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Beyond-constant-mass-approximation magnetic catalysis in the gauge Higgs-Yukawa model
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Beyond-constant-mass-approximation solutions for magnetically catalyzed fermion and scalar masses are
found in a gauge Higgs-Yukawa theory in the presence of a constant magnetic field. The fermion masses
obtained are several orders of magnitude larger than those found in the absence of Yukawa interactions. The
masses obtained within the beyond-constant-mass approximation exactly reduce to the results within the
constant-mass approach when the conditidn(1/m?) <1 is satisfied. Possible applications to early universe
physics and condensed matter are discussed.
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[. INTRODUCTION mass is enhanced by fermion-scalar interactions. As we will
show below, this enhancement is also found within a more
In the last few years the magnetic cataly®#C) of chiral ~ accurate approximation for a wide range of couplings. This
symmetry breaking1—3] has been the focus of attention of result might find applications in early universe transitions, as
much work on nonperturbative effects of magnetic fieldswell as in condensed matter physics.
[1-21]. The phenomenon consists of the dynamical genera- In[12—14 some applications of MC to the early universe
tion of a fermion condensatend consequently of a fermion were briefly considered. They were motivated by many as-
mass$ when fermion interactions occur in the presence of artrophysical observations of galactic and intergalactic mag-
external constant magnetic field. The most significant featuraetic fields indicating the existence of seed fields that origi-
of MC is that it requires no critical value of the fermion’s nated from large primordial magnetic fieldfor a recent
coupling for the condensate to be generated. That is, theeview on cosmic magnetic fields, §&3)). If the primordial
symmetry breaking takes place at the weakest attractive inrmagnetic fields in the early universe were large compared to
teraction. Physically, it is due to the fact that the magnetidhe values close to the phase transition point of the fermion
field forces the low-energy fermions to reside basically inmasses generated through the usual mechanism of spontane-
their lowest Landau leve(LLL ), while the higher-energy ous symmetry breaking, the fermion would seem approxi-
fermions actually decouple]. This, in turn, yields a dimen- mately massless. Under these circumstances, it is important
sional reduction of the infrared fermion dynamics. The di-to investigate if the primordial magnetic fields could contrib-
mensional reduction is reflected in an effective strengtheningite to the masses of the fermions through MC and hence
of the fermion interactions, leading to dynamical symmetryinfluence the phenomenology of the early univerksa).
breaking through the generation of a fermion condensate. = On the other hand, to discuss applications of MC in the
A particularly important question to understand in thiscontext of a HY theory to condensed matter, we need, in
context is how the MC is affected by the introduction of addition to interactions modeled by fermion-scalar terms, a
fermion-scalar interactions. Fermion-scalar interactions ar@hysical system that, despite being nonrelativistic, can be
an essential element of unified theories of fundamentatlescribed under certain conditions by a “relativistic” Hamil-
forces. As is well known, they are expected to be responsibléonian. We will see below that these conditions are indeed
for fermion mass appearing due to the spontaneous symmeresent in the physics of high: superconductors.
try breaking of the electroweak symmetry. Fermion-scalar High-T. superconductors, which are characterized by the
interactions are also relevant in condensed matter physicexistence of nodal points where the order paramégep
where the complexity of strongly correlated many-body sys{function vanishes, provide a practical realization of a “rela-
tems sometimes calls for a description in terms of mordivistic” system in condensed matter physics. This is so be-
simple, phenomenological theories that contain interactingause the low-energy spectrum of the nodal quasiparticles is
scalars in addition to fermionsee, e.g.[22]). linear; hence the quasiparticle excitations are described by an
In Refs.[12,13, two of us studied the realization of mag- anisotropic Dirac Hamiltoniah24]. In Ref.[22] a quantum-
netic catalysis in a (3 1)-dimensional Higgs-YukawedY)  critical phase transition to a new superconducting state, char-
model, showing that the magnetic-field-induced fermionacterized by the appearance of a secondary pairing at some
doping level, was proposed to explain recent measurements
[25] of an anomalously large inelastic scattering of quasipar-
*On leave at Department of Mathematics, Massachusetts Institutécles near the gap nodes of a superconductor. The observed
of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139secondary pairing transition made the nodal quasiparticles
4307. Electronic address: elizalde@math.mit.edu; fully gapped. Based on the symmetries of the supercon-
elizaldeieec.fcr.es ductor, the authors of Reff22] made a classification of a set
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of fermion-scalar interactions that in principle could be in  For theories with several couplings, due to the richness of
agreement with the experimental observations, and then pethe parameter space, the reliability of the CMA is question-
formed a perturbative renormalization-group analysis of eaclble and should be investigated in detail. In the case of the
model to determine the possible existence of a quantumHY model, aside from the multiple-coupling problem, one
critical point. In Ref.[26], expanding on the ideas §22], has to deal with a system of nonlinear, coupled integral equa-
the existence of a quantume-critical point was established ditions, one for the fermion dynamical mass and the other for
rectly in a (2+1)-dimensional HY theory beyond a nonper- the scalar VEV{13]. We cannot disregard in this situation the
turbative approach, which allowed quantitative predictions tgpossibility of regions of these parameters where the CMA is
be made for the corresponding quantum-critical behavioreliable and regions where it is not. In this case one has to
The gap generatioffermion mass was associated ifi26]  turn to a more accurate approximation in which the momen-
with the breaking of a discrete chiral symmetry. tum dependence of the self-energy is taken into account
We would like to underline that the breaking of the chiral when So|ving the gap equation_ This more accurate approxi_
symmetry in[26] was found to occur when the Yukawa cou- mation is known as the beyond-constant-mass approximation
pling (assumed to be related to the doping lgvelached a (BCMmA).
critical value, that is, the symmetry breaking was not associ- For theories like QED containing only one coupling con-
ated with the phenomenon of MC, as no external magnetigtant, the CMA is known to be appropriate, since going be-
field was introduced in the analysis. However, as recentlyond it does not produce qualitatively different results. This
observed 27] by measuring the splitting of the conductancehas been explicitly shown for (81)-dimensional[2] and
peak that characterizes the nodes of highsuperconduct- (24 1)-dimensional QEL 28], and independently corrobo-
ors, the development of a secondary quasiparticle gap mawted by our calculations below. In R¢8] the BCMA mass
be triggered not only by the doping level, but also by anspjytion of (3+1)-dimensional QED was found to agree
applied magnetic field. Could the secondary gap triggered byith the CMA mass obtained from the improved laddgap
the magnetic field be the consequence of MC occurringquation. This result was later corroborated by numerical
within the superconductor? We believe that the results we argg|culations in29].
going to derive below strongly indicate that the answer is Considering that different physical applications of MC in
yes, if, as argued ii22] and [26], the HY theory is the models with fermion-scalar interactions would require differ-
model describing the appearance of the secondary gap. Ne¥nt values of the couplings constants, and, in particular,
ertheless, to match the experimental observations we woulgiyen the relevance that the Abelian gauge Higgs-Yukawa
need to particularize the analysis done in the present paper {fReory may have for condensed matter and other field theory
the (2+1)-dimensional case and adjust the physical valuegpplications, it is important to perform a BCMA investiga-
of the couplings to those characteristic of a superconductokijon of this model in all possible regions of the parameter
As already mentioned, in Ref13] the phenomenon of gpace and find out whether or not it significantly differs from
MC in a (3+1)-dimensional Abelian gauge theory with HY the CMA results. A main goal of the present paper is to carry
interactions was studied. In that work it was shown that theyyt such a study.
nonperturbative solution of the minimum equations for the By going beyond the CMA, we will determine the region
composite-operator effective action leads not only to a magof Yukawa and scalar self-interaction couplings where the
netically catalyzed fermion dynamical mass, but also to aMA is valid and will obtain the numerical BCMA solutions
nonzero scalar vacuum expectation valU&\V) ¢. and con-  for the fermions and scalar dynamical masses in the com-
sequently to a nonzero scalar mass. In other words, thanks {flete physically meaningful parameter region. As we will see
the magnetic field, a scalar-field minimum solution is generyelow, the CMA results for the Abelian gauge Higgs-Yukawa
ated by nonperturbative radiative corrections. theory are mostly reliable in the available parameter space.
We should underline though that the fermion and scalapn important finding is that théBCMA-found) mass values
masses of Refl13] were obtained within a simplified ap- are many orders of magnitude larger than those obtained in
proximation known in the literature as the constant-mass aphe absence of fermion-scalar interactions, corroborating,
proximation (CMA). In general, to find the dynamical within this more accurate approximation, the enhancement of
mass—which is nothing but the part of the fermion Se|f-the dynamica| mass by the Yukawa term.
energy proportional to the identity matrix—one has to solve  The paper is organized as follows. In Sec. Il we derive the
a nonperturbative gap equati¢ne., the Schwinger-Dyson nonlinear integral equations for the fermion self-enefggp
equation for the full fermion propagajoil his means solving equation and the scalar VEV in a gauge Higgs-Yukawa
a nonlinear, implicit integral equation for the fermion self- theory. The integral gap equation is then converted into a

energy, which is a momentum-dependent function. Most ausecond order differential equation with boundary conditions.
thors approach such a mathematically complicated problem

with the help of the rough CMA approach. It consists in———

neglecting the momentum dependence of the self-energy inigne should distinguish between the approximation employed to
the gap equation. This is done by substituting the self-energyptain the gap equation itséladder, improved ladder, ejand the
function in the gap equation by its value at zero momentumapproximation employed to find its solution. In the present paper
that is, by the infrared mass. There is no general principleve are concerned with the approximation to find the mass solution
that guarantees the validity of this approximation for the(either CMA or BCMA), assuming that the gap equation is found
whole range of physical couplings. using a ladder or an improved ladder approximation.
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In Sec. lll, this boundary value problem is analytically for a running\, at which a chiral symmetry breaking fer-
solved, leading to the self-energy as a function of the momion condensate can be generates shown in[13], the
mentum and the infrared fermion mass. Using the selfsjtuation drastically changes when a magnetic field is intro-
energy solution and the equation for the scalar minimum, wejuced. In this case a nontrivial solution exists at the weakest
arrive at two coupled transcendental equations depending Gfy|ye of Ay, and one can show that a fermion condensate

the infrared dynamical mass and the scalar VEV. These equgrogether with a dynamical fermion mass and a scalar VEV
tions are numerically solved and the results are used to degs magnetically catalyzed.

termine the region of reliability of the CMA and to compare  yowever as already mentioned, the solutions in Rg]
the mﬁss valuesdobtalned ;)n tg'e CMA anﬁ thelB,CMAfaE'were found within the CMA, and therefore it is important to
proaches. _We end Sec. Ill by Iscussing the solution of t .‘fnvestigate their reliability beyond that approximation. Our
gap equation at zero Yukawa coupling and showing that task hereafter will be to extend the results of Ras] be-

leads to the same result found in Ref2] for ' .
(3+1)-dimensional QED. In Sec. IV, we state otur]conclud-yond the CMA to find the dynamical mass and the scalar
] L EV for all physically meaningful values of, and\. For

ing remarks and reconsider the question of the relevance q ke of understandi i t th i f th
magnetic catalysis in the electroweak phase transition usin € sake of understanding, we will repeat the outiine ot the
erivations done in Ref.13] that led to the coupled set of

the BCMA results. : ' - g
integral equationggap and scalar VEV equationthat will
be the starting point of our new calculations.
Let us consider the Lagrangian dendity in the presence
Let us consider the following Lagrangian density: of an external constant magnetic fieRl [without loss of
generality we assume that the magnetic field is directed
1 along the third coordinate axis and that sgB)>0], which
L=— —F“"F,Lﬁia)’“%%l/ﬁ“ GZV’L!//AM can be introduced by adding the external po.tenﬂﬁl
4 =(0,0eBx,0) as a shift to the oscillatory gauge fiedd, in
2 Eqg. (1). To find the vacuum solutions of this theory we need
L S e S to solve the ext tions of the effective acticio
‘5‘9#“"9 Tk A s — Ny, ) 0 solve the extremum equations of the effective actidior
composite operators30,31]]

II. INTEGRAL EQUATIONS

which describes a gauge Higgs-Yukawa model with a fer-
mion field coupled to scalar and electromagnetic fields. The
scalar field is electrically neutral, but self-interacting.

The Lagrangian densitfl) has U1) gauge symmetry, ol's(¢c ,a)zo 5)
1 6G '
AM_>A,U-+ E(S”uo{(X),
L aia() oI G
p—e Xy, () al¢c.G)_ ®
. Spc¢
fermion number global symmetry
y—e'ly, &) — — . .
In the above G(x,x)=(0|#(x)¥(x)|0) is a composite
and discrete chiral symmetry fermion-antifermion field, ang represents the VEV of the
L scalar field. The subscrif@indicates that the effective action
b=y Y=y, e——e. (4) is considered in the background of the external magnetic
field.

Notice that the quadratic scalar term has the correct sign Equations(5) and (6) are, respectively, the Schwinger-
of a mass term; thus no vacuum expectation value of th®yson equation for the fermion self-energy operaio(gap
scalar field exists at the tree level. In the course of our calequation and the minimum equation for the VEV of the
culations we will takeu—0 to search for a dynamically scalar field. As we are interested in the possibility of a scalar
induced mass. The discrete symmey forbids a mass for mass induced—through the interactions with the
the fermions to all orders in perturbation theory. Neverthefermions—by a dynamically generated fermion condensate,
less, this symmetry could be dynamically broken throughwe will set, as stated above, the bare scalar mass zero.
nonperturbative generation of a composite fi¢ldrmion-  Notice that, if the minimum solutions of Eq&) and(6) are
antifermion condensateSuch a fermion condensate would nontrivial, the discrete chiral symmetii#) is dynamically
lead to a dynamical fermion mass and to a nonzero vacuum
expectation value of the scalar fie[d3], which in turn
would contribute to the scalar mass. The incorporation of gauge field terms in the Higgs-Yukawa

It is known that in the case of the nongauge model may lead to chiral symmetry breaking at some critigglist
(3+1)-dimensional Higgs-Yukawa theory, no value existsas it occurs in (3-1) QED[1,2].
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broken and both fermions and scalars acquire mass. The loop dpodp,dp .
expansion of the effective actidn for composite operators (X,y)= f 0 24 3 p(X — ) En(y),
[30,31] can be expressed as (2m) y.p+2(p)

— — 1
I's(G,0)=S(¢.)—iTriInG 1+i=TrinD? _ _
B e ¢ 2 with 3(p) being the fermion self-energyp=(py.0,
1 . . —+/2gBk,p3), and k denoting the Landau level number.
+i ETr INA =i TG Y(@)G]+T (G, e.) Similarly, the free fermion inverse propagator in the presence
of B is given by

+C. (7)

HereC is a constant an&(¢.) is the classical action evalu- G XY, ¢0)= 2 J dpod p2d Ps ——E,(X)
ated in the scalar VE\p.. The notation without overbars P
indicates free propagators, as is the case for the gauge

- d*q eld(x=x) 9,9,
DW(X—Y)—f (27)4W( —(1- §) >

X (y.p+ xycpaEp(y). (11)

Note thath,¢. enters as a contribution to the fermion mass
(8) due to the shifto— ¢+ ¢ in the scalar field made in the
classical action to account for a possible nonzero scalar VEV.

and the scalar The value ofe, will be determined self-consistently through
dtq el x=x) Eq. (6). . . .
A(x—y):J' q € o) In the above equations, Ritug}, functions[32,33 were
2m)4 g2+ M2—ie introduced. They form an orthonormal and complete set of
(27)" q

matrix functions and provide an alternative method to

propagators. Herg is the gauge fixing parameter abi>  Schwinger’s approach to problems of quantum field theory
=(\/2)¢Z denotes the scalar mass squared. A dependence ¢@FT) on electromagnetic backgrountisRitus’ approach
full boson propagators is not included since we do not expeavas originally developed for spin-1/2 charged particles
the gauge field to acquire nonzero expectation values for itg32,33, and it has been recently extended to the spin-1
composite operator. On the other hand, we are going to excharged particle cad@4].
plore the possibility of a nonzero VEV of the scalar field;  The functionI',(G, ) in Eq. (7) represents the sum of
hence a composite-operator solution for the scalar would bgvo-and higher-loop two-particle irreducible vacuum dia-
a correction of higher order that can be neglected. grams with respect to fermion lines. For weakly coupling

The overbar on the fermion propagat@(x,y) means theories, like the case of the Lagrangidj one can use the
that it is taken full. The full fermion propagator in the pres- Hartree-Fock approximation, which means retaining only the
ence of a constant magnetic fieB can be written as contributions td, that are lowest order in the coupling con-
[5,11,32,33, stants(i.e., two-loop graphs on)y so that it becomes

— e? _ _ e? — _
I'y(G,p0)= ?f d*xdy tf G(X,Y) ¥*G(Y,X) ¥"D ,,.(X,y) ]~ zj d*xd*y tr y*G(x,x) 1D ,,(x=y)tr[ ¥"G(y,y)]

A2 _ A2 _ _
+ %f d*xd?y tr{ G(x,y)G(y,X)A(X,y)]— %f d*xd*y tr{ G(x,x) JA(x—y)tr[G(y,y)]. (12

As discussed above, the infrared dynamigs(/2eB) of = Here we are using the notatlopH (po,p3) and p,
a system of interacting fermions in the presence of a mag=(p, p,) for the momentum components. The wave function
FEUT field i LS mainly 90\|/emfd b); the c;n;rlt(au)tlon of the LLL renormalization coefficientg ,Z, are scalar functions of the
1,2]. To obtain an explicit form for Eqg5), (6), we use the
momentum. Using this structure f& in the full fermion
propagator¢8)—~(10) in Egs.(7) and(12), and take into ac- propagator, evalugtmg at the LLIkE0), and using the so-

count that in the background magnetic field the self—energyutlon of the wave function renormalizationZ =0
structure entering in the full fermion propagatd0) should I

be written ad11]

< o= = — — — 3For details of the use of Ritus’ method in the theory given by Eq.
E(p)_zu(p) Y'pu—’_ZL(p) V- pL"'E(p)- (13 (1), see Refs[12,13.
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found in Ref.[12], we have that the gap equatitB) and the
scalar minimum equatiof6) of our theory take the forms

$(o)o2 "f 2@-pp e
=c€ P ~ o ~ A =
’ o (2m* (a-pP+2A(a-p)Y) o
e o

% dzé{ndzaL 3((51—15)@

2
yfo (2m* (@-p)2+22(G-p)?) A+ M?

N1 (@) N »
B T e
477_3 M2 q CIH'*‘EZ( ) yrc
and
. 3\ f 2@ 15
“ ana)o q“aﬁi?(af)'
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S(p)=— f‘ﬂjzdli2 focdz e’
P7 27 Jo T 32y Jo Tprrz

© o (k) = e?
+f” dk TOJ dz=
P2 K2+32(k?) Jo  k*+z

. % Jp L, Sk jw e’
1672 | Jo k2+32(k2)Jo  p?+z+M?2
+foc o 2K foc et |,2 .
A Vi = = .
2 Reesaiey o kerzemz| 37
(19

Notice that we used E@17) to combine the last two terms of
Eqg. (16) into the last term of Eq(19). The analytical solu-
tions of Eqs(17) and(19) can be explored by converting the
nonlinear integral equatio(l9) to a second order nonlinear
differential equation. First, however, we must take into ac-
count that the consistency of the LLL approximation requires

respectively Dimensionless field-normalized quantities areis to use a momentum cutoff of ordg2eB in the momen-

denoted byQ Q/+2eB. Notice that if we seh,=0 in the

tum integrations, and hence the infinity limit in all the inte-

above equations, E@14) reduces to the same gap equationgrals in k? should be changed to 1.

One can easily see, by taking derivatives of B@) with

found in[2] for (3+ 1)-dimensional QED, since, in the ab-
sence of a Yukawa term, the theod) becomes equivalent respect tax=p? and combining them conveniently, that the
to a QED theory on which an extra, but disconnected, reaintegral equatior(19) is equivalent to the following second
scalar field has been added. order differential equation:

Changinqu to polar coordinatesk(, 6) in the above inte-

grals and integrating in the angle, we find N 9" (X) 3 3(X)
2"(x)— 3'(x)—g'(x )—=0- (20)
. '(x) +2%(x)
P)= 27 )0 R2+i2(R2) (P If we now differentiate Eq(19) and evaluate the result at
=0, we obtain the following boundary condition:
A2 jm o S(k? o
y 2 2,2 -
+— —————x2(p-,k%) '
1672)o k2+32(k2) " E (0 =0, (21)
. 9' (%) [,_,
Ny 1= 3k .
“at o Wi gz e 1Y where
)\2
S (k2 900 = o g(x) + —g(x+M12) (22
S 3\, jwdk2 S(k?) w 9x)=5-9 622 ,
©Cam?lo k24 32(ky)
% e ?
The functionssx,(p?,x) are defined by a(y)= fo dzz+y' @3
i . o2 Eimilﬂly, taking the derivative of Eq19), multiplying it by
xt(pz,x)zf dz . (18  g(x)/g’(x), and evaluating ak=1, we obtain the second
0 \/(z+ pZ+x+t)2—4xp? independent boundary condition
To make the calculation more manageable, it is convenient to _ 9(x) & 37 2 W o4
divide the momentum integration in E@L6) into two re- ( ) 9’ () (x) ~“3MyPe- (24)

gions separated by the dimensionless squared momesftum =1

Expanding the kernelst(bz,x) appropriately in each region,
we find

In doing so, we have traded a nonlinear integral equation
for a nonlinear boundary value problem. Finding the solu-
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tions to the coupled set of Eq&.7) and(20), with boundary

X . , : . 1. A2 S
conditions(21) and(24), will be the aim of the next section. S7(X)+ =2 (X)+ i+ y 2(—)(320, (32)
X 1672 ) x(x+m?)
IIl. FERMION AND SCALAR MASSES )
IN THE BEYOND-CONSTANT-MASS APPROXIMATION - Sy ~
(1) +eX (l)=§)\y(pc, (32

A. Beyond-constant-mass analytical solutions

An analytical expression for the solutidfi(x) of Eqs. where e=g(1)/g’(1)=1.477 anda=1/137 is the fine-
(20), (21) can be found by considering a linearized version ofstructure constant.
Egs.(20) and (17), in which the fermion self-energy in the For most physically interesting applications of the gauge
denominators is replaced by its zero momentum valu&/ukawa theory, the Yukawa coupling, is <10 1. Forthose

> (0)=m. The consistency of this linearization is justified if \,’s, the parameters= Jal27 and v= -/ a/27+ 7\2/1677

the self-energy is a rapidly decreasing function of the mo'pract|cally coincide(for \,=10"? they already have three
mentum. We will corroborate at the end of the derivations

significant common flguresThus we can take=v in Eq.
that follow that this is indeed the case. Then the gap equatlotbl) reducing the problem to a single second order differen-
(20) can be written as

tial equation. The new problem is then defined by E9)
— - and the two boundary conditiori80) and(32). The solution
(%) g (X)z () -9 (X) 2()9 ~0 (25 o this boundary value problem can be written as the follow-
g’ (x) X+m ' ing combination of hypergeometric functioff®r properties
and formulas of the hypergeometric functions, E&#)):

while the equation for the scalar minimum takes the form

< H . . X
sa_ 3N 1y 200 - 2(0=AF|iv,—irli- ﬁ)
© am2lo T x+m?
. - X
From a physical point of view, we expect that the masses for tAg 1+ 2 F( 1=iwl+ivi2i1+ 2l
both fermion and scalar fields will be much smaller than the
magnetic field that induces them through the formation of a (33

fermion condensate. Therefore, it is reasonable to assume N
that m2<1 andM2<1. At the end of our calculations we Taking into account the boundary conditi@0) and the for-

must check the consistency of this assumption in the resultd! ula
obtained.
Taking into account the asymptotic behaviors of the func-
tion E(X) in the regions
(1) x<M?<1,

dF(a,bic;z) ab
—4; ¢ Flatlb+lc+lz), (39

we obtain A,=0. As m=3(0), it is clear thatA;=m
- Therefore the self-energy solution becomes

, 9 (X)==5= ] (27)

S(x)=mF| i

X
) V,—ill;l;—,\—2>. (35
(2) M?<x=<1,

The second boundary conditid82) gives rise to

g0 1 — a1
g x 9T (2W+16w2)x' ® ( R N DO
mF |v,—|u;1;—A—2 —e—=—F 1+|v,1—|v;2;—A—2
one ends up with a different boundary value problem in each m m m
region. The two boundary value problems are defined by the 2
following equations: =3M%c) (36)
(1) Forx<M?2<1,
. which establishes a relation between the fermion dynamical
$(x)+ Ei’(x)+ a 2(X3 o, 29 massm and the scalar VEVp.. This is an implicit, quite
27 x(x+m?) nontrivial equation form: in addition to the dependence on
A m in the hypergeometric functions, the scalar Vigy de-
X2 (X)x=0=0; (30 pends orm through Eq.(26).
To find the solution to the system formed by E@6) and
(2) For M2<x<1, (36), we first note that E¢(29) can be rewritten in the form
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, 3(%)

d -
ax O D=, (37
hence
1S 1g,
Jo A %9

Using Egs.(33) and (38) in Eq. (26), and the values oA;
andA, just found, we obtain

;03: 3)\y iF
¢ aam?m

1
1+iv,1—iv;2;—A—2). (39
m

From the asymptotic behavior of the hypergeometric

function for large values of its argumef85],
I'(c)['(b—a)
I'(b)I'(c—a)

T'(c)T(a—b)
T T@r(c_b)

F(a,b;c;z)= (-2 ®

(-2)7", (40)

we can show that

i g1 T'(-2iv) 17"
I T e T T (—in T (1) | g2
I'(2iv) 1\"
TGt | g2
nd P20 [ 1 v
r3(1+iv) | m?
~R I'(1+2iv) il IN(1%)+ 5(»)]
I2(1+iv) ’
(41)
where
I(1+2iv)
S(v)=arg————~v3+0(1°) (42)
I?(1+iv)
and
[(1+2iv)
—— ~1, (43)
T2(1+iv)
so the function can be approximated by
1 R, 1
F(iv,—iv;l;—TZ :Re[e'V'“<1’m2)]=c0ﬂ(vlnA—Z)-
m m
(44)

Similarly, one can see that
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FIG. 1. Logarithmic plot of the BCM solution field-normalized

fermion mass squareth’ versus couplings\,=10 %" and x
=10 2"¥8 for ¢ =1/137. The numbers on theandy axes indicate
the values oh andk, respectively.

1 -2
F 1+iv,l—iv;2;—A—) =—sin
m? v

1

Substituting from Eqgs(44) and(45) into Egs.(36) and(39),
we obtain a much more simplified, although still transcen-
dental, pair of coupled equations for the fermion infrared

massm and the scalar VE\or, equivalently, for the fermion
infrared mass and the scalar mag3,
4

e*“”[cos{t)—vesin(t)]g—i Ny sin(t)=0, (46)
9 m\v ,
-, N
MZZ_;pC: :}i\ze“"[cos(t)—vesin(t)]z, (47)

y

where the parameter= v In(1/m?).

Equations(46), (47) represent the BCMA implicit solu-
tion for the fermion and scalar masses catalyzed by the mag-
netic field. This is as far as we can stretch our analytical

calculations form? and M? without introducing any addi-
tional approximation. In the following subsections we will
perform a numerical analysis of these solutions.

B. Numerical solutions in the BCMA

Since Eqs(46), (47) are highly transcendental, to obtain
the explicit dependence on the couplings of the BCMA fer-
mion and scalar masses, we have to resort to numerical
methods.

Figures 1 and 2 display logarithmic plots of the numerical
solutions of Eqs(46), (47) versus the couplings, and\.
From them, one can easily see that the two masses widely

agree with the initial assumptioms?<1, M?<1. Only in
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Self energy
0.06 |

0.05 |
0.04
0.03
0.02

0.01 ||
%2\ 0.4 06 08 1 x
FIG. 3. Self-energy versus momentum squared Not 10t
and\=10"2.
FIG. 2. Logarithmic plot of the dimensionless scalar squared
massM?2 versus Yukawa and scalar self-interaction couplings. The""irn we compare the BCMA equatiorid6), (47) with the

intervals of the coupling constants used to generate this graph af®'responding CMA equations
the same as in Fig. 1. 2 2

m= §)\y(,DC+ %ﬁ] |n2ﬁ, (48
the region of very larga., (very largen) and very smali
(very smallk) does the fermion mass become of order 1; Ay 3Ny . 1
hence, to be consistent, we should disregard the results in q"czzwz)\m'”@’ (49)

this corner. In any place out of this limited section of the
parameter space, the results are reliable for both masses. which were previously fourfdin Ref. [13].

Notice that the fermion mass grows witfy at any given Equationg48), (49) look very different from their BCMA
value of\. This in turn implies an enhancement of the fer- counterparts Eq€46), (47). There is no reason to anticipate
mion mass as compared to its value within QED. While inthat the solutions of both sets of equations will coincide in all
QED the largest mass was no more thati0 °\/2eB[2], the parameter space. Combining E(8), (49) we obtain
here the mass surpasses this value in the majority of the ) 3
parameter space by at least five orders of magnitude. i n i _ ONm

It is because of such a significant enhancement of the m2 m2 4\
dynamically generated mass in the presence of scalars that Y
magnetic catalysis could play an important role in realistc  From Eq.(50) we see that, since@? has to be positive, the

applications of the HY model. The region of larag and  ¢onsistency of the CMA solution requires (1/Z)n4(1/m?)
large X, where the results are quite reliable, is the most in-—1  which is equivalent to having<1.4. Below, we will
teresting for applications to the electroweak theory, since theumerically check that this condition is indeed always satis-
values of the coupling constants in that section include thgjeq.

value of the scalar self-couplings consistent with current ex- T4 compare the BCMA and CMA solutions we will ex-
perimental limits for the Higgs boson mass, as well as thgore whether there is a condition under which the CMA and
Yukawa coupling of the top quark. BCMA equations reduce to an identical set. To this end, let

To finish this subsection, let us consider the behavior ofus assume tha;ln(llrhz):vln(llﬁ"nz)<1 This restriction
the self-energy with the momentum. In Fig. 3 we have pIot—aIIOWS us to write Eqs(46), (47) as '

ted the self-energy solutio35) as a function of the momen-
tum for fixed values of the couplings. As can be seEn, 1 ( 1 ) 972\
2

1
- —V2|n2,\—

s (50)

decreases very quickly with increasing momentum. This be- A—2|n ~|T (52)
havior is in good agreement with the linearization used in m 4Ny

Eqg. (25). It also justifies the ultraviolet cutoff af2eB that o\
was imposed on the integrals appearing in the gap equation M2=——m?, (52)
(19) and the scalar minimunil7), since, as seen here, the 87\§

][P:r'g dcr%r;tircl)t:]utlon to the integrals comes from the deep In'respectively. They are exactly the same equations found from

Egs. (49) and (50), after usingt<1. Thus, in this limiting

) ] case, the BCMA reduces to the CMA, thereby 1 defines a
C. Comparison between the BCMA and the CMA solutions condition of reliability of the CMA.

m

To find the region of reliability of the CMA we have to
determine the values of the couplings for which the two ap-
proximations give rise to the same mass solutions. With this “Here we have corrected some misprints appearing in [R&f.
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log CM_BCM fermion mass square ratio BCM -t - value

FIG. 4. Logm2,/mic,) in the region of couplings IF<\
<1071, 105<\, <1072

The explicit region qf parameter space where the CMA IS F1G. 6. The BCMt value as a function ok, = 10758 andx
reliable can be determined from a numerical plot of the ratio_ ;o-9+ks
between the CMA and BCMA mass squared solutions. To be

sure that we are working with consistent masses, we will )
restrict the couplings to a strip in tha(,\) plane, leaving The above observations are corroborated by the plots of

out the corner of Fig. 1, where, as discussed above, the coff?¢ BCM and CM's, as shown in Figs. 6 and 7 respectively.
sistency of the approximation breaks down. Both surfaces have similavalues at equal sets of couplings,

Figures 4 and 5 show logarithmic plots of the ratio of €Ven whert<1 is not satisfied, indicating that, after all, and
CMA to BCMA mass squared results for the fermion and@S already seen in Figs. 4 and 5, the two approximations give

scalar masses, respectively, taken in the region of couplingdSe to very close mass values. Notice that the largeh {fe
10 8<A<101 10—6<)\y< 1072, Both figures display the smaller the’s in both approximations, leading to a better

similar behavior of the ratios, characterized by a discerniblédreement between the BCMA and CMA resullts, as expected
region of the parameter space, approximately given byfom our previous analytical considerations. Therefore, al-
10 4<\<10"! and 10°%<\,<10°5 where a disagree- though the numerical calculations show that the CMA results

ment between BCMA and CMA results is apparent. How-a€ widely reliable, it is in this extreme section of the param-
ever, even in this segment, the BCMA and CMA masseter space v.vh'ere Fhe two approximations totally coincide.
squares differ by at most one order of magnitude. Out of thi€"0m Fig. 7 it is evident that the CNinever goes over the
limited region, we find very good agreement between scmalimiting value of 1.4, so, even in the region of larger Fﬂscrep-
and CMA results, particularly at large, , indicating that this ~ @ncy between the CM and BCM resultarge ), relatively

is the most reliable region of the CMA solution within this 10W Ay), the CM mass solution remains real, as it should.
model.

log CM_BCM scalar mass square ratio

FIG. 5. LogMZ/M5c,) in the region of couplings 10<\ FIG. 7. The CMt-value as a function ok, =10 °""8 andx
<1071, 1076<7\y< 1072 =10"9+k8
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The curves reflect the fact that the CM approximation tendslers of magnitude larger than those obtained in the QED
to overestimate the mass, because it substitutes in the intease, thereby confirming, within a more accurate approxima-
grals the self-energy function, which rapidly decreases withion, that the Yukawa interactions strengthen the generation
momentum, by a constant. of the dynamical fermion mass by several orders of magni-
) o tude, a claim made in previous pap€t2,13 based only on
D. BCMA in the Ay=0 limit (QED casg CMA results.

We shall discuss now the limiting cagg=0 which re- As mentioned in the Introduction, a motivation for the
duces to (3-1)-dimensional QED with a decoupled self- inclusion of fermion-scalar interactions in the study of mag-
interacting scalar field. Let us find the solutions for thenetic catalysis was to find out if this phenomenon could in-
masses in this case. It is clear from Ef7) that no scalar fluence the phenomenology of the early universe. A funda-
VEYV, and hence no scalar mass, is generated in this case. Theental question here is whether the strengthening of the
fermion dynamical mass solution can be found from @) mass by the fermion-scalar interactions may have any impact

evaluated ah,=0. It leads to on the electroweak phase transition. For this effect to be of
1 any significance for the electroweak physics, a condition has
tant)= —. (53 to be met: during the electroweak transition the universe has

144

to be permeated by a primordial magnetic field strong

. enough to induce, even at temperatures comparable to the

In terms ofm?, it can be rewritten as follows: electroweak critical temperature, a modification in the value
2= o (Uarctan(ibe) (54) of the fermion mass. _

We should keep in mind that at temperatures below, but
close enough to, the critical temperature for electroweak
spontaneous symmetry breaking, the fermion masses gener-
ated through the Higgs mechanism are very small, since the

Mm2= e~ ™2 (55)  transition is expected to be either second order or weakly

first order. Then, if the magnetic field is much larger than
This result coincides with the BCMA results found for QED these tiny masses, the fermions will be mainly constrained to
within the ladder approximatio(see Ref[2] for detail. As  their LLL and the MC can be fully operative. However, this
is known, it is qualitatively very close to its CMA counter- is true only if the thermal fluctuations are not so large as to
part m2=e~ ™7 [2]. Thus, we are corroborating here the take the fermions out of the LLL. Another way to put this is
conclusion of the authors of ReR2], namely, the reliability 0 Say that the critical temperature at which the magnetically
of the CMA approach in (3 1) QEDS induced fermion mass evaporates has to be larger than the
It is worth noticing that the dynamical mass behavior is€léctroweak critical temperature. .

basically affected by the infrared conditions of the self- Magnetic fields may well have been present in the early
energy, but it is practically indifferent to the ultraviolet Universe. In fact, there are very plausible arguments favoring
boundary condition used in ReR]. This explains why, de- the existence of primordial magnetic fields that can serve as
spite using a momentum cutoff a2eB and imposing the the source of thg seed fllelds required to explain the observed
second boundary condition at=1, we still get in the\, magnetic fields in galaxies and clusters of galak&s. The

—0 case the same result ag &, where the momentum was literature on this topic is rich in possible primordial field
allowed to run up to infinity ’ generating mechanisms, and many of them can produce very

strong fields at and before the electroweak transitg§37).
IV. CONCLUDING REMARKS Althoggh the model used in our ca_tlculations lacks the
complexity of the electroweak theory, it shares some com-
In this paper we have performed a BCMA study of themon features with the electromagnetic sector of the elec-
magnetically catalyzed fermion and scalar masses in a (&oweak model, and so we expect that any conclusion drawn
+1)-dimensional Abelian Higgs-Yukawa theory in the pres-within our model can be seen as an indicatiewen if quali-
ence of a constant magnetic field. Our results show that, evetative) of the relevance of the effect in the electroweak con-
in this multiple-coupling theory, the discrepancy between theext.
masses obtained within the CMA and within the more accu- Taking into account that the critical temperature for the
rate BCMA is not very significant, the difference in the massvanishing of the magnetically catalyzed fermion mass is
squared being at most one order of magnitude. We find thaypically of the order of the value of the dynamical mass at
the region where CMA and BCMA results exactly coincide iszero temperatur¢7,12], that is, T~my(T=0), and that a
defined by the condition= v In(1/m?)<1. reasonable estimaf86,37] for the primordial magnetic field
The BCMA calculations led to fermion masses many or-at the electroweak scale is10°* G, one obtains, for the
values of Ay and \ that give rise to the largest zero-
temperature dynamical mass, the result that-1 GeV
5The agreement between CMA and BCMA results in QED has< Tew=100 GeV. Hence, no magnetically induced mass
also been proved using an improved ladder approximation of thavould be present at the electroweak temperature because
gap equatiof9], in which the one-loop photon propagator is used temperature effects override field effects at this scale. Unless
in the gap equation, instead of the bare photon propagator. new sources of extremely largg=T? primordial magnetic

Taking into account thave<1 and using the asymptotic
behavior arctan=m/2— 1/x, we obtain
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fields can be identified in the future, these results indicatease in order to make quantitative predictions that can be
that MC has no relevance during the electroweak transitioncompared with experiment.

Nevertheless, the outcomes of this work may be important
for applications of the HY model in situations where mag-
netic field effects are present at sufficiently low tempera-
tures. We expect that they will be particularly relevant in  The authors are grateful to V. P. Gusynin for useful dis-
condensed matter applications. As mentioned in the Introeussions. E.E. is indebted to the Department of Mathematics
duction, a HY theory has been propo4@@,2€| to describe and Center for Theoretical Physics, MIT, especially to Dan
the observed emergence of a secondary quasiparticle gap Freedman and Bob Jaffe for their warm hospitality. E.J.F.
high-T. superconductors at certain doping levels. Accordingand V.I. would like to thank the Institute for Space Studies of
to recent experimentg27], the secondary gap can also be Catalonia and the University of Barcelona for their warm
triggered by an applied magnetic field. The resemblance dfiospitality. The work of E.E. was supported in part by DGI/
this behavior to MC is intriguing and deserves a thoroughSGPI(Spair), project BFM2000-0810, and by CIRICata-
investigation. Such a study, in turn, will require the extensionlonia), contract 1999SGR-00257. The work of E.J.F. and V.I.
of the results of the present paper to the two-dimensionalvas supported in part by NSF grant PHY-0070986.
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