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Cronin effect and high-p; suppression inpA collisions
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We review the predictions of the theory of a color glass condensate for a gluon production cross section in
p(d)A collisions. We demonstrate that, at moderate energies, when the gluon production cross section can be
calculated in the framework of the McLerran-Venugopalan model, it has only a partonic level Cronin effect in
it. At higher energies or rapidities corresponding to smaller values of the Bjatkeuantum evolution
becomes important. The effect of quantum evolution at higher energies or rapidities is to introduce the sup-
pression of highp gluons slightly decreasing the Cronin enhancement. At still higher energies or rapidities
guantum evolution leads to the suppression of produced gluons at all valpgs of

DOI: 10.1103/PhysRevD.68.094013 PACS nuni®er13.85.Hd, 13.60.Hb, 13.85.Ni

[. INTRODUCTION that final state interactions are indeed responsible for the ef-
fect observed in Au-Au collision$5-7] in the samek;
Recently there has been a surge of interest in particléange. However, the nonuniversality of the ratios for the
production in proton-nucleu®A) and deuteron-nucleysA) charged hadron and® spectra[1] indicate deviations from
collisions at high energies. The interest was inspired by théhe independent jet fragmentation upkp=5 GeV. Similar
new data produced by thaA program at the BNL Relativis- nonuniversality in the sanie; r range was observed far and
tic Heavy lon Collider(RHIC) [1-4], which should enable K production[24], and inp,p and pion productiori25] in
one to separate the contributions of the initial state eff@lts Au-Au collisions. It remains to be checked if there is a sta-
such as parton saturati¢8—13 from the final state effects, tistically significant suppression of higk: charged hadron
such as jet quenching and energy loss in the quark-gluoand #° yields above the Cronin enhancement regids (
plasma(QGP [14-17, to the suppression of high transverse =6 GeV), and if this suppression depends on centrality of
momentum particles observed in Au-Au collisions at RHICd-Au collisions. This question is of crucial importance for
[5-7]. the interpretation of the spectacular effect observed in Au-Au
Saturation physics has been largely successful in descrilzollisions [5-7] because this is the kinematical region in
ing hadron multiplicities in Au-Au collisions at RHIQ18]. It which the independent jet fragmentation picture, and thus the
can also have important implications for the transverse moperturbative jet quenching description, begin to apply.
mentum distributions[19], particle correlations, and azi- The firstdA data from RHIC[1-3] give the ratio of the
muthal anisotropieg20]. It has been demonstrat¢@l] that  number of particles produced indd collision over the num-
saturation provides very favorable initial conditions for the ber of particles produced ingp collision scaled by the num-
thermalization of parton modes with the transverse momentger of collisions
kt~Qs, whereQg is the saturation scale. The thermalization
was also found21] to approximately preserve the centrality dNdA
dependence of total hadron multiplicities determined by the

initial conditions[18]. Recent lattice result§22,23 show d?kdy
init R¥(kr y)= —— @
that the initial average transverse momenttkg) of the T dNPP
produced partons i&kr)~Qg, which makes the “soft ther- Neol
malization” scenario preserving the initial centrality and ra- dkdy

pidity distributions quite likely. Final state interactions, how-

ever, will undoubtedly modify the transverse momentumTo understand the new data &” and what it implies for

distributions ak;=<(1-3)Q, without introducing a new mo- our understanding of high energy nuclear wave functions we

mentum scale[21]. If the produced medium lives long are going to study here the expectations R3f from satu-

enough, then higky jets will be suppressed as well becauseration physics. Our approach will be somewhat academic: in

of the jet quenching and energy Igst—17. this paper, we will not include explicitly all of the effects
The firstd-Au data from RHIC show a Cronin enhance- related to the fact that higky of produced particles corre-

ment extending up ter=6 GeV around/~0 [1,3] whereas sponds to a rather large Bjorkerin the actual RHIC experi-

at slightly forward rapidity aroung~1 no significant en- ments at central rapidity—the effective Bjorkgof highk+

hancement is sedi2]. The absence of suppression indicates(k;>5 GeV) particles observed at midrapidity at RHIC at
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Js=200 GeV is aboux~0.1 which may be too large for the PAIn the quasi-classical approximati2d]. In Sec. Ill Awe
smallx treatment that we present héeee[26], but see also show that the gluon production cross section calculated in
[27]). These finite-energy effects have to be accurately ad29] in the McLerran-Venugopalan multiple rescattering
counted for before we can compare our calculations to th&nodel exhibits only Cronin-like enhancem¢at], as shown
data. Nevertheless, we feel that a better understanding of the Fig. 4 and in Eq(37) (cf. [48,49)). In the corresponding
qualitative features of hadron production within the satura-moderately high energy regime the height &reposition of
tion framework is a necessary prerequisite for a completéhe Cronin peak are increasing functions of centrality as can
theoretical description of high energyd)-A collisions. be seen from Eq38). In Sec. Il B following [42] we point

We assume that collisions take place at very high energgput that, surprisingly, the gluon production cross section in
such that the effective Bjorkexis sufficiently small for all ~pAcan be written in &-factorized form(43) [9,50] with the
kr of interest. For simplicity we will analyze proton-nucleus unintegrated distribution functions defined by E@), the
collisions assuming that the main qualitative conclusionsphysical meaning of which is less clear than that of
would be applicable tdA Since we cannot calculai.,, in ~ Weizsaker-Williams oneg6). In Sec. Il B we also prove a
a model-independent way, we will be using E82) for our ~ sum rule (46) which insures that suppression of produced
definition of RPA, which is identical to Eq(1) applied topA  gluons at lowk(kr=Qg) demands Cronin-like enhance-
collisions with a proper definition oN.,, (see[28] for a  ment at highk(kr=Qg) in the McLerran-Venugopalan
discussion of uncertainties involved in theoretical evaluaimodel. The relative amounts of suppression and enhance-
tions of this quantity. ment are different from the quasi-classical gluon distribution

The problem of gluon production ipA collisions has case of Sec. Il.
been solved in the framework of the McLerran-Venugopalan Multiple rescatterings of partons inside the nucleus are
model [12] in [29] (see alsd30-33). The resulting cross believed to be the cause of the Cronin effect. Phenomeno-
section includes the effects of all multiple rescatterings of thdogically these multiple rescatterings are usually modeled by
produced gluon and the proton in the target nucl@es. At introducing transverse momentum broadening in the nuclear
higher energy quantum evolution becomes imporf@dt—  structure function$51-54. In Sec. Il we demonstrate how
41]. In the largeN, limit the smallx evolution equation can an explicit PQCD calculation of these multiple rescatterings
be written in a nonlinear integro-differential fori85—3g  done in[29] yields us the Cronin effedcf. [48,49).
shown here in Eq(49). The inclusion of nonlinear evolution ~ Section IV is devoted to studying the effects of nonlinear
[35-39 in the quasi-classical gluon production cross sectiorgvolution (49) on the gluon production cross sectionpA
of [29] has been done 2] (see alsd43,44)). The study of In Sec. IV Awe use the analogy to the case of gluon produc-
the resulting gluon spectrum and corresponding glu@®fit ~ tion in deep inelastic scatterin@lS) solved in[42,44 to
is the goal of this paper. include the effects of evolutio9) in the gluon production

The paper is organized as follows. In Sec. Il A we discus$ross section inpA The result is given by Eq(53). By
two main definitions of unintegrated gluon distribution func- €xpanding the all-twist formulés3) we then study the effect
tions: the standard definitiof2) and the one inspired by the of nonlinear evolution on the gluon production at the leading
non-Abelian Weizseker-Williams field of a nucleus in the twist (Sec. IV B and next-to-leading twistSec. IV O level.
McLerran-Venugopalan modés) [12,13. We argue, follow- In Sec. IVB we start by deriving gluon production cross
ing [42,45, that Eq.(6) is the correct definition of the unin- Section at the leading twist levet2). We then estimate the
tegrated gluon distribution counting the number of gluoncross section for highr[Kr>Kgeon?Qs(Y)] in the double
quanta. We proceed by analyzikg dependence of the dis- logarithmic approximatiori66) [50] and demonstrate that the
tribution functions. In Sec. 1B we prove the sum rules for correspondingR®* is approaching 1 at higky from below,
both distribution functions given in Eq&l2) and(13), which  i.e., thatRPA<1 atk>Q(y) [see Eq(75)]. We proceed by
are valid in the quasi-classical approximation only. In theévaluating Eq(62) in the extended geometric scaling region
framework of the McLerran-Venugopalan modiéR,46 the  [Qs(Y) <kr=Kgeoml [45,55,58. The resulting leading twist
sum rules insure that the presence of shadowing in nuclegiuon production cross sectid86) leads to further suppres-
gluon distribution functions in the saturation regimk;( sion of gluon production due to the change in gluon anoma-
=Qg) requires enhancement of gluons at highg(k; lous dimensior{8] as shown in Eqs(89) and (91). At very
=Qg) reminiscent of antishadowing. This conclusion is high energies when the gluon productionpipis also in the
quantified in Sec. Il §see Fig. 3 and Eq$28) and(29)] and  extended geometric scaling regiokr& ki) the ratioRP*
the differences between distribution functions are clarifiedsaturates aRPA~ A~ as follows from Eq(92). The next-
[see Eqgs(23) and(24)]. However, as we demonstrate in Sec. to-leading twist contribution to the gluon production cross
[I B, the sum rules break down once quantum evolution withsection inpA is evaluated in Sec. 1V C with the result given
energy[35—-3§ is included. They turn into inequalitigd9 by Egs.(98) and(99). One can see that the subleading twist
and (20). This indicates that, while multiple rescatterings in term contributes towards enhancement of gluon production
the McLerran-Venugopalan model only redistribute gluons inat high ky. However, in thek; region where the next-to-
transverse momentum phase space conserving the total nuteading twist contribution dominates over higher twists it is

ber of gluons in the nucleyg9], quantum evolution of35—  small compared to the leading twist term. Therefore the posi-
38] actually reduces the number of gluons in the nucleative sign of the higher twist term cannot alter our conclusion
wave functions at a given value of the Bjorken of highk; suppression we derived by analyzing leading

In Sec. Il we study the gluon production cross section intwist. To understand how all twists add up we study what
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Sec. IVD. We find that the height of the Cronin maximum
decreases with energy and eventually the Cronin peak flat-
tens out at the same level as the resR8f* at higherky,
which is shown in Eq(113. In Sec. IVE we observe that
inclusion of evolution only strengthens the suppression of
RPA at low ki kr<Q4(y)] [see Eq.(116)] which was ob-
served before in Sec. Il B in the quasi-classical case. In Sec.
IV F we construct a toy model illustrating the conclusion of
Sec. IV that quantum evolutioi85—3§ introduces suppres-
sion of RP* at all values ok; (see Fig. 3 We demonstrate
that quantum evolution no'g\(_)nly suppresﬁ_@ maklr!g It bution relating it to the gluon dipole cross section. The exchanged
less than 1, but also turi®” into a decreasing function of . . ) )
- . . . gluon lines can connect to either gluon in the dipole.
collision centrality contrary to the quasi-classical expecta-
tions.
We conclude in Sec. V by summarizing our results.

happens to the Cronin pegk;~Q(y)] at high energy in N
r, {

FIG. 1. “Conventional” definition of unintegrated gluon distri-

correlator of two such fields to get the unintegrated gluon
distribution function(see Fig. 2

The non-Abelian Weizsker-Williams field of a nucleus
Il. ATALE OF TWO GLUON DISTRIBUTION FUNCTIONS has been found ifil3], leading to the following expression
A Definitions for the corresponding gluon distributigt3,29:

There are two different ways to define unintegrated gluon W 1 o o ik W Ww
distribution function of a proton or nucleus. The most con- @ (X,k%) = ﬁf d°bdre Tr(A™Y(0)- A™H(r))
ventional way relates it to thgq dipole cross section on the
target nucleus via two gluon exchange. Here we are going to

use a similar definition relating the unintegrated gluon distri- - _4Ce dzbdzre*”"ri
bution to the dipole cross section on the nucl&ee Fig. 1L ag(2)3 r?
The corresponding gluon distribution is given logf. -~
[41,43) X ( 1_ e*l’ QSO|I'](1/I'-|—A)/4), (3)
Ck , where
d(x,k?) = —3] d?bd?re %" V2Ng(r,b,y=In1/x),
ag(2m) @ Q2% (b)=4maZpT(b), (4

with p the atomic number density in the nucleus with atomic
whereNg(r,b,y=In1/x) is the forward amplitude of a gluon numberA, T(b) the nuclear profile function, and some
dipole of transverse sizeat impact parametdy and rapidity  infrared cutoff.
y scattering on a nucle|s5,42. We denote by the trans- Generalizing Eq(3) to include nonlinear sma#-evolu-
verse components of the four-vectgrand byky its length.  tion in it [35—3§ is rather difficult. However, the problem of
The definition of Eq(2) is inspired byky factorization and is  including smallx evolution has been solved for thg struc-
valid as long as one can neglect multiple rescatterings of thgure function and for the gluon production cross section in
dipole in the nucleus. By using Eq2) in the saturation DIS [35,47. Inspired by those examples we conjecture that
region where higher twistémultiple rescatteringsbecome  replacing the Glauber-Muell¢#6] forward gluon dipole am-
important one implicitly assumes that there exists a certaifplitude on the nucleus by its fully evolved expression to be
gauge in which theyq dipole cross section on a nucleus is found from the nonlinear evolution equatifs5,3g
given by a two gluon exchange interaction between the di-
pole and the nucleus and the interaction shown in Fig. 1 is
literally all one needs to obtain the correct dipole cross sec-
tion. It is not clear at present whether this is the case and
such a gauge exists. Therefore the gluon distribution given
by Eq. (2) does not give one the number of gluons in the
nuclear wave function in the saturation region. The applica-
tions of the definition(2) will be clarified later.

Another definition of unintegrated gluon distribution liter-
ally counts the number of gluons in the nuclear wave func-
tion. To construct it in the quasi-classical limit of high energy
QCD given by the McLerran-Venugopalan mod&P] one
has to first find the classical gluonic field of the nucleus in
the light cone gauge of the ultrarelativistic nucletmon- FIG. 2. Definition of the unintegrated gluon distribution in the
Abelian Weizsaker-Williams field and then calculate the McLerran-Venugopalan model.
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1_e—ergoln(lerA)MiNG(r'b,y) (5) tional to AY3. One can see that this is_ explicitly true fc_>r the
Glauber-Mueller expression for the dipole cross sechign

would give us the unintegrated gluon distribution function of 46l

a nucleus in the general case Ng(r,b,y=0)= 1— e~ r2Q%yn(1rrA) 4. o)
4C 1
dVW(x,k?) = —st dzbdzreﬂk-r_2 For Ng from Eg.(9) we observe that
e r lim (VNg(r,by=0)—A¥Vng(r,by=0))=0,
X Ng(r,by=1In1/x). (6) r1—0 o
A similar expression for gluon distribution was obtained earyhere ng is the gluon dipole cross section on a single
i nucleon obtained from Eq9) by expanding it to the lowest

_An important observation concerning the two gluon dis-pontrivial order and putting\=1. Remembering that
tributions presented above has been madel®43. It was

;hown that, vyhile the Weiisker—WiIIia}ms gluon_ distribu- =22 g2
tion of Eq.(6) indeed has a clear physical meaning of count- A N

ing the number of gluon§l3], it is the gluon distribution

inspired byk; factorization and given by Edq2) that enters  we conclude from Eqg8) and(10) that in the quasi-classical
gluon production cross section A collisions and in DIS  approximation(see alsd29])

[42,43. More precisely, the gluon production cross section

including the effects of multiple rescatterings and quantum f d2k¢A(y=O,kz)=Af d2kp(y=0k3). (12
evolution in it can be reduced to le-factorized form[9]

with the unintegrated gluon distribution of a nucleus givenSimiIarIy one can show that the Weizs@r-Williams gluon
by Eq.(2) [42]. The authors cannot offer any simple physical yistrihution in Eq.(6) obeys the same sum rule in the quasi-
explanation of this paradox. Nevertheless we keep both diss|5ssical approximation

tributions in the discussion below keeping in mind that the
first one is more relevant to particle productionpA.

11)

f d?kpW My=0k>=A f d?kg/My=0Kk?). (13
B. k1 dependence: General arguments
However, the sum rules of Eg&l2) and(13) break down

Both definitions of unintegrated gluon distributit® and  when the nonlinear evolution with enerdy5,3§ is in-
(6) have the same higky asymptotics in the quasi-classical cluded. To see this we first note that for very smallone

approximationsee, e.g., Eq3)], which reads can use the expression fbi; given by the double logarith-
mic approximation[50,56,43 (see Sec. IV for details on
aCr 1 imi i
B KD = SV, K2) = Adbyy (X, kD) = A S7TF ot similar calculations
1/4
ky— o0, (7) Ng(ry=~0b,y)= 17Q% ln_rﬂez\/zasy In 1/(r 1Qs0)
T8V (2agy)¥

where the indeX (N) denotes gluon distribution in a nucleus (14
(nucleon. Therefore the distributions are equivalent at thewith
level of leading twist, i.e., as long as we include only a single
rescattering in the dipole amplitudéy . —  aN,

In the quasi-classical case of the McLerran-Venugopalan As=— - (15

model both gluon distributions obey a sum rule which we are
going to prove here fogp. From Eq.(2) one can easily infer ~ Similarly for the proton amplitudeg we write
that

1
SIC iy
A2k pa(X,K2) No(fr=0p,y) = —— ———_ eV2eyINUiTA) - (1)
f 8\ (2axy)*
_ Ce J a2b [VENG(r,b,y=In 1] _ where now the scale characterizing the proton is given by
ag(2) -0 1
2_ 2
tS) A —47Tass—p 17)

At very small ry the dipole cross sectioNg in the with S, the cross sectional transverse area of the proton.
McLerran-Venugopalan model goes to zero rgs (color  Employing the fact thaQZ%,=A3A2 we can easily see that
transparency57]) with the coefficient in the front propor- the amplitudes in Eqg14) and(16) do not satisfy the con-
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dition of Eq. (10) invalidating the sum rule. In fact using evolution are included. The sum rulés2) and (13) are re-
Egs.(14) and(16) in Eqg. (10) gives an inequality placed by inequalitie$19) and (20) which only require a
reduction of the overall number of gluons in the nuclear
lim (V2Ng(r,b,y=In1/x) — A¥V2ns(r,b,y=In1/x))<0.  wave function at a given rapidity.

rr—0

(18 C. k; dependence: Quasi-classical approximation
Equation(18), together with a similar equation fd¥g/r?, To investigate thek; dependence of the unintegrated
turn the sum rules of Eq€12) and(13) into inequalities nuclear gluon distributiongs "(x,k) and ¢a(x,k") more

guantitatively and demonstrate the differences of the two dis-
5 5 5 5 tributions let us study them in the McLerran-Venugopalan
f dkepa(x,k )sAf dken(X%,K?) (19 model[12,13. For that we take the gluon dipole amplitude
in the Glauber-Mueller approximatio@6] of Eq. (9). The
and highk; asymptotic for bothgx V(x,k?) and ¢a(x,k?) is
given by Eq.(7).
Inside the saturation regiork{< one has
f d2kp M W(x,k2) <A f A2k M(x,k?),  (20) giork{=<Qso)
2C:S, k2

—, k< 23
wamigh T @

where the equality is achieved only in the quasi-classical B(x,k%)
limit. We conclude that while multiple rescatterings of glu-
ons in the McLerran-Venugopalan model preserve the totahnd
number of gluons in a nuclear wave function at a given ra-
pidity v, th_e quantum evolu_tion t_ends to reduce the number VWX, k2) ~ 4CrSa In%, kt<Qsp, (24)
of gluons in the wave function via gluon merg¢€s. ag(2m)? Kt

To study nuclear modification of the gluonic wave func-

tions let us define the unintegrated gluon distributions ratio4/h€re we assumed for simplicity that the nucleus i IS cylindri-

cal in which case its cross sectional aresSjs= 7R ? and

as Qo is given by Eq.(4) with pT(b)=A/S,:
Pa(X,K?) A (XK 4ma’A
Ra(x,k?)= ———— and RVW(x,k?)=———. 2 _ s indri
A(X,K) A () A (%K) AGTX ) Q% 5, cylindrical nucleus. (25)
(21 In Egs. (23) and (24) the difference between the two

_ _ gluon distribution functions becomes manifegts "(x,k?)
The sum rules of Eqs12) and (13) imply that, in the  eeps increasingthough only logarithmically as k; de-
quasi-classical approximation, if at sorke the distribution creases, whilep(x,k?) turns over and goes to zero in the
function ¢"(y=0k?) is smaller thanA¢(y=0k?), infrared. Still for both distribution functions the rati,
then at some othek; it should be bigger thaméy (Y  goes to zero ak;—0 since to obtairR, one has to divide
=0k?). Using the definitiong21) one concludes from Eq. Egs. (23) and (24) by Agy(x,k?) from Eq. (7). The sum
(13) that if Ry "(y=0Kk?) is below 1 at somé it is bound  rules (13) and (12) require a region of enhancemerRy
to go above 1 at some oth&t (for the same value of).  >1) atk;=Qg,. To see that the enhancement really happens
From Eq.(7) we can conclude that one has to calculate the next-to-leading twist correction to
o W 5 the highk; asymptotic of Eq(7). This technique has been
Ra(y=0k"), Ry (y=0k%)—1, ky—.  (22)  applied previously for quark production [68]. One obtains

At the same time, whek;{<<Qq, the saturation effects be- CrSpQ2
. . WW, 2 WW, k2 _ FYAN S0
come important drivinggx (y=0k?) below AgyMy — dalX,k)= a2me
=0k?), or, equivalently, makinRy (y=0k?)<1. There- s
fore, due to the sum rule of EqE.2) and(13), somewhere in Q% K2
the region ofkr=Q,, the ratio Ry "(y=0k?) should go l+2—s<ln—2+27—3 +oo |, Ky
above one, which corresponds to enhancement or broadening k? 4A

of the ky distribution of gluons inside the nucleus. The same (26)
broadening argument applies tp,(y=0k?). We have
therefore proved that for both gluon distribution functions )
calculated in the McLerran-Venugopalan model the effects of . CrSAQq
saturation and the sum rul@2), (13), while makingRa(y Pa (K= ay(2m)2K2
=0k?) <1 in the infrared, also require an existence d;a °

region whereR,(y=0k?) is above 1. This conclusion will QsO Kkt
be quantified in the next section. 1+ Inso+y—1|+ , kp—0,
. k2 2A
The above argument does not apply to the shadowing ra-
tios Ra(x,k?) and RYY(x,k?) when the effects of quantum (27)
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Ra Venugopalan modglhas been solved i29] (see also

[30,33,31,32. For a quark-nucleus scattering the production

o5 | cross section read29]
PA .
2; do :f d bdZXdZy 1 aSCF ﬂe—ik~(X—y)
15| d’kdy (2m)? @ X3P
L X (1— e—x2Q§0|n(1/xTA)/4_ e—yngoln(l/yTA)M
05 / + e~ (N QEIN[LX-y) rAl4) (30)
which then has to be convoluted with the light cone wave
1 2 3 4 5 . ) . .
function of a quark in a proton. The saturation so@lz% in
k/Qs Eqg. (30) is given by Eqg.(4). As was shown iff29] in the

approximation when the logarithmic dependence of expo-

FIG. 3. The ratioR, of unintegrated gluon distributions in the ,antial factors in Eq(30) on the transverse size is neglected,

nucleus and in the nucleon. The thin line represents the Wiizsa 2 2 ; ; ;
x“In(1/xtA)=~x*, thex, andy, integrations in Eq(30) can
Williams gluon distribution[Eq. (6)] while the thick line corre- be d(oneT ez(actly yieldiLng Yi g a(30

sponds to the more conventional one inspiredkkyfactorization

[Eq. (2)]. doh as_ch bl i+ Ee_kz,on
with y the Euler constant. For the rati®’s this implies d’kdy 7 SN'S
1 2| Qs k2
Q% k? + e K0y In—SO+Ei(—
RA= 1+ ZF |nm+2’y—3 +-.. (28) ng 4A2k2 ng
(3D
and o o )
where Ei) is the exponential integral. Our goal is to con-
2 K struct the ratio of the number of gluons produced ipAa
RX/W:1+ %( n—" + y—1|+---. (29 collision over the number of gluons produced ip@colli-
k2 2A sion scaled by the number of collisions
Therefore the ratios of gluon distributions approach 1 from doP?
above for both distribution functions at lardgg . This of d2kdy
course indicates the presence of highenhancement. RPA(K,y) = BT (32
Qualitative plots of ratioR, for both distribution func- A do
tions in the McLerran-Venugopalan model are shown in Fig. d?kdy

3. The thin line corresponds to Weizsar-Williams gluon
distribution ¢x “(x,k?) while the thick one represents the In the same approximation in which E€g1) is derived the
kr-factorization distributiona(x,k?). One can see that in gluon production cross section pp scaled up byA is given
accordance with Eq$23) and(24) the distributiong(x,k?) by
goes to zero faster thagiy "(x,k?) askr—0 in Fig. 3. In )
agreement with Eqs(29) and (28) R, for the distribution A doPP _ as_CFJ' zb% (39
#a(x,k?) has a stronger higk; enhancement thaR\ " for dkdy @2 Ja K
the distributiong ¥ (x,k?).

Finally, let us point out that the functidR,(RY"Y) shown  which can be obtained, for instance, by taking &€ Qs
in Fig. 3 will be modified when quantum evolution is in- >1 limit of Eq. (31) and using the fact th&Z~ A=, For a
cluded. Due to the inequalities of Eq49) and(20) the total ~ cylindrical nucleus the impact parameteintegration would
number of gluons will decrease. As we will see below in Secjust give a factor o5, . Using Eqs(31) and(33) in Eq. (32)
IV the effects of quantum evolution is to introduce suppres-we then obtain
sion of gluons at alky. ,

RPA(ky) = k—Z{ 12wk
I1l. QUASI-CLASSICAL APPROXIMATION: CRONIN Q% k> K?
EFFECT ONLY

1 2 2 Q40 k2
A. Gluon production in pA + —ze’k Q0] In Z SHE|— ] | (-
The problem of gluon production in proton-nucleus colli- s0 4A%k Qso
sions in the quasi-classical approximatiofMcLerran- (34
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indicating thatRPA approaches 1 from above at hidg,

RpA which is typical of Cronin enhancement. We therefore con-
2 clude that in the framework of the quasi-classical approxi-
mation employed ifi29] the ratioRPA is less than 1 at small
kt=Q4 and has Cronin enhancement at higiz Q.
15 As can be seen from Eq§34) and (37), the position of
the Cronin maximum is determined by the saturation scale,
1 such thatk,.,= BQs, WhereB is some weakly increasing
function of InQg/A. The height of the maximum is given by
05 RPA(Kma) = RPA(BQsp). Substitutingkr=8Qs, in Eq. (34)
we observe that the height of the Cronin maximum scales
like
1 2 3 4 5

QsO
RPA(BQg) ~In—= t-In A t. 38
K/ Qqp (8Qs)~In A +const-In A+cons (38

FIG. 4. The raticR" for gluons plotted as a function & /Q. Since, for realistic off-central collisiona is replaced by the

in the quasi-classical McLerran-Venugopalan model as found ir{lumber of pz_irticipa_ntslpan, we _(:0”9|Ude from Eq38) that
[29]. The cutoff isA =0.2Q In the quasi-classical approximation considered here the
. 2Qs.

kr-position and the height of the Cronin peak should increase

The ratio RPA(ky) is plotted in Fig. 4 forA=0.2 Q. It with centrality of thepA collision.

clearly exhibits an enhancement at high-typical of the
Cronin effect[47]. Similar conclusions regarding formula
(30) have been reached earlier[i8]. Let us now show that it is possible to rewrite E§0) in

It is worth noting that expandinBP*(k) from Eq.(34) in  a k,-factorized form[9,43,49. Repeating the steps outlined
the powers ofQ¢/ky (“twists” ) yields a series with only in Sec. IV of [42] we first perform one of the transverse

B. k; factorization

positive terms coordinate integrations in E¢30) rewriting it as
» daPh 1 aC .
Q% Q% Q% Q% " - - S—Ff d?pd2ze k2
A _ _ = ze
RP (kT)—1+2F+6F+24F+“'—n§=:0 n! F . dzkdy 27_[_2 T
(35 zk
X | 2i = —In—|Ng(zb,0), (39

The serieg35) is divergent, but it is Borel resummable with 2K ZrA

the sum given by Eq(34), though not all terms in Eq.34) . )

can be reconstructed by the Borel resummation procedure.Where Ng(z,,0) is given by Eq.(9). Using the fact that
To establish whether inclusion of the correct transversdVa(z=0,0)=0 we write Eq.(39) as

size dependence in the exponents of 8f) would change

the conclusion about the Cronin effect let us study the high- doP? _ i asCr iJ d2bd?z
ky asymptotic of Eq(30). A simple calculation yields d’kdy 272 ™ K?
. 1
doPA _ aSch dsz_io Ink—2+2y—1 X Ng(z,b,0)V2 e'k'2|nZT—A>. (40)
d’kdy  @? K* 4A?

5 Let us denote the forward scattering amplitude of a gluon
Qs 2 k? k2 dipole of transverse sizeon a single nucleofproton inte-
+ K2 6ln m_8(4_37)|nm grated over the impact parametgr of the dipole measured
with respect to the proton by

. kp—o. (36)

2
+29+ 24y 64y>+ L f d2b'nG(r,b',y=0)=wairzlni. 1)
r{A
For a cylindrical nucleus, keeping only the leading logarith-Equation(41) is obtained by expanding E¢(P) at the leading
mic [In (k?/A?)] terms in the parentheses of E(B6) we  order and takingA=1. It corresponds to the two gluon ex-
obtain change interaction between the dipole and the proton. In the
quasi-classical Glauber-Mueller approximation in which Eq.
302 K2 (9) is derived each nucleon exchanges only two gluons with
RPA(K) =14 = S0 o kp—ooo (37)  the dipole[46,13. Therefore Eq(41) is a natural reduction
2 k2 A2 of Eq. (9) to a single nucleon case.
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nucleus

FIG. 5. Gluon production ipA collisions as seen in the trans-

verse plane. To make the picture easier to read the gluon is placed

far away from the proton which is highly unlikely to happen in real
life.

With the help of Eq(41) we rewrite Eq.(40) as[42]

d(TpA CF

1
= — | d?Bd?bd?z
d’kdy agm(27)®

k2

X V2ng(zb—B,0)e *?V2Ng(zb,0). (42

Now B is the impact parameter of the proton with respect to,

PHYSICAL REVIEW D68, 094013 (2003

dO'pA . CF
d’kdy ag27?

X[VgNG(Z,b,O)“z:O'

f d2kk?

For Glauber-MuelleNg from Eg. (9) and forng from Eq.
(41) the following condition is satisfied:

deBde[vinG(z,b— B,0)]|,-0

(44)

lim {[VZng(z,b—B,0)][V2Ng(zb,0)]

z1—0
—AYV2ng(z,b—B,0)][V2ng(z,b,0)]}=0.
(45)

The impact parameter integration pA will give an extra
factor of A?® as compared tpp. Together with Eq(45) this
gives

dafih dofR
f A2k — " = A f 2Kk — (46)
d2kdy d2kdy

in the quasi-classical approximation.

Similar to the sum rule proved in Sec. Il for gluon distri-
bution functions, the sum rul@6) insures that if the quasi-
classical gluon production cross sectiorpiacollisions is, in
some region ok;, smaller thanA times the gluon produc-

the cent_er of the nucleus ahds the impact parameter of the tion cross section irpp than there should be some other
gluon with respect to the center of the nucleus as shown "Pegion of kr in which their roles are reversed. FBP? de-

Fig. 5.

Equation(42) is the expression for gluon production one
would write in thek;-factorization approacht3]. To see this
explicitly let us rewrite Eq(42) in terms of the unintegrated
gluon distribution function from Eq(2). One easily derives

doPA  2ag 1

N Sl 43
d%kdy Cr k2 “3

J d*a¢p(a) palk—a),

which is the same formula as obtained in iyefactorization
approact{9,50,43. ¢, is defined as unintegrated gluon dis-
tribution of the proton given by Edq2) with ng instead of
Ng on the right-hand side. Equatidd3) demonstrates that
the gluon production cross sectionpé can be expressed in
terms of the gluon distributiof®) in a rather straightforward
way [42]. Somehow it is the distributiori2) and not the
Weizsaker-Williams distribution(6) that enters Eq(43).

fined in Eq.(32) that means that if, in some region lof, it
is less than 1 there must be some other regiokyah which
it is greater than 1. Of course tié factors in Eq.(46) make
the quantitative amounts of suppression and enhancement
very different from the ones dictated by, for instance, the
sum rule of Sec. Il.

In the quasi-classical approximation for the gluon produc-
tion in pA considered abov&®P” is below 1 atk;=<Qq.
Expanding Eq(34) for ky<<Qg, we write

2
~<1 if Kkr<Qg.
sO

RPA(K)~ (47)

Equation (47), together with the sum rulé46) imply that
there must exist a region & with a Cronin-like enhance-
ment of gluon production, which is demonstrated by the full
answer plotted in Fig. 4.

Equation(43) demonstrates that, at least in the framework
of the McLerran-Venugopalan model, the multiple rescatter- IV. INCLUDING SMALL- x EVOLUTION: SUPPRESSION

ing leading to Cronin enhancementpA can be incorporated
in the gluon distribution functiong29,33. There is no clear

distinction between the nuclear wave function effects and the

ATALL pr

A. Including small-x evolution

Glauber-type rescatterings in the nucleus. Antishadowing As the energy of the collisions increases quantum evolu-

present in the gluon distribution functiah, (k) as shown in

tion corrections become important. For produced particles

Fig. 3 simply translates into the Cronin effect of Fig. 4 via with the samek higher energy implies a smaller effective

Eq. (43).

In the quasi-classical approximation of the McLerran-

Bjorken x meaning that the quantum corrections of the type
agln 1/x should be resummed. These corrections can be re-

Venugopalan model one can prove a sum rule for the gluosummed by the Balitsky-Fadin-Kuraev-Lipato(BFKL)

production cross section ipA similar to the sum rule we

equation[34], which calculates the contribution of the hard

proved for gluon distributions in Sec. Il B. To prove the sum (perturbativé Pomeron. However, as energy increases mul-

rule we note that Eq42) implies that

tiple Pomeron exchanges become important, resulting in a
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more complicated smak-evolution[39,40. In [35,38 an classical limit given by the same E¢2), we may conjec-
equation was constructed which resums multiple Pomeroture that inclusion of quantum evolutidd9) in a gluon pro-
exchanges for a forward amplitude ofjg dipole scattering duction cross section is done similarly for both processes.
on a nucleus in the larghl, limit. The forward amplitude We therefore write

N(r,b,Y) of a dipole of transverse sizescattering at impact

pirameteb and rapidityY was normalized such that the total do?” Ce d2B d2b d?z
qQA cross section was given by d2kdy agm(27)3 Kk 12
X V2ng(zb—B,Y—y)e %V 2Ng(zb,y),
oI9A= 2J d?bN(r,b,Y). (49) 2e Y el any
(53

The evolution equation fa¥(r,b,Y) closes only in the large- whereY is the total rapidity interval between the proton and
N, limit of QCD [38,39 and read$35—37 the nucleus. Just like in DISI; in Eq. (53) is given by Eq.

¢ ’ (52), where N should be found from Eq(49), while ng

N(Xo1,b,Y)=N(xo;,b,Y=0)e~ (#aCr/m In(xo1/p)¥ should be determined from the linear part of E&3)

(BFKL) with the initial conditions given by Eq41l). Equa-
. aCe Ydye‘(“"CF’”) In(xo1 /o) (Y—Y) tion (53) is exact if the proton is modeled as a diquark—quark
72 Jo pair [59], in which case it would be identical to @q pair
produced by a virtual photon in DIS. In the general case Eq.
) 1 (53) remains a well-motivated conjecture.
J dx, 2 2 (on-b+ §X12-Y) As in Sec. Il the sum rulé46) breaks down once nonlin-
X012 ear evolution[35,39 is included in the way shown in Eq.

1 1 (53). Using the double logarithmic expressidigl) and(16)
- N( Xg2,b+ Exlz,y) N( x12,b+§x02,y) } modifies Eq.(45) into
(49 lim {[VZng(zb—B,Y~y)][ViNg(zb,y)]
z1—0
with the initial condition given byN(Xq1,b,Y=0) taken to
be of Mueller-Glauber forni46] in [35]: —AY{Ving(zb-B,Y-y)][Ving(zby)]}<0
(54)

N(Xop,bp, Y =0) =1 —e 68" o4, (50)
turning the sum rule of Eq46) into an inequality for the

where cross section from Eq53)
NeQE™?=Cr Q% (51 doPA doPP
. _ f d?kk? <A f d?kk? . (55)
In [42] it was shown how to resum the effects of nonlinear d?kdy d?kdy

evolution of Eq.(49) for gluon production in DIS. In the

quasi-classical approximation the gluon production in DIS isAgain the effect of quantum evolution is to reduce the total
given by a formula similar to Eq30) [44]. That formula can number of gluons at a given rapidity, though now it is shown
also be recast in &; factorized form of Eq(42) [42]. As  for the case of gluon production weighted Ib?y Let us now
was proven in[42] in order to include quantum evolution study in detail how this suppression sets in for various re-
(49) in Eq. (42) for DIS one has to make replacements. First,gions ofks .

one has to replac&lg(zb,0) in Eq. (42) by the forward In the following we are going to study effects of evolution
quark dipole amplitude using the following expression validequation(49) on the gluon spectrum and &®&P”. Our goal is

in the largeN. limit [42]: to determine whetheRP” preserves the shape shown in Fig.
4 with the Cronin maximum and low; suppression, or

Ng(zb,y)=2N(zb,y)—N(zb,y)?, (52 quantum evolution would modify this shape introducing ex-

__ trasuppression. Below we will first study the effects of quan-
whereN(zb,y) is the forward scattering amplitude ofc&l  tum evolution at high¢r, kt=Qg, showing that evolution
dipole on a nucleus evolved by nonlinear equati#®). Then  introduces suppressioRP”< 1) in that region. We will then
one has to replaceg(zb,0) by ng(zb,Y—y) evolved just  proceed by studying the fate of the Cronin pekk+ Q) as
by the linear part of Eq(49) (the BFKL equatiori34]). Here  eyolution sets in. We will show that the Cronin maximum
Y is the total rapidity interval between the projectilértual il decrease with the onset of evolution and would eventu-
photon and target nucleus in a DIS collision. The initial a)ly disappear. We will then argue that suppression persists
conditions for bothNg and ng evolution are given by for k;<Q. when evolution effects are included. We will end
Ng(zb,0) andng(zb,0) correspondingly. the section by constructing a toy model summarizing our

Since bothpA and DIS are considered here as scattering%onclusions.
of an unsaturated projectilproton orqq palr) on a saturated To simplify the discussion we will consider a cylindrical
target (nucleug with the gluon production in the quasi- nucleus for which Eq(53) reduces to
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L

FIG. 6. Gluon production irpA collisions at the leading twist
level (see text
J d?z

XV2ng(zY—y)e " V2Ng(zy),

} BFKL

nucleus

doP*  Cg  SSa
d’kdy agm(2m)® K2

(56)

with S; the cross sectional area of the proton.

B. Leading twist effects
1. Leading twist gluon production cross section

We start by exploring the leading hid&-behavior of the
gluon spectrum given by E@56). At very highk; the inte-
gral in Eq.(56) is dominated by small values af. There-
fore we can neglect the quadratic term in the evolution equ
tion for Ng (49 leaving only the linear part—the BFKL
evolution with initial conditions for a gluon dipole given by
Eq. (9). The corresponding Feynman diagram is shown in
Fig. 6. The solution of the BFKL equation is well-known and
reads

d\
NGl(Z'y)ZJ o IC}\(ZTQSO))\ g2ear (V)Y (57

with

N)=(1 ! 1 MoLyL 58
XN=9(D) =59 1-5| -3¢ 5|, (68
with o defined in Eq(15) andQ, for a cylindrical nucleus
given by Eq.(25). The coefficiean is fixed from the initial

conditions aty=0 given by Eq.(9). Then for smallz;
<1/Qg

CAzi n (_1)n+1 nnim%
M RS A0 4 (n—m)!(2n—\)M*L A
.y ;(%)ZM
A=1 4'i(A—2n)"*1\ A
XT|1+n,(2n— )\)In%) (59)

PHYSICAL REVIEW D68, 094013 (2003

Similarly for the gluon dipole cross section on the proton we
write

ng(zy)= J S Clz TA)Aeas(Vy, (60)
where the scale characterizing the protbris given by Eg.
(17). The coefficientC? is obtained by requiring that Eq.
(60) reduces to Eq41) wheny=0. Forz;<1/A we derive

1

o)
M a(n-2)2

(61)

[We have identified the nonperturbative scale characterizing
the proton(17) with the infrared cutoff employed earlier in
Eq. (41).]

Substituting Eqs(57) and(60) into Eq.(56) and integrat-
ing overz yields[60,61]

dof | CS,Ss f O\ aoach o
d’kdy| ; 4daq2m)3) 2mi 27
AN+N
Pt ) Qe Ay
. NN (k_T) (k_T)
I'f2— 5

5 @2asl XY+ X\ ) (Y=y)] 62)

a"Equation (62 gives the leading twist expression for the

gluon production cross section pA collisions and is illus-
trated in Fig. 6.

The difference between E¢62) and Eq.(13) of [60] is in
gamma functions in the integrand. The difference manifests
itself at the order of higher twists, where the gluon distribu-
tions used i 60], if taken aty=0 and used in inverted Eq.
(2) to obtainn,,, would yield higher twist correctiongigher
powers ofrg) to the right-hand side of Eq41), which
should not be there in the two-gluon exchange approxima-
tion corresponding to thg=0 limit.

2. Double logarithmic approximation: Monojet versus dijet
and first signs of high-g suppression

To derive the highkt behavior of the gluon production
cross section in Eq62) we have to evaluate the integrals in
it by the saddle point method. Whérn>Q.,,A we approxi-
mately write

X(N)=~ N (63)
Then the saddle points are given by
ZESy

Y2 Nt /Qu) o

and
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, [2a4(Y-y)
In(kt/A) °
Integrating ove and\’ around the saddle point64) and

(65 in Eqg. (62) yields gluon production cross section in
double logarithmic approximatiofDLA) [50]

N (65

1/4
kr

A
y3(Y—-y)?

doPA

d2kdy

ag(2m)* Kk
y

X / —
In—

sO

X ;1(2\/2_ In<T

ex o n—

¥ QsO

— ks

+2 ZaS(Y—y)lnX.

To understand Eq66) let us first construct the gluon distri-
bution function

DLA

(66)

Q2
XGa(x,Q%) = Lz dkz A (x,k%) (67)
in the same double logarithmic approximatipt0]. Using
Eqg. (57) in Egs.(2) and (67) we obtain in the double loga-
rithmic approximation

1/4 Q

CeSaQ% Qso
T
ag(2m)® " [2adn(1/x)]¥

In

XGA(XIQZ) =

« @2\2agn(10In(Q/Qsp) (68)

PHYSICAL REVIEW D68, 094013 (2003

daPA

2 ( dx,
d?kdy 7NCr

1
- 2 eV 2
fﬁwy X X1Gp(X1,k)XGp(x=€7Y,k?)

e

1 dxy
+f —XGy(x=e"Y"Y k?)
eV X1
dg99—99

X 2y |———ro

X1Ga(X1,k )) 2K (70)
which is the standard dijet production cross section derived
in the collinear factorization approximatidsee, e.g.[11]).

[Of course one of the jet's momentum in EFO) is inte-
grated ovell. Therefore we have started with a single jet pro-
duction cross section given tbkt-factorized expressio(62)

with BFKL gluon distributions and demonstrated that in the
largeky limit it reduces to the conventional dijet production
cross section(70) given by collinear factorization with
DGLAP-evolved structure functiorts.

Before we continue let us study®? given by the cross
section of Eq.(66). The naive expectation for the hidh-
limit of the leading twist gluon production cross section
would be thatRPA=1. However, already at the level of ap-
proximation employed in E(66) this is not quite the case.
To see this let us first write down an expression for the gluon
production cross section iop collisions in the leading twist
DLA approximation. It is obtained by replacin@s, and Sy
in Eq. (66) by A andS; correspondingly. We obtain

dgPP CeSy A* 1 Jy+Y—y
d?kdy| ), as(2m)? K 2a5 y¥HY—y)**

><exp[2 \/2Es|n%(ﬁ+ \/Y—y)}.

(71)

To calculateRP* we note that sinceS,=A??S, one con-
cludes from Eqs(25) and(17) thatQZ,= AY3A 2. Using Egs.

Since the above gluon distribution is obtained in the DLA(66) and(71) in Eq. (32) yields

(large Q?) limit of the BFKL equation, it can also be ob-
tained by taking the smak-limit of the DGLAP equation
[62]. One can explicitly check that with the help of E8)
and an analogous one for the proton gluon distribuk@y ,
Eq. (66) can be rewritten as

doP?

d%kdy Cpk2

2aq

J
XGp(x=e"""Y,k*)—xGa(x=€7",k?)

J
+XGa(x=e7Y,k*)—xGy(x=e"""Y k%) |.
e

(69

Equation(69) can be obtained directly by using E@8) in
Eqg. (43) and assuming that the integration in Eq.(43) is
dominated by the regions nege=0 andg=k [9,50]. As was
shown in detail i 11], Eq. (69) can be reduced to

RpA( kT vy) | ky>Qgq

(I kTI k_|_>1/4
n—In—
1 Qe A y Yy
W+VY—y kr Kt
In— In—
QSO A

(72

— [k [k
Xexp{Z ZaSy( InQ_Zo_ InKT)

where Q,=Q4(y) is the full energy dependent saturation
scale, which reduces Q4 at y=0. Defining

IWe thank Al Mueller for encouraging one of the authos. K.)
to verify this correspondence explicitly several years ago.
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ke | 4 The suppression of E75) is a leading twist effect and is
InQ_ due to quantum evolution. In this sense it is similar to the
é= S0 (73 suppression suggested [ii]]. However, the suppression of
Inﬁ [8] corresponds to a region of lowé&r, where the double
A logarithmic approximation of E(.72) is not valid anymore.
There the suppression happens due to the change in anoma-
we rewrite Eq.(72) as lous dimension of the gluon distribution function, as we are
going to discuss below.
1
N E\/)—H' EVY—y 3. Onset of anomalous dimension: More highypsuppression
RPA(EY) <1:W For the values ok lower than considered aboyeut still
¢ much larger thaQg,) the saddle point o integration in
_1-£ Qg Eqg. (62 shifts to a smaller value than given by E®4).
xXexg —2 2013)/—2'”T , While in determining the saddle point of E@4) we had to
1+¢ expandy(\) around\ =2, now we have to expand it around
(74) N=1. There one writes
where ¢<1 for k;>Qs, sinceQ%=AY3A%> A2, For the (\~2In2+ 25(3)()\_1)2 76
large transverse momenta in questi&n>Q(y), the vari- a 4
ableé is approaching 1 from below as is clear from Ef3).
In the limit £—~1 Eq.(74) becomes obtaining the value of the saddle point
A \/y_ VY—y |nﬁ
RPA(EY)|  ~|1+(1-)—F=— Qs
£-1 Y-y Nl ——2 (77
7{(3)asy
Xexp{—Z\/ZZy(l—f)ln%J
s A As was suggested i#5], the transition of the saddle point
from the value given in Eq64) to the one given in E(.77)
<(2—§)ex;{ —2\/2asy(1—§)ln%J happens around
[{ \/ — QSOJ Kgeont~Qs(Y) Q) (78)
~exp —2 ZaSy(l—g)InT Qso
<1, ky>0gy). (75) indicating the onset of a geometric scaling regifsg|. Here

in the double logarithmic approximation the saturation scale

: . depends on energy #56,45,63
We neglected 2 £=1+(1—¢) in front of the exponent in

Eq. (75) since the (- &) correction to 1 in it is not enhanced
by any parametrically large variables, suchyasd InQg/A
in the exponent. IRPA(&,y) from Eq. (75) is expanded in
powers of (1- &) this prefactor term would give subleading
logarithmic corrections to the expansion of the exponent
which are negligible in the DLA limit considered here.

We conclude thaRP” from Eq.(72) is smaller than one.
SinceRPA(¢,y) in Eq.(75) is an increasing function af and
& is an increasing function d¢;, we observe tha®*(kr,y) N, (80)
in Eq. (72 is an increasing function ok; approaching 1 P spr
from below. This suppression is mainly due to the differencgNe get at the point of closest approathe two saddle point
of the cutoffs in the logarithms of transverse momentum invalues are never equal to each ojher
the exponent of Eq(72). The cutoff for the nucleus case is
given by the nuclear saturation scale, which is different from
the appropriate scale in a single proton. The high momentum Kgeon= Qs0€
regions, where linear evolution equations work, are cut off . . . .
from below by saturation scales, which are different for dif- When combined with the saturation scale from Ezp) this
ferent nuclei and for the proton. In this way, as we can sedVeS
from Egs.(72) and(75), saturation influences the physics at
high kr as long as corresponding;; is small. The effect of Kyeor™ Q (y)(
saturation is to introduce higky suppression. geom ==

Qu(y)~Qgoe?. (79)

The precise value of the scallge,min Eq. (78) depends on
the definition of the saturation scale and on the way one
tefines the transition between the double logarithmic and
geometric scaling regions. For instance, if we define the tran-
sition by equating the saddle points of E¢84) and(77),

ay723(3)2% 13 _ Qsoe&zggsy. 81)

0.64
=
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which is slightly different from Eq(78). At the same time,

using the energy dependence of the saturation scale found in

[64] in the fixed coupling case

Qu(y) ~ Qo> (83
in Eq. (81) gives
0.34
kgeom% QS(Y)( %SZ)) ) (84)

which is even lower than Ed82). A definition of the tran-
sition point different from Eq(80) would give slightly dif-
ferent estimates fokgeom.

Nevertheless, the ambiguities in the scljg,, notwith-
standing, one can argue, as was don@j, that there exists
a large momentum scal&y,y,, Wwhich is parametrically
larger than the saturation scale

Kgeon? Qs(Y)- (89

For kr=Kgeom there is no geometric scaling and the gluon
production is well described by the double logarithmic ap-

proximation described above resultingRi” from Eq.(72).
kr=Kgeomis the region of geometric scalifg5]. Whenk;

=Qq(y) (saturation regionmultiple Pomeron exchanges be-

PHYSICAL REVIEW D68, 094013 (2003

%) 2 -

1
A 4 1+€|HA>

1
c§\~z(1+|n

The superscriptl) in Eq. (86) denotes the leading twist con-
tribution. We assume that in the transverse momentum region
where Eq.(86) is valid, Q4(y) <kr=Kgeom, the gluon pro-
duction cross section ipp collisions is still given by Eq.
(71). This is a good approximation since k= Q4(y)>A

the double logarithmic approximation of E¢71) should
work. Using Eqs(86) and(71) in Eq. (32) we obtain

RPA(Ky Yoy =kr=k

geom

|nl/4ﬁ
ky 2C} A yla
Qs0 \72(3) (2a)Y Jy+ Y-y
k
K Ian—T

i T sO
xexpl (ap—1)y—2/2ayIn—— —————|.

TN 14.(3)ay

(89

come important leading to the saturation of structure funcg getermine whetheRPA(ky,y) in Eq. (89) is greater or
tions[9]. For Q(y) =kr=Kgeom (€xtended geometric scaling |ess than 1 we first drop the slowly varying and constant

region multiple Pomeron exchanges_ are not important Yelrefactors in front of the exponent and write
and the gluon production cross section is described by the

leading twist expression in Eq62) with the \-integral
evaluated near the saddle point of Eg7) [8].
Performing thex and \’ integrals in Eq.(62) in the

saddle point approximation around the saddle points of Egs.

(77) and (65) correspondingly yields

doPA)
2
d<kdy LLA
A |n1/4ﬁ
CrSpSa QA2 Cf A
ag2m* K TL3)alY-y) ¥ 2ag)t

— k
xexg (ap—1)y+2 \/2015(\(—y)|nxT

k
Ian—T
=0 , (86)
147(3) agy
where
ap—1=2agn2 (87)

is the BFKL Pomeron intercepf34] and C’f is well-
approximated by the first term in the series of Exf) for all
physically reasonable values Af

RPAKT,Y) | Quy) =ky=k

geom

kg

K K InZQ—

T — T sO
~—eX ap—1 —2\[2(1 n—m———
Qso (ar 2 o A 14(3)agy

(90

keeping only parametrically important factors. To estimate
the value ofRP” in Eq. (90) in the extended geometric scal-
ing region Q¢(y) =kr=Kgeom W€ substituteks=Kgeom into

Ed. (90) with Kyeom from Eq. (78). The result yields an as-
ymptotically small value

~e~ 16515y< 1'
geom

RPAkT,Y) | Quy) =ky=k (93)

where we used = 197 for the gold nucleus. For other values
of A and for other values ok; in the regionQg(y)=<ks
=<KkgeomOne still gets exponential suppression R (kT ,Y).
Therefore we conclude th&°A(kt,y)<1 in the extended
geometric scaling regio@(y) <kr=Kgeom:

As can be checked explicitly, for a sufficiently large
nucleus(large A), RPA(ky,y) of Eq. (89) is an increasing
function of k for Qg(y)=<kr=Kgeom- As Ky increases it
should smoothly map ont®"A(ky,y) of Eq. (72), which
would approach 1 from below for asymptotically high.
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At very high energy the geometric scaling regions for theRP”. Here we would like to study the effect of evolution on
nucleus and the proton will overlap. Namely, the geometriche gluon production at the next-to-leading twist level. Be-
scale for the protorkgeom geom/A”6 will become larger low we are going to show that if one includes the evolution
than the saturation scale for the nucl€ugy) allowing fora  of Eq. (49) into the next-to-leading twist correction to Eg.
region ofk; where anomalous dimension sets in for gluon(62) it would start contributing towards enhancemenf8f
production both irpA andpp.? In this asymptotic region one at highky. This appears to indicate that multiple rescatter-
has to estimate the and\’ integrals in Eq(62) around the ings always tend to enhance gluon production at lkighAs
saddle point given by Eq77) (with A instead ofQg, for the ~ we will argue later the effect of quantum evolution is much
\' integra). Replacing Eq(71) by the appropriate expres- stronger. It dominates at high energies leading to the overall
sion where the saddle points af and A’ integrals were suppression oRPA.

given by Eq.(77) with A instead ofQg, we obtain the fol- A perturbative solution of Eq(49) was constructed in
lowing asymptotic expression at midrapidity <€ Y/2): [36] giving the forward amplitude of gq dipole scattering
K K on the nucleus as an expansion in powers-@(y)
20T 2T
S N N(By)=Ny(r,by) +No(rby)+--o, (93
Alkr, y)lQS(y)<kTskp ~A Voexp ———=—|.
14{(3) asy where the leading behavior of theh term in the series is

(92) N, (r,b,y)~[r1Q«(y)]". To find the next-to-leading twist

From Eq.(92) we conclude that in the extended geometriccprrECtion to the forward scattering amplitude ofglion

scaling region at asymptotically high eQergiE!ig saturates diPoleNg we substitute Eq(93) into Eq. (52) obtaining
to a parametrically small lower bounBP”~A~® which is _ _ 2
independent of energy and is a decreasing functioA, aft, No(r:D,y)=2Ni(r,b,y) +2Na(r,by) =[Ny (r,by) I+ - -,
equivalently, centrality. (94)
To conclude our discussion of hidi-suppression at the
leading twist level we note that, as was recently argued irwhere the first term on the right is the leading twist contri-
[65], the running coupling effects in the BFKL evolution butionNg;=2N, given by Eq.(57), and the next two terms
may modify theA-dependence of the saturation scale givenshown in Eq.(94) are the next-to-leading twist corrections.
by Eqgs.(79) and(83), makingQ(y) almost independent of Higher twists are not shown in Eq{94). To calculate the
A at very high energy corresponding to large rapigityrhis  next-to-leading twist correction to gluon forward amplitude
would result in highkt suppression which would not disap-

pear at anyk;. That is RPA(ky,y) would not approach 1 Ng2(r,b,y)=2N(r,b,y) —[Ny(r,b,y)]?
anymore at highk;. Instead one would hav&P”(k;,y) 1
~1/33
~AT =2N,(r,by)— Z[Nax(rby))” (95

C. Next-to-leading twist we useNg; from Eq. (57) and N, calculated in[36]. Em-

Above we have shown that the effect of quantum evoluploying Eq.(23) from [36] in Eq. (9a) from the same refer-
tion (49) on the leading twist gluon production cross sectionence would give us the first term on the right-hand side of
in pA with k;>Qq(y) is to introduce strong suppression of Eg. (95). In the end we write for a cylindrical nucleus

1( dxdh
Nga(ry)=— Zf (21 )22CA cy (rTQso)M+xzezasy[x(xl)w()\z)]

{3 r{Fr(2- 5
2(\1 )12 2 2

TS

1

” 2lx(N) + x(h)—x(A1+Ap)]

+1|. (96)

2The onset of anomalous dimension does not imply saturation and is still a leading twist effect. Theref&® Eqwhich no saturation
in the proton’s wave function was assumed is still valid in this region.
3The argument presented in this paragraph is due to Larry McLerran.
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The slight difference between the factors in the integrands ofertex is inserted above the produced gluon cancel in the

Eq. (96) and Eq.(23) of [36] is due to different definitions of ~dipole evolution case considered h¢B¥,35 in agreement

the coefficients<C2 [cf. Eq. (15) of [36] with our Eq.(57)].  With the expectation of the AGK cutting rulg$6].) The
The first term in the parentheses of Eg6) corresponds S€cond term in the parenthesis of £96) and on the right-

to the first term on the right-hand side of E§5). When we hand side of Eq'(%) corresp_onds to the case whe.rc_e the
: . . Pomeron splitting occurs precisely at the rapidity position of
will substituteNg, from Eq. (96) into formula (56) for the the gluon production. The emitted gluon is produced by the

cross section, this term would give the contribution illus- st step of the nonlinear evolutiofThis term is the main
trated in Fig. 7. It corresponds to the case when the gluon igifference between the results [f2] and[43].) As can be
produced still by the linear evolution with the triple Pomeronseen in the estimates performed below, this term contributes
vertex inserted below the emitted gluon. The rapidity of the50—-100 % of the answer depending on kkeregion in ques-
triple Pomeron vertex was integrated over in arriving at Eqtion.

(96), with only the dominant contribution corresponding to  Substituting Eq.(96) in Eq. (56) and integrating over

the vertex being right next to the emitted gluon [&6]. (As  yields the following contribution to the gluon production
was shown in[42] the diagrams where the triple Pomeron cross section at the subleading twist level:

do* | cpspsAf d)\ld)\zd)\’CA oA P (%)M“z ﬁ)k’
d%kdylg,  as2(2m)° (2mi)® MM kg Ky
Nit+Ap+ N
_ _ 2 -
2agy[x(N )+ x(N2)]+2ag(Y=Y)X(N )N+ N+ N =3 2y 12
X es S 2 )\l+)\2+)\, ()\1+)\2) A
2-——F—

2 2 2

Ao Nit+Ao
F(l‘i)F 2

1

St
2y A+ x () — (M A

1—‘(
x| 20u2

Ay
r 1—7

1]. (97)

To study the onset of higher twist effects, we are interested in the next-to-leading twist contri@#ian the region of
transverse momenta-=Kgyeom. Performingk ; andi, integrations in Eq(97) around the saddle poit4) and performing the
N\’ integral in Eq.(97) around the saddle poiri65) yields

Ky Kkt

|n1/4 |n1/2

doPA®@|  CeSySav/m QoA AT Qg
d’kdy a2m)® K (2ay)¥T2al(Y-y)]*

2y [2a4Y-y) Ly kr
Ky Ky exp 4 2a3yan—SO+2 2aS(Y—y)InK
In— In—

sO A

As one can see from E¢98) the next-to-leading twist correction tends to increase gluon production cross section k&t high
In the region ok; where Eq/(98) applieskr=Kgeom, the higher twist corrections are parametrically small and cannot change
the leading twist suppression of E4).
To study higher twist effects in the extended geometric scaling re@g(y,) <kr=Kgeom We evaluater; and\, integrals
in Eq. (97) around the saddle poiit7) and do the\’ integral around the saddle poif@5) obtaining

DLA

. (98

) A |nl/4ﬁ
doPA@ | 2CeS,Sum QA? (CP)? A

d%kdy as(2m)® K TL3) ay[2aY-y)]¥

— 2Inﬁ 2In2£
Zas(Y_Y) QSO — kT QSO
- <! 2ap—1)y+2\/2ayY—y)n—e — <2 | (99
e Te@ay | S AT YN R YN T ey

InK

LLA
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D. Flattening of the Cronin peak

We have demonstrated that the effect of quantum evolu-
tion (49) is to introduce suppression &"A(kr,y) for ky
=Q4(y) at the leading twist level. Let us now study what
happens tdRPA(k,y) atkr=Qq(y) as a result of evolution
in energy. We showed in Sec. Il that in the quasi-classical
approximation the Cronin maximum of the ratRPA(k,y)
occurs akr=Q. In this section we will follow the value of
the ratioRPA(kt=Qs,y) to higher energies when quantum
evolution is important. Since the position of the Cronin
maximum is likely to be ak;=Q(y) even when evolution
is included, by studyingRPA(kr=Qs,y) we are going to
study the dependence of the height of the Cronin maximum

nucleus on energy or rapidity.

The fact that the scattering amplitude is a constant at the

FIG. 7. Gluon production ipA collisions at the next-to-leading satu_ratlon Scale[f_53,56,64 makes our Cglculatlon pretty
twist level (see text The blob in the center indicates a triple Stralghtf_orward. F'rSt we assume that Mellin transfo_rm of the
Pomeron vertex. gluon dipole amplitude obtained from tlexactsolution to
the evolution equation E@49) via Eq.(52) can be written as

The sign of Eq(99) is determined by the sign of the expres- A N
sion in the parenthesis. One can see that for very lafgbe CAlzrQs(y) 1%, >

. . . . . d\ kgeom
expression in the parenthesis can become negative making Ne(zy)= J an
the overall contribution to the cross section negative. How- (%Y 2i _
ever, Eq.(99) is valid only forkr=<kgeomand, therefore, can- CR(zrQgo)e?esXNY | 7. <
not be used at arbitrary high transverse momenta. At lower geom
ks the sign changes and the term in Eg9) begins to con- (101)

tribute toward enhancement BPA. The value ok at which
the sign transition takes place depends on the rapidity in h h ut qi
question as well as on the atomic numteof the nucleus. '€ form of the solution presented in E(LOY) assumes

To estimate the transition value kf one has to equate two 9€0Metric scaling oNg down t0zy=1/Kgeonand a leading
terms in the parenthesis of Eq99). Assuming that (WISt éxpression for smallexy in agreement with the analy-
In kr/Qg>In Qg/A we obtain ses of{45,64. Throughout this section we will use the defi-

nition of the saturation scal®,(y) from Eq. (79) and the
definition of kgeom from Eq. (78). Our physical conclusions
A V1B will be independent of the choice of definitions for saturation
ko“kgeon( Q_> ) (100  and geometric scales.
S0 Note that all information about the nonlinear evolution
(49) is encoded in the functiof? in Eq. (101). Using Eq.
with Kgeom given by Eq.(81). Therefore the transition from (101) in Eq. (56) we can calculate the differentiglA gluon
suppression to enhancement in E2P) happens ak, which  production cross section akr=Qg(y). Since Kgeon(y)
is smaller tharkgeom,0nly by a factor ofA™Y18 which indi-  >Qq(y) for largey we can sekgeom— neglecting thezy
cates that the term in EGQ9) is positive inside most of the <1/kyeompart of the integral in Eq56). This approximation
extended geometric scaling region contributing to enhances justified in the Appendix. We also assume that the dipole
ment of gluon production. Here again one should note thaamplitude on a protomg is still given by the leading twist
Eq. (99 gives us a subleading twist contribution which is expressior{60) aroundk;=Q(y), which is a good approxi-
parametrically smaller than the leading twist term from Eq.mation for a reasonable size nucleus. Substituting the first
(86) in the ky region at hand Q4(y) =kr=Kgeoml. Equation line of Egs.(101) and(60) into Eq. (56) we have
(99) is thus unlikely to affect the suppression BP” ob-

served at the leading twist level in Eq91) and(92). doP? CrSySah? [~
We conclude by observing that even after inclusion of — =—2f dzrzrJo[ Qs(Y)Z7]
quantum evolution49) in the gluon production cross sec- d*kdy kp=Qu(y) asm(2m)=Jo

tion, multiple rescatteringshigher twists still tend to en- ,

hance gluon production at highy . In theky region consid- % f d_)\ dicp EAA Yz AN -2
ered abovek:>Qq(y), these higher twist effects are still 2 2mi N T T
parametrically small. In the next section we are going to — ,

study the region ok; where all twists become important, X[zrQg(y) ]} 2?2 YY) (102
k1~ Qs(y). We will show that the combined effect of all

twists is to introduce suppression of the Cronin maximum. Performing thez; integration in Eq.(102) yields
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doPA CeSuS dn d\ the definition of the saturation scale9) is valid up to loga-
> =F—A2 i rithmic prefactors, we can drop the prefactors in EHD6)
d°kdy kr=Qyy) asm(2m) m el leaving only
- NN 1)
xCP “Cﬁ)\z)\/zzxﬂ’—s 2 RPALQ(Y) y]sc F{ Zas )
N A+
(2— 5 (107
A \N , [If one definesQ(y) by taking Ng[zr=1/Q4(Y),y] in the
X 3 (y)) g2as(Y=Y)x(\') (103  double logarithmic approximation and requiring tiNag[ zr
S

=1/Q4(y),y]=const[56,63,64 the prefactors in Eq(106)
would cancel exactly.Using Eq.(79) in Eq. (107 yields
It can be seen that all energy/rapidity and almost all atomic

number dependence in E{.03 is given by the\’ integral. T

Since Q(y)>A, the integral oveir’ in Eq. (103 can be DA — B InA

evaluated in the double logarithmic approximation around RPIQs(Y) y]<exp dasy| 1 1+ ngy <1

the saddle point of Eq65) taken atkr=Qq(y). After that (109
the integral oven carries almost no dynamical information.

The result reads We observe from Eq(108) that in the course of quantum
evolution the Cronin maximum of the ratig®” decreases

|n1/4Q5(y) with energy until, at very high energy, it saturates at the
doP? _ CrSeSa p- A A? lowest valueRPA~A~5 which is much less than 1. The
2 - 4 Ars v\ 134 2 height of the Cronin peak is also a decreasing function of
d*kdy kr=Qs(Y) as(2m) [2as(Y=y) 7 Q5(y) collision centrality/atomic numbeA, as can be seen from
) Eq. (108.
X exy{ 2 \/ng(y_y)m Qsly ) The applicability of Eq(108) is restricted by the applica-
A bility of Egs. (71) and (104). The latter two equations are

(104) valid only in the region wher€(y) is larger than the geo-
metric scale of the protonQg(y)>Kgeom/ AY® With Kgeom
where the integration ovex gave an unknown functiofi,  taken from Eq.(81), since this is where the transition be-
defined as tween the saddle points takes place. With the help of Eg).
this condition become®(y) <AY®Q,. In the kinematic re-
\ gion of extremely higly where this condition is not satisfied
F(—) anymore, one has to replace E¢s04) and (71) by appro-
(105) priate cross sections evaluated around the saddle point of Eq.
1— _) (77). To generalize the conclusions presented above to arbi-
2 trary high rapidity let us follow Mueller and Triantafyllopou-
los [64] and define the saturation scale by requiring that the
Here we assume thaj, is only weakly(at most logarithmi- power of the exponent in the leading twist expressioriNgr
cally) dependent o, as is true for other coefficients like the given by[cf. Eq. (57)]
one shown in Eq(882\. In case of an “ideal” geometric scal-
ing the coefficientCy' in Eq. (101 would be completelyA d\
independent ridding, of all of its A dependence as well. Ngi(zy)= FCA @2 (VY A In(21Qs0)
To constructRPA we take the gluon production cross sec-
tion in pp from Eg. (71) putting kt=Q(y). Substituting
Egs.(104) and(71) into Eq.(32) we get

dn
_ 23 AN
Ca szi)‘ckz r A

is zero and stationarfjts derivative with respect th is zerg
at zr=1/Q4(y). These conditions are satisfied = 1.255
3/ [64] [our definition ofy(\) is different from the one used in
RPALQ(y),y]= VaCa(2are) V4 y Inl’"'( Qs(y)) [64]]. Resulting saturation scale is given by Eg3). Argu-

\/§+ VY—y A ing that the\ integral in Eq.(57) is dominated by the saddle

point in the exponent we conclude thatzat=1/Q4(y) the

Qi(y) gluon dipole amplitud®g[ zr=1/Q4(y),y] is approximately
X Q2 exp —2 2“5 constant at largg [64]

(106)

“We have recently learned that a similar conclusion regarding cen-
The energy and\ dependence of Eq.106) can be found trality dependence of the Cronin peak has been reached by Mueller
using Eq.(79) and keeping in mind tha®s,=AY8A. Since  and collaborators.
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dx QsO ))\ ™
—.CA(— g2asx(\)y
271 M Qly)

_ f ;_;CerESX(%)yH\|n[Qso/Qs()’)]zconS(y’A)_
(109

Making a similar assumption about th€ integral in Eq.

(103 taken at midrapidity ¥=Y/2) and remembering that

Qs=AYA yields

daP?

_ ~ S, A~ Mo/6_ 72/3-Nol6
d?kdy "

kr=Qq(Y).y=Y/2

(110

Modifying Eq. (62) to give gluon production irpp at ky
=Qq(y) also taken at midrapidity we obtain

2 ’
do?? __CeSp (AN aN
d2kdy day2m)d) 2mi 2mit
k=Qq(y),y=Y/2 s

N+
{122

X CRCP, 2 7 Y

2

NN
) e2as[x(>\)+x(>\’)1y'

X (
g S(y)

Again the\ and\’ integrals in Eq.(111) are dominated by

PHYSICAL REVIEW D68, 094013 (2003

ergy and centrality, witlRP[Q4(y),y] becoming less than

1. Eventually, at very high energy, the Cronin peak flattens
out and saturates to an energy independent lower limit given
by Eg. (113, which is parametrically suppressed by powers

of A.

E. Suppression deep inside the saturation region

Above we have shown that nonlinear evoluti@9) intro-
duces suppression of gluon productiorpi collisions mak-
ing RPA<1 for k;=Qq(y). In the region of smalleky kt
<Qq(y), we observed in Sec. Ill B that in the quasi-classical
case of the McLerran-Venugopalan model the r&i8'<1
[see Eq(47)]. When the quantum evolutioi@9) is included
it makes sense to consider the interval of l&w bounded
from below by the saturation scale of the protbg(y), such
that A4(y)<k:<<Qq(y). [For ky=<A4(y) the proton wave
function also saturates and particle production in lpgland
pA becomes similar to the case AR, which has not been
resolved even at the quasi-classical le\@2,23,33. Inclu-
sion of evolution inAA is an even more difficult problem
which we are not going to address heié.k; is larger than
the geometric scale of the protdge,/AY® [but still much
less thanQ(y)] we can use Eq(71) to describe the gluon
production cross section ipp. Deep inside the saturation
region inpAthe gluon production has been estimate{#ia.
Employing Eq.(57) from [42] together with Eq.(71) we
conclude that at midrapidity

kT
RPATKP.  <k:<Qq(Y),y]~ _2e72\/2a5y Inkr/A-

geom
sO
(114

the saddle points at, giving an energy-independent cross gqation(114) shows that inclusion of quantum evolution

section scaling as

dgPP

5 ~A*2)\0/6
d%kdy

(112

kr=Q4(y).y=Y/2

with atomic numbeA. Combining Eqs(110) and(112) with
Eq. (32) yields
RPALQ4(y),y]xc A~ 3 bconsty) ~ A~ 0124 (113

for A\g=1.255. Note that the power éfin Eq. (113 is pretty

only introduces more suppression inRP" at kr<Qq(y),
making it a decreasing function of both the atomic number
and energy. At very high enerdgy may become smaller than
the geometric scale for the protdge,/A"® and the gluon
production inpp would be driven by the saddle poifit7)
with A instead ofQg,. Similarly to how it was done ifi42]

for DLA, one can estimate the gluon production cross sec-
tion (56) deep inside the saturation region with the dipole
amplitude on the proton evaluated around the LLA saddle
point \'~1. The result at midrapidity yields

close to that following from Eq(108 and the two powers Qd(y)

would be identical foro=1. Note also that taking the ex- RPA[A(y)<kr< kgeorr]~A‘1’3s—ex;{ —(ap—1)y
pression forRPA in the geometric scaling region from Eq. A

(92 and extrapolating it down t&;=Q4(y) one would ob-

tain a power ofA very close to that in Eq113) if one uses
Qs(y) from Eq. (79). This conclusion not only verifies the
self-consistency of our analysis, but also demonstrates that at
asymptotic energies the height of the Cronin maximum be-

comes(parametrically equal to the height of the rest of the . .
RPA curve in the extended geometric scaling region. This iSTherefore atvery high energies the raffig* becomes almost

likely to indicate that at these energies the curve flattens Odpdependent Oky even at very lowkr . Usmg the saturation
and the Cronin peak disappears scale from Eq(79) in Eq. (115 at asymptotic energies gives

With the help of Eq.(113 we conclude that at high ra-
pidities or energies the Cronin maximum decreases with en-

L2 IN?(ky/A)—IN2[Qq(y)/A]
14{(3) agy

(115

RO AL(Y) <kr=<Kleonl~A 0% 109, (119
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We observe again that nonlinear evolution leaiR88 very pA
small atk;<Q(y). RPA given by Eq.(116) is a decreasing Rtoy

function of both rapidity or energy and centrality. This con- 175
clusion seems natural, since the saturation effects are known ™
to soften the lowk; gluon spectra irpA compared tqp. 15
1.25
F. Toy model 1
To illustrate the conclusions reached above let us con-
struct a simple toy model exhibiting suppressiorR8f: at all 0.75
kt. We start with the quasi-classical formula for gluon pro- 0.5
duction inpAin the following form which could be obtained 0.25
from Eq. (40) for a cylindrical nucleus and for azimuthally

symmetricNg :
k/Qg

FIG. 8. The ratioRP” plotted as a function ok /Q for (i) the
_ McLerran-Venugopalan model, which is valid for moderate ener-
XﬂZT[ZT&ZTNG(ZT’y_O)]' (117) gies (upper solid ling; (i) our toy model for very high energies/
) . . . rapidities from Eq.(122) (lower solid line; and (iii) an interpola-
With the increase of energy the gluon dipole amplitude onjon to intermediate energiesiash-dotted and dashed lineghe
the nucleus will reach saturation. Therefore its depen-  cytoff is A=0.3Qs.

dence will change more significantly than for the corre-

sponding amplitude on the proton, which will stay unsatur-ywhere y is the Euler’s constant an@.= Q(y). The corre-
ated.(Of course at very high energy the dipole amplitude onsponding gluon production cross section fi is obtained
the proton will also reach saturation, but we are not going tgyy expanding Eq(119) to the lowest order at higk; and

consider that energy range heréherefore in our toy model  gypstitutingA instead ofQ and S, instead 0fSy:
we will assume for simplicity that the gluon dipole amplitude

dO'pA _ aSCF SA

d’kdy 7% k2

0 1
fo d ZT‘JO( kTZT) In ZT—A

o_n_the proton remains unchanged With increasing energy, do.{aop; aCr SoA [ 2Ky

giving In1/(z;A) in Eqg. (117). We will model the gluon 5 =— 5 |In——+v]|. (120
dipole amplitude at high energy by a Glauber-like unitary dkdy 7 kg A

expression

Of course in Eq(120) one implicitly assumes that anoma-
N¥(z7,y)= 1— ez, (118 lous dimension has set in for only one of the protongjn
This assumption is not valid at midrapidity, but may be used
which mimics the onset of anomalous dimensior1 by  to study particle production at rapidities near the fragmenta-
the linear term in the exponent. The saturation s€alg) in tion region of one of the protons.
Eqg. (118 is some increasing function of which can be Substituting Eqs(119 and (120 in Eqg. (32) yields
taken from Eq.(79) or from Eg.(83). Indeed the amplitude

in Eq. (118 has an incorrect sma#i; behavior, scaling pro- K-A
. . 2 . pA T 2 2

portionally to z; instead ofzZ as shown in Eq(14). If Eq. Rioy(KT,Y) = 2 OB I 2k A+ —Qs(k7+Qg)
(118 is used in Eq(117) it would lead to an incorrect high- Qs(kr+Q9)[IN(2kr/A) + 7]
k1 behavior of the resulting cross section. We therefore argue 2(K2+Q2)
that Eq.(118) is, probably, a reasonable model fdg inside + «/k$+ Qg 2Q§+ yk12-+ k%ln#
the saturation and extended geometric scaling regiors (1/ kTA
~ky<kgeom, but should not be used for very smajl/high
Ky (1/zr~k1>Kgeon - . ks N Vki+Q5—Qs 121

S_ulladstituting Eq(118) into Eqg.(117) and integrating over 2 «/k$+ Q§+ Q. '
z7 yields

in which we assumed that is the saturation scale of the

dofy) _asCeSa Qs 0K+ Q?) proton such tha@2=AY?A2 even at high energy.
d’kdy @2 k% k$+ Q§ ST s The toy modeIRf’oﬁ(kT,y) from Eq. (121 is plotted as a
. function of k;/Qg in Fig. 8 for A=0.3Qs (lower solid
2(ks+Q3) curve. It exhibits suppression of gluon production pi at
22 2 2,12 s
+Vkr+ Q5| 2Qs+ vk +kyin KA all values ofky leveling off at Rfy~A/Qs~A""® for k;

=Q, at high energy, in agreement with our conclusions of
Secs. Il B and 111 D.

, (119 Our toy model(121) represents the high energy asymp-
totics of RPA. To compare it to lower energies, we also plot

K o,
2 VkT+Qs+Qs
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RPA for the quasi-classical McLerran-Venugopalan modelergy. We showed tha&P” atkr=Qq(y) is a decreasing func-
given by Eq.(34) (upper solid curve in Fig.)8As the energy tion of energy or rapidity and centrality saturating at the
increases the upper solid line in Fig. 8 would decrease everenergy-independent lower bound given by Efl3). Since
tually turning into the lower solid line. The corresponding the height of the Cronin maximum becomes parametrically
intermediate energy stages are shown by the dash-dotted anflithe same order as the restRi* at higherk; given by Eq.
dashed lines in Fig. 8. These lines are for illustrative pur{92), we conclude that the Cronin peak disappears at asymp-
poses only and do not correspond to any toy model. Theyotically high energies or rapidities.

demonstrate how the Cronin peak gradually disappears as (iii) kt<Qq(y) region. The suppression &"” deep in-

energy or rapidity increase. side the saturation regiok;<<Qg(Y), only gets stronger as
the evolution(49) is included[see Eq.(116)].
V. CONCLUSIONS Our results are summarized in Fig. 8.

. ) It is interesting to observe that the behaviolRSf* at high
In this paper we have demonstrated that saturation effeCignegies is qualitatively different from what one would ex-

in the gluon production ipA at moderate energy can be neci by taking the quasi-classical expressi®) and letting
taken into account in the quasi-classical framework of theQS in it increase with energy. In the case of DIS a similar
McLerran-Venugopalan model, which includes Glauber-ick where one replacey, in the Glauber-Mueller expres-
Mueller multiple rescatterings, resulting only in Cronin en- gion for the dipole cross sectidf) by the energy dependent
hancement of produced gluons lef=(1-2)Qs, as Was  _from, for instance, Eq(79) leads to correct qualitative
shown in Fig. 4 and in Eq(37). Similar conclusions have popayior of resultinge, structure function and even gener-
been r_eached '@48]'. _In this qua5|-cla_155|cal approximation 4e5 some successful phenomenolfg§y. However, as we
the height and position of the Cronin peak are increasingpowved above, a naive generalization of the McLerran-

functions of centrality as indicated by E@8). __Venugopalan model by increasir@ with energy does not
We have also shown that at higher energies or rapiditie ork for RPA even at the qualitative level.

when quantum evolution becomes important, it introduces |, analysis in the paper was, of course, done for suffi-
suppression of gluons producedph collisions at all valugs ciently high energy and/or rapidity, such that the saturation
of kT as compared to the number of gluong produceppn approach was assumed to be still valid for the highgst
collisions scale_d up by the numper '?Af CO”_'S'ON%”' a5 jnvolved. This implies that the effective Bjorkenis still
suggested previous[]. The resultingR*" at high energy or g iciently small for allk; we consider. The extent to which
“’?‘p'd'ty IS a dec_:reasmg funct!on of central_lty. We hav_e CON%this treatment applies at higty hadron production at RHIC
sidered three different complimentary regionskef, which g ifficult to assess theoretically. We thus eagerly await the
cover together all of théy range _ . results of the experimental analyses of centrality dependence
(i) kt>Qq(y) region. Gluon production cross section in of hadron production above the Cronin regiorky (
pAis dominated by the leading twist effgcts in this r_egion_of26 GeV). It is also very important to extend the present
kr. We have shown how the leading twist suppression ariseg,easyrements away from the central rapidity region to sepa-
in the double logarithmic gppro/iqmanon fokr>kgeom  rate initial state effects from possible energy loss in cold
>Qg(y) with the correspondindR™*(kr.,y) given by Eq.  nyclear matter. Indeed, in the deuteron fragmentation region,
(72), which approaches 1 der—. At Qy(Y)<Kr=Kgeom  the effects of saturation in the Au wave function will be
the leading twist suppression is mainly due to the change IBnhanced, while the density of the produced parti¢ées,
anomalous dimension from its double logarithmic value e.g., the predictions if68]) and thus the associated energy
(64) to the leading logarithmic valug’7). RP(k,y) for this 555 will be minimal. In the Au fragmentation region the
kt window is given by Eq(89) leading to suppression de- opposite will be true.
scribed by Eq.(91). At very high energies, when the ex- e therefore conclude that if the effects of quantum evo-
tended geometric scaling regions of the proton and thytion and anomalous dimension are observed in the forward
nucleus overlagifor Qy(y) <kr=kfe.] the decrease dR”*  rapidity region ofd-Au collisions at RHIC, they would mani-
with energy stops at roughRPA~ A~ 6 as follows from Eq.  fest themselves by reducimif* at all k; as shown in Fig. 8,
(92). This leading twist effect has been originally pointed outeliminating the Cronin enhanceme®®* will become ade-
in [8]. We have not considered suppression mechanisms thateasing function of centrality. ThepA program at LHC
may stem from running of the coupling constant, whichwould observe an even stronger suppressiolR®SY. How-
would modify theA dependence of the saturation sc#8]. ever, it might be that the quantum evolution effects are still
(i) kt~Qg(y) is the position of the Cronin maximum in not important even in the forward region dfAu collisions
the quasi-classical approximation. We began the analysis aft RHIC. Then reduction oR%* going from the midrapidity
this k1 region by studying higher twists in the adjacent re-to deuteron fragmentation region should be rather mild and
gion of ky>Q4(y). The next-to-leading twist term was the Cronin peak would not disappear in the forward region.
shown to contribute towards enhancemenR8f at highky  The relevant particle production physics would be described
even when evolution is included. However, higher twist ef-by the McLerran-Venugopalan model. The height of the Cro-
fects are parametrically small &;>Q4(y) and cannot nin peak would then be aincreasingfunction of centrality.
change our leading twist conclusions about suppression. To If the forthcoming data orR in the forward rapidity
assess the contribution of all twists we studied the behavioregion ofd-Au collisions would have no higp+ suppression
of the Cronin maximum k;~Qq(y)] with increasing en- and would exhibit only a strong Cronin maximum which is
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an increasing function of centrality in agreement with pre-[69—71 agree with our conclusions on the presence of the
dictions of multiple rescattering models described in Sec. llICronin effect in the quasi-classical approximation. The re-
[48,49,51-54 then all of the observed highr suppression sults of[69,71 are also in agreement with our conclusion

in Au-Au collisions would have to be attributed to the final about highp; suppression ofjluon production.

state effects. However, if the futuRf” data in the forward

rapidity region exhibits suppression either for pli} or at ACKNOWLEDGMENTS
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transverse momenta and rapidities of the produced patrticles.

They will be indispensable for establishing a complete physi- Here we are going to derive EGL02). In writing down

cal picture of heavy ion collisions at RHIC energies. Eqg. (102 we assumed that the integration regiag
Note addedAfter the first version of this paper appeared, <1/kgeom iS negligible. To justify this approximation let us

a similar analysis has been dong @®—71. The analyses of start by substituting E¢101) into Eq. (56). We find

dG’pA CFSpSA [flmgeom dx dn’ ’
v BN ST dzrzrdo[ Qs(Y) z7] J 5 J —CP,CNAN2A2Q% (2r AN ~2(21Qgp)* 2
d%kdy k=Qyy) agm(2m)2Q3(y) | Jo 2mi) 2ai A &
Zagxr2ar a4 [T g AN AN b may 2y 252002
xe + I zrz7do[Qe(Y)zr] | 5 | 5= CLCRINA2A%QL(Y)
X(ZTA))\,Z[ZTQS(y)]}\ZezaS(Yy)X(}\’)J - (A1)
The difference between E¢A1) and the target Eq.102) is
|
CeS.S 1Kgeom C.S.S dn dn’ - ,
F—pAzf M zr27 330 Qu(Y) 21] _ZFPmA f TR ——CP A2\ 2e2asY - YXN)
asm(2m)?Qg(y) /o agm(2m)2) 2mi ) 2mi
! _ }\, 2
xfd—)\. d—)\.Cg,)\z)\’2(ZTA))"92%(Y*Y)X(>\’) y ( A”) Kgeom
2m ) 2m AM+N' =2\ Kgeom  QZ(y)
X[ CA(2rQg) 2o XN) T 2 M. (A2 _ A A
[C\(zrQs0) \Z1Qs(Y) '], (A2) » Cfez%yx()\)( Qson) —Ef( Qs(Y)) } a3
kgeO kgeom

Since kgeon Qs(y) we can neglect the argument of the
Bessel function in the integral in EqA2) putting Jo(0) Due to the inequalitkgeonr? Qs(Y)> A, the integration over
=1. Integration over; then yields N\’ in Eq. (A3) is dominated by the saddle pointiat~2, as

094013-21



KHARZEEV, KOVCHEGOQYV, AND TUCHIN PHYSICAL REVIEW D68, 094013 (2003

shown in Eqs(63) and(65). The integral oven in Eq. (A3) (101 is not just a good approximation but an exact identity.

becomes To show that no such assumption is required to prove that the
expression in EqA3) is a negligible correction to E¢102)
d\ A2 A Zayx(y) Qo \* ~a[ Qs(Y) A let us estimate the energy dependence of the first term in Eq.
27 N+\'—2 Cie™s Kgeo -G\ Kgeom (A3). The second term in EqA3) is negative and can only
make the overall contribution smaller. Employing double
d\ A 2ayyiy| Qso M Qs\ N logarithmic approximation fon and\’ integrals and using
Nf ﬁ)\ C\e _kgeo —C\ Kgeom Egs.(79) and(78) we derive(settingy=Y/2 for simplicity)
d dn [ dN’ — , 1
-__ 7 - S0 I APy 2y r202a(Y-y)x(\)
dln kgeom{l\lG[ZT_}(1/kgjeono Y] J 27 ) 2 CLA\ e A4\ —2
_ + oy = ,
Ngl[zr— (1Kgeom ~ Y1} =0, (A4) X( A m))\ @CAeZasyx(x)(Q_sow))\
where we assumed thhlg(zy) and its derivatives with re- Kgeom  Q2(y) Kgeo
spect toz; from Eq. (101) are smooth functions af; such ‘
that the difference of the above limits is zero. This assump- A2Q2 ALE2 o VTaLy
tion is justified sinceNg(zY) is proportional to the scatter- “2 2 °
kgeosz(y)

ing matrix which is an analytic function of its variables.
Equation(49) makesNg(zy) analytic by construction.

We showed that the difference between the exact{ &)
and our Eq(102) is zero, making the two equations equal, aswhich is a decreasing function of rapidity and centrality. It is
desired. However, the above proof required that the represewbviously negligible compared to the increasing function of
tation ofNg(zYy) given by Eq.(101) has a smooth matching y given by Eq.(104). This accomplishes our proof of Eqg.

o A~ U3+ 1(62) g~ dagy(3-212), (A5)

of the two regions azr=1/Kgeom, i-€., that representation (102).
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