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Small-scale clumps in the galactic halo and dark matter annihilation

Veniamin Berezinsky
INFN, Laboratori Nazionali del Gran Sasso, 1-67010 Assergi (AQ), Italy
and Institute for Nuclear Research of the RAS, Moscow, Russia

Wacheslav Dokuchaéwand Yury Eroshenkb
Institute for Nuclear Research of the RAS, Moscow, Russia
(Received 24 April 2003; published 20 November 2003

Production of small-scale dark mati@M) clumps is studied in the standard cosmological scenario with an
inflation-produced primeval fluctuation spectrum. Special attention is given to the three following prafdlems.
The mass spectrum of small-scale clumps wWilbks 10°M, is calculated with the tidal destruction of the
clumps taken into account within a hierarchical model of clump structure. Only 0.1-0.5% of small clumps
survive the stage of tidal destruction in each logarithmic mass intarl@M~1. (ii) The mass distribution of
clumps has a cutoff a#l ,,;, due to the diffusion of DM particles out of fluctuation and free streaming at later
stagesM i, is @ model-dependent quantity. In the case that the neutralino, considered aBamuris a DM
particle, M i,~10"8M . (iii) The evolution of the density profile in a DM clump does not result in a
singularity because of the formation of the core under the influence of tidal interaction. The radius of the core
is R.~0.1R, whereR is the radius of the clump. The applications for annihilation of DM particles in the
Galactic halo are studied. The number density of clumps as a function of their mass, radius, and distance to the
Galactic center is presented. The enhancement of the annihilation signal due to clumpiness, valid for arbitrary
DM particles, is calculated. In spite of a small survival probability, the global annihilation signal in most cases
is dominated by clumps. For the observationally preferable value of the index of the primeval fluctuation
spectrumny~1, the enhancement of the annihilation signal is described by a factor of 2 to 5 for different
density profiles in a clump.
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[. INTRODUCTION radio emission, positrons, and antiprotons. The gamma ray
and radio signal from the central cusp in the Galactic halo
Both analytic calculationgl,2] and numerical simulations was first discussed if16,17]. Recently this problem was
[3-5] predict the existence of dark matter clumps in the Ga-examined if18—22. The enhancement of the DM annihila-
lactic halo. The density profile in these clumps according tdion rate due to the clumpiness of the DM halo was first
analytic calculation$6—9] and numerical simulationig},10]  pointed out in[1]. Neutralino annihilation in clumps can re-
is p(r)ecr ~#. The average density of the dark mattBM)  sult in a very large diffuse gamma ray fl{&3] in the model
in Galactic halo itself also exhibits a similar density profile of the clumpy DM by Gurevichet al. [2]. Calculations of
(relative to the Galactic cenfein both approaches. The DM positron and antiproton production in the clumpy DM halo
profile in clusters of galaxies is discussed[il] and in  have been performed, e.g., 8] (see alsd24—26). Re-
references therein. In the analytic approach of Gurevich andently, the annihilation of DM in the clumps has been studied
Zybin (see the revieW9] and references thergithe density in [27-32. The synchrotron flux from DM annihilation
profiles are predicted to be universal, wil=1.7—1.9 for  products in clumps in the presence of the Galactic magnetic
clumps, galaxies, and two-point correlation functions of gal-field is considered if33]. Constraints on the DM clumpi-
axies. In numerical simulations the density profiles can beess in the halos from heating of the disk galaxies is exam-
evaluated only for relatively large scales due to the limitedined in[34,35.
mass resolution. The value ¢@f differs in different simula- The main purpose of this work is evaluation of the en-
tions fromB=1.0[10] to B=1.5[3] and may be nonuniver- hancement of the annihilation signal due to the presence of
sal for objects of different mass scald]. An attempt at an the small clumps of DM in the Galactic-halo.
analytical explanation of the results of the numerical simula- Small-scale self-gravitating dark matter clumps, which
tions has been performed|ih3,14). The phase-space density will be referred to as DMCs or simply as clumps, may have
profiles of DM halos are investigated jf5]. formed in the early universe due to several mechanisms.
A central cusp in the Galactic halo and the smaller-scaléThese DMCs may be forme() by the growth of adiabatic
clumps results in the enhancement of the DM annihilatioror isothermal fluctuationriginating at inflation during the
rate and thus in stronger signals in the form of gamma raysnatter-dominated epoch; ¢i) from the density fluctuations
in models with topological defect&osmic strings and do-
main wallg [1]; or (iii) during the radiation-dominated era

*Electronic address: berezinsky@Ings.infn.it from nonlinear isothermal fluctuatior{eriginating in phase
"Electronic address: dokuchaev@inr.npd.ac.ru transitions in the early universe[36] or from large-
*Electronic address: erosh@inr.npd.ac.ru amplitude adiabatic fluctuation87].
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In this paper we shall consider only the most conservativef the central singularity in a clump and results in the core
case of adiabatic fluctuations which enter the nonlinear stag@rmation.
of evolution in the matter-dominated epoch with an inflation- ~ During the radiation-dominated epoch the small fluctua-
induced initial power-law power spectrum. tions 6=6p/p<1 grow very slowly. In the matter-

Small-scale clumps are formed only if the fluctuation am-dominated stage these fluctuations start to grow [ in
plitudes in the spectrum are large enough at the corresponéh® regimes=t**. Fluctuations get detached from the gen-
ing small scales. The inflation models predict the power-laneral cosmological expansion and start contracting after
primeval fluctuation spectrum. If the power-law indey ~ reaching the nonlinear valug=>1. These nonlinear fluctua-
=1, DMCs are formed in a wide range of scales. During thelions finally form the DM clumps. Analytic studies of the
universe expansion the small clumps are captured by thBonlinear evolution of fluctuations have been performed by
larger ones, and the larger clumps consist of the smaller onégany authors. One of the most detailed analytical ap-
and of continuously distributed DM. A convenient analytic Proaches was developed by Gurevich and Zyf8ih In this
formalism, which describes this hierarchical clustering statisformalism at a certain moment of gravitational contraction
tically, is the Press-Schechter thegB8] and its extensions, the density singularity forms in the center of a nonlinear
in particular the “excursion set” formalism developed by fluctuation. From this singularity point the density caustics
Bondet al.[39] (for a clear introduction, s€&0]). However, ~ (i-e., the boundary of regions with a different number of
this theory does not include the important process of tidaptreams expand outward. The secondary caustics appear in-
destruction of small clumps inside the bigger ones. We také&ide the primary ones and their number increases fast with
this process into account in Sec. V and obtain the mass fundime. This multistream instability was discovered and studied
tion for the small-scale DMCs in the Galactic halo. In thein detail in[9]. It was demonstrated that the stationary uni-
case of a power-law spectrum only a small fraction of theversal density profilg(r)er ~# with =1.7-1.9 is formed
captured clumps survives, but even this small fraction iS @ result of streams mixing. The maximum density of DM

enough to dominate the total annihilation rate in the GalactiQarticles in a clump is reached at the center.
halo. In our consideration of the clump formation we shall fol-

In the hierarchical theory of large-scale structure formaJow for convenience the theoretical scenario of Gurevich and
tion in the universe the first objects formed have some miniZybin [9]. However, the effects of tidal interaction, which is
mal massM ,;,. The value of this mass is determined by thethe main result of our work, are valid for a much broader
spectrum of initial fluctuations and by the properties of DM class of scenarios. _ _
particles[2,41]. This value is crucial for calculation of the  The processes described above are valid for all DM par-
DM annihilation rate. The estimates bf,;, existing in the  ticles which can be considered as nondissipative. The signal
literature for neutralino DM are substantially different, from Production depends on the annihilation cross section and
M min~10"2M, in [42] to M yin~(10" =10 %)M, in [43]. thus on the nature of the DM particles. However, our strategy

In Sec. Il we present our calculations and discuss the previtS t0 calculate the enhancement of the signal due to the halo
ous results. clumpiness in comparison with an isotropic unclumped dis-

The DM annihilation rate crucially depends on the densitytTibution of DM. As a guide we shall take the neutralino as
profile p(r)=r# of DM particles in a clump and on the the DM particle, but essentially our results for enhancement
distanceR, where the density growth is cut off. This region of the ann|h|lgt|on signal are relevant for a wide class of
is called the core. The radius of the core has been estimatéiher DM particles. , _
in the literature in the different approximations. The estima- e perform our calculations for a cosmological model
tion R, /R~ é\gq, where 8,4 is the density fluctuation ampli- with the matter density),,=0.3 and the cosmological term

tude at the end of the radiation-dominated epoch, was ob2A=1—{m=0.7. The presence of tha term influences

tained in[9]. It was found from the behavior of the damped ONlY the value ofp, and does not affect the formation of
mode of nonlinear fluctuations. A black hole or baryonic core!®W-mass DMCs. This is because theerm contributes neg-

in the center of the DMC can strongly affect the density"gibly to the total cosmologi_cal density at time scales Wh_en
saturation at —0 for a very massive DM@9,19-21. Cal- the low-mass DMCs formation occurs. We shall use the in-

culations[ 16,23 of the inward flux of DM particles into the d€X “€d” for the values at the moment of equalitiye., the

dense central region of a DMC also result, due to annihila{ransition from the radiation-dominated to the matter-

tion of DM particles, in a very small radius of the central dominated epodh We shall use the Hubble constant 70

—1 -1
coreR.. The above mentioned process is essential for th&MS ~MpC .

formation of the DMC core only in the case of almost per-|, e\ ANCEMENT OF ANNIHILATION SIGNAL DUE TO
fectly spherically symmetrical clumps. CLUMPS

We shall estimate the radius of the core imposed by tidal
interaction, which gives the largeRt among those known in Let us consider a DM clump with the internal density
the literature. In the spherically symmetric self-gravitatingprofile p;(r) and a total masM = [4r2p;(r)dr. The an-
clump at the stage of its formation the nondissipative DMnihilation rate in a single clump is given by
particles are moving nearly radially in the oscillation regime.

s o . o 3 (o M?2
'I_'he presence of a nor1_spher|¢ad_al) extgrnal _graynatmnal c|=477f r2dr p%t(r)m72<0'annl)>: 2 ( aanV> =5,
field causes the deflection of particle trajectories in the clump X 47 my R
from the radial ones. This process prevents the development (1)
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wherem, is the mass of a DM particlénot necessarily the the Sun to the outer halo border in the direction Hf

neutraling, v is the relative velocity of two DM particles at r,,(&)=(R5—r2 sir? )*2, whereR,~ 100 kpc is the Galac-

the collision, o5,y is the annihilation cross section aitlis  tic halo virial radius and = 8.5 kpc is the distance from the

the virial radius of a clump. The functioBis determined by Sun to the Galactic center.

Eq. (1) and depends on the DM distribution in a clump, in  An additional annihilation signal is given by unclumpy

particular,S=1 for the simplest case of a uniform clump, DM in the halo with homogeneoug.e., smoothly spread

when p;(r) =const atr<R andp;(r)=0 atr>R. densityppu(l), wherel is the distance to the Galactic center:
The expansion ofo,,p) over the relative velocity of

i g T "max )
two DM particles has the form Ihom:< aznnU> fo dg“sing“fo dr 2l (1) Y.

(Tanp)=a+bv?+cvt+---, 2 (7)

wherea has a contribution from the-wave amplitude only, The enhancement; of the signal due to the presence of
and b from both s and p waves. Sincev is very small,  clumps is given by

(oan) can be put outside the integral in BG).

We shall use the following parametrization of the density o+ hom
profile in a clump: T o ®)
om
Pc, r<Re, This quantity describes the global enhancement of the an-
r\ A8 nihilation signal observed at the Eaf#hg., the flux of radio,
Pin1) = PC(R—) , Re<r<R, (3  gamma, and neutrino radiatiorss compared with the usual
¢ calculations from annihilation of unclumpy DM. From Egs.
0, r>R. (8), (7), and(6) one can see that the enhancemgnibes not

) o depend on the properties of DM patrticles, in particular, on
Using pin(r) from Eq.(3) it is easy to calculat&from EQ.  the annihilation cross section and is fully determined by the

(1) as parameters of DM clumpiness. Further exact calculations in
(3-B)? (28 5 5 this paper will be perfor_med using Eo[:ﬁ)—(8), but now we
S(Xe,B)= o | =321 1-Zx37P] shall turn to the approximate expression fpr
3(2-3)\ 3 °° 3°¢ We shall accept now the simplifying assumptions. We as-

4) sume that the space density of clumps in the hald]), is
fproportional to the unclumpy DM densitypu(1):  ng(l)
=¢ppm(1)/M with £é<1. This assumption holds with good
ccuracy for the small-scale clumps. In contrast, the distri-
ution of large-scale clumps obtained in the numerical simu-
lations[45] is rather different from the density distribution of
the small clumps, especially in a central part of the halo
Yhscause of the tidal disruption of clumps there. However, the
lump signal is determined mostly by clumps of the minimal
ass. We neglect here the distribution of clumps dveand
R. Instead we shall use a mean density of DM particles inside
a clumpp;=3M/47R3. Finally, we shall introduce for con-

wherex.=R./R. Another approach to the parametrization o
the clump structure was used [iR9]. a
The clumps in the Galactic halo are distributed over aLD
least three parameters, madsradiusR, and distance from
the Galactic centet; ny(M,R,1). This distribution can also
depend on the parameters that describe the internal struct
of the clumps,8 andx., from Eg.(3). We shall discuss this
dependence in Sec. IV. In particular, it will be demonstrate
thatx.=x.(M,R), while B8 is a universal constant. Thus the
differential number density of DMCs in the halo can be writ-

ten as venience the effective density of DM patrticles in the halo
dNg=ng(I,M,R)d% dM dR. (5)  defined as
w 1 rma)&{) 2
The observed signal at the position of the Earth from DM . JodZsinZ [y dr ppyu[1(Z.1)] ©
Sﬁglnctli?y annihilation in the clumps is proportional to the DM fgdésingfgmawdrpDM[I(g,r)]

As a result, we obtain for an enhancement factor the conve-

1 (= . FmadO) 27702dr [Mmax Rmax i i
'C':Efo dg"Slﬂ{L " fM | de 4R nient estimate

Rmin —
- - Pint
Xnd(l(g!r)vM1R)Nc|(M!R)1 (6) 77~1+§S(XC,3)5DM, (10)

wherer is the distance from the Suiarth to a clump and where ¢ is the fraction of DM in the form of clumps$see
¢ is the angle between the line of observation and the direcabove and S(x.,8) is given by Eq.(4). For typical param-
tion to the Galactic center. The distancbetween a clump eters(see details in the following sectionsi,=1, 8=1.8,

and the Galactic center can be given in terms,afy (dis-  x,=0.05, S(X¢,8)=5, Pu~pom(ro)~0.3GeVem 3, pi

tance from the Sun to the Galactic cenfand asl({,r)  ~2x10"22gcm 3, £~0.001, the numerical estimate

=(r?+r2—2rr, cos)'? and the maximum distance from ~3 follows from Eq.(10).
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. CLUMPS OF MINIMAL MASSES masses of selectrons and sneutritws shall usem for both
The number of clumps in the halo increases at smalf€ left and right selectron and sneutrino masses, Ad
clump massed/, and the signal from clumpky crucially ~— =M —m).
depends oM, in the clump distribution, as E6) shows. First of all we shall calculate the momettand tempera-

The value ofM,y, is determined by a leakage of DM par- ture Tq of kinetic decoupling of the neutralino, using the

ticles from the overdense fluctuations in the early universecondition

We shall first describe this process qualitatively and then

present numerical calculations. i~H(t) (19
Cold dark matte(CDM) particles at high temperature Trel ’

>T;~0.08m, are in thermodynamicalchemica) equilib-

rium with cosmic plasma, when their number density is dewhereH (t) = 1/(2t) is the Hubble constant ang(T) is the

termined by temperature. After freezing &tt; and T energy relaxation time for the neutralino at the temperature

<T;, the DM particles remain for some time kineticequi-  of the electron-neutrino ga$. The relaxation timer,y is

librium with the plasma, when the temperature of the CDMdetermined by collisions of neutralinos with fermioms,

particlesT  is equal to the temperature of the plasaut e | andeg. The neutralino can be considered as a particle at

the number density, is determined by the freezing concen- rest because the rest system coincides with the center-of-

tration and expansion of the universe. At this stage the CDMnass system with an accuracy of Ordé‘f/mx_ Let 5p be

particles are not perfectly coupled to the cosmic plasma. Colthe neutralino momentum obtained in one scattering:
lisions between a CDM particle and fast particles of the am-

bient plasma result in exchange of momenta and a CDM (8p)2=2w%(1—cosH), (14)
particle diffuses in space. Due to diffusion the DM particles
leak from the small-scale fluctuations and thus their distribus

; oL wherew and # are the neutrino energy and scattering angle,
tion has a cutoff at the minimal massy . respectively.

When the energy relaxation time 7f§)r DM particleg, Let us introduce the number density of relativistic fermi-
becomes larger than the Hubble tirkle “(t), the DM par- g with one polarization and with energy
ticles get out of kinetic equilibrium. This condition deter-

mines the time of kinetic decouplingy . At t=ty the CDM 1 w2
particles are moving in the free streaming regime and all No(w)=5—> 5/ - (15
fluctuations on the scale of 2m”e” +1

tou(t')dt’ Then for the energy relaxation time, we have

A= a(to)j T (1)
g at’) 1 1dE. 40 dog, ,
. | g 90 donol| G| v

and smaller are washed awgherea(t) is the scaling factor X fLx
of the expanding universe andt) is the velocity of a DM (16)
particle at epochi]. The corresponding minimal mass at ep-

whereE,=(3/2)T is the mean kinetic energy of the neutrali-
nos, and fo/dQ)¢ , is given by Eq(A5). The number 40
- in Eq. (16) is obtained by counting degrees of freedom: three
Mfg,:?px(to)hf?’s, (12 neutrinos and antineutrind®r »{ in the case of Majorana
neutrinog give six, e, andef give two, and two righ{sin-
glet) states for electrons and positrons gives 34, because their
cross sections are 17 times larger.
After integration in Eq(16) we obtain

ochtg,

is much larger thaM . Numerical calculations belowfor
the neutraling show thatM is close toM ,;, from [42] and
M t0 M i, from [43].
The calculation of the minimal madd ;;, in the mass 5 6
spectrum of fluctuations is obviously model dependent. As i: A0 (Naem T (17)
the DM particle we shall consider the neutralipofor which Tt 97 COS Oy M%m '
we take the pureB-ino state f=B). As the calculations X
below show, the temperature of kinetic decoupling for a reaysing Eq.(13) and the connection between the age and tem-
sonable range of parametersTig~100 MeV, and thus we perature of the universe,
can consider a cosmic plasma consisting of relativistic elec-
trons, positrons, neutrinos, and photons in thermal equilib-

_ 242( T |72
rium. _ _ _ t=—| ——— S, (18
The cross sections for scattering Bfinos off the left \/a 1 MeVv

(right) electron and left neutrino are given in Appendix A.
The cross section fory scattering is given by EqA5) and  whereg, is the number of degrees of freedom, we obtain
for ey scattering it is 17 times larger, if we assume equalnumerically
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— -2 _ ~

3 5><105< m, J 1’2( M ) (9) " S0 = Si(tpexp{ — KEC g MA(t52 132}, (25)

d=3. = ,
100 Ge 1 TeV 10

(199 whereC=const. The factoCg}M*(t>?~t7"%) in front of

k? in Eq. (25) is the diffusion length squared (t)/a?(t) in
and the comoving coordinates. This value determines the mini-
mal mass in the density perturbation spectrum due to diffu-

m vl W\ 1/8 . . L
Td:lS({ 55 ée\) (9*) MeV. (20) sion of neutralinos from a fluctuation:

1 Tev/|10
v
— 3
We shall present in this section calculations made in a MD_?Px(td)"D(td)
physically transparent way, considering the diffusive leaking
of neutralinos at the stage of kinetic equilibrium and free _43%10 13 my e
streaming when neutralinos get out of kinetic equilibrium. In = 4.3 100 Ge

Appendix B we shall study both stages together in the for- ~ ap

malism of the kinetic equation, as was done[#2]. Al- M g, | 1516

though our methods are not identical, their comparison im- N T Tev (E Mo . (26)

plies that the absence of free streaming is responsible for the

contradiction with differenM ,, discussed above. The inde- The functional dependence of E@5) and numerical value

pendent approach in Appendix B confirms the results obof Eq. (26) obtained in the diffusion approximation coincide

tained below. with the corresponding results obtained by a different
method in[42].

A. Diffusion cutoff of the mass spectrum

We can come now to the calculation ki, , the minimal B. Free streaming cutoff of the mass spectrum
mass in the fluctuation spectrum caused by diffusion of neu- We shall consider now the free streaming cutoff of the
tralinos out of an overdense fluctuation. We calculate thgnass spectrum qualitatively described in the beginning of
diffusion coefficient using the method given jA6] (Sec.  this section. We gave there an estimate of the minimal mass
12). Consider a neutralino moving with a nonrelativistic ve- due to free streaming. In the accurate calculations below we
locity ©. In the rest system of this particle the momentumshall take into account the angular and velocity distribution
distribution of relativistic fermions is anisotropic: of leaking neutralinos, and the exact dependenca(bf at
5 age~teq, Which affect the value oM.
L g dQ.pdp 1 After the moment of kinetic decouplinty, neutralinos
n(p)d p 3 p(1+v cosa)/T ' (21) . . . N
(2m)° e +1 move freely in the expanding universe backgrouagt,)dX
, o R =y(t)dt, whereX is the comoving particle coordinate. The
where « is the angle between the directions ®fand the  qoqrdinatest at some momerttare determined by the initial

momentum of the incoming fermion.. _ coordinatesj and velocitys4 at the moment of kinetic de-
The momentum transfer in a single scattering eq”al%ouplingtd:

p(1—cosé) after averaging over the azimuthal angles.

The corresponding friction force experienced by the neu- o _ o (to(thHdt )
tralino is X=1(q,uq,t)=q+ W:q+g(t)vda (27)
tq
> dO'e| PN
f,=4of dQ(J d®p n(p) gq| P(l-cosp)=-B 5, where
0 le ,
(22 _ ft dt
t)=a(t > 28
g( ) ( d) ty a2(t/) ( )

whereB is the particle mobility and the factor 40 takes into
account scattering on all fermions as in Efj7). Then the 5 (t)=5a(ty)/a(t) for nonrelativistic particles. Now for the

diffusion coefficient is neutralino number density at the poitve have
L co¢ 6, M* Df
D=BT= Jor(6)az, 75 @3 nEn= d3vd¢(5d)62 NG, 1) 5G|
« 4=d,

Diffusion equation in the comoving system has the form )
- [ @ogpg | Fa @ o0 G- fids,.0),

(29

98(%,t)  D(t) .
T= az—(t)Agﬁ(X,t) (24)

The diffusion coefficienD(t) is time dependent because of where 5 is the Dirac delta functionDf/Dg is the Jaco-
T(t). The solution of Eq(24) for the Fourier component is bian, and¢(v4) is the neutralino velocity distribution func-
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tion at the moment,. The summation in Eq29) goes over
all roots g, of the equationk=f(q,04,t) from Eq. (27).

This sum in fact has only one term because the function

f(4,04,t) in Eq. (27) is a single-valued one.
From Egs.(27) and(29) we find the Fourier component

ni(t) = ni(ta) f Fogp(Gae K00, (30

Assuming the velocity distribution at the moment of decou-
pling ¢(v4) to be Maxwellian

32 m.o2
SN X _ xvd
d(vg) = 2T, exr{ 2T, | (31
we obtain
Ne(t) = Ng(tg)e~ (V2K OTalm, (32

i.e., up to the momentall perturbations are washed out by
free streaming inside the physical length scale

) 1/2

This length scale corresponds to the clump of minimal mas

Ty
o (33

Ms(t)=a(t)g(t)<

X

41 3
Mis()= 5 p (DAL, (34

wherer(t)zpeqagc{a3(t). The time dependence ofi(t)

is regulated bya(t). In the radiation-dominated epoch,
M(t) grows logarithmically with time. This growth is satu-
rated in the matter-dominated epoch. The resullihg, att,
can easily be calculated usiraft) as the solution of the
Friedmann equation:

. n (7 2}
an=aqz+[ L]
7\ 1/ n)\3
t"[(n—) +§(z } (39

In these equationsy, *=2mGpe@s(3, aeq iS the value of
the scaling factor at the momety,,

o7l (5

0.3

3

4
Peq= Pol 1+Zeg) = 1.1 1019< m) gcm 3,

(36)

1+2,=2.35x10°Q0h?, and  py=1.9x10 2°Qh?

g cm*%. The presence of the cosmological constaraffects
only the valuepeq and does not influence the evolution
M(t) because the contribution df to the total cosmologi-
cal density is negligible at smatl Putting Eq.(35) into Eq.

(28), we find after integration

1/4 1/4,3/2 3/2
Mo Peqtd [ Td in3 24 3
min= 51073174 ~ 5374 _mx n —WGpeqté . @37
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Using Eqgs.(19) and(20) we obtain numerically

—15/8 ~ 3/2
M. =1.5x10 8] ——X L
min- 100 Ge 1 TeV
—15/16/ A %\ 3
Ox A
X(E) (@ Mo, 38

whereA* is the logarithm from Eq(37).

Our calculations agree well witf3] as far as the most
important quantityT 4 is concernedthe scattering cross sec-
tion is involved only therg The calculation oM ,;, from Ty
in our case involves nonradial propagation of neutralinos in a
fluctuation and their distribution over velocities, E¢87)—

(32). We include also the accurate time dependence of the
scaling factora(t). The calculations if43] follow the semi-
gquantitative scheme described at the beginning of Sec. Ill. At
this stage of the calculations we have a difference described
by a factor of 7.

In conclusion, in this section we have considered two pro-
cesses of washing out the cosmological density perturbations
in a neutralino gas. The first process is the neutralino diffu-
sion due to scattering off neutrinos, electrons, and positrons.
This process is effective until neutralinos are in kinetic equi-

Ebrium with the cosmological plasma. Up to the moment of

decoupling ty all perturbations with massM<Mp
=(10"1-10 )M are washed out. The second process is
neutralino free streaming. Starting later,tatty, it washes
out the larger perturbations witM <M and determines

M min In the clump mass distribution at the present epoch, as
given by Eq.(398).

IV. CORE OF A DARK MATTER CLUMP

In this section we shall consider smearing of the singular
density profile in a clump due to tidal forces and calculate
the radiusR; of the core produced.

Clumps, as well as galaxies, originate near the maxima in
cosmological density perturbation¥{(r)=[p(F)—p]/p. At
the matter-dominated stage the density perturbations grow as
5%t?3, In the nonlinear regim&=1, a multiflux instability
develops in a clump, and a singular density profile is formed
[9]. If the velocity field in the central part of the clump is
disturbed and becomes weakly nonradial, the flow is over-
turned, a singularity does not form, and the density profile is
smoothed. I 9] the core radius is estimated x@zé\zﬁl
by consideration of the perturbation of the velocity field due
to the damped mode of the cosmological density perturba-
tions. Heredg, is the initial density fluctuation value at the
end of the radiation-dominated epoch. [I23] the core is
produced for a spherically symmetric clump by inverse flow
caused by annihilation of DM particles. We shall show here
that these phenomena are not the main effects and that a
much stronger disturbance of the velocity field in the core is
produced by tidal forces. These forces originate due to the
nonsphericity of the perturbation considered and the pres-
ence of other fluctuations nearby, including a fluctuation on a
larger scale in which the considered fluctuation can be sub-
merged.
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Core formation in a fluctuation begins at the linear stage 5 (=, »
of evolution and continues at the beginning of the nonlinear U(j):ﬁj k*dk P(k)k*, (44)
stage. The tidal forces diminish with time[see Eq.(53) 0

below], and the duration of this phase is proportionaltto . the similar moments?, for the perturbation field of the

Once the core is produced it is not destroyed in the fOIIOV\"nggravnatlonal potential. Calculatmg the divergent moments

evolution. The stage of core formation continues approxi- for a given mas$l we assume the smoothing procedure of
mately fromt,, to the time of maximal expansioy and a

little above, when a clump is detached from the expansion ol}

X . i . From Eq.(43) it follows that
the universe and evolves in the nonlinear regime. Soon after a.(43)

this period, a clump enters the hierarchical stage of evolu- S(zj)=(4w)2G2520(2j_2) (45)
tion, when the tidal forces can destroy it, but surviving o
clumps retain their cores. for j=2. Let us definef;; =928(F)/ar'orl. Then according
Let us expand the gravitational potential in a series neato [47] its mean value over the ensemble is
the maximum of the density fluctuation taken &s0 at 2
filcr)t:r):;r.ary timet during thelinear growth of density perturba- (Lila)= 5|,5k|+ Bicd1+ 8155 (46)
d 1 which results in
¢( ) (b0+_' r + (I)II|05|Jr r’ + T|J|o” +- 5 5
(39 (TyTji)= 550 =3 (4m)°G*p ol (47)
where (in the following we shall use the notatiar= o )). Let us
P (F) 1 introduce the important physical quantitythe height of the
= i Tj=®;— §q>“ Sij - (40)  peak density in units of dispersidthe peak height
V= eql Ted M), (48)

The first term of the series in E¢B9) does not influence the
particle motion. The second term is zero as a condition ofvheregef(M)=o0(teq,M).

maximum density. The third term describes the spherically ~After introduction of these quantities we shall move to
symmetric part of the potentiéincluding the potential of the calculation of DM particle velocities and core radius. The
homogeneous backgroundnd also the perturbation poten- velocity 7(t) is given by the sum of the radial velocitag
tial. It governs the radial motion of the particles. According and an additional velocity 4, which will be considered as a

to the Poisson equation one has small correction caused by tidal forces. The radial velocity
. . will be calculated without tidal interaction taking into ac-
O =Ap(r)=4mGp[1+(F)]. (4)  count from the equation
Finally, the fourth term, which contains the traceless matrix dv g
T;;, describes the tidal forces. They disturb the radial motion TR —grade(r), (49

of the particles and result in production of the core.
We shall start with definitions and notation. We assumeyhere the sphenca“y Symmetnc potentta(r) is g|ven by
that density perturbations(r) are Gaussian with a power the third term in the right hand sid®&HS) of Eq. (39). This
spectrumP(k): equation determines the radial motion of the particle, and its
solution is given in the parametric form pé4]
(8, dey=(2m)*P(Kk) 85" (k—k'), 5;=f S(F)erdqr,

— S2 1
(42) r=rgCos 0, 0+25|n20—3

55&“) R

3

teq

where 6(D3)(IZ— k') is the Dirac delta function and angular The moment of maximum clump expansitnand the dis-
brackets correspond to ensemble averaging. The power spdencer =rg at this moment are
trum Pg(k) at time tq is connected with the primordial
power spectrunP (k) (at the epochs before horizon cross- t_s_
ing) by the relatlonPeq(k) P (k)Tz(k) whereT (k) is the t
transfer function for cold dark mattésee, e.9.[47]).

From Eq.(41) it follows that the power spectrumg (k)  Wheredeqis the initial fluctuation valugat t=te)

of potential perturbations is related R(k) as Tidal forces give rise to the additional velocifyq. Its
evolution is described by the equation

3
4

58,5 2 r 3
eq) , =, (51)
3 leqg 9deq

Po(K)=(4)2G?p%k *P(k). (43 i
tid, i

Let us introduce the moments of the spectrB(k): dt

=—T;(t)r! (52
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1.3 ] 22/3310/3 T2t2 5

= 972

1.2 1 XC T Gant f (aeq)- (57)

1.1 . . . .
-~ From the invariance of the matrix trace relative to the change
L 2 of coordinates one has
g.\0.9 2 ’ ’

0.8

ot ] Since the correlator

1
- . <Tij5>=<<‘pij_§q’||5ij>[(1)n(4776531—1] =0,
log deq (59

FIG. 1. Functionf(J) defined by Eq(55). The ratio of the

) A ) 72 the quantitiess and T;; are statistically independent and we
core radius to the clump radius in the typical cas@.3v™ “f(Jg) .

may average them independently. Averaging) over the
tidal force fieldT;; with the help of Egs(47) and (58), we
obtain the main result of this section for the relative core
radius:

—4I3
Tij(t)_Tij(teq)(teq) : (53 R, 051331313 ) s s
XC—EZ—Sereqteqv f (5eq)20.31/ f (6eq)!

The linear approximation for tidal forces is justified because (60)

they are generated by large-scale perturbations which be-

come nonlinear later than the small-scale perturbation undevherev is given by Eq.(48).

consideration. The fluctuations withv~0.5—-0.6 havex.~1, i.e., these
Now we find the valuey at the moment when the den- fluctuations are practically destroyed by tidal interactions.

sity nonlinearity sets ing=1, or more exactly at the moment Most of the galactic clumps are formed fram-1 peaks. As

of maximum expansioty. After integration of Eq(52) with  will be demonstrated in Sec. VI, those clumps that survive

where in the linear approximation

the help of Eq(50) we obtain until now are characterized by=1.6, but the main contri-
bution to the annihilation signal is given by the clumps with
13| B0eq| j v=2.5 for whichx,=0.05.
Vig,i(ts) =18 3 teqf (9eq Tij(teg T (ts),  (54) In an alternative approach for calculation of the core ra-
dius, one may definR; as the minimum deviation of a typi-
where the function cal particle trajectory from the center of the clump. After

clump virialization a particle at the average distariR

2 (w2 1 —4/3 from the center has an angular momentom;yR/2. At t
f(9eq) = §f 1/qus( - Esin 2¢) sift¢ (55) >t the tidal force is already small and the angular momen-
(55e¢3) tum is approximately concerved. Then at the minimum dis-

tance from the cordR., one hasR.V~vyR/2, whereV

is plotted in Fig. 1. We may use approximaté(pe) =1 for ~ =(2GM/R)2 is the velocity of a typical particle in the
the values ofd of interest{asymptoticallyf(de) —1.32 at  center of the virialized clump. Calculatingy from Eq. (54)
deq—0]. and using Eq(47), one obtains

To find the core radiu®. of the clump we shall use a
method similar to that if9]. Sincerotv;q=0 anddivugy Xc=0.150"1f( 5y, (61
=0, the tensorT;; has the following diagonal form in the
coordinate system connected with the main axes: which numerically is very close to E¢60) for typical values

of v=1-3.
T The core radius, given by E@60), is much larger than

Xo= 85, Obtained in[9] and x, from [23]. The core radius
found in[23] is valid only in a perfectly symmetric case.
27 Several remarks are in order.

Tidal forces prevent the appearance of singularity during
The valuer from Eq. (56) is connected with the core radius eyolution of the clump, but if such a singularity has some-
R. due to the energy relatioME=AV, where AE  how appeared, tidal interactions cannot destroy it.
= [ pin(t)vi(ty)/2 is the work performed by tidal In the calculations above we operated with average tidal
forces, andAV=GMM_ /R, whereMC~47rR§pC/3, is the  force, described by Eq47). In reality this force fluctuates
potential energy of the core. It gives for the relative coredue to the positions of the surrounding fluctuations, which
radius can overlap with the considered one or be far away from it.
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As a result some clumps can be destroyed and those surviquation(62) gives theformation criterionfor DM objects.

ing have different core radiR.. This effect increases the The formation criterion alone does not determinefor a

annihilation signal. given massM, becauses(M) has a Gaussian distribution.
We assume that the DM distribution within the core is The formation timet; can be fixed by an additional condi-

much flatter tham ~#. BetweenR. and the beginning of the tion, e.g.,»=1 [see Eq.48)]. The DM objects that satisfy

asymptotic regimep;<r ~# there is a transition zone. Dur- the formation criterion(62) and v=1, or equivalently

ing hierarchical evolutionsee the next sectiprthis zone  o(M,t;)= 5., will be referred to agypical objects. For a

expands due to tidal interaction in the hierarchical structureggiven massM they are characterized by a fixed epoch of

However, this interaction cannot destroy the existing core. formationt;. In some parts of our consideration we shall
The above calculations are also valid for the formation ofsimplify the problem, assuming that clumps aygical in-

galaxies. It is useful to compare E@O) with observations stead of taking into account their distribution ower

of galaxies. In[47] the number of peaks in the Gaussian We confine ourselves here only to the power-law spec-

random field is confronted with the observed density of spitrum of ﬂuctuationspeq(k)ockn, in which case

ral and elliptical galaxies. It was found that these galaxies are

formed mostly from peaks witlr=3. According to Eq(60) T M)ocM~(M+3)8, (63

for these peaks.=0.033. The rotation curves in the central ) ) )

part of dwarf and low surface brightness galaxies are mealhe €ffective power-law inder obtained from the expres-

sured[48,49 and constant-density cores were revealed. ExSIOn above can be given as

isting observations do not contradict the presence of an ex- 1N Teg M)

tended uniform core with radiuR.=x.R~3.3 kpc in spiral n=—-3-6—82x "~ (64)

and elliptical galaxies. However, at these distances the bary- dinM

onic matter dominates, which makes the observation of th

DM core even more difficult. The extreme valRg=R cor-

responds tov,,,~0.55f. The Gaussian peaks with these

are completely washed out by tidal forces and do not pro

duce gravitationally bound objects. The intermediate case

=1 corresponds to most numerous dwarf and irregular gal

axies with the pronounced overdensity in the central core.

?n the case of an arbitrarp (k) spectrum,o.(M) also has
an arbitrary dependence d&h. Equation(64) definesny for
some mass intervaAM. In realistic casegsee, e.g., Eq.
(92)], Eq. (64) is a good approximation because the power-
law indexn depends only weakly oM.

We shall introduce for convenience the characteristic val-
ues of typical objects labeled by the inddxand described
by the conditiono(t, ,M,)= 5. at some fixed momertt, or

V. TIDAL DESTRUCTION OF CLUMPS redshiftz, . We can choose these quantities arbitratbe-

IN THE HIERARCHICAL MODEL cause they will not enter into the final resyltsut satisfying

. . . the conditionz,>(Q, /Q,,) — 1, e.g., takingzy,~5-10. The
In this section we shall study the destruction of clumps by ; P ;
the tidal interaction which occurs at the formation of hierar-iotnevr(ra;"ggﬁ ebg fntgglseitggrn\jvarlllillzelnsgm\gll_usizlls é%?é??o?rfation

chical structures, but a long time before galaxy formation., .5 4t these epochs. Let us introduce also the dimension-
This interaction arises when two clumps pass near each oth!e-é'SS Massn as

and when a clump moves in the external gravitational field o
the bigger objecthos) to which this clump belongs. In both m=M/M, .

cases a clump is exited by the external gravitational field,

i.e., its constituent particles obtain additional velocities in theUsing the formation criteriori62) we obtain
c.m. system. The clump is destroyed if its internal energy
increaseAE exceeds the corresponding total enefd/
~GM?/2R. In Sec. VB we shall calculate the rate of exci-
tation energy production due to both aforementioned pro-
cesses. In Sec. V C we shall calculate the survival probabilitpecause the growth factor for the rising mobg(t)(1

for a clump in the hierarchical model, in which the smaller +2)=t?? in the standard cosmological model at the matter-
clumps are embedded in a bigger one, and the latter enteg@minated epoch. For a single clump with magbeying
into a bigger clump, etc. But first we shall describe the nec-deq= vae{M) With an arbitraryr one has

essary generalities and definitions.

S(M,t))=48 ﬂ*—a (65)
T Cedy g e

_ _ 1+27.\ 2 3ol M)
Pint™ Kp(zf):KPeq(szeq :erqiTQ(a (66)
A. Generalities and definitions f ¢
The formation of DM objects with a fixed mads at the and
linear stage is distributed over formation epoc¢hs In the
spherical model of the Press-Schechter thg@§,40 the [ 3m |\ R 1R (56 5
density perturbation at the epoch of object formation is equal Ndmpy) vooRam ' 67)

to 6.=3(127)%320=1.686:
whereM andR are, respectively, the mass and radius of the
(M te) =6, (62 clump, k=1872=178 and R,=[3M/4mwxp(t,)]*3 The

103003-9



BEREZINSKY, DOKUCHAEY, AND EROSHENKO PHYSICAL REVIEW D68, 103003 (2003

value of x describes the increasing clump density duringwhere v, is the velocityincreaseof DM particles in the

contraction and it can be found from E&Q) (see alsd40]). direction of the axix, andv, is the same for the c.m. of the
The number density of unconfindttee) clumps(i.e., of  clump. The axisx connects the c¢.m.’s of two clumps when

those not belonging to the more massive objeistgiven by  the distance between them is the shortest. One has approxi-

the Press-Schechter formulgk] mately
t,M)dM v Jdv
Ppdt.M) Vy—Ty= —= Al= —>r cosy, (72)
1/2 2 (7' (9'
(2] % Qoe % lam
w) M Dg(t)agq dM 2Dg(t)2a§ ' where ¢ is the polar angle in spherical coordinates.
68) For nearly straightforward propagation, the angle between
U,e @and the line connecting c.m.’s of the clumps evolves as
where the growth factoDy(t) is normalized ad 4(teq) = 1. do v
Let us consider the Press-Schechter distribution for the Tl o, (73
clumps hosted by the larger clump at the momignof its dt '
formatlo_n. Taking into account the density increase fagtor wherev . ~V2V, . Changing the variableto ¢ in the New-
we obtain .
ton equation one gets
lﬂpdtf,m)dm:K(ﬁpitf,m)dm. (69) %__ GM’[I"(({))] COS¢ (74)
As will be demonstrated in this section the clumps are de- d¢ Urel ’

stroyed by tidal interaction and each clump has a small sur- d after | . £ thi .
vival probability £<0.01. A surviving clump during its life- 2" after integration of this equation

time is surrounded by other clumps with a distribution given 2GM’
by Eg. (69). When a host clump is destroyed, the surviving vy=—--9(y), (75)
clump finds itself hosted by a larger clump with the small VreR

clump distribution inside given by the same E@Q) but with
larger t¢. Since the tidal destruction is most effective at
small distances, one should always consider the smallest pos- y L y>1,
sible host clump of the hierarchical structure, and the distri-

wherey=I/R’,

bution of the small clumps around the one under consider- 1+y3 B(1—y?) Y2 F (?’__B E § 1-y?
ation is always given by Eq69). The characteristic time is g(y)= 242 22
the time of formatiort; of the smallest host clump, although
the time of destruction can be much larger than —(1—y2)1’2}/y, y<1,
The total energy(kinetic and potential of a clump is (76)

given by
) and ,F, is the hypergeometric function.
IE|= 3-8 ﬂ (70) The rate of internal energy growth due to collisions with
2(5-2B8) R ° all other clumps is

B. The rate of internal energy growth E= f 27rlvre|dlf dM’ (M’ t)AE. (77

Consider a host clump with mas4,, and radiusR,,, and
with the small clumps inside having the distributitg®) and  After simple calculations, one obtains
moving in the common gravitational potential with a velocity S
dispersion ~V,=GM/Ry. Interacting tidally with its E= 4m(3—pB) G'MR JMhdM’M’zw(M’ t)
neighbors, a small clump increases its internal energy. We 3(5—B) Ul M '
calculate first the rate of internal energy increase due to these
interactions. The mass of the considered clumpMs
=mM,, it is characterized by an arbitrary and its inter-
action with a target clump occurs at the impact paramleter
The target clump is characterized by a mb&s radiusR’,  Where
radius of the cordR,=x.R with x.~0.1, and universal den- .
sity distribution (3). - f dy y< dg
The increase of internal energy of a clupduring one XL dy
flyby in the momentum approximatid®0] is given by

X

A 1/ 1 1 78
RZ2T3 R7 R (78)

2
=0.11 (79

L for x;=0.1 and the dependence »fon x; is very weak.
AE== | o3 _~ 32 71 As the_seconq process of tidal destructlion,_ we shall con-
2 f a7 p(1) (03— )% 7D sider the interaction with the common gravitational potential
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of a host clump. The energy gain per mass unit at a distanc&here the summation goes over the intermediate big clumps
r from the c.m. of the considered small clumpduring one  which successively host the small clumpandAt approxi-
periastron passadé0] is mately equals the difference of formation times of two suc-
oM R cessive hosts.
_ h o[ Rh Let us introduce the notatiom, is the mass of the first
<Ep>_R_ﬁr (R_p) Xecd ©)A(07T), (80) (lightesh host clump which contains the considered light
clump m, andm, is the last such object, e.g., the Galactic
wheree is the eccentricity, the functiogec is presented in  halo. A formation epoch for the host clunmp’ is
[50], the adiabatic correctioA(x)=(1+x?)" 7, y=2.5-3,
and R, is the periastron separation. The energy gain of a

1\ =32
clump during one period ,, is AE=f<Ep>pim(r)d3r, and roy— 1+z _ r(n+3)/4 1 —3/2
the rate of energy growth is t(m’v) =ty 1+2z, tam vITT (89
. 2AE
E= Tom (81  Note thatJ does not depend o, since it enters linearly in
orl

t; and inT as seen from Eq82).

The rate of energy growth due to both of the aforementioned The first host gives a major contribution to the clump
the distribution(69) in the integral of(78) and the total en- =v- For the considered clumm and for the first two hosts

ergy of a clump given by Eq(70), we find OeM)=0e(M1)=0c{M;) because oe(M) depends
weakly onM according to Eq(64). The considered clumm

and the first two hosts differ mainly in their masses and in
3m(n*3)2m 3(n+3)/4 the values ofv (v=r,=,). It justifies the following sim-
82) plification: we consider all hosts beginning from the second
one as typical objectsi{=1 for i=2,3,...) and, separating
where the first term in the sun84), substitute the remaining sum
by the integral.

1

E
_ o1, o2 -
T(m,mh ,V,Vh) E 2tA KVn ¥

21/2Kl/2(5_2B) Rh B
r=—3m_a ||r.| A@Xed®)
(5-8) p ti(my,vo=1)—te(my,vy)
472 |\n+1 n+9) | +fmn 1 dtf(m’,v’=1)d ,
The first term in the square brackets describes the interaction m, T(m,m’",v,»"=1) dm’ .

with the common gravitational field of the host clump, while (86)

the second term describes “collisions” with small clumps

inside the host clump. Usually the former is larger than the

latter. For calculations we shall consider an average orbitVe may now change the lower limit, to m; in the above
with R,/Ry=2 andT,=2R/V},, and putA(w7) xecd €) integral because it depends an, weakly, only through
~1. If we neglect the tidal interactions with the small clumpsm{"* "2 with (n+3)/2<1, wheren is given by Eq.(64). In

[the second term in the square brackets in B@)] and use addition we may put the upper limih,— o without loss of
B=1.8, one hagt=9.6. The dependence of our final result accuracy. Inserting Eq82) into Eq. (86) we finally obtain
(mass function of the clump®n u is weak, going approxi- the following approximate expression far

mately asu ™3,

, - . . 222\ (n+3)12
C. Survival probability in the hierarchical model J~2M_13‘(_) (1- 1/_3/2) O(v,—1)
- 1 1
A small clump with massn during its lifetime can be a 1
constituent part of many host clumps of successively larger m \ (n+3)12
massesn’ and virial velocitiesV’. After tidal disruption of +,uv_3(—) ,
i . m,
the lightest host, a small clump automatically becomes a
constituent part of the heavier host, etc. Transition of a small
clump from one host to another occurs almost continuously, here the step functiofi(x) =1 for x>0 and 0 forx<0. In
in time up to formation of a host where tidal destruction o c55e ofv;=1 the formation moment of the first host

becomes inefficient. The fraction of small clumps with MassS;imost coincides with the formation moment of the second
m escaping the tidal destruction is given &y”, with one, for whichr,=1 in the approach used.

(87

At The differential fraction of mass in the form of clumps
J=> — (84)  which escape tidal destruction in the hierarchical objects can
w T(mm’,v,v") be found as
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clumps given by the Press-Schechter mass functietom.
The surviving clump distribution implies that each DM par-

0 125 ticle belongs simultaneously to several host clumps put into
each other, and for this reason the integraldm/m is di-
< ! vergent.
=, 00 To calculatet we need to know the power-law indexin
the perturbation spectrum, which can be takemgsfrom
0.05 Eq. (64) for a givenoe(M). To find the latter, the primeval
(e.g., inflation power spectrum of the fluctuations is needed.
0025 The simplest inflation models give,(k)ok" with n,~1.
. The analysis of the WMAP measurement of the cosmic mi-
0 1 2 2 3 5 s crowave backgroundCMB) anisotropy{51] gives a power-

law spectrum withn,=0.99+0.04 in good agreement with
FIG. 2. Functiony(») from Eq.(90) obtained by the numerical n,= 1. However, when data from the galaxy power spectrum
integration of Eq.(88). This curve is valid with good accuracy for with two degrees of freedom ang-« are included in analy-
all 8 from the interval k8=<2. sis, the best-fit favors a mild tilp,=0.96+0.02.
The varianceo¢((M) =0 from Eq. (44) in the small-
scale range is found ifb2] (see alsd53]). We present this
2x10°*

dm 22|’ —22
&(n,v) m dv=dm dV(Z/’]T)e Odvle 1 result as
k 3/2 k (np=1)/2
M= In( ” ( )
edM) Vi) L \Keg/ |\ Kno

xf dt;

tf(m,D)

where the variablen, in J is connected witht; and v, ac- —8.9% 103'7(“91)3[1—0.06 |O§{M—
©

cording to Eq.(85), F(m,t) is the mass fraction of uncon-
fined clumps with masses smaller thanat the moment,

P?F(m,ty)
amat,

ed, (89

3/2

which according td40] is given by « M ©2
Mo ’
F(m,t)=erf i (89)
m,t)=erff —— . _ )
V20 M)Dy(1) wherek,q andkp, correspond to the mass inside the cosmo

logical horizon at the momentg, andt,, respectively, and

Here erf§) is the error integral andy(t) is the growth
factor. After numerical calculations fg@= 1.8 we finally ob-
tain

fo(Q,)=1.04-0.820,+203 (93

according tg52]. We used above the relatidaM ~ 1 and
f(n,V):(Z’]T)illzeiyzlz(n-i—3)y(y), (90) the values

where the functiony(») is plotted in Fig. 2. It depends  Meq=1.510%0,*h™% g, Mp=6x10"0Qh"* g.
weakly onp. (94

This is the main result of this section. We shall refeito . )
as to theclump survival probability Using the power-law spectrum of fluctuations down to

Our final result, the distribution of surviving clumps over SMall scales, while normalization by the CMB anisotropy is
their massedM and », which for fixed M determines the performed at a large scale, |mpI|e§ an extrapolation of t.he
clump radiusR, is given by&(n,»)dv dM/M, whereé de-  SPectrum by many orders of magnitude. Such extrapolation
pends very weakly oM only through the weak dependence is justified only by the confidence in inflation models which
of n(M) [see Eq(64)]. For the most numerous clumps with predict the power-law spectrum valid for many orders of

v=1 and for the unit intervalgly anddInM, ¢ has the mass r_nagnitude. . . .
meaning of the fraction of the DM mass in the form of It is interesting to note that the differential number density

. . 2 .
clumps relative to free DM particles, as introduced in Eq.Of ¢lumps in the Galactic halo(M)dMedM/M~, obtained
(10). By integrating over, we obtain from Eq. (90), is very close(including the normalization

coefficien} to that obtained in the numerical simulations for
£v=0.01(n+3). (91) clumps with large massesM=1FM, [n(M)dM
«dM/M*® [4]]. Strictly speaking, our calculations are not
This means that, for differemt, about 0.1-0.5% of clumps valid for clumps with these masses, because of their destruc-
survive the stage of tidal destruction in each logarithmiction in the halo up to the present epoghand accretion of
mass intervalA InM~1. new clumps onto the halo. Nevertheless, for the small inter-
Several remarks are in order. val of masses where the power-law spectrum can be used as
The physical meaning of the surviving clump distribution a rather good approximation, our approach can be roughly
&(n,v)dvdM/M is different from that for unconfinefree)  valid.
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VI. NUMERICAL RESULTS

In this section we shall present the numerical results of
our calculations: the enhancement factor for the annihilation
signal, the distribution of DM clumps over their masdés
and radiiR, and the distribution of clumps in the Galactic
halo.

Using Egs.(6) and (7) we find the enhancement of the
annihilation signal due to clumpiness of the halo as the
generalization of Eq(10) for the clumps distributed over
M andR:

W(Mmin’np) ° -12 -10 -8 -6 -4 -2 o
log (Mmin/Mg)

1 (= dM _

=1+ Pom VmindVJ'MminVS[IB’XC( V) [Epim(M, v), FIG. 4. The same as Fig. 3 but f@=1.5.

(99) for B=1.8. The clumps withv=2.5 havex.=0.05.

where For the Galactic halo we use the Navarro-Frenk-White
(NFW) density profile[10]

§=¢&(n,v) (96)

is defined by Eq(90), the effective spectrum indexM,n,)
is calculated from Eq(64) for the primeval(inflation) spec-
trum indexn,, with o.4(M) taken in the form(92); pj,; is
given by Eq.(66) and v,,,,=0.55. The functiorSis taken in ~ with L=45 kpc according t¢54], andp, fixed by the local
the form (4), which corresponds to the density profi@,  density valueppy(re)=0.3 GeVcn 3. With these param-

Po

pon(D = 2 (99)

and we used Eq60) for the clump virial radiusR. eters the halo mass within the virial radius of 100 kpc is
Most of the surviving clumps are formed from fluctua- 10*M . Equation (9) gives py=1.02014(r¢), i.e., these
tions with a mean value of the peak height values practically coincide.
, The values of global enhancementM ;,,n,) as given
fdvve " Py(v) by Eq.(95) are displayed in Figs. 3-5 for different values of
(v)= [dve Vz/zy( V) =16. (97) Muin, B, @andn,. As a representative example consider the

clump with the Gurevich-Zybirf9] density profile withg

Meanwhile, the main contribution to the enhancement of the=1.8 (see Fig. 3% numerically »=5 for My;,=2

annihilation signal95) comes from the clumps with an ef- X10 *M¢ and n,=1.0. It strongly increases at smaller
fective value of the peak height M in @nd largem, . For example, fon,=1.1 and 1.2 at the

same M ,;,=2X10 8M, the enhancement becomes tre-
[ fdv vSépidMIM mendously largey=130 and 4< 10°, respectively.

(V) ani= [Tdv SépdMIM =25 (98) Our approach is based on the hierarchical clustering

" model in which smaller-mass objects are formed earlier than

larger ones, i.e.ge(M) diminishes with the growth oM.

This condition is satisfied for objects with mass>M i,

=2x10"8M, only if the primordial power spectrum has the

=1

IO-g6 (Mmi-r:/]u'@)-2

FIG. 3. The global enhancement of the annihilation signal 0.95
from Eqg.(95) as a function of the minimal clump mabs,,;,, for a 0 22 ; .
clump density profile with indey3=1 and for different indices,, e e * log (Mmin/Mo)* °
of the primeval perturbation spectrum. The curves are marked by
the values oh,. FIG. 5. The same as Fig. 3 but f@=1.8.
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value of the power inder,>0.84. As seen from Figs. 3-5,
in this case the enhancement of the annihilation signal in fact
is absent,p=1, for n,<0.9.

We discussed above the global enhancement of the anni
hilation signal. In fact the enhancement varies in different gwouo
directions relative to the Galactic cent@C). It can easily
be seen from Eqg6) and (7), which show that whild  is
proportional tony(l) [and thus tgpy(l) everywhere except
the cord, |nom is proportional tOpZDM(|). This implies that
the relative contribution of,,,, increases in the directions
close to the GC whergpy(l) is larger. This effect is further ,
enhanced by the destruction of the clumps in the core arounc 14 15 1
the GC. Our numerical calculations confirm this expectation:
the ratio of enhancement in the directions to the GC and g1 6. The mass density of clumps in the Galactic halo
anticenter is 0.2 for a NFW density profile and for the coreyyn (M| R) in units of M, /kp&, from Eq.(100), as a function of
radius of 3 kpc. Therefore, the presence of the clumps dimingeir radiusR at the distance 8.5 kpc from the Galactic center for
ishes the anisotropy of the annihilation signal, caused by thg =1.0. The curves are labeled by the values of the clump masses
density profile of DM in the halo. in Mg

Our results suffer from uncertainties in the input param-
eters. As was mentioned aboygy=ppu(ro). It remains The radius of a clumpR in the most general case is de-
approximately true not only for the NFW density profile but termined byM and v». Due to the weak dependence of
also for other profiles discussed in the literature. For exw.(M) on M, the radius of the clum@(M) with suffi-
ample, for an isothermal profile with the core radius 10 kpcciently good accuracy is proportional td*°. From Egs.

15000

12500

7500

5000

2500

18 19

log R cm

Pom=0.65pm(r o). Another uncertainty in the value afis
imposed by the value oppu(re). According to different
estimateppy(r o) =0.2—0.6 GeV cm?. The corresponding
uncertainty inz is given by a factor of 0.5-1.5.

For illustration, we shall numerically describe the proper-

(66) and(67) we have

1/3 -1

cm,

14

5% (102

_ 6

ties of the clumps which give the main contribution to thefor n,=1.0. Forn,=1.1 the numerical factor in E¢101) is

annihilation rate. Basically, they are those with~M i,
and v~(v). The rms fluctuation values.(M) for clumps
with minimal massM ,;,=2%x10 8M, and forn,=1 and

5.5x 10" cm.
How are clumps distributed in the Galactic halo? One
may expect that this distribution is the same as the distribu-

1.2 arece,=0.015 and 0.14, respectively, according to Eq.tion of the free DM particles in the halo. This is true for large

(92). From Eq.(98) the effective value ofv=dgq/o¢q is
(v)=2.5. From Eqs.66) and (67) it follows that clumps
with this v are characterized by the density and radiuys
=2Xx10"%?gem 3, R=3.6x10%cm and pp=2
x10 ¥ gem 3, R=3.7x10"cm for n,=1 and 1.2, re-

distanced from the Galactic center, while at smaltie tidal
interaction with stars results in the destruction of small
clumps and in the formation of a core with radiugin the
clump distribution. The destruction of a clump propagating
in the space filled by stars has been studie@@ih The de-

spectively. The part of the Galactic halo mass in the form oftruction is important only for clumps inside the bulge, i.e.,

these clumps is of the order &f,;~0.002 according to Eq.

at a distancé= 3 kpc from the Galactic center. Clumps out-

(92). The mean number density of the clumps in the halo isside the bulge at distances<3<10 kpc can interact tidally

~25pc 3,

with stars in the disk. But the time of crossing the disk is

We have given above the characteristic values for theery small(in comparison with orbital perigdand this pro-
clumps with the dominant contribution to the annihilation C€SS IS not important.

signal. The general distribution of clumps in the Galactic

halo can be readily calculated numerically from E0),
changing (for given M) the distribution overv by that
overdR

pom(ro)

ng(M,R)dInM dInR= E(M,v)dInM dw.

(100
Note that the definition of the clump number densityhere

does not coincide with the similar one in E§) wheredN is
given perdR anddM.

The number density of clumps outside the bulge is pro-
portional to the halo density, e.g., &ppu(l) in the case of
the NFW distribution given by Eq99), or can be obtained
from Eq.(99) and Fig. 6 by simple scaling.

The density distribution for stars in the bulge according to
[55] is given by

p(Imeyy~18 1<F,

“lpams, (102

sl I >T,

wherep=1.8M /pc® andT =800 pc. From Eq(46) of [2]
by substituting Eq(102 we obtain that inside the bulgé (

The distributionMny(M,R) is presented in Fig. 6 as a <3 kpc), the clumps wittM <10 *M, are destroyed dur-

function of R for differentM and for a distance 8.5 kpc from
the Galactic center.

ing the Hubble time. Thus, for these masses the core radius
L. coincides with the size of the buldg, 4~ 3 kpc.
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3 hierarchical clustering with the tidal interactions included as

the new element. The picture of hierarchical clustering and

25 clump destruction can be described in the following way.
1.0 Clumps of minimal mass are formed first. A clump of larger
: mass, which hosts the smaller clumps, is formed later. A
s 11 bigger clump, which includes the hosts considered with their

content, is formed later, etc. The clumps are destroyed in
tidal interactions with other small clumps and by the gravi-
tational field of a host clump, with the former process being

0.5 subdominant. The calculated mass density of the surviving
clumps,é(M,v)dv dM/M, with massM and v, is given by
0 Eqg. (90), with the survival probability being typically¢
B 2 I6g(M/Mg)' ° ~0.001-0.005. The clump number density in the Galactic

halony(M,R) for the clumps with masM and radiusk is
FIG. 7. The radiud . of the Galactic coréin kpc) in the distri-  shown in Fig. 6. These clumps are distributed in the Galactic
bution of clumps with masse! for n,=1.0 and 1.1 in the case ha|o as a function of the distance to the Galactic cehtat
v=2.5. large distances the distribution must be the same as found in
the numerical simulationée.g., the NFW profile At small
Clumps with M=10"*M, are destroyed during the distances there is a core produced by tidal interaction of the
Hubble time within distances from the Galactic center showrclumps with the stars in the bulge. The radius of the core,
in Fig. 7 for n,=1.0 and 1.1 andv=2.5. This distance |, is given in Fig. 7aM=10 *M, and it is equal to the
defines the radius of the cole, for clumps of the given radius of the bulgé .~ 3 kpc for smaller clump masses.

massM. The mass spectrum of the clumps is characterized by a
Our calculations for enhancement of the annihilation sigcutoff at M. Its value depends on the properties of the
nal disagree with those i16,27,28. DM particle, and thus it is model dependent. The existing

In [16] the singularity in the Galactic center is cut at a calculations of M., differ drastically: from M,
very small core radius, which results in too strong an anni-—1g-12 Mo [42] to M in~10"7 M, [43].
hilation signal. According to our calculations the radius of Cgld dark matter particles at high temperatufe T;
the core is much larger, and the distribution of the clumps in— 0.05m, are in thermodynamicalchemical equilibrium
the halo also has a core. with the cosmic plasma, when their number density is deter-
In[27,28 a Iqrge enhancement of the signal is found formjned by temperature. After decoupling &tt; and T
heavy clumps wittM >10PM¢, [27] andM>10°M, [28]. If <, the DM particles remain for some time in kinetic equi-

it were true, the total signal from clumps witl=Mmi,  Jibrium with the plasma, when the temperature of the CDM
would be too large. A too small core radius was used in thesﬁarticlesTX is equal to the temperature of the plasaut
calculations, too. the number density, is not Planckian any more. At this

stage the CDM particles are not perfectly coupled to the
cosmic plasma. Collisions between a CDM particle and fast
particles of ambient plasma result in the exchange of mo-
We have calculated the number density of the small-scalenentum and a CDM patrticle diffuses in space. Due to diffu-
clumps in the Galactic halo and their distribution oversion, the DM particles leak from the small-scale fluctuations,
massedM, radii R, and distances to the Galactic center in theand thus their distribution has a cutoff at minimal mbss.
framework of the standard cosmological model with the pri-The diffusion coefficient is determined by the elastic scatter-
meval density perturbatio®(k)«ck"r taken from the infla- ing of DM particles off the plasma particles. Our calcula-
tion models withn,=1 (the Harrison-Zeldovich spectrym tions, made for the neutralino, for which we have chosen the
The most important element of our calculations is inclusionpure B-ino state, give
of the tidal interactions, which result in the formation of the

VII. CONCLUSIONS

; - ~ 312
clump core and destruction of small-scale clumps. B o my 1580 M
We consider the most conservative case of the Gaussian Mp=4.3<10 100 Ge 1 TeV Mo,
adiabatic fluctuations which enter the nonlinear stage of evo- (103

lution, t,;, at the matter-dominated epoti>t,, wherete, ~

is the moment of equality. The time of small-scale clumpwherem, is the neutralino mass arld is (approximately
formationt; for a clump with mas#/ is given by two equa- the mass of the sneutrino and selectron, which are assumed
tions: the formation criterio(M,t;) = 5. and the height of to be equal. The functional dependence of E2) and nu-

the peak density of a fluctuation in units of dispersisn merical value of Eq(26) obtained in the diffusion approxi-

= Jeql e M), taken at the epocty,[see Eqs(48) and(62) mation coincide with the corresponding results obtained by a
for explanation and notatignAll the processes we are inter- different method i42].

ested in take place atteq at the stage of nonlinear evolu- ~ When the energy relaxation time for DM particles,,

tion. We study the growth of fluctuations in the nonlinear becomes larger than the Hubble tirde 1(t), DM particles
regime in the framework of the Press-Schechter theory ofet out of kinetic equilibrium. This condition determines the
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time of kinetic decouplingq. At t=ty CDM particles are the primeval perturbation spectrum index=1.0 the anni-
moving in the free streaming regime and all fluctuations orhilation signal from clumps gives the dominant contribution.
the free streaming scabe and smaller are washed out. In This result does not depend on the properties of the DM
contrast td43], we have calculated the free streaming lengthparticles.
A\ taking into account the distribution of neutraliB-ino) The observations favor the spectrum indgx=1.0[51].
velocities over absolute values and angles from radial direcEnhancement of the annihilation signal for this valuepfs
tions. The cosmological expansion in the vicinity f is  described by the factor 2-5 for differeftwith uncertainties
taken exactly, without the usual step-function approximationdue to the values df1,,,, and other parameters.
Our value ofM i, due to the free streaming effect is The clumps which give the dominant contribution to the
annihilation signal have approximately the following proper-
o m TR Mo\ ties in the caser,=1: the massM~M,, and v~2.5, the
Minin=1.5%<10"" 755"G& 1 Tev o radiusR=3.6x 10'° cm, and the radius of the coR.~=1.8
(104  X10"cm, the mean internal density of the clufp=2.5
X 10722 gem 3, the fraction of the halo mass in the form of
see Eq(38) for more parameters involved. these clumpss~0.002, and the mean number density of

When normalized to the same masses of neutralino anthese clumps in the haloy~ 25 pc 2.
slepton, our value oM ,;, coincides only within an order of Recently, the HEAT Collaboration detected an excessive
magnitude with[43]. flux of cosmic ray positrons at ener@~~ 10 GeV[56]. Ac-

The evolution of a density fluctuation in the nonlinear cording to[57], if this positron flux is produced by annihila-
regime results in the density profile of a clump. The analytiction of neutralinos an enhancement factor of the order of 30
theory of this phenomenon was developed by Gurevich an needed. The calculations presented here show that this
Zybin (for a review, sed9]); for the numerical simulations enhancement can be reached in the scenario considered in
see[3,10]. The initial single-stream flow leads to formation the case of an extreme combination of parameters.
of the initial singularity. In contrast to energy-dissipating
matter (e.g., baryonks in the flow of nondissipative matter
the multistream instability develod®], when at one point ACKNOWLEDGMENTS

several streams with different radial velocities exist. The sur- This work has been supported in part by the INTAS Grant

faces with different numbers of streams are separated by, 99.1065: VD and Yu.E are supported also by the RFBR
caustics, whose number increases rapidly toward the cent rénts No 63-62-16436-5 and 02-02-16762-a

The matter is gravitationally captured in such a structure. A

density singularity is produced in the center, unless addi-

tional phenomena are included in consideration. Of these, the ApPPENDIX A: CROSS SECTIONS OF NEUTRALINO
interaction with the damped mod®] and annihilation of SCATTERING OFF ELECTRONS AND NEUTRINOS

DM particles[23] were previously studied. We have demon-

strated here that tidal forces due to the external gravitational As the neutralino we shall consider here a pBfmo (x
field cause the deflection of DM particles from radial motion,=B). The Lagrangian for interaction of tH&ino with left
and thus prevent the formation of a singularity. The coreand right components of a fermidrcan be writter(see, e.g.,
produced has a radil®, given in the approximate form as [58,59)) as

R _ .
XC:EZO'&/ ° (109 Li,=—9v2 tanfy(er— T FPrx T,
[see Eq.(60) for the exact expression and the discussion +gv2 tanbyefP xfr, (A1)
afterward. This radius is much bigger than those obtained in

[9,23].
The majority of clumps are formed from~1 peaks,
while the surviving clumps are characterized on average b

v=1.6. The clumps which give the dominant contribution to : : _ X ; At
the annihilation signal have2.5. weak isospin forf,, and Pg=1/2(1+ vs5) is a projection

In spite of the small survival probabilitg~0.1-0.5 %, operator which cuts the left component from the operétor

clumps in most cases provide the dominant contribution tdn Eq. (A1); f, is the left sfermion. The first term in the
the annihilation rate in the halo. The enhancement of thd-agrangian(Al) is L7 ,, the secondCs ¢ .. Whenf is
annihilation signal can be characterized by the ratio(l ultrarelativistic in the frame where the neutralino is at rest,
+1hom/ 1 hom,» Wherel is the annihilation signal from the there is no interference for scattering of the left and right
clumps, and ., that from homogeneously distributed DM components of the fermiorghe interference terms are pro-
particles with the NFW density profile in the Galactic halo. portional tomy). Therefore, we shall calculate ttig cross
The main contribution ton is given by v=2.5 and M section for leftf, and rightfg fermions separately.

=M ,n. The signal enhancemertis shown numerically in Scattering of the left fermion withe;=—1 and T
Figs. 3—5. One can see that for almost all allowed values o —1/2 (e.g.,e, u, 7) off the B-ino are described by the two

whereg is the SUW2) coupling constantg,y is the Weinberg
angle (sif ,=0.231), e is the electric charge of the fer-
Ynionf in units of the electron chargégf is the projection of
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diagrams in thes- andu channels shown below: stant for freely moving particl¢sThe neutralino density is
kl fL fL kz kl fL T X y2) m
. i, p(x0= 23 | P f(6p.0 =7, (O 1+ x0T, BD
fr : k
P X XNp2oo P x L 2 The kinetic equation with a collision term of the Fokker-
Planck typg46] can be written as
S U
of i of d¢ of 1% i of
The standard calculations for matrix elements give for — + iz—— i—:Dp(t)—(Lf+—),
|M|2:|MS|2+|Mu|2+2 ReNSM:) ot ma“ dx; IxX; Ip; Ip; mTa2 O7p|(82)
1 k k
|MS|2:§(gtan0W)4M, (A2)  where ¢ is the gravitational potential, which can be ne-
(s=Mmp) glected at the considered epachte,, T(t) is the tempera-
1 (Pko)(Kipy) ture of the ambient plasma given by E38), andD,(t) is
IM,|2= _(gtangw)4#122, (A3) the diffusion coefficient in momentum space. According to
2 (s—mp) [46]
1 m2(k;kp) 40 do
MM =—— B A4 iy —— 2
sMy 4(gtan0W) (=) (u—T? (A4) Dp(t) 3 f dﬂf dwno(w)( ao |, X(&p) . (B3)
L

The cross section for thf + y— f| + x scattering at angle

61, in the system where the neutralino is at rest is given by!e number 40 in Eq(B3) comes from the counting of
degrees of freedom in neutralino-fermion scattering as in
(dO’e|

" B4m’s Ly

1 2 a2, w%(1+cosby,) Sec. Il.
= 7 =77 Equation (B2) with the diffusion coefficient(B3) coin-
da 8 cos by (M=) cides with Eq(16) from [42] except for the numerical factor
(AS)  in D, which is of the order of unity.

fLx

where o>m; is the energy off| in the system where the o _

neutralino is at restn, is the neutralino mass, ar_ is the 1. Kinetic decoupling

mass of the left sfermion. . _ Let us consider the exit of neutralinos from kinetic equi-
Let us consider nowg+ y—fg+ x scattering described |ibrium (decoupling in the homogeneous universe, when the

by the second term in the RHS of Eé\1). The diagrams are 5/ 9x; terms in Eq(B2) can be neglected. The temperature of

identical to that in the figure after substitutiig—fgz and  the neutralino gad  is defined as

f,—Tr. Since traces do not change whep— Pg, the ex-

pressiongA2)—(A4) remain the same, changing only due to f 0 fd®p=5.a5T (1)S. B4

the coupling constant which increases twisee Eq.(A1)]. Pip;f "p=P, @ Ty (DS (B4)

Therefore, we obtain
Multiplying Eq. (B2) by p;p; and integrating it oved®p one

doe| . [dog obtains
o) i) o
RX fx dT,

In this paper we are interested it y—v+yx ande+y dt
—e+ y scattering. In the former case the cross section is

given by Eq.(A5), and in the latter case by the sumfpf ~ The initial condition for Eq.(B5) can be chosen at the mo-
+ xy—f_+x and fr+ y—fr+ x Scattering, i.e., it is larger ment of freezing =t as in[42], or more conveniently at any

T, (D)

2D(1)
N ST

X méa?

a ) B
2 =0, (B5)

by a factor 17 than the cross sectiohb). t; from the intervalt;<t;<ty, asT,(t;)=T(t;), whereT is
the temperature of ambient plasma. Solution of %) (see
APPENDIX B: KINETIC EQUATION below) causes transition of the rat'rdt)zTX(t)/T(t) from

r=1 tory<1 within some time interval, determined Iy.

In this appendix we shall study the stage of kinetic equi-Any value oft in this interval can be taken as the definition
librium and the stage after its breaking in the common for-of decoupling timety. Equation(B5) and its solution can be
malism of kinetic equations, similar f042] and using the simplified using the dimensionless time=t/ty. The char-
approach of44]. We shall confirm in this way the results of acteristic timety4 naturally emerges from the dimensional pa-
Sec. Il and clarify the difference in calculations f, . rameters entering the diffusion coefficient, and up to a nu-

Following [44] we introduce the neutralino distribution merical coefficient it coincides witty determined in Sec. IIl.
function f(x,p,t) over comoving coordinateg and mo-  The transition time interval fixes this numerical coefficient
mentap=ma?®x (with this definition the momentum is con- with some uncertainty, and we indeed obtajnand hence
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T4=T(tg)] approximately equal to those given by E¢$9)
and (20) in Sec. lll. The solution of Eq(B5) in terms of 7
=t/tq is given by

T() 1( _ 2 2 1 27 2
X\~ T 1/2el/47' — VA | Z gllar f d3x x—5/2el/4x" |
Td T 2 7

(B6)

The asymptotic forms of the solutio(B6) are given by
T ITg=7" for 7<1 and T,/T4=7'T(3/4)/2"2 for 7
>1, as they must be. From the soluti@®6) it is seen that

the transition from kinetic equilibrium of the neutralino with
relativistic fermions to the nonequilibrium regime proceeds i
very fast. For this reason our consideration of diffusion and aJt

free streaming independently in Sec. Il is well justified.

2. Diffusion

Consider Eq(B2) before kinetic decoupling,<t4. One
can find the first two moments by integrating EB2) first
over d3p and second ovep;dp. Inserting the first of the

PHYSICAL REVIEW D68, 103003 (2003

where the isotropic parEszﬁk/azm for any 7, while F
depends on timé. In the limit 7<1 we may putF=0 and
neglect the first and second terms in E§7). The resultant
equation coincides with the diffusion equati@) with the
same diffusion coefficienf23) and has the same solution.

In [42] only this diffusion limit of the general kinetic
equation(B2) has been considered.

3. Free streaming

In the limiting caser>1, i.e., after decoupling, EqB2)
has the simple form

of Pi of B

with the solution

: (B10)

fmex;{ag(t)

whereg(t) is the same function as E¢28). The solution

equations obtained into the second one we obtain the follow(B10) iS valid with a good accuracy at=1 also, because

ing equation for the Fourier components:

a25+zaa5+D 1 98 ki f g
At 2aa P VT ot T parm ) PRI
(B7)
The RHS of Eq(B7) has the tensor form
1 3

according to Eq(B6), kinetic decoupling proceeds very fast.
Integrating Eq(B10) over d®p with the initial condition

2
f(td):(szdmag)—ﬁ‘/Zexp{ - 2T5—ma§] . (B1D)

one obtains

(D) =ni(tg)e (W20 WTalmy, (B12)

and then Eqs(33), (34), and(38) from Sec. Ill.
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