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Beyond-constant-mass-approximation magnetic catalysis in the gauge Higgs-Yukawa model
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Beyond-constant-mass-approximation solutions for magnetically catalyzed fermion and scalar masses are
found in a gauge Higgs-Yukawa theory in the presence of a constant magnetic field. The fermion masses
obtained are several orders of magnitude larger than those found in the absence of Yukawa interactions. The
masses obtained within the beyond-constant-mass approximation exactly reduce to the results within the

constant-mass approach when the conditionn ln(1/m̂2)!1 is satisfied. Possible applications to early universe
physics and condensed matter are discussed.
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I. INTRODUCTION

In the last few years the magnetic catalysis~MC! of chiral
symmetry breaking@1–3# has been the focus of attention
much work on nonperturbative effects of magnetic fie
@1–21#. The phenomenon consists of the dynamical gene
tion of a fermion condensate~and consequently of a fermio
mass! when fermion interactions occur in the presence of
external constant magnetic field. The most significant fea
of MC is that it requires no critical value of the fermion
coupling for the condensate to be generated. That is,
symmetry breaking takes place at the weakest attractive
teraction. Physically, it is due to the fact that the magne
field forces the low-energy fermions to reside basically
their lowest Landau level~LLL !, while the higher-energy
fermions actually decouple@8#. This, in turn, yields a dimen-
sional reduction of the infrared fermion dynamics. The
mensional reduction is reflected in an effective strengthen
of the fermion interactions, leading to dynamical symme
breaking through the generation of a fermion condensate

A particularly important question to understand in th
context is how the MC is affected by the introduction
fermion-scalar interactions. Fermion-scalar interactions
an essential element of unified theories of fundame
forces. As is well known, they are expected to be respons
for fermion mass appearing due to the spontaneous sym
try breaking of the electroweak symmetry. Fermion-sca
interactions are also relevant in condensed matter phy
where the complexity of strongly correlated many-body s
tems sometimes calls for a description in terms of m
simple, phenomenological theories that contain interac
scalars in addition to fermions~see, e.g.,@22#!.

In Refs.@12,13#, two of us studied the realization of mag
netic catalysis in a (311)-dimensional Higgs-Yukawa~HY!
model, showing that the magnetic-field-induced fermi
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mass is enhanced by fermion-scalar interactions. As we
show below, this enhancement is also found within a m
accurate approximation for a wide range of couplings. T
result might find applications in early universe transitions,
well as in condensed matter physics.

In @12–14# some applications of MC to the early univers
were briefly considered. They were motivated by many
trophysical observations of galactic and intergalactic m
netic fields indicating the existence of seed fields that or
nated from large primordial magnetic fields~for a recent
review on cosmic magnetic fields, see@23#!. If the primordial
magnetic fields in the early universe were large compare
the values close to the phase transition point of the ferm
masses generated through the usual mechanism of spon
ous symmetry breaking, the fermion would seem appro
mately massless. Under these circumstances, it is impo
to investigate if the primordial magnetic fields could contri
ute to the masses of the fermions through MC and he
influence the phenomenology of the early universe@13#.

On the other hand, to discuss applications of MC in t
context of a HY theory to condensed matter, we need
addition to interactions modeled by fermion-scalar terms
physical system that, despite being nonrelativistic, can
described under certain conditions by a ‘‘relativistic’’ Ham
tonian. We will see below that these conditions are inde
present in the physics of high-Tc superconductors.

High-Tc superconductors, which are characterized by
existence of nodal points where the order parameter~gap
function! vanishes, provide a practical realization of a ‘‘rel
tivistic’’ system in condensed matter physics. This is so b
cause the low-energy spectrum of the nodal quasiparticle
linear; hence the quasiparticle excitations are described b
anisotropic Dirac Hamiltonian@24#. In Ref. @22# a quantum-
critical phase transition to a new superconducting state, c
acterized by the appearance of a secondary pairing at s
doping level, was proposed to explain recent measurem
@25# of an anomalously large inelastic scattering of quasip
ticles near the gap nodes of a superconductor. The obse
secondary pairing transition made the nodal quasiparti
fully gapped. Based on the symmetries of the superc
ductor, the authors of Ref.@22# made a classification of a se

te
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of fermion-scalar interactions that in principle could be
agreement with the experimental observations, and then
formed a perturbative renormalization-group analysis of e
model to determine the possible existence of a quant
critical point. In Ref.@26#, expanding on the ideas of@22#,
the existence of a quantum-critical point was established
rectly in a (211)-dimensional HY theory beyond a nonpe
turbative approach, which allowed quantitative predictions
be made for the corresponding quantum-critical behav
The gap generation~fermion mass! was associated in@26#
with the breaking of a discrete chiral symmetry.

We would like to underline that the breaking of the chir
symmetry in@26# was found to occur when the Yukawa co
pling ~assumed to be related to the doping level! reached a
critical value, that is, the symmetry breaking was not ass
ated with the phenomenon of MC, as no external magn
field was introduced in the analysis. However, as rece
observed@27# by measuring the splitting of the conductan
peak that characterizes the nodes of high-Tc superconduct-
ors, the development of a secondary quasiparticle gap
be triggered not only by the doping level, but also by
applied magnetic field. Could the secondary gap triggered
the magnetic field be the consequence of MC occurr
within the superconductor? We believe that the results we
going to derive below strongly indicate that the answer
yes, if, as argued in@22# and @26#, the HY theory is the
model describing the appearance of the secondary gap.
ertheless, to match the experimental observations we w
need to particularize the analysis done in the present pap
the (211)-dimensional case and adjust the physical val
of the couplings to those characteristic of a superconduc

As already mentioned, in Ref.@13# the phenomenon o
MC in a (311)-dimensional Abelian gauge theory with H
interactions was studied. In that work it was shown that
nonperturbative solution of the minimum equations for t
composite-operator effective action leads not only to a m
netically catalyzed fermion dynamical mass, but also to
nonzero scalar vacuum expectation value~VEV! wc and con-
sequently to a nonzero scalar mass. In other words, than
the magnetic field, a scalar-field minimum solution is gen
ated by nonperturbative radiative corrections.

We should underline though that the fermion and sca
masses of Ref.@13# were obtained within a simplified ap
proximation known in the literature as the constant-mass
proximation ~CMA!. In general, to find the dynamica
mass—which is nothing but the part of the fermion se
energy proportional to the identity matrix—one has to so
a nonperturbative gap equation~i.e., the Schwinger-Dyson
equation for the full fermion propagator!. This means solving
a nonlinear, implicit integral equation for the fermion se
energy, which is a momentum-dependent function. Most
thors approach such a mathematically complicated prob
with the help of the rough CMA approach. It consists
neglecting the momentum dependence of the self-energ
the gap equation. This is done by substituting the self-ene
function in the gap equation by its value at zero momentu
that is, by the infrared mass. There is no general princ
that guarantees the validity of this approximation for t
whole range of physical couplings.
09600
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For theories with several couplings, due to the richness
the parameter space, the reliability of the CMA is questio
able and should be investigated in detail. In the case of
HY model, aside from the multiple-coupling problem, on
has to deal with a system of nonlinear, coupled integral eq
tions, one for the fermion dynamical mass and the other
the scalar VEV@13#. We cannot disregard in this situation th
possibility of regions of these parameters where the CMA
reliable and regions where it is not. In this case one ha
turn to a more accurate approximation in which the mom
tum dependence of the self-energy is taken into acco
when solving the gap equation. This more accurate appr
mation is known as the beyond-constant-mass approxima
~BCMA!.

For theories like QED containing only one coupling co
stant, the CMA is known to be appropriate, since going
yond it does not produce qualitatively different results. Th
has been explicitly shown for (311)-dimensional@2# and
(211)-dimensional QED@28#, and independently corrobo
rated by our calculations below. In Ref.@9# the BCMA mass
solution of (311)-dimensional QED was found to agre
with the CMA mass obtained from the improved ladder1 gap
equation. This result was later corroborated by numer
calculations in@29#.

Considering that different physical applications of MC
models with fermion-scalar interactions would require diffe
ent values of the couplings constants, and, in particu
given the relevance that the Abelian gauge Higgs-Yuka
theory may have for condensed matter and other field the
applications, it is important to perform a BCMA investiga
tion of this model in all possible regions of the parame
space and find out whether or not it significantly differs fro
the CMA results. A main goal of the present paper is to ca
out such a study.

By going beyond the CMA, we will determine the regio
of Yukawa and scalar self-interaction couplings where
CMA is valid and will obtain the numerical BCMA solution
for the fermions and scalar dynamical masses in the c
plete physically meaningful parameter region. As we will s
below, the CMA results for the Abelian gauge Higgs-Yukaw
theory are mostly reliable in the available parameter spa
An important finding is that the~BCMA-found! mass values
are many orders of magnitude larger than those obtaine
the absence of fermion-scalar interactions, corroborat
within this more accurate approximation, the enhancemen
the dynamical mass by the Yukawa term.

The paper is organized as follows. In Sec. II we derive
nonlinear integral equations for the fermion self-energy~gap
equation! and the scalar VEV in a gauge Higgs-Yukaw
theory. The integral gap equation is then converted int
second order differential equation with boundary conditio

1One should distinguish between the approximation employed
obtain the gap equation itself~ladder, improved ladder, etc.! and the
approximation employed to find its solution. In the present pa
we are concerned with the approximation to find the mass solu
~either CMA or BCMA!, assuming that the gap equation is foun
using a ladder or an improved ladder approximation.
4-2
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In Sec. III, this boundary value problem is analytica
solved, leading to the self-energy as a function of the m
mentum and the infrared fermion mass. Using the s
energy solution and the equation for the scalar minimum,
arrive at two coupled transcendental equations dependin
the infrared dynamical mass and the scalar VEV. These e
tions are numerically solved and the results are used to
termine the region of reliability of the CMA and to compa
the mass values obtained in the CMA and the BCMA a
proaches. We end Sec. III by discussing the solution of
gap equation at zero Yukawa coupling and showing tha
leads to the same result found in Ref.@2# for
(311)-dimensional QED. In Sec. IV, we state our conclu
ing remarks and reconsider the question of the relevanc
magnetic catalysis in the electroweak phase transition u
the BCMA results.

II. INTEGRAL EQUATIONS

Let us consider the following Lagrangian density:

L52
1

4
FmnFmn1 i c̄gm]mc1ec̄gmcAm

2
1

2
]mw]mw2

l

4!
w42

m2

2
w22lywc̄c, ~1!

which describes a gauge Higgs-Yukawa model with a f
mion field coupled to scalar and electromagnetic fields. T
scalar field is electrically neutral, but self-interacting.

The Lagrangian density~1! has U~1! gauge symmetry,

Am→Am1
1

e
]ma~x!,

c→eia(x)c, ~2!

fermion number global symmetry

c→eiuc, ~3!

and discrete chiral symmetry

c→g
5
c, c̄→2c̄g

5
, w→2w. ~4!

Notice that the quadratic scalar term has the correct s
of a mass term; thus no vacuum expectation value of
scalar field exists at the tree level. In the course of our c
culations we will takem→0 to search for a dynamically
induced mass. The discrete symmetry~4! forbids a mass for
the fermions to all orders in perturbation theory. Neverth
less, this symmetry could be dynamically broken throu
nonperturbative generation of a composite field~fermion-
antifermion condensate!. Such a fermion condensate wou
lead to a dynamical fermion mass and to a nonzero vacu
expectation value of the scalar field@13#, which in turn
would contribute to the scalar mass.

It is known that in the case of the nongau
(311)-dimensional Higgs-Yukawa theory, no value exis
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for a runningly at which a chiral symmetry breaking fer
mion condensate can be generated.2 As shown in@13#, the
situation drastically changes when a magnetic field is int
duced. In this case a nontrivial solution exists at the weak
value of ly , and one can show that a fermion condens
~together with a dynamical fermion mass and a scalar VE!
is magnetically catalyzed.

However, as already mentioned, the solutions in Ref.@13#
were found within the CMA, and therefore it is important
investigate their reliability beyond that approximation. O
task hereafter will be to extend the results of Ref.@13# be-
yond the CMA to find the dynamical mass and the sca
VEV for all physically meaningful values ofly andl. For
the sake of understanding, we will repeat the outline of
derivations done in Ref.@13# that led to the coupled set o
integral equations~gap and scalar VEV equations! that will
be the starting point of our new calculations.

Let us consider the Lagrangian density~1! in the presence
of an external constant magnetic fieldB @without loss of
generality we assume that the magnetic field is direc
along the third coordinate axis and that sgn(eB).0], which
can be introduced by adding the external potentialAm

5(0,0,eBx1,0) as a shift to the oscillatory gauge fieldAm in
Eq. ~1!. To find the vacuum solutions of this theory we ne
to solve the extremum equations of the effective actionG for
composite operators@30,31#

dGB~wc ,Ḡ!

dḠ
50, ~5!

dGB~wc ,Ḡ!

dwc
50. ~6!

In the above Ḡ(x,x)5^0uc̄(x)c(x)u0& is a composite
fermion-antifermion field, andwc represents the VEV of the
scalar field. The subscriptB indicates that the effective actio
is considered in the background of the external magn
field.

Equations~5! and ~6! are, respectively, the Schwinge
Dyson equation for the fermion self-energy operatorS ~gap
equation! and the minimum equation for the VEV of th
scalar field. As we are interested in the possibility of a sca
mass induced—through the interactions with t
fermions—by a dynamically generated fermion condens
we will set, as stated above, the bare scalar massm to zero.
Notice that, if the minimum solutions of Eqs.~5! and~6! are
nontrivial, the discrete chiral symmetry~4! is dynamically

2The incorporation of gauge field terms in the Higgs-Yukaw
model may lead to chiral symmetry breaking at some criticala, just
as it occurs in (311) QED @1,2#.
4-3
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broken and both fermions and scalars acquire mass. The
expansion of the effective actionG for composite operators
@30,31# can be expressed as

GB~Ḡ,wc!5S~wc!2 i Tr ln Ḡ211 i
1

2
Tr ln D21

1 i
1

2
Tr ln D212 i Tr@G21~wc!Ḡ#1G2~Ḡ,wc!

1C. ~7!

HereC is a constant andS(wc) is the classical action evalu
ated in the scalar VEVwc . The notation without overbar
indicates free propagators, as is the case for the gauge

Dmn~x2y!5E d4q

~2p!4

eiq•(x2x8)

q22 i e
S gmn2~12j!

qmqn

q22 i e
D
~8!

and the scalar

D~x2y!5E d4q

~2p!4

eiq•(x2x8)

q21M22 i e
~9!

propagators. Herej is the gauge fixing parameter andM2

5(l/2)wc
2 denotes the scalar mass squared. A dependenc

full boson propagators is not included since we do not exp
the gauge field to acquire nonzero expectation values fo
composite operator. On the other hand, we are going to
plore the possibility of a nonzero VEV of the scalar fiel
hence a composite-operator solution for the scalar would
a correction of higher order that can be neglected.

The overbar on the fermion propagatorḠ(x,y) means
that it is taken full. The full fermion propagator in the pre
ence of a constant magnetic fieldB can be written as
@5,11,32,33#,
a
L

rg

09600
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e

Ḡ~x,y!5(
k
E dp0dp2dp3

~2p!4
Ep~x!S 1

g.p̄1S~ p̄!
D Ēp~y!,

~10!

with S( p̄) being the fermion self-energy,p̄5(p0,0,
2A2gBk,p3), and k denoting the Landau level numbe
Similarly, the free fermion inverse propagator in the prese
of B is given by

G21~x,y,wc!5(
k
E dp0dp2dp3

~2p!4
Ep~x!

3~g.p̄1lywc!Ēp~y!. ~11!

Note thatlywc enters as a contribution to the fermion ma
due to the shiftw→w1wc in the scalar field made in the
classical action to account for a possible nonzero scalar V
The value ofwc will be determined self-consistently throug
Eq. ~6!.

In the above equations, Ritus’Ep functions@32,33# were
introduced. They form an orthonormal and complete set
matrix functions and provide an alternative method
Schwinger’s approach to problems of quantum field the
~QFT! on electromagnetic backgrounds.3 Ritus’ approach
was originally developed for spin-1/2 charged partic
@32,33#, and it has been recently extended to the spi
charged particle case@34#.

The functionG2(Ḡ,wc) in Eq. ~7! represents the sum o
two-and higher-loop two-particle irreducible vacuum di
grams with respect to fermion lines. For weakly coupli
theories, like the case of the Lagrangian~1!, one can use the
Hartree-Fock approximation, which means retaining only
contributions toG2 that are lowest order in the coupling con
stants~i.e., two-loop graphs only!, so that it becomes
G2~Ḡ,wc!5
e2

2 E d4xd4y tr@Ḡ~x,y!gmḠ~y,x!gnDmn~x,y!#2
e2

2 E d4xd4y tr@gmḠ~x,x!#Dmn~x2y!tr@gnḠ~y,y!#

1
ly

2

2 E d4xd4y tr@Ḡ~x,y!Ḡ~y,x!D~x,y!#2
ly

2

2 E d4xd4y tr@Ḡ~x,x!#D~x2y!tr@Ḡ~y,y!#. ~12!
on

q.
As discussed above, the infrared dynamics (p!A2eB) of
a system of interacting fermions in the presence of a m
netic field is mainly governed by the contribution of the LL
@1,2#. To obtain an explicit form for Eqs.~5!, ~6!, we use the
propagators~8!–~10! in Eqs.~7! and ~12!, and take into ac-
count that in the background magnetic field the self-ene
structure entering in the full fermion propagator~10! should
be written as@11#

S̃~p!5Z
i
~ p̄!g.p̄

i
1Z'~ p̄!g.p̄

'
1S~ p̄!. ~13!
g-

y

Here we are using the notationp
i
5(p0 ,p3) and p'

5(p1,p2) for the momentum components. The wave functi
renormalization coefficientsZ

i
,Z' are scalar functions of the

momentum. Using this structure forS in the full fermion
propagator, evaluating at the LLL (k50), and using the so-
lution of the wave function renormalizationZ

i
50

3For details of the use of Ritus’ method in the theory given by E
~1!, see Refs.@12,13#.
4-4
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found in Ref.@12#, we have that the gap equation~5! and the
scalar minimum equation~6! of our theory take the forms

Ŝ~p!52e2E
0

` d2q̂
i
d2q̂

'

~2p!4

Ŝ„~ q̂2 p̂!
i
2
…

~ q̂2 p̂!
i
21Ŝ2

„~ q̂2 p̂!
i
2
…

e2q̂'
2

q̂2

1ly
2E

0

` d2q̂
i
d2q̂

'

~2p!4

Ŝ„~ q̂2 p̂!
i
2
…

~ q̂2 p̂!
i
21Ŝ2

„~ q̂2 p̂!
i
2
…

e2q̂'
2

q̂21M̂2

2
ly

2

4p3

1

M̂2E0

`

d2q̂
i

Ŝ~ q̂
i
2!

q̂
i
21Ŝ2~ q̂

i
2!

1lyŵc ~14!

and

ŵc
35

3ly

2lp3E0

`

d2q̂
i

Ŝ~ q̂
i
2!

q̂
i
21Ŝ2~ q̂

i
2!

, ~15!

respectively. Dimensionless field-normalized quantities
denoted byQ̂5Q/A2eB. Notice that if we setly50 in the
above equations, Eq.~14! reduces to the same gap equati
found in @2# for (311)-dimensional QED, since, in the ab
sence of a Yukawa term, the theory~1! becomes equivalen
to a QED theory on which an extra, but disconnected, r
scalar field has been added.

Changingq
i
to polar coordinates (k,u) in the above inte-

grals and integrating in the angle, we find

Ŝ~p!5
a

2pE0

`

dk̂2
Ŝ~ k̂2!

k̂21Ŝ2~ k̂2!
¸0~ p̂2,k̂2!

1
ly

2

16p2E0

`

dk̂2
Ŝ~ k̂2!

k̂21Ŝ2~ k̂2!
¸ M̂2~ p̂2,k̂2!

2
ly

2

4p2

1

M̂2E0

`

dk̂2
Ŝ~ k̂2!

k̂21Ŝ2~ k̂2!
1lyŵc , ~16!

ŵc
35

3ly

2lp2E0

`

dk̂2
Ŝ~ k̂2!

k̂21Ŝ2~ k̂2!
. ~17!

The functionş t( p̂2,x) are defined by

¸ t~ p̂2,x!5E
0

`

dz
e2z

A~z1 p̂21x1t !224xp̂2
. ~18!

To make the calculation more manageable, it is convenien
divide the momentum integration in Eq.~16! into two re-
gions separated by the dimensionless squared momentump̂2.
Expanding the kernelşt( p̂2,x) appropriately in each region
we find
09600
e

al
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Ŝ~p!5
a

2p H E
0

p̂2

dk̂2
Ŝ~ k̂2!

k̂21Ŝ2~ k̂2!
E

0

`

dz
e2z

p̂21z

1E
p̂2

`

dk̂2
Ŝ~ k̂2!

k̂21Ŝ2~ k̂2!
0E

0

`

dz
e2z

k̂21z
J

1
ly

2

16p2 H E0

p̂2

dk̂2
Ŝ~ k̂2!

k̂21Ŝ2~ k̂2!
E

0

`

dz
e2z

p̂21z1M̂2

1E
p̂2

`

dk̂2
Ŝ~ k̂2!

k̂21Ŝ2~ k̂2!
E

0

`

dz
e2z

k̂21z1M̂2J 1
2

3
lyŵc .

~19!

Notice that we used Eq.~17! to combine the last two terms o
Eq. ~16! into the last term of Eq.~19!. The analytical solu-
tions of Eqs.~17! and~19! can be explored by converting th
nonlinear integral equation~19! to a second order nonlinea
differential equation. First, however, we must take into a
count that the consistency of the LLL approximation requi
us to use a momentum cutoff of orderA2eB in the momen-
tum integrations, and hence the infinity limit in all the int
grals in k̂2 should be changed to 1.

One can easily see, by taking derivatives of Eq.~19! with
respect tox[ p̂2 and combining them conveniently, that th
integral equation~19! is equivalent to the following secon
order differential equation:

Ŝ9~x!2
ḡ9~x!

ḡ8~x!
Ŝ8~x!2ḡ8~x!

Ŝ~x!

x1Ŝ2~x!
50. ~20!

If we now differentiate Eq.~19! and evaluate the result atx
50, we obtain the following boundary condition:

Ŝ8~x!

ḡ8~x!
U

x50

50, ~21!

where

ḡ~x!5
a

2p
g~x!1

ly
2

16p2
g~x1M̂2!, ~22!

g~y!5E
0

`

dz
e2z

z1y
. ~23!

Similarly, taking the derivative of Eq.~19!, multiplying it by
ḡ(x)/ḡ8(x), and evaluating atx51, we obtain the second
independent boundary condition

F Ŝ~x!2
ḡ~x!

ḡ8~x!
Ŝ8~x!G

x51

5
2

3
lyŵc . ~24!

In doing so, we have traded a nonlinear integral equat
for a nonlinear boundary value problem. Finding the so
4-5
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tions to the coupled set of Eqs.~17! and~20!, with boundary
conditions~21! and~24!, will be the aim of the next section

III. FERMION AND SCALAR MASSES
IN THE BEYOND-CONSTANT-MASS APPROXIMATION

A. Beyond-constant-mass analytical solutions

An analytical expression for the solutionŜ(x) of Eqs.
~20!, ~21! can be found by considering a linearized version
Eqs. ~20! and ~17!, in which the fermion self-energy in th
denominators is replaced by its zero momentum va
S(0)5m. The consistency of this linearization is justified
the self-energy is a rapidly decreasing function of the m
mentum. We will corroborate at the end of the derivatio
that follow that this is indeed the case. Then the gap equa
~20! can be written as

Ŝ9~x!2
ḡ9~x!

ḡ8~x!
Ŝ8~x!2ḡ8~x!

Ŝ~x!

x1m̂2
50, ~25!

while the equation for the scalar minimum takes the form

ŵc
35

3ly

2lp2E0

1

dx
Ŝ~x!

x1m̂2
. ~26!

From a physical point of view, we expect that the masses
both fermion and scalar fields will be much smaller than
magnetic field that induces them through the formation o
fermion condensate. Therefore, it is reasonable to ass
that m̂2!1 and M̂2!1. At the end of our calculations w
must check the consistency of this assumption in the res
obtained.

Taking into account the asymptotic behaviors of the fu
tion ḡ(x) in the regions

~1! x!M̂2!1,

ḡ9~x!

ḡ8~x!
.2

1

x
, ḡ8~x!.2

a

2p

1

x
; ~27!

~2! M̂2!x<1,

ḡ9~x!

ḡ8~x!
.2

1

x
, ḡ8~x!.2S a

2p
1

ly
2

16p2D 1

x
, ~28!

one ends up with a different boundary value problem in e
region. The two boundary value problems are defined by
following equations:

~1! For x!M̂2!1,

Ŝ9~x!1
1

x
Ŝ8~x!1

a

2p

Ŝ~x!

x~x1m̂2!
50, ~29!

xŜ8~x!x5050; ~30!

~2! For M̂2!x<1,
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Ŝ9~x!1
1

x
Ŝ8~x!1S a

2p
1

ly
2

16p2D Ŝ~x!

x~x1m̂2!
50, ~31!

Ŝ~1!1eŜ8~1!5
2

3
lyŵc , ~32!

where e5g(1)/ḡ8(1)51.477 and a51/137 is the fine-
structure constant.

For most physically interesting applications of the gau
Yukawa theory, the Yukawa couplingly is <1021. For those
ly’s, the parametersn5Aa/2p and n̄5Aa/2p1ly

2/16p2

practically coincide~for ly51022 they already have three
significant common figures!. Thus, we can taken̄.n in Eq.
~31!, reducing the problem to a single second order differ
tial equation. The new problem is then defined by Eq.~29!
and the two boundary conditions~30! and~32!. The solution
to this boundary value problem can be written as the follo
ing combination of hypergeometric functions~for properties
and formulas of the hypergeometric functions, see@35#!:

Ŝ~x!5A1FS in,2 in;1;2
x

m̂2D
1A2S 11

x

m̂2D FS 12 in,11 in;2;11
x

m̂2D .

~33!

Taking into account the boundary condition~30! and the for-
mula

dF~a,b;c;z!

dz
5

ab

c
F~a11,b11;c11;z!, ~34!

we obtain A250. As m̂5Ŝ(0), it is clear that A15m̂.
Therefore the self-energy solution becomes

Ŝ~x!5m̂FS in,2 in;1;2
x

m̂2D . ~35!

The second boundary condition~32! gives rise to

m̂FS in,2 in;1;2
1

m̂2D 2e
n2

m̂
FS 11 in,12 in;2;2

1

m̂2D
5

2

3
lyŵc , ~36!

which establishes a relation between the fermion dynam
massm̂ and the scalar VEVŵc . This is an implicit, quite
nontrivial equation form̂: in addition to the dependence o
m̂ in the hypergeometric functions, the scalar VEVŵc de-
pends onm̂ through Eq.~26!.

To find the solution to the system formed by Eqs.~26! and
~36!, we first note that Eq.~29! can be rewritten in the form
4-6
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d

dx
~xŜ8~x!!52n2

Ŝ~x!

x1m̂2
, ~37!

hence

E
0

1

dx
Ŝ~x!

x1m̂2~x!
52

1

n2
Ŝ8~1!. ~38!

Using Eqs.~33! and ~38! in Eq. ~26!, and the values ofA1
andA2 just found, we obtain

ŵc
35

3ly

2lp2

1

m̂
FS 11 in,12 in;2;2

1

m̂2D . ~39!

From the asymptotic behavior of the hypergeome
function for large values of its argument@35#,

F~a,b;c;z!.
G~c!G~b2a!

G~b!G~c2a!
~2z!2a

1
G~c!G~a2b!

G~a!G~c2b!
~2z!2b, ~40!

we can show that

FS in,2 in;1;2
1

m̂2D .
G~22in!

G~2 in!G~12 in! S 1

m̂2D 2 in

1
G~2in!

G~ in!G~11 in! S 1

m̂2D in

.ReFG~112in!

G2~11 in!
S 1

m̂2D inG
.ReFUG~112in!

G2~11 in!
Uei [n ln(1/m̂2)1d(n)] G ,

~41!

where

d~n!5arg
G~112in!

G2~11 in!
'n31O~n5! ~42!

and

UG~112in!

G2~11 in!
U'1, ~43!

so the function can be approximated by

FS in,2 in;1;2
1

m̂2D .Re@ein ln(1/m̂2)#5cosS n ln
1

m̂2D .

~44!

Similarly, one can see that
09600
c

FS 11 in,12 in;2;2
1

m̂2D .
m̂2

n
sinS n ln

1

m̂2D . ~45!

Substituting from Eqs.~44! and~45! into Eqs.~36! and~39!,
we obtain a much more simplified, although still transce
dental, pair of coupled equations for the fermion infrar
massm̂ and the scalar VEV~or, equivalently, for the fermion
infrared mass and the scalar massM̂ ),

e2t/n@cos~ t !2ne sin~ t !#32
4

9

ly
4

p2ln
sin~ t !50, ~46!

M̂25
lŵc

2

2
5

9l

8ly
2

e2t/n@cos~ t !2ne sin~ t !#2, ~47!

where the parametert5n ln(1/m̂2).
Equations~46!, ~47! represent the BCMA implicit solu-

tion for the fermion and scalar masses catalyzed by the m
netic field. This is as far as we can stretch our analyti
calculations form̂2 and M̂2 without introducing any addi-
tional approximation. In the following subsections we w
perform a numerical analysis of these solutions.

B. Numerical solutions in the BCMA

Since Eqs.~46!, ~47! are highly transcendental, to obta
the explicit dependence on the couplings of the BCMA f
mion and scalar masses, we have to resort to nume
methods.

Figures 1 and 2 display logarithmic plots of the numeric
solutions of Eqs.~46!, ~47! versus the couplingsly and l.
From them, one can easily see that the two masses wi
agree with the initial assumptionsm̂2!1, M̂2!1. Only in

-Log m
2

0

10

20

30

40

n

0

20

40

60

k

0

5

10

15

20

0

10

20

30
n

FIG. 1. Logarithmic plot of the BCM solution field-normalize

fermion mass squaredm̂2 versus couplingsly510261n/8 and l
510291k/8 for a51/137. The numbers on thex andy axes indicate
the values ofn andk, respectively.
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the region of very largely ~very largen) and very smalll
~very small k) does the fermion mass become of order
hence, to be consistent, we should disregard the resul
this corner. In any place out of this limited section of t
parameter space, the results are reliable for both masse

Notice that the fermion mass grows withly at any given
value ofl. This in turn implies an enhancement of the fe
mion mass as compared to its value within QED. While
QED the largest mass was no more than;10210A2eB @2#,
here the mass surpasses this value in the majority of
parameter space by at least five orders of magnitude.

It is because of such a significant enhancement of
dynamically generated mass in the presence of scalars
magnetic catalysis could play an important role in realis
applications of the HY model. The region of largely and
largel, where the results are quite reliable, is the most
teresting for applications to the electroweak theory, since
values of the coupling constants in that section include
value of the scalar self-couplings consistent with current
perimental limits for the Higgs boson mass, as well as
Yukawa coupling of the top quark.

To finish this subsection, let us consider the behavior
the self-energy with the momentum. In Fig. 3 we have pl
ted the self-energy solution~35! as a function of the momen
tum for fixed values of the couplings. As can be seen,S
decreases very quickly with increasing momentum. This
havior is in good agreement with the linearization used
Eq. ~25!. It also justifies the ultraviolet cutoff atA2eB that
was imposed on the integrals appearing in the gap equa
~19! and the scalar minimum~17!, since, as seen here, th
main contribution to the integrals comes from the deep
frared region.

C. Comparison between the BCMA and the CMA solutions

To find the region of reliability of the CMA we have t
determine the values of the couplings for which the two
proximations give rise to the same mass solutions. With

-log M

0
10

20
30

40n

0

20

40

60k

4

6

8

10

0
10

20
30

n

0

20

40

k

FIG. 2. Logarithmic plot of the dimensionless scalar squa

massM̂2 versus Yukawa and scalar self-interaction couplings. T
intervals of the coupling constants used to generate this graph
the same as in Fig. 1.
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aim we compare the BCMA equations~46!, ~47! with the
corresponding CMA equations

m̂5
2

3
lywc1

n2

2
m̂ ln2

1

m̂2
, ~48!

ŵc
35

3ly

2p2l
m̂ ln

1

m̂2
, ~49!

which were previously found4 in Ref. @13#.
Equations~48!, ~49! look very different from their BCMA

counterparts Eqs.~46!, ~47!. There is no reason to anticipat
that the solutions of both sets of equations will coincide in
the parameter space. Combining Eqs.~48!, ~49! we obtain

1

m̂2
ln

1

m̂2
5

9lp2

4ly
4 F12

1

2
n̄2ln2

1

m̂2G 3

. ~50!

From Eq.~50! we see that, sincem̂2 has to be positive, the
consistency of the CMA solution requires (1/2)n̄2ln2(1/m̂2)
,1, which is equivalent to havingt,1.4. Below, we will
numerically check that this condition is indeed always sa
fied.

To compare the BCMA and CMA solutions we will ex
plore whether there is a condition under which the CMA a
BCMA equations reduce to an identical set. To this end,
us assume thatn̄ ln(1/m̂2).n ln(1/m̂2)!1. This restriction
allows us to write Eqs.~46!, ~47! as

1

m̂2
lnS 1

m̂2D 5
9p2l

4ly
4

, ~51!

M̂25
9l

8ly
2
m̂2, ~52!

respectively. They are exactly the same equations found f
Eqs. ~49! and ~50!, after usingt!1. Thus, in this limiting
case, the BCMA reduces to the CMA; thereby,t!1 defines a
condition of reliability of the CMA.

4Here we have corrected some misprints appearing in Ref.@13#.

d

e
re

0.2 0.4 0.6 0.8 1
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FIG. 3. Self-energy versus momentum squared forly51021

andl51022.
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The explicit region of parameter space where the CMA
reliable can be determined from a numerical plot of the ra
between the CMA and BCMA mass squared solutions. To
sure that we are working with consistent masses, we
restrict the couplings to a strip in the (ly ,l) plane, leaving
out the corner of Fig. 1, where, as discussed above, the
sistency of the approximation breaks down.

Figures 4 and 5 show logarithmic plots of the ratio
CMA to BCMA mass squared results for the fermion a
scalar masses, respectively, taken in the region of coupl
1028,l,1021, 1026,ly,1022. Both figures display
similar behavior of the ratios, characterized by a discern
region of the parameter space, approximately given
1024,l,1021 and 1026,ly,1025, where a disagree
ment between BCMA and CMA results is apparent. Ho
ever, even in this segment, the BCMA and CMA ma
squares differ by at most one order of magnitude. Out of
limited region, we find very good agreement between BCM
and CMA results, particularly at largely , indicating that this
is the most reliable region of the CMA solution within th
model.

log CM_BCM fermion mass square ratio

0
10

20

30n

20

40

60

k
0

0.25

0.5

0.75

1

0
10

20

n

FIG. 4. Log(m̂CM
2 /m̂BCM

2 ) in the region of couplings 1028,l
,1021, 1026,ly,1022.

log CM_BCM scalar mass square ratio
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20
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FIG. 5. Log(M̂CM
2 /M̂BCM

2 ) in the region of couplings 1028,l
,1021, 1026,ly,1022.
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The above observations are corroborated by the plot
the BCM and CMt ’s, as shown in Figs. 6 and 7 respective
Both surfaces have similart values at equal sets of coupling
even whent!1 is not satisfied, indicating that, after all, an
as already seen in Figs. 4 and 5, the two approximations
rise to very close mass values. Notice that the larger thely’s,
the smaller thet ’s in both approximations, leading to a bett
agreement between the BCMA and CMA results, as expec
from our previous analytical considerations. Therefore,
though the numerical calculations show that the CMA resu
are widely reliable, it is in this extreme section of the para
eter space where the two approximations totally coinci
From Fig. 7 it is evident that the CMt never goes over the
limiting value of 1.4, so, even in the region of larger discre
ancy between the CM and BCM results~largel, relatively
low ly), the CM mass solution remains real, as it shou
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FIG. 6. The BCMt value as a function ofly510261n/8 andl
510291k/8.
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FIG. 7. The CM-t-value as a function ofly510261n/8 and l
510291k/8.
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The curves reflect the fact that the CM approximation te
to overestimate the mass, because it substitutes in the
grals the self-energy function, which rapidly decreases w
momentum, by a constant.

D. BCMA in the lyÄ0 limit „QED case…

We shall discuss now the limiting casely50 which re-
duces to (311)-dimensional QED with a decoupled se
interacting scalar field. Let us find the solutions for t
masses in this case. It is clear from Eq.~17! that no scalar
VEV, and hence no scalar mass, is generated in this case
fermion dynamical mass solution can be found from Eq.~46!
evaluated atly50. It leads to

tan~ t !5
1

ne
. ~53!

In terms ofm̂2, it can be rewritten as follows:

m̂25e2(1/n)arctan(1/ne). ~54!

Taking into account thatne!1 and using the asymptoti
behavior arctan(x).p/221/x, we obtain

m̂25eee2pAp/2a. ~55!

This result coincides with the BCMA results found for QE
within the ladder approximation~see Ref.@2# for details!. As
is known, it is qualitatively very close to its CMA counte
part m̂2.e2pAp/a @2#. Thus, we are corroborating here th
conclusion of the authors of Ref.@2#, namely, the reliability
of the CMA approach in (311) QED.5

It is worth noticing that the dynamical mass behavior
basically affected by the infrared conditions of the se
energy, but it is practically indifferent to the ultraviole
boundary condition used in Ref.@2#. This explains why, de-
spite using a momentum cutoff atA2eB and imposing the
second boundary condition atx51, we still get in thely
50 case the same result as in@2#, where the momentum wa
allowed to run up to infinity.

IV. CONCLUDING REMARKS

In this paper we have performed a BCMA study of t
magnetically catalyzed fermion and scalar masses in a
11)-dimensional Abelian Higgs-Yukawa theory in the pre
ence of a constant magnetic field. Our results show that, e
in this multiple-coupling theory, the discrepancy between
masses obtained within the CMA and within the more ac
rate BCMA is not very significant, the difference in the ma
squared being at most one order of magnitude. We find
the region where CMA and BCMA results exactly coincide
defined by the conditiont5n ln(1/m̂2)!1.

The BCMA calculations led to fermion masses many

5The agreement between CMA and BCMA results in QED h
also been proved using an improved ladder approximation of
gap equation@9#, in which the one-loop photon propagator is us
in the gap equation, instead of the bare photon propagator.
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ders of magnitude larger than those obtained in the Q
case, thereby confirming, within a more accurate approxim
tion, that the Yukawa interactions strengthen the genera
of the dynamical fermion mass by several orders of mag
tude, a claim made in previous papers@12,13# based only on
CMA results.

As mentioned in the Introduction, a motivation for th
inclusion of fermion-scalar interactions in the study of ma
netic catalysis was to find out if this phenomenon could
fluence the phenomenology of the early universe. A fun
mental question here is whether the strengthening of
mass by the fermion-scalar interactions may have any imp
on the electroweak phase transition. For this effect to be
any significance for the electroweak physics, a condition
to be met: during the electroweak transition the universe
to be permeated by a primordial magnetic field stro
enough to induce, even at temperatures comparable to
electroweak critical temperature, a modification in the va
of the fermion mass.

We should keep in mind that at temperatures below,
close enough to, the critical temperature for electrowe
spontaneous symmetry breaking, the fermion masses ge
ated through the Higgs mechanism are very small, since
transition is expected to be either second order or wea
first order. Then, if the magnetic field is much larger th
these tiny masses, the fermions will be mainly constrained
their LLL and the MC can be fully operative. However, th
is true only if the thermal fluctuations are not so large as
take the fermions out of the LLL. Another way to put this
to say that the critical temperature at which the magnetic
induced fermion mass evaporates has to be larger than
electroweak critical temperature.

Magnetic fields may well have been present in the ea
universe. In fact, there are very plausible arguments favo
the existence of primordial magnetic fields that can serve
the source of the seed fields required to explain the obse
magnetic fields in galaxies and clusters of galaxies@23#. The
literature on this topic is rich in possible primordial fie
generating mechanisms, and many of them can produce
strong fields at and before the electroweak transition@36,37#.

Although the model used in our calculations lacks t
complexity of the electroweak theory, it shares some co
mon features with the electromagnetic sector of the e
troweak model, and so we expect that any conclusion dra
within our model can be seen as an indication~even if quali-
tative! of the relevance of the effect in the electroweak co
text.

Taking into account that the critical temperature for t
vanishing of the magnetically catalyzed fermion mass
typically of the order of the value of the dynamical mass
zero temperature@7,12#, that is, T;md(T50), and that a
reasonable estimate@36,37# for the primordial magnetic field
at the electroweak scale is;1024 G, one obtains, for the
values of ly and l that give rise to the largest zero
temperature dynamical mass, the result thatTc;1 GeV
!Tew.100 GeV. Hence, no magnetically induced ma
would be present at the electroweak temperature bec
temperature effects override field effects at this scale. Un
new sources of extremely largeB@T2 primordial magnetic

s
e
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fields can be identified in the future, these results indic
that MC has no relevance during the electroweak transit

Nevertheless, the outcomes of this work may be import
for applications of the HY model in situations where ma
netic field effects are present at sufficiently low tempe
tures. We expect that they will be particularly relevant
condensed matter applications. As mentioned in the In
duction, a HY theory has been proposed@22,26# to describe
the observed emergence of a secondary quasiparticle g
high-Tc superconductors at certain doping levels. Accord
to recent experiments@27#, the secondary gap can also b
triggered by an applied magnetic field. The resemblance
this behavior to MC is intriguing and deserves a thorou
investigation. Such a study, in turn, will require the extens
of the results of the present paper to the two-dimensio
v.
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case in order to make quantitative predictions that can
compared with experiment.
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