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An effective search method for gravitational ringing of black holes
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We develop a search method for gravitational ringing of black holes. The gravitational ringing is due to
complex frequency modes called the quasinormal modes that are excited when a black hole geometry is
perturbed. The detection of it will be a direct confirmation of the existence of a black hole. Assuming that the
ringdown waves are dominated by the least-damped~fundamental! mode with the least imaginary part, we
consider matched filtering and develop an optimal method to search for the ringdown waves that have damped
sinusoidal wave forms. When we use the matched filtering method, a data analysis with a lot of templates is
required. Here we have to ensure a proper match between the filter as a template and the real wave. It is
necessary to keep the detection efficiency as high as possible under limited computational costs. First, we
consider the white noise case for which the matched filtering can be studied analytically. We construct an
efficient method for tiling the template space. Then, using a fitting curve of the TAMA300 DT7 noise spec-
trum, we numerically consider the case of colored noise. We find our tiling method developed for the white
noise case is still valid even if the noise is colored.
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I. INTRODUCTION

There are many ongoing projects of gravitational wa
detection around the world; the Laser Interferometric Gra
tational Wave Observatory~LIGO! @1#, VIRGO @2#, GEO-
600 @3#, ACIGA @4# and TAMA300 @5# which are ground-
based laser interferometers, and EXPLORER@6#,
ALLEGRO @7#, NIOBE @8#, NAUTILUS @9# and AURIGA
@10# which are bar detectors. Furthermore, there are so
future space interferometer projects such as the Laser In
ferometer Space Antenna~LISA! @11#.

The detection of gravitational waves provides us with n
only a direct experimental test of general relativity but als
new window to observe our Universe. To use them as a n
tool of observation, it is necessary to know the theoreti
waveforms. Once we know them, we may appeal to
matched filtering technique to extract the source’s inform
tion from gravitational wave signals. However, because
signals are expected to be very weak and the amount of
will be enormous for long-term continuous observations, i
essentially important to develop efficient data analysis me
ods.

For the ground-based and future space-based interfe
eters, the coalescences of compact object binaries are
most important sources of gravitational waves. The proc
of coalescence can be divided into three distinct phases.
ing an inspiral phase, the gravitational radiation reactio
time scale is much longer than the orbital period. The gra
tational waves from the inspiral carry the information of t
masses and spins of the systems and so on. After the ins
compact object binaries encounter the dynamical instab
and then would merge. This phase is called as amerger
phase. The gravitational waves from the merger give us
information about the highly nonlinear dynamics of relat
istic gravity. Finally, if a black hole is formed by merger, th
0556-2821/2003/68~10!/102003~12!/$20.00 68 1020
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system can be describe as oscillations of this final bl
hole’s quasinormal modes and then settles down to a sta
ary Kerr state. The emitted gravitational waves in thisring-
downphase carry the information about the mass and spi
the final black hole.

In this paper, we consider gravitational ringing of di
torted spinning~Kerr! black holes. The ringdown waves ar
due to quasinormal modes of black holes that are comp
frequency wave solutions of the perturbed Einstein equati
with purely outgoing-wave boundary condition at infini
and ingoing-wave at horizon, with vanishing incoming-wa
amplitude. A quasinormal mode is characterized by the c
tral frequency f c , usually called the~quasi-!normal-mode
frequency, and the quality factorQ which is inversely pro-
portional to the imaginary part of the complex frequenc
The gravitational waves emitted at the last stage of the
mation of a black hole are also expected to be dominated
the quasinormal modes.

The quasinormal modes can be obtained by solving
Teukolsky equation that governs the perturbation of a K
black hole. Their properties were analyzed extensively
Leaver @12#, and it is known that the least-damped mo
belongs to the,5m52 spin-2 spheroidal harmonic mode
The dependence of the parameters$ f c ,Q% of the least-
damped mode on the black hole parameters$M ,J%, whereM
is the black hole mass andJ is the spin angular momentum
is briefly reviewed in Sec. II. Assuming that the ringdow
waves are dominated by the least-damped mode, the b
hole parameters$M ,J% can be uniquely determined by me
suring the parameters$ f c ,Q% of the gravitational wave sig-
nal.

It is noted that the ringdown signal decays exponentia
If the signal to noise ratio~SNR! is large, not much effort is
needed to detect the signal, but if the SNR is small,
signal is going to be buried inside the noise even more a
©2003 The American Physical Society03-1
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just one wave length, and there is absolutely no hope
seeing many more cycles, specifically because the si
drops exponentially with time. So, we have to treat the l
of the SNR not to be large.

Methods to search for the ringdown waves were discus
previously by several authors. Echeverria@13# investigated
the problem of extracting the black hole parameters fr
gravitational wave data in the case when the signal-to-n
ratio ~SNR! is large. Finn@14# improved this situation by
developing a maximum likelihood analysis method that c
deal with any SNR. Flanagan and Hughes then conside
the parameter extraction from the three stages of a bin
coalescence, i.e., from inspiral, merger and ringdown pha
in their series papers@15#. For the ringdown phase, they dis
cussed the relation between the energy spectrum of the
diation and the SNR. Creighton@16# reported the results o
analyzing data of the Caltech 40m by matched filtering, a
emphasized the importance of coincidence event search
discriminate spurious events from real events. But the se
was limited to a single ringdown wave template. In order
treat ringdown waves with unknown parameters, we nee
prepare a lot of theoretical templates. It is necessary to k
the loss of the SNR as small as possible under limited c
putational costs. So, we should consider an effective t
plate spacing. Recently, Arnaudet al. @17# have discussed a
tiling method to cover the 2-dimensional template spa
$ f c ,Q%. In this paper, we develop a different tiling metho
which is much more efficient than that of@17# and examine
the efficiency with TAMA300 DT7 noise spectrum.

Here we make a comment on combining this search te
nique of ringdown waves with the current search techniq
for the earlier two stages of the process in the coalescenc
compact object binaries, i.e., inspiral and merger phases
timately, the search method and the data analysis appr
should be able to handle all the three phases in a un
manner, going smoothly from one phase to the next. In
present state, it may be difficult to obtain the parameters
the final black hole from the gravitational waves in the
spiral and merger phases. However, in the case when a c
pact star is inspiraling into a super massive black hole,
will be able to obtain the information about the mass o
super massive black hole from the gravitational waves in
inspiral phase. This will improve the detection efficiency
ringdown waves significantly.

The paper is organized as follows. In Sec. II, we brie
review the quasinormal modes of spinning black holes.
Sec. III, we consider the template space$ f c ,Q% for the white
noise case analytically and develop an efficient tili
method. In Sec. IV, by using a fitting curve for the TAM
DT7 noise spectrum, we show that our tiling method dev
oped in the case of white noise is valid even in the case
colored noise. Section V is devoted to summary and disc
sion. In Appendix A, we discuss simpler cases when o
cosine or sine part of the ringdown waves are considered
Appendix B, we discuss the number of templates in the c
when the mass of the black hole is known.

II. QUASINORMAL RINGING MODES

A black hole is characterized by its massM and spin
angular momentumJ. Here we use the dimensionless sp
10200
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parametera5J/M2 that takes a value in the range@0,1) with
a50 corresponding to a Schwarzschild black hole anda
51 to extreme Kerr black hole. Quasinormal modes o
black hole are complex frequency solutions of the Teukols
wave equation that satisfy purely outgoing-wave bound
condition at infinity and ingoing-wave at horizon with van
ishing incoming-wave amplitude. For fixed spheroidal h
monic indices (,,m), there are infinite number of quas
normal modes. They are assigned with an indexn with the
order of the magnitude of the imaginary part, i.e., then51
mode has the smallest imaginary part~or the largest quality
factor!. We call it the least-damped~fundamental! mode. It is
known that the imaginary part of the,5m52 least-damped
mode is the smallest of all the quasinormal modes, and
sults of black hole perturbation calculations as well as
merical relativity simulations strongly suggest that the rin
down waves are dominated by this,5m52 least-damped
mode unless the spin parametera is extremely close to unity.
Hence, we focus on this mode.

For the ,5m52 least-damped mode, analytical fittin
formulas for the central frequency and quality factor for
black hole of massM and dimensionless spina were found
by Echeverria as

f c.32 kHz@120.63~12a!0.3#S M

M (
D 21

, ~2.1!

Q.2.0~12a!20.45. ~2.2!

The ringdown waveform is expressed as

h~ f c ,Q,t0 ,f0 ;t !

5H e2p f c(t2t0)/Qcos„2p f c~ t2t0!2f0… for t>t0 ,

0 for t,t0 ,

~2.3!

where t0 and f0 are the initial time and phase of the ring
down wave, respectively.

III. TEMPLATE SPACE

In this section, we develop an efficient technique of te
plate spacing which can be used for matched filtering of
quasinormal ringing waveforms. Here, the detector noise
assumed to be white noise to make it possible to deal w
the problem analytically. The case of the colored noise
discussed in the next section.

A. Distance function

We have temporarily set the amplitude to unity for sim
plicity in Eq. ~2.3!. Note that the knowledge of the amplitud
is not necessary for the template spacing in matched filter
For t>t0, the ringdown wave~2.3! is divided into two parts:

h~ f c ,Q,t0 ,f0 ;t !5hc~ f c ,Q,t0 ;t !cosf0

1hs~ f c ,Q,t0 ;t !sinf0 , ~3.1!

where
3-2
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hc~ f c ,Q,t0 ;t !5e2p f c(t2t0)/Qcos„2p f c~ t2t0!…, ~3.2!

hs~ f c ,Q,t0 ;t !5e2p f c(t2t0)/Qsin„2p f c~ t2t0!…. ~3.3!

Performing the Fourier transformation h̃c/s( f )
5*2`

` dte2p i f thc/s(t), we obtain the waveform in the fre
quency domain as

h̃c~ f c ,Q,t0 ; f !5
~ f c22i f Q !Qe2ip f t0

p~2 f cQ2 i f c22 f Q!~2 f cQ1 i f c12 f Q!
,

~3.4!

h̃s~ f c ,Q,t0 ; f !5
2 f cQ

2e2ip f t0

p~2 f cQ2 i f c22 f Q!~2 f cQ1 i f c12 f Q!
.

~3.5!

The waveform in the time domain is real, so the followin
relation is satisfied:

h̃* ~ f !5h̃~2 f !, ~3.6!

where the star (* ) denotes the complex conjugation.
Here, we introduce the inner product between two fu

tions as

~a,b!5E
2 f max

f max
d f ã~ f !b̃* ~ f !, ~3.7!

where f max is the maximum frequency we take into accou
in the analysis. In the actual data analysis, it is equal to
less than the half of the sampling frequency of data.

In the matched filtering, we calculate the inner produ
between the templateh and the signalx defined by (x,h). We
10200
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first introduce the normalized template. We define the n
malization constants as

Nc~ f c ,Q,t0!5„h̃c~ f c ,Q,t0!,h̃c~ f c ,Q,t0!…

5
1

2

~2Q211!Q

p~4Q211! f c

, ~3.8!

Ns~ f c ,Q,t0!5„h̃s~ f c ,Q,t0!,h̃s~ f c ,Q,t0!…

5
Q3

p~4Q211! f c

, ~3.9!

when we set f max5`. The normalized template
ĥc/s( f c ,Q,t0 ; f ) are given by

ĥc/s~ f c ,Q,t0 ; f !5
1

ANc/s~ f c ,Q,t0!
h̃c/s~ f c ,Q,t0 ; f !.

~3.10!

We then considerĥ5ĥccosf01ĥssinf0 as a template. We
note that thehc andhs are not orthogonal. Their inner prod
uct is given by

„ĥc~ f c ,Q,t0!,ĥs~ f c ,Q,t0!…5
1

A2~2Q211!

5:c~ f c ,Q,t0!,
~3.11!

when f max5`. In this case, the maximization of (x,ĥ) over
the phasef0 can be carried out analytically to yield@18#
ly
L~x![max
f0

~x,ĥ!5
„x,ĥc~ f c ,Q,t0!…21„x,ĥs~ f c ,Q,t0!…222c~ f c ,Q,t0!„x,ĥc~ f c ,Q,t0!…„x,ĥs~ f c ,Q,t0!…

12c~ f c ,Q,t0!2
. ~3.12!

In the following, we consider the 3-dimensional template space$ f c ,Q,t0%.
Here we consider the matchC(d fc ,dQ,dt0) between the template with (f c ,Q,t0) and the normalized signal having slight

different sets of the parameters (f c1d fc ,Q1dQ,t01dt0). Since we have already maximized over the phasef0 in L, without
losing generality, we only need to considerĥc for the signal. Then, the match is defined by

C~d fc ,dQ,dt0!5L„ĥc~ f c1d fc ,Q1dQ,t01dt0!…

512
2Q4

~2Q211! f c
2

d fc
22

2Q2~4Q215!

~4Q211!2~2Q211!
dQ22

2Q2

f c~4Q211!~2Q211!
d fcdQ

1
4p f c~114Q2! f max

Q~2Q211!
dt0

21
p f c

2Q211
dt0dQ, ~3.13!
3-3



a

th
ctl

s
, w

n

a
is
a

th
e

ch
-

ves

t is

to
r-

.

NAKANO et al. PHYSICAL REVIEW D 68, 102003 ~2003!
where we have used the approximationf max@ f c , and only
the leading term inf max/ f c are shown. We will find that the
dependence off max will be cancelled out and does not appe
in the final result. The inequalityC(d fc ,dQ,dt0)<1 means
that there will be a loss of signal-to-noise ratio unless
actual parameters of a gravitational wave signal fall exa
onto one of the templates.

The smaller the matchC is, the larger the distance i
between the two signals in the template space. Therefore
define the metric in the template space byds(3)

2 512C @19#,
that is,

ds(3)
2 5gi j

(3)dxidxj

5
2Q4

~2Q211! f c
2

d fc
21

2Q2~4Q215!

~4Q211!2~2Q211!
dQ2

2
2Q3

f c~4Q211!~2Q211!
d fcdQ

1
4p f c~114Q2! f max

Q~2Q211!
dt0

21
p f c

2Q211
dt0dQ.

~3.14!

B. Projection to 2-dimensional template space

Now to maximize the match with respect todt0, we con-
sider a projection of the distance function into two dime
sions spanned byf c andQ. Namely, we projectgi j

(3) to a two
dimensional subspace orthogonal to thet0 axis @19# as

gIJ
(2)5gIJ

(3)2
gIt 0

(3)gJt0
(3)

gt0t0
(3)

, ~3.15!

where the indicesI ,J are$ f c ,Q%. So, we find

ds(2)
2 5gIJ

(2)dxIdxJ5
2Q4

~2Q211! f c
2

d fc
2

1
2Q2~4Q215!

~4Q211!2~2Q211!
dQ2

2
2Q3

f c~4Q211!~2Q211!
d fcdQ, ~3.16!

where we have taken the limitf max→`.
It is noted that the cross termd fcdQ arises here. Later, we

discuss a coordinate transformation in the template sp
that removes the cross term, in order to make our analys
the template spacing and the error estimation easier. We
note that the dependence of the metric onf c can be elimi-
nated by the simple coordinate transformationf c→ ln fc .

It is also noted that the smaller the volume element of
metric is the fewer the number of required filters is to cov
the template space.
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The metric in the case of onlyhc or hs as templates is
discussed in Appendix A.

C. Diagonalization of the metric

Let us perform the coordinate transformation by whi
the two dimensional metric~3.16! is transformed to a diag
onal, conformally flat metric.

We start from the coordinate transformation that remo
the frequency dependence in the metric. We set

dF5
d fc

f c
, ~3.17!

which gives

ds25gFFdF21gQQdQ212gFQdFdQ

5
2Q4

~2Q211!
dF21

2Q2~4Q215!

~4Q211!2~2Q211!
dQ2

2
2Q3

~4Q211!~2Q211!
dFdQ. ~3.18!

The transformation that removes the off-diagonal elemen
found by settingF5X2u(Q) and requiring

gFFu8~Q!2gFQ50. ~3.19!

We find

u5
1

2
lnS 41

1

Q2D , ~3.20!

which gives

ds25gFFdX21~gFFu8 222gFQu81gQQ!dQ2

5gFFS dX21
gFFgQQ2gFQ

2

gFF
2

dQ2D .

~3.21!

Then we can perform a further coordinate transformation
make the metric conformally flat. Namely, by the transfo
mationQ→Y defined by

Y5E
Q

`

dQ8Adetg~Q8!

gFF~Q8!
5E

Q2

`

dxA x11

x~4x11!
~Q.0!,

~3.22!

we obtain

ds25V~Y!~dX21dY2!, ~3.23!

where the conformal factor is given by

V~Y!5gFF~Q~Y!!. ~3.24!

HereQ is now a function ofY determined by inverting Eq
~3.22!.
3-4
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Although the above coordinate transformation involv
complicated functions that may not be expressed in term
elementary functions, we find it is sufficient to use their lar
Q expansion forms forQ>2. Up to O(1/Q8) inclusive, we
have

X5F1u5F1 ln 21
1

8

1

Q2 2
1

64

1

Q4 1
1

384

1

Q6 2
1

2048

1

Q8 ,

~3.25!

Y5
1

2

1

Q
1

1

24

1

Q3 2
3

160

1

Q5 1
1

128

1

Q7 2
17

4608

1

Q9 .

~3.26!

To the same accuracy, the inverse transformation becom

F5X2 ln 22
1

2
Y21

7

12
Y42

67

45
Y61

1769

360
Y8, ~3.27!

Q5
1

2

1

Y
1

1

6
Y2

37

90
Y31

166

135
Y52

5917

1350
Y7.

~3.28!

The conformal factorV(Y) is given by

V~Y!5
1

4

1

Y2 2
1

3
1

37

60
Y22

85

54
Y41

13 069

2700
Y6.

~3.29!

WhenQ52, the errors induced by the above expansion
found to be;0.1%. This is accurate enough for our purpo
as long as we allow the SNR loss,dsmax

2 , of a few percent.

D. Tiling method: basis

In the previous subsection, we have derived the sim
conformally flat metric~3.23! for the template space. Here
using this metric, we formulate a tiling algorithm which
not only efficient but also quite simple.

To develop such a method, we note the following. B
cause of the conformal flatness, the contour of the fix
maximum distanceds25dsmax

2 centered at a point on th
(X,Y) plane is a circle for sufficiently smalldsmax

2 . Further-
more, along a line ofY5const, V(Y) is constant. Thus
choosing first an appropriateY5const line, sayY5q1, we
may place circles of the same radius with their centers
cated along the lineY5q1 to cover a region surrounding tha
line. Then, if we find an algorithm to place circles along t
Y5q1 line and another algorithm to choose the nextY
5const line, sayY5q2, to be covered in an appropriate wa
we can repeat this tiling procedure to cover the whole te
plate space.

Let us assume that the template space to be tiled
rectangle given byFmin<F<Fmax and Qmin<Q<Qmax. In
the (X,Y) coordinates, this rectangle is mapped to the reg
bounded by the twoY5const lines corresponding toQ
5Qmin andQ5Qmax, which we denote byY5Y0 andYM ,
respectively, and the two linesX5vmin(Y) andX5vmax(Y)
corresponding toF5Fmin and F5Fmax, respectively. Note
10200
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that Y0.YM since largeY corresponds to smallQ.
First, we construct a method to determine the spacing

the circles along eachY5const line. Let us consider the lin
Y5q and place two circles with radiusr centered at (p,q)
and (p1Dp,q),

~X2p!21~Y2q!25r 2, ~X2p2Dp!21~Y2q!25r 2.
~3.30!

We assumeDp,2r so that the two circles intersect at th
two points,„p1Dp/2, q6d(r ;p)…, whered(r ;p) is the dis-
tance to each intersecting point from the lineY5q ~see Fig.
1!, given by

d~r ;Dp!5Ar 22
Dp2

4
. ~3.31!

Our purpose is to tile the template space by the smal
possible number of filters. In order to do so, we choose
parameterp in such a way that the area defined byS
5Dpd(r ;Dp) is maximized, i.e.,

Dp5A2r , ~3.32!

d5
r

A2
. ~3.33!

The radiusr is determined by the value ofdsmax
2 andq as

r 25
dsmax

2

V~q!
. ~3.34!

In this way, we tile the region that covers the lineY5q.
To choose the first line to be covered, we start from

point on the (X,Y) plane corresponding to (F,Q)
5(Fmax,Qmin), that is, (X,Y)5(X0 ,Y0) where X0
5vmax(Y0). Then we choose the first lineY5q1 and the
radiusr 1 so that the point (X0 ,Y0) is just on the edge of the
first circle and an intersecting point of the first and seco
circles lies on the lineY5Y0 as Fig. 2. This is achieved i
the center of the first circle is at

~p1 ,q1!5~X02r 1 /A2,Y02r 1 /A2!, ~3.35!

with the radius determined by solving Eq.~3.34!, which
reads in the present case,

dsmax
2 5r 1

2V~Y02r 1 /A2!. ~3.36!

Then the center of thenth circle is at

FIG. 1. Definition ofd and r.
3-5
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~pn ,q1!5„X02~2n21!r 1 /A2,Y02r 1 /A2…, ~3.37!

and the number of circles needed to cover the lineY5q1 is
given by

N15F L1

A2r 1
G , ~3.38!

where @x# denotes the maximum integer smaller thanx11
andL1 is the coordinate length ofX to be covered, i.e.,

L15vmax~Y0!2vmin~Y0!

5Fmax2Fmin

5:L. ~3.39!

Once the covering of the first line is done, the secondY
5const line is chosen as follows. LetY15Y02A2r 1 and let
(X1 ,Y1) be the intersecting point of the linesY5Y1 andX
5vmax(Y), i.e., (X1 ,Y1)5„vmax(Y1),Y1…. We choose this
point as the starting point for the covering of the second l
as Fig. 3. That is, the center of the first circle (p2 ,q2) on the

FIG. 2. Choosing the first line on the (X,Y) plane.

FIG. 3. Covering of the second line.
10200
e

second lineY5q2 is

~p2 ,q2!5~X12r 2 /A2,Y12r 2 /A2!, ~3.40!

with the radiusr 2 determined again by Eq.~3.34!. Then the
second line is covered by the same procedure we took for
first line. We repeat this procedure until we tile the who
template space we need to cover.

With this tiling procedure, the total number of templates
given as follows. Generalizing Eq.~3.38!, the number of
templates for thei th Y5const line (Y5qi) is

Ni5F L

A2r i
G , ~3.41!

wherer i is determined by

dsmax
2 5r i

2V~Yi 212r i /A2!. ~3.42!

The number ofY5const lines necessary to cover the te
plate space is determined by the minimum integern that
satisfies the inequality,

(
i 51

n

A2r i>Y02YM . ~3.43!

And the total number of templates is

N5(
i 51

n

Ni . ~3.44!

E. Tiling method: application

Let us apply the method developed in the previous s
section to the case of the parameter space (f c ,Q) which has
the range

102 Hz< f c<104 Hz,

2<Q<20. ~3.45!

We setdsmax
2 50.02. This choice is made in order to mak

the SNR loss to be;3% in the presence of colored noise
discussed in the next section. Using Eq.~3.17!, we setF
5 ln(fc/100 Hz). The above range corresponds to

6.9331021<X<5.33,

2.5031022<Y<2.5531021,
~3.46!

in the (X,Y) space.~See Table I.!
Following the procedure described in the previous subs

tion, we choose the starting point (X0 ,Y0) which corre-
sponds to (f c ,Q)5(104 Hz,2.0). The radiusr 1 is deter-
mined by Eq.~3.36!, or

0.025r 1
2V~Y02r 1 /A2!. ~3.47!

Then all the parameters for our tiling method are determin
In Table II, we summarize the tiling parameters.
3-6
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It is noted that the numbern of theY5const lines is very
small,

n56. ~3.48!

The total number of templates is calculated to beN51148
(N51780 forQmax534.3). In Fig. 4, we show the tiling o
the template space in the (X,Y) coordinates~see also Fig. 5!.
The tiling of the template space in the original coordina
( f c ,Q) is shown in Fig. 6.~See also Fig. 7.!

In order to see how effective this tiling method is, w
calculate the ratio between the sum of the areas of all
circlesScir and the area to be coveredSpar. We find

h5
Scir

Spar

51.57. ~3.49!

Here we have adoptedQmax522.9 which is slightly larger
than the preassigned value ofQmax520. The former value
corresponds to the valueY5q62r 6 /A2, i.e., the value of
the Y5const line marginally covered by the circles center
along the lineY5q6. This ratio corresponds toh tot in the
paper by Arnaudet al. @17#, in which they obtainedh tot
52.12 for their tiling method. Thus our tiling method is fa
more efficient~and simpler! than that of Arnaudet al.

IV. VALIDITY OF TILING METHOD IN THE CASE
OF COLORED NOISE SPECTRUM

The tiling method discussed in the previous section
based on an assumption that the noise is white. We ex

TABLE I. The relation between the two coordinates.

( f c ,Q) (X,Y)

102 Hz, 2.0 7.234 594 00831021, 2.546 762 25531021

102 Hz, 20.0 6.934 595 83031021, 2.500 520 24831022

103 Hz, 2.0 3.026 044 494, 2.546 762 25531021

103 Hz, 20.0 2.996 044 676, 2.500 520 24831022

104 Hz, 2.0 5.328 629 588, 2.546 762 25531021

104 Hz, 20.0 5.298 629 769, 2.500 520 24831022
10200
s

e

d

s
ct

this assumption is very good because the ringing wave
rather narrow banded except the caseQ;2. In order to con-
firm this, we examine the effectiveness of the tiling meth
in the case of colored noise.

As a model of detector’s noise, we use a fitting curve
the one sided noise power spectrum of TAMA300, which
given by

Sn~ u f u!5S 85

f D 63

1
1

2 S 220

f D 10

1
1

9 S 710

f D 3

1
3

20
1

1

20S f

2000D
2

1
1

5 S f

5500D
6

. ~4.1!

This formula of the noise spectrum is obtained by fitting F
3.4.1 in TAMA REPORT 2002@20# which is based on the
spectrum during Data Taking 7 in 2002, and is valid betwe
60 Hz and 40000 Hz. Here we have ignored the overall a
plitude of Sn , because it does not affect the results.

We prepare the template bank using the analytical met
in the white noise case. The minimal match is assumed to
0.98. We also generate signals which are normalized to un
We then calculate the maximum of the match between
signal and templates. When the signal is completely
same, the match becomes unity. However, we have the m
less than unity due to mismatch between signal and t

FIG. 4. A part of the tiling of the template space in the (X,Y)
coordinates. Templates are taken at the centers of the circles.
e
he
TABLE II. The parameters for the tiling of the template space are summarized. (Xi ,Yi) denotes the
starting point of thei th template spacing along the liney5qi . (pi ,qi) denotes the center of the first circl
along thei th line y5qi , r i is the radius of the circle, andNi is the number of circles necessary to cover t
i th line.

i (pi ,qi) (Xi ,Yi) r i Ni

0 5.328 629 588, 2.546 762 25531021

1 5.285 172 504, 2.112 191 41431021 5.311 957 476, 1.677 620 57331021 6.145 759 76931022 53
2 5.283 700 230, 1.395 048 11531021 5.304 418 737, 1.112 475 65831021 3.996 178 01931022 82
3 5.285 789 828, 9.261 865 69431022 5.301 037 366, 7.398 974 80831022 2.634 525 55631022 124
4 5.288 679 812, 6.163 219 42031022 5.299 527 944, 4.927 464 03231022 1.747 622 02931022 187
5 5.291 307 826, 4.105 452 27631022 5.298 855 740, 3.283 440 51931022 1.162 500 17431022 281
6 5.293 381 065, 2.735 973 01931022 7.742 359 63831023 421
3-7
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FIG. 5. The template points on
the (X,Y) plane. It is noted that
we may put the templates with th
same interval along theX direc-
tion.
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plates. If the match is always greater than 0.98, we hav
justification to use the tiling method even in the case of
colored noise spectrum.

We used 2500 signals. The range of the central freque
f c and theQ value of the signals are 100 Hz< f c<104 Hz
and 2<Q<20 respectively. The value off c andQ are ran-
domly given in this region.

In Fig. 8, we show the number of signals in terms of t
value of the match.

From Fig. 8, we find that we can detect the most of
signals without losing 2% of the signal-to-noise ratio by t
tiling method assuming white noise. Thus, the tiling meth
constructed analytically assuming white noise, is valid ev
in the case of the TAMA noise spectrum.

V. DISCUSSION

In this paper, we proposed a tiling method of the templ
space in the matched filtering search for the gravitatio
waves of black hole ringing.

First, we discussed a tiling method assuming the dete
noise is white. We found that the 1/Q expansion was usefu

FIG. 6. A part of the tiling of the template space in the origin
coordinates (f c ,Q) with f c measured in units of 100 Hz. Note tha
the contour ofdsmax

2 50.02 for each template is warped.
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in performing the coordinate transformation of the metric
the template space because ofQ>2. We also find an effi-
cient tiling method of the template space which can be
formulated analytically. When the range off c andQ is 102

< f c<104 Hz and 2<Q<20, and the minimal match is
0.97, the ratioh, between the sum of the areas of the eq
match circles around the templates,Scir , and the area to be
covered,Spar, is 1.57 which is much smaller than the valu
obtained before.

Next, we have discuss the validity of this tiling method
the case of colored noise spectrum. As a model of reali
noise power spectrum, we used a fitting curve of the no
power spectrum of TAMA300 during 2002. We prepare
template bank assuming the minimum match 98%. We t
examined the loss of signal-to-noise ratio of the signals
tected in the template bank. We found that, in most case,
do not lose the signal-to-noise ratio no more than 2% wh
is expected from the preassigned minimum match. T
shows that the tiling method can be used even in the cas
colored noise spectrum.

The tiling method should be tested using the real data
laser interferometers. A study in this direction using the d
of TAMA300 is now progressing@21#.

In the analysis using real interferometers’ data, we hav
treat the nonstationary, non-Gaussian noise. It is found@22#
that we observe even more fake events than in the cas
inspiraling wave, since the ringing wave is usually mu
shorter than the inspiral waves and can easily be affected
short bursts. In this situation, we would need to introdu
some methods to remove such fake events without los
real ringing gravitational wave signals. Coincidence analy
between several detectors would also be needed to reduc
fake event rate. Further, since the ringing waves may
excited by the detector itself, we may need to perform co
cidence analysis to reject such spurious events anyway.
will also work on this problem in the future.
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APPENDIX A: THE METRIC IN SOME SPECIAL CASES

In this appendix, we summarize the distance function
the case when we consider only the cosine or sine part of

l
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FIG. 7. The template points on
the original coordinates (f c ,Q).
The smaller the value off c is, the
larger the number of templates i
needed.
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wave, ignoring the contribution of the phase and the ini
time. We also consider the case when the detector nois
white. Although the applicability of such special cases w
be limited, we describe them here because there are
some cases when these formulas become useful.

1. Cosine wave case

We consider the cosine waveform ignoring the initial tim
and phase of a ringdown wave,

h~ f c ,Q;t !5H e2p f ct/Qcos~2p f ct ! for t>0,

0 for t,0.
~A1!

Performing the Fourier transformation h̃( f )
5*2`

` dte2p i f th(t), we obtain the waveform in the fre
quency domain as

h̃~ f c ,Q; f !5
~ f c22i f Q !Q

p~2 f cQ2 i f c22 f Q!~2 f cQ1 i f c12 f Q!
.

~A2!

In the following, we consider normalized waveforms. T
normalization constant is derived as

FIG. 8. The number of signals in terms of the value of the ma
between the signal and templates. The bank of templates are d
mined assuming the minimum match 0.98 using the method in
III. The mean value of the match is 0.993.
10200
l
is

l
till

N~ f c ,Q!5E
2`

`

uh̃~ f c ,Q; f !u2d f

5
1

2

~2Q211!Q

p~4Q211! f c

. ~A3!

With the above normalization constant, the normalized wa
ĥ( f c ,Q; f ) is given by

ĥ~ f c ,Q; f !5
1

AN~ f c ,Q!
h̃~ f c ,Q; f !. ~A4!

Now, we consider the correlation between the two n
malized waves having slightly different sets of the para
eters (f c ,Q) and (f c1d fc ,Q1dQ),

C~d fc ,dQ!5E
2`

`

d f ĥ~ f c ,Q; f !ĥ* ~ f c1d fc ,Q1dQ; f !

512
1

8

16Q416Q211

~2Q211! f c
2

d fc
2

2
1

8

64Q81128Q6128Q411

Q2~4Q211!2~2Q211!2
dQ2

1
1

4

~8Q412Q211!

f cQ~4Q211!~2Q211!
d fcdQ. ~A5!

The inequalityC(d fc ,dQ)<1 means that there will be a
loss of the signal to noise ratio unless the actual parame
of a gravitational wave signal fall exactly onto one of th
templates.

The smaller the correlationC is, the larger the distance i
between the two signals in the template space. Therefore
define the metric in the template space byds2512C, that
is,

h
ter-
c.
3-9
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ds25
1

8

16Q416Q211

~2Q211! f c
2

d fc
2

1
1

8

64Q81128Q6128Q411

Q2~4Q211!2~2Q211!2
dQ2

2
1

4

8Q412Q211

f cQ~4Q211!~2Q211!
d fcdQ, ~A6!

.
Q2

f c
2 d fc

21
1

8Q2
dQ2 2

1

4 f cQ
d fcdQ

for large Q. ~A7!

Note that the dependence of the metric onf c can be elimi-
nated by the simple coordinate transformationf c→ ln fc . The
metric in the case of the sine-wave templates instead of
cosine-wave templates~A1! is calculated in the next subse
tion. For largeQ, the two metrics coincide with each othe
implying that the phase effect is weak in the largeQ limit.

The number of filters,Nf , which are required to achiev
the detection efficiency determined by the maximum allo
able distancedsmax

2 ~i.e., the maximum allowable loss o
SNR! in the regionf min< f < f max andQmin<Q<Qmax is es-
timated by integrating the volume elementAdetg over that
region of the template space. We find

Nf5
1

2
~dsmax

2 !21ln~ f max/ f min!

3E
Qmin

Qmax
dQ

Q~16Q6132Q4110Q211!1/2

~2Q211!3/2~4Q211!1/2
. ~A8!

The Qmax dependence ofNf is shown in Fig. 9. For large
Qmax, it can be derived analytically as@16#

Nfu large-Q5
A2

4
~dsmax

2 !21ln~ f max/ f min!Qmax. ~A9!

FIG. 9. TheQmax dependence of the number of required filte
@2dsmax

2 Nf / log(fmax/ f min)#. Here we choseQmin52.
10200
e
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From Fig. 9, we see that the largeQmax approximation is
good even for smallerQmax as far as the number of require
filters is concerned. In Table III, we show the number
filters in the caseQmin52, f min5100 Hz, anddsmax

2 50.03
for several values off max and Qmax. We also note that the
number of required filters depends on the choice of a til
method in practice.

Next, let us perform the coordinate transformation
which the cosine-wave template metric~A6! is transformed
to a diagonal, conformally flat metric.

We start from the coordinate transformation that remo
the frequency dependence in the metric,

dF5d ln f c , ~A10!

which gives

ds25gFFdF21gQQdQ212gFQdFdQ

5
1

8

16Q416Q211

~2Q211!
dF2

1
1

8

64Q81128Q6128Q411

Q2~4Q211!2~2Q211!2
dQ2

2
1

4

8Q412Q211

Q~4Q211!~2Q211!
dFdQ. ~A11!

The transformation that removes the off-diagonal elemen
found by settingF5X2u(Q) and requiring

gFFu8~Q!2gFQ50. ~A12!

We find

u53A 7

14FarctanS 3116Q2

A7
D 2

p

2 G
2

1

4
ln

16Q4~16Q416Q211!

~4Q211!4 , ~A13!

which gives

ds25gFFdX21~gFFu8 222gFQu81gQQ!dQ2

5gFFS dX21
gFFgQQ2gFQ

2

gFF
2 D dQ2. ~A14!

Then we can perform a further coordinate transformation
make the metric conformally flat. Namely, by the transfo
mationQ→Y defined by

TABLE III. The estimation of the number of filters with the
maximum SNR loss of 3%.

f max~Hz! Qmax510 Qmax5102 Qmax5103

103 218 2661 27 084
104 436 5321 54 167
3-10
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Y5E
Q

`

dQ8Adetg~Q8!

gFF~Q8!

5E
Q2

`

dx2A 64x41144x3172x2114x11

~64x3140x2110x11!A112x
~Q.0!,

~A15!

we obtain

ds25V~Y!~dX21dY2!, ~A16!

where the conformal factor is given by

V~Y!5gFF~Q~Y!!. ~A17!

HereQ is now a function ofY determined by inverting Eq
~A15!.

Although the above coordinate transformation involv
complicated functions that may not be expressed in term
elementary functions, we find it is sufficient to use their lar
Q expansion forms forQ>2. Up to O(1/Q8) inclusive, we
have

X5F1u5F1
1

16

1

Q2 2
3

256

1

Q4 1
13

3072

1

Q6

2
43

32 768

1

Q8 1
109

327 680

1

Q10
, ~A18!

Y5A2

4S 1

Q
1

1

12

1

Q3 2
73

640

1

Q51
21

256

1

Q7 2
6127

98 304

1

Q9D .

~A19!

To the same accuracy, the inverse transformation becom

F5X2
1

2
Y21

17

12
Y42

586

45
Y61

47 587

360
Y82

3 153 013

2025
Y10,

~A20!

Q5A2

4S 2
4 401 959

5400
Y71

9892

135
Y52

737

90
Y31

2

3
Y1

1

YD .

~A21!

The conformal factorV(Y) is given by

V~Y!52
749 639

5400
Y61

1255

108
Y42

119

120
Y21

1

24
1

1

8

1

Y2 .

~A22!

The structure of this metric is the same as the one in
general case discussed in Sec. III. The effective tiling met
describe in Sec. III can thus be used to set the template s
using this metric.
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2. Sine wave

Next, we consider the damped sine wa
e2p f ct/Qsin(2pfct). The calculation is done as same as t
cosine wave case. First, we obtain

ds25
1

8
~8Q213!dF21

1

8

16Q413

Q2~4Q211!2
dQ2

2
1

4

4Q413

Q~4Q211!
dFdQ. ~A23!

For the above metric, the 1/Q expansion is performed and w
obtain

ds25gFFdF21gQQdQ212gFQdFdQ, ~A24!

gFF5Q21
3

8
,

gQQ5
1

8

1

Q2 2
1

16

1

Q4 1
3

64

1

Q6 2
5

256

1

Q8 1
7

1024

1

Q10
,

gFQ52
1

8

1

Q
2

1

16

1

Q3 1
1

64

1

Q5 2
1

256

1

Q7 1
1

1024

1

Q9 .

The expansion is considered up toO(1/Q8) beyond the lead-
ing term.

Next, we consider the following coordinate transform
tion:

X5F1
1

16

1

Q2 1
1

256

1

Q42
11

3072

1

Q6

1
49

32 768

1

Q8 2
179

327 680

1

Q10
, ~A25!

Y5A2

4S 1

Q
2

1

6

1

Q31
27

640

1

Q5 2
43

3584

1

Q7 1
1067

294 912

1

Q9D .

~A26!

The inverse transformation of this is given by

F5X2
1

2
Y22

19

12
Y42

136

45
Y62

15 263

2520
Y82

181 651

14175
Y10,

~A27!

Q5A2

4S 2
71 033

37 800
Y72

1073

945
Y52

77

90
Y32

4

3
Y1

1

YD .

~A28!
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Finally, we obtain the conformally flat metric as

ds25V~Y!~dX21dY2!, ~A29!

V~Y!5
1

5400
Y61

1

756
Y41

1

120
Y21

1

24
1

1

8

1

Y2 .

~A30!

The structure of this metric is the same as the one in
general case of Sec. III and the case of cosine wave. E
cially, the leading term with respect to 1/Q are the same as in
the case of cosine wave. Therefore, the effective til
method described in Sec. III is also applicable to this ca

APPENDIX B: THE NUMBER OF TEMPLATES WHEN
THE MASS IS KNOWN

In this appendix, we consider the case when a comp
star with mass 1;102M ( is inspiraling into a super massiv
black hole with mass 106;108M ( , and after the final
plunge, the ringing wave is excited. In such cases, it is
pected that masses of the super massive black hole an
compact star is determined accurately during the insp
phase. We do not know exactly the mass of the final bl
hole after the plunge of the compact star because we do
know how much energy are radiated as the gravitatio
waves and how much mass loss will be occurred in the c
of neutron star. In this case, however, we can assume
mass of the final black hole within the accuracy 1028

;1024 since the mass ratio is very large. In this case, we
av

10200
e
e-

g
.

ct

-
the
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k
ot
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he

n

perform an analysis to search for the ringdown wave us
these mass parameters. Here we investigate how much
plates we need in this situation.

When we know the massM of a black hole, we only need
to investigate the spin of the black hole. From Eqs.~2.1! and
~2.2!, the relation betweenf c andQ becomes

f c.320F120.63S Q

2 D 22/3G S M

M (
D 21

, ~B1!

where we normalize the frequency by 100 Hz. Now, we co
sider the white noise case. We only consider the cosine w
case. These assumptions are sufficient for the purpose
From Eq.~B1!,

] f c

]Q
5210S M

M (
D 21

Q25/3. ~B2!

The metric~A6! in the largeQ limit is derived as

ds2;~0.45Q24/320.17Q28/310.13Q22!dQ2

;0.45Q24/3dQ2. ~B3!

When the maximum loss of the signal to noise ratiodsmax
2 is

given, the number of templates needed to achieve this
ciency is estimated asN.(Qmax

1/3 2Qmin
1/3 )/dsmax. If we con-

sider Qmin52 andQmax5100, we only need 20 template
Thus, the prior knowledge of the black hole mass will ma
the matched filtering analysis substantially easy.
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