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Improved lattice gauge field Hamiltonian: The three-dimensional case
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Using the improved lattice gauge field Hamiltonian and the truncated eigenvalue equation method, we
compute the vacuum wave function and mass gap of three-dimensioK2l §uige field theory. Our results
show that the improved theory leads to a significant reduction of violation of scaling, that is, using the
improved lattice gauge field Hamiltonian, the calculations can be carried out up to a much weaker coupling
region than using the unimproved one, with good scaling behavior.
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I. INTRODUCTION dimensional QCD by Jian@ne author of the present paper
and Luoet al.[12].
Lattice gauge field theorfLGT) based on first principles, (i) For the gluonic sector, Lepage proposed an improved

with two equivalent forms of the action and Hamiltonian, is lattice action[13], while Luo, Guo, Krger, and Schite con-

the most reliable and powerful nonperturbative approach tstructed a simpler improved Hamiltonigh4], reducing the

QCD, but its progress has been hampered by systematicefrors fromO(a?) to O(a?).

errors mainly due to the finite value of the lattice spacing It is difficult in the Lagrangian formulation to compute
The standard Wilson gluonidosonig¢ action (or Kogut-  the wave function. The advantage of the Hamiltonian formu-

Susskind Hamiltonian differs from the continuum Yang- lation is that one can compute not only the mass spectrum

Mills action (or corresponding Hamiltoniarby the order of  but also the wave function. In past years, Getoal. have

O(a?), while the error of the standard Wilson quafermi-  done a lot of work[1-6,11,12 on Hamiltonian gauge field

onic) action(or Hamiltonian is bigger, being of the order of theory. The purpose of this paper is to show that the im-

O(a). In the continuum limita—0 or equivalently 1g?>  proved lattice Hamiltoniaf14] can give better results than

—o0 in an asymptotic theory, these differences in principlethe unimproved one by computing the vacuum wave func-

disappear and the action or Hamiltonian becomes the coriion and mass gap of three-dimensional (3Ugauge field

tinuum one. If the practical lattice calculations could be car-theory.

ried out up to a weak enough coupling region, the finite The remaining part of the paper is organized as follows.

lattice errors would be negligible. Unfortunately, the stan-In Sec. Il, we educe the truncated eigenvalue equation for the

dard Hamiltonian method can only be carried out up to thdmproved Hamiltonian. In Sec. Ill, the vacuum wave func-

intermediate coupling region. For example, in the standardion and mass gap of three-dimensional(SULGT is com-

Kogut-Susskind Hamiltonian method, the calculations of theputed. A simple discussion is presented in Sec. IV.

vacuum wave function and glueball mass of three-

dimensional SU{c) can only be carried out up to g7

~2.0[1-6]. For such a lattice parameter, violation of scaling 1l. IMPROVED HAMILTONIAN FOR GLUONS AND ITS

is still obvious and extrapolation of the results to thg?1/ TRUNCATED EIGENVALUE EQUATION

—oo limit induces unknown systematic uncertainties when For simplicity, we study the three-dimensional @

extracting continuum physics. . g
One possible way to tackle these problems is to improv-GT in this paper. In SK) LGT, TrU, =TrU,, so that all

ing lattice action(or Hamiltonian, so as to the finite errors ~ 100PS With crossing can be transformed into loops without
become higher order im. In recent years, one has been ¢0SSing. According to the improved gluoniosonig
studying the problem of improvement of lattice Hamiltonian: Hamiltonian[14], we can obtain

(i) For the quark sector, Hamber and Wu proposed the
first improved lattice actiorj7], reducing the errors from ) '
O(a) to O(a?). There have been some numerical simula- H=g—TrE ( 1+C ES(X)E%(X)
tions [8—10] of hadron spectroscopy using the Hamber-Wu 2a 41 |(1-Cc")?™ :
action. In 1994, we constructed an improved Hamiltonian
[11], which had been tested successfully in the two-

!
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whereg is the dimensionless coupling constant which is re- R=R;+R,+Rg+--. (8)
lated to the lattice spacing and the invariant charge by
g’=e’a, Ef(x) is the color-electric fieldC’,C;,C, are

i The lowest order loop grapti.e. the first order graphs
constants, according to RdfL4], C;=5/3, C;=—1/6, and

C’ satisfying R,=C, 0.
C’3+11C'?+11C’' +1=0, (2 LetR=R;, from Eq.(7), we can obtain the 2nd order loop
] ) graphs:
the root closest to zero i€'=—-5+26 which makes
the series|_;C'" constringeX ;TrU , is the square loo], R,=C, O c, L, o) N DI:I+C6 [:F‘
2yi<jRij is the rectangular loo—. 9

g V(;/T_ienc.;t: 0, C13:41_1' C2=0,Eq.(1) reduces to the stan- o6 the coefficient€; will be given by solving the alge-
ard Hamiltoniar(3,4]: braic equationgsee Sec. I\
g2 2 Let R=R;+R,, from Eq.(7), we can obtain not only the
HOZZTVE {EX(X)EX(X)}— TaE TrU,. (3  whole of the 3rd order loop graphs, but also a part of the 4th
X g7a’p order loop graphs.

o . . . In general
The vacuum wave function in exponential form is written g

as[3]
10)=&R0), 7 2 [E{00,[E{(9,Rel]e Ry,
whereR contains closed loops and the stfieis defined as
E{(x)[0)=0.
SubstitutingH and|Q)) in the eigenvalue equatidnamely
Schralinger equationH|Q)=Eq|Q), using the relation

2 [Ef(x),[E*(x+i),R,]1€ Ry,

e RHR=H—[R,H]+ %[R,[R,H]] ; [E{(x),Rn JTE{*(X),Rn,] € Ry +n,
1 +lower order graphs,
— 5 [RIRIRH]II+, (5
and the commutation relations ; [Ef*(x+1),Rn ITE{*(X),Rn 1€ Ry 4,
[Ui(X),Ef'(y)]=N"Ui(x) 8y +lower order graphs. (10)
[UI" 00, Ef(Y)]= = Ui GON"8,y81 5. (6) We now give a recipe for truncating the eigenvalue equa-

we can obtain the eigenvalue equation of the vacuum stattéon' LetR contain up to theNth order graphs:

for the improved Hamiltonian:
R=R;+R,+ - +Ry. (12

Bi[ ; [E?(x),[Ei‘Y(x),R]]+X2i [E?(X)’R][E?(X)’R]} We must truncate the teri, ;[ E{*(x),R][E{(x),R] and
term=, [ E{(x+1i),R][E{'(x),R] because they create higher

+BY > [EX(X),[EX(x+i1),R]]+ >, [Ef(x+i),R] order graphs. The simplest way is just preserving these terms
X, X,

> [EF(0.Ry JIEF(X),Ry, ],

X, i

4
X[E?(X),R]] - E(Ciip: TrUp+Cy 2 Ry

X, <]

np+ny,<N
2aE @
= 72EQ,
g 2 [E O Ry JIE (), Ry,
where B;=(1+C'?)/[(1-C')?]=5/6, Bj=-4C’/(1 np+np=N

—C')?=1/3,C;=5/3,C,=—1/6.

Defining the order of a loop graph as the number of Thus we obtain the truncated eigenvalue equation of the
plaquettes involved (overlapping plaquettes are also vacuum state for the improved gluonic Hamiltonian at the
counted, we expandR in the order of graphs: Nth order:
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, N N N =1,B5=0, C}=1, C,=0, Eq.(12) reduces to the standard
Bl[ ; [EF(x).[Ef(x),R]]+ ; [E7(X).Rn,] trunca%ed eigénvalué equati@d,4]:

ny+ny<N

X[E?<X>'anl]+'3£[§[E?<X>’[E?<X+i>'RH 2 [EFCOLEFCORI+ X [EF(0,R JIE(X),Ry,]

ny+n,<N
a : a 4 2a
+ ; [E; (X+I),Rn1][Ei (X),an]} _EE TrU,=—Eq. (13
ni+n,<N p g
4 , , 2a
& 012p TfUp+CzX’i2<j Rij| = gzBar (12 From the termsS, [EF(X),RiI[E(X).R,], Sy [EF(x

1), RUE(X),Ro] and 2, i [Ef (X +1), R J[E{*(X), Ry ], we
where B;=5/6, B,=1/3, C;=5/3, C,=—1/6. WhenB;  can obtain the 3rd order loop graphs:

‘ | i
R3 = C7 Dj"‘ Cg E::ILF Cg E]'F CIO 1255 e ‘H" Cll E:]+ ClZ ‘

e

| p— o [
+C, L_..'E+Cl4 E]UD+C15 E]D+C,6wD‘_|—|+C,7 [lj]D+C18 E'EP%

(14
+Cis [11_—'[—_‘+C20d%+C21dj:]+C22 |__—,_F+C23|::P+C24EFb
+Cys {'r'__‘w% |:'FP+C27|:‘H‘J+C28I:% _
|
Analogically, fromR;, R, andR3, we can obtairR,,... . 5
Because the improvement term 3 ; [E(x),[Ef"(x),G]]+2 ; [Ef(x),Ry, ]
' Nt ny=<N
2 [E (D), Ry JTEF(X).R,] ) 1 T
W X[E!(x),Gy, ]| +3 ; [Ef(x+i),[E{(x),G]]
creates new graphs, for the same valudNpEq. (12) con-
tains more loop graphs than E@L3). For example, foN + E [Ef(x+i),R, I[Ef(%),Gn ]
=3, Eq. (12) contains 28 graphs, but E¢L3) contains 13 X ! 2
graphs|3]. v
Now, we turn to the 0" glueball mass. The glueball o " 2aAm
wave function in exponential form is written as + ; [Ef(x+1),Gn I[E{"(X),Rp, 11 = _92_(3’
ny+n,<N
|‘If)=G|Q>=GeR|O>, (19 (17)
whereG consist of closed loops, which is also expanded up
to the Nth Order graphs: WhereAm iS the @+ glueba” mass.

G=G1+ Gyt -+ Gy, (16) l1l. CALCULATIONS OF THE VACUUM WAVE

. . FUNCTION AND MASS GAP
where Gy is the Nth order loop graphs, according to the

same rules aRy . In order to study the low energy physics of hadrons, one

In a similar way of obtaining Eq.12), we can obtain the needs more detailed information on the structure of the
truncated eigenvalue equation of the glueball state for theacuum wave function. Thus the first work is to calculate the
improved Hamiltonian at thé&lth order: vacuum wave function.
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At the 2nd order, the truncated eigenvalue equation of the
vacuum state for the improved gluonic Hamiltonian is
5 — 4
1 2 [EF0.[Ef(),Ry+RJ1+ X [Ef(X),Ry] S
6 X, X, « ﬂ2
ey
1 ) s
X[E'(0.R] |+ 31 2 [EFO0,[EF(x+), R+ Re]] X
. a A
+ 2 [EF(+D),Ry]IE (x),Rﬂ] R
45 1 2a M0T0s o 15 20 25 30 35 40

FIG. 1. uo andu, versus 1g? for the 2nd order when using the

SubstitutingR; andR, in Eq. (18), we obtain
improved Hamiltonian.

10 20 5 (52 23
2o = =2 ] 2| U . . -
[6 G 3g4]D+6< G +8C2) -+( 6 G +C‘) where ug and u, are linear combination of the coefficients
v Ci, from expandingz ,TrU, in order ofa. At the 2nd order,
+[1_7¢4 _c? +L]Ej+(3cs —ch] B we obtain
6 3g* 3
4
. ,2.\F _9 (c,+ac,+ac,+4Cy)
+(?C6+§C12] + const = (. Ho=% (1 2 4 571
(19
8
Equating the coefficients of each loop graph to zero, the _9 i 1
result is m2==%|5C375Ca=Cs+Ce|. (22)
4 1, 6 ,
01:_4, CZZ_ZC y C3:_Esc y
9 Substituting Eq(20) in Eq. (22), we obtainuy andu, as the
6 2 2 2 functions of 1¢2. Figure 1 gives the 2nd order results.
C4=—(C§— —) Cs=-C2, Cg=——C2 It is well known that SW2) LGT in three dimensions is
17 39 9 11 super-renormalizable, and possesses a simple scaling prop-

(20 erty, that is, when the lattice spaciaggoes to zero,

In the continuum limit, the long wavelength vacuum wave

function of three-dimensional SP) gauge field theory is Mo~const, u,~const as a—0. (23
[31416_|
|Q)=N expl’ - 'u_gf f TrE2(x,y)dxdy From Fig. 1, one can see that when truncating up to the
e 2nd order the vacuum wave function does not have the cor-

rect scaling behavior. Higher order approximations are

— M_sz f TI[D;F(x,y)]?dxdy needed to obtain the correct scaling behavior. We now turn to
€ the 3rd order calculation.

At the 3rd order, the truncated eigenvalue equation of the

+ higher order term}s (21)  vacuum state for the improved gluonic Hamiltonian is

|
5
5(2 [EF00,[EF00, Rt Re+ Rall+ 2 [EF00, RIIE(0),Ry]+22 [Ef(X),RyI[E(),Re]

L
3

> [E(),[Ef(x+1),Ra+ Ry Rl1+ 3 [E{(x+1) RaJ[Ef(X) Ra]

+2 [E?(X+i),R1][Ef’(X),Rz]+; [Ef(X+1),RoITEF(X), Ry ]

X, i
4 (5 1 2a
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IMPROVED LATTICE GAUGE FIELD HAMILTONIAN: . ..

SubstitutingR;, R, and R; in Eq. (24), we obtain the
nonlinear equations for the coefficier@s (i=1,2,3,...,28):

—2C2+2C3+12C,+(1/g?)?=0,
C2+8C,=0,
C2+8C;3=0,

—2C2+59C5=0,
2C2—2C5+63C4=0,
4C,C,+15C;,=0,
6C,C3+49C,=0,
C,C5+44C,:=0,
—6C,C3+4C;,C,+41C5+8C1,=0,
—4C,C4+33Cg+4C14=0,
—C;,C5—C,Cg—2C 5+ 46C =0,
C1Cp+48C,;—Cye=0,
—C,Cs5+22C,7=0,
C1Cs5—C1Ce—Cy7tCye=0,
2C,Cg+48C,4— Cpg=0,
16C,C,+24C,C3+59C;5=0,
—16C;C,+16C,C4+47Cq;+4C15=0,
—4C,C,+19C;Cs+54C =0,
4C,C,+21C,Cg— C1g+57C17=0,

- 4C103+ 60105+ 93C]_g: 0,

2.0 2.5 3.0 35 4.0

FIG. 2. uo and u, versus 1g? for the 3rd order when using the

improved Hamiltonian.

PHYSICAL REVIEW D68, 094502 (2003

4C,C3+6C;Cg+97C 15— 2C19=0,

—8C,C3+20C;C5—20C,Cq+ 101C,,=0,

5C,C3—C;Cs+5C,Cq+25C; 53— Cpo=0,
—12C;C3+20C;C4+83Cq+ 16C13— 4Cp=0,
—20C;C,— 16C,Cs+63C;+10Cy+18C,,=0,
—4C,C4,—16C,C5+4C,Cg+8C g+ 77C,,=0,

4C,C,—10C;Cg+8C 15— 2C,p+81C,3=0,

15C,—20C,C,— 24C,C5—16C,C,— 19C,C5—21C,Cq

+16C;;+ 60C 5+ 24C 5+ 19C 4+ 21C,,— 40(1/g?)?
=0. (25)

Solving Eg. (25 numerically, we can obtainC; (i
=1,2,3,...,28) as the functions ofgt/

Evaluating the long wavelength limit of all graphs up to
the 3rd order, we obtain

4
o= %(Cﬁ 4C,+4C,+4C5+9C;+9Cg+Co+Cyg

+9C,;+Cyy), (269

8
Moo= %(0&3_ 0&4_ C5+ CG_ 2C7_ 3C8+ Cg+ 2C10

—C11—Cyst C15—2C161 2C17— C1g+2C19—2Cy;
- 4C22+ 3C23_ 6C25+ 4026_ 4C27+ 2C28) . (26b)
SubstitutingC; (i=1,2,3,...,28) in Eqs(26g and (26b),
we obtainu, andu, as the functions of 4. Figure 2 gives

the 3rd order results for the improved Hamiltonian.

20

Hy

15F
C el 2

10F

-05F

Ho K,

- -———————
e m e e e e —-—-—-—

FIG. 3. uo and u, versus 1g? for the 3rd order when using the
standard Hamiltonian.
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FIG. 4. Am/e? vs 1k? for the 3rd order when using the im-
proved Hamiltonian.

To compare our results with ones from RE3], we give

PHYSICAL REVIEW D68, 094502 (2003

TABLE |. Comparison of the improved Hamiltonian with the
standard Hamiltonian about the*® glueball mass of (21)D
SU(2) gauge theoryB=4/g?.

Loop Scaling  Glueball
Method Order graphs ~ window mass
Improved Hamiltonian 3 28 Be[6.0,16.0 1.505
Standard Hamiltoniap4] 3 13 Be[3.0,840 1.59
4 70 Be[5.0,80 1.84

solving Eq.(25), we obtain the variou€; coefficients as the
functions ofg~2 and then get they 2 dependence of the
physical quantitiesi.q, #, and glueball mass which is com-
puted in the next three paragrafihehile using the standard
Hamiltonian, the calculation can only be carried out up to
1/g?=2.0, i.e., for 19*>>2.0, the physical quantities would

also the 3rd order results from the standard Hamiltoniannot have good scaling behavior.

This is shown in Fig. 3.

One is interested in computing the mass ¢agmely 0" *

As can be seen, the 3rd order results from both the imglueball mass We now compute the mass gapn.

proved Hamiltonian(Fig. 2) and the standard Hamiltonian
(Fig. 3 or see Refs[3,4]) have a good scaling behavior.

The calculation of the mass gap is dependent upon the
structure of the vacuum wave function, while truncating up

Significantly, the calculations for the improved Hamiltonian to the 2nd order the vacuum wave function does not have the

can be carried out up to d7=4.0, i.e., for 1¢>>4.0, the
physical quantities would not have good scaling behg\agr

correct scaling behavior. Thus we compute directly the mass
gap up to the 3rd order:

G=B,0+ B, Ol B, (. B, T3+ B, 1+ B, EF]+B7D:|

| i
8,01, B 5, O, 3, 0. 5, B 5,
+B,, EIED“’BH Eﬁ:l"'Bxs &lq’ B, E‘j"'Bls + By D@‘
+B20 d%*le EFP“’ 322 ﬂ+BZ3EZF]+ BZ4 d:]D

+B,;

SubstitutingR and G in Eqg. (17), we can obtain the non-
linear equations for the mass gApn and the coefficientB;
(i=1,2,3,...,28), similar to Eq25). Solving these equations
numerically[and using they~ 2 dependence ot;, from Eq.
(25)], we can obtainAm as a function of I°. Figure 4
gives the numerical result.

It is well known that the S(2) LGT in three dimensions
possesses a simple scaling property for the mass gap:
(28)

Am/e’~const as a—0.

T 5
+B, +B,, \:Hl By

(27)

almost a constant1.505 in a wide scaling window B?
e[1.5,4.0.

To get a more explicit comparison of the glueball mass,
we give the results of this paper and Rf] in Table I.

From Table I, one can see that the scaling windgiv (
€[6.0,16.9) is much wider and the coupling region is much
weaker in this paper than in Rd#].

On the other hand, the*0" glueball mass of (2 1)D
SU(2) gauge theory is also studied in the Monte Carlo cal-
culation. According to the results of R¢fL5], for the case of
(2+1)D SU?2), the scaling window isBe[5.50,6.53,

From Fig. 4, one can see that our result of the mass gap which is much narrower than the one of this paper. A part of

094502-6
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TABLE IIl. The Monte Carlo results of the (21)D SU2) 0" * glueball mass near the scaling window,
from Ref.[15]. B=4/g?, g?>=ae’; L is the loop length.

B 5 6 6 6 9 9
L 16 16 24 32 24 32

AmXa 1.47824) 1.19318) 1.19118) 1.17023) 0.764360) 0.755267)
Am/e? 1.84730) 1.78927) 1.78227) 1.75534) 1.72013) 1.69915)

the Monte Carlo results for the'0” glueball mass, from Ref. tainty. In particular, our result of the mass gap is almost a

[15], is given in Table Il. From Table | and Table II, one also constant(1.509 in a wide scaling window 3?e[1.5,4.9

can see that the glueball masses from both the standard afmamely 8<[6.0,16.0), which is in agreement with the

the improved Hamiltonian are in agreement with MonteMonte Carlo measuremefit5].

Carlo results. To summarize, from the test of three-dimensional(3U
LGT, we see that the improved Hamiltonian indeed leads to
much better results. We believe that application of the im-

V. CONCLUSIONS proved theory 14] to the four-dimensional SUN) LGT will
In this work we have computed the vacuum wave func-be very promising.

tion and mass gap of three-dimensional(SlLGT using the

improved lattice gauge field Hamiltonidd4]. Our calcula-

tions can be carried out up to a weaker coupling region, i.e.,

1/g%=4.0, with a very well scaling behavior, while using the ~ We are grateful to S. H. Guo and X. Q. Luo for useful

unimproved Hamiltonian, the calculations can only be car-discussions. Jun-Qin Jiang is grateful for support by Natural

ried out up to the intermediate coupling region, i.eg®/ Science Foundation of the Education Department of Guang-

=2.0 (see Refs[3,4,6]), which would result in large uncer- dong Province of Chin&Z02083.
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