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Improved lattice gauge field Hamiltonian: The three-dimensional case

Jun-Qin Jiang*
CCAST (World Laboratory), P.O. Box 8730, Beijing 100080, People’s Republic of China

and Department of Physics, Guangdong Institute of Education, Guangzhou 510303, People’s Republic of China†

Jie-Ming Li
Department of Physics, Zhongshan University, Guangzhou 510275, People’s Republic of China

~Received 13 May 2003; revised manuscript received 4 August 2003; published 5 November 2003!

Using the improved lattice gauge field Hamiltonian and the truncated eigenvalue equation method, we
compute the vacuum wave function and mass gap of three-dimensional SU~2! gauge field theory. Our results
show that the improved theory leads to a significant reduction of violation of scaling, that is, using the
improved lattice gauge field Hamiltonian, the calculations can be carried out up to a much weaker coupling
region than using the unimproved one, with good scaling behavior.
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I. INTRODUCTION

Lattice gauge field theory~LGT! based on first principles
with two equivalent forms of the action and Hamiltonian,
the most reliable and powerful nonperturbative approach
QCD, but its progress has been hampered by systema
errors mainly due to the finite value of the lattice spacinga.

The standard Wilson gluonic~bosonic! action ~or Kogut-
Susskind Hamiltonian! differs from the continuum Yang
Mills action ~or corresponding Hamiltonian! by the order of
O(a2), while the error of the standard Wilson quark~fermi-
onic! action~or Hamiltonian! is bigger, being of the order o
O(a). In the continuum limita→0 or equivalently 1/g2

→` in an asymptotic theory, these differences in princip
disappear and the action or Hamiltonian becomes the c
tinuum one. If the practical lattice calculations could be c
ried out up to a weak enough coupling region, the fin
lattice errors would be negligible. Unfortunately, the sta
dard Hamiltonian method can only be carried out up to
intermediate coupling region. For example, in the stand
Kogut-Susskind Hamiltonian method, the calculations of
vacuum wave function and glueball mass of thre
dimensional SU(NC) can only be carried out up to 1/g2

'2.0 @1–6#. For such a lattice parameter, violation of scali
is still obvious and extrapolation of the results to the 1/g2

→` limit induces unknown systematic uncertainties wh
extracting continuum physics.

One possible way to tackle these problems is to impr
ing lattice action~or Hamiltonian!, so as to the finitea errors
become higher order ina. In recent years, one has bee
studying the problem of improvement of lattice Hamiltonia

~i! For the quark sector, Hamber and Wu proposed
first improved lattice action@7#, reducing the errors from
O(a) to O(a2). There have been some numerical simu
tions @8–10# of hadron spectroscopy using the Hamber-W
action. In 1994, we constructed an improved Hamilton
@11#, which had been tested successfully in the tw
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dimensional QCD by Jiang~one author of the present pape!
and Luoet al. @12#.

~ii ! For the gluonic sector, Lepage proposed an improv
lattice action@13#, while Luo, Guo, Kröger, and Schu¨tte con-
structed a simpler improved Hamiltonian@14#, reducing the
errors fromO(a2) to O(a4).

It is difficult in the Lagrangian formulation to comput
the wave function. The advantage of the Hamiltonian form
lation is that one can compute not only the mass spect
but also the wave function. In past years, Guoet al. have
done a lot of work@1–6,11,12# on Hamiltonian gauge field
theory. The purpose of this paper is to show that the
proved lattice Hamiltonian@14# can give better results tha
the unimproved one by computing the vacuum wave fu
tion and mass gap of three-dimensional SU~2! gauge field
theory.

The remaining part of the paper is organized as follow
In Sec. II, we educe the truncated eigenvalue equation for
improved Hamiltonian. In Sec. III, the vacuum wave fun
tion and mass gap of three-dimensional SU~2! LGT is com-
puted. A simple discussion is presented in Sec. IV.

II. IMPROVED HAMILTONIAN FOR GLUONS AND ITS
TRUNCATED EIGENVALUE EQUATION

For simplicity, we study the three-dimensional SU~2!
LGT in this paper. In SU~2! LGT, TrUp

15TrUp , so that all
loops with crossing can be transformed into loops witho
crossing. According to the improved gluonic~bosonic!
Hamiltonian@14#, we can obtain

H5
g2

2a
Tr(

x,i
H 11C82

~12C8!2 Ei
a~x!Ei

a~x!

2
2C8

~12C8!2 Ui
1Ei

a~x!Ui~x!Ei
a~x1 i !J

2
2

g2a S C18(
p

TrUp1C28 (
x,i , j

Ri j D , ~1!
©2003 The American Physical Society02-1



re

-

n

ta

o
o

p

4th

ua-

r
rms

the
he

J.-Q. JIANG AND J.-M. LI PHYSICAL REVIEW D68, 094502 ~2003!
whereg is the dimensionless coupling constant which is
lated to the lattice spacinga and the invariant chargee by
g25e2a, Ei

a(x) is the color-electric field.C8,C18 ,C28 are
constants, according to Ref.@14#, C1855/3, C28521/6, and
C8 satisfying

C83111C82111C81150, ~2!

the root closest to zero isC852512A6 which makes
the series(n51

` C8n constringe.(pTrUp is the square loop

(x,i , jRi j is the rectangular loop

WhenC850, C18511 , C2850, Eq.~1! reduces to the stan
dard Hamiltonian@3,4#:

H05
g2

2a
Tr(

x,i
$Ei

a~x!Ei
a~x!%2

2

g2a (
p

TrUp . ~3!

The vacuum wave function in exponential form is writte
as @3#

uV&5eRu0&, ~4!

whereR contains closed loops and the stateu0& is defined as
Ei

a(x)u0&50.
SubstitutingH anduV& in the eigenvalue equation~namely

Schrödinger equation! HuV&5EVuV&, using the relation

e2RHeR5H2@R,H#1
1

2!
@R,@R,H##

2
1

3!
@R,@R,@R,H###1¯ , ~5!

and the commutation relations

@Ui~x!,Ej
a~y!#5laUi~x!dx,yd i , j ,

@Ui
1~x!,Ej

a~y!#52Ui
1~x!ladx,yd i , j , ~6!

we can obtain the eigenvalue equation of the vacuum s
for the improved Hamiltonian:

B18H(
x,i

†Ei
a~x!,@Ei

a~x!,R#‡1(
x,i

@Ei
a~x!,R#@Ei

a~x!,R#J
1B28H(

x,i
†Ei

a~x!,@Ei
a~x1 i !,R#‡1(

x,i
@Ei

a~x1 i !,R#

3@Ei
a~x!,R#J 2

4

g4 S C18(
p

TrUp1C28 (
x,i , j

Ri j D
5

2a

g2 EV , ~7!

where B185(11C82)/@(12C8)2#55/6, B28524C8/(1
2C8)251/3, C1855/3, C28521/6.

Defining the order of a loop graph as the number
plaquettes involved ~overlapping plaquettes are als
counted!, we expandR in the order of graphs:
09450
-

te

f

R5R11R21R31¯ . ~8!

The lowest order loop graph~i.e. the first order graph! is

R15C1

Let R5R1 , from Eq. ~7!, we can obtain the 2nd order loo
graphs:

~9!

where the coefficientsCi will be given by solving the alge-
braic equations~see Sec. III!.

Let R5R11R2 , from Eq.~7!, we can obtain not only the
whole of the 3rd order loop graphs, but also a part of the
order loop graphs.

In general

(
x,i

†Ei
a~x!,@Ei

a~x!,Rn#‡PRn ,

(
x,i

†Ei
a~x!,@Ei

a~x1 i !,Rn#‡PRn ,

(
x,i

@Ei
a~x!,Rn1

#@Ei
a~x!,Rn2

#PRn11n2

1 lower order graphs,

(
x,i

@Ei
a~x1 i !,Rn1

#@Ei
a~x!,Rn2

#PRn11n2

1 lower order graphs. ~10!

We now give a recipe for truncating the eigenvalue eq
tion. Let R contain up to theNth order graphs:

R5R11R21¯1RN . ~11!

We must truncate the term(x,i@Ei
a(x),R#@Ei

a(x),R# and
term(x,i@Ei

a(x1 i ),R#@Ei
a(x),R# because they create highe

order graphs. The simplest way is just preserving these te

(
x,i

n11n2<N

@Ei
a~x!,Rn1

#@Ei
a~x!,Rn2

#,

(
x,i

n11n2<N

@Ei
a~x1 i !,Rn1

#@Ei
a~x!,Rn2

#.

Thus we obtain the truncated eigenvalue equation of
vacuum state for the improved gluonic Hamiltonian at t
Nth order:
2-2



d

IMPROVED LATTICE GAUGE FIELD HAMILTONIAN: . . . PHYSICAL REVIEW D68, 094502 ~2003!
B18H (
x,i

†Ei
a~x!,@Ei

a~x!,R#‡1 (
x,i

n11n2<N

@Ei
a~x!,Rn1

#

3@Ei
a~x!,Rn2

#J 1B28H (
x,i

†Ei
a~x!,@Ei

a~x1 i !,R#‡

1 (
x,i

n11n2<N

@Ei
a~x1 i !,Rn1

#@Ei
a~x!,Rn2

#J
2

4

g4 S C18(
p

TrUp1C28 (
x,i , j

Ri j D 5
2a

g2 EV , ~12!

where B1855/6, B2851/3, C1855/3, C28521/6. When B18
ll

u

e

th

09450
51, B2850, Ċ1851, C2850, Eq. ~12! reduces to the standar
truncated eigenvalue equation@3,4#:

(
x,i

†Ei
a~x!,@Ei

a~x!,R#‡1 (
x,i

n11n2<N

@Ei
a~x!,Rn1

#@Ei
a~x!,Rn2

#

2
4

g4 (
p

TrUp5
2a

g2 EV . ~13!

From the terms(x,i@Ei
a(x),R1#@Ei

a(x),R2#, (x,i@Ei
a(x

1 i ),R1#@Ei
a(x),R2# and(x,i@Ei

a(x1 i ),R2#@Ei
a(x),R1#, we

can obtain the 3rd order loop graphs:
~14!
ne
the
he
Analogically, fromR1 , R2 andR3 , we can obtainR4 ,... .
Because the improvement term

(
x,i

n11n2<N

@Ei
a~x1 i !,Rn1

#@Ei
a~x!,Rn2

#

creates new graphs, for the same value ofN, Eq. ~12! con-
tains more loop graphs than Eq.~13!. For example, forN
53, Eq. ~12! contains 28 graphs, but Eq.~13! contains 13
graphs@3#.

Now, we turn to the 011 glueball mass. The glueba
wave function in exponential form is written as

uC&5GuV&5GeRu0&, ~15!

whereG consist of closed loops, which is also expanded
to theNth order graphs:

G5G11G21¯1GN , ~16!

where GN is the Nth order loop graphs, according to th
same rules asRN .

In a similar way of obtaining Eq.~12!, we can obtain the
truncated eigenvalue equation of the glueball state for
improved Hamiltonian at theNth order:
p

e

5

6 H (
x,i

†Ei
a~x!,@Ei

a~x!,G#‡12 (
x,i

n11n2<N

@Ei
a~x!,Rn1

#

3@Ei
a~x!,Gn2

#J 1
1

3 H (
x,i

†Ei
a~x1 i !,@Ei

a~x!,G#‡

1 (
x,i

n11n2<N

@Ei
a~x1 i !,Rn1

#@Ei
a~x!,Gn2

#

1 (
x,i

n11n2<N

@Ei
a~x1 i !,Gn1

#@Ei
a~x!,Rn2

#J 5
2aDm

g2 G,

~17!

whereDm is the 011 glueball mass.

III. CALCULATIONS OF THE VACUUM WAVE
FUNCTION AND MASS GAP

In order to study the low energy physics of hadrons, o
needs more detailed information on the structure of
vacuum wave function. Thus the first work is to calculate t
vacuum wave function.
2-3
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At the 2nd order, the truncated eigenvalue equation of
vacuum state for the improved gluonic Hamiltonian is

5

6 H(
x,i

†Ei
a~x!,@Ei

a~x!,R11R2#‡1(
x,i

@Ei
a~x!,R1#

3@Ei
a~x!,R1#J 1

1

3 H(
x,i

†Ei
a~x!,@Ei

a~x1 i !,R11R2#‡

1(
x,i

@Ei
a~x1 i !,R1#@Ei

a~x!,R1#J
2

4

g4 S 5

3 (
p

TrUp2
1

6 (
x,i , j

Ri j D 5
2a

g2 EV . ~18!

SubstitutingR1 andR2 in Eq. ~18!, we obtain

~19!

Equating the coefficients of each loop graph to zero,
result is

C15
4

g4 , C252
1

4
C1

2, C352
6

23
C1

2,

C45
6

17S C1
22

2

3g4D , C55
2

9
C1

2, C652
2

11
C1

2.

~20!

In the continuum limit, the long wavelength vacuum wa
function of three-dimensional SU~2! gauge field theory is
@3,4,6#

uV&5N expH 2
m0

e2 E E TrF2~x,y!dxdy

2
m2

e6 E E Tr@DiF~x,y!#2dxdy

1higher order termsJ , ~21!
e

e

wherem0 andm2 are linear combination of the coefficien
Ci , from expanding(pTrUp in order ofa. At the 2nd order,
we obtain

m05
g4

2
~C114C214C414C5!,

m25
g8

2 S 1

2
C32

1

2
C42C51C6D . ~22!

Substituting Eq.~20! in Eq. ~22!, we obtainm0 andm2 as the
functions of 1/g2. Figure 1 gives the 2nd order results.

It is well known that SU~2! LGT in three dimensions is
super-renormalizable, and possesses a simple scaling p
erty, that is, when the lattice spacinga goes to zero,

m0;const, m2;const as a→0. ~23!

From Fig. 1, one can see that when truncating up to
2nd order the vacuum wave function does not have the
rect scaling behavior. Higher order approximations a
needed to obtain the correct scaling behavior. We now tur
the 3rd order calculation.

At the 3rd order, the truncated eigenvalue equation of
vacuum state for the improved gluonic Hamiltonian is

FIG. 1. m0 andm2 versus 1/g2 for the 2nd order when using th
improved Hamiltonian.
5

6 H(
x,i

†Ei
a~x!,@Ei

a~x!,R11R21R3#‡1(
x,i

@Ei
a~x!,R1#@Ei

a~x!,R1#12(
x,i

@Ei
a~x!,R1#@Ei

a~x!,R2#J
1

1

3 H(
x,i

†Ei
a~x!,@Ei

a~x1 i !,R11R21R3#‡1(
x,i

@Ei
a~x1 i !,R1#@Ei

a~x!,R1#

1(
x,i

@Ei
a~x1 i !,R1#@Ei

a~x!,R2#1(
x,i

@Ei
a~x1 i !,R2#@Ei

a~x!,R1#J
2

4

g4 S 5

3 (
p

TrUp2
1

6 (
x,i , j

Ri j D 5
2a

g2 EV . ~24!
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SubstitutingR1 , R2 and R3 in Eq. ~24!, we obtain the
nonlinear equations for the coefficientsCi ( i 51,2,3,...,28):

22C1
212C3112C41~1/g2!250,

C1
218C250,

C1
218C350,

22C1
2159C550,

2C1
222C5163C650,

4C1C2115C1250,

6C2C3149C1450,

C1C5144C2550,

26C1C314C1C4141C1018C1450,

24C1C4133C814C1050,

2C1C52C1C622C25146C2650,

C1C6148C212C2650,

2C1C5122C2750,

C1C52C1C62C271C2850,

2C1C6148C242C2850,

16C1C2124C1C3159C1550,

216C1C2116C1C4147C1114C1550,

24C1C2119C1C5154C1650,

4C1C2121C1C62C16157C1750,

24C1C316C1C5193C1950,

FIG. 2. m0 andm2 versus 1/g2 for the 3rd order when using th
improved Hamiltonian.
09450
4C1C316C1C6197C1822C1950,

28C1C3120C1C5220C1C61101C2050,

5C1C32C1C515C1C6125C132C2050,

212C1C3120C1C4183C9116C1324C2050,

220C1C4216C1C5163C7110C9118C2050,

24C1C4216C1C514C1C618C19177C2250,

4C1C4210C1C618C1822C22181C2350,

15C1220C1C2224C1C3216C1C4219C1C5221C1C6

116C11160C12124C15119C16121C17240~1/g2!2

50. ~25!

Solving Eq. ~25! numerically, we can obtainCi ( i
51,2,3,...,28) as the functions of 1/g2.

Evaluating the long wavelength limit of all graphs up
the 3rd order, we obtain

m05
g4

2
~C114C214C414C519C719C81C91C10

19C1119C121C131C141C1519C161C171C18

1C191C201C2119C221C231C2419C251C26

19C271C28!, ~26a!

m25
g8

2
~0.5C320.5C42C51C622C723C81C912C10

2C112C141C1522C1612C172C1812C1922C21

24C2213C2326C2514C2624C2712C28!. ~26b!

SubstitutingCi ( i 51,2,3,...,28) in Eqs.~26a! and ~26b!,
we obtainm0 andm2 as the functions of 1/g2. Figure 2 gives
the 3rd order results for the improved Hamiltonian.

FIG. 3. m0 andm2 versus 1/g2 for the 3rd order when using the
standard Hamiltonian.
2-5
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To compare our results with ones from Ref.@3#, we give
also the 3rd order results from the standard Hamiltoni
This is shown in Fig. 3.

As can be seen, the 3rd order results from both the
proved Hamiltonian~Fig. 2! and the standard Hamiltonia
~Fig. 3 or see Refs.@3,4#! have a good scaling behavio
Significantly, the calculations for the improved Hamiltonia
can be carried out up to 1/g254.0, i.e., for 1/g2.4.0, the
physical quantities would not have good scaling behavior@by

FIG. 4. Dm/e2 vs 1/g2 for the 3rd order when using the im
proved Hamiltonian.
-

s

p

09450
.

-

solving Eq.~25!, we obtain the variousCi coefficients as the
functions of g22 and then get theg22 dependence of the
physical quantities:m0 , m2 and glueball mass which is com
puted in the next three paragraphs#; while using the standard
Hamiltonian, the calculation can only be carried out up
1/g252.0, i.e., for 1/g2.2.0, the physical quantities woul
not have good scaling behavior.

One is interested in computing the mass gap~namely 011

glueball mass!. We now compute the mass gapDm.
The calculation of the mass gap is dependent upon

structure of the vacuum wave function, while truncating
to the 2nd order the vacuum wave function does not have
correct scaling behavior. Thus we compute directly the m
gap up to the 3rd order:

TABLE I. Comparison of the improved Hamiltonian with th
standard Hamiltonian about the 011 glueball mass of (211)D
SU~2! gauge theory.b54/g2.

Method Order
Loop
graphs

Scaling
window

Glueball
mass

Improved Hamiltonian 3 28 bP@6.0,16.0# 1.505
Standard Hamiltonian@4# 3 13 bP@3.0,8.0# 1.59

4 70 bP@5.0,8.0# 1.84
~27!
ss,

(
h

al-

of
SubstitutingR andG in Eq. ~17!, we can obtain the non
linear equations for the mass gapDm and the coefficientsBi
( i 51,2,3,...,28), similar to Eq.~25!. Solving these equation
numerically@and using theg22 dependence ofCi , from Eq.
~25!#, we can obtainDm as a function of 1/g2. Figure 4
gives the numerical result.

It is well known that the SU~2! LGT in three dimensions
possesses a simple scaling property for the mass gap:

Dm/e2;const as a→0. ~28!

From Fig. 4, one can see that our result of the mass ga
 is

almost a constant~1.505! in a wide scaling window 1/g2

P@1.5,4.0#.
To get a more explicit comparison of the glueball ma

we give the results of this paper and Ref.@4# in Table I.
From Table I, one can see that the scaling windowb

P@6.0,16.0#) is much wider and the coupling region is muc
weaker in this paper than in Ref.@4#.

On the other hand, the 011 glueball mass of (211)D
SU~2! gauge theory is also studied in the Monte Carlo c
culation. According to the results of Ref.@15#, for the case of
(211)D SU~2!, the scaling window isbP@5.50,6.55#,
which is much narrower than the one of this paper. A part
2-6
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TABLE II. The Monte Carlo results of the (211)D SU~2! 011 glueball mass near the scaling window
from Ref. @15#. b54/g2, g25ae2; L is the loop length.

b 5 6 6 6 9 9
L 16 16 24 32 24 32

Dm3a 1.478~24! 1.193~18! 1.191~18! 1.170~23! 0.7643~60! 0.7552~67!

Dm/e2 1.847~30! 1.789~27! 1.782~27! 1.755~34! 1.720~13! 1.699~15!
.
o
a

te

c

i.e
e
ar

-

t a

to
m-

ul
ral
ng-
the Monte Carlo results for the 011 glueball mass, from Ref
@15#, is given in Table II. From Table I and Table II, one als
can see that the glueball masses from both the standard
the improved Hamiltonian are in agreement with Mon
Carlo results.

IV. CONCLUSIONS

In this work we have computed the vacuum wave fun
tion and mass gap of three-dimensional SU~2! LGT using the
improved lattice gauge field Hamiltonian@14#. Our calcula-
tions can be carried out up to a weaker coupling region,
1/g254.0, with a very well scaling behavior, while using th
unimproved Hamiltonian, the calculations can only be c
ried out up to the intermediate coupling region, i.e., 1/g2

52.0 ~see Refs.@3,4,6#!, which would result in large uncer
un

09450
nd

-

.,

-

tainty. In particular, our result of the mass gap is almos
constant~1.505! in a wide scaling window 1/g2P@1.5,4.0#
~namely bP@6.0,16.0#), which is in agreement with the
Monte Carlo measurement@15#.

To summarize, from the test of three-dimensional SU~2!
LGT, we see that the improved Hamiltonian indeed leads
much better results. We believe that application of the i
proved theory@14# to the four-dimensional SU(Nc) LGT will
be very promising.
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