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We introducematching functionsis a means of summing heavy-quark logarithms to any order. Our analysis
is based on Witten's approach, where heavy quarks are decoupled one at a time in a mass-independent
renormalization scheme. The outcome is a generalization of the matching conditions of Bernreuther and
Wetzel: we show how to derive closed formulas for summed logarithms to any order, and present explicit
expressions for leading order and next-to-leading order contributions. The decoupling of heavy particles in
theories lacking asymptotic freedom is also considered.
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I. INTRODUCTION We set up the formalism for mass logarithms by introduc-

ing matching functionsF(a;,) and G(a},) associated with
Decoupling a heavy quark when the renormalizationcoupling constant and mass renormalization. The coupling
scheme is mass independent was originally discussed by Wigonstant and masses are matched to all orders, with heavy
ten [1]. He showed that the results can be elegantly exquarks(in this paper decoupled one by ond=( f +1). For
pressed in terms of a renormalization groG) invariant  coupling constant renormalization, we derive in Sec. IV the
running couplingay, associated with the mags,, of the following key equations,
heavy quarkh. Subsequently, Bernreuther and Wetzal5]

proposed a systematic method for dealing with the matching My [ 1
problem, i.e. the lack of explicit decoupling in mass indepen- |“_:f dX,BF(x) @
dent schemes. They applied the Appelquist-Carrazone decou- K
pling theoren{6] to the gluon couplingxy® in the momen- ~

H 1 1 H m o 1 ~
tum subtractioMO) scheme, i.e. renormalized at spacelike m_h:f hx + Fe () 3)
momentumQ, “ Bi(x) T FRTh

ago|wnh = a'c\g/'o|no +o(mr ) (1) wherem,, is Witten’s renormalization group invariant heavy-

quark masg1], B¢(x) is the MS B-function for thef-flavor

theory, and

and compared calculations e, in the full F=f+1 and

effective f flavor MS (mOdIerd minimal subtractiontheo- w=pgmydme "2, y=0572... (4)

ries. WhenO(mh 1) terms are neglected, the strong coupling

ar=g2/(47) for the F-flavor MS theory is calculable as a is the MS scale derived from the scajey,, used to define

power series in it§-flavor counterparty; and logarithms of ~ dimensional regularization and renormalization. The match-
. Results for the first few loops of perturbation theorying functionFg_ is a series |mh whose coefficients can be

appear in the literatur¢2—5,7—9. Bernreuther has con- determined perturbatively by comparison with Ed). The

structed a similar matching procedure to deal with the effectslesired matching relation betwees and«; is the result of

of mass renormalizatiof#]. eliminating a;, from Egs.(2) and (3):
This paper arises from the observatidh4] that the RG
relates coefficients of perturbative mass logarithms ag=ag(ar, In(my/w)). (5)

~ af Inmy, in matching relations. This suggests that we seek

an analogy with the behavior of Green’s functions at largeSimilar conditions for mass matching are presented in
momentag, where in generdl10,11], each perturbative order Sec. VII.

in the Gell-Mann—Low function\W(x) or the Callan- The role played byF, G and the3,v,d functions in
Symanzik 8,y,6 functions determines all coefficients to matching conditions is just like that of th@, y, 5 functions
logarithmic orderx, i.e. all coefficients of momentum loga- for large-momentum logarithms. Each order of perturbation
rithms{af “In'qr=0,1,2 ...}. theory for these functions determines the coefficients of a
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new tower of mass logarithms: leading .orc{EO), next-to- are power series inm,' with each power modified
leading orde(NLO), next-to-next-to-leading ordéNNLO),  py 4 polynomial in Infn,/w). We will consider the leading
and so on. Bott#(ay) andG(ay) vanish for LO and NLO, power A :
but then there are contributions from successive terms in
their power series imy,, starting with NNLO forF(a;,) and Ap=A{1+0(m; Y. (6)
NNNLO for G(ay).

We find, as for larget logarithms, that results for cou- The notationO(m;, ') refers to any subleading power, in-
pling constants, running couplings and light masses can beluding its logarithmic modifications.
most elegantly expressed as closed expressions or generating| ggarithms inAx for m,~ are generated by 1Rbne-
functions for summed towers of mass logarithms. Examplegarticle irreducible subgraphs with at least one heavy-quark
are the decoupling formulas faers, ; and «y, quoted previ- propagator and with degree of divergence at least logarith-
ously by us[12], which we derive in Sec. VI. AlImost all of - mic. It is as if all contributing 1Pl parts were shrunk to a
our results are for quantum chromodynami@CD) with  point. All F-flavor amplitudesA tend to amplitudes4; of
three colors, but the technique can be applied to any renokne residuaf-flavor theory, apart fronm;,-dependent renor-

malizable theory. _ _ _ malizations of the coupling constant, light masses, and am-
Sections Il and Il are brief summaries of Witten’s treat- plitudes[6]:

ment of heavy-quark decoupling in QCD and the matching
procedure of Bernreuther and Wetzel for coupling constants. Ae(p ; ag Mg, M)
This lays the foundation for the RG analysis in Sec. IV, from PSSR TR T

which we are led to construct the matching functirfor =Sz, me /) AL(D. . s .m 7
coupling constant renormalization. Perturbation theory#or % an (g M/ ) Af (Pt g M) 0
is considered in Sec. V, with the result that the first nonzero

term(NNLO) in Fis obtained. In Sec. VI, we show that Egs. ai=a(ar ’mh/;), mys = meD(ap ,mh/;). ®)
(2) and (3) lead directly to closed expressions for heavy-

quark logarithms to a given logarithmic order, and presentor practical applications, E¢8) has to be inverted, so that

RG analysis to deal with the matching problem for massangm.. That is because we hold; andmy fixed asm,,
renormalization. It is here that we introduce the mass- .

matching functiong. In Sec. VIll, we decouple more than £ any number of flavors (including F), let
one heavy quark sequentially, for example np/u)

> In(m,/u)—, and derive the NLO closed formula for cou- —d d
pling constant renormalization in this limit. Df::“(?_—‘Lﬁf(“f)a_aer 5f(af)k21 mkfm ©)
Section IX suggests that the consistency of theories lack- K
ing asymptotic freedom, such as quantum el_ectrodynami_cBe the corresponding Callan-Symanzik operator. Sidge
(QED) W'.th heavy leptons, be tested py imposing the Phys"satisﬁes anF-flavor improved Callan-Symanzik equation
cal requirement that all heavy particles decouple in thet13] so also does its leading power:
infinite-mass limit. Both ultraviolet and infrared stable fixed ' '
points enter the analysis.
Other applications of our technique are discussed in

f

{De+ ye(ap)} A=0. (10)

Sec. X. In general, bothyr and Z=(Z 4,/) are matrices.
If we substitute Eq(7) in Eq. (10) and change variables
Il. WITTEN'S METHOD
f
This section summarizes some key points of Witten’s pro- D :—i (D i + Dem 9 11
cedure[1,12]. F Ma; ( F‘Yf)aaf kzl (Dr kf)é,mk (11)

By convention, the samésS scale;is used for the initial _ _ _ _
F-flavor and all residuaf-flavor theories. Whenever heavy the result is an improved Callan-Symanzik equation for each
quarks(massesn,,) are decoupled, residual amplitude,

F—f flavors, m,—o {Ds+ yi(a) }A=0 (12

all parameters of thessidual fflavor theory are held fixed: where the function$l,2]

the scale;, all momentap, the couplinge;, and all light- Bi( ;) =Dra; (13)

quark massemy; . In any order of perturbation theory, am-

plitudes S¢(as)=Dg In my; (14)
A,:=A,:(p,;,a|:,m||:,mh) Yila)=Z Y ye(ap)+DelZ (15
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dependsolelyon a¢. The absence af, dependence in the Comparing the original and residual theories, we have
renormalization factors in Eqg7) and (8) ensures mass-
independent renormalization for the residual theory. ¢4 1(Q)= a4 1{T hoop™ Iothed + O(af 1)

While these equations hold for ary<F, their solutions
can be readily formulated in terms of running couplings only I14(Q) = a¢l gthert O(afz) (21)
when the heavy quarks are decoupled one at a time. Indeed,
Witten’s running coupling where

1 (1 m2+s(1—s)Q?
Fh_|00p=;f0dss(l—s)ln(#) 22)

an=an(eg, IN(My/p)) (16)

is defined for the casé =f+1 where just one quark is

DeeTvy, with MSg reno.rrrnallzed masgn, . The definition of is the contribution of the heavy-quark loop, akigh,e repre-

ay, is formulated implicitly[1]: sents other one-loop terms.

- The leading power contributed by the heavy-quark loop is

in(my /)= [ 1= 500 VB0. )
aE

my,
o , Ih00p=CrLoIn=+Cpio+ O(Q?/m?) (23
It satisfies the constraints M

(18) with coefficients for leading and nonleading logarithmic or-
ders given by

where the latter follows from the asymptotic freedom of the

F-flavor theory £<16). Equationg9), (13), and(17) imply CLo=1/(3m) and Cy o=0. (24

that @y, is RG invariant:

an(ag,0)=ap, ap(ap,»)=0

The vanishing of the NLO constant term is a well-known
(19) characteristic of théMS gluon self-energy14].

Deap=0. LTSNS .
Fh Eliminating I o4e, from Eq.(21) and combining the result
with Egs. (20) and (23), we recover the standard one-loop
I1l. MATCHING COUPLING CONSTANTS matching condition

Generally, the solutions of Witten’s equations depend on 1
renormalized parameterg: and m;z of the original F=f -1 1 | My -1
L . — = — |n—+ 2
+1 flavor theory, whereas the limit,— is to be taken s “ Olar.my ™) @9
with parameters; andm;; of theresidualtheory held fixed.
To complete the analysis, it is necessary to derive asymptotior equivalently

series in In(n,/w) which relate the initial and residual pa-
rameters, i.e. to “match’ag andm;z with «; andmy;. As
noted in Sec. |, Bernreuther and Wetg2}5] have set up a
systematic procedure for this. This section is a brief account
of their scheme for the case of coupling-constant matching. The two-loop analysis is much more complicated, so we
The decoupling formulél) works to any order of pertur- simply quote the resufi2—5], taking into account a subse-
bation theory, so the task is to express the leading power qjuent correctior2,7,8. We find it convenient to consider
the RG-invariant gluon coupling° with and without the  the inverse form wherey., ; is written as a series ia; . For
heavy-quarkh as perturbative series iag and as respec- the special case of three colors, the result is
tively. Generally this involves gluon and other self-energy

2
ap My .
a’f+1=a/f—§|n7+0(a?,mhl). (26)

3 2

insertions and a vertex amplitude such as fermion-gluon af mﬁ a; ,Mh
[2,3] or ghost-gluor{4]. arp =~ g In=; 5 In°=;
L. T 367 m
For one-loop contribution$14], vertex and propagator
corrections cancelZ,=2,), so only the gluon self-energy 1108 m? 113 .
amplitude L +0(ad). (27)

- n

_ 247%  p? 7277
152, =16°%(9,,97~4,9,)11(\~d?)

The first three terms of the right-hand side belong to the

is needed. In that case, we can make the replacement |eading order LO, i.e. they are proportiona| m times a

MO _ power of{a; In(m,/u)}. Only the fourth term is NLO; there
aQ It tavors— @ /[1=114(Q)] is no O(«?) term independent ahy, because the NLO con-

in Eq. (1), with the result stant in Eq.(24) vanishes. The fifth term i@(a?) and my,-
independent, so it is the first example of a NNLO term. The
ai t—a A 1(Q) =a; '—a MT(Q)+0O(m, L, a?). three-loop result, including the NNNLO constant term, is

(20 now known[8].
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Now we would like to know what the renormalization ar my
group implies for matching relations of this type. Some re- i1 = a; / 1+ —In— (35
sults for coefficients to a given order of perturbation theory Lo 3T u

already appear ihi2—4]. Consider Eq(3) of Ref.[2],

* k+1
ag  Qfqg Afyq
—= + E Cy
rs T k=1 s

where now LO refers to powers af; and In (nh/;). Note

2 that the LO coefficientpy  in Eq. (31) are given by

In—h
2
o

+0(m;?t

o k

Beyond LO, formulas for all the relevant coefficients be-
come complicated, making order-by-order summation too
cumbersome to be practical. The rest of this paper is con-

_ 2 2\1ky . cerned with a RG analysis which allows us to consider
Ce=cad (M w1 - -+ Cio. 29 matching relations to a given logarithmic order without hav-

The constantsc; o,C,0,C30, - -- are the remainders left ing to expand in perturbative order.
when all terms depending on lmﬁ/,uz) are subtracted from
the leading-power functiorS;,C,,Cs, . ... Then, if all co- IV. MATCHING FUNCTION
efficients and RG functions are knownke- 1 loops, the RG
determines alk-loop coefficientscy ; in Cy exceptfor ¢, .
The lattercannotbe deduced from the RG, to any number of
loops; ratherg, o must be calculated explicitly via a separate
k-loop matching calculation. For example, the NNLO coef-
ficient —11/(727?%) in Eq. (27) is just — Cy .

Instead of Eq(28), we prefer to consider the inverse re-

whereC, is a polynomial of degrek, as noted below Ed8)
of Ref.[2],

Any RG analysis of decoupling involves at leasto
renormalization groups: one for the initi&-flavor theory,
and one for eachflavor theory produced as a heavy particle
decouples. We append a flavor subscript to make the distinc-
tion, viz. RG: or RG .

A key observation is that any quantity which is R@-
variant must also be RGinvariant (f<F). For example,

lation Witten’s RG: invariant running couplingy,, must satisfy the
< m, condition
af+1:0‘f+2 OZif(JrlPk |n: +O(m|:l) (30)
k=1 5 ~ [—0 9\ ~
, , o _ Dian= M——+,3—) ap=0. (37
because that is what is required in order to teke—o with I da ;

a¢ held fixed. The analogue of E(R9) is
Generally, the substitution

Pi=Pickl IN(Mn/ )1+ Py al IN(My /) T2+ -+ pyo.
(31
An analysis in the style of Bernreuther and Wetzel producesvorks when applied to any quantity which survives the limit
identical conclusions for the remainder constgntg: given  mp—o. An example is the formula
P10,P20s - --.Pk—10 ONe can use the RG to deduce
Piks - - - P but notpyo. Dgas=Dsas= Ps(as). (39
Most practical applications require that terms of the same | .
logarithmic order be summed. This is straightforward for LOWhich agrees with the general res(lB). Howeverthe con-
logarithms, because the LO coefficients, in Eq. (29) obey verse is not generally trud-or example, the top-quark mass

De— Dy (39

a simple relationship2] m, is RG_s invariant, but it is certainlynot RG;_¢ invari-
ant. Therefore a study of the RG for the origirfaiflavor
Ciok=(C1.)" (320  theory is both necessary and sufficient for the full implica-
tions of the RG to be understood.
which makes the series geometric, Our starting point is Witten’s definitiofil7) of the invari-

ant running couplingyy, . Let us regard this as a formula for
(33 In(m, /) in terms ofa, anda . Specifically, the right-hand
side is an integral fromyg to ay, involving RG: functions
Be and 6. Can a similar formula be constructed from RG
functions such that this mass logarithm becomes a function
of @, and a?

If such a formula exists, it must be consistent with the

requirements of the R&group for theoriginal theory. How-

M

This expression is LO with respect to powersaf, ;= a¢

and In(nnlﬁ). Equation (33) implies that the term
O(«a; ,m,jl) in Eq. (25 is NLO or higher order:

1 mp

-1 —-1_ ever, mass renormalization produces an unwelcbrdepen-
ag 1o = In—. (34) . .
LO 377 “ dence in equations such as
This leads directly to the inverse of E@®3), De In(mh/;)= S(ap)—1. (40)
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So let us amend the proposal: instead of M@ massm,,,  When ay, is eliminated from these equations, the desired
consider Witten’s invariant mass matching relation5) is obtained:
ﬁhzmhexpfahdxép(x)lﬁp(x). (41) ap =agp(ar, In(my/p)),  F=f+1.
aF
. — . . V. PERTURBATION THEORY FOR THE MATCHING
Sincem;, is RG: invariant, EUNCTION

Demy=0 (42 Perturbative matching relations can be used to determine
successive coefficients in the Taylor series of the matching

replacingmy, by mj in Eq. (40) eliminates the unwanted function F¢_(ay). One needs to calculate the mass-
dependence 08 : independent terms, o in Eq. (29) or equivalentlypy o in Eq.
(31). As noted in Sec. lll, these constants cannot be deduced
DeIn(my /)= —1. (43  from the RG. This corresponds to the fact ttfgt ; cannot
be deduced from the RG because it is Ri@Gvariant.
To illustrate the procedure, let us deduce the conse-
quences forF;, ,_ ¢ of the perturbative matching relation
(28). We need the two-loop function for three colors:

Notice that formulg2) for In(m,/u) is an immediate conse-

quence of definitiong17) and (41) of Zzh and my,. As a

check,Dg can be applied to the right-hand side of E2). to

give the result-1, in agreement with Eq43). 2 3
Now observe that, because of Hq3), the replacement g (x)=— X_(33_2f)_ X (153-19F)+O(x*). (47

F—f everywhere on the right-hand side of Eg) produces 67 e

a quantity which transforms in the same way under the RG

of the original theory: Its reciprocal is
Comparing Eq3(43) and (44), we see that a R,Ginvariant Wherebf stands for the constant
guantity 7 can be defined as follows:
o b 1 153-19f 49
m =5 " "aa_of
In— = d +F implies DeF=0. (45 2m 33-2f
m ﬁf( )

and b; is another constant whose precise value is not of

Since F is dimensionless, it can depend @, but RG ~ concem here. , ,
invariance forbids dependence on other dimensionless vari- Expansion(48) inserted into Eqs(2) and (3) yields the

ables, such asg, ajg, mh/mh, or mh/,u. We call it the following equations:
matching function ~

33-2(f+1) ~ b +0(ad)
6+ n_:O‘h —api by n— af
~ 6 “w +
F=Fe_i(ap). (46) (50
This completes the derivation of the key equatiof® 33-2f m, - i an )
and (3): = In; ap "= +bflna—f+0(af)
my 1 33— 2f -
In7= d Br(X) + e Frrailan). (51)
m Note that the corrections a@(a?): contributions to Egs.
In— = d 3, (x) +]—'Fﬂf(ah) (50) and(51) from the constant term in E@48) are
)2

bi,1(a@n—ary1)=0(a?) andbj(ap— a;)=0(af)

See Eq(16) of [1]. Similar effective masses have been invented ~ . 2
for the cases of large momerjte3] and light quark$15]. Their RG becausery,, ar.; anda differ by q(af)'
invariance makes them useful in phenomenolpht5| and lattice The next step is to eliminatey,. This is partially
calculationg[16)]. achieved by subtracting E¢0) from Eq. (51):

096005-5
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ﬁ In7=af+11—af 1+bf Ina—f—bfﬂlnx
33-2f - ,
+t g, Jr1oilan) +0(ag). (52)

Since In@,/a;) and Infy/as. ) are bothO(«), Egs.(25)
and(52) imply

Fir1—i(an)=0(ar)

and so, from Eqgs(50) and(51), we conclude

~ ag mh 2
ari1/an=1+ 5 [33-2(f+1)]In=+0(a})
M

~ ag my 2
af/ah=1+ 6_(33_2f) |n:+O(af).
™ M
(53

PHYSICAL REVIEW D 68, 096005 (2003

that the first nonzero term in the matching function can be
deduced from the constant NNLO term in Eg7):

- 11 - -
ff+lﬂf(ah):_mah+o(aﬁ)- (59

The O(a}) term in F can be found by substituting Eq.
(59 back into Eq.(3) and repeating the above process using
the three-loopB; and two-loop §; functions. The answer
follows by comparison with the known three-loop matching
condition[8]. That is the limit of current calculations, but in
principle, this strategy could be pursued to any order, with all
mass logarithms correctly reproduced.

VI. CLOSED EXPRESSIONS FOR HEAVY-QUARK
LOGARITHMS

The importance of the matching functigf is that it al-
lows us to work to a given logarithmic order without having
to sum mass logarithms order by order in perturbation theory.
Indeed, the role ofF is essentially the same as that of the RG

The logarithms of these expressions can then be substitutggnctions 8, y and &: each term in the series foF corre-

back into Eq.(52), with the result

1 Eh -1 _1 19(If mp
3—|n:=af+l—af - 2In:
T u 127 m
33— 2f ~ )
+ 5 Frra-ilan) +0(aq). (54

The next step is to relate the Iogarithmsaﬁ andm;,.
First substitute the three-color formula

2X
S¢(x)=— ?+O(x2) (55)

into definition (41) of m,,

my, 12 ap

- = 2
My 33-2(f+1) Map,, O (58

In

and then substitute E@53) for a;.;/ay,. The result is

M ( 2‘”) N 4 0(a?). (57)
o

nN=={1-—
M T

Then the logarithm oﬁh can be eliminated from Egs.

(54) and (57):

a? my, a? my, 11a‘;3 mp
aleaf——ln:—l——ln |
37 4 9r? w
af ~
+57(83-20Fi1 i(an) +O(ef). (59

Comparing this with the two-loop matching conditi¢27),

we see that all mass logarithms are correctly reproduced, and

sponds to a particular logarithmic order. For LO and NI,
does not contribute, but NNLO requires that héa;,) term

in Eq. (59 be included, NNNLO requires th@(a?) term,
and so on.

To illustrate, let us derive the closed NLO formula for the
matching relation betweed; . ; anda; which we announced
in [12].

As in the previous section, we insert expansidBg) into
Egs. (2) and (3), but this time we omit the NNLO term

Friiot:

33-2(f+1) m, . P
e U= = wlear by In—

67 u NO

Aty

(60)

33-2f m, - ap
5 |n:NTOaE1—af_1+bf In—.
a M ag

(61)

The difference of these two equations is

1 mp as
-1 -1
3—|n:Nfoaf+1_af —(bs=by1) IN—
T ap
g
_bf+1|na . (62)
f+1

The logarithms on the right-hand side are already NLO, so
we can use the LO parts of Eq§1) and(62) to approximate
their arguments:

fan =1+ 21 (33— 2f) I
arfay =1+ =-(33-2f) In= 63)

)

096005-6
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ai My

af/aHl L=01+—7Tln7 (64)
The result is a NLO generalization of E@®5):
at Hh ap My
Afpq1 = af 1+—|n:+afbf+1|n 1+_|n:
NLO 3 3
a 7 ’7T o
g My,
+ af(bf—le) In 1+_(33_2f) In— ] . (65)
6 w

If desired, In,/x) can be eliminated in favor of

PHYSICAL REVIEW D68, 096005 (2003

Again, Eq.(67) can be used to write Im§,/x) in terms of
In(my,/w). This leads to the following asymptotic formula for
ap, asmy—:

~ My My
an~6m (33-2f) INn=+K;InIn=+0(1) ¢,
M M

_ 3(153-19f) 12(33-2f)
=7 33—2f  31-2f

(70

In(m, /). The leading NLO effects of mass renormalization These results show that we have complete control over the

are due to the one-loop term &f given by Eq.(55). When

this term is substituted into the definitigdl) of m,,, keep-
ing all logarithms to this order, we find an expression

ah mp 12
IN— = In—+

f
In
u VO 31—2f( i

“In ?) 66)
ap

to which Eqgs.(63) and (64) can be readily applied:

ap My
In( 1+ — In—

T u

. 31-2f

31-2f - (67

(¢ 7 my
|I"l( 1+ —(33-2f) In—
6 w

So, by combining Eq965) and(67), we arrive at a complete
NLO formula for the matching condition:

1 m o m
ar Nfoa{1+3—lnth+cfln 1+ — In—
T T u
g My
+d;In| 1+ —(33-2f) In—]|,
6 P
142 19f g 57+ 16f
C= on31-2f) YT 2m(33-2)(31-2f)

(68)

matching process. Once closed expressions such ag@sjs.
and (69) have been obtained, RG invariance can be main-
tained for each logarithmic order, and so there is no need to
truncate to a given order of perturbation theory.

VIl. MASS-MATCHING FUNCTION

Most of the analysis above is restricted to the case of just
one heavy quark, but it can be readily extended to include
sequentialdecoupling, where heavy quarks are decoupled
one at a time The new feature which arises is the need to
match the mass of the second heavy quark. For example,
suppose that, having decoupled thquark in F=6 flavor
QCD, we would like to decouple the quark as well:

my—oo first, then my—co. (71

Then it will be necessary to match the six-flavor definition
mys= M, of the bottom quark mass to its five-flavor defini-
tion mys.

As for the matching of couplings, the key is to find a RG
invariant definition of mass to which the Appelquist-
Carrazone theorerfi6] can be applied. This problem was
solved by Bernreuthef4], again by recourse to the MO
scheme.

Let A,(p?) and B,(p?) denote the form factors for the
unrenormalized 1PI light-quark self-energy amplitude
—i(pA,—myB;). This corresponds to the unrenormalized
quark propagator

The same equations can also be used to obtain equations

for the RG invariania;, (also announced ifl2]). Equations
(49), (61), and(63) imply the NLO formula

~_q 1 1 mp
NLO 6 P
153—19f [+ my
" T | 1+ (33— 2f) In—).
27(33-2f) 6 "

(69

i
Pp(1—Ar)—my(1—By)

i
P—moe(1—B)/(1—A,)

S(p)=

=(1-Ap* (72

Define MO light-quark massed }'°(Q) at a fixed space-like
point p?=—Q?:
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M{(Q)=mo (1= B(— Q%) (L-A(—Q%). (73 b s b
\_/
This mass is RG invariant because, expressed in terms of b

renormalized quantities, it is finite. The choice of spacelike 5 1 One-loop correction to mass renormalization.
subtraction point- Q? means that mass renormalization, as

well as coupling constant and wave-function renormaliza-

tion, is performed off-sheft of a RG equation, so it can depend only on the RG invariant
a,. Also like F, it cannot be deduced from the RG and must
be calculated separately.

At one-loop order, there are no top-quark correctigfig.
1), so the mass-matching condition is triv[l:

is_l(p)|pz=fo2:ﬁ—MyO(Q)sﬁO at p?=—-Q?2.
(74

This avoids problems with Bloch-Nordsieck logarithms pro-
duced byn-loop perturbation theory at the on-shell point

p~m? [6]: MMO=m, {1+ ag{1-loop]+O(ad)

1S 1(p)~ (p2—?) [ In(p?—m®) " =my o 1+ as{1-loopt]+O(ad). (78)
Here a¢{1-loop; denotes the self-energy amplitude derived

A complication familiar to many authorsl9,2(q is that, from Fig. 1. EliminatingMM° , we find
. . b f

unlike an on-shell renormalized mas4}'°(Q) is gauge de-
pendent. Despite this, the resulting mass-matching relation m

betweenm,; andmy ;. 1y is gauge invarianf4] because the In—=(as— ag){1-loop+O(al)=0(ad). (79
relations betweeMS masses and their bare counterparts are
gauge invariant. In two-loop perturbation theory, the result

[4] for QCD with three colors andllight flavors is At this point, we need to specify what is LO, NLO, and so

on. If we were talking only about corrections to mass, we
might consider terms-(a; In m/u)" as LO, but in general,

My af.y| ,Mp 5 m . it is more convenient to regard them as NLO. That is because
S =1+ o2 In"= +3 In—=+25/+0(ai.1). mass renormalization does not contribute to physical ampli-
(1) m K K (75) tudes in LO. With this convention, Eq&18), (53), and(55)
imply

We would like to extend this result to include all terms of B ~
the samdogarithmic order. This is achieved by introducing fatd o(x) 6 ay
our second matching functiog;i—the matching function for
mass renormalization. On order to reduce notational com-
plexity, we consider the special cabe5 mentioned at the

o Bs(x) NLO 33 oo

beginning of this section. 6 a m,
Consider the RG equation = ———In|1+— ——f) In—|.
NLO 33 3 w
Mpyg 2
DgIn— = 66 ag) — I5( as) (76)
Mps (80)

The leading power in a largey expansion ofmys/mps is @ In lowest-order perturbation theory, we have
function of a5 and Infn/u) but does not depend on light-

quark masses, so the general solution of @) is

JZ« 5(X) J'&td J(x) 2

d o B "

X — (a —a)lng-i-O(az)
ag IBS(X) 6 > M °
=0(a) (81)

|n%:f;t 05(X) a X55(X)

m "5+ Ges(@) +O(m )
b5

(77

we B S BoX)

since the couplingsg and a5 differ by O(aé). From Egs.
where Gg .s(a;) is the mass-matching functionLike  (77), (79), and(81), we conclude
Fo_5(ay) in Eq.(45), Gs_5 arises as an integration constant

Go5(a)=0(ap). (82)
2A similar MO definition for heavy-quark masseldl, [17] Having established thatis irrelevant at NLO, we neglect
yields a function 8(g,M/Q) [18] with smooth threshold behav- it in Eq. (77) and substitute Eq(80). This yields the com-
ior atQ~M,. plete NLO expression:
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Mps  (aps , 1~ 35(X)
b f i b In— P —LS dX—BE,(x) (86)

b Mo _ f 3500 -
FIG. 2. Two-loop heavy-quark contribution to mass renormal- Mps Bs(X)”
ization of the bottom quark.
Clearly, bothay,s andm,5 are RG_ invariant,
Mos In| 1+ a6(3 6| In—
mps NLO 33 3w\ 2 w Dsaps=0, DsMys=0 (88)
2 but in fact, they are also RGg invariant as a consequence
as (33 m, of Egs.(13) and (14):
- Inf1+ —|—-5|In=|. (83
33 3w\ 2 7 Dedps=0, DgMps=0. 89)
2

This means that,s andﬁﬁ can be expressed in terms of

If desired, g canzbe eliminatec_i in favor ofs via_Eq. (35),' invariants of the original six-flavor theof‘yTo see this, first
Note that theO(az) NLO term is a double logarithm which  -5mpine Eqs(87) and(41), and then(77):

arises from the diagram with ®loop inserted in the gluon

tor(Fig. 2): — — ~ -
propagator(Fig. 2) M mbs_fat 86(X) fabf’d 85(X)

— X—
My 2 m, a2 (33 m; m Mps5 ﬂs(x) as  PBs(X)
— = —(ag—as)In=——|—-6|In" = ~
Mpg NLO 77 w 3w\ 2 o Mps a  05(X)
—In—+ |_ dx
2 Mys  Jas  Bs(X)
- (33 5)| 2™ o)
B2 gl p2t _ )
32 P +Gss(a) +O(m; ). (90
1[{as\? .m This equation simplifies to
= ——(—5> In2= +0(ad). (84) q P
NO 3\ o M _
Inm—l( )+J“td %0 (a)+0(m Y
This reproduces the NLO term of Bernreuther’s residh) Mps blg Japs Bs(X) 6=t '
f0r3 mf/me. (91)

Equation(83) generates the complete set of NLO loga-
rithms. They correspond to diagrams with a string of one-The sum of Eqs(86) and (87),
loop t-quark bubbles inserted in the gluon propagator of the
one-loopb-quark self-energy amplitude.

The constant term 8&/(432x?) in Eq. (75) corresponds I fabsdx (92
to the first nonzero contribution to the matching functi@n I Bs(X)
We state the result for any value bf )
can be subtracted from E), with the result
- 89, . -
Greailan) == 70 5@t Olap). (9 In—t _ f dX———+ Fo_s(a)+O(M™Y). (93)
Mos s 35(x>
This term is required if NNNLO corrections are being calcu- 5
lated. If Eq. (93) is now combined with Eq91), we find thatay,s
and henceﬁb5 can be expressed in terms of RG invariants of
VIIl. APPLICATION TO SEQUENTIAL DECOUPLING the original six-flavor theory, viza, and the ratio ,/m,)s:

When decoupling thé quark, it is natural to define five-

flavor quantitiesys andmys bl analogy with the six-flavor “This property is essential for any generalization of the analysis to

running couplinge; and massn, for the top quark: simultaneous decoupling, where all couplings and masses, running
or otherwise, will have to be defineghly in terms of the initial
theory (F=6) or the residual theoryf&4 if just thet andb are
3Note that Bernreuther expands dry instead ofas, but to this  being decoupled with no reference to five-flavor couplings or
order the coefficient is the same. masses.
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m % 1-85(%) ~ Similarly, consider the NLO relatiok68) betweenas, ;
Inj —| = J: Xw*‘feﬂs(%) anda; . For the casé =4, the heavy-quark mass;, in Eq.
ble s ° (68) is mys, but we can use Eq100 to eliminatem,s in
~Go_s(@)+O(m; 1), (94  favorofms,
The sequential decoupling of theandb quarks refers to -l = a7t i In% teanl 1 g In@
the limiting procedure SN0 ? 3y " 4 T u
NLO
In(mg/w)> In(my/w)— o (95) N 25y My (101
4 p—
a
where we choose a six-flavor definition fioy, as well agn; . ®
Leading-power six-flavor amplitudes are represented b¥vhere the constants, andd, are given by
logarithmic expansions farquark decoupling 4
c,=33/(23w), d,=121(1150x). (102
Ag~ >, CosInP(my/ ) 96
° pgo os I (M 1) %9 For f=5, my in Eqg. (68) is the six-flavor mass,. Any as

dependence can be removed via E&B) or Eq. (101):
where each five-flavor coefficierf]!p5 is a leading-power

asymptotic expansion fdr-quark decoupling: 1 1 1 m as m;
ag - = @5 |NLO+§Inf+c5ln 1+—1T Lolnf
Ep5~(§0 CpqaIN%(My/ 1) (97) 230, m
+dsIn| 1+ In— (103
T o nm

The last decouplingthat of theb quark is carried out with
a4 held fixed. Therefore we seek formulas for couplings

such asag anda, in terms ofm,, my, and a,.
As always, the key step in the derivation of NLO formu- Cs=A47/(42m), ds=137(966m). (104)

las is the neglect of some matching functions. In this case,

we neglect the NNLO functions/s_s=0(a;) and Fs_.,  The result of combining these formulas is

=0(ays) for matching ag to a5 and as to a4, and the

The coefficient; andds have numerical values

NNNLO function Gg_s=0(a?) for m,s to be matched to . . m, ~m
Me=m ag” = a, t—| In=+In=
b6 b - NLO 37
We start with the NLO formul&83) for the five-flavor K M
massmys. To this order, all dependence eg andag can be 55 . b ag M
eliminated via LO formulas derived from E¢35), +—In|l 1+ —In—+—In—
21 T u 3 w
_ @ Mo 121 2 m  a; m
a5|5a4/(1+;|n: (98) +_|n 1+ 4| :t _4|n:b
M 966 6 m T
121 25«
a m m 4 b
ag = 014/{14——4 In— + In— (99 HETTT ln(1+ 5 In— (105
LO 377 i “w o 7
where (again to this ordérmbs may be rep|aced bynb on The same procedure can b_e applled to the NLO formula
the right-hand side. Then E¢83) becomes (67) for the RG invariant masm,. For f=4, the result is
Mps my 2 ay my Eb5 my 12 25&’4 my
InTNTO N—-—Inl1+—In— |nTNT INn———1In| 1+ In—
I “ T u w MO 2 T w
8 23&’4 my ay mp 4 my ay my
——In| 1+ IN—+—In— ——In{ 1+ N—+—In—
161 6 w 3 w 161 6 W T u
4 « m « m 4 « m @ m
+—1In 1+—4In:b+—4ln:t . (100 +—=1In 1+—4In:b+—4ln:t (106
7 T 3 w 7 3 w 37 w
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after substitution of Eq(100) for mys. For f=5, Eq.(67)  tion in four dimensions? Perhaps this is part of the wider
expressesn, in terms ofas, for which the LO formula98) ~ debate[21] about whether such theories are inconsistent or

may be substituted, with the result trivia], pgrticularly for the continuum limit of the lattice ap-
proximation.

Ht m 4 m  a; m, We start from the premise that a theory makes sense only

In— o INn—+—-1In| 1+ —| —+—In— if its heavy particles decouple in the infinite-mass limit to
M M T o 37 M produce another consistent theory. Questions about how the
4 23, M a m nonpert_urbative theory could d_epend on dgtails of regulators
—ZIn 4 |n_t -4 |n_b . (107 and their removal are not considered. We simply assume that

7 T T some means of producing a fully interacting -cutoff-

independent theory has been found, e.g. for QRith k
If desired, inverses of Eq4106 and (107) can be con- species of equal-charge leptons, and apply our premise.
structed and used to express quantities suabeas terms of The notation is similar to that used above for QCD. Let
the invariant masse®,; andm, instead ofm, andm. a=e?/(4) be theMS renormalized fine structure constant

Finally, we extract NLO formulas for the invariant run- for QED,, where the charged leptons ha¥dS masses
ning couplings for sequentialb decoupling from Eq(69)  m, j=1,... k, and letB, and §, be the Callan-Symanzik
for ay,. For the casd =4, Eqgs.(69) and(106) imply functions for charge and mass renormalization. Denote by

ay andmy, Witten's invariant versions of the running fine-
structure constant and heavy-lepton mass. Then, repeating
the arguments of Secs. IV and VII, we can construct
coupling-constant and mass matching functidhand g for

the decoupling of one species of lepton:

QEDy.;—QED, k=1 (110

The free-photon theory QEPlacks ag function so it is a
(108  special case.
First consider the analogue of E@), including the case
k=0:

5 NLO 677 M 11507
100 23w,
- In| 1+
483

In—
™

L2 my 729 |( 25q¢, m,
n

mt Ay mb
In—
6 M 377 i

50 ay my ay my
+—In|{1+—In—=+—In—].
21w T 3 Py

For f=5, it is necessary to combine E¢9 with Egs. - 1
(100, (102), and(107): m%_ f W g (111)

= X
M g Bk+1(x)

a; = a, +—In=+—In—= The decoupling condition

ayy1—0 as my—o forfixed a (112

involves thex=0 solution of the equatiog,, ;(x) =0, but
it produces an infinity of the wrong sign because this fixed

4 b @y My point isinfrared stable. For consistency,,; must approach a
+ 1 In| 1+ —In—=+ 3, In— singularity of the integral sufficient to reverse the effect of
& T oK T u the x=0 contribution. This could arise from an ultraviolet
121 250, m, fixed point,
+ In In— (109 -
11507 6 2 Ay— U100 (113)

A useful check of the formalism can be obtained by showingor elsea,, approacheg=, in which case we must suppose
that the difference that 1/3,. 1(X) is not integrable.
~ ~ Next defineF as in Eq.(3), with k=1:

@t - absl
m, @ ~
is correctly given by Eq(94) in NLO. In— = de + Frer 1okl an) (119
M ﬁk(x)
In the decoupling limi{112), the singularity on the left-hand

So far, we have limited the discussion to heavy fermionsside is generateéntirely from the running ofa,,. We can
in a gauge theory such as QCD and used asymptotic freedogonclude that this is due to a QEDixed point o .. only if

IX. THEORIES LACKING ASYMPTOTIC FREEDOM

to obtain decoupling in the infinite-mass limit. it coincides with that of QER, q:
Does decoupling work if asymptotic freedom is not
present, as in QED or scalar field theory witip* interac- O+ 100~ Ao (119
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Similarly, a nonintegrable singularity &= can be the sole challenge is to keep track of dependence on large logarithms
cause only if this happens for both QgE@and QELR , ;. Oth-  such as
erwise, we must suppose that the matching function has a
singularity ata .. or <.
The nonperturbative theory of QED of Johnson, Baker, m, m me
Willey and Adler[22] is an example of casd 15). Indeed, if |nm—= INn=-In—= (116
the arguments of Adler for an infinite-order zero at the fixed b s ~
point are applied to a many-species the@ly with the same o o
charge, the result is clear: there is no dependence on th&ince these logarithms dwtdepend on th&1S scaleu, the
number of species. conventional tactic used in phenomenology for single heavy
Notice that these conclusions are driven by the lack ofjuarks fails: there is no way of making such logarithms
asymptotic freedom of the initial theory. For example, con-small by choosingij(mh).
sider what happens in QCD when a heavy quark decouples As indicated in our worK12] on NLO heavy-quark ef-
from the nonasymptotically free 17-flavor theory to producefects in axial charges of nucleons, the analysis can be gener-
the 16-flavor theory with asymptotic freedom. Equati@  alized to include simultaneous decoupling of several heavy
for F=17 implies thatx, increases. Thus in E¢3) with f particles. This includes the introduction of matching func-
=16, @y, is driven towards a nonperturbative infrared regiontions of several variables, one for each heavy particle. We
of the residual theory. will present this extension of the theory in a forthcoming
publication.
One can also anticipate generalizations to situations
where momentum and mass logarithms grow large together.
The introduction of the matching functior’s and G for Examples from the literature occur in collider physjes],
coupling constants and mas$é&s)s.(3) and(77)] completes Higgs boson and supersymmetric particle producfia4l,
the theoretical structure needed for a systematic applicatioand deep-inelastic scattering through thresholds for heavy-
of the RG to the decoupling of heavy particles. We haveparticle productiorf25].
considered just QCD and QED, but the field-theoretic prin-
ciples are much the same for any theory. The main case still
to be checked is a full RG analysis of the decoupling of ACKNOWLEDGMENTS
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