order of
is needed. The calculations presented here show that
enhancement can be reached in the scenario considere
the case of an extreme combination of parameters.
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APPENDIX A: CROSS SECTIONS OF NEUTRALINO
SCATTERING OFF ELECTRONS AND NEUTRINOS

As the neutralino we shall consider here a pureB-ino (x
5B̃). The Lagrangian for interaction of theB-ino with left
and right components of a fermionf can be written~see, e.g.,
@58,59#! as

Lf f̃ x52g& tanuW~ef2T3 f
L ! f̄ PRx f̃ L

1g& tanuWef f̄ PLx f̃ R , ~A1!

whereg is the SU~2! coupling constant,uW is the Weinberg
angle (sin2 uW50.231), ef is the electric charge of the fer
mion f in units of the electron charge,T3 f

L is the projection of
weak isospin forf L , and PR51/2(11g5) is a projection
operator which cuts the left component from the operatof̄

in Eq. ~A1!; f̃ L is the left sfermion. The first term in the
Lagrangian~A1! is Lf L f̃ Lx , the secondLf Rf̄ Rx . When f is
ultrarelativistic in the frame where the neutralino is at re
there is no interference for scattering of the left and rig
components of the fermions~the interference terms are pro
portional tomf). Therefore, we shall calculate thef x cross
section for leftf L and right f R fermions separately.

Scattering of the left fermion withef521 and T3 f
521/2 ~e.g.,e, m, t! off the B-ino are described by the two
3-16
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diagrams in thes- andu channels shown below:

The standard calculations for matrix elements give
uM u25uMsu21uMuu212 Re(MsMu* )

uMsu25
1

2
~g tanuW!4

~k1p1!~k2p2!

~s2m̃L
2!2 , ~A2!

uMuu25
1

2
~g tanuW!4

~p1k2!~k1p2!

~s2m̃L
2!2 , ~A3!

MsMu* 52
1

4
~g tanuW!4

mx
2~k1k2!

~s2m̃L
2!~u2m̃L

2!
. ~A4!

The cross section for thef L1x→ f L1x scattering at angle
u12 in the system where the neutralino is at rest is given

S dsel

dV D
f Lx

5
1

64p2s
uM u25

ae.m.
2

8 cos4 uW

v2~11cosu12!

~mx
22m̃L

2!2 ,

~A5!

wherev@mf is the energy off L in the system where the
neutralino is at rest,mx is the neutralino mass, andm̃L is the
mass of the left sfermion.

Let us consider nowf R1x→ f R1x scattering described
by the second term in the RHS of Eq.~A1!. The diagrams are
identical to that in the figure after substitutingf L→ f R and
f̃ L→ f̃ R . Since traces do not change whenPL→PR , the ex-
pressions~A2!–~A4! remain the same, changing only due
the coupling constant which increases twice@see Eq.~A1!#.
Therefore, we obtain

S dsel

dV D
f Rx

516S dsel

dV D
f Lx

. ~A6!

In this paper we are interested inn1x→n1x and e1x
→e1x scattering. In the former case the cross section
given by Eq.~A5!, and in the latter case by the sum off L
1x→ f L1x and f R1x→ f R1x scattering, i.e., it is large
by a factor 17 than the cross section~A5!.

APPENDIX B: KINETIC EQUATION

In this appendix we shall study the stage of kinetic eq
librium and the stage after its breaking in the common f
malism of kinetic equations, similar to@42# and using the
approach of@44#. We shall confirm in this way the results o
Sec. III and clarify the difference in calculations ofMmin .

Following @44# we introduce the neutralino distributio
function f (x,p,t) over comoving coordinatesxW and mo-
mentapW 5ma2xẆ ~with this definition the momentum is con
10300
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stant for freely moving particles!. The neutralino density is

r~x,t !5
m

a3 E d3p f~x,p,t !5 r̄x~ t !@11d~x,t !#. ~B1!

The kinetic equation with a collision term of the Fokke
Planck type@46# can be written as

] f

]t
1

pi

ma2

] f

]xi
2m

]f

]xi

] f

]pi
5Dp~ t !

]

]pi
S pi

mTa2 f 1
] f

]pi
D ,

~B2!

where f is the gravitational potential, which can be n
glected at the considered epocht<teq, T(t) is the tempera-
ture of the ambient plasma given by Eq.~18!, andDp(t) is
the diffusion coefficient in momentum space. According
@46#

Dp~ t !5
40

3 E dVE dv n0~v!S dsel

dV D
f Lx

~dp!2. ~B3!

The number 40 in Eq.~B3! comes from the counting o
degrees of freedom in neutralino-fermion scattering as
Sec. III.

Equation ~B2! with the diffusion coefficient~B3! coin-
cides with Eq.~16! from @42# except for the numerical facto
in Dp which is of the order of unity.

1. Kinetic decoupling

Let us consider the exit of neutralinos from kinetic equ
librium ~decoupling! in the homogeneous universe, when t
]/]xi terms in Eq.~B2! can be neglected. The temperature
the neutralino gasTx is defined as

E pipj f d3p5 r̃xa5Tx~ t !Si j . ~B4!

Multiplying Eq. ~B2! by pipj and integrating it overd3p one
obtains

dTx

dt
12

ȧ

a
Tx2

2Dp~ t !

ma2 S 12
Tx~ t !

T~ t ! D50, ~B5!

The initial condition for Eq.~B5! can be chosen at the mo
ment of freezingt5t f as in@42#, or more conveniently at any
t i from the intervalt f,t i!td , asTx(t i)5T(t i), whereT is
the temperature of ambient plasma. Solution of Eq.~B5! ~see
below! causes transition of the ratior (t)5Tx(t)/T(t) from
r 51 to r d,1 within some time interval, determined byr d .
Any value of t in this interval can be taken as the definitio
of decoupling timetd . Equation~B5! and its solution can be
simplified using the dimensionless timet5t/td . The char-
acteristic timetd naturally emerges from the dimensional p
rameters entering the diffusion coefficient, and up to a
merical coefficient it coincides withtd determined in Sec. III.
The transition time interval fixes this numerical coefficie
with some uncertainty, and we indeed obtaintd @and hence
3-17
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Td5T(td)] approximately equal to those given by Eqs.~19!
and ~20! in Sec. III. The solution of Eq.~B5! in terms oft
5t/td is given by

Tx~ t !

Td
5

1

t S t i
21/2e1/4t221/4t i

2
1

1

2
e1/4t2E

t i

t

d3x x25/2e1/4x2D .

~B6!

The asymptotic forms of the solution~B6! are given by
Tx /Td5t21/2 for t!1 and Tx /Td5t21G(3/4)/21/2 for t
@1, as they must be. From the solution~B6! it is seen that
the transition from kinetic equilibrium of the neutralino wit
relativistic fermions to the nonequilibrium regime procee
very fast. For this reason our consideration of diffusion a
free streaming independently in Sec. III is well justified.

2. Diffusion

Consider Eq.~B2! before kinetic decoupling,t!td . One
can find the first two moments by integrating Eq.~B2! first
over d3p and second overpid

3p. Inserting the first of the
equations obtained into the second one we obtain the foll
ing equation for the Fourier components:

]2d

]2t
12

ȧ

a

]d

]t
1Dp~ t !

1

mTa2

]d

]t
5

kikj

r̄xa7m E pipj f d3p.

~B7!

The RHS of Eq.~B7! has the tensor form

1

r̄xa7m E pipj f d3p5Ed i j 1Fkikj , ~B8!
p.

J

,

. J

,

tt.
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where the isotropic partE5Txdk /a2m for any t, while F
depends on timet. In the limit t!1 we may putF50 and
neglect the first and second terms in Eq.~B7!. The resultant
equation coincides with the diffusion equation~24! with the
same diffusion coefficient~23! and has the same solution.

In @42# only this diffusion limit of the general kinetic
equation~B2! has been considered.

3. Free streaming

In the limiting caset@1, i.e., after decoupling, Eq.~B2!
has the simple form

] f

]t
1

pi

ma2

] f

]xi
50, ~B9!

with the solution

f }expF ik j pj

mad
g~ t !G , ~B10!

where g(t) is the same function as Eq.~28!. The solution
~B10! is valid with a good accuracy att>1 also, because
according to Eq.~B6!, kinetic decoupling proceeds very fas
Integrating Eq.~B10! over d3p with the initial condition

f ~ td!5~2pTdmad
2!23/2expH 2

p2

2Tdmad
2J , ~B11!

one obtains

nkW~ t !5nkW~ td!e2~1/2!k2g2~ t !Td /mx, ~B12!

and then Eqs.~33!, ~34!, and~38! from Sec. III.
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