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Neutral kaons in random media
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The generalized dynamics describing the propagation of neutral kaons in randomly fluctuating media is
derived and analyzed. It takes into account possible matter-induced effects leading to loss of phase coherence
and dissipation. The study of selected neutral kaon observables indicates that these nonstandard effects are
amenable to a direct experimental analysis.
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I. INTRODUCTION

When a quantum system is immersed in an external e
ronment, its time evolution is no longer unitary, since
general it exchanges energy and entropy with the larger
tem. In principle, the subdynamics can be readily obtain
from the total, unitary system1environment evolution by
eliminating ~i.e., integrating over! the degrees of freedom
pertaining to the environment. In practice, however, this p
cedure leads to tractable dynamical equations only when
interaction between subsystem and environment can be
sidered weak: in these cases memory effects disappear
the time evolution of the subsystem is described by lin
maps, encoding non-Hamiltonian physical effects, like ir
versibility and dissipation@1–4#.

The system plus environment paradigm for the treatm
of so-called open systems is nevertheless very general
has been successfully adopted to model very different ph
cal situations, in laser, atomic, and molecular physics@1–8#.
In particular, it has been very useful in describing the effe
of random media or of stochastic external fields in parti
propagation inside interferometric devices@9–13#. Indeed,
for weakly coupled systems, the decoherence and dissipa
phenomena induced by the media are in general very sm
so that the best suited way to study them is through ap
priate interferometric setups@14–16#.

Motivated by these results, in the following, similar tec
niques will be adopted to study the effects of irreversibil
and dissipation in neutral kaons propagating inside a rand
medium. Because of strangeness oscillations, neutral k
have been a prime laboratory for the discovery and anal
of small physical effects,CP violation being the most strik-
ing example@17,18#; therefore, they appear to be the natu
place for studying environment-induced dissipative effec
in view also of the unique opportunities offered by the p
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duction of correlated kaons atf factories@19#.
Matter effects in the physics of neutral kaons have be

studied since the very early days of kaon physics. Howe
most of the attention has been devoted to so-called regen
tion phenomena, where short-lived neutral kaon states
regenerated in a beam of purely long-lived ones via the p
sage through a thin slab of material: this is due to the coh
ent interactions of the kaons with the nuclei of the mater
which produce different scattering amplitudes for the ka
and antikaon components of the impinging beam. One
show that this effect is dominated by forward scattering p
cesses, and it can be described by an effective Hamilton
involving the index of refraction of the material@20–23#.

Here, we shall generalize this physical situation by co
sidering the propagation of neutral kaons in a randomly fl
tuating medium. The kaon system can then be viewed a
open system, where the environment~the medium! is de-
scribed by a classical, random external field.

Quite in general, any environment can be modeled in t
way, provided the characteristic decay time of the associa
correlations is sufficiently small with respect to the typic
evolution timetS of the subsystem. In the case of kaons,tS
can be roughly identified with the lifetime of the short-live
kaon, so that the correlations in the material through wh
the kaons propagate must decay very rapidly, or, equ
lently, the medium must fluctuate on times much shorter th
tS . Although this condition looks quite restrictive, it can b
met quite easily by a careful choice of material. Indee
many short-time physical phenomena, like molecular vib
tional motion and relaxation, or collisions in liquids, tak
place at times that are at least two orders of magnit
smaller thantS .1 Therefore, a kaon moving, e.g., in a gas

1The direct study of these very short-lived phenomena has b
made possible by the recent introduction of lasers that are ab
produce pulses reaching the femtosecond scale; for a review
@24#.
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sufficiently high temperature or in a liquid would see a ra
dom fluctuating distribution of centers of scattering, a
therefore be subjected to stochastic incoherent interact
with the material; as a consequence, its dynamics can
effectively modeled as being that of a particle propagating
a random medium.

This physical situation is clearly different from the on
encountered in regeneration phenomena, where a single
herent scattering in the thin slab is enough to account for
effect. In the present case, instead, correlations in the m
rial play a fundamental role: as we shall see, they are resp
sible for the generation of irreversibility and loss of quantu
coherence.2

In the next section, we shall discuss in detail the deri
tion of the master equation that describes within the we
coupling hypothesis the propagation of neutral kaons in r
dom media. Since it incorporates the presence of dissipa
phenomena, it cannot be fully written in the familiar Ham
tonian form; rather, it assumes the structure appropriate
generating a quantum dynamical semigroup@1–4#. Specific
examples are presented in Sec. III, while some general p
erties of its solutions are discussed in Sec. IV. Since
matter-induced effects are small, a suitable perturbative
proximation can be used, allowing the explicit evaluation
relevant kaon observables: Secs. V and VI will be devoted
the analysis of the behavior of these observables. We s
first study the decays of single kaons, relevant for fixe
target experiments, and then discuss the case of corre
kaons atf factories. In both cases, the matter-induced p
nomena modify in a very specific way the various kaon o
servables, which are therefore amenable to a direct exp
mental analysis. In particular as discussed in the final S
VII, at f factories one can adjust the experimental conditio
so as to allow the propagation in the medium of only one
the two correlated kaons; in this configuration, one can ea
perform tests on the physical consistency of the adop
treatment, shedding further light on the general descrip
of open quantum systems.

Although preliminary, we hope that the results presen
in our investigation will stimulate further studies on the d
namics of neutral kaons in random media, encouraging
particular a detailed experimental analysis.

II. MASTER EQUATION

We shall work within the familiar effective description o
the neutral kaon system, which requires the introduction o
two-dimensional Hilbert space@17–19#; the set$uK0&,uK0&%
constitutes a convenient basis in this space. With respe
this basis, single-kaon states can then be represented by
sity matricesR̂, i.e., by Hermitian 232 matrices with non-
negative eigenvalues. Their time evolution is described
terms of an equation of a standard Liouville–von Neuma
form:

2Using a more phenomenological approach, nonstandard effec
the propagation of neutral kaons in a stationary, low-density m
rial have recently been discussed in@25#.
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]R̂~ t !

]t
52 iH ~0!R̂~ t !1 iR̂~ t !H ~0!†1Lt@R̂~ t !#. ~2.1!

The first two terms on the right-hand side give the us
Hamiltonian contribution, while the additional linear ma
Lt , explicitly given in Eq.~2.10! below, takes into accoun
the presence of the stochastic medium.

The effective HamiltonianH (0), the so-called Weisskopf
Wigner Hamiltonian, describes the propagation of kaons
vacuum;3 it contains a non-Hermitian term, characterized
the natural width of the physical states. The entries ofH (0)

can be expressed in terms of its complex eigenvalueslS
(0)

5mS
(0)2 igS

(0)/2, lL
(0)5mL

(0)2 igL
(0)/2 and the complex pa

rameterspS
(0) , qS

(0) , pL
(0) , qL

(0) appearing in the correspond
ing ~right! eigenstates

uKS&5pS
~0!uK0&1qS

~0!uK0&, upS
~0!u21uqS

~0!u251,

uKL&5pL
~0!uK0&2qL

~0!uK0&, upL
~0!u21uqL

~0!u251.
~2.2!

For later convenience, it is useful to introduce the followi
positive combinations, involving the eigenstate masses
widths:

Dm~0!5mL
~0!2mS

~0! , DG~0!5gS
~0!2gL

~0! ,

G~0!5
gS

~0!1gL
~0!

2
, ~2.3!

as well as the complex quantities

G6
~0!5G~0!6 iDm~0!, DG6

~0!5DG~0!62iDm~0!.
~2.4!

The effective HamiltonianH (0) can be diagonalized usin
the similarity transformation induced by Eq.~2.2!:

H ~0!5V~0!HD
~0!V~0!21, ~2.5!

with

V~0!5FpS
~0! pL

~0!

qS
~0! 2qL

~0!G , HD
~0!5FlS

~0! 0

0 lL
~0!G . ~2.6!

Then one can write

H ~0!5
lS

~0!1lL
~0!

2
1

lS
~0!2lL

~0!

2 F u~0!
2s~0!

r S
~0!1r L

~0!

2

r S
~0!1r L

~0! 2u~0! G ;

~2.7!

the two complex parameters

in
e-

3Throughout the paper, we shall append a superscript~0! to all
quantities referring to neutral kaons in vacuum, i.e., in the abse
of the medium.
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u~0!5
r S

~0!2r L
~0!

r S
~0!1r L

~0! , s~0!5r S
~0!r L

~0! ~2.8!

involving the ratios

r S
~0!5

pS
~0!

qS
~0! , r L

~0!5
pL

~0!

qL
~0! ~2.9!

signal CPT- ~for u (0)Þ0) and T- @for j (0)[(us (0)u21)/
(us (0)u11)Þ0] violating effects in mixing, respectively.

All this is valid in vacuum; when neutral kaons propaga
in matter, the interaction with the nuclei of the material giv
additional contributions to the evolution equation, the te
Lt in Eq. ~2.1!. As explained in the Introduction, we sha
consider the case of rapidly fluctuating media, which can
represented by classical stochastic fields. The action of
media on the kaons can then be expressed in genera
Hamiltonian form:

Lt@R̂~ t !#52 iF ~ t !R̂~ t !1 iR̂~ t !@F~ t !#†, ~2.10!

where

F~ t !5 (
m50

3

Fm~ t !sm , ~2.11!

while s0 is the 232 unit matrix ands1 ,s2 ,s3 the Pauli
matrices. The quantitiesFm(t), m50, 1, 2, 3, generate a
complex, Gaussian stochastic field; they are assumed to
in general nonzero mean, but translationally invariant co
lations ~an asterisk means complex conjugation!

Ĝmn~ t2s![^Fm~ t !Fn~s!&2^Fm~ t !&^Fn~s!&,
~2.12a!

Ŵmn~ t2s![^Fm~ t !Fn* ~s!&2^Fm~ t !&^Fn* ~s!&.
~2.12b!

Since the generalized HamiltonianF(t) in Eq. ~2.11! in-
volves stochastic variables, the density matrixR̂(t), the so-
lution of the total equation of motion~2.1!, is also stochastic
Instead, we are interested in the behavior of the redu
density matrixr̂(t)[^R̂(t)&, which is obtained by averagin
over the noise; it isr̂(t) that describes the effective evolutio
of the kaon states in the medium and allows us to comp
the behavior of relevant observables. We shall now explic
describe the derivation of an effective master equation
r̂(t), making the additional assumption that kaons and no
decouple att50, so that the initial state isr̂(0)[^R̂(0)&
5R̂(0).4

Since the HamiltonianH (0) is statistically independent o
the stochastic variables, one can choose to average ove
noise in the interaction representation, where we set

4This condition is always satisfied in a typical experimental si
ation, where the kaons enter the medium after being produced
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R̃~ t !5eit H ~0!
R̂~ t !e2 i t H ~0!†

, ~2.13!

so that

]R̃~ t !

]t
5L̃ t@R̃~ t !#[2 i (

m50

3

Fm~ t !sm~ t !R̃~ t !

1 iR̃~ t ! (
m50

3

Fm* ~ t !@sm~ t !#†, ~2.14!

with sm(t)5eit H (0)
sme2 i t H (0)

. The time evolution of the
reduced density matrix in the interaction representati
r̃(t)[^R̃(t)&, can then be expressed as a series expan
involving multiple correlations of the operatorL̃ t :

r̃~ t !5Mt@ r̃~0!#[(
k50

`

Mk@ r̃~0!#, ~2.15!

Mk@ r̃#5E
0

t

ds1E
0

s1
ds2¯E

0

sk21
dsk^L̃s1

L̃s2
¯L̃sk

&@ r̃#.

~2.16!

The sumMt in Eq. ~2.15! can be formally inverted, and a
suitable resummation gives~an overdot represents the tim
derivative! @26#

]r̃~ t !

]t
5Ṁ tM t

21@ r̃~ t !#5$Ṁ11~Ṁ22Ṁ1M1!1¯%@ r̃~ t !#.

~2.17!

As mentioned before and discussed in more detail at
end of the section, the action of the medium on the travel
kaons is weak. Therefore, one can focus attention on
dominant terms of the previous expansions, neglecting
contributions higher than the second-order ones. Furt
since the characteristic decay time of correlations in the m
dium is by assumption much smaller than the typical tim
scale of the system, the memory effects implicit in Eq.~2.17!
should not be physically relevant and the use of the Mark
ian approximation is justified. This is implemented in pra
tice by extending to infinity the upper limit of the integra
appearing inṀ2 andM1 @compare with Eq.~2.16!# @1–4#.

By returning to the Schro¨dinger representation, one finall
obtains the master equation generating the time evolutio
the reduced density matrixr̂(t)[^R̂(t)&. It takes the follow-
ing explicit form:

]r̂~ t !

]t
52 iH r̂~ t !1 i r̂~ t !H†1L̂@ r̂~ t !#. ~2.18a!

where

H5H ~0!1H ~1!1H ~2!, ~2.18b!

L̂@ r̂#5
1

2 (
i , j 51

3

Ĉi j @2s i r̂s j2$s js i ,r̂%#. ~2.18c!-
7-3
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The effective Hamiltonian in matter,H, differs from the one
in vacuum,H (0), by first-order terms@coming from the piece
Ṁ1 in Eq. ~2.17!# involving the noise mean values:

H ~1!5 (
m50

3

^Fm~ t !&sm , ~2.19!

and by second-order contributions@coming from the second
order terms in Eq.~2.17!# involving the noise correlations
~2.12! through the time-independent combinations

B̂mn5 (
l50

3 E
0

`

dt Ĝml~ t !Uln~2t !, ~2.20a!

Ĉmn5 (
l50

3 E
0

`

dt@Ŵml~ t !Uln* ~2t !

1Ŵnl* ~ t !Ulm~2t !#, ~2.20b!

where the 434 matrix U(t) is defined by the following
transformation rule:

sm~ t !5eit H ~0!
sme2 i t H ~0!

5Umn~ t !sn . ~2.21!

Explicitly, one finds

H ~2!5
i

2 (
m50

3

~ Ĉmm22B̂mm!s01(
i 51

3 F i Ĉi02 i ~B̂i01B̂0i !

1
1

2 (
j ,k51

3

e i jk~2B̂jk2 i Im Ĉjk!Gs i . ~2.22!

On the other hand, the additional pieceL̂@ r̂# in Eq. ~2.18c! is
a time-independent, trace-preserving linear map involv
the Hermitian 333 submatrixĈi j , obtained from the coeffi-
cient matrix~2.20b! by letting m, n51,2,3. It introduces ir-
reversibility, inducing in general dissipation and loss
quantum coherence. Altogether, Eq.~2.18! generates a semi
group of linear mapsG t : r̂(0)° r̂(t)[G t@ r̂(0)#, for which
composition is defined only forward in time:G t+Gs
5G t1s , with t,s>0; it is usually referred to as a quantu
dynamical semigroup@1–4#.

As a further remark, notice that when correlations in t
medium are negligible, i.e., the combinations in~2.12! are
vanishingly small, the physical situation described by E
~2.18! corresponds to that of the regeneration phenomen
Indeed, in this case the presence of matter is signaled so
by the shiftH (1) in the effective Hamiltonian. For a kaon
medium interaction dominated by coherent forward scat
ing, H (1) becomes diagonal, and its components turn ou
be expressible in terms of the forward scattering amplitu
f K , f K̄ in the medium@20–23#:

H ~1!52
2pn

mK
F f K 0

0 f K̄
G , ~2.23!

wheremK is theK0 mass, whilen represents the density o
scattering centers in the medium.
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The amplitudesf K , f K̄ have been directly measured in e
periments for many types of materials@27,28#, and quite con-
sistently one findsuH (1)u.1022DG (0), whereDG (0).gS

(0) is
the typical inverse time scale describing the kaon evolut
in vacuum, as generated by the HamiltonianH (0). In view of
the fact thatH (1) coincides with the mean value of the st
chastic Hamiltonian in Eq.~2.11!, one concludes that also th
averageŝ Fm& should be in modulus of the same order
magnitude. Noise correlations are, however, much sma
from the definition~2.12!, one can safely deduce the follow
ing rough estimate: uĜu.uŴu.u^Fm&u2.1024(DG (0))2.
Therefore, the weak-coupling hypothesis adopted in deriv
the master equation~2.18! appears physically justified.

III. EXAMPLES

Before analyzing in detail the evolution in time of th
density matrixr̂(t), we shall discuss some physically inte
esting instances of the master equation~2.18!; they corre-
spond to specific realizations of the medium through wh
the kaons propagate.

Some general considerations apply to all cases. As
cussed at the end of the previous section, the noise contr
tions to Eq.~2.18! are expected to be small, in particula
those involving noise correlations. Therefore, whenever
correlations in Eq.~2.12! are multiplied by other small pa
rameters, e.g., those coming from the hamiltonianH (0) in
Eq. ~2.7!, one can safely neglect them in comparison with t
dominant pieces. These considerations are particularly
evant in the evaluation ofB̂mn and Ĉmn in Eq. ~2.20!. These
quantities are linear in the noise correlations: the entries
the matrix U(t) appearing in Eq.~2.20! can then be com-
puted at lowest order. Using the diagonalization~2.5! to

write eitH (0)
5V(0)eitH D

(0)
V(0)21 and further setting pS

(0)

5qS
(0)5pL

(0)5qL
(0)51/& in Eq. ~2.6!,5 from Eq. ~2.21! one

explicitly finds

U~ t !5Fs0 0

0 s~ t !
G , s~ t !5F cosvt sinvt

2sinvt cosvtG ,
~3.1!

wherev5 iDG2
(0)/2.

Further, the stochastic medium fluctuates on time interv
much shorter than the typical kaon evolution time sc
1/DG (0). Correspondingly, the noise correlations in E
~2.12! can be taken to have an exponentially decreas
form, with a decay parameterl much larger thanDG (0). This
allows neglect of all higher-order contributions inDG (0)/l
while the coefficientsB̂mn and Ĉmn are evaluated explicitly.

5These conditions, which come from the assumption ofCPTandT
~henceCP! conservation in mixing, imply a specific phase choice
the definition of the basis state vectors in the Hilbert space
practice, this poses no problems, since physical observables, b
the result of a trace operation~see later!, are manifestly phase in
variant.
7-4
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A. Generalized regeneration

In this case, the stochastic Hamiltonian in Eq.~2.11! is
taken to be diagonal, so that only the components withm
50,3 of the stochastic variablesFm(t) are nonvanishing:

F~ t !5FF1~ t ! 0

0 F2~ t !
G , F6~ t !5

1

2
@F0~ t !6F3~ t !#.

~3.2!

Further, we assume the correlation functions to have
form (m,n50,3)

Ĝmn~ t2s!5Gmne2l1ut2su, ~3.3a!

Ŵmn~ t2s!5Wmne2l2ut2su, ~3.3b!

whereGmn andWmn are time-independent complex matrice
with W5W†. Physically speaking, this case corresponds t
generalization of the familiar regeneration situation. The
ons are still mainly forward scattered by the medium; ho
ever, while traveling in it, they encounter density fluctu
tions, whose correlations have the general behavior~3.3!.

With the help of Eqs.~3.1! and~3.3!, one can now explic-
itly compute the noise contributions in Eq.~2.18!. To lowest
order in the small parameters, one finds that only thei 5 j

53 entry of the matrixĈi j is nonvanishing,

Ĉ335
2W33

l2
>0, ~3.4!

while the Hamiltonian contributionsH (1) andH (2) turnout to
be diagonal:

H2H ~0!5F ^F0&1 i
W001W33

l2
2 i

G001G33

l1
Gs0

1F ^F3&1
2iW03*

l2
2

2iG03

l1
Gs3

[2
2pn

mK
F f K 0

0 f K̄
G . ~3.5!

The complex parametersf K and f K̄ now contain both the
standard forward scattering amplitudes, described by^F0&
and ^F3&, and terms originating from the correlations~3.3!.

The total effective hamiltonianH can be expressed as
Eq. ~2.7! in terms of its eigenvalueslS ,lL and the quantities
r S ,r L ,u,s in matter, defined through its eigenvectors as
Eqs. ~2.2!, ~2.8!, and ~2.9!. The differences between thes
parameters and the corresponding ones in vacuum ca
expressed as a power series expansion in the combinati

h5
pn

mK
F f K2 f K̄

lS
~0!2lL

~0!G ; ~3.6!

for many materials, one finds thatuhu is of order 1022– 1023

@27,28#. Althoughs5s (0) and thereforeT violation is unaf-
fected by the medium, to lowest order one obtainsu5u (0)

2h, so that, not surprisingly,CPT invariance is effectively
09400
e

,
a
-
-
-

be

broken by matter effects even if it is preserved in vacuum
addition, one hasr S5r S

(0)2h, r L5r L
(0)1h.

B. Diagonal correlations

The noise HamiltonianF(t) in Eq. ~2.11! is no longer
diagonal; in this case the kaons undergo incoherent sca
ings not exclusively in the forward direction. However, w
assume that the only nonvanishing correlation functions
the medium are diagonal, and precisely

Ŵ11~ t2s!5Ŵ00~ t2s!5W11e
2l1ut2su,

Ŵ22~ t2s!5Ŵ33~ t2s!5W22e
2l2ut2su,

Ĝmm~ t2s!5Gmme2l3ut2su, m50,1,2,3. ~3.7!

The noise contribution to the effective Hamiltonian no
takes the form

H2H ~0!5F ^F0&12i S W11

l1
1

W22

l2
D2 i (

m50

3
Gmm

l3
Gs0

1(
i 51

3

^Fi&s i , ~3.8!

while the matrixĈi j which characterizes the dissipative ter
in Eq. ~2.18! becomes diagonal:

Ĉi j 5F 2W11

l1

2W22

l2

2W22

l2

G . ~3.9!

C. General case

In general, however, the fluctuations in the medium
randomly directed so that the correlation functions in E
~2.12! assume the generic form~3.3!, with all components of
the constant matricesGmn and Wmn nonvanishing. In this
case, again keeping only dominant contributions, one fin

B̂mn5
Gmn

l1
, Ĉmn5

2Wmn

l2
. ~3.10!

As is clear from the definitions~2.12b! and~3.3!, the matrix
W turns out to be Hermitian and also positive. The sa
properties clearly hold for the 333 coefficient submatrixĈi j
characterizing the dissipative contribution in Eq.~2.18! as
given in Eq.~3.10!, as well as for the previously discusse
cases ~3.4! and ~3.9!. This makes the semigroupG t :
r̂(0)° r̂(t)5G t@ r̂(0)# generated by the master equatio
~2.18! completely positive. This property is crucial in assu
ing the consistency of the generalized dynamicsG t in all
possible situations@1–3,15,29#; as we shall see in discussin
correlated neutral kaons, lack of it may lead to physica
7-5
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unacceptable results. It is therefore reassuring that in
treatment the property of completely positivity emerges na
rally, without further assumptions.6

Although the matrixĈi j turns out to be complex in gen
eral, in the following we shall limit our consideration only t
situations for whichĈi j is real. These correspond to th
physically most interesting cases; in fact, the reality con
tion guarantees the increase of the von Neumann ent
dS/dt>0, S52Tr( r̂ ln r̂) @29#, which is a physically desir-
able requirement for the dynamics of a small system,
neutral kaon, in weak interaction with a large environme
the medium. For later convenience, we shall parametrize
entries ofĈi j using the real constants

a5 Ĉ111 Ĉ22, b5 Ĉ23,

a5 Ĉ111 Ĉ33, c52 Ĉ13,

g5 Ĉ221 Ĉ33, b5 Ĉ12. ~3.11!

The positivity condition onĈi j then requires

2R[a1g2a>0, RS2b2>0,

2S[a1g2a>0, RT2c2>0,

2T[a1a2g>0, ST2b2>0,

RST22bcb2Rb22Sc22Tb2>0. ~3.12!

D. White noise

Finally, let us consider the case of a medium that beha
as a white noise; it is described by stochastic variablesFm(t)
that ared correlated in time:
le

e

s
l
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Ĝmn~ t2s!5Gmnd~ t2s!, ~3.13a!

Ŵmn~ t2s!5Wmnd~ t2s!, ~3.13b!

with Gmn ,Wmn time-independent matrices, such thatW
5W†. From the definition~2.20!, one immediately finds

B̂mn5Gmn , Ĉmn52Wmn ~3.14!

without any approximation, and all considerations about
properties of the generalized dynamicsG t presented in the
previous subsection can be repeated here. The present c
nevertheless special: because of the correlations~3.13!, all
higher-order terms in the expansion~2.17! identically vanish,
so that the evolution equation~2.18! is in this case exact.

IV. OBSERVABLES

The evolution in time of the neutral kaons in the mediu
is fully described by the reduced density matrixr̂(t), the
solution of the master equation~2.18!: any physical property
of the system can be extracted from it by taking its trace w
suitable Hermitian operators. Of particular interest are
observablesÔf that are associated with the decay of neut
kaons into a final statef, typically 2p, 3p, and semileptonic
p,n states. In the fixed$uK0&,uK0&% basis,Ôf can be repre-
sented by a 232 matrix, whose entries are expressed
terms of the two independent decay amplitudes in vacu
A(K0→ f ),A(K0→ f ):7
Ôf5F uA~K0→ f !u2 @A~K0→ f !#* A~K0→ f !

A~K0→ f !@A~K0→ f !#* uA~K0→ f !u2
G . ~4.1!
the

e

eak-
me-

tion
The corresponding physical observable, directly accessib
the experiment, is given by its mean value

^Ôf&~ t !5Tr@Ôf r̂~ t !#, ~4.2!

6However, when the noise correlations assume the more gen

exponential behaviorŴmn(t2s)5Wmne2lmnut2su, lmn>0, the cor-

responding matrixĈi j is no longer automatically positive. In thi
case, complete positivity needs to be imposed as an additiona
quirement.
towhose evolution in time is regulated by that ofr̂(t).
Explicit solutionsr̂(t) of the master equation~2.18! can

be obtained using perturbation theory. As discussed in

previous section, the entries of the coefficient matrixĈi j

characterizing the dissipative contributionL̂ turn out to be of
the formWi j /l, whereWi j are the coefficients of the nois

ral

re-

7In the adopted treatment, kaon decays, being the result of w
interaction processes, are unaffected by the presence of the
dium; all media influences are encoded in the dynamical equa
~2.18!.
7-6
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correlations, whilel represents their typical inverse dec
time. From the analysis at the end of Sec. II, it follows th
their magnitude can be evaluated to be of orderuĈi j u
.1024DG (0)(DG (0)/l), which is small, since by hypothes
l@DG (0). These considerations allow the dissipative pie
L̂ in Eq. ~2.18! to be treated as a perturbation to the con
butions of the effective HamiltonianH, which contains the
standard Weisskopf-Wigner termH (0) of Eq. ~2.7!, in addi-
tion to the smaller, higher-order noise contributionsH (1) and
H (2).

It is convenient to work in a basis in whichH is diagonal:
all physical quantities~4.2!, being the result of a trace opera
tion, are basis independent. This can be obtained by a s
larity transformation analogous to the one in Eq.~2.5!:

H5VHDV21, ~4.3!

with

V5FpS pL

qS 2qL
G , HD5FlS 0

0 lL
G , ~4.4!

where, as before,lS5mS2 igS/2, lL5mL2 igL/2 are the
two eigenvalues ofH, while pS ,pL ,qS ,qL define the corre-
sponding eigenvectorsuKS&,uKL& through definitions similar
to those in Eq.~2.2!.
m
th

a-

di
w

ew
r
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This change of basis induces the transformationr̂→r
5V21r̂V21† on the density matrix, while the master equ
tion ~2.18! becomes

]r~ t !

]t
52 iH Dr~ t !1 ir~ t !HD

† 1L@r~ t !#, ~4.5!

where L@r# is again of the form~2.18c!, but with a new
coefficient matrixCi j , whose entries are linear combination
of those of the original matrixĈi j @cf. Eq. ~3.11!#.8

Similarly, the observablesÔf also get transformed,Ôf

→Of5V†ÔfV, so that the corresponding mean value^Ôf&
indeed remains unchanged:

^Ôf&[^Of&5Tr@r~ t !Of #. ~4.6!

The entries of the transformed matrixOf can be conveniently
expressed in terms of the following two complex quantit
@17,18#:

lS
f 5

qS

pS

A~K0→ f !

A~K0→ f !
, lL

f 5
qL

pL

A~K0→ f !

A~K0→ f !
~4.7!

as
Of5uA~K0→ f !u2F upSu2u11lS
f u2 pS* pL~11lS

f !* ~12lL
f !

pSpL* ~11lS
f !~12lL

f !* upLu2u12lL
f u2 G , ~4.8!

or alternatively in terms of their reciprocalsmS
f 51/lS

f , mL
f 51/lL

f , so that

Of5uA~K02 f !u2F uqSu2u11mS
f u2 2qS* qL~11mS

f !* ~12mL
f !

2qSqL* ~11mS
f !~12mL

f !* uqLu2u12mL
f u2 G . ~4.9!
rv-
r of
be

nti-

d

Using standard perturbation theory, solutions of Eq.~4.5!
can then easily be obtained to any needed order in the s
parametersCi j , while keeping an exact dependence on
quantities parametrizing the effective HamiltonianH, i.e., the
massesmS ,mL and widthsgS ,gL in matter, and the ratios
r S5pS /qS , r L5pL /qL . While these constants describe f
miliar Hamiltonian behavior plusCPT- and T-violating
effects in matter @through the combinationsu and
j[(usu21)/(usu11)], theadditional pieceL in Eq. ~4.5! is
responsible for matter-induced nonstandard effects, lea
to dissipation and quantum decoherence. In the following
shall focus on the latter, analyzing in detail how the n
effects modify the behavior of selected neutral kaon obse
ables.
all
e

ng
e

v-

V. SINGLE NEUTRAL KAONS

We shall start by discussing the time evolution of obse
ables associated with the propagation in random matte
single, uncorrelated neutral kaons; typically, these can
studied in fixed-target experiments~e.g., see@30#!. As dis-
cussed in the previous section, the relevant physical qua

8Explicitly, one hasL@•#5VL̂@V•V†#V†; however, since the co-

efficientsĈi j in L̂ are small, in keeping with the approximation use
before, one can neglectCP- and CPT-violating effects in matter,
and setpS5pL5qS5qL51/& in the above transformation law.
7-7



de

q.

e

be
on-
s,

ys

he

BENATTI, FLOREANINI, AND ROMANO PHYSICAL REVIEW D 68, 094007 ~2003!
ties are the probability rates that an initial neutral kaon
cays at a certain timet into a given final statef:

Pf~K0;t !5Tr@OfrK0~ t !#, Pf~K0;t !5Tr@Ofr K̄0~ t !#,
~5.1!

whererK0(t),r K̄0(t) represent the evolution according to E
~4.5! of initially pure K0,K0 mesons states.

The case of semileptonic final states is of particular int
est. The amplitudes for the decay of aK0 or K0 state into
p2,1n,p1,2n̄ can be parametrized as follows@31#:

A~K0→p2,1n!5M~12y!, ~5.2a!

A~K0→p1,2n̄ !5M* ~11y* !, ~5.2b!
ip
r

v-
a

t.
m

b
d

uc

f
n

09400
-

r-

A~K0→p1,2n̄ !5zA~K0→p1,2n̄ !, ~5.2c!

A~K0→p2,1n!5xA~K0→p2,1n!, ~5.2d!

whereM is a common factor, while the parametersx,zmea-
sure violations of theDS5DQ rule andy signals violations
of the CPT symmetry. These quantities are expected to
very small, so that one can consistently neglect terms c
tainingx, y, or z when multiplied by other small parameter
coming from either the Hamiltonian~e.g., u and j! or the
dissipative part of the evolution equation~4.5!. In particular,
this approximation implies that for semileptonic deca

lS
,1

5lL
,1

5x, mS
,2

5mL
,2

5z.
Then to first order in the dissipative matter effects, t

probabilities~5.1! explicitly read9
P,1~K0;t !5
uMu2

2 H e2Gt cos~Dmt!F4 Re~r Sr L* !

ur S1r Lu2 e2~A2D !DGt22 Re~y12C!G1e2Gt sin~Dmt!F2
4 Im~r Sr L* !

ur S1r Lu2 22 Im~x!

1Re~B!G1e2gLtF 2ur Lu2

ur S1r Lu2
2Re~x1y22C!1DG1e2gStF 2ur Su2

ur S1r Lu2
1Re~x2y12C!2DG J , ~5.3a!

P,2~K0;t !5
uMu2

2 H e2Gt cos~Dmt!F2
4e2~A2D !DGt

ur S1r Lu2 22 Re~y!G1e2Gt sin~Dmt!@2 Im~z12C!2Re~B!#

1e2gLtF 2

ur S1r Lu2 1Re~y2z!22 Im~C!1DG1e2gStF 2

ur S1r Lu2
1Re~y1z!12 Im~C!2DG J , ~5.3b!
-

e-
ain
whereDm, DG, andG are defined as in Eq.~2.3! in terms of
masses and widths in the medium. Matter-induced diss
tive effects are controlled by the dimensionless paramete

A5
a1a

DG
, B5

a2a12ib

Dm
, C5

c1 ib

DG
, D5

g

DG
.

~5.4!

The expressions forP,1(K0;t) and P,2(K0;t) can be ob-
tained from Eqs.~5.3b! and~5.3a!, respectively, by changing
the signs ofy andC and lettingr S→1/r S , r L→1/r L , x↔z.
For a nonfluctuating medium, one hasA5B5C5D50, and
the expressions in Eq.~5.3! reduce to the standard ones, gi
ing the probability of a semileptonic decay for a kaon th
has traveled in a slab of material.

The probabilitiesP, are directly accessible to experimen
Therefore, with a suitable setup, thanks to the different ti
dependence in the various pieces of Eq.~5.3!, it is possible to
extract information on the parameters~5.4! and therefore on
matter-induced decoherence effects. Clearly, this task
comes easier in the case of the generalized regeneration
cussed in Sec. III A: in this case, the stochastic medium fl
tuations are such thatA5D5B/2, C50.

Similar considerations apply to the study of the decay o
single neutral kaon into 2p or 3p final states. For instance, i
a-
s

t

e

e-
is-
-

a

the just mentioned simplified case, the 2p decay rate is sen
sitive to the surviving dissipative constantA:

R2p~ t ![
Tr@O2prK0~ t !#

Tr@O2prK0~0!#
5e2gStF ur Su2u11lS

2pu2

ur S1r Lu2 2AG
1e2gLtF ur Lu2u12lL

2pu2

ur S1r Lu2
1AG

12e2Gtuh2pucos~Dmt2f2p!, ~5.5!

where

h2p[uh2pueif2p5
r Sr L* ~11lS

2p!~12lL
2p!*

ur S1r Lu2 , ~5.6!

while lS
2p ,lL

2p are the decay parameters defined in Eq.~4.7!.
More generally, combining the semileptonic and pion d

cay probabilities in suitable asymmetries, one can obt

9SinceDG.2Dm to a good approximation, in writing Eqs.~5.3!
and~5.4! we have set the ratio 2Dm/DG equal to 1 when multiply-
ing small parameters.
7-8
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NEUTRAL KAONS IN RANDOM MEDIA PHYSICAL REVIEW D 68, 094007 ~2003!
enough independent observables to treat the case of m
general media, for which the parameters in Eq.~5.4! are all
different from zero.

VI. CORRELATED NEUTRAL KAONS

Matter-induced dissipative effects can be further stud
in experiments atf factories, using correlated neutral kao
@19#. Indeed, these setups behave like quantum interfer
eters and therefore are particularly suitable for analyz
phenomena leading to loss of quantum coherence.

In a f factory, correlated kaons are produced from t
decay of thef meson. Since this is a spin-1 particle,
decay into two spinless bosons produces an antisymm
spatial state. In thef rest frame, the two neutral kaons a
then seen flying apart with opposite momenta, and in
basisuK0&,uK0& the resulting state can be described by

ucA&5
1

&
~ uK0,2p& ^ uK0,p&2uK0,2p& ^ uK0,p&).

~6.1!

The corresponding density operatorr̂A5ucA&^cAu is repre-
sented by a 434 matrix, since now it describes two kaon
The time evolution of the correlated two-kaon system can
expressed in terms of the single-meson dynamicsG t gener-
ated by Eq.~2.18!. Indeed, once produced in af decay, the
two kaons evolve independently, so that the density ma
that describes the situation in which the first kaon h
evolved up to~proper! time t1 and the second one up t
~proper! time t2 is given by

r̂A~ t1 ,t2![~G t1
^ G t2

!@ r̂A#. ~6.2!

Correspondingly, one can now study double-decay obs
ables, i.e., the probability that a kaon decays into the fi
state f 1 at time t1 , while the other kaon decays at timet2
into the final statef 2 :

P~ f 1 ,t1 ; f 2 ,t2!5Tr@~Ôf 1
^ Ôf 2

!r̂A~ t1 ,t2!#; ~6.3!

here,Ôf 1
,Ôf 2

are the 232 Hermitian matrices introduced i
Eq. ~4.1! that describe the decay of a single kaon into
final statesf 1 , f 2 , respectively.10

The probability rates in Eq.~6.3! are very sensitive to
matter-induced decoherence effects. This is most strikin
shown by considering correlated decays at equal timet1
5t25t into the same final statef 15 f 25 f . In the absence o
the dissipative termL̂ in the evolution equation~2.18!, the
antisymmetry properties of the initial stater̂A would be pre-
served by the factorized evolutionG t ^ G t , thus producing a

10For the actual computation of the probabilitiesP( f 1 ,t1 ; f 2 ,t2),
it is again convenient to work in the basis in which the effect
Hamiltonian H is diagonal, and therefore userA5@V21

^ V21#r̂A@V†21
^ V†21#, andOf in Eqs.~4.8!, ~4.9!.
09400
re

d

-
g

e

ric

e

e

ix
s

v-
l

e

ly

vanishing result forP( f ,t; f ,t). The equal time probabilities
P( f ,t; f ,t) are therefore particularly suited to signal the pre
ence of the dissipative parameters in Eq.~5.4!. For instance,
for f either a 2p or a 3p final state, with associate intrinsi
CP parity z f , the probabilityP( f ,t; f ,t) is sensitive to the
dissipative parameterD; explicitly, one finds

P~ f ,t; f ,t !}2D~e2gLt2e2gSt!

3@~11z f !e
2gSt1~12z f !e

2gLt#, ~6.4!

the proportionality constant being a decay amplitude norm
ization factor depending on whetherf 52p or 3p. On the
other hand, in the case of semileptonic final states, it is
parametera that determines the slope at which the cor
sponding joint probability approaches zero for small tim
indeed, one has

P~,6,t;,6,t !;at. ~6.5!

Although these probabilities together with the more ge
eral ones in Eq.~6.3! can be measured at af factory, much
of the experimental analysis performed at these setups is
voted to the study of integrated distributions at fixed inter
t5t12t2 @32#:

G~ f 1 , f 2 ;t ![E
0

`

dt8P~ f 1 ,t81t; f 2 ,t8!, t>0. ~6.6!

A particularly interesting observable that can be construc
with these integrated probabilities involves 2p final states:

A«8~ t !5
G~p1p2,2p0;t !2G~2p0,p1p2;t !

G~p1p2,2p0;t !1G~2p0,p1p2;t !
; ~6.7!

it allows determining the ratio«8/«, where« and«8 are the
familiar phenomenological constants parametrizing the
cay into two pions of the short- and long-lived kaons
vacuum@17,18#. In a medium, the asymmetryA«8(t) gets
new contributions, from both the effective HamiltonianH
and the dissipative term of Eq.~2.18!. To lowest order in all
small parameters, one finds explicitly

A«8~ t !53 ReS «8

«̃ D N1~ t !

N3~ t !
23 ImS «8

«̃ D N2~ t !

N3~ t !
, ~6.8!

where

N1~ t !5u«̃u2~e2gLt2e2gSt!,

N2~ t !52u«̃u2e2Gt sin~Dmt!,

N3~ t !5e2gLt~ u«̃u21D !1e2gSt(u«̃u22
gL

gS
D)

22u«̃u2e2Gt cos~Dmt!, ~6.9!
7-9
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and «̃5«1«L2«L
(0) , with «L5(r L21)/(r L11), «L

(0)

5(r L
(0)21)/(r L

(0)11). A careful analysis of the time behav
ior of the two contributions in Eq.~6.8! would provide a way
to estimate the dissipative parameterD, together with the
real and imaginary parts of«8/ «̃. Further, note that in the
long-time limit the asymmetry~6.8! reduces to

A«8~t!;3 ReS «8

«̃ D u«̃u2

u«̃u21D
, ~6.10!

and not simply to 3 Re(«8/«), as in vacuum. Therefore, eve
assuming«L.«L

(0) , a measure ofA«8 can no longer provide
a determination of Re(«8/«) unless an estimate of the matte
induced dissipative parameterD is independently given.11

VII. DISCUSSION

Neutral kaons propagating in a stochastically fluctuat
medium can be treated as an open system, i.e., as a
system immersed in an external environment. Starting fro
microscopic Hamiltonian with a generic, linear kaon-mat
interaction term, a generalized subdynamics for the k
states has been explicitly derived by averaging over the m
ter noise. It takes the form of a completely positive quant
dynamical semigroup, where the presence of the med
manifest itself through~i! the generation of Hamiltonian cor
rections that modify the familiar Weisskopf-Wigner descr
tion of the neutral kaon system, and~ii ! the addition of extra
pieces inducing dissipation and loss of quantum coheren

Some of the Hamiltonian contributions have been a
lyzed before in connection with the so-called regenerat
phenomena: they arise because of the coherent interactio
the traveling kaons with the scattering centers in the m
dium. On the contrary, the remaining Hamiltonian pieces a
the new dissipative contributions to the kaon evolution eq
tion originate from the stochastic correlations in the mediu
as they move in the material, the kaons encounter den
fluctuations, whose correlations decay in time very rapi
with respect to the typical time scale of the kaon system, t
inducing irreversibility and decoherence in their dynamic

Many physical phenomena can give rise to short-time c
relations in ordinary materials: they have been studied
so-called femtosecond chemistry@24#. By suitably inserting
one of these materials in any standard kaon physics se
one can experimentally study the new, matter-induced di
pative effects. Indeed, as discussed in Secs. V and VI,
finds that both single-and correlated-kaon decay observa
are modified in a very specific way by the presence of th
effects; as a result, they can be probed quite independe
from other kaon physics phenomena.

Although here derived in a specific context, the gene
ized evolution equation~2.18! has wider validity: it has been

11A nonvanishingD would decreaseA«8 , making Re(«8/«) bigger
than measured. In the case of string-induced dissipative effects
phenomenon has been discussed in detail in@33#. Similar conclu-
sions were also mentioned in@25#.
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shown to generate the most general open system dyna
compatible with a semigroup composition law and the
quirement of complete positivity@1–3#. As such, it has been
recently applied to the description of dissipative effects
duced at low energies by the dynamics of fundamental
jects ~strings and branes! at a very high scale, typically tha
of the Planck mass@34#. Although very small, these string
induced decoherence effects might be experimentally stu
using interferometric devices, as atf factories@35,36#, and
can in principle interfere with the phenomena described h
Notice, however, that the two situations correspond to tota
different experimental conditions. Matter-generated pheno
ena are completely under experimental control; the effe
they induce can easily be isolated from those that might
generated at the Planck scale by suitably varying the exp
mental conditions.

The possibility of choosing and tuning the experimen
setup at will further allows the performance of interesti
tests on the physical consistency of the dynamics gener
by Eq. ~2.18!, and in particular on the property of comple
positivity @29#. Consider the case in which only one of th
two correlated kaons coming from af-meson decay actually
propagates in a stochastic medium, while the other evo
in vacuum. The density matrix that describes this situation
time t is given byr̃A(t,t)5(G t ^ G t

(0))@ r̂A#, whereG t is the
map generated by Eq.~2.18! evolving the kaon in the me
dium, while G t

(0) , generated by the Weisskopf-Wigne
HamiltonianH (0) of Eq. ~2.7!, describes the propagation i
vacuum of the second kaon.

As mentioned in Sec. II, any density matrix must be po
tive; this requirement comes from the physical interpretat
of its eigenvalues as probabilities, which thus must be n
negative. In the case of a medium with diagonal correlatio
as discussed in Sec. III B, for which the parameters in
~3.11! are such thata5a, b5c5b50, the four eigenvalues
l i(t), i 51,2,3,4, of the matrixr̃A(t,t) above can be explic-
itly computed:

l1,2~ t !5
g

DG
e2 igS,L

~0! t~e2 igLt2e2 igSt!,

l3,4~ t !5
1

2
„f1~ t !1f2~ t !

6$@f1~ t !2f2~ t !#214c1~ t !c2~ t !%1/2
…,

~7.1!

where

f1~ t !5e2@gS
~0!

1gL#t, c1~ t !5e2@G11G2
~0!

12a2g#t,

f2~ t !5e2@gS1gL
~0!

#t, c2~ t !5e2@G1
~0!

1G212a2g#t.
~7.2!

Althoughl1(t), l2(t), andl3(t) are manifestly positive for
any t, because of the minus sign in front of the square ro
one can check thatl4(t) is non-negative only for

2a2g>0. ~7.3!

his
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This is precisely the inequality that in this case guarant
the condition of complete positivity of the dissipative evol
tion G t @compare with Eq.~3.12!#; lacking it would have led
to physically inconsistent dynamics.

The situation just described can certainly be realiz
at af factory, so that, at least in principle, the time behav
d

.

n

s

ica

09400
s

d
r

of the above eigenvalues can be experimentally stud
and the inequality~7.3! probed. This would allow a direc
test of the condition of complete positivity, thus provid
ing direct experimental support for one of the cruc
properties characterizing the quantum dynamics of o
systems.
ds
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