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The generalized dynamics describing the propagation of neutral kaons in randomly fluctuating media is
derived and analyzed. It takes into account possible matter-induced effects leading to loss of phase coherence
and dissipation. The study of selected neutral kaon observables indicates that these nonstandard effects are
amenable to a direct experimental analysis.
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I. INTRODUCTION duction of correlated kaons gt factories[19].
Matter effects in the physics of neutral kaons have been

When a quantum system is immersed in an external envistudied since the very early days of kaon physics. However,

general it exchanges energy and entropy with the larger Sygi_on phenomena, where short-lived neutral kaon states are

o : ; .~ regenerated in a beam of purely long-lived ones via the pas-
';em. Itr;] prtln::uI)Ie, t.Te subd)t/n:qmmg can bet readlllyt/_ Obt‘Zme‘isage through a thin slab of material: this is due to the coher-
rom the fotal, unitary systemenvironment evolution by — o jnteractions of the kaons with the nuclei of the material,
eliminating (i.e., integrating overthe degrees of freedom

2 3 . ) which produce different scattering amplitudes for the kaon
pertaining to the environment. In practice, however, this pro4 4 antikaon components of the impinging beam. One can
cedure leads to tractable dynamical equations only when thg, o that this effect is dominated by forward scattering pro-
interaction between subsystem and environment can be cogesses, and it can be described by an effective Hamiltonian
sidered weak: in these cases memory effects disappear, aﬁﬂ/olving the index of refraction of the materig20—23.
the time evolution of the subsystem is described by linear Here, we shall generalize this physical situation by con-
maps, encoding non-Hamiltonian physical effects, like irre-sidering the propagation of neutral kaons in a randomly fluc-
versibility and dissipatiofil—4]. tuating medium. The kaon system can then be viewed as an
The system plus environment paradigm for the treatmenbpen system, where the environmdttie medium is de-
of so-called open systems is nevertheless very general arstribed by a classical, random external field.
has been successfully adopted to model very different physi- Quite in general, any environment can be modeled in this
cal situations, in laser, atomic, and molecular phygics§|. way, provided the characteristic decay time of the associated
In particular, it has been very useful in describing the effectgorrelations is sufficiently small with respect to the typical
of random media or of stochastic external fields in particleevolution timers of the subsystem. In the case of kaons,
propagation inside interferometric devicE8-13. Indeed, can be roughly identified with the lifetime of the short-lived
for weakly coupled systems, the decoherence and dissipati\}@on’ so that the correlations in the materla_l through Wh_lch
phenomena induced by the media are in general very smafffl® kaons propagate must decay very rapidly, or, equiva-

so that the best suited way to study them is through aloprd_ently, the medium must fluctuate on times much shorter than
priate interferometric setufd4—16 7. Although this condition looks quite restrictive, it can be

Motivated by these results, in the following, similar tech- met quite easily by a careful choice of material. Indeed,

. - . ... many short-time physical phenomena, like molecular vibra-
niques will be adopted to study the effects of |rreverS|b|I|tytiona3|/ motion an(? rﬁlaxatign or collisions in liquids, take

andd_dlssméltlon In ne;Jtr?I kaons propagﬁltlpg inside ? r?rlldo'glace at times that are at least two orders of magnitude
medium. Because of strangeness oscilialions, neutral kaolly, 5 ey thanrs.! Therefore, a kaon moving, e.g., in a gas at

have been a prime laboratory for the discovery and analysis—— —

of small physical effectsCP violation being the most strik-  IThe direct study of these very short-lived phenomena has been
ing example[17,18]; therefore, they appear to be the naturalmade possible by the recent introduction of lasers that are able to
place for studying environment-induced dissipative effectsproduce pulses reaching the femtosecond scale; for a review, see
in view also of the unique opportunities offered by the pro-[24].
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sufficiently high temperature or in a liquid would see a ran- aR(1) . . .
dom fluctuating distribution of centers of scattering, and ——=—iHORM)+iIRMHPT+L[R(1)]. (2.1
therefore be subjected to stochastic incoherent interactions at

with the material; as a consequence, its dynamics can bene first two terms on the right-hand side give the usual
effectively modeled as being that of a particle propagating "Hamiltonian contribution, while the additional linear map

a random medium. . X . .
. ; S . L., explicitly given in Eq.(2.10 below, takes into account
This physical situation is clearly different from the one the presence of the stochastic medium.

encountered in regeneration phenomena, where a single co- The effective Hamiltoniai(©), the so-called Weisskopf-

: . : 9Vigner Hamiltonian, describes the propagation of kaons in
effect. In the present case, instead, correlations in the mat?/'acuum? it contains a non-Hermitian term. characterized by

ri_al play afundamen_tal role_z: as we s_hall see, they are r€SPORe natural width of the physical states. The entrie$i6?
sible for the generation of irreversibility and loss of quantum . . ) .
can be expressed in terms of its complex elgenvakggk

coherence. : e i et o =mO—i502, \O=m©@—i,{/2 and the complex pa-
In the next section, we shall discuss in detail the deriva—Ms 723) o 0" o YL/ a € complex pa

0 . .
tion of the master equation that describes within the weakl@metersps™, g, pt”, af® appearing in the correspond-
coupling hypothesis the propagation of neutral kaons in ranind (right) eigenstates

dom media. Since it incorporates the presence of dissipative

; el o ) — (0K Oy 4 (0| KO 024 |02
phenomena, it cannot be fully written in the familiar Hamil- IKe)=ps'|K°)+0as’|K?, |ps’[*+]as’[*=1,
tonian form; rather, it assumes the structure appropriate for _
generating a quantum dynamical semigrgap-4]. Specific KD =p{?[K)=ai”|K®, [p{®1*+]a”?=1.
examples are presented in Sec. lIl, while some general prop- (2.2

erties (.)f its solutions are discussed N Sec. V. Sm_ce th%—or later convenience, it is useful to introduce the following
matter-induced effects are small, a suitable perturbative a

. . . - . yositive combinations, involving the eigenstate masses and
proximation can be used, allowing the explicit evaluation o?p 9 9

relevant kaon observables: Secs. V and VI will be devoted tt\)N'dthS'

the analysis of the behavior of these observables. We shall AMO=m@—m@  Ar©@ =40 _ 0

first study the decays of single kaons, relevant for fixed-

target experiments, and then discuss the case of correlated y<50>+ ?’(LO)

kaons at¢ factories. In both cases, the matter-induced phe- F(O):T’ (2.3

nomena modify in a very specific way the various kaon ob-
servables, Whl_ch are th_erefore am_enable to a dlre(_:t experis well as the complex quantities
mental analysis. In particular as discussed in the final Sec.
VI, at ¢ factories one can adjust the experimental conditions r'O=r@+jAm®, ArQP=Ar©=+2iAm®.
so as to allow the propagation in the medium of only one of (2.49)
the two correlated kaons; in this configuration, one can easily
perform tests on the physical consistency of the adoptedhe effective HamiltoniarH(®) can be diagonalized using
treatment, shedding further light on the general descriptiotthe similarity transformation induced by E@®.2):
of open quantum systems.
.. 0) —y\/(0 0 0)-1

Although preliminary, we hope that the results presented HO=VOHPVO L, (2.9
in our investigation will stimulate further studies on the dy- ith
namics of neutral kaons in random media, encouraging i

particular a detailed experimental analysis. p<so> p§_0> )\gm 0
Vo=l o o) HE'= 0 \o| @6
Il. MASTER EQUATION ds a L
We shall work within the familiar effective description of Then one can write

the neutral kaon system, which requires the introduction of a 250
two-dimensional Hilbert spadd7—-19; the set{|K®),|K%} o o o o 6© ﬁ
constitutes a convenient basis in this space. With respect to (O)_)\E)JFM_) NG =\ rs’+ri’ |
this basis, single-kaon states can then be represented by den- 2 2 2 o '
sity matricesR, i.e., by Hermitian 2 2 matrices with non- r(S0> r(LO) —0
negative eigenvalues. Their time evolution is described in
terms of an equation of a standard Liouville—von Neumann 27
form: the two complex parameters

2Using a more phenomenological approach, nonstandard effects in*Throughout the paper, we shall append a supersipto all
the propagation of neutral kaons in a stationary, low-density mategquantities referring to neutral kaons in vacuum, i.e., in the absence
rial have recently been discussed[#b]. of the medium.
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(0)_ ,(0) = i 0) . —j (0)t
po='s ' 00,0 2.9 Rty=€" T Re ™ ", (2.13
r(SO)"_rE_O), S 'L .
so that
involving the ratios R) 3
IR(t) - - , -
() (0 ——=L[R)]=-1 2 F(D)o DR
p p ot =
0_Fs_ 0)_"L =0
ds aL 3
+iR x T :
signal CPT- (for ¢®+0) and T- [for ¢9=(|¢®|-1)/ 'R(t),;o FuOlou 1, (219

(lo@]+1)+0] violating effects in mixing, respectively.
All this is valid in vacuum; when neutral kaons propagatewith ¢, (t) =e'" H(O)Uﬂe*it HO The time evolution of the

in matter, the interaction with the nuclei of the material giveSreduced density matrix in the interaction representation’
additional contributions to the evolution equation, the term-

. . . . p(t)E<~R(t)), can then be expressed as a series expansion
L, in Eqg. (2.1). As explained in the Introduction, we shall . . . . ~
consider the case of rapidly fluctuating media, which can bénvolvmg multiple correlations of the operat:
represented by classical stochastic fields. The action of the
media on the kaons can then be expressed in generalized
Hamiltonian form:

TJ(I)=Mt[TJ(0)]EgO M[p(0)], (2.19

LR ]=—iFMORO+IRMOIFMD], (210 [t (= S o
t Mp]= fodsljo dsz“‘fo ds|<<leL52"'Lsk>[P]-
where (2.16
3
_ The sumM; in Eg. (2.15 can be formally inverted, and a
F(O) Mz:o Fulo, (213 suitable resummation givegn overdot represents the time

derivative [26]
while oy is the 2x2 unit matrix ando,0,,03 the Pauli
matrices. The quantitief ,(t), =0, 1, 2, 3, generate a p(t)
complex, Gaussian stochastic field; they are assumed to have gt
in general nonzero mean, but translationally invariant corre-
lations (an asterisk means complex conjugation

=MM [P(D)]={M 1+ (Ma—M M)+ }[B(D)].
(2.17

As mentioned before and discussed in more detail at the
end of the section, the action of the medium on the traveling
kaons is weak. Therefore, one can focus attention on the
dominant terms of the previous expansions, neglecting all
contributions higher than the second-order ones. Further,
since the characteristic decay time of correlations in the me-
dium is by assumption much smaller than the typical time
scale of the system, the memory effects implicit in Ef17)
should not be physically relevant and the use of the Markov-
ian approximation is justified. This is implemented in prac-

G, (t=8)=(F L(OF (3))—(F L(O)XF,(9)),
(2.12

W, (t—S)=(F ,(1)F%(5))—(F ,(1)){F%(s)).
(2.12h

Since the generalized Hamiltonid(t) in Eq. (2.11) in-

volves stochastic variables, the density mafit), the so-
lution of the total equation of motiof2.1), is also stochastic.

density matrixp(t)=(R(t)), which is obtained by averaging \ o . '
over the noise; it i$(t) that describes the effective evolution BY returning to the Sch_nhnger representation, one fmglly
of the kaon states in the medium and allows us to COmputgbtauns the master equation gerleratmg the time evolution of
the behavior of relevant observables. We shall now explicitlythe reduced density matrp(t) =(R(t)). It takes the follow-
describe the derivation of an effective master equation fofd explicit form:

p(t), making the additional assumption that kaons and noise

decouple at=0, so that the initial state i3(0)=(R(0)) ﬁp_(t)z—iH,3(t)+i;)(t)HT+|:[ﬁ(t)], (2.183
—R(0).4 a
Since the Hamiltoniam () is statistically independent of here
the stochastic variables, one can choose to average over tWe
noise in the interaction representation, where we set H=HO4+HD+H® (2.18b
1 3
“This condition is always satisfied in a typical experimental situ- (rp1== C.l[2a:p0:—{o.0: b 2.18

ation, where the kaons enter the medium after being produced. [p] 2 '§=:1 ”[ L { I P (2189

1]
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The effective Hamiltonian in matteH, differs from the one The amplitudes ,fx have been directly measured in ex-
in vacuum,H(), by first-order term$coming from the piece periments for many types of materig7,28, and quite con-
M, in Eq. (2.17)] involving the noise mean values: sistently one find$H®)|=10"2AT(©®, whereAT' V=1 is

5 the typical inverse time scale describing the kaon evolution
H(D— E F 21 in vacuum, as generated by the Hamiltonif?). In view of
~ & (Fu)o,, (219 the fact thatHD coincides with the mean value of the sto-
chastic Hamiltonian in Eq2.11), one concludes that also the
and by second-order contributiofmoming from the second- averagesF,) should be in modulus of the same order of
order terms in Eq(2.17] involving the noise correlations magnitude. Noise correlations are, however, much smaller;
(2.12 through the time-independent combinations from the definition(2.12), one can safely deduce the follow-

ing rough estimate: |G|=|W|=|(F ,)|?=10"*(AT(®)2.

3
P L B Therefore, the weak-coupling hypothesis adopted in deriving
B/“’_éo fo dt G (Hth.(~ 1), (2203 the master equatio(®.18 appears physically justified.
3 (e
é“”:;_:o j AW (0 (—1) 1. EXAMPLES
—0Jo Before analyzing in detail the evolution in time of the
A _ density matrixp(t), we shall discuss some physically inter-
+WE (DU, (—1)], 2.20 1Sy P .

(D (~1)] ( b esting instances of the master equati@il8; they corre-
where the 44 matrix 2(t) is defined by the following spond to specific realizations of the medium through which
transformation rule: the kaons propagate. _ _

Some general considerations apply to all cases. As dis-
o ()=et "% e tH%=y1 (t)g,. (220 cussed at the end of the previous section, the noise contribu-
y73 )73 nv v . . .
tions to EQ.(2.18 are expected to be small, in particular
Explicitly, one finds those involving noise correlations. Therefore, whenever the

correlations in Eq(2.12 are multiplied by other small pa-

.3 3

l N A s - rameters, e.g., those coming from the hamiltoni#f? in

(2) = _ — P : . ! !

H 2 ,;0 (Coup 28"“)00+i:21 1Cio=1(Bio+ Boi) Eq.(2.7), one can safely neglect them in comparison with the
5 dominant pieces. These considerations are particularly rel-

1 ~ N evant in the evaluation d§,, andC,, in Eqg. (2.20. These

— - g . . Mmv (.24 ) ) .

- ZJJ(E:]_ k(2B 1M Cy) o 2.22 quantities are linear in the noise correlations: the entries of

the matrix2(t) appearing in Eq(2.20 can then be com-
On the other hand, the additional piddep] in Eq.(2.189 is  puted at lowest order. Using the diagonalizati¢h5) to
a time-independent, trace-preserving linear map involvingyrite eitH(o):V(O)eitHEO)V(O)—l and further setting p(SO)
the Hermitian 3<3 submatrixC;; , obtained from the coeffi- =q®=p(¥=q(®=1#2 in Eq. (2.6),° from Eq. (2.21) one
cient matrix(2.20D by letting u, »=1,2,3. It introduces ir-  explicitly finds
reversibility, inducing in general dissipation and loss of

qguantum coherence. Altogether, £8.18 generates a semi- oo O cosowt  Sinot
group of linear map$';: p(0)—p(t)=I'[p(0)], for which Ut)= } = _ ,
composition is defined only forward in timel';Tg 0 a()) —Sinwt  coswt

=I'y,s, wWith t,5=0; it is usually referred to as a quantum 3.9

dynamical semigroupl—4.
As a further remark, notice that when correlations in thewherew=iAT /2,
medium are negligible, i.e., the combinations(th12 are Further, the stochastic medium fluctuates on time intervals
vanishingly small, the physical situation described by Eqmuch shorter than the typical kaon evolution time scale
(2.18 corresponds to that of the regeneration phenomenorl/AT(®). Correspondingly, the noise correlations in Eq.
Indeed, in this case the presence of matter is signaled sole(2.12) can be taken to have an exponentially decreasing
by the shiftH®) in the effective Hamiltonian. For a kaon- form, with a decay parametarmuch larger thahI"(®). This
medium interaction dominated by coherent forward scatterallows neglect of all higher-order contributions " (©)/x
ing, H) becomes diagonal, and its components turn out tavhile the coefficients3,, andC,, are evaluated explicitly.
be expressible in terms of the forward scattering amplitudes
fk,fx in the medium20-23:
SThese conditions, which come from the assumptio@BT andT
(2.23 (henceCP) conservation in mixing, imply a specific phase choice in
' the definition of the basis state vectors in the Hilbert space; in
practice, this poses no problems, since physical observables, being
wheremy is the K mass, whilev represents the density of the result of a trace operatiasee later, are manifestly phase in-
scattering centers in the medium. variant.

27y
My

fe O

H(l):_
0 fx
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A. Generalized regeneration broken by matter effects even if it is preserved in vacuum; in
In this case, the stochastic Hamiltonian in Eg.1) is  addition, one hass=r{)— 7, r.=r{%+ 7.
taken to be diagonal, so that only the components with
=0,3 of the stochastic variablés,(t) are nonvanishing:

Fi(t)
0  F_(t)

B. Diagonal correlations

The noise HamiltoniarF(t) in Eq. (2.11) is no longer
diagonal; in this case the kaons undergo incoherent scatter-
ings not exclusively in the forward direction. However, we
assume that the only nonvanishing correlation functions in
éhe medium are diagonal, and precisely

1
o Fe(O=3[Fo(O=F3(D)].
(3.2

F()=

Further, we assume the correlation functions to have th
form (u,»=03) Wiy(t—5) = Woo(t—5) =W, e 1l

G, (t—9)=G, e Mt

(3.33

(3.3b

Woo(t—8) = Wag(t— ) = Wae 275,
W, (t—s)=W, e rt=sl
w(t=8)=W,, 3.7

whereG,,, andW,, are ime-independent complex matrices,_l_he noise contribution to the effective Hamiltonian now
with W=W". Physically speaking, this case corresponds to %akes the form

generalization of the familiar regeneration situation. The ka-

G, (t-9)=G, e M 4=01,23.

ons are still mainly forward scattered by the medium; how- W W 3 g
ever, while traveling in it, they encounter density fluctua- ~ H—H©O=| (Fy)+2i RS _22> ST Yl P
i . 0 0
tions, whose correlations have the general beha@@). Ay A2 i=0 A3

With the help of Eqs(3.1) and(3.3), one can now explic- 3
itly compute the noise contributions in E@.18. To onvegt +2 (Fa, 3.9
order in the small parameters, one finds that only ithg i=1

=3 entry of the matri>éij is nonvanishing,

. 2W.
633: )\233 = 0,

(3.9

while the Hamiltonian contributiond ) andH(® turnout to
be diagonal:

Woot W33_ | Goot Gas

_H(O) = i
H H |:<F0>+| )\2 )\l 0'0
2iWg; 2iGgs
+(Fa)+ VRV R
27w fk O 3
o omg |0 il @9

The complex parameterc and fx now contain both the
standard forward scattering amplitudes, described Fy)
and(F3), and terms originating from the correlatio(&3).

The total effective hamiltoniafhl can be expressed as in

Eq.(2.7) in terms of its eigenvaluesg,\| and the quantities

while the matrix@ij which characterizes the dissipative term
in Eq. (2.18 becomes diagonal:

- 2Wy, ]

(3.9

Ay

C. General case

In general, however, the fluctuations in the medium are
randomly directed so that the correlation functions in Eg.
(2.12 assume the generic for(B.3), with all components of
the constant matrice&,, and W,, nonvanishing. In this
case, again keeping only dominant contributions, one finds

5 Cw o _2W,
D S VI

(3.10

rs,r.,0,0 in matter, defined through its eigenvectors as in

Egs. (2.2), (2.8, and (2.9. The differences between these As is clear from the definitioné2.12h and(3.3), the matrix
parameters and the corresponding ones in vacuum can B¥ turns out to be Hermitian and also positive. The same
expressed as a power series expansion in the combinationproperties clearly hold for the383 coefficient submatrix; i

fr—"fi
N (0)_y (0)
NSRS

my

7= e ; (3.6

for many materials, one finds thij is of order 102-10"3
[27,28. Although o= ¢(® and therefordl violation is unaf-
fected by the medium, to lowest order one obtaihs(®)
— 7, so that, not surprisinglyCPT invariance is effectively

characterizing the dissipative contribution in .18 as
given in Eq.(3.10, as well as for the previously discussed
cases (3.4) and (3.9. This makes the semigroup’,:
p(0)—p(t)=T{p(0)] generated by the master equation
(2.18 completely positive. This property is crucial in assur-
ing the consistency of the generalized dynamiigsin all
possible situationgl—3,15,29; as we shall see in discussing
correlated neutral kaons, lack of it may lead to physically
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unacceptable results. It is therefore refa_sguring that in our GW(t—s):GW&(t—s), (3.133
treatment the property of completely positivity emerges natu-
rally, without further assumptiorfs.

Although the matrix@ij turns out to be complex in gen-
eral, in the following we shall limit our consideration only to

situations for which@ij is real. These correspond to the
physically most interesting cases; in fact, the reality condi-

tion guarantees the increase of the von Neumann en'[ropV)\/”th Gy W, time-independent matrices, such thiat

Y\t i ; ; :
dS/dt=0, S=—Tr(p In p) [29], which is a physically desir- =W". From the definition2.20,, one immediately finds
able requirement for the dynamics of a small system, the

neutral kaon, in weak interaction with a large environment,

W, ,(t—s)=W,,8(t—s), (3.13h

the medium. For later convenience, we shall parametrize the B,,=G,,, C,=2W,, (3.19

entries of@ij using the real constants
a=Cy+Cp, b=0Co3,
a=Cy+Ca3, C=—Cig,
y=CoptCa3,  B=Ciy.

The positivity condition orﬁ’ij then requires
2R=a+y—a=0, RS-b?=0,
2S=a+y—a=0, RT-c?=0,
2T=a+a—7y=0, ST-B°=0,

RST-2bcB—RB?—SE—Th?=0.

D. White noise

without any approximation, and all considerations about the
properties of the generalized dynamiCgs presented in the
previous subsection can be repeated here. The present case is
nevertheless special: because of the correlati@k3), all
higher-order terms in the expansith17) identically vanish,

(311 so that the evolution equatid2.18 is in this case exact.

IV. OBSERVABLES

The evolution in time of the neutral kaons in the medium
is fully described by the reduced density matfikt), the
solution of the master equatid@.18): any physical property
of the system can be extracted from it by taking its trace with
suitable Hermitian operators. Of particular interest are the

(3.12 observable®); that are associated with the decay of neutral
kaons into a final statg typically 27, 37, and semileptonic

m{v states. In the fixed|K°),|K%} basis,O; can be repre-

Finally, let us consider the case of a medium that behavesented by a X2 matrix, whose entries are expressed in
as a white noise; it is described by stochastic variablgg) ~ terms of the two independent decay amplitudes in vacuum,

that areéd correlated in time:

A(KO— ), A(KO—f):7

O

- JAKO—1)|? [A(KO—f)]* A(KO— )
CLAKOS ) [AKO—)]* |AKO )2

(4.1

The corresponding physical observable, directly accessible twhose evolution in time is regulated by thatm(t).

the experiment, is given by its mean value

(O () =T Op(1)],

Explicit solutionsp(t) of the master equatiof?.18 can
be obtained using perturbation theory. As discussed in the

previous section, the entries of the coefficient maﬁfj%

(4.2 characterizing the dissipative contributibrturn out to be of
the formW;; /N, whereW;; are the coefficients of the noise

SHowever, when the noise correlations assume the more generat———

exponential behaviow,, (t—s)=W, e *wlt=s \ =0, the cor- "In the adopted treatment, kaon decays, being the result of weak-
responding matri>xC; is no longer automatically positive. In this interaction processes, are unaffected by the presence of the me-
case, complete positivity needs to be imposed as an additional relium; all media influences are encoded in the dynamical equation

quirement.

(2.18.
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correlations, whilex represents their typical inverse decay This change of basis induces the transformation p

time. From the analysis at the end of Sec. Il it follows that=V~1pV 1" on the density matrix, while the master equa-

their magnitude can be evaluated to be of ordés|  tion (2.18 becomes

=10"*ATO(AT©)/)\), which is small, since by hypothesis

A>AT©. These considerations allow the dissipative piece ap(t) _ _ ;

L in Eq. (2.18 to be treated as a perturbation to the contri- —r ~ Hop(OFip(Hp+LIp(D], (4.5

butions of the effective Hamilton(igt)hl, WhiCI(’l 07())ntains the

standard Weisskopf-Wigner term'™’ of Eq. (2.7), in addi- . . .

tion to the smaller, higher-order noise contributi¢té) and where L[p] is again of the form(2.189, but with a new

H@) coefficient matrixC;; , whose entries are linear combinations
It is convenient to work in a basis in whidh s diagonal:  Of those of the original matri€; [cf. Eq.(3.10]° i

all physical quantitie$4.2), being the result of a trace opera-  Similarly, the observable®); also get transformed);

tion, are basis independent. This can be obtained by a simi=, 0,=V(,V, so that the corresponding mean va(u@)

larity transformation analogous to the one in E25): indeed remains unchanged:

- -1 %
H=VHpV %, (4.3 (O)=(O)) =Tt p(t) O] (4.6)

with
The entries of the transformed matti% can be conveniently
expressed in terms of the following two complex quantities

_[ps e } [ 0}, 4a [1718
ds —Oqu 0 A
A(KO— f AKO—f
where, as before\s=mg—iyg/2, \,=m_—iy /2 are the == 5, N =— 0 :
h beforehs=ms—ivyg/2, N\ =m —iy /2 h A qSA(Ko f) ] qLA(Ko f) (4.7
two eigenvalues oH, while pg,p, ,9s,q, define the corre- ps A(K'—T) L AK'=1)
sponding eigenvectoli¥s),|K, ) through definitions similar
to those in Eq(2.2). as
0= LAKO 2 |psl?/1+Ag? PEPL(1+ XY™ (1-1]) ws
f Psp? (1+X§(L—A))* LAEEES '
or alternatively in terms of their reciprocalss=1/\%, ! =1/A[, so that
00— | AR 12 |asl? 1+ pg? —a5au(1+ u* (1-p)) @9
f —dsdf (1+uH(1-p)* CHREEHE '
|
Using standard perturbation theory, solutions of &g5) V. SINGLE NEUTRAL KAONS

can then easily be obtained to any needed order in the small

parameters’;; , while keeping an exact dependence on the e shall start by discussing the time evolution of observ-
quantities parametrizing the effective Hamiltontdni.e., the  aples associated with the propagation in random matter of
massesng,m_ and widthsys,y, in matter, and the ratios single, uncorrelated neutral kaons; typically, these can be
rs=ps/ds, FL=p./q. . While these constants describe fa- syydied in fixed-target experiments.g., sed30]). As dis-

miliar Hamiltonian behavior plusCPT- and T-violating  cyssed in the previous section, the relevant physical quanti-
effects in matter [through the combinationsé and

é=(lo|—-1)/(|a|+1)], theadditional piece. in Eq. (4.5 is

responsible for matter-induced nonstandard effects, leading

to dissipation and quantum decoherence. In the following we ®Explicitly, one hasL[-]=VL[V-V']V'; however, since the co-
shall focus on the latter, analyzing in detail how the newefficientsC; in L are small, in keeping with the approximation used
effects modify the behavior of selected neutral kaon observeefore, one can negle@P- and CPT-violating effects in matter,
ables. and setps=p, =qgs=0q, = 1A2 in the above transformation law.
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ties are the probability rates that an initial neutral kaon de- AK€ =2 AKO— ot ¢ 3), (5.20
cays at a certain timeinto a given final staté:

AK =7 € ) =xAK =7 € 1), (5.20
Pr(KGO) =T Ogpio(t)],  Pr(K%t) =T Ogpico(t)], , .
(5.1)  whereM is a common factor, while the parametarzmea-
sure violations of thédS=AQ rule andy signals violations
wherepyo(t), pro(t) represent the evolution according to Eq. of the CPT symmetry. These quantities are expected to be
(4.5) of initially pure K° KO mesons states. very small, so that one can consistently neglect terms con-
The case of semileptonic final states is of particular inter{iNiNGX, y, or zwhen multiplied by other small parameters,

est. The amplitudes for the decay oK& or KV state into coming from either the Hamiltoniate.g., ¢ and §) or the
o b p— . . dissipative part of the evolution equatiéh5). In particular,
7 £ v, 77 ¢ v can be parametrized as follo31]: ; L T : .
this approximation implies that for semileptonic decays

AK =7~ €+ p)= M(1—Yy), (528 NS =NT=x wl =ul =z
o Then to first order in the dissipative matter effects, the
AKO= 707 0)= M* (1+y*), (5.2b  probabilities(5.1) explicitly read

M|? 4ARErgr) 41m(rgr?)
7>€+(K°;t)=u e Ttcog Amt)| —— 5> e (A-DIATt_ 5 Rey+2C) | +e M sin(Amt)| — ———5-— 2 Im(x)
2 Irstr Irstr
[ 2l ? o 2lrd?
+ReB) |[+e | ————Rex+y—2C)+D|+e | ——— +Rex—y+2C)-D|, (5.39
[rstry| Irstry
|M|2 Ae~(A-D)ATt
Pg(KO;t)=T[e‘“cos(Amt) _W_Z Rey)|+e "tsifAmt)[2 Im(z+2C)—ReB)]
S L
2 2
+e M)\ ————+Ray—2)—2Im(C)+D |+e ’| ———+Rey+2)+2 Im(C)—D|{, (5.3b
lrstryl [rstryl

whereAm, AT, andI” are defined as in E¢2.3) in terms of  the just mentioned simplified case, the decay rate is sen-
masses and widths in the medium. Matter-induced dissipasitive to the surviving dissipative constaft
tive effects are controlled by the dimensionless parameters

T Oy, prolt ro?|1+1272
B a+a 5 a—a+2ib oo C+iﬁ B y Rzﬂ(t)E%:e_)’st | S||r| — |S | —
TTAT = Am ) AT AT 27PK sTIL

(5.4 [N E }

+e” VL‘[ 5

. 0. 0. |rS+ rL|

The expressions foP,+(K";t) and P,-(K";t) can be ob-

tained from Eqgs(5.3b and(5.3a, respectively, by changing +2e7 |y, cogAmt—¢,,), (5.9

the signs ofy andC and lettingrs—1/rg, r . — 1/, X<z

For a nonfluctuating medium, one hassB=C=D=0, and  where

the expressions in E@5.3) reduce to the standard ones, giv-

ing the probability of a semileptonic decay for a kaon that Far® (14+A27)(1—\27)*

has traveled in a slab of material. Non=| 12| 927 = SL SR
The probabilitiesP, are directly accessible to experiment. rstri

Therefore, with a suitable setup, thanks to the different time

dependence in the various pieces of Eg3), it is possible to  while 3™ ,\2™ are the decay parameters defined in @dq7).

extract information on the parametdfs4) and therefore on More generally, combining the semileptonic and pion de-

matter-induced decoherence effects. Clearly, this task beray probabilities in suitable asymmetries, one can obtain

comes easier in the case of the generalized regeneration dis-

cussed in Sec. Il A: in this case, the stochastic medium fluc=————

tuations are such th#&=D=B/2, C=0. %SinceAT'=2Am to a good approximation, in writing Eqé5.3)
Similar considerations apply to the study of the decay of and(5.4) we have set the ratio2m/AT equal to 1 when multiply-

single neutral kaon into2or 37 final states. For instance, in ing small parameters.

(5.6
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enough independent observables to treat the case of mov@nishing result for>(f,t;f,t). The equal time probabilities
general media, for which the parameters in Exj4) are all ~ P(f t;f,t) are therefore particularly suited to signal the pres-

different from zero. ence of the dissipative parameters in Ej4). For instance,
for f either a 2r or a 3w final state, with associate intrinsic
VI. CORRELATED NEUTRAL KAONS CP parity ¢;, the probabilityP(f,t;f,t) is sensitive to the

. o . dissipative parametdd; explicitly, one finds
Matter-induced dissipative effects can be further studlecij P P Plcity

in experiments at factories, using correlated neutral kaons _ “t el
[19]. Indeed, these setups behave like quantum interferom- P(ftf,1)«2D(e ' —e %)
eters and therefpre are particularly suitable for analyzing X[(1+ e "+ (1—¢ne ", (6.4
phenomena leading to loss of quantum coherence.

In a ¢ factory, correlated kaons are produced from the ) ) ) )
decay of the¢ meson. Since this is a spin-1 particle, its f[he_proportlonallty coqstant being a decay amplitude normal-
decay into two spinless bosons produces an antisymmetrigation factor depending on whethér27 or 37. On the
spatial state. In theb rest frame, the two neutral kaons are other hand, in the case of semileptonic final states, it is the
then seen flying apart with opposite momenta, and in thearametera that determines the slope at which the corre-

basis|K°>,|W) the resulting state can be described by _sponding joint probability approaches zero for small times;
indeed, one has

|wA>=%GK",—p>®|F.p>—|F,—p>®|K°.p>). P LR 0~at 65

(6.1) Although these probabilities together with the more gen-
eral ones in Eq(6.3) can be measured atd@factory, much
The corresponding density operafot=|ya){ | is repre-  of the experimental analysis performed at these setups is de-
sented by a 44 matrix, since now it describes two kaons. voted to the study of integrated distributions at fixed interval
The time evolution of the correlated two-kaon system can be=t,—t, [32]:
expressed in terms of the single-meson dynarhicgener-
ated by Eq(2.18. Indeed, once produced in¢decay, the w0
two kaons evolve independently, so that the density matrix F(fl,fz;t)zf dt’P(f, t'+1;f,,t"), t=0. (6.6
that describes the situation in which the first kaon has 0
evolved up to(prope) time t; and the second one up to

(propej time't, is given by A particularly interesting observable that can be constructed

with these integrated probabilities involves #inal states:

ﬁA(tl’tZ)E(Ftl@)th)[ﬁA]' (62) F(7T+7T_ 27T0t)_r(27T0 7T+’7T_'t)

Aa’(t): 7’ , ’ 71 ;

Correspondingly, one can now study double-decay observ- L(m'm 2n%)+TQ2a’ 7 w3t
ables, i.e., the probability that a kaon decays into the final

. .y ’
statef, at timet,, while the other kaon decays at ting :ct all_?ws dhetermlnlngl the r?t'@ /St, V\iheres andts_ are tt:]'e q
into the final statef, amiliar phenomenological constants parametrizing the de-

cay into two pions of the short- and long-lived kaons in

) . vacuum[17,18. In a medium, the asymmetry, (t) gets
P(f1.t1:f2,t) =TI (O ® O ))palts tz)]; (6.3 new contributions, from both the effective Hamiltoniéh

and the dissipative term of ER.18. To lowest order in all

here,0; , O, are the 22 Hermitian matrices introduced in small parameters, one finds explicitly

Eq. (4.2) that describe the decay of a single kaon into the

final statesf,,f,, respectively’ 3 e"| Ny(t) e’ | Na(t)

The probability rates in Eq(6.3) are very sensitive to Agr(1)=3 = N3(t)_3 Im % | Na(t)’ (6.8

matter-induced decoherence effects. This is most strikingly

shown by considering correlated decays at equal ttme where

=t,=t into the same final stath =f,=f. In the absence of

(6.7)

the dissipative terni in the evolution equatiori2.18, the N, (t)=|3|?(e" ni—e s,
antisymmetry properties of the initial stgb@ would be pre-
served by the factorized evolutidi® Iy, thus producing a N,(t)=2|#|2e Tt sin(Amt),
OFor the actual computation of the probabiliti®§f | ,t;f5,t,), Na(t)=e "Y(|3]2+D)+e s([3]2— n D)
it is again convenient to work in the basis in which the effective Vs

Hamiltonian H is diagonal, and therefore usg,=[V !
@V~ palVI"te V1], and Oy in Egs.(4.8), (4.9). —2[E|%e " cog Amt), (6.9
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and =e+e —¢&@, with g =(r,—1)/(r,+1), &®  shown to generate the most general open system dynamics
=(r(L°)—1)/(r(L°)+ 1). A careful analysis of the time behav- compatible with a semigroup composition law and the re-
ior of the two contributions in Eq(6.8) would provide away —quirement of complete positivityl—3]. As such, it has been

to estimate the dissipative paramefr together with the recently applied to the description of dissipative effects in-
real and imaginary parts of /3. Further, note that in the duced at low energies by the dynamics of fundamental ob-

long-time limit the asymmetry6.8) reduces to jects(strings and brangsat a very high scale, typically that
of the Planck masfg34]. Although very small, these string-

, 12 induced decoherence effects might be experimentally studied

A (7)~3 Re( 8?) ~|8| (6.10  Using interferometric devices, as @tfactories[35,36, and

¢ g /[z]*+D’ can in principle interfere with the phenomena described here.
Notice, however, that the two situations correspond to totally
different experimental conditions. Matter-generated phenom-
ena are completely under experimental control; the effects
they induce can easily be isolated from those that might be
generated at the Planck scale by suitably varying the experi-
mental conditions.

The possibility of choosing and tuning the experimental
VII. DISCUSSION setup at will further allows the performance of interesting

Neutral kaons propagating in a stochastically fluctuatingg/StS on the physical consistency of the dynamics generated

medium can be treated as an open system, i.e., as a sup* Eq.(2.18, and in particular on the property of complete

system immersed in an external environment. Starting from ositivity I[Ztg]('j (k30n5|der the cfase in which gnly one tOf I‘:he
microscopic Hamiltonian with a generic, linear kaon-matter WO correlated kaons coming rom@mes_on ecay actually
jpropagates in a stochastic medium, while the other evolves

interaction term, a generalized subdynamics for the kaot . . . S
states has been explicitly derived by averaging over the maf? Yacuum. The density matrix that describes this situation at

ter noise. It takes the form of a completely positive quantunf'Me t1s given bypA(Lt):(Ft@Fg(_)))[pA]' wherel'; is the

dynamical semigroup, where the presence of the mediuf{'aP gene_ratedoby Eq2.18 evolving the kaon in the me-

manifest itself througlfi) the generation of Hamiltonian cor- dium, while T'{”, generated by the Weisskopf-Wigner

rections that modify the familiar Weisskopf-Wigner descrip- HamiltonianH® of Eq. (2.7), describes the propagation in

tion of the neutral kaon system, afit) the addition of extra vacuum of the second kaon.

pieces inducing dissipation and loss of quantum coherence. As mentioned in Sec. II, any density matrix must be posi-
Some of the Hamiltonian contributions have been anatlive; this requirement comes from the physical interpretation

lyzed before in connection with the so-called regeneratior?f its eigenvalues as probabilities, which thus must be non-

phenomena: they arise because of the coherent interaction Begative. In the case of a medium with diagonal correlations

the traveling kaons with the scattering centers in the meas discussed in Sec. llI B, for which the parameters in Eq.

dium. On the contrary, the remaining Hamiltonian pieces and3.11) are such thaa=«, b=c= =0, the four eigenvalues

the new dissipative contributions to the kaon evolution equaXi(t), i=1,2,3,4, of the matrif(t,t) above can be explic-

tion originate from the stochastic correlations in the mediumitly computed:

as they move in the material, the kaons encounter density

fluctuations, whose correlations decay in time very rapidly

with respect to the typical time scale of the kaon system, thus

inducing irreversibility and decoherence in their dynamics.
Many physical phenomena can give rise to short-time cor- 1

relations in ordinary materials: they have been studied by ~ Msdt) =5 (ds(D)+ y(1)

so-called femtosecond chemis{ig4]. By suitably inserting

one of these materials in any standard kaon physics setup, [ p1(t) = (1) 12+ 43y (1) (1)} 1),

one can experimentally study the new, matter-induced dissi- (7.1)

pative effects. Indeed, as discussed in Secs. V and VI, one '

finds that both single-and correlated-kaon decay observableghere

are modified in a very specific way by the presence of these

effects; as a result, they can be probed quite independently ¢1(t)=e‘[7§:0)+ﬂ]‘, wl(t)=e‘[r++r(—o)+2“‘7]t,

from other kaon physics phenomena.

~ Although here derived in a specific context, the general- by(t) =g rst 7O " (t):e_[riourjza_ﬂt

ized evolution equatiof2.18 has wider validity: it has been 2 ror2 ' 7.2

and not simply to 3 Re(/¢), as in vacuum. Therefore, even
assuming: =¢?, a measure ofd,, can no longer provide
a determination of Re(/e) unless an estimate of the matter-
induced dissipative parametBris independently giveft

. (0) ; }
Nt = %e*”s,tt(e*'“t—e*'yst),

Although X 4(t), A,(t), and\3(t) are manifestly positive for
YA nonvanishingd would decreased, , making Re¢'/s) bigger  anyt, because of the minus sign in front of the square root,

than measured. In the case of string-induced dissipative effects, thisne can check that,(t) is non-negative only for
phenomenon has been discussed in detajBBj. Similar conclu-
sions were also mentioned ja5]. 2a— y=0. (7.3
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This is precisely the inequality that in this case guaranteesf the above eigenvalues can be experimentally studied
the condition of complete positivity of the dissipative evolu- and the inequality(7.3) probed. This would allow a direct
tion I'; [compare with Eq(3.12]; lacking it would have led test of the condition of complete positivity, thus provid-
to physically inconsistent dynamics. ing direct experimental support for one of the crucial

The situation just described can certainly be realizedproperties characterizing the quantum dynamics of open
at a¢ factory, so that, at least in principle, the time behaviorsystems.
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