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Analytic estimates for penguin operators in quenched QCD
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Strong penguin operators are singlets under the right-handed flavor symmetry group SU(3)R . However, they
do not remain singlets when the operator is embedded in~partially! quenched QCD, but instead they become
linear combinations of two operators with different transformation properties under the~partially! quenched
symmetry group. This is an artifact of the quenched approximation. Each of these two operators is represented
by a different set of low-energy constants in the chiral effective theory. In this paper, we give analytic estimates
for the leading low-energy constants, in quenched and partially quenched QCD. We conclude that the effects
of quenching onQ6 are large.
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Even at present, the number of light dynamical~or sea!
quarks in lattice QCD computations is often not equal to t
of the real world. In particular, in quite a few of the mo
difficult computations, no sea quarks have been taken
account at all—in other words, they have been done in
quenched approximation.

The adaptation of chiral perturbation theory~ChPT! to the
quenched theory has been useful for gaining insight into
effects of quenching. However, ChPT itself does not g
any insight into the values of the parameters of the effec
theory, the so-called low-energy constants~LECs!. It follows
that ChPT also does not tell us anything about the effect
quenching on the values of the LECs. Within lattice QC
therefore, we do in principle not know anything systema
about the errors due to quenching, until computations
done with dynamical quarks, and the results are compa
with those of quenched QCD.

At the same time, analytic approaches are being explo
to obtain estimates for, in particular, electroweak-interact
LECs. Some of these approaches make sophisticated u
analytic knowledge available about QCD, such as its ch
behavior, the operator-product expansion, and large-Nc tech-
niques. For the purpose of this paper, a relevant referenc
Ref. @1#, to which we also refer for references to other wo
While some assumptions have to be made in such
proaches because a nonperturbative analytic solution to Q
is not available, they are often so tightly constrained that
quite likely that the results obtained from them will help
with our quantitative understanding of hadron phenomen
ogy. Moreover, they have the advantage of exhibiting
underlying reasons for the size of specific contributions.

It is therefore natural to adapt these analytic technique
include the effects of~partial! quenching. This is useful, be
cause it gives usquantitativeinformation about the effects o
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quenching. Results from this approach can thus serve
guide to the merits and pitfalls of the quenched approxim
tion.

In this paper, we apply the large-Nc expansion to the cal-
culation of the leading LECs associated with the strong p
guin operatorQ6 @2#. It was recently pointed out that eve
the definition of the quenched version of this operator
ambiguous@3#, and that as a consequence, the quenc
theory has more LECs associated with this operator than
unquenched theory. It turns out that the leading-order LE
can be estimated analytically if one ignores order 1/Nc

2 cor-
rections. These estimates tell us that the effects of quenc
on the contribution ofQ6 to nonleptonic kaon decays ar
likely to be large.

The operatorQ6 is defined as

Q654~ s̄L
agmdL

b! (
q5u,d,s

~ q̄R
bgmqR

a!, ~1!

whereqR,L5PR,Lq with PR,L5 1
2 (16g5), anda andb are

color indices. This operator transforms in the~8,1! represen-
tation of SU(3)L3SU(3)R .

In order to ‘‘embed’’ this operator in the quenched theo
let us briefly recall how one may define quenched QCD a
field theory @4,5#. For each quarkq one introduces a ghos
quark q̃ with the same mass, spin, and color, but oppos
statistics. The opposite statistics cause the path integral
the ghost quarks to cancel the quark determinant~for each
gauge field configuration!, effectively replacing the quark de
terminant by one. This is precisely the definition of th
quenched approximation. It follows that the flavor symme
of the quenched theory is not described by SU~3!, but by the
larger, graded group SU(3u3). Q6 is not a singlet under
SU(3u3)R , but instead can be decomposed as@3#

Q65
1

2
Q6

QS1Q6
QNS, ~2!
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Q6
QS54~ s̄L

agmdL
b!(

c
~c̄R

bgmcR
a!,

Q6
QNS54~ s̄L

agmdL
b!(

c
~c̄R

bgmN̂cR
a!,

N̂5
1

2
diag~1,1,1,21,21,21!,

wherec5(q,q̃). Q6
QS clearly is a singlet under SU(3u3)R ,

but Q6
QNS is not.

To leading order in quenched ChPT, these operators
bosonized by~we work in Euclidean space!

Q6
QS→2aq1

(8,1)str~LLmLm!

1aq2
(8,1)str„2B0L~SM1MS†!…,

Q6
QNS→ f 2aq

NSstr~LSN̂S†!. ~3!

In these expressionsS5exp(2iF/f) is the nonlinear field de-
scribing the quenched Goldstone-meson multiplet,M is the
quark mass matrix,B0 is defined in Ref.@6#, and f is the
chiral limit of the pion decay constant normalized such t
f p5132 MeV. L is the tensor picking out the octet operat
s̄d5q̄Lq, and Lm5 iS]mS† is the left-handed current to
leading order in ChPT.aq1,2

(8,1) are the LECs associated wit
the orderp2 weak octet kinetic and mass terms@7#, while
aq

NS is the orderp0 LEC associated with the nonsinglet o
eratorQ6

QNS @3#. Note that, while this operator is enhanced
ChPT relative to the singlet operator, its contributions to m
trix elements with only physical quarks on the external lin
start only at orderp2 @3,8#. The subscriptq is there as a
reminder that thea ’s refer to LECs of the quenched theor

We begin with estimating the magnitude ofaq
NS. A simple

way of doing this was outlined in Ref.@8#. One first rotates
Q6

QNS by an SU(3u3)L rotation into

Q̃6
QNS54~ s̄L

agmd̃L
b!(

c
~c̄R

bgmN̂cR
a!,

524~~ s̄PRq!~ q̄PLd̃!1„s̄PRq̃!~ q̄̃PLd̃!) ~4!

where in the second line we Fierz transformed the opera
paying careful attention to the fact that the ghost-quark fie
are commuting. One then considers theK̃0→0 matrix ele-
ment of this operator, withK̃0 a hybrid kaon made of a
ghost-d quark and a physical anti-s quark. The advantage o
considering this matrix element is that it is of orderp0 in
ChPT@8#:

^0uQ̃6
QNSuK̃0&52i f aq

NS1O~p2!. ~5!

It turns out to be quite simple to find an expression
aq

NS. By carrying out Wick contractions, we may write th

K̃0→0 matrix element as
09450
re

t

-
s

r,
s

r

^0uQ̃6
QNSuK̃0&5~^s̄s&2^ d̄̃d̃&!^0us̄g5d̃uK̃0&X11OS 1

Nc
2D C

24^0u~ s̄PRqq̄PLd̃1 s̄PRq̃q̄̃PLd̃!uK̃0&,

~6!

whereqq̄ denotes the contraction ofq with q̄, and likewise

for q̃q̄̃. The first line contains terms with two quark loop
while the second term has only one quark loop. In order
connect the two loops on the first line, at least two glu
lines are needed to obtain a nonzero contribution, mak
such connected contributions suppressed by 1/Nc

2 . To lead-
ing order in 1/Nc we thus obtain the factorized contribution
shown explicitly.

The one-loop contribution may be dealt with as follow
First, we observe that ghost and physical quark propaga
are equal, flavor by flavor, by construction. Then, we may
this term, rotate theK̃0 back to aK0, and correspondingly
the d̃L quark todL . For the second term we find

24^0u~ s̄PRqq̄PLd̃1 s̄PRq̃q̄̃PLd̃!uK̃0&

528^0us̄PRqq̄PLduK0&

528^0u~ s̄PRq!~ q̄PLd!uK0&. ~7!

The last step follows because, as one can show, the W
contractions leading to contributions with two quark loo
cancel each other in the chiral limit. The last expression
Eq. ~7! is just theK0→0 matrix element ofQ6,1 which is of
orderp2. This is also true in the quenched theory@3#. Hence,
this term does not contribute toaq

NS.

Using that, in the chiral limit,̂ d̄̃d̃&52^s̄s&5 1
2 f 2B0, we

thus find for the matrix element to orderp0 that

^0uQ̃6
QNSuK̃0&52^s̄s&^0us̄g5d̃uK̃0&

52^s̄s& i f
MK

2

ms1md
52 i f 3B0

2 . ~8!

Comparing with Eq.~5!, we obtain an estimate foraq
NS cor-

rect to order 1/Nc
2 :

aq
NS52

1

2
f 2B0

2 . ~9!

In order to get an idea about the value ofaq
NS, we may

compare it to the value ofaq1
(8,1) . Fortunately, it turns out to

be remarkably simple to obtain an estimate foraq1
(8,1) in the

quenched theory. It turns out that in the quenched case,

1Through the weak mass term@7#.
6-2
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unfactorized contribution vanishes. This can be seen as
lows. The Fierz transformed form of the singlet operatorQ6

QS

is, from Eq.~2!,

Q6
QS528„~ s̄PRq!~ q̄PLd!2~ s̄PRq̃!~ q̄̃PLd!…. ~10!

Following the analysis of Ref.@1#,2 again there is a contri
bution with two quark loops, and a contribution with on
quark loop. The one-loop contribution again corresponds

the terms in whichqR and q̄R or q̃R and q̄̃R are contracted,
and thus vanishes because of the relative minus sign in
~10!. This leaves us with the two-loop contribution, whic
factorizes to order 1/Nc

2 , yielding @9#

aq1
(8,1)528L5f 2B0

2 ~11!

~equivalent tog85216L5B0
2/F0

2, F05 f /A2 in the notation
of Ref. @1#!.3 Note that quenchedL5 does not run.

Putting things together, we find that

aq
NS

aq1
(8,1)

5
1

16L5
X11OS 1

Nc
2D C. ~12!

Our first conclusion based on these results is thataq
NS is

likely to be large compared to the singlet LECs. The value
L5 is of order 1023 both in the quenched@10# and un-
quenched@6# theories, making this ratio of order 60. This
not small,4 and casts doubt on the tentative conclusion
Ref. @11# ~concluding section! on the size ofaq

NS. If aq
NS is

not small, this could have a dramatic effect on the extract
of aq2

(8,1) from K0→0, which in turn is needed for the extrac
tion of aq1

(8,1) from K→p @7#, because it appears at the sam
order asaq2

(8,1) in ChPT in theK0→0 matrix element@3#.
Another interesting observation is that the value ofaq1

(8,1)

may be significantly smaller~in absolute value! than that of
the unquenched theory. This is because of the absenc
unfactorized contributions in the quenched theory, which
the unquenched theory, have been estimated to be size
compared to the factorized contribution, and of the same s

2As in Ref.@1#, we will work in the leading-log approximation, in
which Q6

QS does not mix with any other operator in the quench
theory.

3L5 is one of the Gasser-Leutwyler constants@6#.
4In particular, ‘‘strategy 3’’ of Ref.@8# would yield results signifi-

cantly different from the other strategies.
hy
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@1#.5 Even if one would decide that one should defineQ6 in
the quenched theory to beQ6

QS only, omitting Q6
QNS alto-

gether, as an alternative possibility@3,8#,6 this smaller value
of aq1

(8,1) would lead to a reduction of the value of«8/« in
quenched QCD, relative to its unquenched value.

It is rather easy to extend these estimates to the part
quenched situation, in whichN ~massless! sea quarks are
added to the quenched theory@15#. First, the nonsinglet par
of Q6 is now represented by the orderp0 LEC a (8,8) @3#,
because in the partially quenched case the nonsinglet op
tor is in the same irreducible representation asQ8 @3# ~and
thus it corresponds togew of Ref. @1#!. One finds that the
same expression as given foraq

NS in Eq. ~9! is also valid in
the partially quenched theory fora (8,8). For a1

(8,1) , a naive
estimate would be to interpolate linearly in the number
sea-quark flavorsN between the quenched and unquench
theories. Using the results obtained in Ref.@1#, which con-
siders the unfactorized contribution proportional to the nu
ber of light flavors~which is three in the real world!, this
would lead to the estimate

a1
(8,1)528L5f 2B0

21
N

3

3~unfactorized contribution of Ref.@1#!, ~13!

where of course nowL5 , f, B0, etc. take their values in the
partially quenched theory withN sea quarks.

Finally, let us comment on the fact that, since our aim w
to extract values for the leading order LEC for each of t
operators we considered, all calculations were done in
chiral limit. It is well known that the chiral limit of the
quenched theory is hampered by severe infrared divergen
and, in fact, the chiral limit of the quenched theory may n
exist @5,16,17#. However, we believe that our results fo
LECs are not affected by this issue. If the quenched effec
theory makes any sense, its parameters, which are the L
should be well defined and finite in the chiral limit. All th
sicknesses associated with the quenched infrared beha
should be correctly reproduced if the appropriate fields,
particular theh8, are kept in the effective theory.
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5The unfactorized contribution is found to be about twice the f
torized one, at the scale of ther mass.

6This change is known to have a large effect@12–14#.
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