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We introducematching functionsas a means of summing heavy-quark logarithms to any order. Our analysis
is based on Witten’s approach, where heavy quarks are decoupled one at a time in a mass-independent
renormalization scheme. The outcome is a generalization of the matching conditions of Bernreuther and
Wetzel: we show how to derive closed formulas for summed logarithms to any order, and present explicit
expressions for leading order and next-to-leading order contributions. The decoupling of heavy particles in
theories lacking asymptotic freedom is also considered.
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I. INTRODUCTION

Decoupling a heavy quark when the renormalizat
scheme is mass independent was originally discussed by
ten @1#. He showed that the results can be elegantly
pressed in terms of a renormalization group~RG! invariant
running couplingãh associated with the massmh of the
heavy quarkh. Subsequently, Bernreuther and Wetzel@2–5#
proposed a systematic method for dealing with the match
problem, i.e. the lack of explicit decoupling in mass indepe
dent schemes. They applied the Appelquist-Carrazone de
pling theorem@6# to the gluon couplingaQ

MO in the momen-
tum subtraction~MO! scheme, i.e. renormalized at spaceli
momentumQ,

aQ
MOuwith h5aQ

MOuno h1O~mh
21! ~1!

and compared calculations ofaQ
MO in the full F5 f 11 and

effective f flavor MS ~modified minimal subtraction! theo-
ries. WhenO(mh

21) terms are neglected, the strong coupli
aF5gF

2/(4p) for the F-flavor MS theory is calculable as
power series in itsf-flavor counterparta f and logarithms of
mh . Results for the first few loops of perturbation theo
appear in the literature@2–5,7–9#. Bernreuther has con
structed a similar matching procedure to deal with the effe
of mass renormalization@4#.

This paper arises from the observation@2,4# that the RG
relates coefficients of perturbative mass logarith
;aF

r lnsmh in matching relations. This suggests that we se
an analogy with the behavior of Green’s functions at la
momentaq, where in general@10,11#, each perturbative orde
in the Gell-Mann–Low functionC(x) or the Callan-
Symanzik b,g,d functions determines all coefficients t
logarithmic orderk, i.e. all coefficients of momentum loga
rithms $aF

r 1k lnrq,r50,1,2, . . . %.
0556-2821/2003/68~9!/096005~13!/$20.00 68 0960
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We set up the formalism for mass logarithms by introdu
ing matching functionsF(ãh) and G(ãh) associated with
coupling constant and mass renormalization. The coup
constant and masses are matched to all orders, with he
quarks~in this paper! decoupled one by one (F5 f 11). For
coupling constant renormalization, we derive in Sec. IV t
following key equations,

ln
m̄h

m̄
5E

aF

ãh
dx

1

bF~x!
~2!

ln
m̄h

m̄
5E

a f

ãh
dx

1

b f~x!
1FF→ f~ ãh! ~3!

wherem̄h is Witten’s renormalization group invariant heav
quark mass@1#, b f(x) is theMS b-function for thef-flavor
theory, and

m̄5mdimA4pe2g/2, g50.5772 . . . ~4!

is the MS scale derived from the scalemdim used to define
dimensional regularization and renormalization. The mat
ing functionFF→ f is a series inãh whose coefficients can b
determined perturbatively by comparison with Eq.~1!. The
desired matching relation betweenaF anda f is the result of
eliminating ãh from Eqs.~2! and ~3!:

aF5aF„a f , ln~m̄h /m̄ !…. ~5!

Similar conditions for mass matching are presented
Sec. VII.

The role played byF, G and theb,g,d functions in
matching conditions is just like that of theb,g,d functions
for large-momentum logarithms. Each order of perturbat
theory for these functions determines the coefficients o
©2003 The American Physical Society05-1
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new tower of mass logarithms: leading order~LO!, next-to-
leading order~NLO!, next-to-next-to-leading order~NNLO!,
and so on. BothF(ãh) andG(ãh) vanish for LO and NLO,
but then there are contributions from successive terms
their power series inãh , starting with NNLO forF(ãh) and
NNNLO for G(ãh).

We find, as for large-q logarithms, that results for cou
pling constants, running couplings and light masses can
most elegantly expressed as closed expressions or gene
functions for summed towers of mass logarithms. Examp
are the decoupling formulas fora f 11 and ãh quoted previ-
ously by us@12#, which we derive in Sec. VI. Almost all o
our results are for quantum chromodynamics~QCD! with
three colors, but the technique can be applied to any re
malizable theory.

Sections II and III are brief summaries of Witten’s trea
ment of heavy-quark decoupling in QCD and the match
procedure of Bernreuther and Wetzel for coupling consta
This lays the foundation for the RG analysis in Sec. IV, fro
which we are led to construct the matching functionF for
coupling constant renormalization. Perturbation theory foF
is considered in Sec. V, with the result that the first nonz
term~NNLO! in F is obtained. In Sec. VI, we show that Eq
~2! and ~3! lead directly to closed expressions for heav
quark logarithms to a given logarithmic order, and pres
explicit NLO expressions. Section VII is an extension of o
RG analysis to deal with the matching problem for ma
renormalization. It is here that we introduce the ma
matching functionG. In Sec. VIII, we decouple more tha
one heavy quark sequentially, for example ln(mt /m̄)
@ ln(mb /m̄)→`, and derive the NLO closed formula for cou
pling constant renormalization in this limit.

Section IX suggests that the consistency of theories la
ing asymptotic freedom, such as quantum electrodynam
~QED! with heavy leptons, be tested by imposing the phy
cal requirement that all heavy particles decouple in
infinite-mass limit. Both ultraviolet and infrared stable fixe
points enter the analysis.

Other applications of our technique are discussed
Sec. X.

II. WITTEN’S METHOD

This section summarizes some key points of Witten’s p
cedure@1,12#.

By convention, the sameMS scalem̄ is used for the initial
F-flavor and all residualf-flavor theories. Whenever heav
quarks~massesmh) are decoupled,

F→ f flavors, mh→`

all parameters of theresidual f-flavor theory are held fixed
the scalem̄, all momentap, the couplinga f , and all light-
quark massesml f . In any order of perturbation theory, am
plitudes

AF5AF~p,m̄,aF ,mlF ,mh!
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are power series inmh
21 with each power modified

by a polynomial in ln(mh /m̄). We will consider the leading
powerÃF :

AF5ÃF$11O~mh
21!%. ~6!

The notationO(mh
21) refers to any subleading power, in

cluding its logarithmic modifications.
Logarithms inÃF for mh;` are generated by 1PI~one-

particle irreducible! subgraphs with at least one heavy-qua
propagator and with degree of divergence at least logar
mic. It is as if all contributing 1PI parts were shrunk to
point. All F-flavor amplitudesÃF tend to amplitudesAf of
the residualf-flavor theory, apart frommh-dependent renor-
malizations of the coupling constant, light masses, and
plitudes@6#:

ÃF~p,m̄,aF ,mlF ,mh!

5(
A8

ZAA8~aF ,mh /m̄ !Af8~p,m̄,a f ,ml f ! ~7!

a f5a f~aF ,mh /m̄ !, ml f 5mlFD~aF ,mh /m̄ !. ~8!

For practical applications, Eq.~8! has to be inverted, so tha
a f and ml f become the dependent variables instead ofaF
and mlF . That is because we holda f and ml f fixed asmh
→`.

For any number of flavorsf ~including F), let

Df5m̄
]

]m̄
1b f~a f !

]

]a f
1d f~a f !(

k51

f

mk f

]

]mk f
~9!

be the corresponding Callan-Symanzik operator. SinceAF
satisfies anF-flavor improved Callan-Symanzik equatio
@13#, so also does its leading power:

$DF1gF~aF!%ÃF50. ~10!

In general, bothgF andZ5(ZAA8) are matrices.
If we substitute Eq.~7! in Eq. ~10! and change variables

DF5m̄
]

]m̄
1~DFa f !

]

]a f
1 (

k51

f

~DFmk f!
]

]mk f
~11!

the result is an improved Callan-Symanzik equation for e
residual amplitude,

$Df1g f~a f !%Af50 ~12!

where the functions@1,2#

b f~a f !5DFa f ~13!

d f~a f !5DF ln ml f ~14!

g f~a f !5Z 21@gF~aF!1DF#Z ~15!
5-2
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dependsolelyon a f . The absence ofml dependence in the
renormalization factors in Eqs.~7! and ~8! ensures mass
independent renormalization for the residual theory.

While these equations hold for anyf ,F, their solutions
can be readily formulated in terms of running couplings o
when the heavy quarks are decoupled one at a time. Ind
Witten’s running coupling

ãh5ãh„aF , ln~mh /m̄ !… ~16!

is defined for the caseF5 f 11 where just one quarkh is
heavy, withMSF renormalized massmh . The definition of
ãh is formulated implicitly@1#:

ln~mh /m̄ !5E
aF

ãh
dx@12dF~x!#/bF~x!. ~17!

It satisfies the constraints

ãh~aF,0!5aF , ãh~aF ,`!50 ~18!

where the latter follows from the asymptotic freedom of t
F-flavor theory (F<16). Equations~9!, ~13!, and~17! imply
that ãh is RG invariant:

DFãh50. ~19!

III. MATCHING COUPLING CONSTANTS

Generally, the solutions of Witten’s equations depend
renormalized parametersaF and mlF of the original F5 f
11 flavor theory, whereas the limitmh→` is to be taken
with parametersa f andml f of the residualtheory held fixed.
To complete the analysis, it is necessary to derive asymp
series in ln(mh /m̄) which relate the initial and residual pa
rameters, i.e. to ‘‘match’’aF and mlF with a f and ml f . As
noted in Sec. I, Bernreuther and Wetzel@2–5# have set up a
systematic procedure for this. This section is a brief acco
of their scheme for the case of coupling-constant matchi

The decoupling formula~1! works to any order of pertur
bation theory, so the task is to express the leading powe
the RG-invariant gluon couplingaQ

MO with and without the
heavy-quarkh as perturbative series inaF and a f respec-
tively. Generally this involves gluon and other self-ener
insertions and a vertex amplitude such as fermion-glu
@2,3# or ghost-gluon@4#.

For one-loop contributions@14#, vertex and propagato
corrections cancel (Z15Z2), so only the gluon self-energ
amplitude

P f mn
ab 5 idab~gmnq22qmqn!P f~A2q2!

is needed. In that case, we can make the replacement

aQ
MOu f flavors→a f /@12P f~Q!#

in Eq. ~1!, with the result

a f 11
21 2a f 11

21 P f 11~Q!5a f
212a f

21P f~Q!1O~mh
21 ,a f

2!.
~20!
09600
ed,

n

tic

nt
.

of

n

Comparing the original and residual theories, we have

P f 11~Q!5a f 11$Gh-loop1Gother%1O~a f 11
2 !

P f~Q!5a fGother1O~a f
2! ~21!

where

Gh-loop5
1

pE0

1

dss~12s! lnS mh
21s~12s!Q2

m̄2 D ~22!

is the contribution of the heavy-quark loop, andGother repre-
sents other one-loop terms.

The leading power contributed by the heavy-quark loop

Gh-loop5CLO ln
mh

m̄
1CNLO1O~Q2/mh

2! ~23!

with coefficients for leading and nonleading logarithmic o
ders given by

CLO51/~3p! and CNLO50. ~24!

The vanishing of the NLO constant term is a well-know
characteristic of theMS gluon self-energy@14#.

EliminatingGother from Eq. ~21! and combining the resul
with Eqs. ~20! and ~23!, we recover the standard one-loo
matching condition

a f 11
21 2a f

215
1

3p
ln

mh

m̄
1O~a f ,mh

21! ~25!

or equivalently

a f 115a f2
a f

2

3p
ln

mh

m̄
1O~a f

3 ,mh
21!. ~26!

The two-loop analysis is much more complicated, so
simply quote the result@2–5#, taking into account a subse
quent correction@2,7,8#. We find it convenient to conside
the inverse form wherea f 11 is written as a series ina f . For
the special case of three colors, the result is

a f 115a f2
a f

2

6p
ln

mh
2

m̄2
1

a f
3

36p2
ln2

mh
2

m̄2

2
11a f

3

24p2
ln

mh
2

m̄2
2

11a f
3

72p2
1O~a f

4!. ~27!

The first three terms of the right-hand side belong to
leading order LO, i.e. they are proportional toa f times a
power of$a f ln(mh /m̄)%. Only the fourth term is NLO; there
is no O(a f

2) term independent ofmh because the NLO con
stant in Eq.~24! vanishes. The fifth term isO(a f

3) andmh-
independent, so it is the first example of a NNLO term. T
three-loop result, including the NNNLO constant term,
now known@8#.
5-3
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Now we would like to know what the renormalizatio
group implies for matching relations of this type. Some
sults for coefficients to a given order of perturbation theo
already appear in@2–4#. Consider Eq.~3! of Ref. @2#,

a f

p
5

a f 11

p
1 (

k51

` S a f 11

p D k11

CkS ln
mh

2

m2D 1O~mh
21!

~28!

whereCk is a polynomial of degreek, as noted below Eq.~8!
of Ref. @2#,

Ck5ck,k@ ln~mh
2/m2!#k1•••1ck,0 . ~29!

The constantsc1,0,c2,0,c3,0, . . . are the remainders le
when all terms depending on ln(mh

2/m2) are subtracted from
the leading-power functionsC1 ,C2 ,C3 , . . . . Then, if all co-
efficients and RG functions are known tok21 loops, the RG
determines allk-loop coefficientsck, j in Ck exceptfor ck,0 .
The lattercannotbe deduced from the RG, to any number
loops; rather,ck,0 must be calculated explicitly via a separa
k-loop matching calculation. For example, the NNLO co
ficient 211/(72p2) in Eq. ~27! is just 2c2,0.

Instead of Eq.~28!, we prefer to consider the inverse r
lation

a f 115a f1 (
k51

`

a f
k11PkS ln

mh

m̄
D 1O~mh

21! ~30!

because that is what is required in order to takemh→` with
a f held fixed. The analogue of Eq.~29! is

Pk5pk,k@ ln~mh /m̄ !#k1pk,k21@ ln~mh /m̄ !#k211•••1pk,0 .

~31!

An analysis in the style of Bernreuther and Wetzel produ
identical conclusions for the remainder constantspk,0 : given
p1,0,p2,0, . . . ,pk21,0, one can use the RG to deduc
pk,k , . . . ,pk,1 but notpk,0 .

Most practical applications require that terms of the sa
logarithmic order be summed. This is straightforward for L
logarithms, because the LO coefficientsck,k in Eq. ~29! obey
a simple relationship@2#

ck,k5~c1,1!
k ~32!

which makes the series geometric,

a f 5
LO

a f 11 Y S 12
a f 11

3p
ln

mh

m̄
D . ~33!

This expression is LO with respect to powers ofa f 115aF

and ln(mh /m̄). Equation ~33! implies that the term
O(a f ,mh

21) in Eq. ~25! is NLO or higher order:

a f 11
21 2a f

21 5
LO

1

3p
ln

mh

m̄
. ~34!

This leads directly to the inverse of Eq.~33!,
09600
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a f 11 5
LO

a f Y S 11
a f

3p
ln

mh

m̄
D ~35!

where now LO refers to powers ofa f and ln(mh /m̄). Note
that the LO coefficientspk,k in Eq. ~31! are given by

pk,k5~21/3p!k. ~36!

Beyond LO, formulas for all the relevant coefficients b
come complicated, making order-by-order summation
cumbersome to be practical. The rest of this paper is c
cerned with a RG analysis which allows us to consid
matching relations to a given logarithmic order without ha
ing to expand in perturbative order.

IV. MATCHING FUNCTION

Any RG analysis of decoupling involves at leasttwo
renormalization groups: one for the initialF-flavor theory,
and one for eachf-flavor theory produced as a heavy partic
decouples. We append a flavor subscript to make the dist
tion, viz. RGF or RGf .

A key observation is that any quantity which is RGF in-
variant must also be RGf invariant (f ,F). For example,
Witten’s RGF invariant running couplingãh must satisfy the
condition

Df ãh5S m̄
]

]m̄
1b

]

]a D
f

ãh50. ~37!

Generally, the substitution

DF→Df ~38!

works when applied to any quantity which survives the lim
mh→`. An example is the formula

D6a55D5a55b5~a5!. ~39!

which agrees with the general result~13!. However,the con-
verse is not generally true. For example, the top-quark mas
mt is RGf 55 invariant, but it is certainlynot RGf 56 invari-
ant. Therefore a study of the RG for the originalF-flavor
theory is both necessary and sufficient for the full implic
tions of the RG to be understood.

Our starting point is Witten’s definition~17! of the invari-
ant running couplingãh . Let us regard this as a formula fo
ln(mh /m̄) in terms ofãh andaF . Specifically, the right-hand
side is an integral fromaF to ãh involving RGF functions
bF anddF . Can a similar formula be constructed from RGf
functions such that this mass logarithm becomes a func
of ãh anda f?

If such a formula exists, it must be consistent with t
requirements of the RGF group for theoriginal theory. How-
ever, mass renormalization produces an unwelcomeF depen-
dence in equations such as

DF ln~mh /m̄ !5dF~aF!21. ~40!
5-4
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So let us amend the proposal: instead of theMSF massmh ,
consider Witten’s invariant mass1

m̄h5mhexpE
aF

ãh
dxdF~x!/bF~x!. ~41!

Sincem̄h is RGF invariant,

DFm̄h50 ~42!

replacing mh by m̄h in Eq. ~40! eliminates the unwanted
dependence ondF :

DF ln~m̄h /m̄ !521. ~43!

Notice that formula~2! for ln(m̄h /m̄) is an immediate conse
quence of definitions~17! and ~41! of ãh and m̄h . As a
check,DF can be applied to the right-hand side of Eq.~2! to
give the result21, in agreement with Eq.~43!.

Now observe that, because of Eq.~13!, the replacemen
F→ f everywhere on the right-hand side of Eq.~2! produces
a quantity which transforms in the same way under the RF
of the original theory:

DFE
a f

ãh
dx

1

b f~x!
521. ~44!

Comparing Eqs.~43! and ~44!, we see that a RGF invariant
quantityF can be defined as follows:

ln
m̄h

m̄
5E

a f

ãh
dx

1

b f~x!
1F implies DFF50. ~45!

Since F is dimensionless, it can depend onãh , but RGF
invariance forbids dependence on other dimensionless v
ables, such asaF , a f , m̄h /mh , or mh /m̄. We call it the
matching function:

F5FF→ f~ ãh!. ~46!

This completes the derivation of the key equations~2!
and ~3!:

ln
m̄h

m̄
5E

aF

ãh
dx

1

bF~x!

ln
m̄h

m̄
5E

a f

ãh
dx

1

b f~x!
1FF→ f~ ãh!.

1See Eq.~16! of @1#. Similar effective masses have been invent
for the cases of large momenta@13# and light quarks@15#. Their RG
invariance makes them useful in phenomenology@1,15# and lattice
calculations@16#.
09600
ri-

When ãh is eliminated from these equations, the desir
matching relation~5! is obtained:

aF 5aF„a f , ln~m̄h /m̄ !…, F5 f 11.

V. PERTURBATION THEORY FOR THE MATCHING
FUNCTION

Perturbative matching relations can be used to determ
successive coefficients in the Taylor series of the match
function FF→ f(ãh). One needs to calculate the mas
independent termsck,0 in Eq. ~29! or equivalentlypk,0 in Eq.
~31!. As noted in Sec. III, these constants cannot be dedu
from the RG. This corresponds to the fact thatFF→ f cannot
be deduced from the RG because it is RGF invariant.

To illustrate the procedure, let us deduce the con
quences forFf 11→ f of the perturbative matching relatio
~28!. We need the two-loopb function for three colors:

b f~x!52
x2

6p
~3322 f !2

x3

12p2
~153219f !1O~x4!. ~47!

Its reciprocal is

$b f~x!%21 52
6p

3322 f S 1

x2
2

bf

x
1bf8D 1O~x! ~48!

wherebf stands for the constant

bf5
1

2p

153219f

3322 f
~49!

and bf8 is another constant whose precise value is not
concern here.

Expansion~48! inserted into Eqs.~2! and ~3! yields the
following equations:

3322~ f 11!

6p
ln

m̄h

m̄
5ãh

212a f 11
21 1bf 11 ln

ãh

a f 11
1O~a f

2!

~50!

3322 f

6p
ln

m̄h

m̄
5ãh

212a f
211bf ln

ãh

a f
1O~a f

2!

1
3322 f

6p
Ff 11→ f~ ãh!. ~51!

Note that the corrections areO(a f
2): contributions to Eqs.

~50! and ~51! from the constant term in Eq.~48! are

bf 118 ~ ãh2a f 11!5O~a f
2! andbf8~ ãh2a f !5O~a f

2!

becauseãh , a f 11 anda f differ by O(a f
2).

The next step is to eliminateãh . This is partially
achieved by subtracting Eq.~50! from Eq. ~51!:
5-5
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1

3p
ln

m̄h

m̄
5a f 11

21 2a f
211bf ln

ãh

a f
2bf 11 ln

ãh

a f 11

1
3322 f

6p
Ff 11→ f~ ãh!1O~a f

2!. ~52!

Since ln(ãh /af) and ln(ãh /af11) are bothO(a f), Eqs.~25!
and ~52! imply

Ff 11→ f~ ãh!5O~a f !

and so, from Eqs.~50! and ~51!, we conclude

a f 11 /ãh511
a f

6p
@3322~ f 11!# ln

mh

m̄
1O~a f

2!

a f /ãh511
a f

6p
~3322 f ! ln

mh

m̄
1O~a f

2!.

~53!

The logarithms of these expressions can then be substit
back into Eq.~52!, with the result

1

3p
ln

m̄h

m̄
5a f 11

21 2a f
212

19a f

12p2
ln

mh

m̄

1
3322 f

6p
Ff 11→ f~ ãh!1O~a f

2!. ~54!

The next step is to relate the logarithms ofm̄h and mh .
First substitute the three-color formula

d f~x!52
2x

p
1O~x2! ~55!

into definition ~41! of m̄h ,

ln
m̄h

mh
5

12

3322~ f 11!
ln

ãh

a f 11
1O~a f

2! ~56!

and then substitute Eq.~53! for a f 11 /ãh . The result is

ln
m̄h

m̄
5S 12

2a f

p D ln
mh

m̄
1O~a f

2!. ~57!

Then the logarithm ofm̄h can be eliminated from Eqs
~54! and ~57!:

a f 115a f2
a f

2

3p
ln

mh

m̄
1

a f
3

9p2
ln2

mh

m̄
2

11a f
3

12p2
ln

mh

m̄

1
a f

2

6p
~3322 f !Ff 11→ f~ ãh!1O~a f

4!. ~58!

Comparing this with the two-loop matching condition~27!,
we see that all mass logarithms are correctly reproduced,
09600
ed

nd

that the first nonzero term in the matching function can
deduced from the constant NNLO term in Eq.~27!:

Ff 11→ f~ ãh!52
11

12p~3322 f !
ãh1O~ ãh

2!. ~59!

The O(ãh
2) term in F can be found by substituting Eq

~59! back into Eq.~3! and repeating the above process us
the three-loopb f and two-loopd f functions. The answer
follows by comparison with the known three-loop matchi
condition@8#. That is the limit of current calculations, but i
principle, this strategy could be pursued to any order, with
mass logarithms correctly reproduced.

VI. CLOSED EXPRESSIONS FOR HEAVY-QUARK
LOGARITHMS

The importance of the matching functionF is that it al-
lows us to work to a given logarithmic order without havin
to sum mass logarithms order by order in perturbation the
Indeed, the role ofF is essentially the same as that of the R
functionsb, g and d: each term in the series forF corre-
sponds to a particular logarithmic order. For LO and NLO,F
does not contribute, but NNLO requires that theO(ãh) term
in Eq. ~59! be included, NNNLO requires theO(ãh

2) term,
and so on.

To illustrate, let us derive the closed NLO formula for th
matching relation betweena f 11 anda f which we announced
in @12#.

As in the previous section, we insert expansion~48! into
Eqs. ~2! and ~3!, but this time we omit the NNLO term
Ff 11→ f :

3322~ f 11!

6p
ln

m̄h

m̄
5

NLO
ãh

212a f 11
21 1bf 11 ln

ãh

a f 11

~60!

3322 f

6p
ln

m̄h

m̄
5

NLO
ãh

212a f
211bf ln

ãh

a f

.

~61!

The difference of these two equations is

1

3p
ln

m̄h

m̄
5

NLO
a f 11

21 2a f
212~bf2bf 11! ln

a f

ãh

2bf 11 ln
a f

a f 11

. ~62!

The logarithms on the right-hand side are already NLO,
we can use the LO parts of Eqs.~61! and~62! to approximate
their arguments:

a f /ãh 5
LO

11
a f

6p
~3322 f ! ln

mh

m̄
~63!
5-6
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a f /a f 11 5
LO

11
a f

3p
ln

mh

m̄
. ~64!

The result is a NLO generalization of Eq.~35!:

a f 11 5
NLO

a f Y H 11
a f

3p
ln

m̄h

m̄
1a fbf 11 lnS 11

a f

3p
ln

mh

m̄
D

1a f~bf2bf 11! lnF11
a f

6p
~3322 f ! ln

mh

m̄
G J . ~65!

If desired, ln(m̄h /m̄) can be eliminated in favor o
ln(mh /m̄). The leading NLO effects of mass renormalizati
are due to the one-loop term ofd f given by Eq.~55!. When
this term is substituted into the definition~41! of m̄h , keep-
ing all logarithms to this order, we find an expression

ln
m̄h

m̄
5

NLO
ln

mh

m̄
1

12

3122 f
S ln

a f

a f 11

2 ln
a f

ãh

D ~66!

to which Eqs.~63! and ~64! can be readily applied:

ln
m̄h

m̄
5

NLO
ln

mh

m̄
1

12

3122 f
lnS 11

a f

3p
ln

mh

m̄
D

2
12

3122 f
lnS 11

a f

6p
~3322 f ! ln

mh

m̄
D . ~67!

So, by combining Eqs.~65! and~67!, we arrive at a complete
NLO formula for the matching condition:

a f 11
21 5

NLO
a f

211
1

3p
ln

mh

m̄
1cf lnF11

a f

3p
ln

mh

m̄
G

1df lnF11
a f

6p
~3322 f ! ln

mh

m̄
G ,

cf5
142219f

2p~3122 f !
, df5

57116f

2p~3322 f !~3122 f !
.

~68!

The same equations can also be used to obtain equa
for the RG invariantãh ~also announced in@12#!. Equations
~49!, ~61!, and~63! imply the NLO formula

ãh
21 5

NLO
a f

211
1

6p
~3322 f ! ln

m̄h

m̄

1
153219f

2p~3322 f !
lnF11

a f

6p
~3322 f ! ln

mh

m̄
G .

~69!
09600
ns

Again, Eq.~67! can be used to write ln(m̄h /m̄) in terms of
ln(mh /m̄). This leads to the following asymptotic formula fo
ãh asmh→`:

ãh;6pY H ~3322 f ! ln
mh

m̄
1K f ln ln

mh

m̄
1O~1!J ,

K f5
3~153219f !

3322 f
2

12~3322 f !

3122 f
. ~70!

These results show that we have complete control over
matching process. Once closed expressions such as Eqs~68!
and ~69! have been obtained, RG invariance can be ma
tained for each logarithmic order, and so there is no nee
truncate to a given order of perturbation theory.

VII. MASS-MATCHING FUNCTION

Most of the analysis above is restricted to the case of
one heavy quarkh, but it can be readily extended to includ
sequentialdecoupling, where heavy quarks are decoup
one at a time. The new feature which arises is the need
match the mass of the second heavy quark. For exam
suppose that, having decoupled thet quark in F56 flavor
QCD, we would like to decouple theb quark as well:

mt→` first, then mb→`. ~71!

Then it will be necessary to match the six-flavor definiti
mb65mb of the bottom quark mass to its five-flavor defin
tion mb5.

As for the matching of couplings, the key is to find a R
invariant definition of mass to which the Appelquis
Carrazone theorem@6# can be applied. This problem wa
solved by Bernreuther@4#, again by recourse to the MO
scheme.

Let A,(p2) and B,(p2) denote the form factors for the
unrenormalized 1PI light-quark self-energy amplitu
2 i (p”A,2m0,B,). This corresponds to the unrenormalize
quark propagator

S~p!5
i

p” ~12A,!2m0,~12B,!

5~12A,!21
i

p”2m0,~12B,!/~12A,!
. ~72!

Define MO light-quark massesM ,
MO(Q) at a fixed space-like

point p252Q2:
5-7
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M ,
MO~Q!5m0,„12B,~2Q2!…/„12A,~2Q2!…. ~73!

This mass is RG invariant because, expressed in term
renormalized quantities, it is finite. The choice of spacel
subtraction point2Q2 means that mass renormalization,
well as coupling constant and wave-function renormali
tion, is performed off-shell:2

iS21~p!up252Q25p”2M ,
MO~Q!Þ0 at p252Q2.

~74!

This avoids problems with Bloch-Nordsieck logarithms pr
duced byn-loop perturbation theory at the on-shell poi
p2;m2 @6#:

iS21~p!;~p22m2!21@ ln~p22m2!#n.

A complication familiar to many authors@19,20# is that,
unlike an on-shell renormalized mass,M ,

MO(Q) is gauge de-
pendent. Despite this, the resulting mass-matching rela
betweenm, f andm,( f 11) is gauge invariant@4# because the
relations betweenMS masses and their bare counterparts
gauge invariant. In two-loop perturbation theory, the res
@4# for QCD with three colors andf light flavors is

m, f

m,( f 11)
511

a f 11
2

12p2 S ln2
mh

2

m̄2
1

5

3
ln

mh
2

m̄2
1

89

36D 1O~a f 11
3 !.

~75!

We would like to extend this result to include all terms
the samelogarithmic order. This is achieved by introducin
our second matching function,G—the matching function for
mass renormalization. On order to reduce notational co
plexity, we consider the special casef 55 mentioned at the
beginning of this section.

Consider the RG equation

D6 ln
mb6

mb5
5d6~a6!2d5~a5! ~76!

The leading power in a large-mt expansion ofmb6 /mb5 is a
function of a5 and ln(mt /m̄) but does not depend on ligh
quark masses, so the general solution of Eq.~76! is

ln
mb6

mb5
5E

a5

ã t
dx

d5~x!

b5~x!
2E

a6

ã t
dx

d6~x!

b6~x!
1G6→5~ ã t!1O~mt

21!

~77!

where G6→5(ã t) is the mass-matching function. Like
F6→5(ã t) in Eq. ~45!, G6→5 arises as an integration consta

2A similar MO definition for heavy-quark massesMh @17#
yields ab functionb(g,Mh /Q) @18# with smooth threshold behav
ior at Q;Mh .
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of a RG equation, so it can depend only on the RG invari
ã t . Also like F, it cannot be deduced from the RG and mu
be calculated separately.

At one-loop order, there are no top-quark corrections~Fig.
1!, so the mass-matching condition is trivial@4#:

Mb
MO5mb,6@11a6$1-loop%#1O~a6

2!

5mb,5@11a5$1-loop%#1O~a5
2!. ~78!

Here a f$1-loop% denotes the self-energy amplitude deriv
from Fig. 1. EliminatingMb

MO , we find

ln
mb6

mb5
5~a52a6!$1-loop%1O~a5

2!5O~a5
2!. ~79!

At this point, we need to specify what is LO, NLO, and s
on. If we were talking only about corrections to mass,
might consider terms;(a f ln mt /m̄)n as LO, but in general,
it is more convenient to regard them as NLO. That is beca
mass renormalization does not contribute to physical am
tudes in LO. With this convention, Eqs.~48!, ~53!, and~55!
imply

E
a f

ã t
dx

d f~x!

b f~x!
5

NLO

6

33

2
2 f

ln
ã t

a f

5
NLO

2
6

33

2
2 f

lnF11
a f

3p
S 33

2
2 f D ln

mt

m̄
G .

~80!

In lowest-order perturbation theory, we have

E
a5

ã t
dx

d5~x!

b5~x!
2E

a6

ã t
dx

d6~x!

b6~x!
5

2

p
~a62a5! ln

mt

m̄
1O~a5

2!

5O~a5
2! ~81!

since the couplingsa6 anda5 differ by O(a5
2). From Eqs.

~77!, ~79!, and~81!, we conclude

G6→5~ ã t!5O~ ã t
2!. ~82!

Having established thatG is irrelevant at NLO, we neglec
it in Eq. ~77! and substitute Eq.~80!. This yields the com-
plete NLO expression:

FIG. 1. One-loop correction to mass renormalization.
5-8
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ln
mb6

mb5

5
NLO

6

33

2
26

lnF11
a6

3p
S 33

2
26D ln

mt

m̄
G

2
6

33

2
25

lnF11
a5

3p
S 33

2
25D ln

mt

m̄
G . ~83!

If desired,a6 can be eliminated in favor ofa5 via Eq. ~35!.
Note that theO(a5

2) NLO term is a double logarithm which
arises from the diagram with at-loop inserted in the gluon
propagator~Fig. 2!:

ln
mb6

mb5

5
NLO

2

p
~a62a5! ln

mt

m̄
2

a6
2

3p2
S 33

2
26D ln2

mt

m̄

1
a5

2

3p2
S 33

2
25D ln2

mt

m̄
1O~a5

3!

5
NLO

2
1

3
S a5

p
D 2

ln2
mt

m̄
1O~a5

3!. ~84!

This reproduces the NLO term of Bernreuther’s result~75!
for3 mf /mf 11.

Equation~83! generates the complete set of NLO log
rithms. They correspond to diagrams with a string of on
loop t-quark bubbles inserted in the gluon propagator of
one-loopb-quark self-energy amplitude.

The constant term 89a f
2/(432p2) in Eq. ~75! corresponds

to the first nonzero contribution to the matching functionG.
We state the result for any value off:

Gf 11→ f~ ãh!52
89

432p2
ãh

21O~ ãh
3!. ~85!

This term is required if NNNLO corrections are being calc
lated.

VIII. APPLICATION TO SEQUENTIAL DECOUPLING

When decoupling theb quark, it is natural to define five
flavor quantitiesãb5 andm̄b5 by analogy with the six-flavor
running couplingã t and massm̄t for the top quark:

3Note that Bernreuther expands ina6 instead ofa5, but to this
order the coefficient is the same.

FIG. 2. Two-loop heavy-quark contribution to mass renorm
ization of the bottom quark.
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ln
mb5

m̄
5E

a5

ãb5
dx

12d5~x!

b5~x!
~86!

ln
m̄b5

mb5
5E

a5

ãb5
dx

d5~x!

b5~x!
. ~87!

Clearly, bothãb5 andm̄b5 are RGf 55 invariant,

D5ãb550, D5m̄b550 ~88!

but in fact, they are also RGf 56 invariant as a consequenc
of Eqs.~13! and ~14!:

D6ãb550, D6m̄b550. ~89!

This means thatãb5 andm̄b5 can be expressed in terms o
invariants of the original six-flavor theory.4 To see this, first
combine Eqs.~87! and ~41!, and then~77!:

ln
m̄t

mt
2 ln

m̄b5

mb5
5E

a6

ã t
dx

d6~x!

b6~x!
2E

a5

ãb5
dx

d5~x!

b5~x!

52 ln
mb6

mb5
1E

ãb5

ã t
dx

d5~x!

b5~x!

1G6→5~ ã t!1O~mt
21!. ~90!

This equation simplifies to

ln
m̄t

m̄b5

5 ln S mt

mb
D

6

1E
ãb5

ã t
dx

d5~x!

b5~x!
1G6→5~ ã t!1O~mt

21!.

~91!

The sum of Eqs.~86! and ~87!,

ln
m̄b5

m̄
5E

a5

ãb5
dx

1

b5~x!
~92!

can be subtracted from Eq.~3!, with the result

ln
m̄t

m̄b5

5E
ãb5

ã t
dx

1

b5~x!
1F6→5~ ã t!1O~mt

21!. ~93!

If Eq. ~93! is now combined with Eq.~91!, we find thatãb5

and hencem̄b5 can be expressed in terms of RG invariants
the original six-flavor theory, viz.ã t and the ratio (mt /mb)6:

4This property is essential for any generalization of the analysi
simultaneous decoupling, where all couplings and masses, run
or otherwise, will have to be definedonly in terms of the initial
theory (F56) or the residual theory (f 54 if just the t and b are
being decoupled!, with no reference to five-flavor couplings o
masses.

-
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ln S mt

mb
D

6

5E
ãb5

ã t
dx

12d5~x!

b5~x!
1F6→5~ ã t!

2G6→5~ ã t!1O~mt
21!. ~94!

The sequential decoupling of thet andb quarks refers to
the limiting procedure

ln~mt /m̄ !@ ln~mb /m̄ !→` ~95!

where we choose a six-flavor definition formb as well asmt .
Leading-power six-flavor amplitudes are represented
logarithmic expansions fort-quark decoupling

Ã6; (
p>0

C̃p5 lnp ~mt /m̄ ! ~96!

where each five-flavor coefficientC̃p5 is a leading-power
asymptotic expansion forb-quark decoupling:

C̃p5; (
q>0

Cpq4 lnq ~mb /m̄ ! ~97!

The last decoupling~that of theb quark! is carried out with
a4 held fixed. Therefore we seek formulas for couplin
such asa6 and ã t in terms ofmt , mb anda4.

As always, the key step in the derivation of NLO form
las is the neglect of some matching functions. In this ca
we neglect the NNLO functionsF6→55O(ã t) and F5→4

5O(ãb5) for matching a6 to a5 and a5 to a4, and the
NNNLO function G6→55O(ã t

2) for mb5 to be matched to
mb65mb .

We start with the NLO formula~83! for the five-flavor
massmb5. To this order, all dependence ona5 anda6 can be
eliminated via LO formulas derived from Eq.~35!,

a5 5
LO

a4 Y S 11
a4

3p
ln

mb

m̄
D ~98!

a6 5
LO

a4 Y H 11
a4

3p
S ln

mt

m̄
1 ln

mb

m̄
D J ~99!

where~again to this order! mb5 may be replaced bymb on
the right-hand side. Then Eq.~83! becomes

ln
mb5

m̄
5

NLO
ln

mb

m̄
2

12

23
lnS 11

a4

3p
ln

mb

m̄
D

2
8

161
lnS 11

23a4

6p
ln

mt

m̄
1

a4

3p
ln

mb

m̄
D

1
4

7
lnS 11

a4

3p
ln

mb

m̄
1

a4

3p
ln

mt

m̄
D . ~100!
09600
y

e,

Similarly, consider the NLO relation~68! betweena f 11
anda f . For the casef 54, the heavy-quark massmh in Eq.
~68! is mb5, but we can use Eq.~100! to eliminatemb5 in
favor of mb ,

a5
21 5

NLO
a4

211
1

3p
ln

mb5

m̄
U

NLO

1c4 lnF11
a4

3p
ln

mb

m̄
G

1d4 lnF11
25a4

6p
ln

mb

m̄
G ~101!

where the constantsc4 andd4 are given by

c4533/~23p!, d45121/~1150p!. ~102!

For f 55, mh in Eq. ~68! is the six-flavor massmt . Any a5
dependence can be removed via Eq.~98! or Eq. ~101!:

a6
21 5

NLO
a5

21uNLO1
1

3p
ln

mt

m̄
1c5 lnF11

a5

3p
U

LO

ln
mt

m̄
G

1d5 lnF11
23a5

6p
U

LO

ln
mt

m̄
G ~103!

The coefficientsc5 andd5 have numerical values

c5547/~42p!, d55137/~966p!. ~104!

The result of combining these formulas is

a6
21 5

NLO
a4

211
1

3p
S ln

mb

m̄
1 ln

mt

m̄
D

1
55

42p
lnS 11

a4

3p
ln

mb

m̄
1

a4

3p
ln

mt

m̄
D

1
121

966p
lnS 11

23a4

6p
ln

mt

m̄
1

a4

3p
ln

mb

m̄
D

1
121

1150p
lnS 11

25a4

6p
ln

mb

m̄
D . ~105!

The same procedure can be applied to the NLO form
~67! for the RG invariant massm̄h . For f 54, the result is

ln
m̄b5

m̄
5

NLO
ln

mb

m̄
2

12

23
lnS 11

25a4

6p
ln

mb

m̄
D

2
8

161
lnS 11

23a4

6p
ln

mt

m̄
1

a4

3p
ln

mb

m̄
D

1
4

7
lnS 11

a4

3p
ln

mb

m̄
1

a4

3p
ln

mt

m̄
D ~106!
5-10



-

in

n
do

ot

er
or

-

only
to
the

tors
that
ff-

et
nt

by
-
ting
ct

ed

of
t

e

MATCHING FUNCTIONS FOR HEAVY PARTICLES PHYSICAL REVIEW D68, 096005 ~2003!
after substitution of Eq.~100! for mb5. For f 55, Eq. ~67!

expressesm̄t in terms ofa5, for which the LO formula~98!
may be substituted, with the result

ln
m̄t

m̄
5

NLO
ln

mt

m̄
1

4

7
lnS 11

a4

3p
ln

mt

m̄
1

a4

3p
ln

mb

m̄
D

2
4

7
lnS 11

23a4

6p
ln

mt

m̄
1

a4

3p
ln

mb

m̄
D . ~107!

If desired, inverses of Eqs.~106! and ~107! can be con-
structed and used to express quantities such asa6 in terms of
the invariant massesm̄b5 andm̄t instead ofmb andmt .

Finally, we extract NLO formulas for the invariant run
ning couplings for sequentialt,b decoupling from Eq.~69!

for ãh . For the casef 54, Eqs.~69! and ~106! imply

ãb5

21 5
NLO

a4
211

25

6p
ln

mb

m̄
2

729

1150p
lnS 11

25a4

6p
ln

mb

m̄
D

2
100

483p
lnS 11

23a4

6p
ln

mt

m̄
1

a4

3p
ln

mb

m̄
D

1
50

21p
lnS 11

a4

3p
ln

mb

m̄
1

a4

3p
ln

mt

m̄
D . ~108!

For f 55, it is necessary to combine Eq.~69! with Eqs.
~100!, ~101!, and~107!:

ã t
21 5

NLO
a4

211
23

6p
ln

mt

m̄
1

1

3p
ln

mb

m̄

2
457

483p
lnS 11

23a4

6p
ln

mt

m̄
1

a4

3p
ln

mb

m̄
D

1
50

21p
lnS 11

a4

3p
ln

mb

m̄
1

a4

3p
ln

mt

m̄
D

1
121

1150p
lnS 11

25a4

6p
ln

mb

m̄
D . ~109!

A useful check of the formalism can be obtained by show
that the difference

ã t
212ãb5

21

is correctly given by Eq.~94! in NLO.

IX. THEORIES LACKING ASYMPTOTIC FREEDOM

So far, we have limited the discussion to heavy fermio
in a gauge theory such as QCD and used asymptotic free
to obtain decoupling in the infinite-mass limit.

Does decoupling work if asymptotic freedom is n
present, as in QED or scalar field theory withlf4 interac-
09600
g

s
m

tion in four dimensions? Perhaps this is part of the wid
debate@21# about whether such theories are inconsistent
trivial, particularly for the continuum limit of the lattice ap
proximation.

We start from the premise that a theory makes sense
if its heavy particles decouple in the infinite-mass limit
produce another consistent theory. Questions about how
nonperturbative theory could depend on details of regula
and their removal are not considered. We simply assume
some means of producing a fully interacting cuto
independent theory has been found, e.g. for QEDk with k
species of equal-charge leptons, and apply our premise.

The notation is similar to that used above for QCD. L
ak5ek

2/(4p) be theMS renormalized fine structure consta
for QEDk , where the charged leptons haveMS masses
mj , j 51, . . . ,k, and letbk and dk be the Callan-Symanzik
functions for charge and mass renormalization. Denote
ãH and m̄H Witten’s invariant versions of the running fine
structure constant and heavy-lepton mass. Then, repea
the arguments of Secs. IV and VII, we can constru
coupling-constant and mass matching functionsF andG for
the decoupling of one species of lepton:

QEDk11→QEDk , k>1 ~110!

The free-photon theory QED0 lacks ab function so it is a
special case.

First consider the analogue of Eq.~2!, including the case
k50:

ln
m̄H

m̄
5E

ak11

ãH
dx

1

bk11~x!
~111!

The decoupling condition

ak11→0 as mH→` for fixed ak ~112!

involves thex50 solution of the equationbk11(x)50, but
it produces an infinity of the wrong sign because this fix
point is infrared stable. For consistency,ãH must approach a
singularity of the integral sufficient to reverse the effect
the x50 contribution. This could arise from an ultraviole
fixed point,

ãH→ak11,̀ ~113!

or elseãH approachesx5`, in which case we must suppos
that 1/bk11(x) is not integrable.

Next defineF as in Eq.~3!, with k>1:

ln
m̄H

m̄
5E

ak

ãH
dx

1

bk~x!
1Fk11→k~ ãH! ~114!

In the decoupling limit~112!, the singularity on the left-hand
side is generatedentirely from the running ofãH . We can
conclude that this is due to a QEDk fixed pointak,` only if
it coincides with that of QEDk11:

ak11,̀ 5ak,` ~115!
5-11
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Similarly, a nonintegrable singularity atx5` can be the sole
cause only if this happens for both QEDk and QEDk11. Oth-
erwise, we must suppose that the matching function ha
singularity atak,` or `.

The nonperturbative theory of QED of Johnson, Bak
Willey and Adler@22# is an example of case~115!. Indeed, if
the arguments of Adler for an infinite-order zero at the fix
point are applied to a many-species theory~all with the same
charge!, the result is clear: there is no dependence on
number of species.

Notice that these conclusions are driven by the lack
asymptotic freedom of the initial theory. For example, co
sider what happens in QCD when a heavy quark decou
from the nonasymptotically free 17-flavor theory to produ
the 16-flavor theory with asymptotic freedom. Equation~2!

for F517 implies thatãh increases. Thus in Eq.~3! with f

516, ãh is driven towards a nonperturbative infrared regi
of the residual theory.

X. CONCLUDING REMARKS

The introduction of the matching functionsF and G for
coupling constants and masses@Eqs.~3! and~77!# completes
the theoretical structure needed for a systematic applica
of the RG to the decoupling of heavy particles. We ha
considered just QCD and QED, but the field-theoretic pr
ciples are much the same for any theory. The main case
to be checked is a full RG analysis of the decoupling
heavy gauge bosons whose masses are induced by the H
mechanism.

In this paper, we decoupled only one particle at a time~for
simplicity! and concentrated on field-theoretic aspects of
subject. Actually, our work on matching functions aris
from a need to consider the simultaneous decoupling of m
than one heavy quark in phenomenological applications.
cl
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challenge is to keep track of dependence on large logarit
such as

ln
mt

mb
5 ln

mt

m̄
2 ln

mb

m̄
~116!

Since these logarithms donot depend on theMS scalem̄, the
conventional tactic used in phenomenology for single he
quarks fails: there is no way of making such logarithm
small by choosingm̄5O(mh).

As indicated in our work@12# on NLO heavy-quark ef-
fects in axial charges of nucleons, the analysis can be ge
alized to include simultaneous decoupling of several he
particles. This includes the introduction of matching fun
tions of several variables, one for each heavy particle.
will present this extension of the theory in a forthcomin
publication.

One can also anticipate generalizations to situati
where momentum and mass logarithms grow large toget
Examples from the literature occur in collider physics@23#,
Higgs boson and supersymmetric particle production@24#,
and deep-inelastic scattering through thresholds for hea
particle production@25#.
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