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We develop a search method for gravitational ringing of black holes. The gravitational ringing is due to
complex frequency modes called the quasinormal modes that are excited when a black hole geometry is
perturbed. The detection of it will be a direct confirmation of the existence of a black hole. Assuming that the
ringdown waves are dominated by the least-damfaeddamental mode with the least imaginary part, we
consider matched filtering and develop an optimal method to search for the ringdown waves that have damped
sinusoidal wave forms. When we use the matched filtering method, a data analysis with a lot of templates is
required. Here we have to ensure a proper match between the filter as a template and the real wave. It is
necessary to keep the detection efficiency as high as possible under limited computational costs. First, we
consider the white noise case for which the matched filtering can be studied analytically. We construct an
efficient method for tiling the template space. Then, using a fitting curve of the TAMA300 DT7 noise spec-
trum, we numerically consider the case of colored noise. We find our tiling method developed for the white
noise case is still valid even if the noise is colored.
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[. INTRODUCTION system can be describe as oscillations of this final black
hole’'s quasinormal modes and then settles down to a station-
There are many ongoing projects of gravitational waveary Kerr state. The emitted gravitational waves in tting-
detection around the world; the Laser Interferometric Gravi-downphase carry the information about the mass and spin of
tational Wave Observatorfl IGO) [1], VIRGO [2], GEO- the final black hole.
600 [3], ACIGA [4] and TAMA300[5] which are ground- In this paper, we consider gravitational ringing of dis-
based laser interferometers, and EXPLOREF5], torted spinningKerr) black holes. The ringdown waves are
ALLEGRO [7], NIOBE [8], NAUTILUS [9] and AURIGA due to quasinormal modes of black holes that are complex
[10] which are bar detectors. Furthermore, there are som&equency wave solutions of the perturbed Einstein equations
future space interferometer projects such as the Laser Intewith purely outgoing-wave boundary condition at infinity
ferometer Space AntenralSA) [11]. and ingoing-wave at horizon, with vanishing incoming-wave
The detection of gravitational waves provides us with notamplitude. A quasinormal mode is characterized by the cen-
only a direct experimental test of general relativity but also aral frequencyf., usually called the(quasiynormal-mode
new window to observe our Universe. To use them as a newequency, and the quality fact@ which is inversely pro-
tool of observation, it is necessary to know the theoreticaportional to the imaginary part of the complex frequency.
waveforms. Once we know them, we may appeal to thelhe gravitational waves emitted at the last stage of the for-
matched filtering technique to extract the source’s informasmation of a black hole are also expected to be dominated by
tion from gravitational wave signals. However, because théhe quasinormal modes.
signals are expected to be very weak and the amount of data The quasinormal modes can be obtained by solving the
will be enormous for long-term continuous observations, it isTeukolsky equation that governs the perturbation of a Kerr
essentially important to develop efficient data analysis methblack hole. Their properties were analyzed extensively by
ods. Leaver[12], and it is known that the least-damped mode
For the ground-based and future space-based interferonbelongs to thel =m=2 spin-2 spheroidal harmonic modes.
eters, the coalescences of compact object binaries are tAde dependence of the parametgfs,Q} of the least-
most important sources of gravitational waves. The procesgamped mode on the black hole paramefétsJ}, whereM
of coalescence can be divided into three distinct phases. Duis the black hole mass anlis the spin angular momentum,
ing an inspiral phase, the gravitational radiation reactionis briefly reviewed in Sec. Il. Assuming that the ringdown
time scale is much longer than the orbital period. The graviwaves are dominated by the least-damped mode, the black
tational waves from the inspiral carry the information of the hole parameter§M,J} can be uniquely determined by mea-
masses and spins of the systems and so on. After the inspiralyring the parameteid.,Q} of the gravitational wave sig-
compact object binaries encounter the dynamical instabilitynal.
and then would merge. This phase is called amerger It is noted that the ringdown signal decays exponentially.
phase. The gravitational waves from the merger give us th# the signal to noise ratiéSNR) is large, not much effort is
information about the highly nonlinear dynamics of relativ- needed to detect the signal, but if the SNR is small, the
istic gravity. Finally, if a black hole is formed by merger, this signal is going to be buried inside the noise even more after
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just one wave length, and there is absolutely no hope oparameten=J/M? that takes a value in the ranp@,1) with
seeing many more cycles, specifically because the signal=0 corresponding to a Schwarzschild black hole and
drops exponentially with time. So, we have to treat the loss=1 to extreme Kerr black hole. Quasinormal modes of a
of the SNR not to be large. black hole are complex frequency solutions of the Teukolsky
M.ethOdS to search for the I’inngWI’] WaVeS. Were.discusseﬂa\/e equation that Satisfy pure'y Outgoing_wave boundary
previously by several authors. Echeverfig] investigated congition at infinity and ingoing-wave at horizon with van-
the problem of extracting the black hole parameters fromgping incoming-wave amplitude. For fixed spheroidal har-
gravitational wave data in the case when the signal-to-noisg,nic indices ¢,m), there are infinite number of quasi-

ratio (SNR) Is Iarg_e. an[lAf] improved t.his situation by normal modes. They are assigned with an indewith the
developing a maximum likelihood analysis method that can,

deal with any SNR. Flanagan and Hughes then considereolrdgr Ohf thehmagmtI:Jde .Of th? |mag|nar);1 p?rt’ €., lhell

the parameter extraction from the three stages of a binar ode has the sma est imaginary pét the largest quallty

coalescence, i.e., from inspiral, merger and ringdown phase ’ctor). We call '.t the _Ieast-dampe(dimdamente)l mode. Itis

in their series papefd5]. For the ringdown phase, they dis- KNown that the imaginary part of the=m=2 least-damped

cussed the relation between the energy spectrum of the rg0de is the smallest of all the quasinormal modes, and re-

diation and the SNR. Creightdii6] reported the results of sultg of blac_k.hole_‘ pertu_rbatlon calculations as well as nu-

analyzing data of the Caltech 40m by matched filtering, andnerical relativity simulations strongly suggest that the ring-

emphasized the importance of coincidence event searches @wn waves are dominated by this=m=2 least-damped

discriminate spurious events from real events. But the searomode unless the spin parameteis extremely close to unity.

was limited to a single ringdown wave template. In order toHence, we focus on this mode.

treat ringdown waves with unknown parameters, we need to For the {=m=2 least-damped mode, analytical fitting

prepare a lot of theoretical templates. It is necessary to keeformulas for the central frequency and quality factor for a

the loss of the SNR as small as possible under limited comblack hole of mas$/ and dimensionless spmwere found

putational costs. So, we should consider an effective tempy Echeverria as

plate spacing. Recently, Arnaw al. [17] have discussed a

tiling method to cover the 2-dimensional template space

{f:,Q}. In this paper, we develop a different tiling method

which is much more efficient than that gf7] and examine

the efficiency with TAMA300 DT7 noise spectrum. Q=2.01—a) % (2.2
Here we make a comment on combining this search tech-

nique of ringdown waves with the current search techniquedhe ringdown waveform is expressed as

for the earlier two stages of the process in the coalescence of

compact object binaries, i.e., inspiral and merger phases. Ul-  N(fc:Qito, do31)

M -1
f.=32 kHZ1-0.631—a)%? M—) . (21
©

timately, the search method and the data analysis approach e~ met-10/Qcog 2 7 (t—ty) — o) for t=ty,
should be able to handle all the three phases in a unified =

manner, going smoothly from one phase to the next. In the 0 for t<to,
present state, it may be difficult to obtain the parameters of (2.3

the final black hole from the gravitational waves in the in-

spiral and merger phases. However, in the case when a cortheret, and ¢, are the initial time and phase of the ring-
pact star is inspiraling into a super massive black hole, wglown wave, respectively.

will be able to obtain the information about the mass of a

super massive black hole from the gravitational waves in the Ill. TEMPLATE SPACE

inspiral phase. This will improve the detection efficiency of hi . devel ffici hni f
ringdown waves significantly. In this section, we develop an efficient technique of tem-

The paper is organized as follows. In Sec. II, we brieflyplate spacing which can be used for matched filtering of the

review the quasinormal modes of spinning black holes. mquasinormal ””ging Wav_eforms. Here_, the d_etector noise_is
Sec. Ill, we consider the template spdég, Q) for the white ~ 2SSUMed to be white noise to make it possible to deal with
noise case analytically and develop an efficient tilingthe P“’b'ef_“ analytically. The case of the colored noise Is
method. In Sec. IV, by using a fitting curve for the TAMA discussed in the next section.

DT7 noise spectrum, we show that our tiling method devel- ) )

oped in the case of white noise is valid even in the case of A. Distance function

colored noise. Section V is devoted to summary and discus- We have temporarily set the amplitude to unity for sim-
sion. In Appendix A, we discuss simpler cases when onlyplicity in Eq. (2.3). Note that the knowledge of the amplitude
cosine or sine part of the ringdown waves are considered. If§ not necessary for the template spacing in matched filtering.

Appendix B, we discuss the number of templates in the Casfort=t,, the ringdown wavé2.3) is divided into two parts:
when the mass of the black hole is known.
h(fc,Q.to,do;t) =hc(fe,Q,to;t)coseg

+hS(fC!Q1t0;t)Sin¢01 (31)

II. QUASINORMAL RINGING MODES

A black hole is characterized by its mabt and spin
angular momentund. Here we use the dimensionless spinwhere
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hc(fc,Q'to;t):e_ch(t—to)/Qcos(zﬂ-fC(t—to))’ (3.2 first introduce the normalized template. We define the nor-
malization constants as
he(fe,Q,tg;t)=e ™71 sin2 7 .(t—ty)). (3.3 - ~
5 Ne(fe,Qito) = (he(fe,Q,to) . he(fe,Q,t0))
Performing the Fourier transformation h¢(f)

=[*_dte?™th4(t), we obtain the waveform in the fre- ~1(2Q°+1)Q
quency domain as ) 7(4Q%+ 1)f,’ (3.8
Fe(f f)= (fe—21fQ) Qe f = (he(f Fe(f
C( C1Q1t0! )_ 7T(2fCQ_|fc_2fQ)(2fCQ+|fc+2fQ), NS( CantO)_( S( CertO)a S( caQatO))
3.4 3
o4 R S (3.9
_ 2ch262i'n'ft0 77(4Q +1)fc
hg(fe,Q,tg:;f)= - - . .
s(fe,Qtoif) m(2f . Q—if,—2fQ)(2f.Q+if . +2fQ) when we set f,,=%. The normalized templates
(3.5  hos(fc.Q.to:f) are given by
The waveform in the time domain is real, so the following A 1 -
relation is satisfied: heis(fe,Qutoif) = —m——e==ohes(fc. Q.to; ).
NC/S(fC 1Q1t0) 1
h*(f)=h(-1), (3.6) (310
I We then consideh=h.cos¢,+hsing, as a template. We
where the star {) denotes the complex conjugation. c 0 -
Here, we introduce the inner product between two func—nOtFT th&.lt then; andhs are not orthogonal. Their inner prod-
tions as uct is given by
™ G facB (Pl ¢, Quto) Ae( Fe, Qo)) =~
— * s s s s s = —
(a,b) ffmaxdfa(f)b (f), (37) cllc 0/,!s\ ¢ 0 2(2Q2+1)
wheref ., is the maximum frequency we take into account =:c(f.,Q,tp),
in the analysis. In the actual data analysis, it is equal to or (3.1)

less than the half of the sampling frequency of data. R
In the matched filtering, we calculate the inner productwhenf,,=. In this case, the maximization okh) over
between the templateand the signak defined by &,h). We  the phasep, can be carried out analytically to yie[d8]

B L (he(fe,Q,10))2+ (X, Ag(fe, Q,t0))2— 2¢(Fe, Q,t0) (X, A, Q,t0)) (X, Ag( Fe Q1))
A(x)=maxx,h)= > .
$0 1_C(fC!Q!tO)

(3.12

In the following, we consider the 3-dimensional template sgdgeQ,to}.
Here we consider the mat€(df.,dQ,dty) between the template witH {,Q,t,) and the normalized signal having slightly
different sets of the parameterk. ¢ df.,Q+dQ,ty+dty). Since we have already maximized over the phagse A, without

losing generality, we only need to considerfor the signal. Then, the match is defined by

C(df,,dQ,dty)=A(hy(f.+df.,Q+dQ,to+dty))

4 2 2 2
L 2Q 2_ 2Q%(4Q°+5) 407 2Q d1.do
(2Q%+1)f2 (4Q%+1)%(2Q%+1) f.(4Q2+1)(2Q%+1)
4t (1+4Q%) fay, ,  mfe
+ 0205 1) s 2Q2+1dton, (3.13
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where we have used the approximatifyp,f., and only The metric in the case of onllg; or hg as templates is
the leading term irf,,,/f. are shown. We will find that the discussed in Appendix A.
dependence df,,,Will be cancelled out and does not appear
in the final result. The inequalit¢(df.,dQ,dt;)<1 means C. Diagonalization of the metric
that there will be a loss of signal-to-noise ratio unless the
actual parameters of a gravitational wave signal fall exactly[h
onto one of the templates.

The smaller the matcl€ is, the larger the distance is
between the two signals in the template space. Therefore,
define the metric in the template spacecbsfs)z 1-C[19],

Let us perform the coordinate transformation by which
e two dimensional metri€3.16) is transformed to a diag-
onal, conformally flat metric.
We start from the coordinate transformation that removes
"Re frequency dependence in the metric. We set

that is, df,
dF:f_’ (317)
d3%3)=g|(13)dx'dxl C
which gives
2Q4 2Q%(4Q%+5
= 2Q sdfe+ 2Q(S+2) dQ? d?=grrdF2+ good Q2+ 2grod FAQ
(2Q%+1)f2 (4Q%+1)%(2Q%+1) 9FF 9q 9rQ
- ah df.dQ _ 29 dF*+ 2Q°4Q°+5) dQ?
fo(4Q%+1)(2Q%+1) °© (2Q%+1) (4Q%+1)%(2Q%+1)
4rf(1+4Q) e ,  he 2Q°
- dFdQ. 3.1
" Q(20Q2+1) 0 2Q2+1dt°dQ' (40%2+1)(2Q%+1) Q (3.18

(3.149  The transformation that removes the off-diagonal element is
found by setting==X—u(Q) and requiring

B. Projection to 2-dimensional template space ,
grrU'(Q) —0gro=0. (3.19

Now to maximize the match with respectdd,, we con-
sider a projection of the distance function into two dimen-We find
sions spanned bf, andQ. Namely, we projecgi(f) to a two
dimensional subspace orthogonal to thexis[19] as

1
u==In

> , (3.20

4 1
+_
(3)g(3) Q*
Qit, 901,

e (315  which gives

tot
o ds*=gprdX?+ (gppu’ °—2grqu’ +dqq)dQ?
where the indices$,J are{f.,Q}. So, we find

2
9rr900~ 9k
2Q4 =0 dX2+ TQdQZ .
4, =g@Pdxdx’= ——<—df? a
S(22) 915 (2Q2+1)f§ c (3.2)
0 n Then we can perform a further coordinate transformation to
2Q7(4Q°+5) 2 make the metric conformally flat. Namely, by the transfor-
(4Q2%+1)%(2Q%+1) mationQ—Y defined by
2Q3 o [detg(Q’ o [ x+1
- 5 5 df.dQ, (3.16 Y:f dQ’ ﬂ:f dx\/———— (Q>0),
fo(4Q%+1)(2Q%+1) Q gre(Q')  J@2 o VX(4x+1)
(3.22
where we have taken the limit,,— . )
It is noted that the cross terdf.dQ arises here. Later, we we obtain
discuss a coordinate transformation in the template space ds2=Q(Y)(dX2+dY?), (3.23

that removes the cross term, in order to make our analysis of

the template spacing and the error estimation easier. We al§ghere the conformal factor is given by

note that the dependence of the metricfgrcan be elimi-

nated by the simple coordinate transformatfgr-In f.. Q(Y)=gee(Q(Y)). (3.29
It is also noted that the smaller the volume element of the

metric is the fewer the number of required filters is to coverHere Q is now a function ofY determined by inverting Eq.

the template space. (3.22.
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Although the above coordinate transformation involves
complicated functions that may not be expressed in terms of

elementary functions, we find it is sufficient to use their large I

Q expansion forms foQ=2. Up to O(1/Q?®) inclusive, we d

have 1

X—F+—F+I2+11 11+11 t 1

SPHu=FEHInet 8 57 64 0% T 3840°  2048Q°
(3.29
FIG. 1. Definition ofd andr.
11 11 3 1 11 17 1

Y=5 o) 54 Q% 1600Q° +ﬁ3§ ~ 2608Q° that Yo>Yy since largeY corresponds to sma®. _

(3.26 First, we construct a method to determine the spacing of

the circles along eacti=const line. Let us consider the line
To the same accuracy, the inverse transformation becomesY=q and place two circles with radiuscentered at§,q)

1 ; o7 and (p+Ap,q),
—y_ _vy24 A~ b 8
F=X-In2 2Y +12Y 45Y + 360Y , (3.27 (X—p)2+(Y—q)2=r2, (X—p—Ap)2+(Y—q)2=r2.
(3.30
Q= 1 1+£Y— 3_7y3+ 166, 5_ &NY? We assumeAp<2r so that the two circles intersect at the
2Y 6 90 135 1350 two points,(p+Ap/2, q=d(r;p)), whered(r;p) is the dis-
(3.28  tance to each intersecting point from the Ivie=q (see Fig.
1), given by

The conformal factof)(Y) is given by

Ap?
11 1 37, 85 , 13069 AD)= /12—
Q(Y)= Y2 oyAL S PN d(r;Ap) - (3.3)

4Y2 360" B4’ 2700 '

(3.29 Our purpose is to tile the template space by the smallest
gossible number of filters. In order to do so, we choose the
parameterp in such a way that the area defined By
=Apd(r;Ap) is maximized, i.e.,

WhenQ=2, the errors induced by the above expansion ar
found to be~0.1%. This is accurate enough for our purpose
as long as we allow the SNR los#s?.,, of a few percent.

Ap= \/Er , (3.32
D. Tiling method: basis

In the previous subsection, we have derived the simple, d= r (3.33
conformally flat metric(3.23 for the template space. Here, V2 ’
using this metric, we formulate a tiling algorithm which is
not only efficient but also quite simple. The radiusr is determined by the value @I‘sﬁm andq as

To develop such a method, we note the following. Be-
cause of the conformal flatness, the contour of the fixed rzzds‘fnax (3.34
maximum distanceds’=ds,,, centered at a point on the Q(g)° |

(X,Y) plane is a circle for sufficiently smaﬂg?nax. Further-
more, along a line ofY=const, Q(Y) is constant. Thus,
choosing first an appropriaté=const line, sayy=q,, we
may place circles of the same radius with their centers lo
cated along the lin&¥ = q, to cover a region surrounding that
line. Then, if we find an algorithm to place circles along the
Y=g, line and another algorithm to choose the né&kt
=const line, sayY =(,, to be covered in an appropriate way,
we can repeat this tiling procedure to cover the whole tem
plate space.

Let us assume that the template space to be tiled is a — (Y. _
rectangle given byF pin=<F<F nax and Qmin<Q<Qpax. IN (P18 =(Xo~ 11 /V2.Yo=11/\2), (3-39
the (X,Y) coordinates, this rectangle is mapped to the regiowith the radius determined by solving E3.34), which
bounded by the twoY=const lines corresponding tQ reads in the present case,
= Qpin and Q= Qpax, Which we denote by =Y, andYy,
respectively, and the two liN@$=v ,,(Y) andX=0v(Y) dsha= 110(Yo—11/12). (3.39
corresponding td-=F,, and F=F ., respectively. Note Then the center of thath circle is at

In this way, we tile the region that covers the liMe=q.

To choose the first line to be covered, we start from the
point on the K,Y) plane corresponding to F(Q)
=(Fmax,Qmin), that is, X,Y)=(Xo,Yo) where X,
=vmad Yo)- Then we choose the first ling€=q; and the
radiusr, so that the pointX,,Y,) is just on the edge of the
first circle and an intersecting point of the first and second
circles lies on the liné/=Y, as Fig. 2. This is achieved if
the center of the first circle is at
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(Xo, ¥o)

0.25 1

0.27

0 5.1 5.156 5.2 5.25 53 5356

FIG. 2. Choosing the first line on th&(Y) plane.

(Pn.d1)=Xo— (2n=1)r1/\2,Yo—r11/\/2), (3.37)

and the number of circles needed to cover the ¥neq; is
given by

Ly
Jar,

where[x] denotes the maximum integer smaller thah 1
andL, is the coordinate length of to be covered, i.e.,

Li=vmad Yo) —vmin(Yo)

N1:

, (3.38

=Fmax= Fmin

=L. (3.39

Once the covering of the first line is done, the secdnhd
= const line is chosen as follows. L¥;=Y,— \/2r; and let

(X1,Y,) be the intersecting point of the liné&=Y,; and X

=0madY), i€, X1,Y1)=@madY1),Y1). We choose this

PHYSICAL REVIEW D 68, 102003 (2003

second lineY=q is

(P2,02)=(X1—r2/2,Y1=1,/42), (3.40

with the radiusr, determined again by E@3.34). Then the
second line is covered by the same procedure we took for the
first line. We repeat this procedure until we tile the whole
template space we need to cover.

With this tiling procedure, the total number of templates is
given as follows. Generalizing Ed3.38, the number of
templates for theth Y=const line Y=q;) is

L
N=|—1, 3.4
| (3.41)
wherer; is determined by
A5 PQ(Yioa—1i/42). (3.42

The number ofY=const lines necessary to cover the tem-
plate space is determined by the minimum integethat
satisfies the inequality,

2 \/EriZYO_YM . (343
=1
And the total number of templates is
N=>'N;. (3.44
=1

E. Tiling method: application

Let us apply the method developed in the previous sub-
section to the case of the parameter spdgeQ@) which has
the range

10? Hz=f,<10* Hz,

2<Q=20. (3.45

point as the starting point for the covering of the second line

as Fig. 3. That is, the center of the first circf®(q,) on the

We setds?.=0.02. This choice is made in order to make
the SNR loss to be-3% in the presence of colored noise as
discussed in the next section. Using E§.17), we setF
=In(f/100 Hz). The above range corresponds to

0.17

0.05 1

0.251 /\

0.2

A

/\

\/ (X,.1,)
. U4
[T
(p,.q,)
5.I1 5.i5 5:2 5.I25 5:3 5 é5

X

FIG. 3. Covering of the second line.

6.93x 10" 1< X=<5.33,

2.50x10°2<Y<2.55x10° %,
(3.46

in the (X,Y) space(See Table ).

Following the procedure described in the previous subsec-
tion, we choose the starting poinX{,Y,) which corre-
sponds to {.,Q)=(10% Hz,2.0). The radius; is deter-
mined by Eq.(3.36), or

0.02=r2Q0(Yo—r,/42). (3.47)
Then all the parameters for our tiling method are determined.
In Table Il, we summarize the tiling parameters.
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TABLE I. The relation between the two coordinates.

(fe.Q) (X,Y)

10? Hz, 2.0 7.234 594 008101, 2.546 762 255 10 *
10? Hz, 20.0 6.934 595 83010 %, 2.500 520 248 102
10° Hz, 2.0 3.026 044 494, 2.546 762 2850 *
10° Hz, 20.0 2.996 044 676, 2.500 520 2480 2
10* Hz, 2.0 5.328 629 588, 2.546 762 2850 *
10* Hz, 20.0 5.298 629 769, 2.500 520 2480 2

It is noted that the number of the Y=const lines is very
small,

0 51 515 52 525 53 535
v=0. (3.48 X
The total number of templates is calculated toAfe 1148 FIG. 4. A part of the tiling of the template space in thé,Y)

(N=1780 forQmax=134.3). In Fig. 4, we show the tiling of coordinates. Templates are taken at the centers of the circles.
the template space in thX(Y) coordinategsee also Fig. b . o . )
The tiling of the template space in the original coordinateshiS @ssumption is very good because the ringing wave is
(f.,Q) is shown in Fig. 6(See also Fig. 7. r_ather narrow band_ed except the_z cgse?2. In ordg_r to con-

In order to see how effective this tiling method is, we firm this, we examine the effectiveness of the tiling method

calculate the ratio between the sum of the areas of all thi the case of colored noise.

circles S and the area to be cover&l,. We find As a model of detector’s noise, we use a fitting curve of
o & the one sided noise power spectrum of TAMA300, which is
S given by
7 Soa E%OfD"(SﬂGS 1(2231§+1(7133
~157. (3.49 f)2if ol f

6
Here we have adopte®,,,,=22.9 which is slightly larger I _) ]
than the preassigned value ©f,,,=20. The former value 200 20 5500

corresponds to the va_lu‘é=q6—r6/\/§, i.e., the value of  Thjs formula of the noise spectrum is obtained by fitting Fig.
the Y= const line marginally covered by the circles centereds 4 1 in TAMA REPORT 200720] which is based on the
along the lineY=gqg. This ratio corresponds t@ in the  gpectrum during Data Taking 7 in 2002, and is valid between
paper by Arnaudet al. [17], in which they obtainedr 60 Hz and 40000 Hz. Here we have ignored the overall am-
=2.12 fqr_their tiIing_ method. Thus our tiling method is far pjitude of S, because it does not affect the results.
more efficient(and simpley than that of Arnaucet al. We prepare the template bank using the analytical method
in the white noise case. The minimal match is assumed to be
IV. VALIDITY OF TILING METHOD IN THE CASE 0.98. We also generate signals which are normalized to unity.
OF COLORED NOISE SPECTRUM We then calculate the maximum of the match between the
signal and templates. When the signal is completely the
The tiling method discussed in the previous section issame, the match becomes unity. However, we have the match
based on an assumption that the noise is white. We expefdss than unity due to mismatch between signal and tem-

4.9

2000 '5

3 1/ f )2 1
5

TABLE Il. The parameters for the tiling of the template space are summarizgdY,) denotes the
starting point of theéth template spacing along the liye=q;. (p;,q;) denotes the center of the first circle
along theith liney=q;, r; is the radius of the circle, any; is the number of circles necessary to cover the
ith line.

(pi,ai) (Xi,Y) ri N;

5.328 629 588, 2.546 762 2530 !
5.285172 504, 2.112 191 4%40™ ! 5.311 957 476, 1.677 620 5%30° ' 6.145 759 76% 1072 53
5.283 700 230, 1.395 048 14301 5.304 418 737, 1.112 4756580 1 3.996 178 011072 82
5.285 789 828, 9.261 865 69402 5.301 037 366, 7.398 974 888102 2.634 525 55610 2 124
5.288 679 812, 6.163 219 420.0™2 5.299 527 944, 4.927 464 032102 1.747 622 02% 10 % 187
5.291 307 826, 4.105 452 2%@.0 2 5.298 855 740, 3.283 440 5%9.0 2 1.162 500 17410 2 281
5.293 381 065, 2.735 973 0%40 2 7.742 359 63% 10 ° 421

S ok wWN PR O
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0.37
0.25 1

I R NI FIG. 5. The template points on
the (X,Y) plane. It is noted that
we may put the templates with the
same interval along th& direc-
L 1 0 0 tion.

3
X

plates. If the match is always greater than 0.98, we have & performing the coordinate transformation of the metric of

justification to use the tiling method even in the case of thehe template space because@%2. We also find an effi-

colored noise spectrum. cient tiling method of the template space which can been
We used 2500 signals. The range of the central frequencfprmulated analytically. When the range fif andQ is 107

f. and theQ value of the signals are 100 KA .<10* Hz <f,<10"Hz and 2<Q=20, and the minimal match is

and 2<Q=20 respectively. The value df, andQ are ran- 0.97, the ratiop, between the sum of the areas of the equal

domly given in this region. match circles around the template%;,, and the area to be
In Fig. 8, we show the number of signals in terms of thecovered,Sy,;, is 1.57 which is much smaller than the value
value of the match. obtained before.

From Fig. 8, we find that we can detect the most of the Next, we have discuss the validity of this tiling method in
signals without losing 2% of the signal-to-noise ratio by thethe case of colored noise spectrum. As a model of realistic
tiling method assuming white noise. Thus, the tiling methodnoise power spectrum, we used a fitting curve of the noise
constructed analytically assuming white noise, is valid everpower spectrum of TAMA300 during 2002. We prepare a
in the case of the TAMA noise spectrum. template bank assuming the minimum match 98%. We then
examined the loss of signal-to-noise ratio of the signals de-
tected in the template bank. We found that, in most case, we
do not lose the signal-to-noise ratio no more than 2% which

In this paper, we proposed a tiling method of the templatds expected from the preassigned minimum match. This
space in the matched filtering search for the gravitationashows that the tiling method can be used even in the case of
waves of black hole ringing. colored noise spectrum.

First, we discussed a tiling method assuming the detector The tiling method should be tested using the real data of
noise is white. We found that theQ/expansion was useful laser interferometers. A study in this direction using the data

of TAMA300 is now progressin§21].

1057 In the analysis using real interferometers’ data, we have to
treat the nonstationary, non-Gaussian noise. It is fd
that we observe even more fake events than in the case of
inspiraling wave, since the ringing wave is usually much
shorter than the inspiral waves and can easily be affected by
short bursts. In this situation, we would need to introduce
some methods to remove such fake events without losing
real ringing gravitational wave signals. Coincidence analysis
between several detectors would also be needed to reduce the
fake event rate. Further, since the ringing waves may be
excited by the detector itself, we may need to perform coin-
cidence analysis to reject such spurious events anyway. We
will also work on this problem in the future.

V. DISCUSSION
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N , o APPENDIX A: THE METRIC IN SOME SPECIAL CASES
FIG. 6. A part of the tiling of the template space in the original

coordinates {.,Q) with f. measured in units of 100 Hz. Note that In this appendix, we summarize the distance function in
the contour ofds%,=0.02 for each template is warped. the case when we consider only the cosine or sine part of the
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FIG. 7. The template points on

. ] SO R the original coordinatesf¢.Q).
101 The smaller the value df; is, the
P T |arger the number of temp|ates is
6] needed.
41 .
2 20 40 60 80 100

wave, ignoring the contribution of the phase and the initial ~
time. We also consider the case when the detector noise is N(fc,Q)Zf [h(f.,Q;f)|%df
white. Although the applicability of such special cases will o

be limited, we describe them here because there are still

some cases when these formulas become useful.

o]

1 (2Q%+1)Q

S A3
2 m(4Q%+1)f, A3

1. Cosine wave case

We consider the cosine waveform ignoring the initial time o )
and phase of a ringdown wave, With the above normalization constant, the normalized wave
h(f.,Q;f) is given b
o e "Qcog27f t) for t=0, AL (fo.Qif) Is g Y
(fe.Qi)= 0 for t<O0. A1)

n 1 -
h”mQﬁFﬁh(fc,Q;f)- (A4)

Performing  the  Fourier  transformation h(f)
=[”_dte?™h(t), we obtain the waveform in the fre-

quency domain as Now, we consider the correlation between the two nor-
malized waves having slightly different sets of the param-
(f.—2ifQ)Q eters (.,Q) and (f.+df;,Q+dQ),
(2f.Q—if,—2fQ)(2f.Q+if . +2fQ)"
(A2)

h(fe,Qif)=—

©

C(dfc,dQ):j dfh(f.,Q;f)h* (f.+df.,Q+dQ;f)

In the following, we consider normalized waveforms. The
normalization constant is derived as

116Q%+6Q%+1

30 ] 8 (2Q%+1)f2  °©
093 I | 164Q%+128Q°+28Q%+1
2507 8 Q2(4Q2+ 1)2(2Q2+ 1)2
200 — 1 (8Q*+2Q%+1)
- df.dQ. (A5
150 4 1.Q(4Q°+1)(2Q°+1) o (A9

100

The inequalityC(df.,dQ)=<1 means that there will be a
loss of the signal to noise ratio unless the actual parameters
of a gravitational wave signal fall exactly onto one of the
templates.

FIG. 8. The number of signals in terms of the value of the match ~ The smaller the correlatio@ is, the larger the distance is
between the signal and templates. The bank of templates are detdtetween the two signals in the template space. Therefore, we
mined assuming the minimum match 0.98 using the method in Seglefine the metric in the template spacedsf=1—C, that
Ill. The mean value of the match is 0.993. is,

507

07 s 0.985 0.99 0.995 1
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* TABLE Ill. The estimation of the number of filters with the
127 . maximum SNR loss of 3%.
109 ¢ fma(H2) Qmax=10 Qma= 107 Qmax= 10°
8 ‘ 10° 218 2661 27084
° 10 436 5321 54 167
6] o
47 ¢ From Fig. 9, we see that the lar@®,., approximation is
° good even for smalle®, .« as far as the number of required
27 N filters is concerned. In Table Ill, we show the number of
filters in the cas&Qyin=2, fmin=100 Hz, andds?_=0.03
0% "4 4§ 8 10 12 14 16 18 20 for several values of ., and Q. We also note that the
Qs number of required filters depends on the choice of a tiling

] ] method in practice.
FIG. 9. TheQ,a dependence of the number of required filters Next, let us perform the coordinate transformation by

[2d 55N /10g(fmax/ T min) 1. Here we chos@n=2. which the cosine-wave template met(i&6) is transformed
to a diagonal, conformally flat metric.
1 16Q%+6Q%+1 ) We start from the coordinate transformation that removes
TQ o2, ...2 dlc the frequency dependence in the metric,
8 (2Q%+1)f2 quency dep
dF=dInf., (A10)

1 64Q8%+128Q6+ 28Q4+1d )
g Q2(4Q2+ 1)2(2Q2+ 1)2 Q which giveS

1 8Q*+2Q%+1

- df.dQ,  (A6)

4 £,Q4Q7+1)(2Q7+ 1) 1160460741,

2 S8 (2Q%+1)

Qg L gr.d

- fe ¢ 8Q? RERPTNORE 164Q°%+128Q°+28Q%+1

_ dQ
8 Q%(4Q%+1)%(2Q%+1)?

for large Q. (A7)

1 8Q*+20Q%+1
4 Q(4Q%+1)(2Q%*+1)

Note that the dependence of the metric forcan be elimi- dFdQ. (All1)

nated by the simple coordinate transformatiga-In f.. The
metric in the case of the sine-wave templates instead of thene transformation that removes the off-diagonal element is
cosine-wave templatg#\1) is calculated in the next subsec- ¢5,,nq by setting® = X—u(Q) and requiring
tion. For largeQ, the two metrics coincide with each other,
implying that the phase effect is weak in the laQdimit. grrU’(Q) —0gro=0. (A12)

The number of filtersN¢, which are required to achieve
the detection efficiency determined by the maximum allow-We find

able distanceds?,, (i.e., the maximum allowable loss of 5
SNR) in the regionf =< f<f 1ax @NAd Q in=< Q=< Qax IS €S- u=3 \/ZA[ arctar( 3+16Q
1

_gl

timated by integrating the volume elemeyidetg over that J7
region of the template space. We find 4 4 )
1 16Q%16Q*+6Q%+1)
1 —~In 7 : (A13)
B . 4 (4Q%+1)
Nf_z(dsﬁ‘lax) In(fmax/fmin)
which gives
Qnmax 16Q%+ 3204+ 10Q2+1)12 , ,
xf QU FIHIRTHEDT ) ds?=grrdX?+ (grrl’ #— 20U’ +0qQ)dQ?
Qmn  (2Q7+1)¥H4Q*+ 1)1 )
9rr900~ 9F0
The Q. dependence oN; is shown in Fig. 9. For large =0rr| dX*+ g2 dQ*. (Al4)
FF

Qmax it can be derived analytically 446]

7

2
Nf|largeQ:T(dsr2nax)_1ln(fmax/fmin)Qmax- (A9)

Then we can perform a further coordinate transformation to
make the metric conformally flat. Namely, by the transfor-
mation Q—Y defined by
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fw [detg(Q")
=| dQ’ =
Q 9rr(Q')

Fd \/ 64x* + 1443+ 72+ 14x+ 1
= X2
QZ

PHYSICAL REVIEW D 68, 102003 (2003

2. Sine wave

Next, we consider the damped sine wave
e~ "Qsin(2nf ). The calculation is done as same as the
cosine wave case. First, we obtain

Q>0)1 4
(64x3+ 402+ 10x+ 1) 1+ 2x 42— _(8Qz+3)sz 1Q7H3 o2
8 2 2
(A15) Q%(4Q%+1)
. 1 4Q%+3
we obtain _Z Q—dFd Q. (A23)
4Q(4Q%+1)
ds?=Q(Y)(dX?+dY?), (A16)
o For the above metric, theQ/expansion is performed and we
where the conformal factor is given by obtain
Q(Y)= Y)). Al7
(Y)=0rr(Q(Y)) (A17) ds2=gerdF2+goqd Q%+ 2grodFdQ, (A24)
Here Q is now a function ofY determined by inverting Eqg.
(A15). 3
Although the above coordinate transformation involves grr=Q%+ 3’
complicated functions that may not be expressed in terms of
elementary functions, we find it is sufficient to use their large
Q expansion forms foQ=2. Up to O(1/Q®) inclusive, we 11 11 31 5 1 7 1

have

907§ Q2 16Q7 " 64Q° 256Q° | 1024Q10’

N - 11 3 1 13 1
U=r" 1602 256Q4 3072Q° 11 11 11 1 1 1 1
9= " 20 16 o2 805 280’ T 100240°"
43 1 . 109 1 . 8Q 16Q° 64Q° 256Q7 1024Q
© 32768Q% ' 327 680010’
Q Q The expansion is considered up@§1/Q®) beyond the lead-
ing term.
\F 1 i 1 3 i 211 el27 1 Next, we consider the following coordinate transforma-
4\Q 12 Q° 640 Q5 256Q7 98304Q°%) tion:
(A19) wep Ll o111
SFT A2 T 5ER E T 20796
To the same accuracy, the inverse transformation becomes 16 Q"  256Q" 3072Q
4 1 17 1
Foy 1 viL 17Y 586Y6 47 587Y8 3153 013Ylo + 22 368_8 357 280_10’ (A25)
T2V T s T30 T 2025 7 Q Q
(A20)
Y\F(l 11+271 43 1+10671
4401 959 9892 737 2 1 RN YT e a7 9|
0= \[ VIRV v 41Q 6Q° 640Q° 3584Q7 1 294912Q
5400 135 90 3 Y
(A21) (A26)
The conformal facto€)(Y) is given by The inverse transformation of this is given by
749 639 1255 119 1 11
QY)=— 6y (Vi Y2+—+——2 FoX_ EYZ_ 1—9Y4—@Y6— 15 263Y8_181 651Ylo
5400 108 120 24 8Y 2 12 45 2520 14175
(A22) (A27)
The structure of this metric is the same as the one in the
general case discussed in Sec. Ill. The effective tiling method  _ \ﬁ _ 71083, 1073 5 77, 4, L
describe in Sec. Il can thus be used to set the template space 4\ 37800 945 90 3 Y/
using this metric. (A28)
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Finally, we obtain the conformally flat metric as perform an analysis to search for the ringdown wave using
5 ) these mass parameters. Here we investigate how much tem-
ds’=Q(Y)(dX*+dY?), (A29)  plates we need in this situation.
When we know the madd of a black hole, we only need

Q(Y) = Ly6+ iY4+ in+ i+ 1 i to investigate the spin of the black hole. From E@s1) and

5400 756 120 24 8Y? (2.2), the relation betweefi, andQ becomes
(A30)

Q —2/3 M -1

The structure of this metric is the same as the one in the fc:32({1—0-63<§ KM_@) , (B1)

general case of Sec. lll and the case of cosine wave. Espe-

cially, the leading term with respect toQ/are the same as in  where we normalize the frequency by 100 Hz. Now, we con-
the case of cosine wave. Therefore, the effective tilingsider the white noise case. We only consider the cosine wave
method described in Sec. Il is also applicable to this case.case. These assumptions are sufficient for the purpose here.
From Eg.(Bl),
APPENDIX B: THE NUMBER OF TEMPLATES WHEN

THE MASS IS KNOWN of 4 M

-1
—==210 —| Q%% (B2)

In this appendix, we consider the case when a compact 9Q Mo

black hole with mass f0-1fMy, and after the final

plunge, the ringing wave is excited. In such cases, it is ex- ds?~(0.450 #*-0.171Q ¥3+0.130 ?)dQ?
pected that masses of the super massive black hole and the
compact star is determined accurately during the inspiral ~0.45Q “Fd Q2. (B3)

phase. We do not know exactly the mass of the final black

hole after the plunge of the compact star because we do ndYhen the maximum loss of the signal to noise rata,,, is
know how much energy are radiated as the gravitationagiven, the number of templates needed to achieve this effi-
waves and how much mass loss will be occurred in the casgiency is estimated ald=(Q3 —Q¥3)/ds, ... If we con-

of neutron star. In this case, however, we can assume thgder Q,;,=2 andQ,,,,= 100, we only need 20 templates.
mass of the final black hole within the accuracy 80 Thus, the prior knowledge of the black hole mass will make

~10 % since the mass ratio is very large. In this case, we cathe matched filtering analysis substantially easy.
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