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Cronin effect and high-pT suppression inpA collisions
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We review the predictions of the theory of a color glass condensate for a gluon production cross section in
p(d)A collisions. We demonstrate that, at moderate energies, when the gluon production cross section can be
calculated in the framework of the McLerran-Venugopalan model, it has only a partonic level Cronin effect in
it. At higher energies or rapidities corresponding to smaller values of the Bjorkenx, quantum evolution
becomes important. The effect of quantum evolution at higher energies or rapidities is to introduce the sup-
pression of high-pT gluons slightly decreasing the Cronin enhancement. At still higher energies or rapidities
quantum evolution leads to the suppression of produced gluons at all values ofpT .
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I. INTRODUCTION

Recently there has been a surge of interest in part
production in proton-nucleus~pA! and deuteron-nucleus~dA!
collisions at high energies. The interest was inspired by
new data produced by thedA program at the BNL Relativis-
tic Heavy Ion Collider~RHIC! @1–4#, which should enable
one to separate the contributions of the initial state effects@8#
such as parton saturation@9–13# from the final state effects
such as jet quenching and energy loss in the quark-gl
plasma~QGP! @14–17#, to the suppression of high transver
momentum particles observed in Au-Au collisions at RH
@5–7#.

Saturation physics has been largely successful in des
ing hadron multiplicities in Au-Au collisions at RHIC@18#. It
can also have important implications for the transverse m
mentum distributions@19#, particle correlations, and az
muthal anisotropies@20#. It has been demonstrated@21# that
saturation provides very favorable initial conditions for t
thermalization of parton modes with the transverse mome
kT;Qs , whereQs is the saturation scale. The thermalizati
was also found@21# to approximately preserve the centrali
dependence of total hadron multiplicities determined by
initial conditions @18#. Recent lattice results@22,23# show
that the initial average transverse momentum^kT& of the
produced partons iŝkT&;Qs , which makes the ‘‘soft ther-
malization’’ scenario preserving the initial centrality and r
pidity distributions quite likely. Final state interactions, how
ever, will undoubtedly modify the transverse momentu
distributions atkT<(1 –3)Qs without introducing a new mo-
mentum scale@21#. If the produced medium lives long
enough, then highkT jets will be suppressed as well becau
of the jet quenching and energy loss@14–17#.

The first d-Au data from RHIC show a Cronin enhanc
ment extending up tokT.6 GeV aroundy;0 @1,3# whereas
at slightly forward rapidity aroundy;1 no significant en-
hancement is seen@2#. The absence of suppression indica
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that final state interactions are indeed responsible for the
fect observed in Au-Au collisions@5–7# in the samekT
range. However, the nonuniversality of the ratios for t
charged hadron andp0 spectra@1# indicate deviations from
the independent jet fragmentation up tokT.5 GeV. Similar
nonuniversality in the samekT range was observed forL and
K production@24#, and in p,p̄ and pion production@25# in
Au-Au collisions. It remains to be checked if there is a s
tistically significant suppression of highkT charged hadron
and p0 yields above the Cronin enhancement region (kT
>6 GeV), and if this suppression depends on centrality
d-Au collisions. This question is of crucial importance fo
the interpretation of the spectacular effect observed in Au-
collisions @5–7# because this is the kinematical region
which the independent jet fragmentation picture, and thus
perturbative jet quenching description, begin to apply.

The first dA data from RHIC@1–3# give the ratio of the
number of particles produced in adA collision over the num-
ber of particles produced in app collision scaled by the num
ber of collisions

RdA~kT ,y!5

dNdA

d2kdy

Ncoll

dNpp

d2kdy

. ~1!

To understand the new data onRdA and what it implies for
our understanding of high energy nuclear wave functions
are going to study here the expectations forRdA from satu-
ration physics. Our approach will be somewhat academic
this paper, we will not include explicitly all of the effect
related to the fact that high-kT of produced particles corre
sponds to a rather large Bjorkenx in the actual RHIC experi-
ments at central rapidity—the effective Bjorkenx of high-kT
(kT.5 GeV) particles observed at midrapidity at RHIC
©2003 The American Physical Society13-1
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As5200 GeV is aboutx'0.1 which may be too large for th
small-x treatment that we present here~see@26#, but see also
@27#!. These finite-energy effects have to be accurately
counted for before we can compare our calculations to
data. Nevertheless, we feel that a better understanding o
qualitative features of hadron production within the satu
tion framework is a necessary prerequisite for a comp
theoretical description of high energyp(d)-A collisions.

We assume that collisions take place at very high ene
such that the effective Bjorkenx is sufficiently small for all
kT of interest. For simplicity we will analyze proton-nucleu
collisions assuming that the main qualitative conclusio
would be applicable todA. Since we cannot calculateNcoll in
a model-independent way, we will be using Eq.~32! for our
definition ofRpA, which is identical to Eq.~1! applied topA
collisions with a proper definition ofNcoll ~see @28# for a
discussion of uncertainties involved in theoretical eval
tions of this quantity!.

The problem of gluon production inpA collisions has
been solved in the framework of the McLerran-Venugopa
model @12# in @29# ~see also@30–33#!. The resulting cross
section includes the effects of all multiple rescatterings of
produced gluon and the proton in the target nucleus@29#. At
higher energy quantum evolution becomes important@34–
41#. In the largeNc limit the small-x evolution equation can
be written in a nonlinear integro-differential form@35–38#
shown here in Eq.~49!. The inclusion of nonlinear evolution
@35–38# in the quasi-classical gluon production cross sect
of @29# has been done in@42# ~see also@43,44#!. The study of
the resulting gluon spectrum and corresponding gluonicRpA

is the goal of this paper.
The paper is organized as follows. In Sec. II A we discu

two main definitions of unintegrated gluon distribution fun
tions: the standard definition~2! and the one inspired by th
non-Abelian Weizsa¨cker-Williams field of a nucleus in the
McLerran-Venugopalan model~6! @12,13#. We argue, follow-
ing @42,45#, that Eq.~6! is the correct definition of the unin
tegrated gluon distribution counting the number of glu
quanta. We proceed by analyzingkT dependence of the dis
tribution functions. In Sec. II B we prove the sum rules f
both distribution functions given in Eqs.~12! and~13!, which
are valid in the quasi-classical approximation only. In t
framework of the McLerran-Venugopalan model@12,46# the
sum rules insure that the presence of shadowing in nuc
gluon distribution functions in the saturation regime (kT
&Qs0) requires enhancement of gluons at higherkT(kT
*Qs0) reminiscent of antishadowing. This conclusion
quantified in Sec. II C@see Fig. 3 and Eqs.~28! and~29!# and
the differences between distribution functions are clarifi
@see Eqs.~23! and~24!#. However, as we demonstrate in Se
II B, the sum rules break down once quantum evolution w
energy@35–38# is included. They turn into inequalities~19!
and ~20!. This indicates that, while multiple rescatterings
the McLerran-Venugopalan model only redistribute gluons
transverse momentum phase space conserving the total
ber of gluons in the nucleus@29#, quantum evolution of@35–
38# actually reduces the number of gluons in the nucl
wave functions at a given value of the Bjorkenx.

In Sec. III we study the gluon production cross section
09401
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pA in the quasi-classical approximation@29#. In Sec. III A we
show that the gluon production cross section calculated
@29# in the McLerran-Venugopalan multiple rescatterin
model exhibits only Cronin-like enhancement@47#, as shown
in Fig. 4 and in Eq.~37! ~cf. @48,49#!. In the corresponding
moderately high energy regime the height andkT-position of
the Cronin peak are increasing functions of centrality as
be seen from Eq.~38!. In Sec. III B following @42# we point
out that, surprisingly, the gluon production cross section
pA can be written in akT-factorized form~43! @9,50# with the
unintegrated distribution functions defined by Eq.~2!, the
physical meaning of which is less clear than that
Weizsäcker-Williams ones~6!. In Sec. III B we also prove a
sum rule ~46! which insures that suppression of produc
gluons at lowkT(kT&Qs0) demands Cronin-like enhance
ment at highkT(kT*Qs0) in the McLerran-Venugopalan
model. The relative amounts of suppression and enha
ment are different from the quasi-classical gluon distribut
case of Sec. II.

Multiple rescatterings of partons inside the nucleus
believed to be the cause of the Cronin effect. Phenome
logically these multiple rescatterings are usually modeled
introducing transverse momentum broadening in the nuc
structure functions@51–54#. In Sec. III we demonstrate how
an explicit PQCD calculation of these multiple rescatterin
done in@29# yields us the Cronin effect~cf. @48,49#!.

Section IV is devoted to studying the effects of nonline
evolution ~49! on the gluon production cross section inpA.
In Sec. IV A we use the analogy to the case of gluon prod
tion in deep inelastic scattering~DIS! solved in @42,44# to
include the effects of evolution~49! in the gluon production
cross section inpA. The result is given by Eq.~53!. By
expanding the all-twist formula~53! we then study the effec
of nonlinear evolution on the gluon production at the lead
twist ~Sec. IV B! and next-to-leading twist~Sec. IV C! level.
In Sec. IV B we start by deriving gluon production cro
section at the leading twist level~62!. We then estimate the
cross section for highkT@kT.kgeom@Qs(y)# in the double
logarithmic approximation~66! @50# and demonstrate that th
correspondingRpA is approaching 1 at highkT from below,
i.e., thatRpA,1 atkT@Qs(y) @see Eq.~75!#. We proceed by
evaluating Eq.~62! in the extended geometric scaling regio
@Qs(y),kT&kgeom# @45,55,56#. The resulting leading twist
gluon production cross section~86! leads to further suppres
sion of gluon production due to the change in gluon anom
lous dimension@8# as shown in Eqs.~89! and ~91!. At very
high energies when the gluon production inpp is also in the
extended geometric scaling region (kT,kgeom

p ) the ratioRpA

saturates atRpA;A21/6, as follows from Eq.~92!. The next-
to-leading twist contribution to the gluon production cro
section inpA is evaluated in Sec. IV C with the result give
by Eqs.~98! and~99!. One can see that the subleading tw
term contributes towards enhancement of gluon produc
at high kT . However, in thekT region where the next-to
leading twist contribution dominates over higher twists it
small compared to the leading twist term. Therefore the po
tive sign of the higher twist term cannot alter our conclusi
of high-kT suppression we derived by analyzing leadi
twist. To understand how all twists add up we study wh
3-2
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happens to the Cronin peak@kT;Qs(y)# at high energy in
Sec. IV D. We find that the height of the Cronin maximu
decreases with energy and eventually the Cronin peak
tens out at the same level as the rest ofRpA at higherkT ,
which is shown in Eq.~113!. In Sec. IV E we observe tha
inclusion of evolution only strengthens the suppression
RpA at low kT@kT!Qs(y)# @see Eq.~116!# which was ob-
served before in Sec. III B in the quasi-classical case. In S
IV F we construct a toy model illustrating the conclusion
Sec. IV that quantum evolution@35–38# introduces suppres
sion of RpA at all values ofkT ~see Fig. 8!. We demonstrate
that quantum evolution not only suppressesRpA making it
less than 1, but also turnsRpA into a decreasing function o
collision centrality contrary to the quasi-classical expec
tions.

We conclude in Sec. V by summarizing our results.

II. A TALE OF TWO GLUON DISTRIBUTION FUNCTIONS

A. Definitions

There are two different ways to define unintegrated glu
distribution function of a proton or nucleus. The most co
ventional way relates it to theqq̄ dipole cross section on th
target nucleus via two gluon exchange. Here we are goin
use a similar definition relating the unintegrated gluon dis
bution to the dipole cross section on the nucleus~see Fig. 1!.

The corresponding gluon distribution is given by~cf.
@41,43#!

f~x,k2!5
CF

as~2p!3E d2bd2re2 ik•r ¹ r
2NG~r,b,y5 ln 1/x!,

~2!

whereNG(r,b,y5 ln 1/x) is the forward amplitude of a gluon
dipole of transverse sizer at impact parameterb and rapidity
y scattering on a nucleus@35,42#. We denote byk the trans-
verse components of the four-vectork, and bykT its length.
The definition of Eq.~2! is inspired bykT factorization and is
valid as long as one can neglect multiple rescatterings of
dipole in the nucleus. By using Eq.~2! in the saturation
region where higher twists~multiple rescatterings! become
important one implicitly assumes that there exists a cer
gauge in which theqq̄ dipole cross section on a nucleus
given by a two gluon exchange interaction between the
pole and the nucleus and the interaction shown in Fig.
literally all one needs to obtain the correct dipole cross s
tion. It is not clear at present whether this is the case
such a gauge exists. Therefore the gluon distribution gi
by Eq. ~2! does not give one the number of gluons in t
nuclear wave function in the saturation region. The appli
tions of the definition~2! will be clarified later.

Another definition of unintegrated gluon distribution lite
ally counts the number of gluons in the nuclear wave fu
tion. To construct it in the quasi-classical limit of high ener
QCD given by the McLerran-Venugopalan model@12# one
has to first find the classical gluonic field of the nucleus
the light cone gauge of the ultrarelativistic nucleus~non-
Abelian Weizsa¨cker-Williams field! and then calculate the
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correlator of two such fields to get the unintegrated glu
distribution function~see Fig. 2!.

The non-Abelian Weizsa¨cker-Williams field of a nucleus
has been found in@13#, leading to the following expression
for the corresponding gluon distribution@13,29#:

fWW~x,k2!5
1

2p2E d2bd2re2 ik•r Tr^AWW~0!•AWW~r!&

5
4CF

as~2p!3E d2bd2re2 ik•r
1

r2

3~12e2r2Qs0
2 ln(1/r TL)/4!, ~3!

where

Qs0
2 ~b!54pas

2rT~b!, ~4!

with r the atomic number density in the nucleus with atom
numberA, T(b) the nuclear profile function, andL some
infrared cutoff.

Generalizing Eq.~3! to include nonlinear small-x evolu-
tion in it @35–38# is rather difficult. However, the problem o
including small-x evolution has been solved for theF2 struc-
ture function and for the gluon production cross section
DIS @35,42#. Inspired by those examples we conjecture th
replacing the Glauber-Mueller@46# forward gluon dipole am-
plitude on the nucleus by its fully evolved expression to
found from the nonlinear evolution equation@35,38#

rT

FIG. 1. ‘‘Conventional’’ definition of unintegrated gluon distri
bution relating it to the gluon dipole cross section. The exchan
gluon lines can connect to either gluon in the dipole.

FIG. 2. Definition of the unintegrated gluon distribution in th
McLerran-Venugopalan model.
3-3
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12e2r2Qs0
2 ln(1/r TL)/4⇒NG~r,b,y! ~5!

would give us the unintegrated gluon distribution function
a nucleus in the general case

fWW~x,k2!5
4CF

as~2p!3E d2bd2re2 ik•r
1

r2

3NG~r,b,y5 ln 1/x!. ~6!

A similar expression for gluon distribution was obtained e
lier in @45#.

An important observation concerning the two gluon d
tributions presented above has been made in@42,43#. It was
shown that, while the Weizsa¨cker-Williams gluon distribu-
tion of Eq.~6! indeed has a clear physical meaning of cou
ing the number of gluons@13#, it is the gluon distribution
inspired bykT factorization and given by Eq.~2! that enters
gluon production cross section inpA collisions and in DIS
@42,43#. More precisely, the gluon production cross sect
including the effects of multiple rescatterings and quant
evolution in it can be reduced to akT-factorized form@9#
with the unintegrated gluon distribution of a nucleus giv
by Eq.~2! @42#. The authors cannot offer any simple physic
explanation of this paradox. Nevertheless we keep both
tributions in the discussion below keeping in mind that t
first one is more relevant to particle production inpA.

B. kT dependence: General arguments

Both definitions of unintegrated gluon distribution~2! and
~6! have the same high-kT asymptotics in the quasi-classic
approximation@see, e.g., Eq.~3!#, which reads

fA~x,k2!5fA
WW~x,k2!5AfN~x,k2!5A

asCF

p

1

k2
,

kT→`, ~7!

where the indexA ~N! denotes gluon distribution in a nucleu
~nucleon!. Therefore the distributions are equivalent at t
level of leading twist, i.e., as long as we include only a sin
rescattering in the dipole amplitudeNG .

In the quasi-classical case of the McLerran-Venugopa
model both gluon distributions obey a sum rule which we
going to prove here forf. From Eq.~2! one can easily infer
that

E d2kfA~x,k2!

5
CF

as~2p!
E d2b @¹ r

2NG~r,b,y5 ln 1/x!#U
r50

.

~8!

At very small r T the dipole cross sectionNG in the
McLerran-Venugopalan model goes to zero asr T

2 ~color
transparency@57#! with the coefficient in the front propor
09401
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tional to A1/3. One can see that this is explicitly true for th
Glauber-Mueller expression for the dipole cross sectionNG
@46#

NG~r,b,y50!512e2r2Qs0
2 ln(1/r TL)/4. ~9!

For NG from Eq. ~9! we observe that

lim
r T→0

„¹ r
2NG~r,b,y50!2A1/3¹ r

2nG~r,b,y50!…50,

~10!

where nG is the gluon dipole cross section on a sing
nucleon obtained from Eq.~9! by expanding it to the lowes
nontrivial order and puttingA51. Remembering that

E
A
d2b5A2/3E

N
d2b ~11!

we conclude from Eqs.~8! and~10! that in the quasi-classica
approximation~see also@29#!

E d2kfA~y50,k2!5AE d2kfN~y50,k2!. ~12!

Similarly one can show that the Weizsa¨cker-Williams gluon
distribution in Eq.~6! obeys the same sum rule in the qua
classical approximation

E d2kfA
WW~y50,k2!5AE d2kfN

WW~y50,k2!. ~13!

However, the sum rules of Eqs.~12! and~13! break down
when the nonlinear evolution with energy@35,38# is in-
cluded. To see this we first note that for very smallr T one
can use the expression forNG given by the double logarith-
mic approximation@50,56,45# ~see Sec. IV for details on
similar calculations!

NG~r T'0,b,y!5
r T

2Qs0
2

8Ap

ln1/4
1

r TQs0

~2āsy!3/4
e2A2āsy ln 1/(r TQs0)

~14!

with

ās5
asNc

p
. ~15!

Similarly for the proton amplitudenG we write

nG~r T'0,b,y!5
r T

2L2

8Ap

ln1/4
1

r TL

~2āsy!3/4
e2A2āsy ln 1/(r TL), ~16!

where now the scale characterizing the proton is given b

L254pas
2 1

Sp
~17!

with Sp the cross sectional transverse area of the pro
Employing the fact thatQs0

2 5A1/3L2 we can easily see tha
the amplitudes in Eqs.~14! and ~16! do not satisfy the con-
3-4
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dition of Eq. ~10! invalidating the sum rule. In fact usin
Eqs.~14! and ~16! in Eq. ~10! gives an inequality

lim
r T→0

„¹ r
2NG~r,b,y5 ln 1/x!2A1/3¹ r

2nG~r,b,y5 ln 1/x!…,0.

~18!

Equation~18!, together with a similar equation forNG /r2,
turn the sum rules of Eqs.~12! and ~13! into inequalities

E d2kfA~x,k2!<AE d2kfN~x,k2! ~19!

and

E d2kfA
WW~x,k2!<AE d2kfN

WW~x,k2!, ~20!

where the equality is achieved only in the quasi-class
limit. We conclude that while multiple rescatterings of gl
ons in the McLerran-Venugopalan model preserve the t
number of gluons in a nuclear wave function at a given
pidity y, the quantum evolution tends to reduce the num
of gluons in the wave function via gluon mergers@9#.

To study nuclear modification of the gluonic wave fun
tions let us define the unintegrated gluon distributions ra
as

RA~x,k2!5
fA~x,k2!

AfN~x,k2!
and RA

WW~x,k2!5
fA

WW~x,k2!

AfN
WW~x,k2!

.

~21!

The sum rules of Eqs.~12! and ~13! imply that, in the
quasi-classical approximation, if at somekT the distribution
function fA

WW(y50,k2) is smaller thanAfN
WW(y50,k2),

then at some otherkT it should be bigger thanAfN
WW(y

50,k2). Using the definitions~21! one concludes from Eq
~13! that if RA

WW(y50,k2) is below 1 at somekT it is bound
to go above 1 at some otherkT ~for the same value ofx).
From Eq.~7! we can conclude that

RA~y50,k2!,RA
WW~y50,k2!→1, kT→`. ~22!

At the same time, whenkT!Qs0 the saturation effects be
come important drivingfA

WW(y50,k2) below AfN
WW(y

50,k2), or, equivalently, makingRA
WW(y50,k2),1. There-

fore, due to the sum rule of Eqs.~12! and~13!, somewhere in
the region ofkT*Qs0 the ratio RA

WW(y50,k2) should go
above one, which corresponds to enhancement or broade
of thekT distribution of gluons inside the nucleus. The sam
broadening argument applies tofA(y50,k2). We have
therefore proved that for both gluon distribution functio
calculated in the McLerran-Venugopalan model the effects
saturation and the sum rule~12!, ~13!, while makingRA(y
50,k2),1 in the infrared, also require an existence of akT
region whereRA(y50,k2) is above 1. This conclusion wil
be quantified in the next section.

The above argument does not apply to the shadowing
tios RA(x,k2) and RA

WW(x,k2) when the effects of quantum
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evolution are included. The sum rules~12! and ~13! are re-
placed by inequalities~19! and ~20! which only require a
reduction of the overall number of gluons in the nucle
wave function at a given rapidityy.

C. kT dependence: Quasi-classical approximation

To investigate thekT dependence of the unintegrate
nuclear gluon distributionsfA

WW(x,k2) and fA(x,k2) more
quantitatively and demonstrate the differences of the two
tributions let us study them in the McLerran-Venugopal
model @12,13#. For that we take the gluon dipole amplitud
in the Glauber-Mueller approximation@46# of Eq. ~9!. The
high-kT asymptotic for bothfA

WW(x,k2) and fA(x,k2) is
given by Eq.~7!.

Inside the saturation region (kT!Qs0) one has

f~x,k2!'
2CFSA

as~2p!2

kT
2

Qs0
2

, kT!Qs0 ~23!

and

fWW~x,k2!'
4CFSA

as~2p!2
ln

Qs0

kT
, kT!Qs0 , ~24!

where we assumed for simplicity that the nucleus is cylind
cal in which case its cross sectional area isSA5pR 2 and
Qs0 is given by Eq.~4! with rT(b)5A/SA :

Qs0
2 5

4pas
2A

SA
, cylindrical nucleus. ~25!

In Eqs. ~23! and ~24! the difference between the tw
gluon distribution functions becomes manifest:fA

WW(x,k2)
keeps increasing~though only logarithmically! as kT de-
creases, whilefA(x,k2) turns over and goes to zero in th
infrared. Still for both distribution functions the ratioRA
goes to zero askT→0 since to obtainRA one has to divide
Eqs. ~23! and ~24! by AfN(x,k2) from Eq. ~7!. The sum
rules ~13! and ~12! require a region of enhancement (RA
.1) atkT*Qs0. To see that the enhancement really happ
one has to calculate the next-to-leading twist correction
the high-kT asymptotic of Eq.~7!. This technique has bee
applied previously for quark production in@58#. One obtains

fA~x,k2!5
CFSAQs0

2

as~2p!2k2

3F112
Qs0

2

k2 S ln
k2

4L2
12g23D 1•••G , kT→`

~26!

and

fA
WW~x,k2!5

CFSAQs0
2

as~2p!2k2

3F11
Qs0

2

k2 S ln
kT

2L
1g21D1•••G , kT→`,

~27!
3-5
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with g the Euler constant. For the ratiosRA’s this implies

RA5112
Qs0

2

k2 S ln
k2

4L2
12g23D 1••• ~28!

and

RA
WW511

Qs0
2

k2 S ln
kT

2L
1g21D1•••. ~29!

Therefore the ratios of gluon distributions approach 1 fr
above for both distribution functions at largekT . This of
course indicates the presence of high-kT enhancement.

Qualitative plots of ratioRA for both distribution func-
tions in the McLerran-Venugopalan model are shown in F
3. The thin line corresponds to Weizsa¨cker-Williams gluon
distribution fA

WW(x,k2) while the thick one represents th
kT-factorization distributionfA(x,k2). One can see that in
accordance with Eqs.~23! and~24! the distributionfA(x,k2)
goes to zero faster thanfA

WW(x,k2) as kT→0 in Fig. 3. In
agreement with Eqs.~29! and ~28! RA for the distribution
fA(x,k2) has a stronger high-kT enhancement thanRA

WW for
the distributionfA

WW(x,k2).
Finally, let us point out that the functionRA(RA

WW) shown
in Fig. 3 will be modified when quantum evolution is in
cluded. Due to the inequalities of Eqs.~19! and~20! the total
number of gluons will decrease. As we will see below in S
IV the effects of quantum evolution is to introduce suppr
sion of gluons at allkT .

III. QUASI-CLASSICAL APPROXIMATION: CRONIN
EFFECT ONLY

A. Gluon production in pA

The problem of gluon production in proton-nucleus co
sions in the quasi-classical approximation~McLerran-

RA

k / Qs

1 2 3 4 5

0.5

1

1.5

2

2.5

FIG. 3. The ratioRA of unintegrated gluon distributions in th
nucleus and in the nucleon. The thin line represents the Weizsa¨cker-
Williams gluon distribution@Eq. ~6!# while the thick line corre-
sponds to the more conventional one inspired bykT factorization
@Eq. ~2!#.
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Venugopalan model! has been solved in@29# ~see also
@30,33,31,32#!. For a quark-nucleus scattering the producti
cross section reads@29#

dspA

d2kdy
5E d2bd2xd2y

1

~2p!2

asCF

p2

x•y

x2y2
e2 ik•(x2y)

3~12e2x2Qs0
2 ln(1/xTL)/42e2y2Qs0

2 ln(1/yTL)/4

1e2(x2y)2Qs0
2 ln[1/(x2y)TL]/4!, ~30!

which then has to be convoluted with the light cone wa
function of a quark in a proton. The saturation scaleQs0

2 in
Eq. ~30! is given by Eq.~4!. As was shown in@29# in the
approximation when the logarithmic dependence of ex
nential factors in Eq.~30! on the transverse size is neglecte
x2ln(1/xTL)'x2, thex' andy' integrations in Eq.~30! can
be done exactly yielding

dspA

d2kdy
5

asCF

p2 E d2bH 2
1

k2
1

2

k2
e2k2/Qs0

2

1
1

Qs0
2

e2k2/Qs0
2 F ln

Qs0
4

4L2k2
1EiS k2

Qs0
2 D G J ,

~31!

where Ei(x) is the exponential integral. Our goal is to co
struct the ratio of the number of gluons produced in apA
collision over the number of gluons produced in app colli-
sion scaled by the number of collisions

RpA~k,y!5

dspA

d2kdy

A
dspp

d2kdy

. ~32!

In the same approximation in which Eq.~31! is derived the
gluon production cross section inpp scaled up byA is given
by

A
dspp

d2kdy
5

asCF

p2 E
A
d2b

Qs0
2

k4
, ~33!

which can be obtained, for instance, by taking thekT /Qs0

@1 limit of Eq. ~31! and using the fact thatQs0
2 ;A1/3. For a

cylindrical nucleus the impact parameterb integration would
just give a factor ofSA . Using Eqs.~31! and~33! in Eq. ~32!
we then obtain

RpA~kT!5
k4

Qs0
2 H 2

1

k2
1

2

k2
e2k2/Qs0

2

1
1

Qs0
2

e2k2/Qs0
2 F ln

Qs0
4

4L2k2
1EiS k2

Qs0
2 D G J .

~34!
3-6
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The ratio RpA(kT) is plotted in Fig. 4 forL50.2 Qs0. It
clearly exhibits an enhancement at high-kT typical of the
Cronin effect @47#. Similar conclusions regarding formul
~30! have been reached earlier in@48#.

It is worth noting that expandingRpA(k) from Eq.~34! in
the powers ofQs0 /kT ~‘‘twists’’ ! yields a series with only
positive terms

RpA~kT!5112
Qs0

2

k2
16

Qs0
4

k4
124

Qs0
6

k6
1•••5 (

n50

`

n! S Qs0
2

k2 D n

.

~35!

The series~35! is divergent, but it is Borel resummable wit
the sum given by Eq.~34!, though not all terms in Eq.~34!
can be reconstructed by the Borel resummation procedu

To establish whether inclusion of the correct transve
size dependence in the exponents of Eq.~30! would change
the conclusion about the Cronin effect let us study the hi
kT asymptotic of Eq.~30!. A simple calculation yields

dspA

d2kdy
5

asCF

p2 E d2b
Qs0

2

k4 F S ln
k2

4L2
12g21D

1
Qs0

2

4k2 S 6 ln2
k2

4L2
28~423g!ln

k2

4L2

129124g2264g D 1 . . . G , kT→`. ~36!

For a cylindrical nucleus, keeping only the leading logari
mic [ln (k2/L2)] terms in the parentheses of Eq.~36! we
obtain

RpA~kT!511
3

2

Qs0
2

k2
ln

k2

L2
1•••, kT→` ~37!

1 2 3 4 5

0.5

1

1.5

2

k / Q

R
pA

s0

FIG. 4. The ratioRpA for gluons plotted as a function ofkT /Qs0

in the quasi-classical McLerran-Venugopalan model as found
@29#. The cutoff isL50.2Qs .
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.
e

-

-

indicating thatRpA approaches 1 from above at highkT ,
which is typical of Cronin enhancement. We therefore co
clude that in the framework of the quasi-classical appro
mation employed in@29# the ratioRpA is less than 1 at smal
kT&Qs0 and has Cronin enhancement at highkT*Qs0.

As can be seen from Eqs.~34! and ~37!, the position of
the Cronin maximum is determined by the saturation sc
such thatkmax5bQs0, whereb is some weakly increasing
function of lnQs0 /L. The height of the maximum is given b
RpA(kmax)5RpA(bQs0). SubstitutingkT5bQs0 in Eq. ~34!
we observe that the height of the Cronin maximum sca
like

RpA~bQs0!; ln
Qs0

L
1const; ln A1const8. ~38!

Since, for realistic off-central collisionsA is replaced by the
number of participantsNpart, we conclude from Eq.~38! that
in the quasi-classical approximation considered here
kT-position and the height of the Cronin peak should incre
with centrality of thepA collision.

B. kT factorization

Let us now show that it is possible to rewrite Eq.~30! in
a kT-factorized form@9,43,42#. Repeating the steps outline
in Sec. IV of @42# we first perform one of the transvers
coordinate integrations in Eq.~30! rewriting it as

dspA

d2kdy
5

1

2p2

asCF

p E d2bd2ze2 ik•z

3F2i
z•k

z2k2
2 ln

1

zTLGNG~z,b,0!, ~39!

where NG(z,b,0) is given by Eq.~9!. Using the fact that
NG(z50,b,0)50 we write Eq.~39! as

dspA

d2kdy
5

1

2p2

asCF

p

1

k2E d2bd2z

3NG~z,b,0!¹z
2S e2 ik•zln

1

zTL D . ~40!

Let us denote the forward scattering amplitude of a glu
dipole of transverse sizer on a single nucleon~proton! inte-
grated over the impact parameterb8 of the dipole measured
with respect to the proton by

E d2b8nG~r,b8,y50!5pas
2r2ln

1

r TL
. ~41!

Equation~41! is obtained by expanding Eq.~9! at the leading
order and takingA51. It corresponds to the two gluon ex
change interaction between the dipole and the proton. In
quasi-classical Glauber-Mueller approximation in which E
~9! is derived each nucleon exchanges only two gluons w
the dipole@46,13#. Therefore Eq.~41! is a natural reduction
of Eq. ~9! to a single nucleon case.

in
3-7
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With the help of Eq.~41! we rewrite Eq.~40! as @42#

dspA

d2kdy
5

CF

asp~2p!3

1

k2E d2Bd2bd2z

3¹z
2nG~z,b2B,0!e2 ik•z¹z

2NG~z,b,0!. ~42!

Now B is the impact parameter of the proton with respect
the center of the nucleus andb is the impact parameter of th
gluon with respect to the center of the nucleus as show
Fig. 5.

Equation~42! is the expression for gluon production on
would write in thekT-factorization approach@43#. To see this
explicitly let us rewrite Eq.~42! in terms of the unintegrated
gluon distribution function from Eq.~2!. One easily derives

dspA

d2kdy
5

2as

CF

1

k2E d2qfp~q!fA~k2q!, ~43!

which is the same formula as obtained in thekT-factorization
approach@9,50,43#. fp is defined as unintegrated gluon di
tribution of the proton given by Eq.~2! with nG instead of
NG on the right-hand side. Equation~43! demonstrates tha
the gluon production cross section inpA can be expressed i
terms of the gluon distribution~2! in a rather straightforward
way @42#. Somehow it is the distribution~2! and not the
Weizsäcker-Williams distribution~6! that enters Eq.~43!.

Equation~43! demonstrates that, at least in the framewo
of the McLerran-Venugopalan model, the multiple rescat
ing leading to Cronin enhancement inpA can be incorporated
in the gluon distribution functions@29,33#. There is no clear
distinction between the nuclear wave function effects and
Glauber-type rescatterings in the nucleus. Antishadow
present in the gluon distribution functionfA(k) as shown in
Fig. 3 simply translates into the Cronin effect of Fig. 4 v
Eq. ~43!.

In the quasi-classical approximation of the McLerra
Venugopalan model one can prove a sum rule for the gl
production cross section inpA similar to the sum rule we
proved for gluon distributions in Sec. II B. To prove the su
rule we note that Eq.~42! implies that

bB
gluon

proton

B

b

nucleus

FIG. 5. Gluon production inpA collisions as seen in the trans
verse plane. To make the picture easier to read the gluon is pl
far away from the proton which is highly unlikely to happen in re
life.
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E d2kk2
dspA

d2kdy
5

CF

as2p2E d2Bd2b@¹z
2nG~z,b2B,0!#uz50

3@¹z
2NG~z,b,0!#uz50 . ~44!

For Glauber-MuellerNG from Eq. ~9! and for nG from Eq.
~41! the following condition is satisfied:

lim
zT→0

$@¹z
2nG~z,b2B,0!#@¹z

2NG~z,b,0!#

2A1/3@¹z
2nG~z,b2B,0!#@¹z

2nG~z,b,0!#%50.

~45!

The impact parameter integration inpA will give an extra
factor ofA2/3 as compared topp. Together with Eq.~45! this
gives

E d2kk2
dsMV

pA

d2kdy
5AE d2kk2

dsMV
pp

d2kdy
~46!

in the quasi-classical approximation.
Similar to the sum rule proved in Sec. II for gluon distr

bution functions, the sum rule~46! insures that if the quasi
classical gluon production cross section inpA collisions is, in
some region ofkT , smaller thanA times the gluon produc-
tion cross section inpp than there should be some oth
region of kT in which their roles are reversed. ForRpA de-
fined in Eq.~32! that means that if, in some region ofkT , it
is less than 1 there must be some other region ofkT in which
it is greater than 1. Of course thek2 factors in Eq.~46! make
the quantitative amounts of suppression and enhancem
very different from the ones dictated by, for instance, t
sum rule of Sec. II.

In the quasi-classical approximation for the gluon produ
tion in pA considered aboveRpA is below 1 atkT&Qs0.
Expanding Eq.~34! for kT!Qs0 we write

RpA~k!'
k2

Qs0
2

!1 if kT!Qs0 . ~47!

Equation ~47!, together with the sum rule~46! imply that
there must exist a region ofkT with a Cronin-like enhance-
ment of gluon production, which is demonstrated by the f
answer plotted in Fig. 4.

IV. INCLUDING SMALL- x EVOLUTION: SUPPRESSION
AT ALL pT

A. Including small-x evolution

As the energy of the collisions increases quantum evo
tion corrections become important. For produced partic
with the samekT higher energy implies a smaller effectiv
Bjorken x meaning that the quantum corrections of the ty
asln 1/x should be resummed. These corrections can be
summed by the Balitsky-Fadin-Kuraev-Lipatov~BFKL!
equation@34#, which calculates the contribution of the ha
~perturbative! Pomeron. However, as energy increases m
tiple Pomeron exchanges become important, resulting i

ed
l
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more complicated small-x evolution @39,40#. In @35,38# an
equation was constructed which resums multiple Pome
exchanges for a forward amplitude of aqq̄ dipole scattering
on a nucleus in the largeNc limit. The forward amplitude
N(r,b,Y) of a dipole of transverse sizer scattering at impac
parameterb and rapidityY was normalized such that the tot
qq̄A cross section was given by

s tot
qq̄A52E d2bN~r,b,Y!. ~48!

The evolution equation forN(r,b,Y) closes only in the large
Nc limit of QCD @38,39# and reads@35–37#

N~x01,b,Y!5N~x01,b,Y50!e2(4aCF /p) ln(x01 /r)Y

1
aCF

p2 E
0

Y

dye2(4aCF /p) ln(x01 /r)(Y2y)

3E
r
d2x2

x01
2

x02
2 x12

2 F2NS x02,b1
1

2
x12,yD

2NS x02,b1
1

2
x12,yDNS x12,b1

1

2
x02,yD G ,

~49!

with the initial condition given byN(x01,b,Y50) taken to
be of Mueller-Glauber form@46# in @35#:

N~x01,b0 ,Y50!512e2x01
2 Q0s

quark 2ln(1/x01TL)/4, ~50!

where

NcQ0s
quark 25CFQs0

2 . ~51!

In @42# it was shown how to resum the effects of nonline
evolution of Eq.~49! for gluon production in DIS. In the
quasi-classical approximation the gluon production in DIS
given by a formula similar to Eq.~30! @44#. That formula can
also be recast in akT factorized form of Eq.~42! @42#. As
was proven in@42# in order to include quantum evolutio
~49! in Eq. ~42! for DIS one has to make replacements. Fir
one has to replaceNG(z,b,0) in Eq. ~42! by the forward
quark dipole amplitude using the following expression va
in the large-Nc limit @42#:

NG~z,b,y!52N~z,b,y!2N~z,b,y!2, ~52!

whereN(z,b,y) is the forward scattering amplitude of aqq̄
dipole on a nucleus evolved by nonlinear equation~49!. Then
one has to replacenG(z,b,0) by nG(z,b,Y2y) evolved just
by the linear part of Eq.~49! ~the BFKL equation@34#!. Here
Y is the total rapidity interval between the projectile~virtual
photon! and target nucleus in a DIS collision. The initi
conditions for bothNG and nG evolution are given by
NG(z,b,0) andnG(z,b,0) correspondingly.

Since bothpA and DIS are considered here as scatteri
of an unsaturated projectile~proton orqq̄ pair! on a saturated
target ~nucleus! with the gluon production in the quas
09401
n

r

s

,

s

classical limit given by the same Eq.~42!, we may conjec-
ture that inclusion of quantum evolution~49! in a gluon pro-
duction cross section is done similarly for both process
We therefore write

dspA

d2kdy
5

CF

asp~2p!3

1

k2E d2Bd2bd2z

3¹z
2nG~z,b2B,Y2y!e2 ik•z¹z

2NG~z,b,y!,

~53!

whereY is the total rapidity interval between the proton a
the nucleus. Just like in DISNG in Eq. ~53! is given by Eq.
~52!, where N should be found from Eq.~49!, while nG
should be determined from the linear part of Eq.~53!
~BFKL! with the initial conditions given by Eq.~41!. Equa-
tion ~53! is exact if the proton is modeled as a diquark–qua
pair @59#, in which case it would be identical to aqq̄ pair
produced by a virtual photon in DIS. In the general case
~53! remains a well-motivated conjecture.

As in Sec. II the sum rule~46! breaks down once nonlin
ear evolution@35,38# is included in the way shown in Eq
~53!. Using the double logarithmic expressions~14! and~16!
modifies Eq.~45! into

lim
zT→0

$@¹z
2nG~z,b2B,Y2y!#@¹z

2NG~z,b,y!#

2A1/3@¹z
2nG~z,b2B,Y2y!#@¹z

2nG~z,b,y!#%,0

~54!

turning the sum rule of Eq.~46! into an inequality for the
cross section from Eq.~53!

E d2kk2
dspA

d2kdy
<AE d2kk2

dspp

d2kdy
. ~55!

Again the effect of quantum evolution is to reduce the to
number of gluons at a given rapidity, though now it is show
for the case of gluon production weighted bykT

2 . Let us now
study in detail how this suppression sets in for various
gions ofkT .

In the following we are going to study effects of evolutio
equation~49! on the gluon spectrum and onRpA. Our goal is
to determine whetherRpA preserves the shape shown in Fi
4 with the Cronin maximum and low-kT suppression, or
quantum evolution would modify this shape introducing e
tra suppression. Below we will first study the effects of qua
tum evolution at high-kT , kT*Qs , showing that evolution
introduces suppression (RpA,1) in that region. We will then
proceed by studying the fate of the Cronin peak (kT;Qs) as
evolution sets in. We will show that the Cronin maximu
will decrease with the onset of evolution and would even
ally disappear. We will then argue that suppression pers
for kT!Qs when evolution effects are included. We will en
the section by constructing a toy model summarizing o
conclusions.

To simplify the discussion we will consider a cylindrica
nucleus for which Eq.~53! reduces to
3-9
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dspA

d2kdy
5

CF

asp~2p!3

SpSA

k2 E d2z

3¹z
2nG~z,Y2y!e2 ik•z¹z

2NG~z,y!, ~56!

with Sp the cross sectional area of the proton.

B. Leading twist effects

1. Leading twist gluon production cross section

We start by exploring the leading high-kT behavior of the
gluon spectrum given by Eq.~56!. At very highkT the inte-
gral in Eq.~56! is dominated by small values ofzT . There-
fore we can neglect the quadratic term in the evolution eq
tion for NG ~49! leaving only the linear part—the BFKL
evolution with initial conditions for a gluon dipole given b
Eq. ~9!. The corresponding Feynman diagram is shown
Fig. 6. The solution of the BFKL equation is well-known an
reads

NG1~z,y!5E dl

2p i
Cl

A~zTQs0!le2āsx(l)y ~57!

with

x~l!5c~1!2
1

2
cS 12

l

2D2
1

2
cS l

2D , ~58!

with ās defined in Eq.~15! andQs0 for a cylindrical nucleus
given by Eq.~25!. The coefficientCl

A is fixed from the initial
conditions aty50 given by Eq. ~9!. Then for smallzT
,1/Qs0

Cl
A5 (

n51

`

(
m50

n
~21!n11

4n~n2m!! ~2n2l!m11
lnn2m

Qs0

L

5 (
n51

`
1

4nn! ~l22n!n11 S Qs0

L D 2n2l

3GS 11n,~2n2l!ln
Qs0

L D . ~59!

FIG. 6. Gluon production inpA collisions at the leading twis
level ~see text!.
09401
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Similarly for the gluon dipole cross section on the proton
write

nG~z,y!5E dl

2p i
Cl

p~zTL!le2āsx(l)y, ~60!

where the scale characterizing the protonL is given by Eq.
~17!. The coefficientCl

p is obtained by requiring that Eq
~60! reduces to Eq.~41! wheny50. ForzT,1/L we derive

Cl
p5

1

4~l22!2
. ~61!

@We have identified the nonperturbative scale characteriz
the proton~17! with the infrared cutoff employed earlier in
Eq. ~41!.#

Substituting Eqs.~57! and~60! into Eq.~56! and integrat-
ing overz yields @60,61#

dspA

d2kdy
U

LT

5
CFSpSA

4as~2p!3E dl

2p i

dl8

2p i
l2l82Cl

ACl8
p 2l1l8

3

GS 211
l1l8

2 D
GS 22

l1l8

2 D S Qs0

kT
D lS L

kT
D l8

3e2ās[x(l)y1x(l8)(Y2y)] . ~62!

Equation ~62! gives the leading twist expression for th
gluon production cross section inpA collisions and is illus-
trated in Fig. 6.

The difference between Eq.~62! and Eq.~13! of @60# is in
gamma functions in the integrand. The difference manife
itself at the order of higher twists, where the gluon distrib
tions used in@60#, if taken aty50 and used in inverted Eq
~2! to obtainnp , would yield higher twist corrections~higher
powers of r T) to the right-hand side of Eq.~41!, which
should not be there in the two-gluon exchange approxim
tion corresponding to they50 limit.

2. Double logarithmic approximation: Monojet versus dijet
and first signs of high-pT suppression

To derive the high-kT behavior of the gluon production
cross section in Eq.~62! we have to evaluate the integrals
it by the saddle point method. WhenkT@Qs0 ,L we approxi-
mately write

x~l!'
1

22l
. ~63!

Then the saddle points are given by

lsp522A 2āsy

ln~kT /Qs0!
~64!

and
3-10
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lsp8 522A2ās~Y2y!

ln~kT /L!
. ~65!

Integrating overl andl8 around the saddle points~64! and
~65! in Eq. ~62! yields gluon production cross section
double logarithmic approximation~DLA ! @50#

dspA

d2kdy
U

DLA

'
CFSpSA

as~2p!4

Qs0
2 L2

k4

1

2ās

F ln
kT

Qs0
ln

kT

L

y3~Y2y!3
G 1/4

3SA y

ln
kT

Qs0

1AY2y

ln
kT

L
D

3expS 2A2āsy ln
kT

Qs0

12A2ās~Y2y!ln
kT

L D . ~66!

To understand Eq.~66! let us first construct the gluon distr
bution function

xGA~x,Q2!5E
L2

Q2

dkT
2fA~x,k2! ~67!

in the same double logarithmic approximation@10#. Using
Eq. ~57! in Eqs. ~2! and ~67! we obtain in the double loga
rithmic approximation

xGA~x,Q2!5
CFSAQs0

2

as~2p!3
2Ap

ln1/4
Q

Qs0

@2āsln~1/x!#3/4

3e2A2āsln(1/x)ln(Q/Qs0). ~68!

Since the above gluon distribution is obtained in the D
~large Q2) limit of the BFKL equation, it can also be ob
tained by taking the small-x limit of the DGLAP equation
@62#. One can explicitly check that with the help of Eq.~68!
and an analogous one for the proton gluon distributionxGp ,
Eq. ~66! can be rewritten as

dspA

d2kdy
5

2as

CFk2 F xGp~x5e2Y1y,k2!
]

]kT
2

xGA~x5e2y,k2!

1xGA~x5e2y,k2!
]

]kT
2

xGp~x5e2Y1y,k2!G .

~69!

Equation~69! can be obtained directly by using Eq.~68! in
Eq. ~43! and assuming that theq integration in Eq.~43! is
dominated by the regions nearq50 andq5k @9,50#. As was
shown in detail in@11#, Eq. ~69! can be reduced to
09401
dspA

d2kdy
5

2

pNcCF
S E

e2Y1y

1 dx1

x1
x1Gp~x1 ,k2!xGA~x5e2y,k2!

1E
e2y

1 dx1

x1
xGp~x5e2Y1y,k2!

3x1GA~x1 ,k2! D dŝgg→gg

d2k
, ~70!

which is the standard dijet production cross section deri
in the collinear factorization approximation~see, e.g.,@11#!.
@Of course one of the jet’s momentum in Eq.~70! is inte-
grated over.# Therefore we have started with a single jet pr
duction cross section given bykT-factorized expression~62!
with BFKL gluon distributions and demonstrated that in t
largekT limit it reduces to the conventional dijet productio
cross section~70! given by collinear factorization with
DGLAP-evolved structure functions.1

Before we continue let us studyRpA given by the cross
section of Eq.~66!. The naive expectation for the high-kT
limit of the leading twist gluon production cross sectio
would be thatRpA51. However, already at the level of ap
proximation employed in Eq.~66! this is not quite the case
To see this let us first write down an expression for the glu
production cross section inpp collisions in the leading twist
DLA approximation. It is obtained by replacingQs0 andSA
in Eq. ~66! by L andSp correspondingly. We obtain

dspp

d2kdy
U

DLA

'
CFSp

2

as~2p!4

L4

k4

1

2ās

Ay1AY2y

y3/4~Y2y!3/4

3expF2A2āsln
kT

L
~Ay1AY2y!G .

~71!

To calculateRpA we note that sinceSA5A2/3Sp one con-
cludes from Eqs.~25! and~17! thatQs0

2 5A1/3L2. Using Eqs.
~66! and ~71! in Eq. ~32! yields

RpA~kT ,y!ukT@Qs

5

S ln
kT

Qs0
ln

kT

L D 1/4

Ay1AY2y SA y

ln
kT

Qs0

1AY2y

ln
kT

L
D

3expF2A2āsySAln
kT

Qs0
2Aln

kT

L D G , ~72!

where Qs5Qs(y) is the full energy dependent saturatio
scale, which reduces toQs0 at y50. Defining

1We thank Al Mueller for encouraging one of the authors~Yu. K.!
to verify this correspondence explicitly several years ago.
3-11
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j[S ln
kT

Qs0

ln
kT

L

D 1/4

~73!

we rewrite Eq.~72! as

RpA~j,y!U
j,1

5

1

j
Ay1jAY2y

Ay1AY2y

3expF22A2āsy
12j2

11j2
ln

Qs0

L G ,

~74!

wherej,1 for kT.Qs0, sinceQs0
2 5A1/3L2@L2. For the

large transverse momenta in question,kT@Qs(y), the vari-
ablej is approaching 1 from below as is clear from Eq.~73!.
In the limit j→1 Eq. ~74! becomes

RpA~j,y!U
j→1

'S 11~12j!
Ay2AY2y

Ay1AY2y
D

3expF22A2āsy~12j!ln
Qs0

L G
,~22j!expF22A2āsy~12j!ln

Qs0

L G
'expF22A2āsy~12j!ln

Qs0

L G
,1, kT@Qs~y!. ~75!

We neglected 22j511(12j) in front of the exponent in
Eq. ~75! since the (12j) correction to 1 in it is not enhance
by any parametrically large variables, such asy and lnQs0 /L
in the exponent. IfRpA(j,y) from Eq. ~75! is expanded in
powers of (12j) this prefactor term would give subleadin
logarithmic corrections to the expansion of the expone
which are negligible in the DLA limit considered here.

We conclude thatRpA from Eq. ~72! is smaller than one
SinceRpA(j,y) in Eq. ~75! is an increasing function ofj and
j is an increasing function ofkT , we observe thatRpA(kT ,y)
in Eq. ~72! is an increasing function ofkT approaching 1
from below. This suppression is mainly due to the differen
of the cutoffs in the logarithms of transverse momentum
the exponent of Eq.~72!. The cutoff for the nucleus case
given by the nuclear saturation scale, which is different fr
the appropriate scale in a single proton. The high momen
regions, where linear evolution equations work, are cut
from below by saturation scales, which are different for d
ferent nuclei and for the proton. In this way, as we can
from Eqs.~72! and ~75!, saturation influences the physics
high kT as long as correspondingxB j is small. The effect of
saturation is to introduce high-kT suppression.
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The suppression of Eq.~75! is a leading twist effect and is
due to quantum evolution. In this sense it is similar to t
suppression suggested in@8#. However, the suppression o
@8# corresponds to a region of lowerkT , where the double
logarithmic approximation of Eq.~72! is not valid anymore.
There the suppression happens due to the change in an
lous dimension of the gluon distribution function, as we a
going to discuss below.

3. Onset of anomalous dimension: More high-pT suppression

For the values ofkT lower than considered above~but still
much larger thanQs0) the saddle point ofl integration in
Eq. ~62! shifts to a smaller value than given by Eq.~64!.
While in determining the saddle point of Eq.~64! we had to
expandx(l) aroundl52, now we have to expand it aroun
l51. There one writes

x~l!'2 ln 21
7

4
z~3!~l21!2 ~76!

obtaining the value of the saddle point

lsp* 511

ln
kT

Qs0

7z~3!āsy
. ~77!

As was suggested in@45#, the transition of the saddle poin
from the value given in Eq.~64! to the one given in Eq.~77!
happens around

kgeom'Qs~y!
Qs~y!

Qs0
~78!

indicating the onset of a geometric scaling regime@55#. Here
in the double logarithmic approximation the saturation sc
depends on energy as@56,45,63#

Qs~y!'Qs0e2āsy. ~79!

The precise value of the scalekgeom in Eq. ~78! depends on
the definition of the saturation scale and on the way o
defines the transition between the double logarithmic a
geometric scaling regions. For instance, if we define the tr
sition by equating the saddle points of Eqs.~64! and ~77!,

lsp5lsp* , ~80!

we get at the point of closest approach~the two saddle point
values are never equal to each other!

kgeom5Qs0eāsy72/3z(3)2/3221/3
'Qs0e3.28āsy. ~81!

When combined with the saturation scale from Eq.~79! this
gives

kgeom'Qs~y!S Qs~y!

Qs0
D 0.64

, ~82!
3-12



d

on
p

e-
nc
g
ye
th

q

-
ion

ant

te
l-

-

s

e

CRONIN EFFECT AND HIGH-pT SUPPRESSION INpA . . . PHYSICAL REVIEW D68, 094013 ~2003!
which is slightly different from Eq.~78!. At the same time,
using the energy dependence of the saturation scale foun
@64# in the fixed coupling case

Qs~y!'Qs0e2.44āsy ~83!

in Eq. ~81! gives

kgeom'Qs~y!S Qs~y!

Qs0
D 0.34

, ~84!

which is even lower than Eq.~82!. A definition of the tran-
sition point different from Eq.~80! would give slightly dif-
ferent estimates forkgeom.

Nevertheless, the ambiguities in the scalekgeom notwith-
standing, one can argue, as was done in@45#, that there exists
a large momentum scalekgeom, which is parametrically
larger than the saturation scale

kgeom@Qs~y!. ~85!

For kT*kgeom there is no geometric scaling and the glu
production is well described by the double logarithmic a
proximation described above resulting inRpA from Eq. ~72!.
kT&kgeom is the region of geometric scaling@45#. WhenkT
&Qs(y) ~saturation region! multiple Pomeron exchanges b
come important leading to the saturation of structure fu
tions @9#. For Qs(y)&kT&kgeom~extended geometric scalin
region! multiple Pomeron exchanges are not important
and the gluon production cross section is described by
leading twist expression in Eq.~62! with the l-integral
evaluated near the saddle point of Eq.~77! @8#.

Performing thel and l8 integrals in Eq.~62! in the
saddle point approximation around the saddle points of E
~77! and ~65! correspondingly yields

dspA(1)

d2kdy
U

LLA

'
CFSpSA

as~2p!4

Qs0L2

k3

C1
A

A7z~3!

ln1/4
kT

L

ās~Y2y!3/4~2ās!
1/4

3expF ~aP21!y12A2ās~Y2y!ln
kT

L

2

ln2
kT

Qs0

14z~3!āsy
G , ~86!

where

aP2152āsln 2 ~87!

is the BFKL Pomeron intercept@34# and C1
A is well-

approximated by the first term in the series of Eq.~59! for all
physically reasonable values ofA,
09401
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C1
A'

1

4 S 11 ln
Qs0

L D5
1

4 S 11
1

6
ln AD . ~88!

The superscript~1! in Eq. ~86! denotes the leading twist con
tribution. We assume that in the transverse momentum reg
where Eq.~86! is valid, Qs(y)&kT&kgeom, the gluon pro-
duction cross section inpp collisions is still given by Eq.
~71!. This is a good approximation since ifkT*Qs(y)@L
the double logarithmic approximation of Eq.~71! should
work. Using Eqs.~86! and ~71! in Eq. ~32! we obtain

RpA~kT ,y!uQs(y)&kT&kgeom

5
kT

Qs0

2C1
A

A7z~3!

ln1/4
kT

L

~2ās!
1/4

y1/4

Ay1AY2y

3expF ~aP21!y22A2āsy ln
kT

L
2

ln2
kT

Qs0

14z~3!āsy
G .

~89!

To determine whetherRpA(kT ,y) in Eq. ~89! is greater or
less than 1 we first drop the slowly varying and const
prefactors in front of the exponent and write

RpA~kT ,y!uQs(y)&kT&kgeom

;
kT

Qs0
expF ~aP21!y22A2āsy ln

kT

L
2

ln2
kT

Qs0

14z~3!āsy
G

~90!

keeping only parametrically important factors. To estima
the value ofRpA in Eq. ~90! in the extended geometric sca
ing region Qs(y)&kT&kgeom we substitutekT5kgeom into
Eq. ~90! with kgeom from Eq. ~78!. The result yields an as
ymptotically small value

RpA~kT ,y!uQs(y)&kT&kgeom
;e21.65āsy!1, ~91!

where we usedA5197 for the gold nucleus. For other value
of A and for other values ofkT in the regionQs(y)&kT

&kgeomone still gets exponential suppression forRpA(kT ,y).
Therefore we conclude thatRpA(kT ,y),1 in the extended
geometric scaling regionQs(y)&kT&kgeom.

As can be checked explicitly, for a sufficiently larg
nucleus~large A), RpA(kT ,y) of Eq. ~89! is an increasing
function of k for Qs(y)&kT&kgeom. As kT increases it
should smoothly map ontoRpA(kT ,y) of Eq. ~72!, which
would approach 1 from below for asymptotically highkT .
3-13
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At very high energy the geometric scaling regions for t
nucleus and the proton will overlap. Namely, the geome
scale for the protonkgeom

p 5kgeom/A1/6 will become larger
than the saturation scale for the nucleusQs(y) allowing for a
region of kT where anomalous dimension sets in for glu
production both inpA andpp.2 In this asymptotic region one
has to estimate thel andl8 integrals in Eq.~62! around the
saddle point given by Eq.~77! ~with L instead ofQs0 for the
l8 integral!. Replacing Eq.~71! by the appropriate expres
sion where the saddle points ofl and l8 integrals were
given by Eq.~77! with L instead ofQs0 we obtain the fol-
lowing asymptotic expression at midrapidity (y5Y/2):

RpA~kT ,y!uQs(y)&kT&k
geom
p ;A21/6expF ln2

kT

L
2 ln2

kT

Qs0

14z~3!āsy
G .

~92!

From Eq.~92! we conclude that in the extended geomet
scaling region at asymptotically high energies,RpA saturates
to a parametrically small lower bound,RpA;A21/6, which is
independent of energy and is a decreasing function ofA, or,
equivalently, centrality.

To conclude our discussion of high-kT suppression at the
leading twist level we note that, as was recently argued
@65#, the running coupling effects in the BFKL evolutio
may modify theA-dependence of the saturation scale giv
by Eqs.~79! and ~83!, makingQs(y) almost independent o
A at very high energy corresponding to large rapidityy. This
would result in high-kT suppression which would not disap
pear at anykT . That is RpA(kT ,y) would not approach 1
anymore at highkT . Instead one would haveRpA(kT ,y)
;A21/3.3

C. Next-to-leading twist

Above we have shown that the effect of quantum evo
tion ~49! on the leading twist gluon production cross secti
in pA with kT.Qs(y) is to introduce strong suppression
09401
c

in

n

-

RpA. Here we would like to study the effect of evolution o
the gluon production at the next-to-leading twist level. B
low we are going to show that if one includes the evoluti
of Eq. ~49! into the next-to-leading twist correction to Eq
~62! it would start contributing towards enhancement ofRpA

at high kT . This appears to indicate that multiple rescatt
ings always tend to enhance gluon production at highkT . As
we will argue later the effect of quantum evolution is mu
stronger. It dominates at high energies leading to the ove
suppression ofRpA.

A perturbative solution of Eq.~49! was constructed in
@36# giving the forward amplitude of aqq̄ dipole scattering
on the nucleus as an expansion in powers ofr TQs(y)

N~r,b,y!5N1~r,b,y!1N2~r,b,y!1•••, ~93!

where the leading behavior of thenth term in the series is
Nn(r,b,y);@r TQs(y)#n. To find the next-to-leading twis
correction to the forward scattering amplitude of agluon
dipole NG we substitute Eq.~93! into Eq. ~52! obtaining

NG~r,b,y!52N1~r,b,y!12N2~r,b,y!2@N1~r,b,y!#21•••,

~94!

where the first term on the right is the leading twist cont
butionNG152N1 given by Eq.~57!, and the next two terms
shown in Eq.~94! are the next-to-leading twist correction
Higher twists are not shown in Eq.~94!. To calculate the
next-to-leading twist correction to gluon forward amplitud

NG2~r,b,y!52N2~r,b,y!2@N1~r,b,y!#2

52N2~r,b,y!2
1

4
@NG1~r,b,y!#2 ~95!

we useNG1 from Eq. ~57! and N2 calculated in@36#. Em-
ploying Eq.~23! from @36# in Eq. ~9a! from the same refer-
ence would give us the first term on the right-hand side
Eq. ~95!. In the end we write for a cylindrical nucleus
NG2~r,y!52
1

4E dl1dl2

~2p i !2
Cl1

A Cl2

A ~r TQs0!l11l2e2āsy[x(l1)1x(l2)]

3S 2(l11l2)/2

GS l1

2 DGS l2

2 DGS 12
l11l2

2 D
GS 12

l1

2 DGS 12
l2

2 DGS l11l2

2 D
1

2@x~l1!1x~l2!2x~l11l2!#
11D . ~96!

2The onset of anomalous dimension does not imply saturation and is still a leading twist effect. Therefore Eq.~56! in which no saturation
in the proton’s wave function was assumed is still valid in this region.

3The argument presented in this paragraph is due to Larry McLerran.
3-14
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The slight difference between the factors in the integrand
Eq. ~96! and Eq.~23! of @36# is due to different definitions o
the coefficientsCl

A @cf. Eq. ~15! of @36# with our Eq.~57!#.
The first term in the parentheses of Eq.~96! corresponds

to the first term on the right-hand side of Eq.~95!. When we
will substituteNG2 from Eq. ~96! into formula ~56! for the
cross section, this term would give the contribution illu
trated in Fig. 7. It corresponds to the case when the gluo
produced still by the linear evolution with the triple Pomer
vertex inserted below the emitted gluon. The rapidity of t
triple Pomeron vertex was integrated over in arriving at E
~96!, with only the dominant contribution corresponding
the vertex being right next to the emitted gluon left@36#. ~As
was shown in@42# the diagrams where the triple Pomero
09401
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vertex is inserted above the produced gluon cancel in
dipole evolution case considered here@37,35# in agreement
with the expectation of the AGK cutting rules@66#.! The
second term in the parenthesis of Eq.~96! and on the right-
hand side of Eq.~95! corresponds to the case where t
Pomeron splitting occurs precisely at the rapidity position
the gluon production. The emitted gluon is produced by
first step of the nonlinear evolution.~This term is the main
difference between the results of@42# and @43#.! As can be
seen in the estimates performed below, this term contribu
50–100 % of the answer depending on thekT region in ques-
tion.

Substituting Eq.~96! in Eq. ~56! and integrating overz
yields the following contribution to the gluon productio
cross section at the subleading twist level:
h
nge
dspA

d2kdy
U

SLT

52
CFSpSA

as2~2p!3E dl1dl2dl8

~2p i !3
Cl1

A Cl2

A Cl8
p S Qs0

kT
D l11l2S L

kT
D l8

3e2āsy[x(l1)1x(l2)] 12ās~Y2y)x(l8)2l11l21l823

GS l11l21l8

2
21D

GS 22
l11l21l8

2 D ~l11l2!2l82

3S 2(l11l2)/2

GS l1

2 DGS l2

2 DGS 12
l11l2

2 D
GS 12

l1

2 DGS 12
l2

2 DGS l11l2

2 D
1

2@x~l1!1x~l2!2x~l11l2!#
11D . ~97!

To study the onset of higher twist effects, we are interested in the next-to-leading twist contribution~97! in the region of
transverse momentakT*kgeom. Performingl1 andl2 integrations in Eq.~97! around the saddle point~64! and performing the
l8 integral in Eq.~97! around the saddle point~65! yields

dspA(2)

d2kdy
U

DLA

'
CFSpSAAp

as~2p!5

Qs0
4 L2

k6

ln1/4
kT

L
ln1/2

kT

Qs0

~2āsy!3/2@2ās~Y2y!#3/4

3S 2A 2āsy

ln
kT

Qs0

1A2ās~Y2y!

ln
kT

L
D expF4A2āsy ln

kT

Qs0
12A2ās~Y2y!ln

kT

L G . ~98!

As one can see from Eq.~98! the next-to-leading twist correction tends to increase gluon production cross section at higkT .
In the region ofkT where Eq.~98! applies,kT*kgeom, the higher twist corrections are parametrically small and cannot cha
the leading twist suppression of Eq.~74!.

To study higher twist effects in the extended geometric scaling region,Qs(y)&kT&kgeom, we evaluatel1 andl2 integrals
in Eq. ~97! around the saddle point~77! and do thel8 integral around the saddle point~65! obtaining

dspA(2)

d2kdy
U

LLA

'
2CFSpSAAp

as~2p!5

Qs0
2 L2

k4

~C1
A!2

7z~3!

ln1/4
kT

L

āsy@2ās~Y2y!#3/4

3SA2ās~Y2y!

ln
kT

L

2

2 ln
kT

Qs0

7z~3!āsyD expF 2~aP21!y12A2ās~Y2y!ln
kT

L
2

2 ln2
kT

Qs0

14z~3!āsy
G . ~99!
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The sign of Eq.~99! is determined by the sign of the expre
sion in the parenthesis. One can see that for very largekT the
expression in the parenthesis can become negative ma
the overall contribution to the cross section negative. Ho
ever, Eq.~99! is valid only forkT&kgeomand, therefore, can
not be used at arbitrary high transverse momenta. At lo
kT the sign changes and the term in Eq.~99! begins to con-
tribute toward enhancement ofRpA. The value ofkT at which
the sign transition takes place depends on the rapidity
question as well as on the atomic numberA of the nucleus.
To estimate the transition value ofkT one has to equate tw
terms in the parenthesis of Eq.~99!. Assuming that
ln kT /Qs0@ln Qs0 /L we obtain

k0'kgeomS L

Qs0
D 1/3

, ~100!

with kgeom given by Eq.~81!. Therefore the transition from
suppression to enhancement in Eq.~99! happens atk0 which
is smaller thankgeom only by a factor ofA21/18, which indi-
cates that the term in Eq.~99! is positive inside most of the
extended geometric scaling region contributing to enhan
ment of gluon production. Here again one should note t
Eq. ~99! gives us a subleading twist contribution which
parametrically smaller than the leading twist term from E
~86! in the kT region at hand@Qs(y)&kT&kgeom#. Equation
~99! is thus unlikely to affect the suppression ofRpA ob-
served at the leading twist level in Eqs.~91! and ~92!.

We conclude by observing that even after inclusion
quantum evolution~49! in the gluon production cross sec
tion, multiple rescatterings~higher twists! still tend to en-
hance gluon production at highkT . In thekT region consid-
ered above,kT.Qs(y), these higher twist effects are sti
parametrically small. In the next section we are going
study the region ofkT where all twists become importan
kT;Qs(y). We will show that the combined effect of a
twists is to introduce suppression of the Cronin maximum

FIG. 7. Gluon production inpA collisions at the next-to-leading
twist level ~see text!. The blob in the center indicates a trip
Pomeron vertex.
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D. Flattening of the Cronin peak

We have demonstrated that the effect of quantum evo
tion ~49! is to introduce suppression ofRpA(kT ,y) for kT
*Qs(y) at the leading twist level. Let us now study wh
happens toRpA(kT ,y) at kT.Qs(y) as a result of evolution
in energy. We showed in Sec. II that in the quasi-class
approximation the Cronin maximum of the ratioRpA(k,y)
occurs atkT.Qs0. In this section we will follow the value of
the ratioRpA(kT5Qs ,y) to higher energies when quantu
evolution is important. Since the position of the Cron
maximum is likely to be atkT.Qs(y) even when evolution
is included, by studyingRpA(kT5Qs ,y) we are going to
study the dependence of the height of the Cronin maxim
on energy or rapidity.

The fact that the scattering amplitude is a constant at
saturation scale@63,56,64# makes our calculation pretty
straightforward. First we assume that Mellin transform of t
gluon dipole amplitude obtained from theexactsolution to
the evolution equation Eq.~49! via Eq.~52! can be written as

NG~z,y!5E dl

2p i 5 C̃l
A@zTQs~y!#l, zT.

1

kgeom

Cl
A~zTQs0!le2āsx(l)y, zT,

1

kgeom
.

~101!

The form of the solution presented in Eq.~101! assumes
geometric scaling ofNG down tozT.1/kgeom and a leading
twist expression for smallerzT in agreement with the analy
ses of@45,64#. Throughout this section we will use the defi
nition of the saturation scaleQs(y) from Eq. ~79! and the
definition of kgeom from Eq. ~78!. Our physical conclusions
will be independent of the choice of definitions for saturati
and geometric scales.

Note that all information about the nonlinear evolutio
~49! is encoded in the functionC̃l

A in Eq. ~101!. Using Eq.
~101! in Eq. ~56! we can calculate the differentialpA gluon
production cross section atkT5Qs(y). Since kgeom(y)
@Qs(y) for large y we can setkgeom→` neglecting thezT
,1/kgeompart of the integral in Eq.~56!. This approximation
is justified in the Appendix. We also assume that the dip
amplitude on a protonnG is still given by the leading twist
expression~60! aroundkT.Qs(y), which is a good approxi-
mation for a reasonable size nucleus. Substituting the
line of Eqs.~101! and ~60! into Eq. ~56! we have

dspA

d2kdy
U

kT5Qs(y)

5
CFSpSAL2

asp~2p!2E0

`

dzTzTJ0@Qs~y!zT#

3E dl

2p i

dl8

2p i
Cl8

p C̃l
Al2l82~zTL!l822

3@zTQs~y!#l22e2ās(Y2y)x(l8). ~102!

Performing thezT integration in Eq.~102! yields
3-16
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dspA

d2kdy
U

kT5Qs(y)

5
CFSpSA

asp~2p!2E dl

2p i

dl8

2p i

3Cl8
p C̃l

Al2l822l1l823

GS l1l8

2
21D

GS 22
l1l8

2 D
3S L

Qs~y! D
l8

e2ās(Y2y)x(l8). ~103!

It can be seen that all energy/rapidity and almost all ato
number dependence in Eq.~103! is given by thel8 integral.
SinceQs(y)@L, the integral overl8 in Eq. ~103! can be
evaluated in the double logarithmic approximation arou
the saddle point of Eq.~65! taken atkT5Qs(y). After that
the integral overl carries almost no dynamical information
The result reads

dspA

d2kdy
U

kT5Qs(y)

5
CFSpSA

as~2p!4
ApCA

ln1/4
Qs~y!

L

@2ās~Y2y!#3/4

L2

Qs
2~y!

3expS 2A2ās~Y2y!ln
Qs~y!

L D ,

~104!

where the integration overl gave an unknown functionCA
defined as

CA5E dl

2p i
l2C̃l

A2l

GS l

2D
GS 12

l

2D . ~105!

Here we assume thatCA is only weakly~at most logarithmi-
cally! dependent onA, as is true for other coefficients like th
one shown in Eq.~88!. In case of an ‘‘ideal’’ geometric scal
ing the coefficientCl

A in Eq. ~101! would be completelyA
independent riddingCA of all of its A dependence as well.

To constructRpA we take the gluon production cross se
tion in pp from Eq. ~71! putting kT5Qs(y). Substituting
Eqs.~104! and ~71! into Eq. ~32! we get

RpA@Qs~y!,y#5ApCA~2ās!
1/4

y3/4

Ay1AY2y
ln1/4S Qs~y!

L D
3

Qs
2~y!

Qs0
2

expS 22A2āsy ln
Qs~y!

L D .

~106!

The energy andA dependence of Eq.~106! can be found
using Eq.~79! and keeping in mind thatQs05A1/6L. Since
09401
ic

d

the definition of the saturation scale~79! is valid up to loga-
rithmic prefactors, we can drop the prefactors in Eq.~106!
leaving only

RpA@Qs~y!,y#}
Qs

2~y!

Qs0
2

expS 22A2āsy ln
Qs~y!

L D .

~107!

@If one definesQs(y) by taking NG@zT51/Qs(y),y# in the
double logarithmic approximation and requiring thatNG@zT
51/Qs(y),y#5const @56,63,64# the prefactors in Eq.~106!
would cancel exactly.# Using Eq.~79! in Eq. ~107! yields

RpA@Qs~y!,y#}expH 4āsyS 12A11
ln A1/6

2āsy
D J ,1.

~108!

We observe from Eq.~108! that in the course of quantum
evolution the Cronin maximum of the ratioRpA decreases
with energy until, at very high energy, it saturates at t
lowest valueRpA;A21/6, which is much less than 1. Th
height of the Cronin peak is also a decreasing function
collision centrality/atomic numberA, as can be seen from
Eq. ~108!.4

The applicability of Eq.~108! is restricted by the applica
bility of Eqs. ~71! and ~104!. The latter two equations ar
valid only in the region whereQs(y) is larger than the geo
metric scale of the proton:Qs(y).kgeom/A1/6 with kgeom
taken from Eq.~81!, since this is where the transition be
tween the saddle points takes place. With the help of Eq.~78!
this condition becomesQs(y),A1/6Qs0. In the kinematic re-
gion of extremely highy where this condition is not satisfie
anymore, one has to replace Eqs.~104! and ~71! by appro-
priate cross sections evaluated around the saddle point o
~77!. To generalize the conclusions presented above to a
trary high rapidity let us follow Mueller and Triantafyllopou
los @64# and define the saturation scale by requiring that
power of the exponent in the leading twist expression forNG
given by @cf. Eq. ~57!#

NG1~z,y!5E dl

2p i
Cl

Ae2āsx(l)y1l ln(zTQs0)

is zero and stationary~its derivative with respect tol is zero!
at zT51/Qs(y). These conditions are satisfied atl051.255
@64# @our definition ofx(l) is different from the one used in
@64##. Resulting saturation scale is given by Eq.~83!. Argu-
ing that thel integral in Eq.~57! is dominated by the saddl
point in the exponent we conclude that atzT51/Qs(y) the
gluon dipole amplitudeNG@zT51/Qs(y),y# is approximately
constant at largey @64#

4We have recently learned that a similar conclusion regarding c
trality dependence of the Cronin peak has been reached by Mu
and collaborators.
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E dl

2p i
Cl

AS Qs0

Qs~y! D
l

e2āsx(l)y

5E dl

2p i
Cl

Ae2āsx(l)y1l ln[Qs0 /Qs(y)].const~y,A!.

~109!

Making a similar assumption about thel8 integral in Eq.
~103! taken at midrapidity (y5Y/2) and remembering tha
Qs05A1/6L yields

dspA

d2kdy
U

kT5Qs(y),y5Y/2

;SAA2l0/6;A2/32l0/6. ~110!

Modifying Eq. ~62! to give gluon production inpp at kT
5Qs(y) also taken at midrapidity we obtain

dspp

d2kdy
U

kT5Qs(y),y5Y/2

5
CFSp

2

4as~2p!3E dl

2p i

dl8

2p i
l2l82

3Cl
pCl8

p 2l1l8
GS 211

l1l8

2 D
GS 22

l1l8

2 D
3S L

Qs~y! D
l1l8

e2ās[x(l)1x(l8)] y.

~111!

Again thel andl8 integrals in Eq.~111! are dominated by
the saddle points atl0 giving an energy-independent cro
section scaling as

dspp

d2kdy
U

kT5Qs(y),y5Y/2

;A22l0/6 ~112!

with atomic numberA. Combining Eqs.~110! and~112! with
Eq. ~32! yields

RpA@Qs~y!,y#}A21/31l0/6const~y!;A20.124, ~113!

for l051.255. Note that the power ofA in Eq. ~113! is pretty
close to that following from Eq.~108! and the two powers
would be identical forl051. Note also that taking the ex
pression forRpA in the geometric scaling region from Eq
~92! and extrapolating it down tokT5Qs(y) one would ob-
tain a power ofA very close to that in Eq.~113! if one uses
Qs(y) from Eq. ~79!. This conclusion not only verifies th
self-consistency of our analysis, but also demonstrates th
asymptotic energies the height of the Cronin maximum
comes~parametrically! equal to the height of the rest of th
RpA curve in the extended geometric scaling region. This
likely to indicate that at these energies the curve flattens
and the Cronin peak disappears.

With the help of Eq.~113! we conclude that at high ra
pidities or energies the Cronin maximum decreases with
09401
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ergy and centrality, withRpA@Qs(y),y# becoming less than
1. Eventually, at very high energy, the Cronin peak flatte
out and saturates to an energy independent lower limit gi
by Eq. ~113!, which is parametrically suppressed by powe
of A.

E. Suppression deep inside the saturation region

Above we have shown that nonlinear evolution~49! intro-
duces suppression of gluon production inpA collisions mak-
ing RpA,1 for kT*Qs(y). In the region of smallerkT ,kT
!Qs(y), we observed in Sec. III B that in the quasi-classic
case of the McLerran-Venugopalan model the ratioRpA!1
@see Eq.~47!#. When the quantum evolution~49! is included
it makes sense to consider the interval of lowkT bounded
from below by the saturation scale of the protonLs(y), such
that Ls(y)!kT!Qs(y). @For kT&Ls(y) the proton wave
function also saturates and particle production in bothpp and
pA becomes similar to the case ofAA, which has not been
resolved even at the quasi-classical level@22,23,33#. Inclu-
sion of evolution inAA is an even more difficult problem
which we are not going to address here.# If kT is larger than
the geometric scale of the protonkgeom/A1/6 @but still much
less thanQs(y)] we can use Eq.~71! to describe the gluon
production cross section inpp. Deep inside the saturatio
region inpA the gluon production has been estimated in@42#.
Employing Eq. ~57! from @42# together with Eq.~71! we
conclude that at midrapidity

RpA@kgeom
p ,kT!Qs~y!,y#;

kT
2

Qs0
2

e22A2āsy ln kT /L.

~114!

Equation ~114! shows that inclusion of quantum evolutio
only introduces more suppression intoRpA at kT!Qs(y),
making it a decreasing function of both the atomic numb
and energy. At very high energykT may become smaller tha
the geometric scale for the protonkgeom/A1/6 and the gluon
production inpp would be driven by the saddle point~77!
with L instead ofQs0. Similarly to how it was done in@42#
for DLA, one can estimate the gluon production cross s
tion ~56! deep inside the saturation region with the dipo
amplitude on the proton evaluated around the LLA sad
point l8'1. The result at midrapidity yields

RpA@Ls~y!!kT<kgeom
p #;A21/3

Qs~y!

L
expF2~aP21!y

1
2 ln2~kT /L!2 ln2@Qs~y!/L#

14z~3!āsy
G .

~115!

Therefore at very high energies the ratioRpA becomes almos
independent ofkT even at very lowkT . Using the saturation
scale from Eq.~79! in Eq. ~115! at asymptotic energies give

RpA@Ls~y!!kT<kgeom
p #;A20.2e21.0āsy. ~116!
3-18
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We observe again that nonlinear evolution leavesRpA very
small atkT!Qs(y). RpA given by Eq.~116! is a decreasing
function of both rapidity or energy and centrality. This co
clusion seems natural, since the saturation effects are kn
to soften the low-kT gluon spectra inpA compared topp.

F. Toy model

To illustrate the conclusions reached above let us c
struct a simple toy model exhibiting suppression ofRpA at all
kT . We start with the quasi-classical formula for gluon pr
duction inpA in the following form which could be obtaine
from Eq. ~40! for a cylindrical nucleus and for azimuthall
symmetricNG :

dspA

d2kdy
5

asCF

p2

SA

kT
2E0

`

dzTJ0~kTzT!ln
1

zTL

3]zT
@zT]zT

NG~zT ,y50!#. ~117!

With the increase of energy the gluon dipole amplitude
the nucleus will reach saturation. Therefore itszT depen-
dence will change more significantly than for the cor
sponding amplitude on the proton, which will stay unsat
ated.~Of course at very high energy the dipole amplitude
the proton will also reach saturation, but we are not going
consider that energy range here.! Therefore in our toy mode
we will assume for simplicity that the gluon dipole amplitud
on the proton remains unchanged with increasing ene
giving ln 1/(zTL) in Eq. ~117!. We will model the gluon
dipole amplitude at high energy by a Glauber-like unita
expression

NG
toy~zT ,y!512e2zTQs(y), ~118!

which mimics the onset of anomalous dimensionl51 by
the linear term in the exponent. The saturation scaleQs(y) in
Eq. ~118! is some increasing function ofy which can be
taken from Eq.~79! or from Eq.~83!. Indeed the amplitude
in Eq. ~118! has an incorrect small-zT behavior, scaling pro-
portionally to zT instead ofzT

2 as shown in Eq.~14!. If Eq.
~118! is used in Eq.~117! it would lead to an incorrect high
kT behavior of the resulting cross section. We therefore ar
that Eq.~118! is, probably, a reasonable model forNG inside
the saturation and extended geometric scaling regions (zT
;kT,kgeom), but should not be used for very smallzT/high
kT (1/zT;kT.kgeom).

Substituting Eq.~118! into Eq. ~117! and integrating over
zT yields

ds toy
pA

d2kdy
5

asCF

p2

SA

kT
2

Qs

kT
21Qs

2 F2Qs~kT
21Qs

2!

1AkT
21Qs

2S 2Qs
21gkT

21kT
2ln

2~kT
21Qs

2!

kTL

1
kT

2

2
ln

AkT
21Qs

22Qs

AkT
21Qs

21Qs
D G , ~119!
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whereg is the Euler’s constant andQs5Qs(y). The corre-
sponding gluon production cross section forpp is obtained
by expanding Eq.~119! to the lowest order at highkT and
substitutingL instead ofQs andSp instead ofSA :

ds toy
pp

d2kdy
5

asCF

p2

SpL

kT
3 S ln

2kT

L
1g D . ~120!

Of course in Eq.~120! one implicitly assumes that anoma
lous dimension has set in for only one of the protons inpp.
This assumption is not valid at midrapidity, but may be us
to study particle production at rapidities near the fragmen
tion region of one of the protons.

Substituting Eqs.~119! and ~120! in Eq. ~32! yields

Rtoy
pA~kT ,y!5

kTL

Qs~kT
21Qs

2!@ ln~2kT /L!1g#
F2Qs~kT

21Qs
2!

1AkT
21Qs

2S 2Qs
21gkT

21kT
2ln

2~kT
21Qs

2!

kTL

1
kT

2

2
ln

AkT
21Qs

22Qs

AkT
21Qs

21Qs
D G , ~121!

in which we assumed thatL is the saturation scale of th
proton such thatQs

25A1/3L2 even at high energy.
The toy modelRtoy

pA(kT ,y) from Eq. ~121! is plotted as a
function of kT /Qs in Fig. 8 for L50.3Qs ~lower solid
curve!. It exhibits suppression of gluon production inpA at
all values ofkT leveling off at Rtoy

pA;L/Qs;A21/6 for kT

*Qs at high energy, in agreement with our conclusions
Secs. III B and III D.

Our toy model~121! represents the high energy asym
totics of RpA. To compare it to lower energies, we also pl

1 2 3 4 5

0.25

0.5

0.75

1

1.25

1.5

1.75

R
pA

k / Qs

toy

FIG. 8. The ratioRpA plotted as a function ofkT /Qs for ~i! the
McLerran-Venugopalan model, which is valid for moderate en
gies ~upper solid line!; ~ii ! our toy model for very high energies
rapidities from Eq.~121! ~lower solid line!; and ~iii ! an interpola-
tion to intermediate energies~dash-dotted and dashed lines!. The
cutoff is L50.3Qs .
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RpA for the quasi-classical McLerran-Venugopalan mo
given by Eq.~34! ~upper solid curve in Fig. 8!. As the energy
increases the upper solid line in Fig. 8 would decrease ev
tually turning into the lower solid line. The correspondin
intermediate energy stages are shown by the dash-dotted
dashed lines in Fig. 8. These lines are for illustrative p
poses only and do not correspond to any toy model. T
demonstrate how the Cronin peak gradually disappear
energy or rapidity increase.

V. CONCLUSIONS

In this paper we have demonstrated that saturation eff
in the gluon production inpA at moderate energy can b
taken into account in the quasi-classical framework of
McLerran-Venugopalan model, which includes Glaub
Mueller multiple rescatterings, resulting only in Cronin e
hancement of produced gluons atkT5(1 – 2)Qs0, as was
shown in Fig. 4 and in Eq.~37!. Similar conclusions have
been reached in@48#. In this quasi-classical approximatio
the height and position of the Cronin peak are increas
functions of centrality as indicated by Eq.~38!.

We have also shown that at higher energies or rapidit
when quantum evolution becomes important, it introdu
suppression of gluons produced inpA collisions at all values
of kT , as compared to the number of gluons produced inpp
collisions scaled up by the number of collisionsNcoll , as
suggested previously@8#. The resultingRpA at high energy or
rapidity is a decreasing function of centrality. We have co
sidered three different complimentary regions ofkT , which
cover together all of thekT range

~i! kT.Qs(y) region. Gluon production cross section
pA is dominated by the leading twist effects in this region
kT . We have shown how the leading twist suppression ar
in the double logarithmic approximation forkT.kgeom
@Qs(y) with the correspondingRpA(kT ,y) given by Eq.
~72!, which approaches 1 askT→`. At Qs(y),kT&kgeom
the leading twist suppression is mainly due to the chang
anomalous dimensionl from its double logarithmic value
~64! to the leading logarithmic value~77!. RpA(kT ,y) for this
kT window is given by Eq.~89! leading to suppression de
scribed by Eq.~91!. At very high energies, when the ex
tended geometric scaling regions of the proton and
nucleus overlap@for Qs(y),kT&kgeom

p ] the decrease ofRpA

with energy stops at roughlyRpA;A21/6 as follows from Eq.
~92!. This leading twist effect has been originally pointed o
in @8#. We have not considered suppression mechanisms
may stem from running of the coupling constant, whi
would modify theA dependence of the saturation scale@65#.

~ii ! kT;Qs(y) is the position of the Cronin maximum i
the quasi-classical approximation. We began the analysi
this kT region by studying higher twists in the adjacent r
gion of kT.Qs(y). The next-to-leading twist term wa
shown to contribute towards enhancement ofRpA at high-kT
even when evolution is included. However, higher twist
fects are parametrically small atkT.Qs(y) and cannot
change our leading twist conclusions about suppression
assess the contribution of all twists we studied the beha
of the Cronin maximum@kT;Qs(y)# with increasing en-
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ergy. We showed thatRpA at kT5Qs(y) is a decreasing func
tion of energy or rapidity and centrality saturating at t
energy-independent lower bound given by Eq.~113!. Since
the height of the Cronin maximum becomes parametrica
of the same order as the rest ofRpA at higherkT given by Eq.
~92!, we conclude that the Cronin peak disappears at asy
totically high energies or rapidities.

~iii ! kT!Qs(y) region. The suppression ofRpA deep in-
side the saturation region,kT!Qs(y), only gets stronger as
the evolution~49! is included@see Eq.~116!#.

Our results are summarized in Fig. 8.
It is interesting to observe that the behavior ofRpA at high

energies is qualitatively different from what one would e
pect by taking the quasi-classical expression~34! and letting
Qs in it increase with energy. In the case of DIS a simil
trick where one replacesQs0 in the Glauber-Mueller expres
sion for the dipole cross section~9! by the energy dependen
Qs from, for instance, Eq.~79! leads to correct qualitative
behavior of resultingF2 structure function and even gene
ates some successful phenomenology@67#. However, as we
showed above, a naive generalization of the McLerr
Venugopalan model by increasingQs with energy does not
work for RpA even at the qualitative level.

The analysis in the paper was, of course, done for su
ciently high energy and/or rapidity, such that the saturat
approach was assumed to be still valid for the highestkT
involved. This implies that the effective Bjorkenx is still
sufficiently small for allkT we consider. The extent to whic
this treatment applies at highkT hadron production at RHIC
is difficult to assess theoretically. We thus eagerly await
results of the experimental analyses of centrality depende
of hadron production above the Cronin region (kT
>6 GeV). It is also very important to extend the prese
measurements away from the central rapidity region to se
rate initial state effects from possible energy loss in c
nuclear matter. Indeed, in the deuteron fragmentation reg
the effects of saturation in the Au wave function will b
enhanced, while the density of the produced particles~see,
e.g., the predictions in@68#! and thus the associated ener
loss will be minimal. In the Au fragmentation region th
opposite will be true.

We therefore conclude that if the effects of quantum e
lution and anomalous dimension are observed in the forw
rapidity region ofd-Au collisions at RHIC, they would mani-
fest themselves by reducingRdA at all kT as shown in Fig. 8,
eliminating the Cronin enhancement.RdA will become ade-
creasing function of centrality. ThepA program at LHC
would observe an even stronger suppression ofRpA. How-
ever, it might be that the quantum evolution effects are s
not important even in the forward region ofd-Au collisions
at RHIC. Then reduction ofRdA going from the midrapidity
to deuteron fragmentation region should be rather mild a
the Cronin peak would not disappear in the forward regi
The relevant particle production physics would be describ
by the McLerran-Venugopalan model. The height of the C
nin peak would then be anincreasingfunction of centrality.

If the forthcoming data onRdA in the forward rapidity
region ofd-Au collisions would have no high-pT suppression
and would exhibit only a strong Cronin maximum which
3-20
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an increasing function of centrality in agreement with p
dictions of multiple rescattering models described in Sec.
@48,49,51–54#, then all of the observed high-pT suppression
in Au-Au collisions would have to be attributed to the fin
state effects. However, if the futureRdA data in the forward
rapidity region exhibits suppression either for allpT or at
high pT with RdA being a decreasing function of centrality
described in this paper~see also@8#!, then a fraction ofRAA

suppression in the forward rapidity region of Au-Au col
sions should be attributed to initial state quantum evolut
effects. Indeed, there is some evidence@4# that the highkT
suppression in Au-Au collisions increases between the p
dorapiditiesh50 andh52.2.

The d-Au data aty.0 @1–4# also suggest suppression
the yields of charged hadrons@3# and neutral pions@1# at
kT>6 GeV, though the suppression is not significant sta
tically. If this initial-state effect is confirmed, it should als
be taken into account in the interpretation of Au-Au results
y.0.

Thed-Au results will thus allow one to clarify the relativ
importance of initial and final state interactions at differe
transverse momenta and rapidities of the produced partic
They will be indispensable for establishing a complete phy
cal picture of heavy ion collisions at RHIC energies.

Note added:After the first version of this paper appeare
a similar analysis has been done in@69–71#. The analyses of
e
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@69–71# agree with our conclusions on the presence of
Cronin effect in the quasi-classical approximation. The
sults of @69,71# are also in agreement with our conclusio
about high-pT suppression ofgluon production.
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APPENDIX

Here we are going to derive Eq.~102!. In writing down
Eq. ~102! we assumed that the integration regionzT
,1/kgeom is negligible. To justify this approximation let u
start by substituting Eq.~101! into Eq. ~56!. We find
dspA

d2kdy
U

kT5Qs(y)

5
CFSpSA

asp~2p!2Qs
2~y!

H E
0

1/kgeom
dzTzTJ0@Qs~y!zT#E dl

2p i E dl8

2p i
Cl8

p Cl
Al2l82L2Qs0

2 ~zTL!l822~zTQs0!l22

3e2āsyx(l)12ās(Y2y)x(l8)1E
1/kgeom

`

dzTzTJ0@Qs~y!zT#E dl

2p i E dl8

2p i
Cl8

p C̃l
Al2l82L2Qs

2~y!

3~zTL!l822@zTQs~y!#l22e2ās(Y2y)x(l8)J . ~A1!

The difference between Eq.~A1! and the target Eq.~102! is
CFSpSA

asp~2p!2Qs
2~y!

E
0

1/kgeom
dzTzT

23J0@Qs~y!zT#

3E dl

2p i E dl8

2p i
Cl8

p l2l82~zTL!l8e2ās(Y2y)x(l8)

3@Cl
A~zTQs0!le2āsyx(l)2C̃l

A@zTQs~y!#l#. ~A2!

Since kgeom@Qs(y) we can neglect the argument of th
Bessel function in the integral in Eq.~A2! putting J0(0)
51. Integration overzT then yields
CFSpSA

asp~2p!2E dl

2p i E dl8

2p i
Cl8

p l2l82e2ās(Y2y)x(l8)

3
1

l1l822
S L

kgeom
D l8 kgeom

2

Qs
2~y!

3FCl
Ae2āsyx(l)S Qs0

kgeom
D l

2C̃l
AS Qs~y!

kgeom
D lG . ~A3!

Due to the inequalitykgeom@Qs(y)@L, the integration over
l8 in Eq. ~A3! is dominated by the saddle point atl8'2, as
3-21
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shown in Eqs.~63! and~65!. The integral overl in Eq. ~A3!
becomes

E dl

2p i

l2

l1l822
FCl

Ae2āsyx(y)S Qs0

kgeom
D l

2C̃l
AS Qs~y!

kgeom
D lG

'E dl

2p i
lFCl

Ae2āsyx(y)S Qs0

kgeom
D l

2C̃l
AS Qs~y!

kgeom
D lG

52
]

] ln kgeom
$NG@zT→~1/kgeom!2,y#

2NG@zT→~1/kgeom!1,y#%50, ~A4!

where we assumed thatNG(z,y) and its derivatives with re-
spect tozT from Eq. ~101! are smooth functions ofzT such
that the difference of the above limits is zero. This assum
tion is justified sinceNG(z,y) is proportional to the scatter
ing matrix which is an analytic function of its variable
Equation~49! makesNG(z,y) analytic by construction.

We showed that the difference between the exact Eq.~A1!
and our Eq.~102! is zero, making the two equations equal,
desired. However, the above proof required that the repre
tation ofNG(z,y) given by Eq.~101! has a smooth matchin
of the two regions atzT51/kgeom, i.e., that representatio
.

v.

09401
-

n-

~101! is not just a good approximation but an exact identi
To show that no such assumption is required to prove that
expression in Eq.~A3! is a negligible correction to Eq.~102!
let us estimate the energy dependence of the first term in
~A3!. The second term in Eq.~A3! is negative and can only
make the overall contribution smaller. Employing doub
logarithmic approximation forl andl8 integrals and using
Eqs.~79! and ~78! we derive~settingy5Y/2 for simplicity!

E dl

2p i E dl8

2p i
Cl8

p l2l82e2ās(Y2y)x(l8)
1

l1l822

3S L

kgeom
D l8 kgeom

2

Qs
2~y!

Cl
Ae2āsyx(l)S Qs0

kgeom
D l

}
L2Qs0

2 A1/6A2

kgeom
2 Qs

2~y!
e8A2āsy

}A21/311/(6A2)e24āsy(322A2), ~A5!

which is a decreasing function of rapidity and centrality. It
obviously negligible compared to the increasing function
y given by Eq.~104!. This accomplishes our proof of Eq
~102!.
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